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ABSTRACT 

To assess the safety of various products, equipment, and vehicles during traumatic events 

injury risk curves have been developed correlate measurable parameters with risk of injury. The 

first risk curves to predict head injuries focused on severe head injuries such as skull fractures. 

These curves were generated by impacting cadaver heads. To understand the biomechanics of 

mild traumatic brain injuries, cadaver heads have also been used to monitor pressure and strain in 

the brain during impacts. Live animal models have been used to understand the physiological 

response of the brain to impact to create thresholds for mild traumatic brain injuries such as 

concussions. These results have been scaled to humans. To generate injury risk curves from live 

human models, impacts from games in the NFL have been reconstructed in the laboratory. 

Helmets of NCAA football players have also be instrumented with accelerometers to collect all 

impacts during a season resulting in the development of injury risk curves that predict 

concussion as a function of both linear and rotational acceleration. These risk curves provide 

researchers with a better understanding of the efficacy of various safety systems and give insight 

as to how safety systems can be improved. 
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INTRODUCTION 

Injury risk curves are used to predict the likelihood of injuries caused by traumatic 

events. To generate curves that predict the risk of injury, injuries have been induced in cadavers, 

animal models, and volunteers.  Various parameters such as linear acceleration, rotational 

acceleration, pressure, and strain have been measured to generate a curve that predicts the risk 

for injury as a function of these measurable parameters. The following is a summary of various 

injury risk curves that have been developed to predict injuries during traumatic events with a 

focus on head injuries. 

In addition to the head, risk functions have been developed for various body regions 

including the eye, thorax, abdomen and extremities. The risk for ocular injuries such as 

hyphema, lens damage, retinal damage, and globe ruptures caused by projectile impacts or blast 

waves have been determined by impacting human cadaver eyes with projectiles and blast waves 

while measuring intraocular pressure.[1-3]  Injury risk curves for the neck and thorax have been 

developed to predict injuries by measuring levels of neck bending and chest compression caused 

by blunt impact and quantifying the mechanical properties of rib bones.[4-6] Injury risk curves 

for abdominal and maternal tissues have been developed to predict the likelihood of injury to soft 

tissues in the abdominal cavity caused by traumatic loading by measuring the dynamic material 

properties of the tissues.[7,8] Mechanical properties of the bones in extremities have been 

quantified to predict injuries resulting from bending and compressive loading experienced during 

traumatic events.[9] All of these injury risk functions are used by researchers to evaluate the 
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safety of products and vehicles by understanding the likelihood of injury during a traumatic 

event. 

HEAD INJURY RISK FUNCTIONS 

Early research predicting traumatic brain injuries primarily focused on quantifying risk 

for severe head injuries such as skull fractures. Cadaver heads have been used to study tolerance 

and injury risk to traumatic impacts. Impacts of various magnitudes have been studied while 

measuring parameters such as linear acceleration, rotational acceleration, and intracranial 

pressure in order to produce injury risk curves. In 1997, Mertz developed an injury risk curve 

based on the Head Injury Criterion (HIC) which has been shown to accurately predict severe 

head injuries such as skull fractures.[10] The HIC value is defined as: 
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In order to more accurately predict injury, a 15 ms timespan is used for the HIC15 to 

ensure the most severe acceleration interval is used. Mertz et al published risk of AIS >= 4 and 

skull fracture injuries based on HIC15 (Figure 1).  The HIC15 is the only commonly accepted 

head injury criterion in industry. 

 

 
Figure 1. Metz et al. developed injury risk curves to predict skull fracture and AIS ≥4 brain 

injuries based on HIC15. 
 

While the HIC15 has proven to be useful in mitigating severe head injuries, mild 

traumatic brain injuries, such as concussions, are not addressed. More recently, the biomechanics 

of mild traumatic brain injuries have been studied by analyzing the effects of linear and 

rotational acceleration on human brains. In 2007, Hardy et al. conducted a study to determine the 
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brain displacement and deformation during impacts caused by various degrees of linear and 

rotational accelerations.[11] In this study, intracranial pressure transducers and neutral density 

targets were implanted into the brains of eight cadavers to monitor pressure, displacement, and 

deformation using biplane x-ray during thirty five impacts. It was determined that the maximum 

principal strain and peak coup pressure in the brain increases with linear acceleration in the 

direction of impact. However, no significant correlation was determined between pressure or 

strain parameters and rotational acceleration. This study has applications towards understanding 

the causes of mild traumatic brain injuries by quantifying the kinematic response of the human 

brain to traumatic loading. 

While cadaver studies are a valuable tool to understand the kinematics and mechanics of 

the brain during a traumatic event, a large aspect of mild traumatic brain injuries includes the 

physiological response of the brain post injury. Currently, concussions are diagnosed by reported 

and observed symptoms exhibited by patients who have undergone head trauma. Thus, live 

brains are vital to studying mild traumatic brain injuries. To determine the threshold for 

concussion caused by rotational whiplash forces, Ommaya et al. conducted 200 primate impact 

tests were conducted at a variety of angular velocities, accelerations, and pulse durations.[12-15] 

In these studies, torso acceleration tests were performed to quantify the threshold of concussive 

injury in different primate species. These results were then scaled to humans using a brain mass 

scaling relation (Figure 2). 

 

 
Figure 2. Ommaya et al. conducted noncontact rotational head impacts to develop injury 

tolerances for various primate species. These results were then scaled to man using a brain mass 

scaling relation. 
 

Quantification of injury risk and injury thresholds in primate models provides the 

opportunity to study mild traumatic brain injuries because physiological responses are produced. 

However, In order to scale the results of such studies to humans, scaling techniques must be 

utilized which inherently reduces the accuracy of the results. Football players provide a unique 
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opportunity to study the effects of concussive and subconcussive impacts on the human brain 

directly in an ethical manner. Between the years of 1996 and 2001, Pellman et al. collected game 

video in the NFL. Impacts causing diagnosed concussions were located in the video data. 

Through video analysis of the concussive impacts, the impact speed and location were 

determined. From this analysis, 31 impacts, including 25 concussive impacts and 6 noninjurious 

impacts, were reconstructed in the lab. To reconstruct the impacts, Hybrid III testing devices 

were equipped with football helmets and were impacted with initial energy equivalent to that 

determined from the video analysis. Accelerometers instrumented in the Hybrid III head were 

used to measure linear acceleration at the center of gravity of the head.  From this study, a risk 

curve was developed to predict the likelihood of injury based on linear acceleration (Figure 

3).[16] 

 
Figure 3. Pellmen et al. developed an injury risk curve to predict concussion as a function of 

linear acceleration using laboratory reconstructed NFL impacts. 
  

The injury risk curve developed by Pellman et al. used a small number of concussive and 

subconcussive impacts. In order to more accurately predict the risk for injury, a larger set of both 

concussive and subconcussive impacts should be analyzed. To collect data describing all impacts 

experienced by players in a given season, accelerometers can be instrumented into the helmets of 

players (Figure 4). These accelerometers collect impact data and transmit them to a sideline 

computer. Linear acceleration, angular acceleration, and location of impact are transmitted to 

allow for impact exposure to be quantified for each player. In 2003, Virginia Tech began 

instrumenting the helmets of their football players. Over the last ten years, other universities 
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have begun to instrument their players resulting in over 2,000,000 head impacts collected from 

NCAA football players.[17-43] 

 
Figure 4. Head impacts have been collected from NCAA football players over the last decade 

using helmet mounted accelerometers. Subconcussive impacts are right skewed due to the high 

number of low magnitude impacts and concussive impacts are normally distributed. 
 

The distribution of linear and rotational acceleration of subconcussive impacts is right 

skewed due to the high number of low magnitude impacts. Concussive impacts, however, are 

normally distributed (Figure 4). From this data, Rowson et al. created a risk function to predict 

concussion as a function of linear acceleration.[35] 

In addition to linear acceleration, angular acceleration has been proposed to play a 

significant role in concussions. In order to accurately predict the risk of concussion, both linear 

and rotational acceleration should be accounted for to determine the combined risk. In 2012, 

Rowson et al. created a combined probability risk curve to determine the risk of concussion as a 

result of linear and angular acceleration (Figure 5).[37] 

 
Linear Acceleration Rotational Acceleration Interaction
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Figure 5. Rowson et al. created a concussion risk curve as a function of both linear and angular 

acceleration. 
 

CONCLUSION 

Over the last 50 years, head injury risk curves have been developed to predict severe and 

mild traumatic brain injuries. Cadavers served as the model to predict severe brain injuries, such 

as skull fractures, and have resulted in the only currently accepted injury risk curve accepted by 

industry today. Animal models, NFL data analysis, and NCAA volunteer data have resulted in 

injury risk curves that can predict mild traumatic brain injuries based on both linear and angular 

acceleration. These risk curves are a valuable tool that can aid researchers in designing safer 

vehicles, protective equipment, and products that can minimize the amount injuries that occur 

during traumatic events. 
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