High Assurance Models for Secure Systems

Hussain M. J. Almohri

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Computer Science and Applications

Danfeng (Daphne) Yao, Chair
Dennis Kafura
Chris North
Eli Tilevich
Micheal Hsiao

April 3, 2013
Blacksburg, Virginia

Keywords: Systems Security, Authentication, Mathematical Programming, Optimization,
Security Risk
Copyright 2013, Hussain M. J. Almohri

High Assurance Models for Secure Systems

Hussain M. J. Almohri

ABSTRACT

Despite the recent advances in systems and network security, attacks on large enterprise
networks consistently impose serious challenges to maintaining data privacy and software
service integrity. We identify two main problems that contribute to increasing the security
risk in a networked environment: (i) vulnerable servers, workstations, and mobile devices
that suffer from vulnerabilities, which allow the execution of various cyber attacks, and, (ii)
poor security and system configurations that create loopholes used by attackers to bypass
implemented security defenses.

Complex attacks on large networks are only possible with the existence of vulnerable inter-
mediate machines, routers, or mobile devices (that we refer to as network components) in
the network. Vulnerabilities in highly connected servers and workstations, that compromise
the heart of today’s networks, are inevitable. Also, modern mobile devices with known vul-
nerabilities cause an increasing risk on large networks. Thus, weak security mechanisms in
vulnerable network components open the possibilities for effective network attacks.

On the other hand, lack of systematic methods for an effective static analysis of an overall
complex network results in inconsistent and vulnerable configurations at individual network
components as well as at the network level. For example, inconsistency and faults in de-
signing firewall rules at a host may result in enabling more attack vector. Further, the
dynamic nature of networks with changing network configurations, machine availability and
connectivity, make the security analysis a challenging task.

This work presents a hybrid approach to security by providing two solutions for analyzing
the overall security of large organizational networks, and a runtime framework for protecting
individual network components against misuse of system resources by cyber attackers. We
observe that to secure an overall computing environment, a static analysis of a network is
not sufficient. Thus, we couple our analysis with a framework to secure individual network
components including high performance machines as well as mobile devices that repeatedly
enter and leave networks. We also realize the need for advancing the theoretical foundations
for analyzing the security of large networks.

To analyze the security of large enterprise network, we present the first scientific attempt
to compute an optimized distribution of defensive resources with the objective of minimiz-
ing the chances of successful attacks. To achieve this minimization, we develop a rigorous
probabilistic model that quantitatively measures the chances of a successful attack on any

network component. Our model provides a solid theoretical foundation that enables effi-
cient computation of unknown success probabilities on every stage of a network attack. We
design an algorithm that uses the computed attack probabilities for optimizing security con-
figurations of a network. Our optimization algorithm uses state of the art sequential linear
programming to approximate the solution to a complex single objective nonlinear minimiza-
tion problem that formalizes various attack steps and candidate defenses at the granularity
of attack stages.

To protect individual network components, we develop a new approach under our novel
idea of process authentication. We argue that to provide high assurance security, enforcing
authorization is necessary but not sufficient. In fact, existing authorization systems lack a
strong and reliable process authentication model for preventing the execution of malicious
processes (i.e., processes that intentionally contain malicious goals that violate integrity and
confidentiality of legitimate processes and data). Authentication is specially critical when
malicious processes may use various system vulnerabilities to install on the system and
stealthily execute without the user’s consent.

We design and implement the Application Authentication (A2) framework that is capable
of monitoring application executions and ensuring proper authentication of application pro-
cesses. A2 has the advantage of strong security guarantees, efficient runtime execution, and
compatibility with legacy applications. This authentication framework reduces the risk of
infection by powerful malicious applications that may disrupt proper execution of legitimate
applications, steal users’ private data, and spread across the entire organizational network.

Our process authentication model is extended and applied to the Android platform. As
Android imposes its unique challenges (e.g., virtualized application execution model), our
design and implementation of process authentication is extended to address these challenges.
Per our results, process authentication in Android can protect the system against various
critical vulnerabilities such as privilege escalation attacks and drive by downloads.

To demonstrate process authentication in Android, we implement DroidBarrier. As a runtime
system, DroidBarrier includes an authentication component and a lightweight permission
system to protect legitimate applications and secret authentication information in the file
system. Our implementation of DroidBarrier is compatible with the Android runtime (with
no need for modifications) and shows efficient performance with negligible penalties in I/O
operations and process creations.

il

Dedication

To that who is unique, most merciful, and is the source of all knowledge.

To my parents, my wife and kids, and my siblings who provided me with unlimited support
and love throughout my graduate carrier.

v

Acknowledgments

I would like to thank my advisor Danfeng (Daphne) Yao who is a teacher, a supporter, and
an academic advisor for me. She was always available for providing help, answering my
questions, and facilitating my research. She taught me technical writing skills and most
importantly how to think positively. Danfeng always encouraged me to pursue useful and
practical research. An important lesson that I learned from her is: a researcher should never
waist a valuable piece of work.

Among the few people whose inspirations changed my academic carrier is Eli Tilevich. I
first met Eli Tilevich in his research course and found out about his teaching philosophy: «a
graduate student should teach him/herself. He never hesitated answering my questions and
providing me with inspirations. He introduced me to state of the art research in distributed
software systems, some technical writing tricks, and the art of conducting useful research.

The work presented in this dissertation could not be completed without collaboration with
Dennis Kafura, Layne T. Watson, and Simon Ou. Dennis Kafura was very helpful in pro-
viding critical feedback, brainstorming ideas, and teaching me his golden rules of writing.
Similarly, Layne T. Watson was an amazing collaborator who introduced me to state of the
art techniques in the world of optimization and some technical writing guidelines. My M.S.
advisor, Simon Ou, provided help and support especially for using MulVAL.

Finally, I would like to thank Michael Hsiao and Chris North who accepted to be part of my
committee. Michael and Chris provided useful and productive feedback during my proposal
and research defense exams that positively impacted the content of this dissertation.

Contents

1 Introduction

1.1 Motivations and Challenges

1.1.1 Quantitative Risk Analysis
1.1.2 Application Authentication
1.1.3 Authentication in Mobile Systems

1.2 Contributions

2 Background and Related Work

2.1 Quantitative Security Analysis

2.1.1 Attack Graphs

2.1.2 Probabilistic Metrics

2.1.3 Attack Graph Ranking

2.1.4 Security Hardening

2.2 System Security
2.2.1 Access Control

2.2.2 Remote Attestation

2.3 Android System Security oL

2.3.1 Protecting Interprocess Communications

2.3.2 Virtualization and Access Control

2.3.3 Static Analysis

3 Success Measurement Model

vi

S Ot W NN =

©

10
11
11
13
13
14
14
14
15
15

17

3.1 Problem Statement and Overview 17
3.1.1 Assumptions. 20
3.2 Expected Chance of Successful Attacks 21
3.3 Computation 24
3.3.1 Simulation Approach Lo 25
3.3.2 Optimization Approach L. 26
3.4 Determination of Initial Belief Values 28
3.4.1 Initial Belief for Fact Nodes 28
3.4.2 Initial Belief for Improvement Nodes 30
3.5 Optimization Model and Machine Availability 31
3.5.1 Optimized Security Configuration 31
3.5.2 Availability and Mobile Devices 33
3.6 Experiments 35
3.6.1 Experiments Setupo 35
3.6.2 Chances of a Successful Attack 37
3.6.3 Optimal Placement of Security Products 37
3.6.4 Large Scale Attack Graphs 39
3.6.5 Effect of Mobile Devices 39
3.6.6 Improving Network Configuration 40
3.6.7 Summary of Experiments 41
3.7 Summary ... 42
Authenticated Application (A2) 43
4.1 Model and Overview 43
4.1.1 Motivationso 43
4.1.2 Security Modelso 44
4.1.3 Application Credentials 45
4.1.4 Operations For Process Authentication. 45
4.2 Design L 47

vil

4.2.1 Credential Generation and Storage 47

4.2.2 Process Authentication oL 49
4.2.3 Authentication Protocol 0. 50
4.2.4 Runtime Verification 51
4.2.5 Mediating the Authentication 52
4.3 Security Analysis 53
4.4 TImplementation 55
4.5 Performance Evaluation o 0oL o7
4.6 Summary . . oL ... 60
DroidBarrier 61
5.1 Background 61
5.1.1 Android System 61
5.1.2 Security of Android 62
5.1.3 Problem Statement and Overview of the Solution 63
5.1.4 Security Model 65
5.1.5 Process Authentication Model 66
5.1.6 Authentication Properties and Operations 68
5.2 Designo 69
5.2.1 Credential Registration and Protection 69
5.2.2 Runtime System 71
5.2.3 Security Analysis 72
5.3 Implementation 74
54 Evaluation 7
5.5 SUMMATY . . . v v v v et e e e 79
Conclusions 81
6.1 Impact and Advantages 81
6.2 Future Directions 82

viil

List of Figures

3.1.1 A simplified attack graph with goal nodes, rule nodes, fact nodes, and security
improvement options. Node 1 is the ultimate attack goal of executing code
on the target host, Nodes 3 and 10 are intermediate attack goals. Nodes 2, 4,
9, and 11 are attack rules. Fact nodes indicate ground facts such as a piece of
configuration or a software vulnerability. There are two candidate placements
(indicated by the nodes i; and i5) of a single intrusion prevention system (IPS)
in the network. FEither hostl or host2 can have the IPS. The problem is to
minimize the probability of a successful in achieving the ultimate attack goal
by choosing one placement between iy and 5.

3.1.2 We measure the success of an attack on the network given a set of initial
belief values. The success measurement model is capable of computing the
chance of a successful attack for various attack patterns. Our model includes
dynamic aspects of a network (such as device availability) that are used to
model the attacks from mobile devices and attack choices. Optimal placement
of security products is formulated as an optimization problem to minimize the
security threats.

3.2.1 A goal node for an attack on host H with three attack choices: a local exploita-
tion and two methods of remote exploitation. The expected values for the
three rule nodes us, us, and uy4 are computed based on Equation 3.2. The vari-
ables Y7 and Y3 measure the probability of attack choices. E[Y;] = P(Y; = 1)
is the probability of choosing the path uy to uy. Its complement, 1—P(Y; = 1),
is the probability of choosing either uz or uy. E[Y3] = (Yo = 1) is the prob-
ability of choosing w3 and its complement is the probability of choosing uy.
We assume E[Y;] and E[Y3] are not available, and thus, we computationally
determine their values based on Equation 3.4.

1X

3.4.1 uy is a denial of service targeting server A, us is a vulnerability, usz is a net-
work service and firewall connection rule, and u4 is a goal indicating that the
attacker has reached the workstation W5 that can access A. we compute the
initial belief for Ffus| based on CVSS. We also set the initial belief for E[us]
to indicate that the connectivity on port 3306 is reliable. The ECSA of the
goal node u, is computed based on its dependencies.

3.5.1 Rule nodes according to Datalog [14] syntax. The first predicate specifies the
condition that if the device was compromised (i.e., through the second rule),
using a local exploit with privilege escalation consequences, root privileges
could be gained. The second rule describes a remote client exploit involving
interaction with malicious content. The predicate deviceOnline(H,Platform)
indicates the availability of the device H.

3.6.1 The topology of a dynamic organizational network with four subnetworks.
Each machine on the three public DMZ subnetworks runs at least a network
service with an open port. Data servers are on a NAT subnetwork and can
only be accessed through the workstation. Mobile devices are connected to
the wireless access point. The attacker either attacks remotely or uses a phone
to crack the wireless password and attack the servers.

3.6.2 ECSA values attack graph A (no mobile devices) and B (with mobile devices).
In the experiment with mobile devices, the availability of a mobile device is
captured with a random variable and is not assumed to be fixed.

3.6.3 Computed ECSA values for attack graph B (with mobile device) attack us-
ing simulation and maximization approaches. The results show the ECSA
for goal nodes. The maximization method computes a maximized ECSA on
the attack’s goal (E[Xg]), which indicates the highest chance of a successful
attack. . . L

4.1.1 A diagram showing how A2 components/operations (in dashed line blocks)
work with each other and how they may be integrated with complementary
security elements.

4.2.1 For compatibility with legacy applications, A2 provides a middleware that
mediates the authentication between an application and the kernel. When an
application creates a process and interacts with the kernel, the Authenticator
requests from a trusted verifier process for verifying the authenticity of the ap-
plication. The authenticity is determined by checking application credentials
in their secure code capsules on the disk.

34

52

4.5.1 (a) UnixBench benchmark operations and results. The values are calculated
according to a base score method. For each kernel (A2 and the generic Linux
kernel) two sets of experiments are performed: single and two parallel copies,
one for each core. (b) UnixBench benchmark file copy with various sizes. The
file copy is slightly affected by our permissions checking in A2 with an average
downgrade of 1.55%.

4.5.2 (a) lmbench benchmark operations and results. The values show time to ex-
ecute the operation in microseconds. Most operations perform efficiently and
do not suffer major performance downgrades. The performance downgrade in
open/close is due to our permission checking before granting a file descriptor
in the open system call. (b) Imbench process creation results. The values
show time to execute the operation in microseconds. The results show pro-
cess creation using fork without running external code, process creation with
a call to execve, and process creation with running shell scripts.

5.1.1 A remote attack sequence to bypass Android’s sandbox and install malicious
applications without user’s permissions.

5.2.1 DroidBarrier performs three operations: credential storage and protection,
runtime monitoring, and authentication of processes. Applications must ob-
tain valid secure application credentials to ensure normal execution of their
processes. An unauthenticated process is considered potentially malicious.

5.3.1 (a) The registrar creates new credentials for applications and uses the cre-
dentials to label the apk bundles. (b) DroidBarrier protects credentials by
monitoring open system calls and checking for permissions.

5.3.2 Monitoring of a process starts at the time zygote forks the process. Process
monitor prepares an authentication pool for authenticator, which sends veri-
fication requests to the verifier process. The interactions above the time line
are i USEr SPACE. . . .« v v v v e v e e e e e e

5.4.1 (a) Four I/O operations: write, read, open, and close. Maximum downgrade
is 12.92%. (b) Four I/O operations: write, read, open, and close for Dalvik
applications. Maximum downgrade is 6.26%. For better visibility, we divide
the result for open/close by 10. The results show an average of several runs.

5.4.2 (a) The average performance downgrade in this experiment is 5.26%. (b) An
insignificant downgrade of 0.041%, in process creation.

5.4.3 Maximum average performance downgrade in this experiment is 1.14%. The
three measured algorithms are towers of Hanoi (10 disks), LU factorization,
and dynamic programming. The results show an average of several runs.

x1

70

78

80

List of Tables

3.1
3.2

3.3

3.4

3.5

3.6

4.1

4.2

A table of symbols and their interpretations.

Attack graph A is generated with no mobile devices in the network and attack
graph B is generated with two mobile devices. Placement options refers to
the nodes that can be considered for the addition of an improvement node. .

Optimal selection for IPS installation for attack graphs A and B. The attack
target is code execution on the database server. The results are compared
against the original ECSA values without the improvement option. E'[Xg] is
the ECSA value of the improved model. Note that % | refers to percentage
decrease.

Optimal selection for placing a security product in the extended network for
attack graph C with 1148 nodes. Note that % | refers to percentage decrease,
and TS stands for trusted subnet.

Optimal selection for closing a single port with the best effect on the security
of the network. Note that % | refers to percentage decrease.

A summary of the experimental results for three attack graphs A and B
showing the ultimate attack goal, the corresponding ECSA, the average of
ECSA (denoted pu) for all goal nodes in each attack graph, and the standard
deviation of ECSA (denoted o) for all goal nodes in each attack graph.

A comparison between the security in conventional process identification
mechanisms and our application authentication solution.

Comparison of PHP compile time and Apache throughput (using Phoronix
test suite) in A2 vs the generic Linux. L.

x1i

37

42

Chapter 1

Introduction

Today’s computing systems are growing in size and complexity. As more functionality is de-
manded from systems and networks, the complexity and interconnection, and as a result, the
security risks increase. Two main problems contribute to increasing the risk in a networked
environment: (i) vulnerable devices, and, (ii) poor security and system configurations.

Complex attacks on a large network often target specific goals and comprise several several
steps to reach the goal. These attacks are only possible with the existence of vulnerable
intermediate hosts, routers, or mobile devices (that we refer to as network components in this
dissertation) in the network. In fact, modern mobile devices (i.e., devices that repeatedly join
untrustworthy cellular and wireless networks) impose an increasing risk on large networks.
These devices are vulnerable enough to be under the control of attacks, yet, mobile devices
are granted access to wireless networks within organizations, without appropriate defense
plans.

On the other hand, lack of systematic methods for an effective static analysis of an overall
complex network results in inconsistent and vulnerable configurations at individual network
components as well as at the network level. For instance, inconsistency and faults in designing
firewall rules at a host may result in enabling more attack vector.

This work presents a hybrid approach to security by providing two solutions for analyzing
the overall security of large organizational networks, and a runtime framework for protecting
individual systems against malicious code execution. We realize the need for advancing the
theoretical foundations for analyzing the security of large networks. We also observe that
to secure an overall computing environment, a static analysis of a network is not sufficient.
Thus, we couple our analysis with a framework to secure individual network components
including high performance machines as well as mobile devices that repeatedly enter and
leave networks.

In the remaining of this chapter, we first present a discussion on both problems, research
challenges, and the shortcomings of current approaches. Then, we discuss our technical

Hussain M. J. Almohri 2

contributions and approaches to the problems.

1.1 Motivations and Challenges

1.1.1 Quantitative Risk Analysis

Analysis of security risk requires modeling of attack scenarios and reasoning about the depen-
dencies among attack paths. Having a comprehensive model about possible attack scenarios
and their dependencies, we can develop a quantitative measurement of the risk associated
with a particular network configuration. The results of a quantitative measurement of the
risk can be used in systematic methods for optimizing the security configurations in a net-
work.

A reliable quantitative measurement of security risk faces several technical challenges:

1. Developing a rigorous model that can express various network configuration elements
at a high degree of granularity.

2. The results of any quantitative measurement

(a) must be theoretically sound with clear semantics. This is necessary for developing
deterministic algorithms for computing the results.

(b) must provide the basis for computing an optimized network configuration.

3. In many environments, sampling security sensitive data is difficult due to regulations
and technical difficulties (e.g., correlating log data to specific attacks). Thus, quanti-
tative analysis of security risk must be able to provide useful conclusions when lacking
observable attack data.

4. Large networks are highly dynamic. System configurations change, network compo-
nents’ connectivities vary, and availability of the devices changes, especially in case of
mobile devices.

Attack graphs are well known formalisms that provide the required reasoning about attack
scenarios and their dependencies. An attack graph is a dependency directed graph in which
an edge between two nodes represents the causality relationship between the two nodes.
Attack graphs show the logical reasoning and dependencies between two attack steps. For
instance, what technical conditions and steps are required to compromise a particular host
using a specific vulnerable network service?

Quantitative assessment of a network based on attack graphs has been previously re-
searched [44, 47, 48, 63, 64, 78]. However, we observe that the current state of the art
on attack graph analysis lack several important components.

Hussain M. J. Almohri 3

First, an attack graph provides a limited view of the security of a network. This limited
view shows the possible ways one (or more) attackers may pursue a specific attack goal. An
intuitive extension of this analysis is to provide a quantitative assessment on the nodes of
an attack graph. While several mechanisms exist for providing a quantitative assessment of
attack graphs (for example, using Bayesian belief propagation [71, 31, 35, 89], basic laws of
probability [63, 85], and ranking algorithms [59, 75]), these existing method lack rigorous
theoretical foundations.

Second, existing methods to quantify attack graphs do not consider dynamic aspects of
a networked environments. For instance, when modeling an attack scenario, it is always
assumed that all network properties are available to attackers. However, the availability of
network components is always subject to problems such as connection downtimes and systems
unavailabilities. Thus, virtually all the existing attack graph models assume a network with
known and fixed configurations in terms of the connectivity, availability and policies of the
network services and components.

Third, quantitative assessment of attack graphs can be practical with a systematic approach
to use the computed risk values for hardening the security of a network. For example,
network administrators may choose an optimal placement of candidate security solutions
in order to minimize the risk associated with a network. Such an optimization problem
requires i) the ability to model placement options of a component in an attack graph and
i) the ability to compute the optimal impact of various options on the protected resources.
Neither requirement is addressed in existing attack graph models. Our work fills in this gap.
One of the contributions of our work is to model and solve this optimal placement problem
in attack graphs.

As discussed in Section 1.2, we address these challenges by developing a rigorous risk mea-
surement model. Our model takes into consideration the dynamic aspects of a network. As
a novel contribution, we develop a mathematical programming model to find an optimized
network configuration according to the results of our quantitative risk measurement.

In the following section, we discuss the challenges associated with the design and development
of a runtime system to secure individual network components.

1.1.2 Application Authentication

Mainstream operating system kernels (such as Linux/Unix) often enforce minimal restrictions
on the applications permitted to execute, resulting in the ability of malicious programs to
abuse system resources. Stealthy malware running as stand-alone processes, once installed,
usually can freely execute privileges provided to the user account running the process.

A well-known approach to protecting systems from malicious activities is through the de-
ployment of mandatory access control (MAC) systems. Such systems often provide the
kernel with access monitoring mechanisms as well as policy specification platforms. The

Hussain M. J. Almohri 4

user decides on the policies and the various access rights on system resources. Existing
MAC systems such as SELinux [55], grsecurity [1], and AppArmor [40] enable the user (or
the system administrator) to express detailed and powerful policies. These solutions are of-
ten implemented using the Linux Security Modules [88] to monitor access to selected system
resources, and apply the specified policies to the corresponding processes.

The above security solutions belong to the category of authorization. However, authorization
mechanisms alone are not sufficient for achieving system assurance. Our thesis is to argue and
demonstrate that the kernel must also have secure mechanisms for authenticating processes
where the identity of a process can be proved. User authentication through techniques
such as password or public-key cryptography is common in multi-user system or network
environments. Many user authentication techniques exist in the literature. Yet, process
authentication, i.e., how to prove a process is indeed what it claims to be, has never been
systematically reported in the literature.

Because of the complexity of the operating system’s tasks in managing a large number of
diverse applications, ensuring the authenticity of the basic operating data is becoming in-
creasingly important. With modern attack models, system information whose security is
usually taken for granted needs to be re-examined and re-evaluated. The cryptographic
provenance verification work in [90] points out the need for the kernel to ensure the authen-
ticity of origins of data flows that are consumed by the system. For example, the data may
be user inputs or traffic flows. Recent assured digital signing work in [20] describes meth-
ods for the integrity protection and authenticity verification of a signing agent on a host
for creating digital signatures. It points out the differences between a human signer and a
program signer and the system challenges associated with realizing a trustworthy program
signer. Their solution extends the attestation service of the hardware trust platform module
(TPM). Our work demonstrates another case of hardening the system by re-examining the
fundamental process identification mechanism.

In this work, we introduce the novel idea of process authentication. Our process authenti-
cation model recognizes applications as individuals that are represented as processes in the
memory. In this model, the operating system enforces a mandatory authentication on all
user processes.

Process authentication is different and independent from process identification and requires
stronger properties, for example preventing spoofing application identities. In contrast, iden-
tification is a way to describe a principal. Process IDs and process names are identifiers for
processes in an OS environment. Typically, these process identifiers are generated by the
system after examining the executable file names and installation paths of processes. This
examination of executable file names and installation paths is the simplest form of process au-
thentication. These simple authentication procedures are insecure against existential forgery
attacks by malicious software, which we explain in details in Table 4.1. AppArmor (based on
the Linux Security Modules) recognizes processes through the application’s installation path,
based on which access rights are enforced. However, process authentication based on the

Hussain M. J. Almohri 5

installation path is weak. Without secure process authentication, malware may impersonate
legitimate applications and abuse system resources, thus violating system assurance.

Our process authentication model is primarily designed for Linux-based systems, and thus,
we extend our work to apply the same model in Android. In the following section, we
describe an overview of the challenges facing the Android platform and how our process
authentication can address the security problems.

1.1.3 Authentication in Mobile Systems

An important feature of the Android operating system is that it relies on mature technologies
such as the Linux kernel. The Linux kernel as the underlying layer in the Android software
stack enables efficient system services such as process and memory management. In par-
ticular, Android’s Dalvik runtime system relies on Linux process creation when launching
an application or a service, making the runtime system as the parent process of all user
application processes in Android.

With the assistance of the Linux kernel, Android implements a fundamental security feature
called application sandboxes. Android’s approach is to install each application with an iso-
lated sandbox to protect its data from unauthorized accesses by other applications, using file
system permissions. Another aspect of Android’s application sandboxes is creating separate
application processes at runtime to isolate the execution of applications. This isolation, in
principle, provides a way to protect application’s data, ensure its execution without mali-
cious interference, and protect interprocess communications based on permissions designated
by application developers.

Similar to other systems that use the Linux kernel, Android suffers from numerous vulnerabil-
ities that cause the Android’s application sandboxes to fail. For example, the Gingerbreak
exploit affected the popular Android version 2.3 that enabled a malicious application to
gain root privileges. When the malicious application escalates its privileges, it completely
bypasses Android’s application sandboxes. Malicious applications can then exploit other
vulnerabilities above the Linux kernel level such as the ones in Android’s inter-component
communications [16, 29]. A malicious application may launch attacks to misuse system re-
sources with the goal of spying on users, stealing private user data, and causing financial
loss [30].

To combat the security vulnerabilities in Android, current state of the art focuses on a wide
range of approaches. There have been proposals for using virtual layers to separate execution
domains [4], exploiting control-flow capabilities to limit malicious access to data [27], and
protecting inter-component communications in Android’s Binder [25]. Despite that Android
heavily relies on Linux to provide a security sandbox mechanism, with a few exceptions
(e.g., [70]), existing security solutions barely attempt to enhance the security capabilities of
the Linux kernel in Android. Moreover, traditional security solutions for the Linux kernel,

Hussain M. J. Almohri 6

that are used in other platforms (e.g., [45, 74]), are not directly usable in Android. Hardware
and software architectural differences, for example, require current Linux security solutions
to be revised for porting to Android.

Our key observation is that critical vulnerabilities in Android share a root cause: malicious
applications that are installed and executed without the user’s consent. Neither the Linux
kernel nor Android’s runtime incorporate a mechanism to authenticate the origin and au-
thenticity of application processes. As a result, malicious applications can run in the context
of independent Linux processes and misuse system resources to achieve their attack goals.

We extend the idea of process authentication (Section 1.1.3) to defend against kernel level
attacks on Android. Our extended process authentication model regards Android applica-
tion processes as individuals that must be authenticated before using system resources. In
this model, legitimate applications are given credentials that are used for authentication at
runtime. When enforcing process authentication, unauthorized processes that do not pos-
sess credentials fail to authenticate. This failure results in denying access to critical system
services provided by the kernel.

The main property of our process authentication model is enabling the detection of unau-
thorized processes at runtime. To demonstrate this property, we design and implement
DroidBarrier, a runtime system, that uses process authentication to detect and prevent the
execution of malicious applications without compromising the openness of the Android plat-
form. DroidBarrier enforces a mandatory authentication on all processes for any application
in Android. Using this mandatory authentication enforcement, DroidBarrier guarantees the
detection of processes that fail to authenticate, and, prevents their subsequent attacks.

To evaluate the performance DroidBarrier, we conducted several experiments that required
porting selected Unix and Linux benchmark suites to Android. According to our experiments
on a physical Android tablet, DroidBarrier performs efficiently with negligible performance
penalties in process creation, and, a maximum and minimum I/O performance penalty of
12.92% and 3.76%, respectively.

1.2 Contributions

As discussed in Section 1.1, we address two major problems in this dissertation. First,
we study the problem of providing an analytical framework to quantitatively measure the
security risk in large networks, and, to provide systematic optimized recommendations to
harden the security against various attacks.

Second, the multi step attack scenarios that can occur in networks share a main cause:
vulnerable machines in the network that allow execution of code with arbitrary privileges.
We believe to have a comprehensive solution to important security challenges that face
today’s modern computing systems, both analytical and protection tools at various levels

Hussain M. J. Almohri 7

(network or individual hosts) is needed. We realize the importance of providing a security
solution for both conventional desktop operating systems and mobile platforms.

In the following we present a highlights of the contributions by this work.

1. Quantitative analysis and security hardening.

(a)

Success measurement model. We propose a rigorous probabilistic model for
measuring the chances of successful attacks on various components of large dy-
namic corporate networks. Our success measurement model provides ways for
expressing dynamic network configurations and uncertainties in attack decisions.
This ability to model dynamic networks with uncertainties allows our model to
substantially improve existing static attack graph analysis work (e.g., [71, 24, 86]).

Computation of the values. Our success measurement model introduces the
novel idea of transforming an attack graph into a (i) linear system of equations for
simulating various attack scenarios, and, a (ii) a mildly nonlinear mathematical
programming model that aims for computing the maximum chance of success for
a particular attack goal. We solve the first system with existing linear system
solving algorithms (such as LU factorization) and the second nonlinear model
with an algorithm based on the sequential linear programming for approximating
the solution for nonlinear models.

Measuring availability and considering mobile devices. We formalize the
availability and connectivity of devices when analyzing attacks. Capturing avail-
ability and connectivity is a key abstraction that allows our success measurement
model to also quantify the existence of mobile devices in a network.

A systematic approach for optimizing security configurations. Analysis
of large networks is importance in understanding the major network vulnerabili-
ties and misconfiguration. We extend this analysis by developing an mathematical
optimization model that extends our success measurement model to consider secu-
rity improvement options (such as installing security defenses and reconfiguration
of the network) with the objective of minimizing the security risk in the network.

Evaluation. We evaluate our models for the purpose of verifying the accuracy
of our results. Our evaluation is performed based on the data gathered from
an open large network. The gathered data is based on network scanning tools
without using administrative or intrusion detection logs.

2. Host-based security defense.

(a)

Process authentication model. We present a process authentication model
that is compatible with desktop Linux systems and the Android’s runtime system.
We discuss the security requirements and guarantees of our model and present
the general operations needed to implement the model.

Hussain M. J. Almohri 8

(b)

Process monitoring and runtime protection. We design a runtime system
that is capable of detecting unauthenticated processes, and, mediate the authen-
tication between a process and the kernel. Our runtime system is compatible with
Android’s software stack. Our runtime system is also capable of authenticating
applications that can implement our challenge-response protocol. By implement-
ing our protocol the application needs to be slightly modified, however, it can
authenticate itself to the operating system directly.

Applicability. Our process authentication mechanism has important applica-
tions in preventing system access from being abused by malware. It can be either
used alone in the OS or integrates with existing system authorization solutions
such as SELinux [55] to support fine-grained process-level access control. We
demonstrate its practical application in preventing unauthorized system calls.

DroidBarrier. DroidBarrier implements our process authentication protocol for
the Android platform. We implemented and tested DroidBarrier for a physical
Android device. Our implementation consists of patches to the kernel and a set
of tools for process monitoring, authentication, and a lightweight access control
system in the kernel. DroidBarrier is fully compatible with the Android runtime
and does not require any modifications to existing applications or the Dalvik
virtual machine.

Evaluation. We evaluate the performance for both of our implementations for
desktop Linux and the Android platform. Our implementation causes negligible
performance penalties, which makes them practically usable.

In the rest of this dissertation, in Chapter 2, we discuss the necessary background for dis-
cussing our research approach, and a highlight of related work on network security analysis
and security of desktop and mobile platforms. In Chapter 3, we present our approach for
quantitative analysis of large enterprise networks, with an emphasis on probabilistic mod-
eling, computational algorithms, and optimization models. Chapter 4 presents a general
process authentication model, discusses an abstract design of a corresponding runtime envi-
ronment, and demonstrates the architecture, implementation, and evaluation of the Authen-
tication Application (A2) system for general Linux-based desktop systems. Continuing the
discussion on process authentication, the model is extended in Chapter 5, and a design, im-
plementation, and evaluation of DroidBarrier for Android is discussed. Finally, in Chapter 6,
we present our concluding remarks and discuss potential future research.

Chapter 2

Background and Related Work

In this chapter, we present an overview on the concept of attack graphs and discuss some
of the previous work that involve quantitative analysis of networks using attack graphs.
In addition, we describe the related work on securing systems in general and securing the
Android platform specifically.

2.1 Quantitative Security Analysis

In this section, we first describe the idea of an attack graph and its applications in computer
security problems. Then, we present two major categorizes of security assessment models,
namely probabilistic metrics and attack graph ranking, along with a discussion on existing
work for providing security improvement and mitigation. In the following, we compare our
work with a highlight of existing solutions in quantifying and analyzing network security
threats.

2.1.1 Attack Graphs

Attack graphs are directed graphs that are also known as dependency graphs. Nodes of an
attack graph usually refer to attack goals. A rooted attack graph has a single ultimate attack
goal (also referred to as attack target in this dissertation). This attack target is preceded by
other intermediate attack goals that are necessary for the attack to succeed. In this work,
work on a category of attack graphs referred to as logical attack graphs [65]. Logical attack
graphs include two more types of nodes. Fact nodes represent ground facts corresponding
to particular network configuration elements. For instance, the fact that MySQL is running
on port 3306 on machine A, can be represented by a single fact node. The other type of
nodes in attack graphs is rule nodes. Rule nodes are first order predicates that describe how

Hussain M. J. Almohri 10

a particular action can be undertaken in an attack. For instance, a rule node may refer to
the predicate
attack(A, T) < exploit(A, S, ...) A connected(A, P, ...), (2.1)

meaning that if there is a certain vulnerable software S running on machine A, and machine
A is accessible through port P, then attack T is possible.

Attack graphs are useful to show if an attack target is reachable and the possible ways to reach
the target. This is a useful information when analyzing the security of network. However,
attack graphs provide limited utility if not coupled with additional analytical elements that
make the analysis of large networks a reality.

An attack graph can be utilized as a visualization tool. However, this visualization becomes
unusable as soon as the network grows larger than a few connected machines. In practice,
corporate networks contain hundreds of machines with complex firewall, machine, and rout-
ing configurations, which makes the manual inspection of the corresponding attack graph
nearly impossible.

Attack graphs are also lack an important analytical element, which is a method of quantifica-
tion with rich semantics. A quantified attack graph enables a comparison among the various
nodes in the attack graphs. This comparison assists the system administrators to better
understand the bottlenecks of the network and point out the most vulnerable components in
it. Nevertheless, this quantified analysis itself must provide a basis for computing optimized
network security configurations.

In Sections 2.1.2 and 2.1.3, we argue that the existing methods for quantifying attack graphs
lack (i) rigorous theoretical foundations, and, (ii) are not scalable to be used as a foundation
for optimizing the security of the network.

2.1.2 Probabilistic Metrics

A work by Wang et al. [85] considers a probabilistic model for computing a security risk
metric using attack graphs. The work in [85] discusses an interpretation of the metric and a
heuristic to compute the metric. Our success measurement model generalizes this work by
capturing the uncertainty in attacker’s choices (discussed as a random selector in Section 3.2).

Bayesian analysis of the security of an enterprise network has been previously investi-
gated [71, 35, 89]. Bayesian analysis of attack graphs differs with our success measurement
model in that our model does not require the knowledge of conditional probabilities. In [35],
a dynamic Bayesian network model was proposed that is capable of incorporating temporal
factors. Bayesian threat probability based on security and organization-specific knowledge
as well as attacker profile is discussed in [31]. Xie et al. [89] introduced a Bayesian model
that adds a node to the Bayesian network indicating whether or not an attack has hap-
pened. Although this extension improves the models in [35], it does not capture the various

Hussain M. J. Almohri 11

possibilities of attack paths taken by an attacker before reaching an intermediate attack goal.

None of the previous work considers the effect of device availability on open networks. Fur-
thermore, optimized network configurations and improvement in our work has not been
previously studied. Bayesian methods are powerful in computing unobserved facts, such as
predicting possible threats. It remains unclear how Bayesian methods can be used to support
variability in attacker’s decisions, device availabilities, and the effect of mobile devices.

2.1.3 Attack Graph Ranking

PageRank is an algorithm proposed by Page et al. [66], which is used to rank important web
pages. The idea of page rank is based on a random web surfer that follows the links on web
pages and compute a priority rank. Due to the similarity between link graphs and attack
graphs, a variety of successful research has proposed the use of a modified version of PageR-
ank to rank attack graphs. A ranking algorithm based on PageRank [66], AssetRank [75] was
proposed to rank any dependency attack graph using a random walk model. AssetRank is a
generalization of PageRank extending it to handle both conjunctive and disjunctive nodes.
AssetRank is supported by an underlying probabilistic interpretation based on a random
walk. Mehta et al. propose a ranking method using state enumeration attack graphs [59].
The idea of PageRank is applied to state enumeration attack graphs with a modified inter-
pretation of the ranking. Attack graphs based on model checking have been proposed in
[78] formalizing an intrusion attack in a finite state model. Authors in [78] do not propose
a complete attack graph ranking method. Instead, a method to compute minimal critical
attack assets based on user-specified metrics has been introduced.

Other approaches to security assessments include a goal-motivated attacker model based on
a Markov decision process [92], a weakest-adversary approach to ranking attack graphs [68],
a generic framework for an attack resistance metric [87], and an enterprise IT risk metric
using CVSS scores [§].

The aforementioned techniques do not consider the effect of device availability in their vul-
nerability ranking algorithms. In addition, recommendation of security hardening options is
not addressed. While we provide a systematic way to find optimal recommendation options,
other researches have not provided such a mechanism.

2.1.4 Security Hardening

The authors in [71, 24] formulated the optimal security hardening problem as a multi-
objective optimization problem. The method in [71, 24] computes a subset of security
improvement options. We take a different approach by formulating the problem as a math-
ematical programming problem to find the best placement of a set of security improvement
options on a subset of rule nodes of an attack graph. In contrast to a genetic algorithm used

Hussain M. J. Almohri 12

in [24], we use a state of the art technique, named sequential linear programming, which is
scalable and efficient [7, 67, 13, 32].

The work in [2] defines a cost function to measure the effect of various network reconfig-
urations. The proposed method follows a forward search approach to assess the result of
network hardening options.

In [62] Noel and Jajodia presented a greedy algorithm to solve the hard problem of the
best placement of IDS sensors in a network using attack graphs. It is to find a minimal
number of sensors that can cover all critical attack paths. The benefit of this method is to
reduce the cost yet increase the effectiveness of IDS sensors. In comparison, our improvement
recommendation method aims to find the placement that best reduces the expected chance
of a successful attack. Both methods complement each others as they are under different
optimization requirements and constraints.

Another method for hardening the security of a network was presented in [86]. The authors
describe a method on finding the initial conditions that need to be removed to improve the
network security. Our improvement recommendation method provides a more comprehensive
solution by studying how adding improvement options helps hardening the security of the
network.

Huang et al. proposed a method for distilling critical attack graph surface iteratively through
minimum-cost SAT solving [41]. The presented method is useful in finding the most critical
attack path, which can be considered later for hardening the security of the network. Such
a result can be used to guide our improvement recommendation method to consider hosts
found on a critical path.

In [63], a probabilistic metric was introduced. The core component of the proposed work is
to simulate the attack scenario and provide recommendation options to find a better config-
uration of the network. Comparably, our improvement model is not limited to making an
optimal choice between available configuration options. Our work goes further by consider-
ing additional security hardening options (such as installing an IPS) and finding an optimal
recommendation accordingly. Our proposed model finds an optimal recommendation based
on a nonlinear program and is not limited to simulation results. In [63] the authors pro-
vided a method to quantify the attack graph and simulate attackers’ choices to compute an
improved reconfiguration. While being a valuable approach, the proposed method does not
take into account the the availability of machines and uncertainty in attackers’ decisions.

Ingols et al. [43] extended attack graphs to model zero-day vulnerability attacks, client-side
attacks, attack reachability, and firewall rules to mitigate the attack.

The authors in [63, 62, 86, 41] propose methods for hardening the security of networks.
However, the recommendation of security improvement options is not studied there.

Our work is distinguished from the existing work presented above with three novel contribu-
tions. First, we provide a general mechanism for capturing network component availabilities

Hussain M. J. Almohri 13

(i.e., the variability in a device’s network reachability), which also leads to quantifying and
analyzing possible threats from mobile devices such as laptops, tablet computers, and cell-
phones. Second, our probability calculation scheme is general enough to allow performing
various levels of success probability analysis by introducing variable attack steps as part
of success probability computation. Third, we complete the analysis of network security
threats by providing a sound and computationally efficient security improvement recommen-
dation technique that is capable of finding optimal network configurations as well as optimal
placement of security solutions in the network.

2.2 System Security

In this section, we present an overview of current practice for securing conventional desktop
systems as well as the emerging mobile platforms. We point out the difference between our
approach and the existing ones.

2.2.1 Access Control

Mandatory access control (MAC) systems specify fine-grained policies for the installed ap-
plications. These policies are typically administered by a power user (such as the root user
in UNIX-based systems) to control the behavior of the applications. A well-known MAC
system is SELinux [55]. SELinux assigns applications to domains and tags executable files
with their appropriate domain information. At runtime, SELinux monitors the access by all
processes and enforces the predefined access policies by binding the process to an appropri-
ate domain and deciding on the right policies. An alternative to SELinux, grsecurity [34]
provides sophisticated memory protection mechanisms such as enforcing read-only memory

pages.

Policy-based systems such as SELinux are found to be difficult to use by end users [76], and
lack a general application authentication mechanism. In A2, we provide the first process
authentication mechanism. It is independent of a particular user identity and does not rely
on dynamic features such as a process ID, yet (in its core functionality) does not depend on
complex policy specification systems.

In [72, 73], the authors propose the use of message authentication code in monitoring system
calls. By using an automated method binary rewriting, all the system calls functions calls
are modified to include a message authentication code as extra arguments. The message
authentication code is generated using a key that is available to the kernel. At runtime, the
kernel uses the key to verify the code against the actual system call made by the application
in order to detect possible modifications to the application’s behavior. The presented work
is limited to providing identities (the HMAC) to individual function calls to system calls in
an application. Thus, it does not provide an identity to the application itself.

Hussain M. J. Almohri 14

Systems like Shell10S [80] take a different approach by tracing memory reads and writes,
using hardware virtualization techniques, with the goal of detecting malicious payloads. The
techniques used in Shell0S are promising for mobile platforms provided the availability of
proper hardware virtualization and higher performance capacities for mobile devices.

2.2.2 Remote Attestation

The Integrity Measurement Architecture (IMA) is a mechanism to provide attestations about
the integrity of the kernel and the running programs for a trusted remote verifier [74]. In
IMA, the kernel maintains an aggregation of user programs’ and files’ checksums (i.e., the
hash of the file’s contents) in the memory. The integrity of the list in the kernel’s memory is
maintained using TPM. The checksums of user programs’ are communicated to the remote
party to perform the necessary verification. In [61] a similar approach is taken to apply IMA
on mobile operating systems.

The work in [74] is enhanced by PRIMA [45] to take advantage of information flow integrity
for verifying and controlling user programs’ inputs. Specifically, PRIMA forces the flow
from a low integrity program to a higher integrity program to pass through a filter. ReDAS
approaches the problem by providing attestation of dynamic program features to remote
parties [52]. In the proposed methods, the integrity of the kernel is assumed to be established
based on TPM. Then, the kernel keeps track of dynamic program features by a static analysis
of the program binary. For instance, ReDAS makes sure that the return address of a function
points to the instruction following the call instruction. In contrast, our authentication
model uses the device’s capabilities (such as the isolation provided by the kernel) and does
not rely on third party attestation.

2.3 Android System Security

We start by presenting system security approaches for Android including systems to secure
IPCs, use of virtual machines and isolation techniques, implementing access control systems
within the Android operating system, and static analysis techniques for classifications of
applications.

2.3.1 Protecting Interprocess Communications

Quire is a cryptographic solution that annotates interprocess communications (IPC) in An-
droid to provide provenance assurance to the receivers of the IPC messages [25]. Quire
provides authentication only at the IPC and remote procedure call (RPC) levels. Quire’s
strategy is to authenticate every IPC and RPC and enable the applications to use the prove-

Hussain M. J. Almohri 15

nance information provided by Quire. Our authentication model in DroidBarrier uses a
different strategy. First, we authenticate the whole Linux processes. This authentication
can provide provenance at any lower level such as function calls, IPCs, and RPCs. Second,
our authentication policy is to only authenticate registered applications, and as a result, we
consider an unauthenticated process potentially malicious.

XManDroid is a framework to monitor inter component communications (ICC) in Android
[11]. XManDroid tries to protect the system from privilege escalation attacks by using a
decision maker engine that queries a security policies database. The target of attacks in
XManDroid is Android-level privileges that an unauthorized application tries to acquire.
Our work presents a solution that targets privilege escalation attacks at the Linux kernel
level to fundamentally isolate malicious applications at runtime.

2.3.2 Virtualization and Access Control

VMWare Mobile Virtualization Platform (MVP) provides a sophisticated virtualization en-
vironment for mobile operating systems [4]. MVP is a type 2 hypervisor and is capable of
isolating restricted and normal execution environments. Bare Metal Hypervisor is a concept
introduced in [38] to run security sensitive applications in trusted and isolated environments.
The authors argue that formal verification of a small code-base in the hypervisor is feasible
and provides formal security guarantees. Also Cells [21] runs multiple virtual phones using a
shared underlying physical phone to provide isolation. Other systems such as TrustDroid [12]
isolate applications in isolated logical domains. In DroidBarrier, we do not use virtualization
to provide isolation at runtime. This helps in achieving better performance and usability.

Mandatory access control (MAC) systems can be integrated with our DroidBarrier to pro-
vide fine-grained application-level access rights enforcement. A well-known MAC system
is SELinux [55]. SELinux assigns applications to domains and tags executable files with
their appropriate domain information. The authors in [77] attempted to imported SELinux
to Android. Moreover, TOMOYO Linux modified a vanilla Linux kernel to implement a
Mandatory Access Control system for the Android OS based on behavioral analysis [69].

2.3.3 Static Analysis

Static analysis is a complement of our work that provides the user with classification in-
formation about the applications. Various indicators such as existence of dynamic class
loaders can be checked prior to installation of applications to have a higher confidence that
the application does not contain potentially malicious functionalities. DroidBarrier provides
protections when the system or installed legitimate applications are compromised.

Kirin security service uses security requirement engineering techniques for finding fine-
grained security rules based on which malware applications are classified [28]. The goal

Hussain M. J. Almohri 16

of this service is to inform the user about the nature of the applications at installation time.
Another work, RiskRanker [37], provides an analysis of the Android applications for finding
zero-day Android malware. General static analysis techniques such as [26] can also be used
to provide information on installing applications.

Chapter 3

Success Measurement Model

3.1 Problem Statement and Overview

For hardening the security of the network, one important problem is to solve the problem
of optimal placement, which is to minimize the security risk for the ultimate attack goal via
the optimal placement of one or more security products.

The computation may be subject to placement constraints such as limiting the deployment
of security products to a subset of machines in the network. One needs to be able to
quantitatively compare all the possible configurations or placement options. Specifically, the
problem is to compute the most effective placement of T' security improvement products
with K placement options for each improvement option 7. We measure the effectiveness of
a security product based on the percentage reduction in the chance of a successful attack on
a particular target in the network. The direct search method for solving this combinatorial
problem has a worst case factorial complexity in number of placements. There are two
technical problems for hardening the security of a network: i) modeling, i.e., how to express
and model the placement options in attack graph and i) computing, i.e., how to efficiently
compare these different configurations.

The ability to model configuration options is a general and powerful technique for represent-
ing uncertain properties (e.g., availability) in attack graphs. Some devices (e.g., laptops)
may not connect to the organizational network all the time. Yet, these mobile devices may
have vulnerabilities partly due to their mobility (e.g., infected in an outside network). The
network administrator may want to realistically assess the effect of mobile devices on net-
work security, i.e., to what degree mobile devices enable attacks. The analysis requires one
to represent the uncertainty in the availability of devices. Existing attack graph ranking
algorithms typically assume a static graph and static propagation of probabilities, which are
not suitable to solve these problems.

17

Hussain M. J. Almohri 18

We formulate the problem as a minimax problem and solve it. In the minimax problem,
the objective function is the expected chance of success for the ultimate attack goal G. We
model the optimization problem as a nonlinear programming problem and solve it with a
nontrivial linear approximation algorithm referred to as sequential linear programming (SLP)
in Section 3.5.1.

Another motivation of our work is the need to quantitatively assess the impact of mobile
devices on organizational security. We refer to such networks as dynamic networks (i.e., open
networks with frequent changes in their configurations and properties), as the availability of
machines is no longer fixed. Compared to the existing work, our success measurement model
can analyze the effect of mobility through encoding possible attack paths from mobile devices.
We use random variables with certain probability distributions to encode the availability of
mobile devices in our computation.

We develop our success measurement model to assess the security of a network beyond the
initial information provided by an attack graph. That is, we aim to calculate the expected
chance of a successful attack (ECSA) for an attacker given our belief about the fact nodes
in an attack graph. Our success measurement model is for quantifying the vulnerabilities of
networked components and resources. It does so through computing the expected chances
of successful attacks (ECSA) on attack graph nodes. We define the ECSA of a node u
as the expected chance that a attacker successfully exploits the node u of the attack graph,
given certain initial belief. There may be multiple attack paths (representing multiple attack
choices) to reach u. Thus, the ECSA for u must represent an estimation of the success as a
combined value of success for previous nodes.

The existing work in attack graph analysis is limited to a static analysis of attack patterns and
a fixed view of network configurations. Moreover, no prior work has addressed the problem
of finding the best placement of security products in dynamic organizational networks. In
particular, our approach advances state of the art by

e introducing a rigorous probabilistic model that capture uncertain attack decisions and
machine availability, which can use computational methods to provide detailed analysis
of attack under various scenarios, and,

e being the first scientific attempt to develop a model for computing an optimal recon-
figuration of the security policies, and potential security defenses.

Our probabilistic computation of attack success requires two types of inputs, and outputs
the expected chances of successful attacks against network components and resources (Fig-
ure 3.1.2). One type of the input is an attack graph generated by a attack graph generator
tool. The other input is a set of initial belief values associated with the ground facts which
correspond to fact nodes of the attack graph. Facts related to network configurations and
vulnerability data are associated with success probabilities and constitute our initial belief.
Our model requires a minimal set of initial belief values (Section 3.4) that can be assigned

Hussain M. J. Almohri 19

6: attackerLocated(internet) 12: hacl(internet,h2,http,port)
Fact Fact
7: netService(hl,...) 11: Direct Net. access
Fact Rule
5: hacl(internet,host,http,port) 10: netAccess(h2,http,port)
Fact Goal
4: Direct Net. Access 8: vulExists(h1,vulid) 14: vulExists(h2,vulid) i2: secProduct(ips,h2)
Rule Fact Fact Fact
/ \ L’
3: netAccess(hl,http,port) il: secProduct(ips,h1) 13: netService(h2,...) N 9: Remote exploitation
Goal Fact Fact Rule
\
\ \‘ l
2: Remote exploitation 1: execCode(targetHost,root)
Rule Ultimate Goal

Figure 3.1.1: A simplified attack graph with goal nodes, rule nodes, fact nodes, and security
improvement options. Node 1 is the ultimate attack goal of executing code on the target
host, Nodes 3 and 10 are intermediate attack goals. Nodes 2, 4, 9, and 11 are attack rules.
Fact nodes indicate ground facts such as a piece of configuration or a software vulnerability.
There are two candidate placements (indicated by the nodes i; and i5) of a single intrusion
prevention system (IPS) in the network. Either hostl or host2 can have the IPS. The
problem is to minimize the probability of a successful in achieving the ultimate attack goal
by choosing one placement between iy and 5.

according to an estimation obtained from experts’ knowledge and standard vulnerability
scoring systems such as the common vulnerability assessment system (CVSS) [60].

The expected chance of successfully exploiting attack goals is computed by propagating the
initial belief about the fact nodes (probabilities of success at the fact nodes) through possible
attack routes in the graph. The propagation of the values formalizes a natural flow of attack
steps throughout the network by considering uncertain attackers’ decisions.

In Section 3.2, we provide a nonlinear programming problem with the objective of finding the
most vulnerable network components in the network. We solve the nonlinear programming
problem using a state-of-the-art technique called sequential linear programming.

Our success measurement model forms the basis for solving the problem of computing an
optimal placement. Figure 3.1.1 shows two improvement Nodes i; and iy added to the
attack graph. Fact Node i; corresponds to the placement of an intrusion prevention system
(IPS) at Node 2, and fact Node iy corresponds to the placement of an IPS at Node 9.
Each of the placements can make the target less vulnerable. The optimal placement is to
find the placement of one or more improvements (i.e., security products) that best lowers

Hussain M. J. Almohri 20

Success measurement model

Attack graph Expected chance of a Attacks from mobile
ful k i
Initial belief successfu att\ac /devwes

Security
improvement
model

l

Optimal placement of
security products

Figure 3.1.2: We measure the success of an attack on the network given a set of initial belief
values. The success measurement model is capable of computing the chance of a successful
attack for various attack patterns. Our model includes dynamic aspects of a network (such
as device availability) that are used to model the attacks from mobile devices and attack
choices. Optimal placement of security products is formulated as an optimization problem
to minimize the security threats.

the vulnerability of the target. We provide the model, formulation and computation for
efficiently solving the problem for large attack graphs.

3.1.1 Assumptions

Our model computes a probabilistic measurement of successful attacks from a system ad-
ministration perspective. Despite previous approaches (such as [75]), we do not simulate
attackers’ behavior and decisions. Our methodology is to provide estimation of what an
attacker or a group of attackers may decide to do.

Our model analyzes attack steps based on the assumption of uncertain attack decisions. We
assume that the defenders (that is, system administrators) do not have specific knowledge
about how an attacker may approach the resources. The only available knowledge is all the
possibilities of attack decisions that might be chosen during an attack.

To formalize realistic attack scenarios, we assume that an attack may be carried out by either
a single or a group of attackers. In each case, the attack may have simultaneous attack paths
approaching various resources in the network. Therefore, as a key strength of our model, we
do not assume mutual exclusion of attack paths.

Hussain M. J. Almohri 21

3.2 Expected Chance of Successful Attacks

In this section we present our success measurement model to compute the expected chance
of a successful attack on a network with respect to the attack’s ultimate goal. We first
present the definitions of the expected chance of a successful attack (ECSA) followed by the
description of two efficient algorithms to compute ECSA values. A list of symbols and their
interpretations used throughout this section is given in Table 3.1.

We calculate the ECSA values for the nodes of an attack graph G based on intuitive attack
scenarios. Developing a meaningful and rigorous probabilistic model is a technical challenge.
The difficulty with defining a correct sample space and the corresponding random variables
are two major issues with existing probabilistic approaches. Applying the basic laws of
probability to compute a probability-based metric rather than the actual probability is a
simplification. Therefore, even though plausible, previous probabilistic approaches lack a
rigorous underlying foundation

The key component of our success measurement model is the probabilistic definition of the
expected chance of a successful attack against any node in the attack graph.

We present an alternative approach to the Bayesian analysis discussed in [71, 89]. Our
success measurement model computes probabilities as a function of initial belief probabilities
without the need for specifying conditional probabilities required by Bayes’ theorem. The
set of initial belief values required by our model is small and can be obtained from standard
vulnerability assessment systems (discussed in Section 3.4.1).

Our model measures the success of an attacker based on the attack dependencies determined
by a logical attack graph.

Definition 1. A logical attack graph G = (V,E) is a digraph where V.= Ny U N, U N,
and Ny, Ny, N, are disjoint sets of nodes containing fact nodes, goal nodes, and rule nodes,
respectively. E is the set of arcs, and G € N, is the attacker’s goal.

We define the sample space for a node and a corresponding random variable representing
attack outcomes. The outcome of an attack attempt on a node can either by a success or a
failure. Let Q(u) be the sample space for a node u € V for an attack graph G. We define the
random variable X, for the node u as a Bernoulli random variable with X, (w) = 1 denoting
success in an attack and X, (w) = 0 failure, where w is an outcome.

Definition 2. For any node uw € V' of an attack graph, the expected chance of a successful
attack (ECSA) at a node u is given as E[X,| = P(X, = 1), that is, the probability of success
for the random variable X, .

Let ¢(u) = {v | (v,u) € E} be the set of predecessors (dependencies) of a node u. In the
following, we define ECSA for the derived nodes based on the corresponding logical semantics
(that is, conjunction for a rule node and disjunction for a goal node).

Hussain M. J. Almohri 22

Symbol Interpretation
G An attack graph
N, Set of goal nodes in G
N, Set of rule nodes in G
Ny Set of fact nodes in G
N Rule nodes with a fact predecessor
g Ultimate attack goal node
V Set of all nodes in G
o(u) Set of predecessors of u
X A Bernoulli random variable on node u
E[X,] Expected value of X,
P(X, = 1) | Probability of success in X,
Y; An auxiliary Bernoulli random selector
x A vector of all random variables X,
Yy A vector of all random variables Y;
fulz,y) A constraint function for a node u € V'
N A set of candidate rule nodes
" Ny € N,
An improvement option
4 representing a security product
Modified definition of f,(z,y)
JulT, 2,y) to include improvement options
A vector valued function to hold
/ the constraints f,

Table 3.1: A table of symbols and their interpretations.

ECSA value of a rule node. Let u € N, be a rule node and ¢(u) = {v1,va,...,v:}.
The random variable X,, — corresponding to the success or failure of the attacker at node
u — is defined as the product of the random variables for all predecessor nodes v € ¢(u):

X, = H X, (3.1)

and
Eix) = [] EWx.. (3.2

assuming independence of the predecessor random variables.

The independence assumption indicates that for any events X, = 1 and X, = 1, the
occurrence of one does not affect the probability of the other. While assuming that the
variables are dependent is possible, such an assumption does not substantially impact the

Hussain M. J. Almohri 23

results of the computation and has no clear predictive benefit. For instance, consider a rule
with two fact nodes as predecessors, one indicating a software vulnerability (v;) and another
indicating a host access control firewall rule (v;). Assuming fact nodes are represented
by random variables, the event that a software vulnerability is exploitable by an attacker
(X,, = 1) does not depend on the event that the target host is accessible through another
host (X,, = 1).

ECSA value of a goal node. An attack graph has several goal nodes. A goal node either
depends on a single exploitation rule (represented by a rule node) or multiple exploitation
rules such as w; in Figure 3.2.1.

A goal node with multiple rule node dependencies is a logical disjunction. In reality, this
disjunction indicates that there are multiple attack choices for an attacker towards a specific
attack goal. For instance, consider a server with a local privilege escalation vulnerability
(which is exploitable remotely in a multi-step attack) and runs a network service with multi-
ple remote vulnerabilities. An attacker must exploit one (or more) of these vulnerabilities to
gain privileges on the target server. In the lack of observable evidence, one needs to compute
the ECSA of a goal node with a function that correctly captures the probabilities of such
attack choices.

Our approach is to computationally determine attack choice probabilities according to var-
ious attack patterns (Section 3.3). Per our knowledge, no previous work has modeled this
reality.

In the the attack graph of Figure 3.2.1, Node u; has three predecessors (rule Nodes us, ug,
and uy). To compute E[X,,], we introduce auxiliary Bernoulli random variables Y; (referred
to as the random selectors) to capture the random selection of an attack path. The values
of Y; are multiplied with the computed ECSA for the predecessor nodes to reflect the attack
choices. In Section 3.3, we show how the values of Y; variables are computed.

Let ¢(u) = {v1,va,...,v:} be the set of dependencies of u. Then we define the random
variable X, for a goal node u € N, as

t—1 k-1 t—1
X, = viX,, J[J0-v)| + X, JJ(1 -0, (3.3)
k=1 =1 =1
for which
t—1 k—1 t—1

E[X.] = EY]EX,] [- BY))

i=1

+EX [0 - EYD. (34)

i=1

k=1
Observe that the Definition (3.3) selects X, = X, by the event ¥; =1, Y; =0 for j <1i < .
Note that the Bernoulli variables Y; in general depend on the node u, but this dependence

is not reflected with the notation Y;(“) for simplicity.

Hussain M. J. Almohri 24

us3
Remote
exploitation rule Uy
l 1 Remote
E[Xy,] =07 U2 exploitation rule
E[X,,] = 0.66 Local)
E[X,,] = 0.8 exploitation rule
ug] — Y-
E[yi] =03 \ P /
1
E[Y5] = 0.5 code execution on H
E[X,,]=0.721

Figure 3.2.1: A goal node for an attack on host H with three attack choices: a local ex-
ploitation and two methods of remote exploitation. The expected values for the three rule
nodes us, us, and uy are computed based on Equation 3.2. The variables Y; and Y; measure
the probability of attack choices. E[Y;] = P(Y; = 1) is the probability of choosing the path
uz to uy. Its complement, 1 — P(Y; = 1), is the probability of choosing either ug or uy.
E[Y5] = (Yo = 1) is the probability of choosing u3 and its complement is the probability of
choosing us. We assume E[Y;] and E[Y;] are not available, and thus, we computationally
determine their values based on Equation 3.4.

While we generally assume that the random variables are independent, we do not assume
they are mutually exclusive. That means multiple concurrent attacks (more than one Y;)
can lead to a goal node from various attack paths.

Equation (3.3) forms a summation over the predecessor nodes of a goal node u, with each
component of the summation multiplied with a combination of the random selectors Y;. For
example, the equation for Node u; in the graph of Figure 3.2.1 is

E[Xq] = EM]E[Xs] + (1 - EM])ENS]E[Xs] + (1 - EVi])(1 — EY2))E[Xy]. (3.5)

3.3 Computation

Attack choices are uncertain, and, various attack scenarios are possible. Existing work such
as [78, 85, 75|, have provided ways to compute a static view of the security risk corresponding
to specific attack scenarios. In this section we describe two methods for computing ECSA
values of an attack graph to model various attack patterns.

1. Simulation approach. This method simulates attack choices (using a random dis-
tribution of the attack choice values E[Y;]) to estimate an average value of the ECSA.

Hussain M. J. Almohri 25

We form a linear system of equations based on our Equations (3.4) and (3.2) that we
efficiently solve by LU factorization and show that a solution always exists. The results
give the vulnerability of the network under an average attack pattern.

2. Optimization approach. This method solves a constrained nonlinear programming
problem in order to find the expected values of all the random variables that maximizes
E[Xg]. Attack choices, represented by E[Y;], are computed to maximize the objective
function as opposed to being randomly chosen. The computation involves a mildly
nonlinear optimization problem and is more complex than the simulation above. We
use a standard state of the art algorithm called sequential linear programming that
efficiently approximates and finds a solution that is close to the optimal solution. The
results show the most vulnerable components of the network under a specialized attack
pattern.

3.3.1 Simulation Approach

To estimate the average attack pattern, we examine various assignments of the random
selectors Y; for a goal node u. To accomplish this, our general strategy is first to compute
values of all random selectors of all goal nodes with a random distribution of probabilities (for
example, E[Y;] = 0.5). We then fix the values of the random selectors in the Equations (3.4)
and (3.2) to compute E[X,] for all nodes v € V. With fixed values of the random selectors
Y;, the Equations (3.4) and (3.2) are linear and can be solved, in polynomial time, using
standard direct methods for linear systems.

In each iteration, the randomly generated values of the random selectors represent a par-
ticular attack pattern. Although our model does not require historical data about attacks,
in the presence of high evidence about a likely preferred attack path, this preference can be
regarded as a bias when generating the values of Y;.

A linear system of equations for goal and rule nodes is defined next. For notational con-
venience, let V = {1,2,..., L}, and N, UN, = {1,...,M}. Let @ = (z1,22,...,2m)" be
a vector of unknowns. Each variable z; in the vector x corresponds to the expected value
E[X;] of the random variable X; for a goal or rule node ¢ € (N, U N,). Therefore, the vector
x is of size M = |N, U N,| where N, is the set of all rules and N, is the set of all goals in
the attack graph.

The relationship between the variables z; is defined by a linear system of equations Az = b,
where A = (a;;) is a real M x M matrix and b is a real M-vector.

If 7 is a goal node, for all predecessors j; < jo < --- < j; of goal node i, set

Hussain M. J. Almohri 26

k—1
—PY=1) [PVm=0), 1<k<t-—1,
az-jk == -1 m=1 (36)
- [Py =0), k=t

m=1

Also set a; = 1 and ay, = 0 for k # i and k ¢ ¢(i), and let b; = 0.

For a rule node i, there is at most one goal node and at least one fact node in ¢(i). If the
rule node 7 has one goal node j € ¢(i), set

a;=— [[P(Xx=1), (3.7)

keo(i)
/CGNf

a; =1, a; = 0 for k # i and k # j, and b; = 0. If the rule node i has no goal node in ¢(7),
set a;; = 0 (the Kronecker delta), and

b= [[P(Xk=1). (3.8)

keg(i)
k‘GNf

The linear system formed by (3.6), (3.7), and (3.8) represents the ECSA equations for
rule (3.2) and goal nodes (3.4). Solving for the variables in =, we compute the ECSA for the
attack graph nodes that measure the chances of successful attacks on network components.

The linear system of equations Az = b formed based on (3.6), (3.7), and (3.8) is solvable
using either sparse LU or stationary iterative methods. A unique nonnegative solution for
x exists: Under the reasonable assumption that every goal node has at least one rule node
as predecessor with the selection coefficient a;; < 0, and all the initial beliefs P(X, = 1)
are not one, the matrix A is an invertible M-matrix (nonpositive off diagonal elements
and eigenvalues in the open right half plane). Therefore A~! is a nonnegative matrix (all
elements nonnegative). Since b > 0, it follows that z = A7 > 0 also. (The proof that A is
an invertible M-matrix consists of constructing a positive diagonal matrix D such that AD
is strictly row diagonally dominant, which is a characterization of invertible M-matrices.)

3.3.2 Optimization Approach

The computation method described in this section allows one to find the ECSA values such
that the ECSA of the attack target is maximized. The results represent a specific attack
pattern, as opposed to the averaged attack pattern obtained using the simulation method in-
troduced in the previous section. Both computation methods are useful and provide comple-
mentary information about the vulnerability of the network. The result of this computation

Hussain M. J. Almohri 27

is in particular important for optimal placement of security hardening products described in
Section 3.5.1.

In the following we present the steps to formulate the maximization problem. It is no longer
possible to reduce (3.2) and (3.4) to a linear system of equations, because both E[X,] and
E [Y;(u)] are unknowns, and thus, the maximization problem is a nonlinear programming
problem. To find the most vulnerable components, we formulate a maximization problem
with a nonlinear objective function subject to linear and nonlinear equality constraints. The
decision variables are the nodes of an attack graph. The equations for computing ECSA, (3.2)

and (3.4), form the constraints of the maximization problem.

Let z; be a decision variable for a node i € N, U N, corresponding to E[X;], and = =
(71,22, ..,za)" be the vector of unknown ECSA values for all nodes. Let y; be a decision
variable for a random selector Y; corresponding to E[Y;], and y = (y1,%s,...,yp)’ be the
vector of unknown expected values of the random selectors. For a rule node u € N, with
predecessors ¢(u), the constraint function is

'xu—xj H P(Xp=1), j€o(u)n N,

keg(u)
kGNf

fulz,y) = vo— [[PXa=1), éw)nN,=0.
)

ked(u
k?ENf

(3.9)

\

Note that Equation 3.9 has two cases. The first case is for rule nodes with one goal node as
a predecessor and the second case is for rule nodes with no goal nodes as predecessors. For

a goal node u € N, with predecessors ¢(u) = {v1,vq, ..., v}, the constraint function is
t—1 k—1 t—1
fulz,y) = 20 — Z Ymy+kLuy, H(l — Ymoti) | — T, H(l ~ Yo +i)- (3.10)
k=1 i=1 i=1

Recall that all the selector variables for all the goal nodes are numbered consecutively, so
that the y; for node u are y,mi1, Ymi2, - - - Ymit—1 for some m = m,, depending on u.

Let f(z,y) = (f1, fo,---, fu)? be a vector-valued function. The nonlinear program for
finding the most vulnerable components is

maximize fg(x,y) (3.11)
subject to f(z,y) =0,
0<a<1,i=1,...,
0<y; <1,i=1,...,P.

Hussain M. J. Almohri 28

In (3.11), the vector-valued function f(z,y) holds all the constraint functions (that is, (3.9)
and (3.10)) for all rule and goal nodes in the attack graph. Note that the constraints in
f(z,y) are the ECSA equations (3.2) and (3.4) equalized to zero.

To solve (3.11), we use a technique called sequential linear programming (SLP) [7, 67]. SLP
has been widely applied in engineering, and efficient algorithms for solving nonlinear pro-
grams using SLP are known [67]. The worst-case complexity of nonlinear global optimization
is exponential. SLP is a standard technique for finding a close approximate solution for non-
linear optimization problems. SLP is computationally efficient and converges to an optimal
solution [7, 67, 13].

The idea is to sequentially approximate 3.11 by a linear program, replacing each nonlinear
function by its first order Taylor series expansion. We solve the linear approximation iter-
atively until the change in the solution is modest. The iteration is defined by limiting the
change in the value of the decision variables (as move limit constraints) and slowly decreasing
the move limit.

3.4 Determination of Initial Belief Values

In this section we describe the techniques and concrete examples for choosing initial belief
values for fact nodes and improvement nodes.

3.4.1 Initial Belief for Fact Nodes

An initial belief value is a given probability of success, P(X,, = 1), at a fact node u; € Ny.
Our success measurement model relies on a relatively small set of initial beliefs that provide
an estimation of expected chance of success for specific attacks on network services. In an
attack graph, these network service vulnerabilities are formalized as fact nodes. The methods
for obtaining initial belief values may vary. We illustrate some specific approaches next.

The probability value P(X,, = 1) is based on experts’ estimations. For documented soft-
ware vulnerabilities, the value of standard vulnerability scores (assigned by experts, often
from software providers) can be used as an estimation of the expected chance of success
of exploiting the vulnerability. For example, common vulnerability scoring system (CVSS)
includes three categories of vulnerability scores (base, temporal, and environmental), which
can be used to estimate the ECSA at a vulnerability node.

In the following, we present three steps for obtaining the initial belief values for vulnerabilities
and network configurations.

Analyzing the network configuration. Consider a machine A running Ubuntu server. A in-
cludes a MySQL database server (version 5.5) listening on port 3306, which allows remote

Hussain M. J. Almohri 29

vulnerability(A, remoteDoS, 6.4)
E [’U,g] =1
networkService(A, MySQL, 3306, W2) attackerIn(W2)

\ /E[u4] —a

denialOfService(A)
Eluy] = 6.4a

Figure 3.4.1: u; is a denial of service targeting server A, usy is a vulnerability, usz is a network
service and firewall connection rule, and w4 is a goal indicating that the attacker has reached
the workstation W, that can access A. we compute the initial belief for E[us] based on
CVSS. We also set the initial belief for Ffus] to indicate that the connectivity on port 3306
is reliable. The ECSA of the goal node uy is computed based on its dependencies.

connections. To protect A from basic attacks, iptables rules are set to allow tcp/udp con-
nections either locally or to specific IP addresses inside a NAT subnet. These IP addresses
belong to workstations from which the database administrators and developers connect to
the server A, and a web server that runs the web applications.

Analyzing attacks and vulnerabilities. The server A may be attacked through a multi-step
attack. An attacker can exploit a remote privilege escalation vulnerability from a workstation
W1 to a database developer workstation Ws. Since A accepts MySQL connections from W5,
the attacker can use one of multiple remote denial of service vulnerabilities to launch a
denial of service on the MySQL server in A. One such vulnerability is CVE-2012-3147 that
allows unauthenticated users to establish a denial of service attack. The CVSS base score of
CVE-2012-3147 is 6.4 (on a 10 point scale).

Assigning initial belief values. When modeling the configuration of the network, we create a
vulnerability fact node uy as a dependency of a remote denial of service rule node u; for the
MySQL server. When multiple documented vulnerabilities with similar effects exist for us,
we compute the value P(X,, = 1) = max(sy, s, -+, Sk), where s; is a value in [0, 1] based
on the CVSS base score for a vulnerability j (for example, the score divided by 10), with
K number of documented vulnerabilities. The computation of P(X,, = 1) can be done in
alternative ways, such as P(X,, = 1) = u(si, s2,- -+, sk), where p is the mean of the score
values.

We create another fact node as a dependency of the rule node uy, denoted us, to indicate
that incoming traffic on port 3306 is allowed from host W,. We choose the probability value
P(X,, =1) =1, indicating that the connection to the port 3306 is reliable and the attacker
is knowledgeable about the port 3306 when attacking a MySQL database server. Otherwise,
depending on the network configurations, we can set P(X,, = 1) < 1, with a reasonable
value. The example rule node w; is shown in Figure 3.4.1.

Hussain M. J. Almohri 30

3.4.2 [Initial Belief for Improvement Nodes

Initial belief values for improvement nodes correspond to the reliability of the security so-
lution represented by the nodes. There are several assessment factors for computing the
initial belief values. We categorize these factors into two main groups: (i) effectiveness
and (ii) deployment. Effectiveness is measured by detection accuracy and the rate of false
positive/negative decisions. The deployment factor includes measurements for memory con-
sumption, CPU utilization, library dependencies, maintenance, and financial cost.

To compute an estimated initial belief value for a security product, we use a weighted function
of effectiveness and deployment parameters. Let Z,ﬁ“i) a Bernoulli variable for an assessment
factor u;, and let L be the total number of assessment factors. We define the expected value
for X, as
E[z{"
E[X,] = L2 L[) (3.12)

For an effectiveness factor k, the value of E [Z,gui)] indicates the accuracy of improvement

option u;. For a deployment factor [, a higher value of E [Zl(ui)] indicates lower deployment
overhead.

In the example scenario of Section 3.4.1, we create an improvement node for additional
iptables rules to improve security. For instance, we modify the firewall rules on server A
to allow connection to the database server on an unusual port p other than the default
3306, and also change MySQL socket configuration to listen on port p. Then we create
an improvement node us for an iptables rule dropping ICMP requests and limiting TCP
ACK packets to already established connections to prevent the attacker from easily finding
the port number p through a port scanner such as nmap. We expect that the firewall
rule of the node u; has an average effectiveness (some attacks may bypass this rule) with
virtually no deployment overheads. Thus, we compute the initial belief value for us as
P(X,, = 1) = 0.5%E[Z\")]+0.5% E[Z{"”] with a value of E[Z\"*] > 0.5 for the effectiveness

factor and E[Z{"] =1 for the deployment factor.

When computing an optimal placement of improvement nodes, we face several choices for
placing the security products and solutions. Our model computes an optimal placement
according to the initial belief values associated with the improvement nodes.

The computation of initial belief values can be customized by system administrators to suit
the needs of an organization. Our success measurement model is flexible to accommodate
various setups, and provides rigorous quantitative threat analysis and optimized security
mitigations.

Hussain M. J. Almohri 31

3.5 Optimization Model and Machine Availability

In this section we present two extensions of our success measurement model. In the first ex-
tension, we demonstrate the usefulness of the success measurement model by developing an
optimization model based on it. In our optimization model, we aim for computing an opti-
mized network security configuration with respect to potential security defense mechanisms.
In the second extension, we present the modeling of machine availability, which is used to
capture the availability of mobile devices in the network. A highlight of both extensions is
given below.

e Optimization. Given a set of security hardening products (e.g., IDS/IPS, firewall),
to find their placements in the organizational network such that the vulnerability of
the target is minimized. The optimal placement may be subject to other constraints
imposed by the network configuration.

e Machine availability. Current attack graph literature does not address how to assess
the (additional) vulnerabilities brought by mobile devices such as laptops and smart-
phones to the network. One needs to be able to represent the availability (i.e., periods
of on and connected to the organizational network) of any machine!. Our work is the
first to show how to represent and assess devices with variable availability, which is
one of the characteristics of mobile devices. Due to their mobility, these devices differ
from workplace desktops or servers in that they may connect to (untrusted) networks
outside the organization, resulting in possible infection or information leak.

Our success measurement model and its computational techniques naturally yield the solu-
tions to these problems, which are described below.

3.5.1 Optimized Security Configuration

With limited resources for hardening an organizational network, it is important to install
a single or a combination of security hardening products so that the expected chance of a
successful attack on the network is minimized. To find the best placement of a set of security
products in a network, we extend the attack graph to define a security product as a special
fact node referred to as an improvement node.

Definition 3. An improvement node is a fact node that represents a security hardening
product, service, practice, or policy.

!The ability to represent and evaluate the availability of any machine in attack graph analysis is useful
in general for non-mobile ones such as servers and desktops.

Hussain M. J. Almohri 32

The objective of solving the problem of optimal placement of security products is to compute
and compare the effects of various placements of one or more improvement nodes while subject
to certain constraints, and choose the placement that minimizes the attack goal’s ECSA value.

Compared to existing work (discussed in Section 2.1, such as [24]), we introduce a novel
mathematical programming problem to find the best placement of a set of security improve-
ment options on a subset of rule nodes of an attack graph.

In Section 3.4.2, we discuss how the initial belief value for an improvement node is computed.
The following describes computing the best place to deploy a single security product (that
can be generalized to multiple security products) in the network. We formulate this optimal
placement problem as a minimax problem — finding the best placement of the improvement
option that minimizes g, where Z¢ is the maximum of E[Xg] with respect to X, and Y.

We consider a single improvement option for rule nodes given deployment constraints. We
define the set of admissible rule nodes N,, C N, as a subset of all rule nodes. Let P(X, = 1)
be the initial belief of some improvement option 7. The problem is to find a configuration
that minimizes #g. That is, we aim to find a rule node u € N,, such that if 7 € ¢(u), the
value of Zg is minimized.

Let A = ‘Nm| and j; < jo < ... < ja be the nodes in N,,. Define 0-1 variables t;, for
i=1,...,Aand let T' = (¢;,,...,t;,). A single improvement corresponds to the constraint

by Flj + -+t = L
and the generalization to multiple improvements is obvious.

We modify the definition of f,(x,y) for a rule node given in Equation (3.9) to include the
effect of the improvement option 7. For a rule node u € N,.,, define

.

vy — (P(X: =1)"a; [P(Xe=1), j€d(u)nN,,

ked(u)
kGNf

v, — (P(X-=1)" J[P(Xp=1), éu)nN,=0.
)

keo(u
kGNf

fu(T,x,y) -

\

This modified definition adds the improvement node at exactly one rule node in N,,. Note
that the definition of f, for a goal node is identical to Equation 3.10. The minimax problem
to find the best placement of security products is

inimize & 3.13
BT (G18

subject to t;, +---+1;, =1,

JA

Hussain M. J. Almohri 33

where g is the solution to
maximize fg(T, z,y) (3.14)
.y

subject to f(T,z,y) =0,
0<z<1,i=1,.,M,
0<y<li=1,.., P

The minimax problem (3.13) maximizes the ECSA value of the attack’s goal (E[Xg]) to find
the highest chance of success in attacking a specific network component (such as a server).
The result of the inner maximization problem (3.14) is then used in the outer minimization
problem (3.13) to find the best placement of the security product such that the maximized
ECSA is minimized.

The inner maximization problem is solved using SLP as before. The outer minimization
problem is a limited combinatorial problem for one improvement. For multiple improvements,
the outer problem can be solved by an LP relaxation (change ¢; € {0,1} to 0 < ¢; < 1) with
branch and bound. For k£ improvements, the complexity is (“,3)

3.5.2 Availability and Mobile Devices

To capture the increase of security threats due to the inclusion of mobile devices (such as
laptops, smartphones, and tablet computers) in the network, our approach is to extend an
original attack graph for a network to include attack paths from mobile devices. Specifically,
we define special rules to represent the uncertain availability of mobile devices in an attack
graph, as well as the corresponding ECSA formulation and computation. The ability to
model the availability of machines in attack graphs is general and useful beyond the specific
mobile devices studied.

We extend the rules of the MulVAL attack graph generator [64] to include exploitation
rules that capture the availability of mobile devices. An identified mobile device may not
always appear in the network. Mobile devices rarely include a server software. The majority
of Internet-based mobile applications are clients to the outside world, requiring interaction
with malicious input to execute a successful exploit. For instance, most of the vulnerabilities
that we studied for the Android platform involved an interaction with a malicious code (i.e.
a malicious website) and exploiting a local vulnerability. Thus, we define basic exploitation
rules for mobile devices in Figure 3.5.1.

We capture the availability of a device with the node deviceOnline(H,Platform). In the
success measurement model, these nodes are dynamic nodes with no fixed initial belief. The
availability of a device may be measured as the percentage of the time that the device is

Hussain M. J. Almohri 34

execCode (H,Perm) :-
compromised (H) ,
vulExists (H,Vulid
,localExploit
,privEscalation).

compromised(H) :-
deviceOnline (H,Platform),
vulExists(H,Vulid
,remoteClient
,codeExecution),
maliciousInteraction(H, _,App).

Figure 3.5.1: Rule nodes according to Datalog [14] syntax. The first predicate specifies
the condition that if the device was compromised (i.e., through the second rule), using a
local exploit with privilege escalation consequences, root privileges could be gained. The
second rule describes a remote client exploit involving interaction with malicious content.
The predicate deviceOnline(H,Platform) indicates the availability of the device H.

connected within the target network (e.g., through a wireless connection) in a certain period.
This data may be collected or estimated for the target network.

Our rules are general enough to be applicable to any logical attack graph generator. In
addition to the extended rules, an input of mobile devices data is given to the attack graph
generator. The data includes access information to other devices, presence of vulnerabilities,
and information about the platform. Once the attack graph is generated, we compute the
ECSA values for the network, which is described next.

For mobile device fact nodes, the availability of the device cannot be deterministically spec-
ified. Thus, fact nodes similar to deviceOnline (H,Platform) cannot have a precomputed
value for all instances of ECSA computation. A fixed value of E[X,] (for a fact node u) does
not accurately reflect the device’s availability. In order to solve this issue, we first define the
stochastic fact node below to represent the device availability.

Definition 4. A stochastic fact node represents a dynamic ground fact that is not associated
with a fized initial belief.

We define a random variable for a stochastic fact mnode (such as
deviceOnline(H,Platform)). Based on our success measurement model, the vari-
able X,, for a stochastic fact node w, is a Bernoulli random variable. For the node
deviceOnline (H,Platform), P[X, = 1] is the probability of the event that the device is
online.

Using the random variable for the stochastic fact nodes, we can generate random instances

Hussain M. J. Almohri 35

corresponding to the probability of success at those nodes for our computation. Both compu-
tation methods in Sections 3.3.1 and 3.3.2 can be modified to analyze networks with mobile
devices. In the average attack pattern simulation (the first method), the average behavior of
the device is measured by randomly instantiating the availability values. When computing to
find the most vulnerable component (the second method), the value of the device availability
that creates the most risk to the target can be found.

Using our success measurement model we accurately capture the effect of mobile devices as
part of the network. We believe this analysis is valuable in order to make better decisions
on the policies that determine mobile interactions with the network.

3.6 Experiments

In this section we present several experiments to verify the mathematical models introduced
in Sections 3.3 and 3.5.1. We compute ECSA values for a network configuration obtained
from a functioning real world network. The goal of our experiments is to demonstrate that
the computation of our mathematical programming model is feasible. The results of our
experiments are complementary to the established theoretical foundations of the sequential
linear programming (discussed in Section 3.3.2).

We implemented the two computational methods and the security improvement model in
Java (approximately 3500 lines of code). We use GLPK [15] for solving linear programs.
Our implementation parses an attack graph input file (obtained from MulVAL [64]) and an
initial belief file, computes the ECSA values according to various parameters, and performs
security improvement analysis based on a set of improvement options and constraints.

In the following we describe our results for computing ECSA values, assess improvement
options on our example network, and discuss the effect of mobile devices in the network.

3.6.1 Experiments Setup

Our experiments are based on network configuration and vulnerability data from a real
dynamic organizational network that is open to a large number of users and contains several
servers and workstations. To simplify the discussion, our experiments include a subset of
machines in the network.

We used network security scanning tools (such as nmap), online vulnerability repositories,
and information provided by system administrators to create a network topology (depicted in
Figure 3.6.1) and the attack graphs that represent the real network. We performed wireless
network scanning to confirm the connectivity of wireless devices in the network.

In the following sections we describe four sets of experiments for which we generate two

Hussain M. J. Almohri 36

Attacker

Firewall

|
Public DMZ Public D

U000

Web Server Web Server Mall Server Workstation Application Application
Server Win 4 Server Linux 1

Firewall | |
Private DMZ (Trusted) D Public DMZ

“ “

L
Backup MysQL Smartphone PP (1ud Server Application Prlnterl
Server Database Server Wireless access point Linux 2 Server Win 3
Attacker

Figure 3.6.1: The topology of a dynamic organizational network with four subnetworks.
Each machine on the three public DMZ subnetworks runs at least a network service with an
open port. Data servers are on a NAT subnetwork and can only be accessed through the
workstation. Mobile devices are connected to the wireless access point. The attacker either
attacks remotely or uses a phone to crack the wireless password and attack the servers.

attack graphs (Table 3.2) with slight variations. We generate attack graph A (483 nodes)
with no mobile devices in the network (i.e., availability of mobile devices is 0%) and attack
graph B (549 nodes) that includes attack scenarios from untrusted mobile devices. Our
experiments are computing ECSA for the attack graphs, computing an optimal placement
for an intrusion prevention system, assessing the effect of mobile devices, and computing a
network reconfiguration to minimize ECSA.

To assign initial belief values for the fact nodes, we followed the steps discussed in Sec-
tion 3.4.1. Our program scans vulnerability score values and configuration settings to com-
pute the initial belief values for computing the ECSA values.

For our experiments, we did not have access to data from attack incidents such as system
logs to perform a validation of our results.

As described in Section 3.3.2, manual analysis of attack graphs A and B requires several
iterations of computation according to the sequential linear programming. Moreover, by

Hussain M. J. Almohri 37

Attack Graph Hosts | Nodes | Edges | Placement Options
A: No mobile 13 483 663 206
B: With mobile | 13 549 757 235

Table 3.2: Attack graph A is generated with no mobile devices in the network and attack
graph B is generated with two mobile devices. Placement options refers to the nodes that
can be considered for the addition of an improvement node.

manually inspecting the network, through configurations, network topology, and software
vulnerabilities, it is difficult to find reasonable conclusions about chances of successful attacks
or the effect of particular devices on the network.

3.6.2 Chances of a Successful Attack

Using the maximization method (Section 3.3.2), we performed an experiment on attack
graph A (with no mobile devices) for which the database server is the attack’s target. A
sample of our results is depicted in Figure 3.6.2. The x-axis shows the targets of exploitation
goal nodes achievable by the attacker. Notice that the maximization method computes the
maximum ECSA values for the nodes of the attack graph. The maximized ECSA values
show which network components (e.g., servers) are the most vulnerable.

The results of this experiment suggest that both application servers 3 and 4 (denoted server3
and server4 in Figure 3.6.2) have high ECSA values for their goal node, indicating high
chances of successful attacks. This is because application servers 3 and 4 have highly scored
software vulnerabilities, a high number of open ports, and thus they are relatively more
exposed to the outside world. However, the chances of successful attacks on the target
database server is the lowest, which is due to a better network configuration to protect it.
This result is expected as the database server is less exposed to the outside and runs fewer
vulnerable network services.

Figure 3.6.2 also shows the results for the ECSA computed based on attack graph B, which
are discussed in Section 3.6.5.

3.6.3 Optimal Placement of Security Products

We tested our security improvement method introduced in Section 3.5.1 with a single im-
provement applied to a comprehensive set of rules in attack graph B. We used the results
from the previous section to find the best placement of an improvement option for the net-
work of Figure 3.6.1. Our improvement option is the installation of an intrusion prevention
system (IPS) on a single device to minimize the risk on the target host (the database server).

Hussain M. J. Almohri 38

Computation of ECSA using maximization approach

B Mobile device available Z No mobile devices

0.6
0.5
0.4
— 03 7
Z %
= 0.2 %
500 Jul L
0.0 Z
web2 mail serverl printer database backup
webl server4 server2 server3 workstation laptop phone

Targets of Exploitation Nodes

Figure 3.6.2: ECSA values attack graph A (no mobile devices) and B (with mobile devices).
In the experiment with mobile devices, the availability of a mobile device is captured with a
random variable and is not assumed to be fixed.

Our choice of IPS has some deployment overhead because of memory and CPU usage. Af-
ter testing its effectiveness, we believe that this IPS has a low false negative rate. Using
Equation 3.12, the initial belief for each improvement fact node for the IPS is F[X,| = 0.3.

According to our method (described in Section 3.5.1), we add all the exploitation rules, to
the set of applicable placement nodes N,, (i.e., 206 nodes for attack graph A and 235 nodes
for attack graph B?). Then we modify the original attack graphs to include improvement
fact nodes as predecessors to each u € N,,.

We computed the improvement for the attack graph with no mobile devices and with the
mobile devices present in the network. Table 3.3 shows the improvement results, for each
attack graph configuration, ordered based on the percentage decrease in E[Xg]. Third col-
umn shows the best placement of the IPS. E'[Xg] and E[Xg] denote the expected chances
of a successful attack for G (i.e., the database server) in the improved attack graph and the
original attack graph, respectively.

The results of the Table 3.3 demonstrate significant decrease in E[Xg] when considering the
improvement option for attack graphs A and B. Our results indicate that installing the
IPS on application server 3 has the best effect in minimizing the ECSA of the attack’s goal.
The reason is that the target server can be attacked from a number of ports indicated by
goal nodes. Based on the computed values of the random selectors Y;, a particular port p;
receives a high chance of attacking the database server.

In the results, attacking the database server from p; has a lower ECSA compared to attacking

2Note that one can choose fewer rule nodes for solving the optimal placement problem, depending on
possible placement constraints.

Hussain M. J. Almohri 39

Rank | Attack Graph Machine F'[Xg] | E[Xg] | %
A: No mobile App Server 3 | 0.0520 | 0.1739 | 70.09
1 B: With mobile | Database 0.0521 | 0.2651 | 70.04
A: No mobile Database 0.0552 | 0.1739 | 79.18
2 B: With mobile | Workstation | 0.0791 | 0.2651 | 70.16

Table 3.3: Optimal selection for IPS installation for attack graphs A and B. The attack
target is code execution on the database server. The results are compared against the original
ECSA values without the improvement option. E'[Xg] is the ECSA value of the improved
model. Note that % | refers to percentage decrease.

application server 3. In the attack graph, attacking application 3 is a predecessor of attacking
the database server on port p;. Thus, the improvement option multiplied with ECSA of
attacking application server 3 reduces the value of E[Xg| more, and installing the IPS on
application server 3 yields a slightly lower value of F[Xg].

3.6.4 Large Scale Attack Graphs

To perform a large-scale improvement experiment, we extended the network in Figure 3.6.1
by adding another trusted subnet (denoted as trusted subnet 2) only accessible from the
trusted subnet shown in Figure 3.6.1 (denoted trusted subnet 1). The trusted subnet 2 has
three database servers (enumerated as database 1, 2, and 3) with similar configurations as
the database server in trusted subnet 1. The database servers 1, 2, and 3 are accessible from
the database server in trusted subnet 1, the laptop, and the workstation.

MulVAL (an attack graph generator) generates a graph of 1148 nodes for the extended
network. The attack goal was set to execute code on database 1 in trusted subnet 2. The
ECSA value for the goal was computed as E[Xg] = 0.078. We considered an improvement
option with P(X, = 1) = 0.2. The results for the improvement options are ranked and given
in Table 3.4.

Our computation shows that the optimal placement of the IPS is not on the target host (i.e.,
database 1). Instead, it is on the database server in trusted subnetwork 1. These results
show the power of our technique for identifying the most effective placement of security
products.

3.6.5 Effect of Mobile Devices

The network architecture presented in Figure 3.6.1 is also vulnerable to threats from mobile
devices. For example, in the network of Figure 3.6.1, the system administrators have allowed
mobile devices to join the wireless access point that is set up for internal purposes in the

Hussain M. J. Almohri 40

Rank | Machine E'[Xg| | E[Xg] | % |
1 Database (TS1) 0.0087 | 0.078 | 88.85

2 Database 1 (TS2) | 0.0091 | 0.078 | 88.33
3 Workstation 0.0215 | 0.078 | 72.44
4 App Server 3 0.0405 | 0.078 | 48.07

Table 3.4: Optimal selection for placing a security product in the extended network for attack
graph C' with 1148 nodes. Note that % | refers to percentage decrease, and TS stands for
trusted subnet.

private DMZ region. Also, the laptop (connected to the wireless access point) is directly
accessible from the workstation and the printer. Such configurations increase the attack
surface. We assessed the security of the network by computing the ECSA on attack graph
B that includes the attack vectors from mobile devices.

From the results of the experiment with mobile devices, we can conclude that the presence of
highly vulnerable mobile devices in the network increases the chance of attack on the target
machine. Using attack graph B, the most vulnerable components are the workstation, the
printer (which has vulnerable server software), and the mobile devices (i.e., the laptop and
the smartphone). In this experiment, the chance of success on exploiting the database server
is increased by 52.44%.

Comparison of two computational methods. In Figure 3.6.3, we compared the computa-
tion of ECSA using our simulation method against the maximization method, described in
Section 3.3.2. We used the attack graph with available mobile devices to highlight the con-
clusions we can draw from these two methods. As it is expected, in the simulation results
E[Xg] (ECSA of the database server) is lower than that of the maximization approach.

3.6.6 Improving Network Configuration

Our optimal recommendation method is capable to compute an improved network configu-
ration with no extra security products (such as an IPS) added to the network. In particular,
we find a port p (amongst all open ports on all machines) such that if it is disabled, the
value of E[Xg| is minimized. That is, for any other port p/, if p’ is disabled in the network
(for which we obtain E’'[X(]), then E'[Xg] > E[Xg].

We used our method to examine the option on every possible open port that appears in the
attack graph. The results of our experiments on attack graphs A (no mobile) and B (with
mobile) are summarized in Table 3.5.

To verify the accuracy of our method, we considered open ports on the target database server
that if disabled would eliminate the chance of attack. Although it is a common practice to

Hussain M. J. Almohri 41

A comparison of simulation and maximization approaches

-4« Maximization -¢- Simulation

0.6
0.5
0.4
0.3
0.2
0.1

0

E[X]

web2 mail serverl printerl db backup
webl server4 server2 server3 wsl laptop phone

Targets of Exploitation Nodes

Figure 3.6.3: Computed ECSA values for attack graph B (with mobile device) attack using
simulation and maximization approaches. The results show the ECSA for goal nodes. The
maximization method computes a maximized ECSA on the attack’s goal (E[X¢]), which
indicates the highest chance of a successful attack.

Rank | Attack Graph Machine, Port E'Xg) | E[Xg] | % |

A: No mobile Database, 2200 0.0 0.1739 | 100
1 B: With mobile | Database, 2200 0.0 0.2651 | 100
A: No mobile App Server 3,22 | 0.0 0.1739 | 100

2 B: With mobile | Backup, 2200 0.12 0.2651 | 53.8

Table 3.5: Optimal selection for closing a single port with the best effect on the security of
the network. Note that % | refers to percentage decrease.

eliminate straightforward attacks on well known ports, some of the servers in the target
network did have open ports with minimum firewall rules.

The results in Table 3.5 show that the best recommendation is to disable the port 2200
and that would achieve a zero expected chance of successful attack. The second ranked
recommendations are to close ports on the application server 3 and the backup server. Notice
that both recommendations achieved a lower value of E[Xg]|, thus improving the security of
the network.

3.6.7 Summary of Experiments

A summary of our experiments is given in Table 3.6. We refied that our success measurement
model (Section 3.2) is capable of capturing various levels of success of an attacker in a
network. The ECSA values assist system administrators in analyzing the security of the

Hussain M. J. Almohri 42

network in a number of ways including

1. finding the most vulnerable components of the network via direct comparison of ECSA
values for goal nodes of an attack graph,

2. determination of the magnitude of a particular threat to the network by examining
various network configurations (such as including mobile devices),

3. assessment of a list of candidate improvement products according to the lowest ECSA
achieved, and

4. computing improved network configurations.

Attack Graph Attack goal E[Xg] | u o
A: No mobile Database (T'S1) | 0.1739 | 0.3105 | 0.1169
B: With mobile | Database (T'S1) | 0.2651 | 0.1704 | 0.1464

Table 3.6: A summary of the experimental results for three attack graphs A and B showing
the ultimate attack goal, the corresponding ECSA, the average of ECSA (denoted p) for all
goal nodes in each attack graph, and the standard deviation of ECSA (denoted o) for all
goal nodes in each attack graph.

3.7 Summary

In this work we presented a new probabilistic model and several computation methods for
measuring the security threats in large enterprise networks. The novelty of our work is our
ability to quantitatively analyze the chances of successful attacks in the presence of uncer-
tainties about the configuration of a dynamic network and routes of potential attacks. We
formalized, implemented, and evaluated our method. To demonstrate the importance of
our technique, we showed the use of our success measurement in solving two open problems
in network security: i) How to optimally deploy security products and services across the
network? ii) How to formally analyze the vulnerability of dynamic networks with mobile
devices?

We extended attack graphs analysis by including the threat from mobile devices, and prob-
abilistically represented the availability of devices. Mobile devices cause increased threat to
the security of a network, which our model can accurately quantify. For the optimal de-
ployment of security products, we formulated a minimax problem, approximated it with the
SLP technique, and evaluated the solution. The optimal improvement mechanism reveals
considerable potentials for effectively hardening the security in large-scale networks.

Chapter 4

Authenticated Application (A2)

4.1 Model and Overview

We give the models and definitions used in our work. We discuss the design choices and gen-
eral requirements for the authentication of applications and their processes in the operating
system.

4.1.1 Motivations

We motivate our work through discussing and distinguishing four pairs of concepts related
to authentication below.

Process identification vs. process authentication A process identifier may be the process ID,
process name, etc. In the context of our A2 work, we define process identification as a naming
convention to describe a process. Process authentication, on the other hand, is for a process
to prove its identity to the operating system. It needs to prevent identity spoofing. There is
no process authentication mechanism in the systems security literature, even though almost
all access control solutions for OS make access decisions based on who the processes are.
In these systems, installation paths may be used to distinguish among processes. However,
such a simple mechanism is weak. We summarize their differences from our A2 solution in
Table 4.1.

Process authentication vs. user authentication Unlike the conventional user authentication
(e.g., password authentication) in a client-server architecture, process authentication imposes
new and unique system and security challenges.

e Storage of the secret The user’s secret (e.g., password or passphrase) can be memorized
by the user. A process’ secret is stored on the host and needs to be kept confidential

43

Hussain M. J. Almohri 44

Identity Weakness Comparison to A2

PID and executable path Executable integrity com- | Registering executables with secret
promised credentials

SELinux domains Subject to spoofing and re- | SELinux does not authenticate pro-
play attack cesses or application binaries

Executable checksum Need to be recomputed at | Hashes may be used as credentials in

runtime; verifies integrity | A2
but does not preserve it
Developer signature May be spoofed using fake | A2 implements a kernel level certifi-
certificates, e.g., Flame and | cation without using developer pub-
Flashback malware; im- | lic keys

practical implementation

Table 4.1: A comparison between the security in conventional process identification mecha-
nisms and our application authentication solution.

with the help of the kernel to prevent it from being accessed by other processes.

e Compatibility An authentication mechanism needs to be compatible with legacy appli-
cations without requiring customization.

Application authentication vs. process authentication The authentication of applications is
realized through the authentication of processes of that application. By process authentica-
tion, we refer to that the process of an application needs to prove the application’s identity.
(We choose to perform this authentication at the start of the process in our prototype.) We
use the terms application authentication and process authentication interchangeably in this

paper.

One-time authentication vs. runtime authentication status One-time authentication refers
to the authentication of a process, which can be done at its creation. The authentication
status of a process needs to be recorded and maintained by the system. At runtime, when
the process makes requests to access system resources (e.g., system call requests), the au-
thentication status can be queried and used for deciding whether or not to grant the request.
Our A2 system supports both mechanisms.

4.1.2 Security Models

Security goals and assumptions Our security goal is to ensure the system assurance, which
is to verify that a system enforces a desired set of security goals [46], more specifically, to
ensure that the operating system correctly authenticates processes of applications at the
runtime and malware cannot impersonate the identities of legitimate processes.

Our basic trusted components are the kernel code, kernel data structure (e.g., PIDs), and
kernel’s memory region. The kernel’s code is trustworthy and does not contain any malicious
code. The confidentiality and integrity of the kernel’s memory are preserved. (Such a trust

Hussain M. J. Almohri 45

can be partly established using existing techniques such as the Trusted Platform Module
(TPM) [79, 82] at boot time, assuming the exclusion of hardware attacks.)

Attack model Stealthy malicious code on the system may attempt to run itself as a stand-alone
user-level process. Malware may be downloaded to the victim computer through a crafted
malicious web page (e.g., drive-by download). Malware stores and attempts to execute at
the user space. Malware may attempt to impersonate other (legitimate) applications, e.g.,
by spoofing the names of other processes. Thus, process names alone are not reliable for
distinguishing processes. Malicious code running within the boundary of a legitimate process
(such as a malicious browser script or extension) is out of the scope of our attack model.

4.1.3 Application Credentials

We define secret application credential next and explain the requirements for realizing a
specific credential scheme in the operating system environment.

Definition 5. A secret application credential (SAC) is a unique secret information issued to
a trustworthy application by the operating system. SAC'is used for processes of the application
to prove their identities to the OS kernel during the authentication procedure.

There are various approaches to instantiate secret application credentials, but they need
to satisfy the following requirements. Some requirements are common in other credential
systems, whereas some are new and unique to the process authentication problem.

o Unique credential set. For every legitimate application, there is exactly one credential
~v € I', where I' is a unique set of credentials.

e Protected credential set. Access to the set I' (in memory or on the file system) is
restricted to the verifier process 7 and the registrar process p.

e Hard to regenerate. 1t is computationally hard to regenerate an application credential
v € I' created by p.

e Preventing replay attacks. Favesdropping and replaying of a credential shall not be
possible.

4.1.4 Operations For Process Authentication

The authentication operation requires userland processes to demonstrate the possession and
knowledge of kernel-issued application credentials. Processes without valid credentials are
restricted from accessing system resources (e.g., making system calls) and considered po-
tentially malicious. This mechanism provides a secure sandbox that isolates malware from

Hussain M. J. Almohri 46

system resources. We describe the general operations needed for process authentication so-
lutions, including CREDENTIAL GENERATION, PROCESS AUTHENTICATION, and RUNTIME
MONITORING.

1. CREDENTIAL GENERATION This is a one-time operation run by the kernel to issue
the secret application credential to a (trusted) application. This operation may be
performed at the time of application installation.

Determining whether an application should be given a credential is a classification
procedure, which is independent of our focus on process authentication. A classifier
analyzing the trustworthiness of the executable code can be deployed for this purpose to
complement A2, e.g., using the static programming analysis tools described in [26, 17].

2. PROCESS AUTHENTICATION This is a protocol run by the kernel and a process for the
process to authenticate itself to the kernel. The authentication is through the process
proving the possession of the required SAC value.

3. RUNTIME MONITORING The kernel monitors the execution of processes so that pro-
cesses that have not been properly authenticated are caught.

A system administrator may also choose to enforce fine-grained access control policies
at the process level (e.g., specifying what system calls can be performed by applica-
tions), which can be integrated with this operation.

A process is not allowed to inherit its authentication status from its parent process in our
model. Programs that are executed as part of other programs (e.g., through execve) can
be recognized by A2 and need to authenticate themselves. Next, we describe details of our
design for a system that supports the authentication of applications.

Authenticate

applications
Classify i Register : i Monitor : i Identify & bind i
applications ! application key ! ! execution ! ' processes |
Specify policies > Enforce policies

Figure 4.1.1: A diagram showing how A2 components/operations (in dashed line blocks) work
with each other and how they may be integrated with complementary security elements.

Hussain M. J. Almohri 47

4.2 Design

Our Authenticated Application (A2) design enables the authentication of applications. It
consists of three main components: Credential Registrar, Authenticator and Service Access
Monitor (SAM). (We implement the Authenticator and SAM as Linux kernel modules with-
out modifying the kernel). We describe the functions of our components in the following,
and describe in details how each of three operations CREDENTIAL GENERATION, PROCESS
AUTHENTICATION, and RUNTIME MONITORING are realized.

Credential Registrar is for generating a credential for the application and registering the
application with the kernel.

Authenticator is for authenticating a process when it first starts.

Service Access Monitor (SAM) is for verifying the authentication status of a process at
runtime, i.e., whether the process has been successfully authenticated by the Authenticator.

There are two important lists in A2, the credential list and the status list. The credential
list is the registrar’s copy of the all the current valid credentials generated for registered
applications. The status list is the Authenticator’s record of the currently running processes
that have been successfully authenticated.

4.2.1 Credential Generation and Storage

The kernel, more specifically the credential registrar, generates the secret credentials for
legitimate applications. In A2, the registration operation for trustworthy applications can
be done any time between the time of installation and the time of first execution. The
registrar and the application each maintain a copy of the credential. The credential is no
longer valid if the application is removed, reinstalled, or modified; and a new credential
needs to be issued. There are many algorithms to instantiate the credential value. A simple
method is to use a secret value of sufficient length as the SAC value that is generated by
a pseudorandom number generator controlled by the kernel. The random values should be
hard to guess.

A key problem in credential storage is how to protect the secrecy of application credentials
that is stored by the application. (Kernel side of credential storage is assumed to be secure
in our model.) To address that problem, we introduce a protection mechanism referred to
as the code capsule. The application’s copy of the secret credential is stored along with the
application’s code capsule (e.g., appending to the end of the executable). We define the code
capsule as follows:

Definition 6. A code capsule is a piece of executable code along with a secret application
credential that is unique and verifiable by the kernel. A code capsule is not read or write
accessible by any user process except by necessary kernel helper processes.

Hussain M. J. Almohri 48

Code capsules serve two major purposes. One purpose is to protect the secret application
credential from being revealed to unauthorized processes through the file system. The other
purpose is to bind a credential with the executable file, which is later used to verify the
identities of the running processes by the kernel. Code capsules are accessible and maintained
by a kernel helper, namely the credential registrar. When the application is executed, the
credential is not loaded into the memory.

The Registrar runs a registration function as defined below.

Definition 7. The registration function ¢ : E,s — Cs where E is a string containing the
executable code and s is the secret application credential generated by the credential Registrar.
The function v produces the string Cs = E||s, which is a code capsule protected by the kernel.
|| represents string concatenation.

We describe the steps for a credential Registrar to generate an application credential next.
Applications with the credentials issued by the Registrar are referred to by us as the registered
applications. For malicious applications that bypass this registration phase, they cannot
succeed in the authentication next due to the lack of valid registered credentials. Denote
the current credential list maintained by the Registrar by L. The list consists of (name,
credential) pairs of registered applications. The list needs to be kept confidential with
restricted read and write access.

1. The Registrar runs an external checking mechanism (e.g., a classification method [26])
to verify that the application with name app.name is trustworthy.

2. If the external verification fails (indicating that the application may be malicious),
reports it and halts. Otherwise, the Registrar generates a random value of required
length n as the new credential s, and generates a code capsule C, using the function
W(E,s). The Registrar writes Cy to the file system.

3. The Registrar appends the tuple (app.name, s) to the credential list L.

4. When the application is uninstalled, the Registrar is notified and deletes the entry
(p.name, s) from the credential list L.

The credential generation operation is fully compatible with legacy applications and does
not require any customization. Large applications may consist of several executable files.
We register each executable file that may create at least one independent process with a
unique credential. The purpose of having a unique s for each executable is to be able to
correctly identify each running process and bind it to its executable code. The registrar may
also need to ensure that the application has not been previously issued a credential, e.g., by
checking whether a credential already exists at the end of its executable.

Hussain M. J. Almohri 49

We point it out that the trusted registrar itself can be given a credential (e.g., manually
installed by the system administrator). Then it can engage in the authentication proce-
dure with the kernel as a regular process once it starts every time. The detailed process
authentication protocol via challenge and response is described next.

4.2.2 Process Authentication

The process authentication protocol is to authenticate individual processes based on the
credentials of the corresponding applications. We first discuss several design choices for
realizing process authentication, and justify our approach next. One simple design choice is
that the kernel directly accesses the application’s credential and verifies its identity provided
that the credential is stored in a predefined location. However, this method does not provide
the security level that is needed in order to establish a strong identification. The location of
the credential can be either defined in memory or the file system. Defining the credential in
the memory imposes additional risk to stealing the credential as well as causing complexity
of maintaining the credential location. An alternative design is to isolate all credentials
in a restricted storage. The kernel retrieves the credential of corresponding process at the
authentication time. However, this design is clearly inadequate because it does not bind a
running process to the corresponding credential file at the runtime.

In order for a process to prove its identity to the kernel using the application’s secret cre-
dential, our approach is for the process and the kernel to engage in a challenge-and-response
protocol. The challenge-and-response concept is common in network security. We tailor it
for the operating system environment. i) The kernel sends a random nonce to the applica-
tion process. i) The process produces the hash-based message authentication code (HMAC)
with the nonce and the secret credential and returns the hash value to the kernel. i) The
kernel recomputes the HMAC and compares it to the value submitted by the process. We
describe the three technical challenges and our approaches for addressing them next.

e One technical challenge is the implementation of an efficient and reliable communi-
cation channel between the process and the kernel. Our authentication protocol is
executed on a socket file between the process and the kernel. This method is real-
ized using a memory-based socket or shared memory, e.g., /proc file system [50]. The
advantage of using the shared memory is that it is conveniently accessible by kernel
device drivers and is under the complete control of the kernel.

Throughout A2 design, this communication method via shared memory with restric-
tions is used for all the communications between the userspace and kernel space pro-
cesses. The userspace processes may be applications or A2 components.

e Another technical challenge is that because the authentication protocol requires ad-
ditional operations by processes, one needs to avoid having to modify and customize
existing applications. We design and implement a piece of middleware that assists

Hussain M. J. Almohri 50

processes with the authentication operations. As a result, A2 is completely compatible
with existing applications for process authentication.

e The third technical issue is how to minimize the authentication overhead while ensuring
the runtime system assurance (e.g., at the system call level of granularity). Requiring
the process to authenticate itself at every request of system call incurs excessive runtime
overhead. We choose to perform the authentication at the time of process creation. We
have a lightweight mechanism to maintain the authenticated status of a process during
all subsequent requests, which is conceptually similar to session IDs in the web.

4.2.3 Authentication Protocol

The authentication protocol is run between the Authenticator and a process at the time of
process creation. The description below requires the application to be customized to follow
our protocol. The goal of A2 authentication protocol is two-fold: i) to securely authenticate
running processes and i) to record and maintain the authentication status of processes. The
authentication status information is stored as a kernel data structure by the Authenticator,
which is referred to as the status list. It is shared with the Service Access Monitor (SAM)
at runtime for SAM to determine the legitimacy of processes submitting system requests.

Let A represent the Authenticator module. We denote the A’s credential list by L. It is a list
of (app-name, app-cred) pairs, where app-name is an application name, and app-cred is its
corresponding application credential generated by A. The Authenticator (and no one else)
can submit queries to the Registrar in the form of query(app-name), which takes as the
input an application name and returns its corresponding credential on L. The Authenticator
A maintains a status list T consisting of process IDs of successfully authenticated running
processes. The list T is made readable by the Service Access module (SAM). Let p be
a user process; p.pid is p’s process identification; and p.name is p’s application name.
We denote p’s copy of its secret credential (stored in the code capsule) by p.cred. Let
auth-request (p.app) is the function used by p to send an authentication request to A. Let
HMAC be a secure hash-based message authentication code function.

1. p: Sends auth-request(p.name) to A, i.e., the application claiming to be p.name
requests to be authenticated.

2. A: Does the following.

(a) p.cred’ < query(p.name), that is, queries the Registrar with p.name to retrieve
its credential p.cred’ on the credential list L. If the returned p.cred’ is null
i.e., the application does not have a registered credential, reports p as suspicious.

(b) Generates a random nonce and sends it to p. A also sets a timer ¢ for the string
to expire if there is no future response from p. The time frame to expire ¢ is short
(e.g., in milliseconds).

Hussain M. J. Almohri 51

3. p: Computes h < HMAC(nonce, p.pid p.cred), where p.cred is p’s secret credential
obtained from its code capsule. h is sent to the Authenticator A.

4. A: If the delay associated with the received HMAC exceeds the required threshold ¢,
the authentication request is discarded and the authentication of p fails.

A computes b’ <~ HMAC(nonce, p.pid p.cred’). If h == A/, then the authentication
is successful. Otherwise, it fails.

A checks to see whether p.pid € T. If yes, reports p as suspicious. Otherwise, A appends
p.pid to the list T.

5. When p terminates, A is notified, deletes p.pid from the status list T.

The ability for an application to succeed in the authentication protocol depends on its
knowledge of the required secret application credential. E.g., if a process claims to be the
Mozilla Firefox browser (i.e., with p.name being Mozilla Firefox), then it needs to prove its
knowledge of the registered credential value of that application. Our security guarantee is
hinged on the confidentiality of the application credentials, both the copy on the credential
list and the application’s copy in the code capsule. The PID that is used as an identifier
for querying the status list belongs to kernel data, which is assumed to be trustworthy and
unforgeable in our security model.

4.2.4 Runtime Verification

At runtime, whenever a process makes a request for accessing system resources through
system calls, the Secure Access Monitor (SAM) intercepts the request and verifies the au-
thentication status of the process, i.e., whether the process has successfully passed the au-
thentication. This verification is accomplished by SAM through looking up the process’s
PID on the status list of the Authenticator, and verifies the PID’s existence on the list.
Our experiments show that this runtime verification of authentication status of processes is
lightweight. PID is used an identifier for looking up the status list. Because of our assump-
tion on kernel’s code and data integrity, PID values used for this runtime verification are
trustworthy, specifically unforgeable.

Our authentication system can be conveniently integrated with existing policy based access
control systems for strong system assurance. We have demonstrated it by modifying AppAr-
mor to incorporate strong process authentication and runtime verification of authentication
status (not described). SAM can also be integrated with a policy specification language
to benefit from existing work in policy specification such as [39] that uses an abstracted
logical language to specify SELinux policies and Polymer [6], a runtime policy specification
framework.

Hussain M. J. Almohri 52

Authenticator

I
1
>
1 N »
1 5 =<
1 % .?. g"
Executable =3 & ©
1 '8 s 3
) o o >
1 — o N
System call request 1 o = x
Secret Application > 3)
Credential ! 3
A b 2
| g
1 System call 3
Verify SAC | monitor 3
‘ 2
1 } 2
1 [
I
|
1
|
|

Check
- registered SAC Verification
Request/Response
Secret | —— N
storage Registrar
Secretiveriiicy ‘ Process Authentication

Protocol

Figure 4.2.1: For compatibility with legacy applications, A2 provides a middleware that
mediates the authentication between an application and the kernel. When an application
creates a process and interacts with the kernel, the Authenticator requests from a trusted ver-
ifier process for verifying the authenticity of the application. The authenticity is determined
by checking application credentials in their secure code capsules on the disk.

4.2.5 Mediating the Authentication

Our process authentication protocol described as in Section 4.2.3 requires the modification of
legacy applications to support the interaction with the Authenticator, raising a compatibility
issue.

We deign a middleware to perform the authentication on behalf of the application. The
credential generation operation is unchanged. By performing the authentication on behalf
of the application, the credential is no longer available to the application itself. As a benefit
of this design, the problem of leaking the credential from the application is resolved.

We authenticate legacy applications using a helper program referred to as the Verifier. The
Verifier has the read access to the credential list L maintained by the registrar, but not the
write access.

1. To authenticate a newly started process p with process name p.name, process ID
p.pid, and the path to the code capsule p.path (all obtained from the kernel), the
Authenticator checks if the process has already been verified by looking its p.pid up
in the status list T. If p.pid ¢ T, the Authenticator sends to the Verifier (p.path,
p.name).

2. The Verifier reads p.path to retrieve the application’s copy of the credential at the
end of its code capsule. This credential is denoted by p.cred. It throws an error if the
credential cannot be found.

Hussain M. J. Almohri 53

3. The Verifier looks up the credential list T by p.name to retrieve the corresponding
credential, which is denoted by p.cred’. It throws an error if p.cred’ is null.

4. The Verifier checks if p.cred’ == p.cred . If yes, then the authentication succeeds.
Otherwise, fails. The Verifier notifies the Authenticator with the authentication result.

5. The Authenticator updates the status list with p.pid.

The Verifier’s main task is to access the code capsule of the application on behalf of the appli-
cation. The security guarantee of the authentication protocol using the Verifier is equivalent
to the one without it (discussed next). In our A2 prototype, the Verifier is implemented as
a userspace application. It has a shared memory region with the Authenticator to exchange
verification messages.

The Verifier is equipped with a manually installed credential, so that itself can be authen-
ticated as a bootstrapping procedure. When the Verifier’s process starts, the Authenticator
authenticates its identity to prevent identity spoofing.

4.3 Security Analysis

The security of A2 relies on the confidentiality of the application credentials. Thus, we
analyze our security guarantees by discussing the confidentiality of the application credentials
and the integrity of A2 components.

Unforgeable credentials. Forging existing secret credentials (that appear on the creden-
tial list) by attackers is computationally hard, as long as a strong pseudorandom number
generator is used to generate the credential. Besides existential forgery, a malware process
using a self-generated arbitrary value as its credential cannot successfully pass the authenti-
cation, because that self-generated credential is not registered with the kernel and does not
appear on the credential list.

Confidentiality of code capsules and credential list. To protect the secret credential
from being revealed to other applications, A2 restricts the read access to applications’ bina-
ries, namely code capsules (where the application’s copy of credential is stored). Malware
may attempt to steal a credential from application’s or A2 components’ memory at runtime,
which is prevented by the standard process memory isolation mechanism of the system. Sim-
ilarly, A2 restricts the access to the credential list (owned by registrar) by other processes,
thus ensuring its confidentiality. More specifically, only the registrar and the verifier have
the direct access, and the Authenticator can (indirectly) query the list.

Tnstead of the direct comparison of the two copies of credentials, an equivalent-yet-less-straightforward
approach is for the Verifier to engage in the authentication protocol of Section 4.2.3 with the Authenticator
(on behalf of the application process).

Hussain M. J. Almohri H4

Resistance to replay attacks and denial of service. Malware may attempt to intercept
the challenge-and-response communication between the Authenticator and a process during
the authentication protocol. Because the proc file is only readable by A2 components, mes-
sages exchanged cannot be intercepted preventing replay. (This read restriction is enforced
in kernel by A2.) Denial of service attacks are also prevented since our protocol limits the
number of requests that may be received from a single process in Step 2.3. Further, code
injection attacks are avoided in our protocol. An attacker can write a malicious code to the
shared memory socket. The code may be read either by p or A. However, since the commu-
nication between p and A has a definite length (either the length of the request, or the nonce
or the HMAC), exploiting a buffer overflow is avoided by verifying the string length. More-
over, the token generation protocol enables transparent and secure communication between
applications and the kernel relying on the properties of the cryptographic hash functions.

Integrity of A2 components and data. A2 components span both the kernel space
and the user space. The kernel-level components include the Authenticator and Service
Access Module. Because of our assumption on the kernel integrity, these two components are
trustworthy. In contrast, there is no assumption on the integrity of the user-level Registrar
and Verifier, which may be targets of malware tampering and spoofing.

For anti-spoofing, A2 requires these two programs (namely the Registrar and Verifier) to
authenticate to the Authenticator through our A2’s authentication protocol as they start.
The authentication procedure slightly differs from the one described in Section 4.2.3 in that
i) their credentials are manually generated, and i) the kernel’s copies of their credentials
are hardcoded in the Authenticator, as opposed to be stored on the credential list. For
anti-tampering, A2 forbids the write access to the code capsules of the Registrar and Verifier
by other userland processes.

A2 data includes the credential list, status list, as well as the intermediate communication
messages in the authentication protocols via (proc file based) shared memory. We have
discussed the confidentiality of the credential list, which is a user-space file. In contrast, the
status list is a kernel data structure in the memory. Thus, its integrity and confidentiality
are guaranteed as a result of our kernel integrity assumption.

The shared memory approach is used for all the communication between the kernel mod-
ules and user-level processes, including: i) the authentication protocol messages between the
Authenticator and the requesting process, i) credential queries between the Authenticator
and the Registrar, and 4ii) authentication status update between the Authenticator and the
Verifier. A2 secures the confidentiality and integrity of the shared memory based commu-
nication channels by preventing the read and write access to the shared memory by other
non-related user-level processes.

Application isolation and access rights. In the A2 framework, we fully sandbox unde-
sired processes. Our sandbox relies on the fact that malicious applications fail to authenticate
to the kernel and thus are prevented from using most critical system calls. Moreover, such
processes are exposed to the kernel when trying to interact with it. This makes A2 a pow-

Hussain M. J. Almohri 55

erful tool to find malware that was dropped by other applications by various means such
as drive-by download. Although a legitimate application such as a web browser may allow
malware to be downloaded, A2 prevents the downloaded malicious code to execute.

Limitations. A2 is capable of identifying interpreted programs running as stand-alone
processes. For instance, a Java executable runs as a separate process. The program can be
given a unique credential at registration. Each program can authenticate itself independently
using our framework. Other interpreted languages such as JavaScript, Adobe Action Script,
and Word document macros are out of our security model, because the program runs in a
container process as opposed to a separate process ID. For a similar reason, the detection of
malicious code injected into (vulnerable) authenticated processes, as opposed to running as
a stand-alone process, is out of the scope of A2’s attack model.

4.4 Implementation

We have developed a prototype of the A2 framework in C in Debian Linux (version 3.2.0-
36), including the implementation of the credential registrar, the Authenticator, the Service
Access Module, and the verifier. (The verifier is introduced in Section 4.2.5 to improve the
compatibility of A2.)

e The Authenticator and SAM are kernel device drivers (modules). These two modules
are loaded at boot time.

e The credential registrar and the verifier are implemented as kernel helper programs
that run in the user mode for efficiency and compatibility considerations. We avoid
the unnecessary context switches to register an application, and can use standard user-
level libraries.

As a bootstraping procedure, we require the registrar and the verifier to authenti-
cate themselves to the kernel (namely the Authenticator) with their respective secret
credentials at the time of the process creation.

Credential List

Each secret credential is a 128-bit random value generated by the AES key generation algo-
rithm during the CREDENTIAL GENERATION operation by the registrar. We describe how
the credential list can be accessed by each of the A2 components.

e The registrar can read and write to the credential list, which is a file. The verifier can
read the file as well. No other processes can access that file. This restriction is realized
as monitoring the open system call requests to the file. This system call monitoring is
performed by SAM.

Hussain M. J. Almohri 56

e Because Linux kernel components do not access file system directly, in our prototype
the Authenticator and SAM do not have the direct read access to the file storing the
credential list. They need to communicate with the registrar to retrieve a credential
via the proc file mechanism.

The verifier process is similarly authenticated. Both the credential registrar and the verifier
are stored in code capsules that are protected by the kernel. The trusted credential registrar
has access to application executables to respond to the kernel’s requests. These requests are
sent to the verifier process through the /proc file system. We also secure the communication
channel by restricting the open system call to all other processes.

Authenticator

To carry out the authentication protocol, the Authenticator communicates with the user
space applications using the /proc file system, which is a memory-based file system controlled
by the kernel. A protocol file is created by the Authenticator in the /proc file system. We
support two functions for reading and writing operations to the protocol file in /proc file
system. The read_protocol_file function is executed when the user reads the file. For
writing to the challenge file, we define the function write_protocol_file. In this function,
our module reads the data that is written by the user-level process. The Authenticator
module uses the Linux kernel Cryptographic API [18] to perform the HMAC operations
using a number of supported hashing algorithms. Our implementation of the Authenticator
can accept multiple requests from multiple processes using the same /proc protocol file. For
each process, only one request is served at a time.

Status List and Secure Access Monitor

Secure Access Monitor (SAM) and the Authenticator communicate via a shared data struc-
ture in the memory that holds the status list, i.e., a list of PIDs of successfully authenticated
running processes. This data structure is maintained by the Authenticator and visible to
SAM (but no other processes). To verify a process’ identity, SAM searches through the
status list.

We implement the status list as a sequential dynamic array. In our experiments, under a
normal use, the number of running processes was under 100. As it is shown in the evaluations,
searching the status list did not have a significant overhead in a normal usage. However, in
order to improve the overhead, one can implement the list as a red-black tree (a special type
of balanced binary search tree [9]) that has a search complexity of O(log n) where n is the
size of the status list in the memory.

To avoid the need to modify the kernel, SAM uses the kprobe API to hook into system calls
and monitor process activities. Although the probes introduce extra overhead, the produced
overhead does not cause considerable latencies to applications’ functionality, limited by an
average of 3 times more overhead (see Section 4.5).

Hussain M. J. Almohri 57

To provide a more efficient alternative realization of SAM, we modified the Linux kernel to
implement a faster system call tracing method. In this implementation, we modify kernel’s
entry assembly code to perform the verification of identities before the system call takes place.
As the kernel prepares for jumping to the address of the requested system call, we place a
jump to the address of our kernel function that implements SAM. We store all the necessary
information before the jump and send the system call number and the process information
to SAM’s kernel function. The system call may be allowed or disallowed according to the
value returned from our kernel function. After the return, we check the return value and
either jump to the desired system call function or execute an exit code to user mode.

4.5 Performance Evaluation

The strong security guarantees provided by our A2 framework require additional computa-
tional and management overheads in the operating system. In order to assess the efficiency
of our framework, we answer the following questions in our experiments:

e How does A2 impact the overall system performance?

e What is the performance penalty caused by A2 on various I/O and system call func-
tions?

e What is the process creation performance under A2?

Overview and Setup. We conducted extensive performance evaluations using various sys-
tem benchmark suites. An overall measurement of A2’s performance is calculated using
UnixBench?, and, Phoronix test suite3. To measure the performance of critical system func-
tions, such as I/O and system calls, we use Imbench [58] and UnixBench system benchmark
suites.

Our experiments reveal efficient performance of A2 in various system operations. The highest
performance downgrade is in open system calls (with A2 being about two times slower than
the generic stock Linux). Our overall performance measurements, process creation and
general 1/O operations show reasonably fast performance of A2.

Our experiments executed on directly on a physical Intel Core Duo 2 machine with two cores
of 2.99 Mhz speed and 3 GB of ram. The kernel version on the testing machine was Debian
Linux 3.2.0-36. At the time of each test, there was no user interaction with the machine
except for execution of the benchmark programs. All benchmark results show an average of
several iterations.

We tested the system’s performance twice for each experiment. First, we experimented with
the stock generic Linux kernel (referred to as generic in Figures 4.5.1a, 4.5.1b, 4.5.2a, 4.5.2b

2http://code.google.com /p/byte-unixbench/
3http://www.phoronix-test-suite.com/

Hussain M. J. Almohri 58

3500 T T T 2300

A2
-©-Generic|

22001

30001

21001
2500,

20001
20001

1900

Score
Score

15001
1800~

1000
1700

A2-Single

A2-Parallel 1 1600,
—+—Generic-Single
-©-Generic-Parallel|

. I 500 I
Overall Syscall Overhead Proc. Creation Context Switching Pipe Throughput 256 bufslliéugoo maxblocks 1024 bufsize 2000 maxblocks 4096 bufsize 8000 maxblocks
System operation File operation

(a) (b)

Figure 4.5.1: (a) UnixBench benchmark operations and results. The values are calculated
according to a base score method. For each kernel (A2 and the generic Linux kernel) two
sets of experiments are performed: single and two parallel copies, one for each core. (b)
UnixBench benchmark file copy with various sizes. The file copy is slightly affected by our
permissions checking in A2 with an average downgrade of 1.55%.

500

Benchmark A2 Generic | Decrease
PHP compile time (seconds) 75.43 74.75 0.91%
Apache throughput (requests/sec) | 12324.62 | 12531.00 | 1.65%

Table 4.2: Comparison of PHP compile time and Apache throughput (using Phoronix test
suite) in A2 vs the generic Linux.

and Table 4.2) installed on the machine. Second, we tested the system with all A2 modules
loaded. Also, we developed a daemon to simulate the authentication, by sending authenti-
cation requests to the kernel and performing the authentication protocol, in the intervals of
60 seconds during the course of each experiment.

Qverall system performance. For an overall measurement of A2’s performance, we used
UnixBench and two benchmarks from Phoronix test suite, that is PHP compile, and Apache
throughput. UnixBench performs various system level tests and calculates an overall perfor-
mance index relative to a base score, referred to as the BYTE index. A higher value of the
BYTE index indicates a relatively better performance.

Figure 4.5.1a shows the results form UnixBench tests. The overall performance penalty
with a single processor is 0.977%. For two parallel executions, the performance downgrade
is 1.534%. Our tests with PHP compile and Apache throughput show an efficient overall
performance of A2. As described in Table 4.2, PHP compile time had a downgrade of 0.91%
under A2, and, Apache’s requests per second downgraded 1.65% when using A2.

I/O and system call performance. UnixBench and Imbench perform extensive 1/O and
system call performance measurements. The benchmarks involve continuous calls to a system
function and measuring the total processing time. For UnixBench results (in Figure 4.5.1b),

Hussain M. J. Almohri 59

>
>

A2 ‘ ‘
-e-Generic

S @ @ ~
S =3 =3 =]
S 1= k=)

T T T

Time in microseconds
w
=3
o
T

Time in microseconds

N

=3

=)
T

1005

I o I
p-fd pipe latency socket latency fork+exit fork+execve fork+/bin/sh
System operation System operation

(a) (b)

Figure 4.5.2: (a) Imbench benchmark operations and results. The values show time to
execute the operation in microseconds. Most operations perform efficiently and do not suffer
major performance downgrades. The performance downgrade in open/close is due to our
permission checking before granting a file descriptor in the open system call. (b) lmbench
process creation results. The values show time to execute the operation in microseconds.
The results show process creation using fork without running external code, process creation
with a call to execve, and process creation with running shell scripts.

we show the benchmark scores, whereas for Imbench results (in Figure 4.5.2a) we show the
actual processing time.

The file copy operations in UnixBench had an average decrease of 1.55% in performance
with maximum decrease of 2.161%. Imbench measures calls to open followed by a close, as
depicted in Figure 4.5.2a. These calls had the most downgrade of about 235% in A2. This
major downgrade is mainly due to various checks that we perform at the open system call to
make sure proper access rights on protected regions that contain application credentials (e.g.,
checking access to code capsules). Other I/O operations such as select on file descriptors,
select on tcp file descriptors, and sockets demonstrated statistical ties between A2 and the
generic kernel.

Process creation performance. We directly monitor calls to fork and execve for monitoring
process creations and activities by all processes to enforce our mandatory authentication
protocol. Our monitoring involves a check to see if the process requires authentication.
Thus, expect modest performance penalties by A2. To measure process creation, we used
Imbench (Figure 4.5.2b) and UnixBench (Figure 4.5.1a) process creation benchmarks.

The results from Imbench show an average performance downgrade of 2.1627% when using
A2 modules and a maximum downgrade of 2.949% for the fork, execve and shell execution
results. UnixBench measures process creation with fork with a performance downgrade of
0.686% in the single execution experiment and a performance downgrade of 0.701% in the
parallel execution experiment. The corresponding experiment in Imbench (calls only to fork)
has a similar performance downgrade of about 1%.

Hussain M. J. Almohri 60

4.6 Summary

Our work is the first to formally design application and process authentication in the op-
erating environments. We have demonstrated its feasibility by presenting our architecture,
implementation, and evaluation of a prototype Linux system supporting process authenti-
cation. We explained how process authentication can isolate malicious processes and thus
prevent them from abusing and accessing system resources. The authentication model of
A2 is highly portable and can be made compatible with legacy applications without any
customization. Our evaluation results indicate that the overhead of performing process au-
thentication at the system call level is acceptable. Future work of ours will be focused on
porting our A2 design to Android operating system for mobile devices in order to support
the authentication of apps. Such a solution will significantly improve the system assurance
of Android devices that may be targets of malicious and stealthy apps.

Chapter 5

DroidBarrier

5.1 Background

5.1.1 Android System

In this section we describe the Android’s runtime, sandbox, and security challenges. Our
description of the Android system and security is based on our study of the internals of
Android, and, some of the previous work [16, 10, 29, 30, 84, 93].

Android’s runtime. Android uses Linux kernel for managing memory, file system, and ac-
count permissions. Applications are written in Java and run in Dalvik virtual machines. At
boot time, the Linux kernel initializes a process called zygote, which is responsible for cre-
ating Android application processes [10]. To run an application, zygote forks a new process
and loads the application code into the memory from application’s Dalvik class file (a byte
code format used in Android’s runtime system). Applications may include native code that
directly uses Linux system services.

Application sandbor. Android’s security model is based on application sandboxes that are
created at install time and application permissions that are enforced at runtime.

Android application installer requires developers to sign each application bundle with a cer-
tificate that is generated using the developer’s private key [36]. Android allows self-signed
certificates without the need for a certificate authority. The reason to have an application
certificate is for the Linux kernel to issue a unique user identification (UID) for each appli-
cation. No two applications can share a UID unless they are signed with the same developer
certificate. Android’s application sandbox mechanism uses the Linux file system permis-
sions. For each application, Android’s application installer, creates a new user identification
(UID). To create a sandbox, Linux file system permissions are set for the newly created
application’s UID. Android uses an application’s sandbox to isolate application resources

61

Hussain M. J. Almohri 62

and its processes. For instance, the application’s sandbox protects the files owned by each
application to be only accessible to permitted third parties, thus forming a protected file
system sandbox for each application.

Android introduces inter-component communication (ICC), which is a mechanism for com-
munications among applications using intents. Intents are messages that are delivered by
Binder. Binder uses Linux kernel’s memory-based interprocess communication (IPC) capa-
bilities to implement and deliver intents.

5.1.2 Security of Android

Powerful attacks occur in two stages. First, the attack tries to compromise the Android’s
sandbox system through numerous privilege vulnerabilities in Android. This allows for
absolute flexibility of further attacks on the system. Second, the attacker attempts to install
malicious applications stealthily, and, runs the applications in background by registering
service processes.

An attacker may compromise Android’s sandbox in a number of ways. For example, the
vulnerability CVE-2011-2357 allows a crafted website to execute a JavaScript payload and
bypass the browser’s sandbox. This allows the website to download a malicious application
and install it on the system.

Privilege escalation attacks in Android target the underlying Linux kernel. For example, the
RACT exploit [93] uses a vulnerability in Android’s adb daemon (that is a setpid program)
to gain root privileges in the device. Several other privilege escalation attacks are discussed
in [84].

Attackers attempt to install malicious applications on victims’ devices to benefit from fur-
ther vulnerabilities in the Android’s runtime permission system. Android’s application and
security models have a number of vulnerabilities [16, 29] that, for example, allow unprivi-
leged attacks [84] with the goal of spying on users, stealing valuable information, or causing
financial loses [30]. Many of these vulnerabilities share a root cause of malicious executables
installed stealthily on the system, which further motivates us in developing a model to fun-
damentally prevent the execution of malicious code in Android without compromising the
openness of the Android platform.

Android’s application sandbox mechanism has been shown to be vulnerable to privilege
escalation scenarios [5, 22, 93]. For example, a malicious website could download in the doc-
ument vulnerability CVE-2011-2357, a malicious website can misuse the browser to bypass
its sandbox by executing a JavaScript payload.

Another vulnerability CVE-2011-1149 allows an application to bypass its sandbox by mis-
using android’s shared memory mechanism ashmem. This shows that Android simply relies
on the unique UID mechanism without post-verifying a process’s accesses to disallow such

Hussain M. J. Almohri 63

situations. Therefore, once an application (or a piece of malicious payload) could bypass the
application sandbox, the operating system (OS) is unable to detect and disallow unautho-
rized accesses.

Application code signing does not prove the identity of an application at runtime. That is,
to enforce application-level access rights, the kernel needs to have a proof of identity of an
application’s code. Further, the authors in [5] find out that Android’s signing architecture
has security flaws due to limitations of Android’s UID sharing method. The identity can
only be proved if the kernel is capable of securely registration application’s identity and use
it for performing runtime identity verification. With a third-party certification, this is only
achievable if the kernel can verify the certificate and securely register the key to use it at
runtime.

Android uses a interprocess communication mechanism called Intents. Android’s Intents can
be used both in inter-application and intra-application communications [16]. Even though
permissions may be setup by the developer and enforced by the operating system, poor use of
the Intents can cause several problems. These problems occur due to the extra functionalities
provided by Android, such as implicit Intents where an application sends an Intent with no
explicit recipient. Thus, any application that has announced the requested service can receive
the message [16].

In this section we present the problem and an overview of the solution. We also discuss our
security model and present the process authentication model.

5.1.3 Problem Statement and Overview of the Solution

We address the problem of preventing stealthy installation and execution of malicious appli-
cations in an Android-enabled device. This is a root cause of many malicious attacks that
exploit other vulnerabilities in Android, with attack goals such as stealing private data and
incurring financial loss.

Motivating example attack. We conducted a runtime analysis of three sets of Android mal-
ware DroidKungFu, BaseBridge, and AnserverBot. FKEach of these malware sets have a
number of variants with nearly identical malicious activities and variant user interface ele-
ments. According to our findings, and the results in [91] and [93], these malware sets rely
on malicious shell scripts (running in independent processes) to perform a privilege escala-
tion exploit. To demonstrate the problem, we construct an example attack scenario that is
common to these (and other) malware categories.

In the remote attack scenario, depicted in Figure 5.1.1, the attack exploit two critical vulner-
abilities that lead to execution of malicious applications without the user’s permission. One
is a vulnerable client that allows limited execution of a payload and enables downloading a
native binary (other tricks include sending a SMS message to propagate malware [19]) that
can launch the attack. The goal of this phase of the attack is to connect to another malicious

Hussain M. J. Almohri 64

Malicious remote content
Command and control server

=
£ | Downloaded malicious code

|

Additional native binaries

legiti

Phase I: performed within a

Run native code through shell
Exploit vulnerabilities and gain
root through su (super user) to

bypass Android’s sandbox

|

Install additional application bundle (. apk file)

£ E

Execute malicious application

Figure 5.1.1: A remote attack sequence to bypass Android’s sandbox and install malicious
applications without user’s permissions.

service (on a command and control server) and download a complete malicious application
package. This downloaded application package will be installed with root privileges in the
second phase of the attack. The second important vulnerability is in a system task (e.g., An-
droid debugging bridge daemon) that runs as root. The downloaded native binary exploits
a system vulnerability to gain root privileges and install the malicious package that was
downloaded from a command and control server. Having root privileges, the native binary
can bypass Android’s sandbox and install applications on the file system without asking for
the user’s permission.

Once the malicious application is installed with all the requested permissions defined in its
manifest file, it can conduct further attacks. The application can intercept inter-component
communications, replace other legitimate applications with fake ones, consistently update it-
self with dynamic class loading, or cause financial charges, for instance, by sending premium
SMS messages. The key element to this attack strategy is the ability to install applica-
tions without the user’s explicit authorization. DroidBarrier is designed to prevent such
installations, thereby foiling this form of attack.

Challenges and Goals. To develop a solution for protecting the system from execution of
unauthorized malicious applications, we face several technical challenges:

e Assuming that the Android sandboxes are compromised, it is no longer possible to rely
on any security guarantees provided by Android.

e [t is difficult for the user to manually control the installation of new applications.

e The kernel only enforces file system permissions, and provide memory isolation for
processes. In Android, the kernel lacks advanced capabilities to detect possible misuse
of root privileges.

e An Android application bundle contains a Java bytecode class that runs in Android’s
virtual machine called Dalvik. Dalvik forks new processes on behalf of applications.

Hussain M. J. Almohri 65

When forking a new process, as opposed to creating processes with execve, the kernel
does not have immediate knowledge about the application file path that must be loaded
into the memory. Therefore, authentication of processes requires further investigation
from the kernel.

To address these challenges and develop a mechanism that can detect installation and exe-
cution of unauthorized applications, this work has the following goals:

e Providing a mechanism for the kernel to authenticate processes and unveil the existence
of malicious applications.

e Detecting malicious processes at runtime with high confidence about their origins.

e Enabling the user to designate legitimate applications that are trusted to run.

These goals set the road map for developing a model based on our novel idea of authenti-
cating a process, which is discussed in Section 5.1.5. In this model, the kernel enforces a
mandatory authentication on every process. The user designates, in advance, which appli-
cations are allowed to run, and thus, has full control on the execution. Our runtime system,
DroidBarrier (Section 5.2.2), implements our process authentication model. DroidBarrier
continuously monitors low level process creation functions in the kernel to effectively enforce
the mandatory authentication policy.

In the remaining, we present our security model, describing our trust assumptions and attack
vectors, followed by a detailed description of our process authentication model.

5.1.4 Security Model

Security assumptions and trust model. We trust the kernel’s code and the isolation of memory
provided by the kernel used in Android. We assume that the integrity and confidentiality
of kernel’s memory are preserved. Further, we assume that Android’s system software and
processes do not intentionally contain malicious functionality.

Attack model. We target the following methods of attacks. We first categorize the attacks
according to their installation approach.

e Remote attacks. Asshown in the example attack in Figure 5.1.1, remote exploitation
attacks start by remotely exploiting a vulnerability in an application. For example,
attackers can exploit the many vulnerabilities in Android’s WebView API (that appli-
cations use to show specific web pages) to trigger drive-by-downloads [57] and install
malicious applications. These attacks can download the application, and, use system
vulnerabilities to bypass user’s permission for installing the application.

Hussain M. J. Almohri 66

e Physical attacks. Using a physical communication channel such as Android Debug
Bridge (adb) daemon to install malicious applications [84]. In this case, the attacker
has physical access to the device and the attack goal is to install malicious applications
without the user’s knowledge. These attacks require that the device is not password
protected, or, there are vulnerabilities that can bypass the password protection.

We mainly focus on the remote attacks that we believe are more likely to occur. The remote
attacks are further categorized into two main classes, according to their execution models:

e Dependent attacks. The malicious code runs in a compromised application’s pro-
cesses. Thus, the malicious code depends on another legitimate application to continue
execution.

e Independent attacks. The malicious code needs to run in at least one independent
process that is created by a native code or a Dalvik application.

In case of dependent attacks (such as attacks on Adobe Flash [83] or return-oriented pro-
gramming [23]) , the malicious payload may be limited to achieve all its functionality within
the boundary of a legitimate application. We realize the importance of such attacks, however,
these attacks are out of the scope of our current model.

In this paper, we specifically target independent (physical or remote) attacks that require
installation of malicious applications with full capabilities. independent attacks are widely
seen in Android malware samples. As pointed out in [93], there are powerful malware species
(such as DroidKungFu) that cannot achieve their effects if they execute within the context
of a compromised legitimate process. These attacks need (i) additional functionality that is
not provided in the context of a legitimate application, and, (ii) to continue execution even
when the compromised legitimate process is terminated.

To detect independent attacks, the main challenge is to find a reliable method to distinguish
malicious processes from legitimate ones with high confidence. In the following section, we
describe our authentication model that is capable of achieving this goal.

5.1.5 Process Authentication Model

To achieve our goals for protecting Android from malicious applications that could be in-
stalled without the user’s consent, we use a process authentication model that can detect
malicious application executions. Our process authentication model (also referred to as au-
thentication model in this paper) regards application processes as individual principals that
must be authenticated at runtime. Our mandatory authentication provides legitimate appli-
cations with valid application credentials, and, detects malicious applications that lack such
credentials.

Hussain M. J. Almohri 67

A related previous work, Quire [25], uses cryptographic annotations to authenticate interpro-
cess communications in Android. Another work, A2 [3], uses a challenge-response protocol to
authenticate applications. We provide a generalized authentication model compared to [25].
Our model is similar to [3] in considering processes as principals, however, we do not re-
quire the use of cryptographic protocols for authenticating user processes. Further, A2 [3]
is designed to work with conventional Linux processes. We focus on authenticating Dalvik
application processes that need monitoring by the Dalvik runtime (the zygote process) to
achieve secure authentication.

Our goal is to authenticate individual application processes at the time of creation. Since
applications are loaded in separate processes at runtime, our authentication model requires
each process (that is created by an Android application) to be authenticated by the operating
system. Inspired by authentication mechanisms in communications protocols, we assign a
credential to each application. A credential must be a secure piece of information that can
strongly authenticate a process and bind it to its application code at runtime. We define a
secure application credential below.

Definition 1. A secure application credential (SAC) is a unique secret issued to an applica-
tion by a trusted process. Fach SAC is associated with exactly one installed Dalvik or native
application.

Our authentication model’s policy is to enforce a mandatory authentication for each process.
The authentication is based on using the secure application credential (also referred to as the
credential in this paper) provided to the application that created the process. We also define
two special processes called the verifier process that represents the authenticator (i.e., the
operating system), and, the registrar process that is responsible for registering application
credentials.

Definition 2. The verifier process w is a trusted process that has the authority of authenti-
cating other processes.

Definition 3. The registrar process p is authorized to perform the registration of an ap-
plication by associating an application bundle with a unique SAC. The registration of the
application is performed at install time with explicit user permission.

The goal of providing applications with secure application credentials is to properly authen-
ticate their processes at runtime. Based on this authentication, the kernel distinguishes
authorized applications from unauthorized ones. To implement a practical authentication
method and prevent attacks on the credentials, our process authentication model follows the
following credential registration requirements, which are first presented in Section 4.1.3.

e Unique credential set. For every legitimate Android application bundle, there is exactly
one credential v € I', where I' is a unique set of credentials.

Hussain M. J. Almohri 68

e Protected credential set. Access to the set I' (in memory or on the file system) is
restricted to the verifier process 7 and the registrar process p.

e Hard to regenerate. It is computationally hard to regenerate an application credential
v € I' created by p.

e Preventing replay attacks. Eavesdropping and replaying of a credential shall not be
possible.

These requirements provide the basis for detecting and preventing the execution of malicious
processes through a number of operations and properties that we discuss next.

5.1.6 Authentication Properties and Operations

The operating system is responsible for using application credentials to authenticate pro-
cesses. The rationale behind our authentication model is determined by the following Process
Authentication (PA) properties:

1. User processes (other than 7 and p) may not create or modify credentials, or, assign
credentials to other processes and applications.

2. If a process fails to authenticate itself with a valid secure application credential, then
the process is potentially malicious.

3. A process may not be authenticated with more than one credential.

4. A process may not inherit its authentication status from parent processes or any other
process. Sibling processes are authenticated with a shared application credential.

5. A Dalvik application process is always a child of the zygote process. Native processes
must either be a child of an Android system process or a Dalvik application process.

The PA properties ensure that processes are bound to proper application credentials such
that a malicious process (under our attack model in Section 5.1.4) does not bypass the
authentication, or, spoof other legitimate processes.

Operations. Our authentication model has three core operations: credential registration,
process authentication, and runtime detection.

1. Credential registration. The user of a mobile device requests the registration of an
application bundle, which is performed by the registrar process p. A credential is
valid if (i) it is generated according the credential registration requirements, (ii) it
is registered in an application bundle, and (iii) it is recorded in a credential database
maintained by the registrar.

Hussain M. J. Almohri 69

2. Process authentication. In this operation, the operating system exchanges an authen-
tication request and response with a verifier process 7 (defined earlier) to validate the
authenticity of a process and bind it to a registered credential. Process authentication
fails if (i) the process has no application credential, or, (ii) the process possesses an
invalid credential.

3. Runtime detection. A runtime detection operation monitors process creations and
enforces the mandatory authentication on all processes. A process that fails in process
authentication is flagged as malicious and is denied execution rights.

These operations ensure proper authentication of all processes and detection of unauthorized
ones. In the following section, we present the design of DroidBarrier that implements these
operations in the Android operating system.

Our model may complement (i) a classification procedure (for example, [17, 26, 28]) that
precede the credential registration operation, which provides the user more information
about the application, and, (ii) a sophisticated access control system (such as Android’s
SELinux [77]) that uses our strong authentication and detection to properly identify appli-
cation process and enforce fine-grained access rights based on the specified policies.

5.2 Design

We design DroidBarrier (Figure 5.2.1) to realize our authentication model. Our goal is to
detect malicious processes and prevent them from achieving their goals. We follow a proactive
approach in DroidBarrier by registering the applications that the user desires to run. This
registration enables the user to control which applications are legitimate and allowed to
run. Also, we include a detection capability in DroidBarrier to monitor process creations
and activities and authenticate processes at runtime. In the following sections, we present
the core components of DroidBarrier for implementing the operations of our authentication
model described in Section 5.1.5.

5.2.1 Credential Registration and Protection

To perform the registration of credentials, DroidBarrier includes a component referred to as
the credential registrar (also referred to as the registrar in this paper). Credential registrar’s
task is to generate credentials for applications that the user designates as legitimate. Al-
though establishing the trustworthiness of applications is an important procedure that can
be executed before registering an application, in practice users choose to install applications
that they trust by means of prior experiences or based on experts’ knowledge.

Hussain M. J. Almohri 70

Kernel space
DroidBarrier prevents

unauthorized access T

by monitoring open calls : Malicious app
. i process

e "

(Open system call monitor)

Protected app bundle / Legitimate app Load class file (pid)
: rocess : .
: P . (Process Monitor)

% Load class file (pid)
T

Detection

[App code SAC] fork process
' [zygote process] < . : I Check status
: pid :
. . . Authenticator)
Verify Authentication (
SAC credential .
database —| Credential verifier . Status list
- L : Y,
DroidBarrier’s DroidBarrier’s
protection layer kernel components

Figure 5.2.1: DroidBarrier performs three operations: credential storage and protection,
runtime monitoring, and authentication of processes. Applications must obtain valid secure
application credentials to ensure normal execution of their processes. An unauthenticated
process is considered potentially malicious.

Credential generation. The registrar generates a credential that is computationally hard to
guess. Among many ways to generate a credential, the registrar can use a strong pseudo
random number generator.

There are two alternative approaches to our authentication mechanism based on secret cre-
dentials. First, registering a public checksum (e.g., a hash of application’s class file) of an
application bundle, and, recomputing the checksum at runtime to establish the authenticity
and integrity of the application. However, using a secret credential, we eliminate the need
for recomputing the checksum. Although, by checking the checksum one can determine if
the application bundle’s integrity was violated, we choose to protect application bundles (as
described below) for verifying and preserving their integrity and disabling possible denial of
service.

The second alternative approach is to use a form of developer signatures to establish some
degree of trust. Using developer signatures unnecessarily complicates the design without
security advantages. In fact, Android uses developer signatures, but, without an actual cer-
tification of the signature. Further, to perform a certification, either the kernel has to trust
third party certification authorities, or, it has to establish the trust based on verifying devel-
oper public keys. The actual challenge is to prevent malicious applications from presenting
fake or stolen signatures. Our design eliminates the need for third party certifications and
verifications of public keys, yet, delivers the required level of trust.

Hussain M. J. Almohri 71

To correctly establish the authenticity of an application, the registrar uses a two-way reg-
istration method. First, the registrar generates and stores a credential v in A’s bundle,
forming a new application bundle A*. We refer to an application bundle with an embedded
credential, as a protected application bundle. This design choice is important to bind pro-
cesses to specific executables in our runtime detection system, and, to protect the credential
v from attacks (described below).

Second, the registrar stores a copy of v in a SAC database. The SAC database implements
the unique set I', which is the set of reference for validating any credential. Maintaining a
copy of v in the SAC database prevents forgery and replay attacks on the credentials. Note
that an application’s credential « is invalidated if 7 is removed from I' and if the application
is reinstalled or deleted.

Credential protection. To fulfill the specification of credentials (Section 5.1.5) and the PA
properties (Section 5.1.6), our design must fully protect the credentials generated by the
registrar to preserve their integrity, without relying on file system permissions.

Our approach to this problem is to enforce access restrictions on the protected application
bundles and the SAC database. To maintain integrity and confidentiality, we disable any
process, other than the verifier process and the registrar, from write /read access to protected
application bundles and the SAC database. We enforce this protection using DroidBarrier’s
kernel-side components by mediating the access to all open system calls and preventing
unauthorized access to the SAC database.

5.2.2 Runtime System

DroidBarrier uses registered application credentials at runtime to detect and monitor pro-
cesses and perform a mandatory authentication. In contrast to Quire [25] where interprocess
communications are authenticated, our approach is to authenticate processes using pre-
registered credentials. In our design, processes may fail to be authenticated, and thus,
unauthenticated processes are considered potentially malicious.

DroidBarrier includes a process monitor to track the creation of processes by the Android’s
runtime. Process monitor relies on the authentication decision by DroidBarrier’s authenti-
cator. To maintain compatibility, we design these components as part of the Linux kernel
without modifying Android’s runtime. Our design strategy is to detect process creations,
bind them to specific application bundles, and authenticate the processes according to reg-
istered credentials.

Runtime detection. Process monitor’s policy is to regard every new process unauthorized
until it is authenticated. The detection strategy of process monitor is to check the authenti-
cation status of applications at the time of creation. A process’s status is either authenticated
or unauthenticated.

Hussain M. J. Almohri 72

The technical challenge in the design of DroidBarrier’s runtime system is the semantic gap
between the kernel and Dalvik virtual machine, which runs Android applications. Android’s
runtime system process, zygote, forks a new process when the user wants to run an appli-
cation. At this point, it is not clear to the kernel, which application is loaded in the newly
created process. To reconstruct the semantics, in addition to monitoring process creations,
process monitor keeps track of file accesses by zygote to bind the loaded class file of the ap-
plication to the newly forked process. When the newly forked process is bound to a Dalvik
class file, the process monitor’s runtime detection is complete and the process’s identifier
(PID) is sent for authenticator to proceed with the authentication.

Process authentication. DroidBarrier needs a reliable mechanism for authentication to pre-
vent stealing credentials and spoofing legitimate processes. Android requires applications
to be signed by developers [5]. However, as discussed earlier, developer signatures do not
provide any reliable assurance about the authenticity of applications [5, 84]. We follow a
design choice to mediate the authentication between DroidBarrier and user applications. Us-
ing our authentication mediation strategy, DroidBarrier performs the process authentication
operation in three stages:

1. Kernel-side checking. A kernel-side component, authenticator, receives the authenti-
cation request from process monitor for a process P. Authenticator in DroidBarrier
maintains a list of authentication status referred to as the status list L. L records the
authentication status for each process, authenticated, or, unauthenticated. If P’s status
is unauthenticated, authenticator sends an authentication verification request to the
verifier process. The format of the request is (P.PID, P.path), where P.PID is P’s
process ID and P.path is the file path for the Dalvik class file that created P.

2. Verification of credentials. The verifier process loads the credential ¢ from P.path and
the corresponding credential ¢’ from the SAC database. If ¢ = ¢/, then the verifier
sends a success response message back to authenticator. Otherwise, the verifier sends
a failure response message to authenticator.

3. Status update. When authenticator receives the response message from the verifier, the
authenticator updates P’s authentication status in L, accordingly.

Our runtime system adheres to the process authentication properties (Section 5.1.6) and
ensures mandatory authentication of processes. In the next section, we analyze our design
and describe the security guarantees and limitations.

5.2.3 Security Analysis

In this section we present the security guarantees provided by DroidBarrier, and, analyze
the security of DroidBarrier from three perspectives. First, we provide an analysis of the

Hussain M. J. Almohri 73

security of the credentials. Second, we describe the security of DroidBarrier code and data.
Third, we discuss the limitations of our model and design.

Security guarantees. DroidBarrier guarantees that all processes are authenticated. This
property ensures that stealthy applications that were installed without the user’s consent
are detected. DroidBarrier also guarantees that the integrity and confidentiality of secure
application credentials and protected application bundles are maintained.

Security of credentials. To secure application credentials, we study various attacks that
can occur on the credentials and provide solutions accordingly. An important attack on
DroidBarrier is to steal or corrupt application credentials. Attacks on credentials can occur
in a number of ways:

e An attacker may include a credential in a malware’s application bundle according to
our credential specifications. This attack fails since the fake credential created by
malware is not registered with the SAC database.

e Under our attack model (Section 5.1.4), an attacker may attempt to read the credentials
from the disk by breaking Android’s sandbox. We protect credentials by means of the
protected application bundles in DroidBarrier that are not readable by user processes.
Note that readability constraints on applications do not prevent loading class files.
That is, we especially allow zygote to load class files, after authenticating zygote.

e We prevent memory attacks on credentials by mediating the authentication (Sec-
tion 5.2.2). Thus, credentials are never stored in application heaps or stacks at runtime.

e Integrity violation attacks on credentials involve corrupting the credential on the disk
or in memory, causing denial of service to legitimate applications. Such attacks are also
prevented by disabling write access on protected application bundles and mediating
the authentication.

Protecting DroidBarrier code and data. DroidBarrier’s process monitor and authenticator
execute in kernel mode. This guarantees the isolation of process monitor and authenticator
data from user space attacks under the reasonable assumption of a trusted Linux kernel
(Section 5.1.4). DroidBarrier is protected from malicious applications using root privileges
by preventing dynamic patches to the kernel (through loadable device drivers) from disabling
the functionality of DroidBarrier.

Process monitor and authenticator communicate directly on shared data structures. Authen-
ticator and the verifier process communicate through a shared memory that is managed by
the kernel. This shared memory is not accessible by any other process and may not be read
from or written to. This protection is implemented in DroidBarrier’s kernel-side components
without relying on Linux kernel’s permission system.

The verifier component is protected in two ways. The executable code is kept in a protected
application bundle with an additional restriction of disallowing the Android application

Hussain M. J. Almohri 74

manager to remove or reinstall it. At runtime, the verifier process is automatically created by
DroidBarrier’s kernel-side components when the zygote process is created. Further execution
of the verifier application is denied.

Limitations of DroidBarrier. DroidBarrier specifically targets processes that are created by
malicious applications. This is a critical category of attacks that is used by modern Android
malware [93]. Embedded attacks that run entirely within the boundaries of a legitimate
process cannot be detected by our current mechanism. However, we envision extensions of
our authentication model with more detailed inspections to deliver code-level authentication.

In principle, rootkit attacks (such as return-oriented rootkits [42] and system call obfusca-
tion [81]) can cause kernel integrity and confidentiality violations. Although DroidBarrier is
not designed to specially prevent rootkits, assuming that the kernel is initially free of mali-
cious code, DroidBarrier prevents further malicious code executions. For instance, modern
rootkits need to use return-to-user attacks [51] and run the code stealthily in user space.
DroidBarrier detects this type of attack when the prerequisite of a successful attack is to first
run a user space task that can receive the execution, for example, from a NULL dereferencing
in the kernel.

5.3 Implementation

In this section we describe a prototype of our DroidBarrier. Our implementation involves a
patch to the Linux kernel for process monitor and authenticator. We use Android Honeycomb
3.2 with the Linux kernel version 2.6.36.4 for our implementation platform. We choose to run
and test our implementation on a physical Android device (Samsung Galaxy tab) instead of
a virtual x86-based Android machine. Below, we present a highlight of our implementation
features.

1. Kernel modification is minimal. DroidBarrier performs necessary check points and au-
thentication for processes through manual check points that we insert in the beginning
of monitored kernel functions. These check points transfer execution to DroidBarrier
before completing the monitored kernel function.

2. DroidBarrier does not modify the original semantics of process management and cre-
ation functions in Linux. We develop our prototype based an asynchronous authenti-
cation design.

3. Our prototype is compatible with the stock Android runtime, Binder, and all other
Android operating system components, without any modifications.

4. We fully implement DroidBarrier in C using Android’s native APIs and Linux kernel
libraries.

Hussain M. J. Almohri 75

DroidBarrier open
system call monitor

Verify if pid is :
U o authorized by checking its: Credential database
ser’s permission] : : o)
Credential database credential : /sac.db
1 xS .../sac.db /
© . . H
/ Linux process pid N Application
Credential registrar N Application .../com.x.app.apk 1/0 APT bundle . apk
s dc bundle . apk opén
256-bit .7 ;
random number do_sys_open
(a) (b)

Figure 5.3.1: (a) The registrar creates new credentials for applications and uses the creden-
tials to label the apk bundles. (b) DroidBarrier protects credentials by monitoring open
system calls and checking for permissions.

In the following we first describe the implementation details of credential registrar followed
by process monitor, authenticator, and verifier.

Credential registrar. We implement a credential registrar that install application credentials
for an Android application bundle. The registrar uses a random number generation function
to generate a credential, and, labels the application bundle (with the apk extension) with
the newly created credential. The registrar also records the new credential in a sequential
database of keys and application names for reference at authentication time. Our labeling of
the apk bundle does not alter the functionality of the application in any way. The label only
includes an additional header and the credential in a format that DroidBarrier can recognize.

Credential protection. We implement our credential protection mechanism (Section 5.2.1)
by implementing a light-weight access control system in the kernel. We place checkpoints
in the beginning of do_sys_open. Before returning a file descriptor £d to the requesting
process, we check for two conditions. First, we check if the requested file path is a protected
application bundle, by reconstructing the full file path from the process’s current directory.
Then, we verify if the requested file path is an executable. If the condition is true, we check
if the requesting process is the registrar, the credential verifier or zygote. According to
our policies (Section 5.1.6), DroidBarrier denies access to executables for all other processes.
Second, we check the file path against our credential database. For the credential database,
we only return an fd, it the calling process is either the credential verifier or the registrar.

Process monitor. We implement the process monitor by inserting check points in specific
kernel functions. To maintain performance, we avoid using existing Linux APIs to trace
kernel functions (such as kprobe or ptrace). To monitor the creation of processes by the
Android’s runtime, we insert check points in do_fork, for Android’s Dalvik applications,
and do_execve, for native applications loaded directly by the kernel. The zygote process
calls fork() to create a new process and load a Dalvik class in it. We record the generated

Hussain M. J. Almohri 76

zygote’snew Verifier checks the credential
zygote forks a child calls open on path and sac.db
new process to load class file and responds to Authenticator

\ 4 \ 4 l

---------------------]‘ime
I‘irotected
shared
4 \ 4 memory .
Process monitor aythenticator Authenticator
records pid of the new gends pid, path update’s pid’s
process and waits fora {y guthenticator authentication
call to open status

Figure 5.3.2: Monitoring of a process starts at the time zygote forks the process. Process
monitor prepares an authentication pool for authenticator, which sends verification requests
to the verifier process. The interactions above the time line are in user space.

pid in do_fork and track zygote’s subsequent system calls so that we bind the new pid to
its application bundle.

DroidBarrier tracks the loading of Dalvik class files through our check point in the
do_sys_open function. When the process pid (that must be the child of zygote) loads a class
file from the file system, the authentication operation can proceed to verify pid’s credentials.
Since the authentication is asynchronous and waits for the open system call, DroidBarrier
maintains a dynamic pool of awaiting authentication processes (an array requests of type
struct auth_request) for authenticator to perform the authentication.

Authenticator and verifier. The authenticator creates and manages a shared memory with
the verifier process in user space. The shared memory is not visible to any process. We
implement this restriction in the check point in do_sys_open function. DroidBarrier checks
for permissions before the open system call returns a file descriptor. The permission check
maintains a list of permissions for specific file descriptors. Access to the shared memory file
descriptor is denied to all processes except the verifier (for which we record the pid).

The authenticator continuously checks the requests pool for fresh authentication requests.
Authenticator sends each request in a special string format to the verifier using a first come
first served schedule. Once the verifier checks the credentials for the process, it sends a
response back on the same shared memory to the authenticator. The authenticator informs
the process monitor about completed authentication via updating the status of the request
in requests.

The verifier’s task is to check the credentials using a file path that is sent by the authenticator.
The verifier opens the corresponding file path, if that is a Dalvik class file and contains a

Hussain M. J. Almohri 77

credential, the verifier reads the credential for checking. The verifier checks if the credential
exists in the SAC database. The SAC database is a sequential file on the disk containing
application names, file paths, and credentials. If the credential matches the process file path,
verifier creates a success message and sends it to the authenticator.

5.4 Evaluation

We evaluate the performance of our implementation prototype and investigate the following:

1. DroidBarrier performs permission checks prior to creating a file descriptor in the open
system call. How these permission checks affect the 1/O performance?

2. What is the performance penalty on process creations?

3. Measuring Dalvik runtime performance under DroidBarrier.

In the rest of this section, we describe our experimental setup followed by three sets of exper-
iments for [/O and process creation. Our results show efficient performance of DroidBarrier
with low extra overhead in I/O performance, and, negligible performance penalty in process
creation.

Fxperimental setup. Our evaluation focuses on the effect of DroidBarrier on the performance
of the Linux kernel in Android. We run all the experiments on a Samsung Galaxy Tab 10
(with model number P7510) running Android Honeycomb 3.2 with the Linux kernel version
2.6.36.4.

For our evaluations we needed a benchmarking suite that can accurately measure I/O and
process creation. There are existing suites such as Imbench! and UnixBench? that conve-
niently run on Linux distributions for x86 machines. Per our research, these suites have
not been ported to embedded Linux running on the ARM architecture. Thus, we modified
some of the existing code in Imbench and UnixBench for compatibility with the ARM Linux.
Our collection of benchmarking suite for native code in Android will be available as an open
source project.

When running the modified kernel with DroidBarrier, we periodically simulate the authenti-
cation of processes as if a user is consistently launching new applications. When performing
experiments, there was about a total of 130-150 running Linux processes. While experi-
menting, we monitored the memory usage. Either using DroidBarrier’s kernel or the stock
Android Linux kernel, the available free memory was always under 100 MB.

thttp:/ /www.bitmover.com /lmbench/
2http://code.google.com /p/byte-unixbench/

Hussain M. J. Almohri 78

25000 160000
140000
120000
100000

mStock 80000 BStock
EDroidBarrier 60000 EDroidBarrier

* R
0 1] 0

Write Read Open/Close write read open/close

20000

15000

10000

in microseconds
in microseconds

Average time

Average execution time

System operation System operation

(a) (b)

Figure 5.4.1: (a) Four I/O operations: write, read, open, and close. Maximum downgrade
is 12.92%. (b) Four 1/O operations: write, read, open, and close for Dalvik applications.
Maximum downgrade is 6.26%. For better visibility, we divide the result for open/close by
10. The results show an average of several runs.

I/O performance. 1/0O performance experiments show a consistently efficient performance
of DroidBarrierwith the performance penalty not exceeding 13%. For measuring 1/0O per-
formance, we evaluate the performance of the 1/O operations write, read, open, and close
system calls as well as the performance of piping. Note that for protecting secure applica-
tion credentials, DroidBarrier only includes a monitoring on the open system call. For each
measurement, the I/O operation is repeated 10000 times continuously. We measure the time
taken to perform the whole 10000 calls to the I/O function. The experiments on read and
write include calls to open and close. For open and close, in each iteration we call open
followed by a close. We performed 250 runs of each loop to collect an average performance
value.

In the results of our experiments (depicted in Figure 5.4.1a), we have an average maxi-
mum of 12.92% downgrade for the read calls, an average minimum of 3.76% downgrade for
open/close, and for write calls there is an average downgrade of 6.01%.

To examine the performance of Dalvik applications under DroidBarrier, we conducted an
I/O experiment by making file writes, reads, open and close using the BufferedWriter and
BufferedReader. The open and close calls involve opening a file using FileWriter, which
is used to create a BufferedWriter and we close the BufferedWriter subsequently. We
developed an application to perform 1000 iterations of each I/O operation (we call open
and close calls together in one iteration). The results of Figure 5.4.1b shows the average
performance for 200 runs of all experiments.

We measure performance on pipes by using the pipe system call. Figure 5.4.2a depicts the
results of our experiments on pipes. After creating a pipe, a loop of 10000 iterations performs
write system calls on the pipe followed by read system calls. We measure the total time for
executing the loop. The average performance downgrade is 5.26% for a total of 140 runs,
which is reasonably efficient.

Hussain M. J. Almohri 79

Fork (DroidBarrier) BFork (Stock)

Pipe (DroidBarrier) B Pipe (Stock)

130000 132000 134000 136000 138000 140000 142000 2.3675 2.368 2.3685 2.369 2.3695

Average execution time in microseconds Average execution time in seconds

(a) (b)

Figure 5.4.2: (a) The average performance downgrade in this experiment is 5.26%. (b) An
insignificant downgrade of 0.041%, in process creation.

Our experiments show an average maximum performance downgrade of 6.26% in
BufferedReader. Calls to BufferedWriter has on average a performance downgrade of
1.48% under DroidBarrier. The minimum performance downgrade is for calls to open and
close with an average of 0.927% downgrade.

Process creation performance. Android heavily uses fork for process creations. Since
DroidBarrier performs the authentication asynchronously, we do not see major performance
downgrade for forking a process. The average performance downgrade is 0.041% (depicted in
Figure 5.4.2b), which is statistically insignificant. We measure the fork system call in loops
of 1000 iterations.

Computational performance. We use polybench suite of benchmarks to execute three com-
putational intensive algorithms. The experiments show an efficient performance under
DroidBarrier with a downgrade not exceeding 2%. The experiments include a recursive
implementation of towers of Hanoi, an LU factorization algorithm, and a dynamic program-
ming algorithm. We modified polybench to compile it for the ARM architecture. We run the
three algorithms 60 times on the stock Android Linux and DroidBarrier’s modified Linux.

The experiments’ results are depicted in Figure 5.4.3. The average increase in execution
time for the experiments is: towers of Hanoi 0.34%, LU factorization 1.31%, and dynamic
programming 1.14%.

5.5 Summary

We presented a general model for authenticating Android application processes that is ca-
pable of providing high assurance proof of provenance about the Linux application processes
running on an Android-enabled device. We achieve the high assurance by developing an
authentication model that uses secure application credentials, maintained and protected by
our runtime system, to authenticate processes and bind their identity to legitimate applica-
tions installed on the device. Our authentication approach guarantees protecting the system

Hussain M. J. Almohri 80

B Stock
- DroidBarrier

Hanoi LU DP

in seconds
w w w
P T e
wn — wn ~ wn

Average execution time

w

Algorithm

Figure 5.4.3: Maximum average performance downgrade in this experiment is 1.14%. The
three measured algorithms are towers of Hanoi (10 disks), LU factorization, and dynamic
programming. The results show an average of several runs.

from execution of malicious applications that may exploit the many system and application
vulnerabilities to be installed on the device. Our runtime system, DroidBarrier, monitors
every application process that either correspond to a Dalvik application or a native one
to enforce a mandatory authentication, and therefore, isolation of unauthorized malicious
applications.

Chapter 6

Conclusions

6.1 Impact and Advantages

In this dissertation, we introduced models and algorithms for systematic analysis of large
enterprise networks. Our analysis takes a novel approach and extends state of the art by
developing the problem of optimal distribution of defensive resources across a large network.

This work makes a key contribution by extending the analysis of attack graphs with a formal
measurement of the threat from mobile devices that repeatedly join dynamic networks.
Mobile devices cause increased threat to the security of a network, which our model can
accurately quantify. This is an important step towards understanding the significance of
the threats from mobile devices. Nevertheless, more elements of mobile devices may be
formalized, which include a measurement of mobility with respect to wireless signal strength,
reasoning about the location of the device in various subnetworks, and the volume of device
communications with critical network components.

Understanding the effect of mobile devices in the context of a rigorous probabilistic mea-
surement of attack success assisted in developing a fine grained model that captures attack
steps and security defense plans simultaneously. Our optimization model recognizes attack
steps generated in the form of an attack graph. The system administrators can designate
potential defenses in the same model such that an overall optimized configuration subject
to attack steps and defenses could be computed.

The results of our optimization model are important from two aspects. First, using our
model, system administrators have a provable optimization result that accurately demon-
strates the nearly best choices for distributing defense mechanisms (such as defense policies
or solutions). Second, our model provides an efficient computational method for computing
the results. The nonlinear minimax problem that we developed are solvable using state of
the art techniques.

81

Hussain M. J. Almohri 82

Our analysis shades light on security bottlenecks and configuration problems in a large
network. Nevertheless, we realize the need for providing security solutions to address security
problems in individual network component. In this work, we focused on an important aspect
of security by introducing the idea of process authentication. In this security model, we
organize applications as authenticated parties that require valid credentials to run. An
application is represented by its processes, for which the authentication is carried out.

The importance and advantage of the idea of authentication within one computing unit
is that it does not produce false results. In comparison to behavioral analysis, control
flow methods, or other methods that employ a form of intelligence in detecting anomalies
and malicious executions, our process authentication takes a firm binary approach towards
application processes. A process is either created from a legitimate application or it is from
an application whose legitimacy is unknown. Such an approach provides a flexible way for
the user to designate applications are legitimate and thus have full control on what can
execute in the system.

Our process authentication provides a suitable security platform for mobile operating sys-
tems. As demonstrated in this work, we applied our process authentication model to the
Android platform. Our results indicate feasibility of the approach, efficiency of the execution,
and powerful results. Using this model, the kernel is capable of discriminating applications
according to their legitimacy. Thus, the kernel can overcome the security vulnerabilities
from its permission systems and the weaknesses of Android’s sandboxes.

6.2 Future Directions

We envision extending the work presented in this dissertation in two directions. First, we
extend our analysis model towards including additional optimization features. In many sce-
narios it is desired to fine tune existing security configurations without introducing additional
security defenses. The problem is to represent existing configurations in a formalized model,
define security rules and policies that the configuration must adhere to, and computing a
system and network level configuration setting that achieves a better security.

To develop an advanced optimization model, we need to advance our probabilistic reasoning
about network attacks by considering available attack data (which may require additional
efforts for interpretation and semantics). Moreover, a formalization of attacker utilities,
behavior, and thinking is needed. In particular, a model must capture attack constraints
outside network and system configurations settings, a behavioral model showing detailed
predictable attack actions and steps, and understanding realistic attack goals such as multiple
objective goals. In fact, our current analysis is limited by the ability of attack graphs to
reason about a single objective of the attack. In some attack scenarios, attack objective may
not even be deterministic. Thus, an attacker may decide to choose a particular goal that is
unplanned.

Hussain M. J. Almohri 83

Our second future direction involves extending our system security solution. Our model cur-
rently formalizes a novel authentication mechanism. We envision to complement our model
with a solution to examine the legitimacy of applications before designation as legitimate.
Such examination cannot be an exact science, and requires employing intelligent algorithms.
The problem is to form a model specific to the target platform that is scalable and produces
the least false results. In addition to determination of legitimacy of applications, our authen-
tication mechanism needs a more advanced authorization with a smart engine to determine
more access rights with less policy configurations. In particular, the authorization model
must be able to analyze anomaly at runtime and have a more fine-grained control on the
execution of applications.

Bibliography

1]
2]

[10]

grsecurity. http://www.grsecurity.net/.

M. Albanese, S. Jajodia, and S. Noel. Time-efficient and cost-effective network hard-
ening using attack graphs. In Dependable Systems and Networks (DSN), 2012 42nd
Annual IEEE/IFIP International Conference on, pages 1-12, june 2012.

H. M. Almohri, D. D. Yao, and D. Kafura. Identifying native applications with high as-
surance. In Proceedings of the second ACM conference on Data and Application Security
and Privacy, pages 275282, New York, NY, USA, 2012. ACM.

K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch, and B. Zoppis.
The vmware mobile virtualization platform: is that a hypervisor in your pocket? ACM
SIGOPS Operating Systems Review, 44(4):124-135, Dec. 2010.

D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot. Understanding and im-
proving app installation security mechanisms through empirical analysis of android. In
Proceedings of the second ACM workshop on security and privacy in smartphones and

mobile devices, SPSM ’12, pages 81-92, New York, NY, USA, 2012. ACM.

L. Bauer, J. Ligatti, and D. Walker. Composing expressive runtime security poli-
cies. ACM Transactions on Software Engineering and Methodology, 18(3):9:1-9:43, June
2009.

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming. John Wiley
and Sons, Inc., 2005.

S. Bhatt, W. Horne, and P. Rao. On computing enterprise I'T risk metrics. In Future
Challenges in Security and Privacy for Academia and Industry, volume 354 of IFIP Ad-
vances i Information and Communication Technology, pages 271-280. Springer Boston,
2011.

D. P. Bovet and M. Cesati. Understanding the Linuz kernel. O’Reilly, 2006.

P. Brady. Anatomy & physiology of an android, 2008.
https://sites.google.com/site /io/anatomy—physiology-of-an-android.

84

Hussain M. J. Almohri 85

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi. XManDroid: A
New Android Evolution to Mitigate Privilege Escalation Attacks. Technical Report
TR-2011-04.

S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B. Shastry. Practical
and lightweight domain isolation on android. In Proceedings of the 15 ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, SPSM’11, pages 51-62,
New York, NY, USA, 2011. ACM.

R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. On the convergence of suc-
cessive linear-quadratic programming algorithms. SIAM J. on Optimization, 16(2):471—
489, June 2005.

S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog
(and never dared to ask). IEFEE Transactions on Knowledge and Data Engineering,
1(1):146 —166, 3 1989.

R. Ceron. The GNU linear programming kit, part 1: Introduction to linear optimization,
2006. http://www.ibm.com/developerworks/linux/library /1-glpk1/.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application com-
munication in android. In Proceedings of the 9" International Conference on Mobile
Systems, Applications, and Services, MobiSys ’11, pages 239-252, New York, NY, USA,
2011. ACM.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application commu-
nication in Android. In Proceedings of the International Conference on Mobile Systems,
Applications, and Services (MobiSys), June 2011.

J.-L. Cooke and D. Bryson. Strong cryptography in the Linux kernel. In Proceedings of
the 2003 Linux Symposium, pages 139-144, 2003.

B. Coskun and P. Giura. Mitigating sms spam by online detection of repetitive near-
duplicate messages. In to appear in IEEE ICC’12 Symposium on Communication and
Information Systems Security, 2012.

W. Dai, T. P. Parker, H. Jin, and S. Xu. Enhancing data trustworthiness via assured
digital signing. [EEE Transactions on Dependable and Secure Computing, 9 (6):838 —
851, 2012.

C. Dall, J. Andrus, A. Van’t Hof, O. Laadan, and J. Nieh. The design, implementation,
and evaluation of cells: A virtual smartphone architecture. ACM Trans. Comput. Syst.,
30(3):9:1-9:31, Aug. 2012.

L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege Escalation Attacks
on Android. In Information Security, volume 6531 of Lecture Notes in Computer Science,
pages 346-360. Springer Berlin / Heidelberg, 2011.

Hussain M. J. Almohri 86

[23]

[24]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege escalation attacks
on android. In Proceedings of the 15th international conference on Information security,
ISC’10, pages 346—360, Berlin, Heidelberg, 2011. Springer-Verlag.

R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley. Optimal security hardening using
multi-objective optimization on attack tree models of networks. In Proceedings of the
14" ACM conference on Computer and Communications Security, CCS 07, pages 204
213, New York, NY, USA, 2007. ACM.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire: lightweight prove-
nance for smart phone operating systems. In Proceedings of the 20" USENIX Conference
on Security, SEC’11, pages 23-23, Berkeley, CA, USA, 2011. USENIX Association.

K. O. Elish, D. Yao, and B. G. Ryder. User-centric dependence analysis for identifying
malicious mobile apps. In Proceedings of the Workshop on Mobile Security Technologies
(MoST), May 2012. In conjunction with the IEEE Symposium on Security and Privacy.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX conference on Operating systems de-
sign and implementation, OSDI’10, pages 1-6, Berkeley, CA, USA, 2010. USENIX As-
sociation.

W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone application certi-
fication. In Proceedings of the 16" ACM Conference on Computer and Communications
Security, CCS ’09, pages 235245, New York, NY, USA, 2009. ACM.

W. Enck, M. Ongtang, and P. McDaniel. Understanding Android Security. [IEEFE
Security and Privacy, 7(1):50-57, Jan. 2009.

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of mobile mal-
ware in the wild. In Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, SPSM 11, pages 3-14, New York, NY, USA, 2011.
ACM.

S. Fenz. An ontology- and Bayesian-based approach for determining threat probabilities.

In Proceedings of the 6" ACM Symposium on Information, Computer and Communi-
cations Security, ASTACCS 11, pages 344-354, New York, NY, USA, 2011. ACM.

R. Fletcher, N. I. M. Gould, S. Leyfter, P. L. Toint, and A. Wéchter. Global convergence
of a trust-region sqp-filter algorithm for general nonlinear programming. SIAM J. on
Optimization, 13(3):635-659, Aug. 2002.

B. Ford and R. Cox. Vx32: lightweight user-level sandboxing on the x86. In Proceedings
of the 2008 USENIX Annual Technical Conference, pages 293-306, Berkeley, CA, USA,
2008. USENIX Association.

Hussain M. J. Almohri 87

[34]

[35]

[42]

[43]

[44]

M. Fox, J. Giordano, L. Stotler, and A. Thomas. SELinux and grsecurity: A Case Study
Comparing Linux Security Kernel Enhancements, 2003.

M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network security using
dynamic Bayesian network. In Proceedings of the 4" ACM Workshop on Quality of
Protection, QoP ’08, pages 23-30, New York, NY, USA, 2008. ACM.

Google, Inc. Android Dev. Guide, Security ~and Permissions.
http://developer.android.com/guide/topics/security /security.html.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable and accurate
zero-day android malware detection. In Proceedings of the 10th international conference

on Mobile systems, applications, and services, MobiSys 12, pages 281-294, New York,
NY, USA, 2012. ACM.

K. Gudeth, M. Pirretti, K. Hoeper, and R. Buskey. Delivering secure applications on
commercial mobile devices: the case for bare metal hypervisors. In Proceedings of the
15t ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
11, pages 33-38, New York, NY, USA, 2011. ACM.

B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel. A logical specification
and analysis for SELinux MLS policy. ACM Transactions on Information and Systems
Security, 13(3):26:1-26:31, July 2010.

Z. M. Hong Chen, Ninghui Li. Analyzing and comparing the protection quality of
security enhanced operating systems. In Proceedings of the 16" Annual Network &
Distributed System Security Symposium, 2009.

H. Huang, S. Zhang, X. Ou, A. Prakash, and K. Sakallah. Distilling critical attack
graph surface iteratively through minimum-cost sat solving. In Proceedings of the 27"
Annual Computer Security Applications Conference, pages 31-40, New York, NY, USA,
2011. ACM.

R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootkits: bypassing kernel code
integrity protection mechanisms. In Proceedings of the 18th conference on USENIX
security symposium, SSYM’09, pages 383-398, Berkeley, CA, USA, 2009. USENIX As-

sociation.

K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling modern net-
work attacks and countermeasures using attack graphs. In Annual Computer Security
Applications Conference, pages 117 —126, dec. 2009.

K. Ingols, R. Lippmann, and K. Piwowarski. Practical attack graph generation for
network defense. In Computer Security Applications Conference, 2006., pages 121 —130,
12 2006.

Hussain M. J. Almohri 88

[45]

[46]
[47]

[49]

[50]

[51]

[54]

[55]

[56]

T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced integrity measurement
architecture. In Proceedings of the 11" ACM symposium on Access control models and

technologies, SACMAT ’06, pages 19-28, New York, NY, USA, 2006. ACM.
T. Jaeger and R. Sandhu. Operating System Security. Morgan & Claypool, 2008.

S. Jajodia, S. Noel, and B. O’Berry. Topological analysis of network attack vulnerability.
In V. Kumar, J. Srivastava, and A. Lazarevic, editors, Managing Cyber Threats: Issues,
Approaches and Challanges, chapter 5. Kluwer Academic Publisher, 2003.

S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs. In Proceedings
of the 15" IEEE workshop on Computer Security Foundations, CSEW 02, Washington,
DC, USA, 2002. IEEE Computer Society.

X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection and Monitoring Through
VMM-based “out-of-the-box” Semantic View Reconstruction. ACM Transactions on
Information Systems Security, 13:12:1-12:28, March 2010.

M. T. Jones. Access the Linux kernel using the /proc filesystem, 2006.
http: / /www.ibm.com/developerworks /linuz/library/I-proc. html.

V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kguard: lightweight kernel
protection against return-to-user attacks. In Proceedings of the 21st USENIX conference
on Security symposium, Security’12, pages 39-39, Berkeley, CA, USA, 2012. USENIX
Association.

C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. Remote attestation to dy-
namic system properties: Towards providing complete system integrity evidence. In
Dependable Systems and Networks, pages 115-124, 2009.

T. Kim and N. Zeldovich. Making Linux protection mechanisms egalitarian with UserF'S.
In Proceedings of the 19" USENIX conference on Security, pages 13-27, Berkeley, CA,
USA, 2010. USENIX Association.

B. Li, J. Li, T. Wo, C. Hu, and L. Zhong. A VMM-based system call interposition
framework for program monitoring. In Proceedings of the 16" IEEE International Con-
ference on Parallel and Distributed Systems, ICPADS 10, pages 706-711, Washington,
DC, USA, 2010. IEEE Computer Society.

P. Loscocco and S. Smalley. Integrating flexible support for security policies into the
Linux operating system. In Proceedings of the 2001 USENIX Annual Technical Confer-
ence, Berkeley, CA, 2001. USENIX Association.

L. Lu, V. Yegneswaran, P. Porras, and W. Lee. BLADE: an attack-agnostic approach
for preventing drive-by malware infections. In Proceedings of the 17" ACM conference
on Computer and communications security, CCS "10, pages 440-450, New York, NY,
USA, 2010. ACM.

Hussain M. J. Almohri &9

[57]

[58]

[59]

[62]

[63]

[64]

[65]

[66]

T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on webview in the android
system. In Proceedings of the 27th Annual Computer Security Applications Conference,
ACSAC ’11, pages 343-352, New York, NY, USA, 2011. ACM.

L. McVoy and C. Staelin. lmbench: portable tools for performance analysis. In Pro-
ceedings of the 1996 annual conference on USENIX Annual Technical Conference, pages
23-23, Berkeley, CA, USA, 1996. USENIX Association.

V. Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing. Ranking Attack Graphs. In
Recent Advances in Intrusion Detection, volume 4219, pages 127-144. Springer Berlin,
2006.

P. Mell, K. Scarfone, and S. Romanosky. Common Vulnerability Scoring System. IEEE
Security & Privacy, 4(6):85-89, 11 2006.

D. Muthukumaran, A. Sawani, J. Schiffman, B. M. Jung, and T. Jaeger. Measuring
integrity on mobile phone systems. In Proceedings of the 13" ACM Symposium on
Access control Models and Technologies, SACMAT ’08, pages 155-164, New York, NY,
USA, 2008. ACM.

S. Noel and S. Jajodia. Optimal IDS sensor placement and alert prioritization using
attack graphs. Journal of Network and Systems Management, 16(3):259-275, Sept.
2008.

S. Noel, S. Jajodia, L. Wang, and A. Singhal. Measuring security risk of networks using
attack graphs. International Journal of Next-Generation Computing, 1(1), July 2010.

X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach to attack graph gener-
ation. In Proceedings of the 13" ACM Conference on Computer and Communications
Security, CCS 06, pages 336-345, New York, NY, USA, 2006. ACM.

X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based network security
analyzer. In Proceedings of the 14" Conference on USENIX Security Symposium, pages
113-128, Berkeley, CA, USA, 2005. USENIX Association.

L. Page, S. Brin, R. Motwani, and T. Winograd. The Pagerank citation ranking: Bring-
ing order to the web. Technical report, Stanford Digital Library Technologies Project,
September 1999.

F. Palacios-Gomez, L. Lasdon, and M. Engquist. Nonlinear optimization by successive
linear programming. Management Science, 28(10):1106-1120, 1982.

J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary security metric
for network configuration security analysis. In Proceedings of the 2" ACM Workshop
on Quality of Protection, QoP 06, pages 31-38, New York, NY, USA, 2006. ACM.

Hussain M. J. Almohri 90

[69]

[76]

[77]

[78]

[79]

J. Park, B. Kim, S.-R. Kim, J. H. Yoon, and Y. Cho. Performance analysis of security
enforcement on android operating system. In Proceedings of the 2011 ACM Symposium
on Research in Applied Computation, RACS "11, pages 282-286, New York, NY, USA,
2011. ACM.

Y. Park, C. Lee, C. Lee, J. Lim, S. Han, M. Park, and S.-J. Cho. Rgbdroid: a novel
response-based approach to android privilege escalation attacks. In Proceedings of the
oth USENIX conference on Large-Scale Exploits and Emergent Threats, LEET 12, pages
9-9, Berkeley, CA, USA, 2012. USENIX Association.

N. Poolsappasit, R. Dewri, and [. Ray. Dynamic security risk management using
Bayesian attack graphs. [IFEFE Transactions on Dependable and Secure Computing,
9(1):61-74, Jan 2012.

M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting. Authenticated system calls. In
Proceedings of the 2005 International Conference on Dependable Systems and Networks,
pages 358-367, June 2005.

M. Rajagopalan, M. A. Hiltunen, T. Jim, and R. D. Schlichting. System call moni-
toring using authenticated system calls. IEEE Transactions on Dependable and Secure
Computing, 3:216-229, July 2006.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-
based integrity measurement architecture. In Proceedings of the 13" USENIX Security
Symposium, SSYM’04, pages 16-16, Berkeley, CA, USA, 2004. USENIX Association.

R. E. Sawilla and X. Ou. Identifying Critical Attack Assets in Dependency Attack
Graphs. In Proceedings of the 13" European Symposium on Research in Computer
Security: Computer Security, ESORICS 08, pages 18-34, Berlin, Heidelberg, 2008.
Springer-Verlag.

Z. C. Schreuders, T. McGill, and C. Payne. Empowering End Users to Confine Their
Own Applications: The Results of a Usability Study Comparing SELinux, AppArmor,
and FBAC-LSM. ACM Trans. Inf. Syst. Secur., 14(2):19:1-19:28, Sept. 2011.

A. Shabtai, Y. Fledel, and Y. Elovici. Securing android-powered mobile devices using
SELinux. Security Privacy, IEEE, 8(3):36-44, may-june 2010.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated Generation
and Analysis of Attack Graphs. In Proceedings of the 2002 IEEE Symposium on Security
and Privacy, Washington, DC, USA, 2002. IEEE Computer Society.

S. W. Smith. Trusted Computing Platforms: Design and Applications. Springer-Verlag,
Secaucus, NJ, USA, 2004.

Hussain M. J. Almohri 91

[80]

[81]

[82]

[33]

[84]

[85]

[36]

[87]

[38]

[89]

[90]

K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos. Shellos: enabling fast detection
and forensic analysis of code injection attacks. In Proceedings of the 20th USENIX con-
ference on Security, SEC’11, pages 9-9, Berkeley, CA, USA, 2011. USENIX Association.

A. Srivastava, A. Lanzi, J. Giffin, and D. Balzarotti. Operating system interface ob-
fuscation and the revealing of hidden operations. In Proceedings of the Sth interna-

tional conference on Detection of intrusions and malware, and vulnerability assessment,
DIMVA’11, pages 214-233, Berlin, Heidelberg, 2011. Springer-Verlag.

D. Stefan, C. Wu, D. Yao, and G. Xu. Knowing where your input is from: Kernel-level
provenance verification. In Proceedings of the 8" International Conference on Applied
Cryptography and Network Security (ACNS), pages 71-87. Springer-Verlag, 2010.

T. Van Overveldt, C. Kruegel, and G. Vigna. Flashdetect: actionscript 3 malware
detection. In Proceedings of the 15th international conference on Research in Attacks,
Intrusions, and Defenses, RAID’12, pages 274-293, Berlin, Heidelberg, 2012. Springer-
Verlag.

T. Vidas, D. Votipka, and N. Christin. All your droid are belong to us: a survey of
current android attacks. In Proceedings of the 5th USENIX conference on Offensive
technologies, WOOT’11, pages 10-10, Berkeley, CA, USA, 2011. USENIX Association.

L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-based prob-
abilistic security metric. In Proceeedings of the 22" annual IFIP WG 11.8 Working
Conference on Data and Applications Security, pages 283—296, Berlin, Heidelberg, 2008.
Springer-Verlag.

L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using attack graphs.
Computer Communications, 29(18):3812-3824, Nov. 2006.

L. Wang, A. Singhal, and S. Jajodia. Measuring the overall security of network config-
urations using attack graphs. In Proceedings of the 215 annual IFIP WG 11.8 working
conference on Data and applications security, pages 98-112, Berlin, Heidelberg, 2007.
Springer-Verlag.

C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux security
module framework. In Proceedings of the 11" Ottawa Linuxz Symposium, 2002.

P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy. Using Bayesian networks for cyber secu-
rity analysis. In The 40" Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2010.

K. Xu, H. Xiong, D. Stefan, C. Wu, and D. Yao. Data-provenance verification for secure
hosts. IEEE Transaction on Dependable and Secure Computing (TDSC), 9(2):173 — 183,
March/April 2012.

Hussain M. J. Almohri 92

[91] L. K. Yan and H. Yin. DroidScope: seamlessly reconstructing the os and dalvik seman-
tic views for dynamic android malware analysis. In Proceedings of the 21st USENIX
conference on Security symposium, Security’12, pages 29-29, Berkeley, CA, USA, 2012.
USENIX Association.

[92] Z. Zhang, F. Nait-Abdesselam, X. Lin, and P.-H. Ho. A Model-based Semi-quantitative
Approach for Evaluating Security of Enterprise Networks. In Proceedings of the 2008
ACM Symposium on Applied Computing, SAC ’08, pages 1069-1074, New York, NY,
USA, 2008. ACM.

[93] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In
Security and Privacy (SP), 2012 IEEE Symposium on, pages 95-109, may 2012.

