RI Plots

Additional File 1. Supplement to BMC Bioinformatics paper *The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison*, by Allan A. Sioson, Shrinivasrao P. Mane, Pinghua Li, Wei Sha, Lenwood S. Heath, Hans J. Bohnert, and Ruth Grene, 2006.

Supplementary Figure 1: RI-plots illustrating specific intensity-dependent dye bias as microarray data is processed. (a) The original data (IIV) for the Experiment 1, WT plant samples, and second replicate microarray. The intensity-dependent dye bias is apparent in the RI-plot of this

unnormalized data set. (b) Expresso normalization (IIV_E, where E signifies Expresso normalization) applied to IIV. This shifts the plot up so that the points are evenly distributed above and below the *x*-axis, though it does not correct the intensity-dependent bias. (c) MIDAS total intensity normalization (IIV_T) applied to IIV. This makes little difference in the RI-plot and certainly does not correct the intensity-dependent bias. (d) MIDAS lowess normalization (IIV_{TL}) applied to IIV_T. Visually, this appears to remove some of the intensity-dependent bias, though the result does not appear as good as that in Figure 2 of Quackenbush [14]. (e) MIDAS standard deviation regularization (IIV_{TLS}) applied to IIV_{TLS}. There is little effect. (f) MIDAS low intensity filtering (IIV_{TLSF}) applied to IIV_{TLS}. This eliminates spots with *RG* values below 10,000. Again, there is little effect.