

Mining Rare Features in Fingerprints Using

Core Points and Triplet-based Features

Indira Munagani

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in

partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

Michael S. Hsiao, Chair

A. Lynn Abbott

Sandeep K. Shukla

December 9, 2013

Blacksburg, Virginia

Keywords: Fingerprints, Rare Features,

Rarity, Latent, Core Points, Triplets, GPU

Copyright 2013, Indira Munagani

Mining Rare Features in Fingerprints

Using Core Points and Triplet-based

Features

Indira Munagani

A fingerprint matching algorithm with a novel set of matching parameters based on core points

and triangular descriptors is proposed to discover rarity in fingerprints. The algorithm uses a

mathematical and statistical approach to discover rare features in fingerprints which provides

scientific validation for both ten-print and latent fingerprint evidence. A feature is considered

rare if it is statistically uncommon; that is, the rare feature should be unique among N (N>100)

randomly sampled prints. A rare feature in a fingerprint has higher discriminatory power when

it is identified in a print (latent or otherwise). In the case of latent fingerprint matching, the

enhanced discriminatory power from the rare features can help in delivering a confident court

judgment. In addition to mining the rare features, a parallel algorithm for fingerprint matching

on GPUs is also proposed to reduce the run-time of fingerprint matching on larger databases.

Results show that 1) matching algorithm is useful in eliminating false matches. 2) each of the 30

fingerprints randomly selected to mine rare features have a small set of highly distinctive

statistically rare features some of whose occurrence is one in 1000 fingerprints. 3) the parallel

algorithm implemented on GPUs for larger databases is around 40 times faster than the

sequential algorithm.

iii

Acknowledgments

I would like to extend my deep sense of gratitude to my advisor Dr. Michael Hsiao for giving me

this opportunity to work with him. I thank him for motivating me and for being optimistic about

our approach when we faced many challenges during the course of this work. I thank him for his

patient guidance and his confidence in me through these 2 years. It was a continuous learning

process working with him. I would like to thank Dr. Lynn Abbott for his continued interest in

this work and for his valuable time in reviewing my thesis. I would also like to thank Dr.

Sandeep Shukla for serving on my committee and for his vital comments about my thesis work. I

would also like to thank Dr. Edward Fox for his helpful discussions initially.

I am grateful to my research team Kelson Gent, Nathan Short and Sung Hee Park for their

suggestions and help with my research. I would also like to thank my lab mates Sarvesh Prabhu,

Supratik Misra, Avinash Desai, Sharad Bagri, Vineeth Acharya, Shuchi Pandit and Dilip Murali

for building a fun environment in lab and for their constant support.

Special thanks to Manideep Chavali and his parents for their prayers and good thoughts. I would

like to thank my brother Dhiraj Munagani for helping me in making the right decisions in my

career and my parents, for their prayers, love and support all through my life.

Finally, to the almighty for giving me the courage and strength to face all the challenges in my

life.

I would also like to acknowledge our funding source, National Institute of Justice (Grant: 2009-

DN-BX-K229).

iv

Contents

Chapter 1: Introduction ...1

1.1 Motivation ..1

1.2 Contributions of this Thesis...2

1.3 Outline ..3

Chapter 2: Background ..4

2.1 Fingerprint Representation ..4

2.2 Latent Fingerprints ..5

2.3 Fingerprint Classification ..6

2.4 Previous Work in Triplet-Based Fingerprint Matching ..8

2.5 Previous Work on Rarity in Fingerprints ... 12

2.6 NVIDIA GPU ... 12

2.7 CUDA .. 14

2.8 Terminology ... 17

Chapter 3: Fingerprint Feature Matching Using GPUs... 19

3.1 Need for GPUs .. 19

3.2 Databases .. 19

3.3 GPU Comparisons of FVC2000 DB1 Fingerprints .. 19

3.3.1 Input Files .. 19

3.3.2 Single Triangle (3-point) Comparisons on the GPU ... 21

3.3.3 Two Triangle (6-point) Comparisons on the GPU .. 26

3.3.4 Three Triangle (9-point) Comparisons on the GPU .. 29

3.3.5 Results ... 31

3.4 GPU Comparisons of FBI Database Fingerprints... 33

3.4.1 Input Files .. 33

v

3.4.2 3-point GPU Comparisons ... 35

3.4.3 6-point GPU Comparisons ... 41

3.4.4 Results ... 43

Chapter 4: Mining Rare Features ... 47

4.1 Overview .. 47

4.2 Challenges in Mining Rare Features .. 47

4.3 Distortion .. 48

4.3.1 Minutiae Distance Distortion ... 48

4.3.2 Displacement of Minutiae .. 50

4.3.3 Ridges Crossed Distortion .. 50

4.3.4 Angular Distortion ... 52

4.3.5 Minutia Orientation Distortion ... 53

4.4 Triplet-based Matching using Core Points ... 54

4.4.1 Novel Parameters for Triplet-based Matching .. 54

4.4.2 Algorithm for 3-point Comparisons.. 63

4.4.3 Parameters for 6-point and 9-point Comparisons .. 63

4.4.4 Algorithm for 6-point Comparisons.. 67

4.4.5 Algorithm for 9-point Comparisons.. 68

4.4.6 Algorithm for Mining Rare Features .. 69

4.4.7 Database Profiling .. 70

4.4.8 Results ... 72

Chapter 5: Conclusions and Future Work .. 80

Bibliography ... 83

vi

List of Figures

Figure 2.1 Ridges and valleys in a fingerprint ..4

Figure 2.2 Minutiae ridge ending and ridge bifurcation ...5

Figure 2.3 a) a ridge ending minutia: [x0, y0] are the minutia coordinates; θ is the angle that the

minutia tangent forms with the horizontal axis; b) a bifurcation minutia: θ is now defined by

means of the ridge ending minutia corresponding to the original bifurcation that exists in the

negative image. [13] (from D. Maltoni, D. Maio, A. K. Jain and S. Prabhakar, Handbook of

Fingerprint Recognition (2nd Edition), Springer, 2009) (Used under fair use)5

Figure 2.4 Latent fingerprint ...6

Figure 2.5 Classification of fingerprints (a) right loop (b) left loop (c) whorl (d) two loops (e)

tented arch (f) arch. ...7

Figure 2.6 Features of local structures used by Jiang and Yau [13] (from D. Maltoni, D. Maio, A.

K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition (2nd Edition), Springer, 2009)

(Used under fair use) .. 10

Figure 2.7 Comparison of code between CPU and GPU [33] (from NVIDIA, "GPU Computing,"

[Online]. Available: www.nvidia.com) (Used under fair use) .. 14

Figure 2.8 NVIDIA GT200 architecture [36] (NVIDIA, CUDA Programming Guide) (Used

under fair use) ... 15

Figure 2.9 Grid of thread blocks (NVIDIA, CUDA Programming Guide) (Used under fair use) 16

Figure 2.10 GTX 285 properties .. 17

Figure 2.11 In this example, number of ridges crossed between a and b is 8. [13] (from D.

Maltoni, D. Maio, A. K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition (2nd

Edition), Springer, 2009) (Used under fair use) ... 18

Figure 3.1 Sample minutia file .. 20

Figure 3.2 Sample ridge count file ... 21

Figure 3.3 GPU comparisons flowchart ... 22

Figure 3.4 Grid structure for 3-point comparisons ... 24

Figure 3.5 Block structure for 3-point comparisons ... 25

Figure 3.6 Matched reference and target arrays ... 26

Figure 3.7 Valid and invalid 6-point features ... 26

Figure 3.8 Grid Structure for 6-point comparisons ... 28

vii

Figure 3.9 6-point matches .. 28

Figure 3.10 Valid and invalid 9-point features ... 29

Figure 3.11 Grid structure for 9-point comparisons ... 30

Figure 3.12 Sample fts file .. 34

Figure 3.13 Sample ridge count file ... 35

Figure 3.14 Original triple data structure ... 36

Figure 3.15 Modified triple data structure .. 37

Figure 3.16 New triple data structure ... 37

Figure 3.17 Shared memory .. 39

Figure 3.18 Data structure for 6-point comparisons ... 41

Figure 4.1 Minutiae distances distortion .. 49

Figure 4.2 Distance threshold .. 49

Figure 4.3 Low confidence ridge count ... 52

Figure 4.4 High confidence ridge count ... 52

Figure 4.5 Angular distortion .. 53

Figure 4.6 Distance between core and centroid of triple... 56

Figure 4.7 Distance of minutiae from core ... 57

Figure 4.8 Farthest and nearest vertices ... 57

Figure 4.9 Delta distance ... 58

Figure 4.10 (i) Incorrectly matched triplets because (b) is reflection of (a). (ii) Correctly matched

Triplets.. 59

Figure 4.11 Encoding the combinations ... 62

Figure 4.12 Algorithm for triple comparisons .. 63

Figure 4.13 Centroid distance shown for a 6-point feature ... 64

Figure 4.14 Centroid distance thresholds ... 64

Figure 4.15 Centroid distances shown for a 9-point feature ... 65

Figure 4.16 Matched 6 point features .. 66

Figure 4.17 Incorrectly matched 6-point and 9-point features .. 67

Figure 4.18 Algorithm for 6-point comparisons ... 68

Figure 4.19 Algorithm for 9-point comparisons ... 69

Figure 4.20 Algorithm for mining rare features ... 71

viii

Figure 4.21 Rare 9-point features identified in a single-core fingerprint..................................... 78

Figure 4.22 Additional rare 9-point features identified in a single-core fingerprint 79

ix

List of Tables

Table 2.1 Number of GPU processing cores (from NVIDIA, "GeForce GTX 200 GPU Technical

Brief," 2008) (Used under fair use) .. 14

Table 3.1 Results of 3-point and 6-point comparisons ... 32

Table 3.2 Results for 3-point comparisons of a reference fingerprint compared with 10 target

fingerprints from FBI database on GPU .. 43

Table 3.3 Results for 6-point comparisons of a reference fingerprint compared with 10 target

fingerprints from FBI database on GPU .. 44

Table 3.4 Results after comparing with 18,649 fingerprints ... 45

Table 4.1 Matching criteria for 3-point comparisons.. 62

Table 4.2 Matching criteria for 6-point and 9-point comparisons ... 67

Table 4.3 Rare 9-point features in arch-core type fingerprints .. 73

Table 4.4 Rare 9-point features in arch-core fingerprints at different fingerprint intervals 74

Table 4.5 Rare 9-point features in two-core fingerprints .. 74

Table 4.6 Rare 9-point features in two-core fingerprints at different fingerprint intervals 75

Table 4.7 Rare 9-point features in single-core fingerprints ... 76

Table 4.8 Rare 9-point features in single-core fingerprints at different fingerprint intervals 76

1

Chapter 1: Introduction

1.1 Motivation

Fingerprint evidence has been challenged many times in the past because of lack of scientific

backing of fingerprint identification process [1]. The process of matching latent fingerprints has

never been scientifically tested. There is a need for scientific validation of latent fingerprint

evidence because Automated Fingerprint Identification Systems (AFIS) and human examiners

face great challenges from latent fingerprints as they have very few details and it is difficult to

make a court judgment about identification or exclusion of the evidence. In the jury, a latent

fingerprint with some kind of distinctiveness proves to be highly distinguishing and will provide

significant confidence to the evidence.

Friction ridge patterns on human fingers are considered to be unique to every individual [2, 3, 4],

but there has been no proven mathematical or statistical approach to quantify the rarity of these

friction ridge patterns. In this work, the individuality of fingerprints is explored by finding

statistically rare features with high discriminatory power that are obtained after comparisons with

thousands of fingerprints. The goal to identify individuality in fingerprints is further motivated

by the need expressed by National Institute of Justice (NIJ) in [5, 6] and by the National

Academy of Sciences (NAS) in [7] for validating the science behind fingerprint identification

methods.

The existing fingerprint triplet-based matching techniques take a significant amount of time

when they are run sequentially on a Central Processing Unit (CPU) [8, 9]. When a large database

of fingerprints is considered, the matching can take up to several days. The use of multi-

triangular features which are formed by combining multiple triples in a fingerprint showed that

certain distinctive features can be extracted from fingerprints [9]. Each fingerprint has millions

of multi-triangular features and these further increases the total run-time because, as the number

of the multi-triangular features increases in a fingerprint, the number of computations and

2

comparisons required increases and hence the run-time of the algorithm increases. There is a

need to reduce the run-time and GPGPUs (General Purpose computing on Graphics Processing

Units) provide the ideal platform for parallelizing triplet-based feature matching techniques and

help in reducing the time taken. The feature matching technique [8] is easily parallelizable given

that the same matching criteria are applied for all the features. This matching technique is similar

to SIMD (Single Instruction Multiple Data) where the same matching technique is applied for all

the data. Also, GPUs are suitable to applications that are computationally intensive and operate

on large data sets. The thousands of triangular features and millions of multi-triangular features

can be compared simultaneously on multiple threads of a GPU and all the computations related

to matching can be performed on the GPU.

1.2 Contributions of this Thesis

Although the main focus of this thesis work is mining rare features in fingerprints, the work

initially started with parallelizing an existing triplet-based feature matching algorithm and

mining rare features by using the same GPU parallel algorithm. The tolerance levels of some of

the matching parameters used for parallelization were stringent and it was later realized that

these tolerance levels needed to be changed. The work related to fingerprint matching on GPUs

is retained in this thesis because it shows methods and optimization techniques which can

accelerate the algorithm. Though triangular features are used in a hierarchical fashion in this

thesis (3-points, 6-points and 9-points), most of the triplet-based matching algorithms use only

triangles (3-points) for fingerprint matching [10, 11, 12]. The GPU parallel algorithm technique

proposed for 3-point comparisons can very well be used for fingerprint matching (using different

tolerances) and equivalent speedups can be achieved. The method used for 6-point and 9-point

comparisons on GPUs can also be adopted for future implementations. The contributions of this

thesis are as follows:

 Parallelizing fingerprint triplet-based feature matching on GPUs.

 Detailed discussion of distortion in different impressions of the same finger.

 Development of a novel fingerprint triplet-based matching algorithm using core points

for mining statistically rare features in a fingerprint to aid in latent fingerprint matching.

3

 Identification of some rare features in 30 fingerprints that are randomly selected from a

database of 11,036 fingerprints.

1.3 Outline

Chapter 2 lays the background for this thesis. Triplet based feature matching techniques and

previous works on rarity in fingerprints are discussed. Since this work involves usage of GPUs

for fingerprint feature matching, NVIDIA GPU architecture and CUDA (the parallel

programming and computing platform) are briefly discussed.

Chapter 3 discusses the GPU implementation of triplet based feature matching algorithms on two

different databases. Some optimizations and usage of shared memory which enhanced the GPU

speedup are also discussed.

Chapter 4 discusses the matching algorithm using core points for finding statistically rare

features in fingerprints. The different kinds of distortion in fingerprints are also discussed.

Chapter 5 concludes the thesis work and proposes some future work.

4

Chapter 2: Background

2.1 Fingerprint Representation

Fingerprints are characterized and defined by their unique ridges and valleys (see Figure 2.1).

Ridge details in a fingerprint are described in a hierarchical fashion – Level 1: Overall global

ridge flow pattern, Level 2: Minutia points, Level 3: Pores, Local shape of ridges. Fingerprint

ridges usually form distinctive shapes in certain regions called singular regions or singularities

broadly classified into loop, whorl and delta. Minutiae are the smaller details of the fingerprints

where a ridge comes to an end, called ridge ending or termination, or a ridge divides into two,

called ridge bifurcation (see Figure 2.2). The minutiae are usually represented by x- and y-

coordinates and the angle made by the tangent to the ridge with the horizontal axis as shown in

Figure 2.3. Minutiae are the most commonly used features in automated fingerprint matching. At

Level 3, ridge attributes such as shape, width, edge contour, sweat pores, incipient ridges, scars

and creases can be extracted. Though level 3 features are highly distinctive, their reliable

detection requires high resolution scanners.

 Figure 2.1 Ridges and valleys in a fingerprint

5

Figure 2.2 Minutiae ridge ending and ridge bifurcation

Figure 2.3 a) a ridge ending minutia: [x0, y0] are the minutia coordinates; θ is the angle that the

minutia tangent forms with the horizontal axis; b) a bifurcation minutia: θ is now defined by

means of the ridge ending minutia corresponding to the original bifurcation that exists in the

negative image. [13] (from D. Maltoni, D. Maio, A. K. Jain and S. Prabhakar, Handbook of

Fingerprint Recognition (2nd Edition), Springer, 2009) (Used under fair use)

2.2 Latent Fingerprints

Latent fingerprints are the impressions which are accidentally left on any surface and they may

not be obvious to the naked eye, but are extracted through more refined techniques. They are

usually partial fingerprints with limited details (fewer minutiae) and pose a great challenge for

fingerprint matching. One such latent fingerprint is shown in Figure 2.4. These prints are

deposited because of the sweat produced from the fingers that adheres to the friction ridges of the

6

finger and when the finger is placed on any surface such as glass, table and wall, an impression is

left behind. To expose these latent impressions, fingerprint technicians use powder dusting,

ninhydrin spraying, iodine fuming and silver nitrate soaking [14]. Better procedures [15] have

been developed based on chemical reagents and systemic approaches to expose and lift the latent

fingerprints when they are deposited on wet surfaces and untreated wood. [13].

Figure 2.4 Latent fingerprint

2.3 Fingerprint Classification

As the number of enrolled users increases in a fingerprint identification system, more

comparisons are required to identify a fingerprint match. Hence, the time required for performing

these comparisons also increases. Decreasing the number of comparisons required can reduce the

time taken. In order to achieve this, the fingerprints in the database are partitioned into subsets.

Typically fingerprints can be divided into five classes based on global ridge patterns –right loop,

left loop, whorl, arch and tented arch [13]. These five classes of fingerprints are shown in Figure

2.5. Some parts of the ridge patterns of a fingerprint form semicircles or closed loops known as

core points. Some parts form a triangular pattern called as a delta point. The core regions are

shown by blue-colored dots and delta regions are shown by orange-colored dots in Figure 2.5.

The fingerprints with a right loop or a left loop have a single core point and a single delta point.

A whorl has two core points and two delta points. A tented arch has a single delta point. An arch

has no core points and no delta points.

7

(a)

Figure 2.5 Classification of fingerprints (a) right loop (b) left loop (c) whorl (d) two loops (e)

tented arch (f) arch.

(b)

(c) (d)

(e) (f)

8

The distribution of the five classes of fingerprints is non-uniform in a typical database. Wilson et

al. considered more than 222 million prints and found that the proportions of fingerprints in arch,

tented arch, left loop, right loop and whorl is 3.7%, 2.9%, 33.8%, 31.7% and 27.9%,

respectively [16]. In the FBI database that is used for this work, the percentage of tented arch and

arch together, left loop and right loop together and whorl are 5.3%, 75.3% and 19.4%,

respectively. Hence, by classifying the fingerprints into these classes, the number of fingerprints

to be used for identification purposes drastically decreases. Singular points, when reliably

detected, also help in reducing the fingerprint verification time [17]. In this thesis work, singular

points are used for fingerprint matching.

2.4 Previous Work in Triplet-Based Fingerprint Matching

Fingerprint matching can be classified into correlation-based matching, minutiae-based matching

and non-minutiae feature-based matching. In correlation-based techniques, the two fingerprint

images to be compared are aligned over one another and the amount of correlation is calculated.

The correlation is computed locally over certain regions of interest in the fingerprint to overcome

non-linear distortion.

Non-minutiae based feature matching is mostly used in the cases where the area of the

fingerprint is small with 4-5 minutiae in it. In these cases, minutiae based matching cannot be

used. For non-minutiae based feature matching, the most commonly used features are number,

type and position of core and delta points, global and local texture information, geometrical

attributes and spatial relationship of ridge lines (length and curvature of ridge lines is compared)

and level 3 features. These techniques are often used in addition to minutiae based techniques to

improve accuracy.

Minutia based matching is well known and used widely. Fingerprint is represented as a feature

vector with minutiae as its elements. Each minutia is further described by many characteristics

such as location, type, quality and orientation. Typically, minutiae are represented as m = (x, y, θ)

where (x, y) is the location of minutia in the fingerprint and θ represents the direction of the

minutia. A reference fingerprint r and a target fingerprint t can be represented as shown below.

9

 {

 }

The reference and target fingerprints are considered a match when the spatial distance between

the minutia points is smaller than a tolerance r0 and the direction difference between them is

smaller than a tolerance θ0. The tolerances are considered to compensate for the feature

extraction errors and the plastic distortion that cause the minutiae positions to change. The

fingerprints need to be aligned to maximize the number of matching minutiae. This alignment

requires displacement and rotation of the fingerprints. Scale should also be considered when the

fingerprints are taken at different resolutions. Also distortion tolerant geometric transformations

are considered while matching fingerprints.

Alignment is the most important step for minutia based matching. A few matching segments of

pairs of minutiae between both the fingerprints are identified and the alignment parameters

(displacement, rotation) are derived based on them. The fingerprints are aligned and the

remaining minutiae in the fingerprints are compared within some tolerance levels. The best

alignments are compared for consistency. The maximum number of mated pairs, fraction of

mutually consistent alignments, minutiae direction and ridge counts determine the final score.

This method is computationally very expensive since it works in an iterative fashion. Many

algorithms have been proposed for fingerprint alignment that use singularity- based (core point

and delta point) pre-alignment in which the singularities are superimposed and ridge based pre-

alignment in which the length and orientation of ridges is compared.

To avoid the need to perform alignment, global and local minutiae matching algorithms have

been proposed that use the global spatial relationships and local features which are translation

and rotation invariant. One method using global minutiae matching involves using an intrinsic

coordinate system (ICS) which runs along hypothetical axes defined according to the ridge

orientation. Local minutiae matching involve use of local structures which are invariant to global

transformations such as translation and rotation. However, by using only local minutiae for

fingerprint matching, the global spatial relationships which have high distinctive power are

eliminated and therefore reduce the information for discriminating fingerprints. Some of the

earliest approaches of local minutiae matching involved use of local structures which are defined

10

by the number of minutiae falling inside some regions followed by some local structures defined

by the relationship between a minutiae and its neighboring minutiae invariant to translation and

rotation of fingerprints.

Jiang et al. used local structures that are formed by a central minutiae and its two nearest

neighboring minutiae (see Figure 2.6) [18]; the feature vector vi for the central minutia mi whose

closest minutiae are mj and mk is defined by the following.

vi = {dij, dik, θij, θik, φij, φik, nij, nik, ti, tj, tk}

dij is the distance between minutiae mi and mj, θij is the direction difference between the angles θi

and θj of minutiae mi and mj, φij is the direction difference between angle θi of minutia mi and the

edge joining mi and mj, nij is the number of ridge counts between minutiae mi and mj, ti is the type

of minutia mi.

Figure 2.6 Features of local structures used by Jiang and Yau [13] (from D. Maltoni, D. Maio, A.

K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition (2nd Edition), Springer, 2009)

(Used under fair use)

Ratha et al. used graph notation, a star in which all the minutiae around a central minutia whose

distance is smaller than dmax are the vertices in the graph and the edges are formed by joining the

central minutia with the remaining minutiae in the graph [19]. Each star in the input fingerprint is

compared against every star in the template.

11

The matching of local structures invariant to translation and rotation forms the basis for most of

the fingerprint matching techniques proposed after year 2000 [13]. Minutiae triangles or triplets

have been first used by Germain et al. for fingerprint indexing [20]. Later, Bhanu et al. used

minutia triangles for fingerprint indexing in which they chose angles, triangle handedness,

triangle type, triangle direction and maximum side length as the parameters [21]. Kovacs-Vajna

et al. and Parziale et al. also used minutiae triangles for fingerprint matching [12, 22]. Kovacs-

Vajna et al. used only those triangles which are formed by Delaunay triangulation (minutiae

points forming triangles are selected such that no point lies inside the circumference of any

triangle) to cope with the non-linear deformations in fingerprint. By using Delaunay

triangulation, triangles with smaller angles are skipped. They showed that distortion in local

areas can be more easily controlled than global deformations. Jea et al. used minutia triangles for

partial fingerprint matching [23, 24]. Their triangle selection and matching procedure is similar

to that of Jiang and Yau [18]. However, minutia type and ridge counts are removed in their

method because minutia type is difficult to distinguish between fingerprints of the same finger

and ridge counts are not extracted by all the feature extracting tools.

Tan et al. and Ghazvini et al. used minutiae triangles for fingerprint verification using genetic

algorithms [11, 25]. Tan et al. used a fitness function that checks the global consistency of

minutiae followed by minutiae triangles to verify detailed matching. Chen et al., Zheng et al. and

Feng et al. also used minutiae triangles for fingerprint matching [26, 27, 28] where they used

different matching parameters to overcome the non-linear distortion in fingerprints. The most

commonly used matching parameters in the above methods are spatial distances between

minutiae, type, angles, direction, ridge counts between minutiae. Some methods have avoided

use of minutiae type because it is unreliable and also spatial distances which are highly distorted.

Medina-Perez et al. proposed an algorithm called M3g1 for triplet based matching which

discards some of the unmatched triplets (which are typically matched by other algorithms) in the

initial stage and used direction and side lengths as the basic matching criteria [10]. This thesis

work is similar to the methods used by Hoyle et al. and Xu et al. in which minutiae triangles are

used in a hierarchical fashion forming 2-triangle and 3-triangle combinations [9, 29].

12

2.5 Previous Work on Rarity in Fingerprints

Hoyle et al. mined for distinctive features fingerprints and they discovered a set of 10 rare

features in a database of 93 fingerprints [9]. Rare features are the features whose occurrence is

low in a database. Some of the parameters that they used in mining for rare features are intra-

shared ridge segments, inter-shared ridge segment, intra ridge counts, total ridge counts, side

lengths to ridge count ratio and vice-versa. Intra-shared ridge segments refer to minutiae in a

triplet that share the same ridge and inter-shared ridge segment refers to minutiae in a 2-triangle

or 3-triangle combination that share the same ridge. Hoyle et al. searched for rare features by

fine-tuning their parameters such that a single feature is returned after every search. This thesis

work is similar to the work of Hoyle et al. in that the methods used in this thesis also search for

statistically rare features in a fingerprint by using single, two and three triangle combinations,

however the search is performed using different matching parameters that use singular points and

predefined search parameters are not used while mining for rare features. Also minutia type is

not considered because of the ambiguity in ridge endings and bifurcations [13]. Identifying

minutiae that share the same ridge segment also depends largely on minutiae type. When a ridge

bifurcation becomes a ridge ending because of finger pressure variations, the minutiae that

shared the same ridge (when the minutia was a bifurcation) before do not share the same ridge

anymore. Hence, inter and intra shared ridge segments are not used in this work. The search for

rare features in this work returns a set of unmatched triangles for each fingerprint after

comparing with a larger database. By using a larger database, rare features that are truly

statistically rare can be identified because a feature that is rare in 100 fingerprints may find a

match in 1000 fingerprints. So, the confidence of rare features obtained by using larger databases

is higher.

2.6 NVIDIA GPU

GPUs are used widely in applications that are computationally intensive because they can

distribute the work among several cores. GPUs are well suited for applications that involve data

13

parallel computations where the arithmetic intensity is much higher than memory operations.

The latency for memory operations is hidden on a GPU with arithmetic calculations.

GPUs have already been used in various biometric applications such as Iris Matching, Face

recognition and fingerprint matching [30, 31, 32]. Fingerprint matching becomes challenging

especially when large databases are considered because of the longer run-times. There are some

existing techniques that use GPUs to accelerate fingerprint matching algorithms. Gutierrez et al.

used GPUs for fingerprint matching on large databases [32]. They consider a 3-dimensional

structure called cylinder associated with each minutia which stores the contributions of each of

the neighboring minutiae based on their location and direction. They use only location and

orientation of the minutiae as the matching criteria.

GPUs have always been used for graphics applications since their invention, but in the recent

years, they are widely used for accelerating scientific applications marking the advent of

GPGPUs, or General Purpose computation on GPU.

Many real-world applications can be parallelized on a GPU and can run significantly much faster

than on a CPU [33]. GPUs are used in a wide variety of applications such as computation

chemistry and biology, bioinformatics, defense and intelligence, computational finance,

electronic design automation, computer aided design, computer vision, video processing,

scientific computing to name a few [34].

A CPU consists of a fewer cores while a GPU consists of thousands of smaller and efficient

cores designed for parallel computing. A combination of CPU and GPU are generally used

where the serial portion of the application runs on the CPU and the parallel portion of the

application runs on the GPU. The data is transferred between CPU and GPU.

Fingerprint matching is both data intensive and computation intensive application. In this thesis

work, GPUs are used for fingerprint matching on larger databases by using triangular features.

All the comparisons which involve computations are performed on the GPU.

14

2.7 CUDA

CUDA stands for “Compute Unified Device Architecture”. CUDA is a general purpose

computing platform developed by NVIDIA for programming on GPUs. CUDA has extensions in

C and C++ which can be used for parallel programming. CUDA can also be used with other high

level languages such as FORTRAN. Figure 2.7 shows a code snippet of a saxpy program on

CPU and GPU. The parallel code for this saxpy program is written in CUDA.

Figure 2.7 Comparison of code between CPU and GPU [33] (from NVIDIA, "GPU Computing,"

[Online]. Available: www.nvidia.com) (Used under fair use)

In this work, the GeForce GTX 285 device is used. The GeForce GTX 200 GPUs consist of 10

Thread Processing clusters (TPC). Each TPC consists of 3 Streaming Multiprocessor (SM) and

each SM in turn is made up of 8 Streaming Processors or Thread Processors. So, the total

number of cuda cores or processor cores is 10*3*8 = 240 as shown in Table 2.1 [35].

Table 2.1 Number of GPU processing cores (from NVIDIA, "GeForce GTX 200 GPU Technical

Brief," 2008) (Used under fair use)

Chip TPCs SMs per TPC SPs per SM Total SPs

GeForce GTX 200 GPUs 10 3 8 240

http://www.nvidia.com/

15

In Figure 2.8, the architecture of GeForce GTX 200 GPUs [35] is shown. Each SM consists of

shared memory and registers. All the SMs access the same local and global memory.

While programming in CUDA, terms like device, host and kernel are used extensively. A device

is nothing but the GPU, CPU is the host and kernel is the function that runs on the device. The

kernel consists of the parallel portion of the application. The threads run in blocks of a grid. A

grid is a 3-dimensional structure though the third dimension is always 1. A grid consists of

blocks distributed in a 2-dimensional manner. Each block consists of several threads. In Figure

2.9, a grid of 6 blocks with 2 rows and 3 columns is shown and Block (1, 1) consists of threads

with 3 rows and 4 columns [36].

Streaming Multiprocessor

Streaming Multiprocessor

Streaming Multiprocessor

Texture Cache

Local and Global Memory

Shared Memory

Constant Cache

Instruction

Unit

Registers

Processor ..
Registers

Processor 1

Registers

Processor

Figure 2.8 NVIDIA GT200 architecture [36] (NVIDIA, CUDA Programming Guide) (Used

under fair use)

16

There is a limit on number of threads per block, number of blocks per grid. For GTX 285, Figure

2.10 shows the maximum number of threads and blocks. It also shows some more device

properties which will be discussed subsequently.

When a grid is launched, the blocks are enumerated and distributed to the multiprocessors and

threads in a block run concurrently on one multiprocessor. It is also possible for a multiprocessor

to run more than one block at a time if there is enough number of hardware resources (shared

memory and registers) on it to run multiple blocks. In a multiprocessor, threads are executed in

groups of 32 parallel threads called warps. When a block is assigned to a multiprocessor, the

threads in that block are divided into warps and these warps get scheduled by a warp scheduler.

Memory Hierarchy: Each thread has some local memory associated with it. Each block has

16KB of shared memory accessible to all the threads in that block. All the blocks have access to

the same global memory. Memory accesses from global memory are much slower than those

from shared memory. Threads in a block can co-operate with each other by using shared

Block

(0, 0)

Grid

Block

(0, 1)

Block

(0, 2)

Block

(1, 0)

Block

(1, 1)

Block

(1, 2)

Thread

(0, 0)

Block (1, 1)

Thread

(0, 1)

Thread

(0, 2)

Thread

(0, 3)

Thread

(2, 1)

Thread

(2, 0)

Thread

(1, 3)

Thread

(1, 2)

Thread

(1, 1)

Thread

(1, 0)

Thread

(2, 2)

Thread

(2, 3)

Figure 2.9 Grid of thread blocks (NVIDIA, CUDA
Programming Guide) (Used under fair use)

17

memory. If all the threads in a block use the same data, this data can be transferred to shared

memory. After the data is transferred, computations are performed in each thread. Some threads

may finish copying data to shared memory faster than the other threads. To ensure that all the

threads in a block finish copying data to shared memory, the function __syncthreads () is used.

Figure 2.10 GTX 285 properties

2.8 Terminology

This section defines some of the terms used extensively in this thesis.

3-point feature or triplet or triangle combination: A 3 point feature or a triplet is formed by

joining any 3 minutia in a fingerprint. A fingerprint containing 50 minutiae has
50

C3 = 19600 3-

point features.

6-point feature or two-triangle combination: A 6-point feature is formed by joining any 6

minutia in a fingerprint. It can also be formed by combining any two 3-point features, but all the

6 minutia points in the two 3-point features should be different. A fingerprint containing 50

minutiae has
50

C6 = 15.89 million 6-point features

9-point feature or three-triangle combination: A 9 point feature is formed by joining any 9

minutiae in a fingerprint. It can also be formed by combining three 3-point features. It can also

be formed by joining a 6-point feature with a 3-point feature with all the minutia points different

from each other. A fingerprint containing 50 minutiae has
50

C9 = 2.50 billion 9-point features.

18

Ridge count or Ridges crossed: The number of the ridges crossed between any two minutiae

points is the ridge count. In Figure 2.11, an example of ridges crossed between two minutiae

points is shown.

Figure 2.11 In this example, number of ridges crossed between a and b is 8. [13] (from D. Maltoni, D.

Maio, A. K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition (2nd Edition),

Springer, 2009) (Used under fair use)

19

Chapter 3: Fingerprint Feature Matching Using GPUs

3.1 Need for GPUs

Each fingerprint has as many as thousands of 3-point features and millions of 6-point and 9-point

features. On a CPU, every feature of the fingerprint is matched in a sequential way. The

matching of millions of features takes significant amount of time. Also, when thousands of

fingerprints are compared, the computational time increases further. On a GPU, because of

multiple smaller and efficient cores, multiple threads can run in parallel and thereby multiple

feature comparisons can be performed in parallel.

The rest of the chapter discusses GPU comparisons on two databases. The basic idea of

implementation is similar for both the databases. For the second database, some optimizations

and shared memory are used which reduced the time taken to a great extent.

3.2 Databases

The databases used in this work are FVC2000 DB1 (Fingerprint Verification Competition 2000

Database 1) [37] with 93 fingerprints, and an FBI database with 74,140 fingerprints. Fingerprint

matching of FVC2000 DB1 database is discussed first, and later the FBI database fingerprint

matching is discussed.

3.3 GPU Comparisons of FVC2000 DB1 Fingerprints

3.3.1 Input Files

The FVC2000 fingerprints were processed to get text files called minutia files with extension

.min. The software used to extract the features is NIST Biometric Image Software (NBIS)

developed by National Institute of Standards and Technology (NIST). These minutia files are

20

augmented by ridge ID numbers for each minutia by our internally developed tool (by Nathan

Short, Virginia Tech). These ridge ID numbers are the IDs of the ridges forming the minutia

points. These minutia files contain the coordinates of minutia points, the direction of the minutia

point given by angle (theta), the quality of minutia, the type of minutia and the ridges of the

minutia point. The type of minutia is either a ridge ending or a ridge bifurcation. For a ridge

ending, the number of ridges is 1 whereas for a ridge bifurcation, the number of ridges is 3. The

quality range for these minutia points is 0-4. A sample minutia file is shown in Figure 3.1.For

example, the first row in Figure 3.1 shows a minutia point with x-coordinate 56, y-coordinate

136, angle of 0.1717 radians, quality of 4, minutiae type 1(ridge ending) and formed by a ridge

whose ridge ID is 21. Some of the minutiae in this figure whose quality is <3 have a type 0.

These minutiae are false minutiae and they are not considered. Minutiae with type 2 are ridge

bifurcations. All the minutia points which have quality greater than or equal to 3 are considered.

X-

coordinate

Y-

coordinate

Angle Quality Type Ridge

ID 1

Ridge

ID 2

Ridge

ID 3

56 136 0.1717 4 1 21

284 216 0.35564 2 0 22

16 197 3.12586 2 0 22

186 125 1.20723 4 1 23

115 121 2.20939 4 1 25

283 275 0.60209 2 0 24

283 259 0.74768 2 0 26 23 25

259 270 0.86077 3 1 27

46 134 2.2026 3 2 29 20 28

Figure 3.1 Sample minutia file

Also, other data that gives the number of ridges crossed between any two minutia points in a

fingerprint is used. This data is extracted into ridge count files. Figure 3.2 shows an example of

one such file. These files have the coordinates of the two minutia points and the ridge count

between them. For instance, in Figure 3.2, (216, 36) and (111, 31) are coordinates of 2 minutia

points in a fingerprint and the ridges crossed between them is 3.

21

Figure 3.2 Sample ridge count file

Comparisons on GPU: The fingerprint feature matching is performed in a step by step manner

by comparing one fingerprint at a time with the reference fingerprint. In this work, 3 point, 6

point and 9 point comparisons are made on GPU. Firstly, 3 point comparisons are made on GPU,

then the results from 3 point comparisons are further used for 6 point comparisons whose results

are used for 9 point comparisons as shown in Figure 3.3.

3.3.2 Single Triangle (3-point) Comparisons on the GPU

A triple is formed by a combination of any 3 minutiae points and thousands of such triples exist

in each fingerprint. On a CPU, the matching can be performed sequentially by comparing a

single triangle from the reference fingerprint with all the triples from the target fingerprint. In

contrast, in this implementation on GPU, in each thread, 32 such comparisons are made in

parallel and the result is stored in a 32-bit integer value. Memory is allocated for reference and

target triples on GPU and this data is transferred onto GPU using CUDA APIs. A two

dimensional grid as illustrated in Figure 3.4 is launched to perform comparisons on GPU.

22

The number of blocks is calculated based on the number of reference and target triples. Each

block consists of 256 threads. In each row of the grid, 256 triples of the reference fingerprint are

Compare reference 3-points

with target 3-points

Collect only those reference 3-

points that have matches and

their matched target 3-points

Combine 2 triples to

form a 6-point and

compare with target

Collect only those reference 6-

points that have matches and

their matched target 6-points

Combine each 6-point feature with

a 3-point feature to form a 9-point

feature and compare with target

Figure 3.3 GPU comparisons flowchart

23

compared with all the triples from the target fingerprint. In the first row, the first 256 triples are

compared with target triples and in the second row, the next 256 triples are compared. In the last

row of the grid, the last 256 triples of the reference fingerprint are compared.

The number of rows is given by the following equation.

In Figure 3.4, 5 rows of blocks are shown. In the first row, triples 0-255 from reference

fingerprint are used for comparisons. In the second row, triples 256-511 are used and the last row

i.e. the fifth row, triples 1024-1279 are used. In each thread of the block, a reference triple is

compared.

In each block, 256 triples from the reference fingerprint are compared with 32 triples from the

target fingerprint. In the first column, 256 reference triples are compared with 0-31 target triples.

In the second column, 32-63 target triples are compared. The block structure is illustrated in

Figure 3.5.

T0, T1, T2 … T255 are the threads in Block (0, 0). In thread T0, reference triple 0 is compared

with 0-31 target triples. In thread T1, reference triple 1 is compared with 0-31 target triples.

Similarly, for Block (1, 0) which is in the next row of Block (0, 0), in thread T0, reference triple

256 is compared with 0-31 target triples and in thread T1, reference triple 257 is compared with

0-31 target triples. In Block (0, 1) which is in the same row as Block (0, 0), in thread T0,

reference triple 0 is compared with 32-63 target triples and in thread T1, reference triple 1 is

compared with 32-63 target triples.

Matching Criteria: The side lengths of the triples, the sum of angles, the sum of number of ends

and bifurcations, the sum of number of ends, the sum of number of bifurcations are compared

between reference and target triples. Reference triples with largest distance > (150) and smallest

distance < 10 are not considered in comparisons. Local structures have lesser distortion [22],

hence only those triples whose side lengths are ≤150 are selected. Also the smallest distance

between minutiae is selected to be >10 to eliminate false minutiae extraction because minutiae

24

are usually not that close to each other. The target triples which match the above criteria are

considered to be matched.

Figure 3.4 Grid structure for 3-point comparisons

………….

0

1

2

….

255

Block (0, 0)

0

1

….

31

0

1

2

….

255

Block (0, 1)

32

1

….

63

0

1

2

….

255

Block (0, 79)

2528

2529

….

2559

256

257

258

….

511

Block (1, 0)

0

1

….

31

256

257

258

….

511

Block (1, 1)

32

1

….

63

256

257

258

….

511

Block (1, 79)

2528

2529

….

2559

1024

1025

1026

….

1279

Block (4, 0)

0

1

….

31

……….

1024

1025

1026

….

1279

Block (4, 1)

32

1

….

63

1024

1025

1026

….

1279

Block (4, 79)

2528

2529

….

2559

……….

……….

25

Consider a reference triple compared with 32 target triples in a thread. The results for these

comparisons are stored in an array whose size is equal to the total number of threads in the grid

given by the following equation.

For the grid shown in Figure 3.4, the array size is 5 * 80 * 256 = 102400. The data transfer

between CPU and GPU takes considerable time and the amount of data transferred should be

reduced. Hence, in a block, though 32 target triples are compared, the result is stored in a single

integer.

After all the threads finish comparisons, the results are transferred back to CPU. The number of

triple matches which is the sum of matches of all the reference triples is calculated from these

results. The results are stored in two arrays – one for the reference triples and the other for target

triples. The elements in the array are stored in such a way that triples at the same index in the

two arrays match. Matched reference and target arrays are shown in Figure 3.6. N+1 is the

number of 3-point matches. R0, R1, R2, R3 … RN are reference triples and T0, T1, T3, T3 …

0

0

1

…

31

T0

254

0

1

…

31

T25

2

0

1

…

31

T2

1

0

1

…

31

T1

255

0

1

…

31

T25

Block (0, 0)

……….

Figure 3.5 Block structure for 3-point comparisons

26

TN are target triples. Also, R0 matches T0, R1 matches T1, R2 matches T2, R3 matches T3, and

R4 matches T4 and so on.

3.3.3 Two Triangle (6-point) Comparisons on the GPU

The matched reference and target arrays from 3-point comparisons are used for 6-point

comparisons. Two 3-point features can be combined to form a 6-point feature. For example, in

Figure 3.6, (R0, R1) together form a 6-point feature. Similarly, (R0, R2), (R0, R3) … (R0, RN),

(R1, R2), (R1, R3) … (R1, RN) … RN-1, RN) form 6-point features. Though a 6-point feature is

formed by combining two triples, the actual number of minutiae points in a 6-point feature can

be less than 6 because two triples can have more than one minutiae point in common. In Figure

3.7 valid and invalid 6-point features are shown. Similarly, 6-point features can be formed by

combining elements of matched target array. Whenever a 6-point feature is formed from

elements of reference matched array, a 6-point feature is also formed from the elements of the

same indices of target matched array. For example, 6-point features (R0, R1) and (T0, T1) are

formed together and compared. Some of the other comparisons are ((R0, R2) -> (T0, T2)), ((R0,

R3) -> (T0, T3)), ((R1, RN) -> (T1, TN)) and so on.

Reference [3-point matches] = {R0, R1, R2, R3, R4, R5, R6, R7…….RN}

Target [3-point matches] = {T0, T1, T2, T3, T4, T5, T6, T7…….TN}

Figure 3.6 Matched reference and target arrays

Valid 6 point feature with 6

minutia points

3

1

2 4

5
6 3

1

2
4

5

Invalid 6 point feature with 5

minutia points

Figure 3.7 Valid and invalid 6-point features

27

The number of blocks is based on the number of 3-point matches. The main idea is to combine

one index form the reference matched array with the remaining indices to form a 6-point feature

and compare in one block. If n is the number of 3-point matches which is also the size of the

reference matched array, then the number of blocks is also equal to n. These bocks are

distributed into the 2-dimensional grid with number of rows equal to √ n and number of columns

is equal to √n or √n + 1. The grid structure is illustrated in Figure 3.8. In Block 0, all the

combinations that can be formed with R0 and the remaining 3-point features R1, R2, R3 … RN

are formed and compared with target 6-point features which are also formed in the exact same

way as that of reference 6-point features.

The number of threads in a block is fixed at 256. The number of 6-point features compared in a

thread is given by the following equation.

Matching criteria: In a 6-point feature, the centroids of both the triples are calculated and the

distance between the two centroids is calculated. The centroid distances of the reference and

target fingerprints are compared to find a match. The reference 3-points involved in the 6-point

feature already match with target 3-points. So, in a 6 point feature, on adding the matching

criteria for 3-point comparisons, totally 6 sides, sum of angles of both the triples, types of

minutiae, centroid distances are used for comparisons. Similar to 3-point comparisons, the results

are saved in two reference arrays – one for each of the triples involved in forming the 6-point

feature. Similar arrays are also formed for the target triples as shown Figure 3.9. The elements

R10, R20 from the Reference arrays form a 6-point feature and they match with the 6-point

feature formed by elements T10, T20 from the target arrays.

28

Figure 3.8 Grid Structure for 6-point comparisons

Ref [3-point matches] = {R0, R1, R2, R3, R4, R5, R6, R7…….RN}

Tar [3-point matches] = {T0, T1, T2, T3, T4, T5, T6, T7…….TN}

Block 0

R0+R1->T0+T1

R0+R2->T0+T2

R0+R3->T0+T3

…..

R0+RN->T0+TN

Block 1

R1+R2->T1+T2

R1+R3->T1+T3

R1+R4->T1+T4

…..

R1+RN->T1+TN

Block N-1

RN-1+RN

→

TN-1+TN

……….

Grid

R0+R1->T0+T1: Reference triple R0 is combined with reference triple R1 and

compared with target triple combination of T0 and T1

Reference 1 [3-point matches] = {R10, R11, R12, R13, R14, R15, R16, R17…….R1N}

Reference2 [3-point matches] = {R20, R21, R22, R23, R24, R25, R26, R27…….R2N}

Target1 [3-point matches] = {T10, T11, T12, T13, T14, T15, T16, T17…….T1N}

Target2 [3-point matches] = {T20, T21, T22, T23, T24, T25, T26, T27…….T2N}

Figure 3.9 6-point matches

29

3.3.4 Three Triangle (9-point) Comparisons on the GPU

The matched reference1, reference2, target1 and target2 arrays from 6-point comparisons and

matched reference and target arrays from 3-point comparisons are used for 9-point comparisons.

A 6-point feature can be combined with a 3-point feature to form a 9-point feature. In Figure

3.11 three arrays of reference triples and also three arrays of target triples are shown. (R10, R20,

R30) together forms a 9-point feature. Similarly, (R10, R20, R31), (R10, R20, R32) … (R10,

R20, R3N), (R11, R21, R31), (R11, R21, R32) … (R11, R21, R3N) … (R1N, R2N, R3N) form

9-point features. It should be noted that only elements of the same index from Reference1 and

Reference2 arrays form a 6-point feature and it can be combined with any element of Reference3

array. Some invalid 9-point features may also be formed. Figure 3.10 shows valid and invalid 9-

point features. The invalid features are filtered out before comparisons. 9-point features are also

formed by combining elements of matched target arrays. Whenever a 9-point feature is formed

from elements of reference matched arrays, a 9-point feature is also formed from the elements of

the same indices of target matched arrays. For example, 9-point features (R10, R20, R30) and

(T10, T20, T30) are formed together and compared. Some of the other comparisons are ((R10,

R20, R31) → (T10, T20, T31)), ((R10, R20, R32) → (T10, T20, T32)), ((R10, R20, RN0) →

(T10, T20, TN0)) and so on.

6

7

8

7

9

Valid 9-point feature with 9

minutia points

3

1

2 4

5
6 3

1

2

4

5

Invalid 9-point feature with 7

minutia points

Figure 3.10 Valid and invalid 9-point features

30

Similar to the grid structure of 6-point comparisons, the number of blocks in the grid of 9-point

comparisons is based on the number of 6-point matches. If n is the number of 6-point matches,

then the number of blocks is also equal to n. These bocks are distributed into the 2-dimensional

grid with number of rows equal to √ n and number of columns is equal to √n or √n + 1. The grid

structure is illustrated in Figure 3.11. In Block 0, all the combinations that can be formed with

R10, R20 and the 3-point features from reference3 array R30, R31, R32… R3N are formed and

compared with target 9-point features which are also formed in the exact same way as that of

reference 9-point features.The number of threads in a block is fixed at 256. The number of 9-

point features compared in a thread is given by the following equation.

Figure 3.11 Grid structure for 9-point comparisons

Ref1 [3-point matches] = {R10, R11, R12, R13, R14, R15, R16, R17…….R1N}

Ref2 [3-point matches] = {R20, R21, R22, R23, R24, R25, R26, R27…….R2N}

Ref3 [3-point matches] = {R30, R31, R32, R33, R34, R35, R36, R37…….R3N}

Tar1 [3-point matches] = {T10, T11, T12, T13, T14, T15, T16, T17…….T1N}

Tar2 [3-point matches] = {T20, T21, T22, T23, T24, T25, T26, T27…….T2N}

Tar3 [3-point matches] = {T30, T31, T32, T33, T34, T35, T36, T37…….T3N}

Block

R10+R20+R30->T10+T20+T30

……….

Grid

R10+R20+R30->T10+T20+T30: Reference triples R10, R20

and R30 are combined and compared with target triple

combination of T10, T20, T30

R10+R20+R31->T10+T20+T31

R10+R20+R32->T10+T20+T32

R10+R20+R3N->T10+T20+T3N

………..

Block

R11+R21+R30->T11+T21+T30

R11+R21+R31->T11+T21+T31

R11+R21+R32->T11+T21+T32

………..

R11+R21+R3N->T11+T21+T3N

Block

R1N+R2N+R30->T1N+T2N+T30

R1N+R2N+R31->T1N+T2N+T31

R1N+R2N+R32->T1N+T2N+T32

………..

R1N+R2N+R3N->T1N+T2N+T3N

31

Matching criteria: In a 9-point feature, the centroids of the three triples are computed and the

distance between the first triple’s centroid and third triple’s centroid, second triple’s centroid and

third triple’s centroid are calculated. It should be noted that distance between first triple’s

centroid and second triple’s centroid is already compared in 6-point comparisons. The centroid

distances of the reference and target 9-point features are compared to find a match. The reference

3-points involved in the 9-point feature already match with target 3-points. So, in a 9 point

feature, on adding the matching criteria for 3-point comparisons, totally 9 sides, sum of angles of

the three triples, types of minutiae, centroid distances are used for comparison.

3.3.5 Results

The correctness of the GPU parallel algorithm is verified by comparing the 3-point and 6-point

matches of CPU and GPU. The results are identical for both of them. Table 3.1 shows the time

taken for 3-point and 6-point comparisons on CPU and GPU. The fifth and last columns show

the speedup obtained for the GPU parallel algorithm.

The table shows results for 24 randomly selected fingerprints compared with a single reference

fingerprint with 5456 triples to demonstrate the speedup obtained by using the parallel algorithm.

Though only 24 fingerprints are selected, any number of fingerprints can be used for matching.

For any target fingerprint compared with any reference fingerprint, similar speedups can be

observed. The GPU and CPU times are shown in milliseconds (ms).

The fingerprints with fewer minutiae and therefore fewer triple combinations take less time even

on a CPU which can be observed for fingerprints 3, 12, 21 which take 10 ms, 40 ms and 40 ms

on a CPU respectively. On a CPU, the comparison is performed with multiple ‘if’ conditions. If

an ‘if’ condition does not satisfy, then the rest of the comparison is skipped. But on a GPU, none

of the comparisons are skipped because comparisons run independently on separate threads. So,

the results from GPU are obtained only after all the threads finish comparisons and hence the

time which was reduced on a CPU by skipping the comparisons cannot be reduced.

32

Table 3.1 Results of 3-point and 6-point comparisons

File Number of

triples

3 point CPU

(ms)

3 point

GPU

(ms)

3 point

speedup

(ms)

6 point

CPU

(ms)

6 point

GPU (ms)

6 point

speedup

(ms)

1 8436 190 60 3.17 4770 760 6.28

2 3654 80 20 4.00 350 50 7.00

3 680 10 10 1.00 70 10 7.00

4 10660 260 30 8.67 4580 710 6.45

5 5456 140 20 7.00 2550 360 7.08

6 20825 550 60 9.17 33310 5570 5.98

7 13244 280 30 9.33 22210 3830 5.80

8 1771 50 10 5.00 270 40 6.75

9 1771 50 10 5.00 140 20 7.00

10 4960 120 10 12.00 350 50 7.00

11 2300 60 10 6.00 580 80 7.25

12 1540 40 10 4.00 150 20 7.50

13 3276 90 10 9.00 650 90 7.22

14 5984 160 20 8.00 2870 450 6.38

15 11480 320 30 10.67 13740 2390 5.75

16 12341 310 30 10.33 9580 1550 6.18

17 19600 440 60 7.33 7880 1250 6.30

18 11480 310 30 10.33 3230 500 6.46

19 5984 140 10 14.00 1750 230 7.61

20 9139 240 20 12.00 3540 530 6.68

21 1540 40 10 4.00 70 10 7.00

22 18424 410 40 10.25 36330 6740 5.39

23 23426 570 60 9.50 40630 7750 5.24

24 16215 360 50 7.20 9190 1480 6.21

Average Speedup 7.79 6.56

33

The average speedup obtained for 3-point comparisons is 7.79 and for some of the fingerprints,

the speedup is as high as 14 (Fingerprint 19 in Table 3.1). The average speedup obtained for 6-

point comparisons is 6.56. For 6-point comparisons, the invalid 6-points are resolved only on

GPU and since in each block, the valid 6-point combinations differ, there are multiple unused

threads running on the GPU. If the invalid 6-points are resolved on CPU before passing them to

the GPU, it would take much longer on CPU because there are millions of 6-point combinations

that can be formed. Hence, though it takes longer, the 6-point features are resolved only on GPU.

It should be noted that shared memory was not used for this method. By moving the target triples

into shared memory, the time for memory transfer can be reduced to a great extent. Also, the

total time for GPU comparisons is the sum of times taken for data transfer between CPU and

GPU and the actual computations on GPU. It is observed that the data transfer takes considerable

amount of time because unnecessary data was being copied to GPU. The following section

describes usage of shared memory and the optimizations that were used to reduce the data

transfer time.

3.4 GPU Comparisons of FBI Database Fingerprints

The FBI database consists of 74,140 rolled fingerprint images from which there were 2,575

different subjects providing multiple impressions of 23,942 unique fingerprints. This database

was provided by FBI CJIS. These fingerprints are grouped into very good, good, bad and ugly

fingerprints based on the global image quality score assigned by Verifinger SDK [38]. In this

work, fingerprints from very good and good groups are considered because of their quality. A

single unique fingerprint is considered from multiple impressions of same finger and a database

of 18,649 fingerprints is formed out of these good quality fingerprints.

3.4.1 Input Files

The FBI fingerprints are processed into text files called fts files. The feature extraction tool used

was Neurotechnology’s Verifinger SDK [38]. These files are similar to the minutia xyt files

discussed in the previous section and contain x and y coordinates, angle of orientation (theta),

34

quality of the minutia, type of minutia, ridge curvature, ridge density and the ridges involved in

forming the minutia point. The quality range of the minutia points is 0-100. Some additional

information related to core points and delta points is also extracted into these files. A sample fts

file is shown in Figure 3.12. In this figure, ‘Q’ represents the quality of the fingerprint, ‘C’

represents the core points, ‘D’ represents the delta points and ‘M’ represents the minutia points in

the fingerprint. For the core points, the location and angle of orientation are shown. For delta

points, the locations are shown. In the Figure 3.12, an fts file of a fingerprint with two core

points and two delta points is shown. The core points are located at (390, 334) and (456, 361)

coordinates and with angles of orientation 1 and 14 respectively. The delta points are located

at (546, 404) and (210, 455). The first minutia point is located at coordinates (285, 108) with

angle of orientation of 120
0
, a quality of 30, minutia type of 1(ridge ending), ridge curvature of

124, ridge density of 6 and ridge ID of the ridge forming this minutia is 195. Ridge endings are

represented by 1 and ridge bifurcations are represented by 2. The average of the qualities of all

the minutiae points in a fingerprint fts file is calculated and all the minutiae points greater than or

equal to average quality are considered. Hence, the quality factor considered for each fingerprint

fts file is different.

Figure 3.12 Sample fts file

Similar to the FVC 2000 database, ridge count files are used for this database too. The ridge

count files are in the form of a two dimensional array with each element in a line giving the

number of ridges crossed between two minutia points. For example, let n be the total number of

minutiae in the fingerprint. The first line in the file gives the number of ridges crossed between

35

minutia 0 and 0-n minutiae in the fingerprint, second line gives the number of ridges crossed

between minutia 1 and 0-n minutiae in the fingerprint and so on. In Figure 3.13, a sample ridge

counts file with 11minutiae is shown. The first line shows the number of ridge counts between

first minutia and all the 11 minutiae.

Figure 3.13 Sample ridge count file

3.4.2 3-point GPU Comparisons

In section 3.3, it is discussed that the limit for the largest side is ≤ 150 and the limit for the

smallest side is > 10 pixels. Instead of applying this condition while matching the fingerprint

features, the reference triples are filtered out before the actual comparisons. So, when the

reference triples are formed, all those triples whose largest side > 150 and smallest side < 10

pixels are not considered. This would reduce the number of triples and thus many unnecessary

comparisons can be avoided and therefore reduces the time taken. For example, the number of

triples for a reference fingerprint from FBI database before this condition was applied is 1140

and it reduced to 865 on applying this condition and for another reference fingerprint from FBI

database with originally 39,711 triples, the number of triples reduced to 14,818 on applying this

condition. This is one of the optimizations used when compared to the sequential comparisons

and also the GPU comparisons of FVC 2000 fingerprints discussed in section 3.3

36

For GPU matching, the reference and target fingerprint data have to be transferred from CPU to

GPU. The time taken for this transfer is high because the data structure used for triples is very

large. The data structure size used for triples is 84 bytes. The original data structure for a triple is

shown in Figure 3.14.

On the GPU kernel, not all of the data members in the Triple data structure are used. Since only

largestDistance, smallestDistance, sumofDistances, largestDistanceThreshold,

smallestDistanceThreshold, sumDistanceThreshold and the ridges crossed rc1, rc2, rc3 are

compared, a smaller data structure can be used with data members as shown in Figure 3.15. The

thresholds are calculated on the GPU kernel instead of copying it to the GPU. Further, the ridge

counts are always less than 100 and it is a 2-digit number. The ridge counts rc1, rc2 and rc3 are

sorted and can be combined to form a single integer value shown below. This reduction of the

struct Triple{

int i;

int j;

int k;

int sum_dist;

int smallest_dist;

int largest_dist;

float sum_dist_thresh;

float smallest_dist_thresh;

float largest_dist_thresh;

int d1, d2, d3;

int th1, th2, th3;

int rc1, rc2, rc3;

int sum_rc;

int small_rc;

int large_rc;

};

Figure 3.14 Original triple data structure

37

data structure size does not affect the number of matches because all the required data are copied

to the GPU.

The new data structure of size 16 bytes is shown in Figure 3.16.

As discussed in Chapter 2, a GPU consists of 30 streaming multiprocessors and every block of

GPU grid executes on a single streaming multiprocessor. At any time, 32 threads from a block,

known as a warp, run on a streaming multiprocessor. Hence, the number of threads in a block is

chosen to be a multiple of 32. The implementation is similar to the discussion in section 3.3 with

additional usage of shared memory. The number of threads per block is set as 512 which is also

the maximum number of threads per block (ThreadsPerBlock = 512). Also, all the blocks in a

row use the same set of reference triples.

In all the blocks of row 0, 0-512 reference triples are used for comparisons. In each thread of a

block, a reference triple is compared with a set of target triples. Let x be the total number of

Struct smallTriple{

int rc1, rc2, rc3;

int largestDistance;

int smallestDistance;

int sumofDistances;

};

 Figure 3.15 Modified triple data structure

Struct smallTriple{

int rcCombined;

int largestDistance;

int smallestDistance;

int sumofDistances;

};

Figure 3.16 New triple data structure

38

triples in reference fingerprint and y be the total number of triples in target fingerprint. The

number of rows in the grid is calculated based on the number of the reference triples given by the

following equation.

Usage of shared memory: A shared memory of 16KB is available for each streaming

multiprocessor. In other words, 16KB shared memory is available for each block. In all the

threads of a block, the same set of target triples are compared with reference triple. For example,

let b be the number of target triples compared in a block. In thread 0 of block 0, the reference

triple 0 is compared with 0-b target triples. In thread 1, the reference triple 1 is compared with 0-

b target triples. Similarly, in each thread of the block, 0-b target triples are compared with a

reference triple. Since the same set of target triples are compared in all the threads of a block, by

moving these triples into shared memory, the time to fetch this memory is reduced to a great

extent. Otherwise in each thread, the triples will have to be fetched from global memory.

Because only 16KB is available in shared memory, the number of target triples that can be

copied into shared memory is limited and it can be calculated based on the size of ‘smallTriple’

which is given by the following equation.

Although the number of target triples that can be copied into shared memory from the above

equation is 1000, all the 1000 triples cannot be copied because of a small buffer memory used for

shared memory. So, 992 target triples are copied into shared memory. Whenever memory is

fetched from shared memory, it is done in 32 bytes at a time. Hence, the number 992 is selected

which is also a multiple of 32. So, the number of comparisons per thread in a block is 992

(ComparisonsPerThread = 992).

The number of columns in the grid is calculated based on number of comparisons per thread in a

block and it is given by the following equation.

39

GPU Kernel Function: Firstly, the 992 triples are copied into shared memory. Since there are

512 threads in each block, in each thread, 2 reference triples can be copied into shared memory.

Figure 3.17 shows the copying of reference triples into shared memory.

In thread 0, reference triples 0 and 1 are copied into shared memory. In thread 1, reference triples

2 and 3 are copied into shared memory and so on. The comparisons cannot be immediately

started after copying reference triples into shared memory because it has to be ensured that all

the threads finish copying triples into shared memory. The function __syncthreads () ensures that

all the threads finish copying triples into shared memory. In each thread, a reference triple is

compared with 992 target triples. These 992 target triples are now fetched from shared memory;

hence the data transfer takes lesser time when compared to fetching the data from global

memory.

In first row of the block, 0-511 reference triples are used for comparison. In second row of the

block, 512-1023 reference triples are used for comparison and so on. Similar to CPU

implementation, the smallest distance, largest distance, sum of distance are copied into local

variables and their thresholds are also calculated.

Matching Criteria: Unlike section 3.3 where type of minutia, angle of orientation (which gives

the direction of minutia) was used, here, only side lengths of the triples and the ridges crossed

are used. The minutiae type is not taken into consideration because in practice, ridge endings

may appear as bifurcations and vice versa depending on the finger pressure against the surface

idx = threadIdx.x * 2;

tidx = blockIdx.y * 992 + idx;

for(i = 0; i < 2; i++)

targetTriplesSharedMemory[idx+i] = targetTriples[i+tidx];

Figure 3.17 Shared memory

40

where the fingerprint impression is formed [13]. Also, a large variation was observed in the

minutia direction when corresponding minutiae are compared in two different impressions of the

same finger. Hence, largest side, smallest side, sum of sides and sorted ridges crossed are used.

In the reference fingerprint, only a set of 50 high quality minutiae are selected. This is because of

the number of possible 6-point features that can be formed with 50 minutiae is
50

C6 = 158

million. Some of the fingerprints in the FBI database contain more than 100 minutiae and the

number of 6-point features formed with 100 minutiae is very huge. To avoid this data

complexity, only a set of 50 minutiae are considered for reference fingerprints. By this approach,

some of the rare features which may be identified by using minutiae outside the set of 50

minutiae may be missed out. But by considering only 50 minutiae, rare features were still

identified in this work (Chapter 4). Hence, the main aim of this work is not lost. It should be

noted that all the good quality minutiae are considered for the rest of the target fingerprints in the

database, the limit of 50 minutiae is set only for reference fingerprint.

The total number of threads running on GPU is blocksPerGrid_x * blocksPerGrid_y *

threadsPerBlock where threadsPerBlock = 512, where the maximum of blocksPerGrid_y could

be 512. Some of the fingerprints have as many as 500,000 3-point features and given that

number of target triples compared in a block in any given row is 992, the maximum value of

blocksPerGrid_y = 500,000/992 ≈505. The value of blocksPerGrid_x is less than 40 because

only 50 minutiae are considered for reference fingerprint and the total triple combinations with

50 minutiae are 19600. So, given that threads per block is 512, the maximum value of

blocksPerGrid_x = 19600/512 ≈ 39. So, the maximum number of total number of threads is

given by 39 * 512 * 512 = 10,223,616 ≈ 10 million. In each thread, comparisons of 992 target 3-

point features are made. So, total number of comparisons on GPU is 10,223,616*992 ≈10 billion.

It is also observed that in each thread, a reference triple has just 4 matches when compared to

992 target triples. So, an array of 5 short integers is allocated to each of the threads running on

GPU. Whenever a match is found on GPU, the index of the matched target 3-point feature

ranging between 0-991 is copied into the 5 integer array starting from index 1. Index 0 of the 5

integer array is used to keep track of the number of matches for that reference triple. The target

3-point feature index ranges between 0-991 because in each block, the 992 target 3-point features

41

are copied into shared memory. This index should be decoded into the original target 3-point

index on CPU.

The matched reference and target triples are stored in two arrays- reference matched array and

target matched array similar to the implementation in section 3.3.

3.4.3 6-point GPU Comparisons

From the results of 3-point comparisons, for each reference triple, the matching indices of the

target triples are known. For comparisons on GPU, the minutiae of all the triples, centroid

distances, ridges crossed should be passed to the GPU. Ridges crossed are passed as a separate

data structure. The minutiae and centroid coordinates are passed to GPU as a data structure as

shown in Figure 3.18.

The data for all the matched reference 3-points and target 3-points is copied onto GPU. The

ridges crossed between all the minutiae points of reference and target triples are also copied onto

GPU. Similar to 3-point comparisons, a two-dimensional grid is launched. The number of

threads per block and the number of blocks in y-direction (columns) is fixed at 512. The number

of rows of the grid is calculated based on total number of 3-point matches and number of

columns and it is given by the following equation.

struct minTriple{

short centroid x-coordinate;

short centroid y-coordinate;

unsigned char i; //minutia 1

unsigned char j; //minutia 2

unsigned char k; //minutia 3

int tri_id; // index of the original reference triple

};

Figure 3.18 Data structure for 6-point comparisons

42

The number of comparisons per thread is given by the following equation.

Shared Memory: Shared memory is used to store ridges crossed of the reference fingerprint. The

number of ridges crossed for all minutia combinations is stored in a 2-dimensional array as

already discussed and the number of minutiae in fingerprint could be a maximum of 255. But for

the reference fingerprint, only a few 50 high quality minutiae are considered and the ridges

crossed array is an array of 50x50 with 2500 elements. So, it is possible to store the ridges

crossed of only the reference fingerprint in shared memory. Shared memory of data type

‘unsigned char’ of 2500 array size is used. In each thread of a block (512 threads per block), 5

ridges crossed can be copied into shared memory. After the copy, __syncthreads() function is

called to make sure that all the threads finished copying reference ridges crossed into shared

memory.

Matching Criteria: The centroids are calculated for both the triples involved in the 6-point

feature and the distance between these two centroids is calculated. There are 9 ridges crossed

between the minutia points of first triple and the second triple. Adding matching criteria from 3-

point comparisons, totally 6 side lengths, 15 ridge counts, centroid distances are used for 6-point

comparisons.

GPU Kernel Function: In each block, the elements of an index of the matched reference and

target arrays are combined with the remaining elements of the matched array. This combination

is a 6-point feature and it should be noted that all these 6 points do not form a valid combination

i.e. all these 6 points may not be different and the validity of 6-point is checked before the actual

comparison is made. The 6-point feature is formed and comparison is made at the same time. For

example, in block 0, index 0 of reference matched array is combined with indices 1, 2, 3...n as

discussed above, where n is the total number of 3-point matches and the same combination is

formed from elements of target matched array and the reference and target 6-points are

compared. In each thread, specific number of combinations given by compPerThread is made.

The validity of the 6 point feature is checked by comparing all the minutia points of the two

triples being combined. For the valid 6-point features, the 9 ridges crossed arrays of reference

and target features are sorted and compared in a one-one manner. For the matched 6-point

43

features, centroid distances are calculated for reference and target features and compared. The

matches for 6-point features are stored in a 1-dimensional array such that each index of this array

is given by ref1* Number of reference triples + ref2 where ref1 is the index of the 1st reference

triple and ref2 is the index of the 2nd reference triple in the 6-point feature.

3.4.4 Results

Table 3.2 shows results for 3-point comparisons using the FBI fingerprint database. The results

are obtained by comparing a reference fingerprint of 50 minutiae and 19408 triple combinations

with 10 randomly selected fingerprints.

Table 3.2 Results for 3-point comparisons of a reference fingerprint compared with 10 target

fingerprints from FBI database on GPU

Fingerprint # Triples CPU

matches

GPU

matches

CPU time

(ms)

GPU

time

(ms)

Speedup

1 67379 5172 5172 18366 233 78.8

2 39589 3325 3325 6680 211 31.65

3 113216 7596 7596 30901 273 113.1

4 73075 5557 5557 16702 237 70.4

5 15136 1486 1486 2334 191 12.2

6 62125 3876 3876 16805 226 74.3

7 37760 3576 3576 6340 205 30.9

8 91719 5772 5772 25479 247 103.1

9 61701 4691 4691 15554 222 70

10 67162 5911 5911 17929 227 78.9

The number of triples is all the possible triples formed by all the good quality minutiae in

fingerprints. The CPU and GPU matches are the total number of matches of all the triples of

reference fingerprint when compared with a target fingerprint. The average speedup obtained for

44

comparisons of these 10 fingerprints is 66.38. It can be observed from Table 3.2 that for

fingerprint 5, the speedup obtained is the lowest. This is because the number of triples for this

fingerprint is just 15K which is small compared to other fingerprints. GPUs give the best results

when the data is large and the application is computation-intensive. In this case, the data is small

and hence the time taken for comparisons on GPU and CPU is almost the same. The CPU and

GPU results for the fingerprints are also provided in the table to verify the correctness of GPU

comparisons.

Table 3.3 shows the results for 6-point GPU comparisons. From the reference fingerprint, 50

minutiae are chosen which give 19408 triple combinations and 155 million valid 6-point

features.

Table 3.3 Results for 6-point comparisons of a reference fingerprint compared with 10 target

fingerprints from FBI database on GPU

Fingerprint CPU

matches

GPU

matches

CPU time

(ms)

GPU

time

(ms)

Speedup

1 3 3 14910 332 44.90

2 0 0 8990 263 34.18

3 7 7 34920 451 77.42

4 2 2 21078 335 62.91

5 1 1 2533 197 12.85

6 2 2 16587 284 58.40

7 2 2 8670 255 34

8 4 4 28339 358 79.15

9 0 0 17429 312 55.86

10 4 4 20743 349 59.43

The CPU and GPU matches shown in the table are the total number of matches for all the 6-point

features of the reference fingerprint when compared with a target fingerprint. It should be noted

that the time taken for the comparisons shown in Table 3.3 is the sum of the times taken for 3-

45

point and 6point comparisons, i.e. the execution times shown here include time taken for 3-point

comparisons. The average speedup obtained for these 10 fingerprints is 51.91. The CPU and

GPU matches are provided to verify the correctness of GPU matches. The number of matches is

quite low for 6-point comparisons because of the stringent conditions that were used. It was

assumed that the ridges crossed between any two minutiae points remains constant irrespective

of the distortion, hence the matching criteria was to find exact ridges crossed between two

minutia points without any threshold. But, it was observed later that the ridges crossed do not

remain constant for two different fingerprints of the same finger (Chapter 4).

Table 3.4 shows results for the overall 3-point and 6-point comparisons when a reference

fingerprint is compared with all the fingerprints in the FBI database. The number of good quality

unique fingerprints considered from the FBI database is 18,649 (section 3.4). The table shows

the results for 4 fingerprints from the database. Although only 4 fingerprints are selected to

demonstrate the speedup, the GPU time taken for any reference fingerprint follows the same

pattern. These 4 fingerprints are used as a reference one-by-one and compared with the entire

database of 18,649 fingerprints.

Table 3.4 Results after comparing with 18,649 fingerprints

Fingerprint

3 points 6 points
GPU

time

(minutes) # Matched Unmatched

(million)

Matched
%

Unmatched

1 19408 19408 0 155 44011 99.97 86.3

2 19552 19552 0 158 118332 99.92 96.8

3 19409 19409 0 155 30001 99.98 86.1

4 19504 19504 0 157 76498 99.95 89.0

Average GPU time 89.55

46

The results in Table 3.4 show that through this GPU implementation technique, thousands of

fingerprints can be compared with a single fingerprint in less than 2 hours and also ensuring

accuracy and precision in matching. The average time taken for these 4 fingerprints is 89.55

minutes. The time taken for the same comparisons to be done on CPU per fingerprint is around

60 hours which is nearly 2.5 days. The overall speedup obtained by this implementation is 40.2

The table also shows the number of unmatched 3-points and 6-points after comparing with the

entire database. It can be observed from the table that the number of unmatched 3-points is 0 for

all the 4 fingerprints after comparing with the database. This shows that rare 3-point features do

not exist. But the percentage of unmatched 6-points left after comparing with the database is

>99%. This is because of the stringent thresholds that were used for side lengths and ridge counts

for 6-point comparisons. The distortion in fingerprints and thresholds required to overcome this

distortion is discussed in chapter 4. The results at the end of the chapter 4 show that fingerprints

do not have rare 6-point features but have a few rare 9-point features.

The significance of this GPU algorithm is to show that the triplet-based matching techniques can

be accelerated through GPUs. The methods used in this algorithm can be used for future

implementations and equivalent speedups can be achieved.

47

Chapter 4: Mining Rare Features

4.1 Overview

The technique that was used for fingerprint triple-based feature matching is used to search for

rare features in fingerprints. A feature is considered rare if it is statistically uncommon; that is,

the rare feature should be unique among N randomly sampled prints. This rare feature could be a

3-point feature, 6-point feature, 9-point feature, 12-point feature or even higher. A feature which

is rare in a database of 1000 fingerprints may find a match in a database of 2000 fingerprints. So,

the rare features identified by the method proposed in this work may find a match if a slightly

larger database is considered. However, the importance of this method is establishing the fact

that fingerprints contain a small percentage of rare features that are unique to a set of

fingerprints, i.e. the rare feature occurs only once in some N fingerprints. When comparing two

fingerprints, when the matching features contain some rarity that was previously identified

within the print, the confidence in the match is increased. In other words, a match that contains

rare features would yield higher confidence in the conclusion than a match that does not contain

any rare features.

4.2 Challenges in Mining Rare Features

From the results obtained from comparisons on FBI database (Chapter 3), it was observed that

for all the reference fingerprints, there are around 99% of the 6-point features that are rare. The

results of the algorithm discussed in Chapter 3 are verified by making two simple comparisons of

reference fingerprint. Two cases for a reference fingerprint are considered a) different impression

of the same finger b) fingerprint from a different finger. For a), the reference fingerprint and its

impression should have many matches because they are fingerprints of the same finger, although

it would not be a complete match because some minutiae in the reference fingerprint may not be

present in the second impression due to the portion of fingerprint acquired. But, it was observed

48

that fingerprints a) and b) both have very few matches with reference fingerprint. This is

problematic, since we would expect that many features should match when two images of the

same finger are being compared. This problem is because of the stringent matching criteria that

were used. It was assumed that the number of ridges crossed between any two minutiae would be

identical for two fingerprints of the same finger. So, one-one exact comparisons of ridge counts

for corresponding sides of a triple are made. However, it is observed that the number of ridges

crossed between corresponding minutiae in different impressions of the same finger varied. This

is because of the non-linear distortion of fingerprint minutiae. Feature extraction errors also

account for variations in ridge counts. It was also observed that a constant distance threshold

could not be used for all spatial distances in the fingerprint. Different kinds of distortion will be

discussed in the next section.

4.3 Distortion

This section describes the extent of distortion and types of distortion between fingerprints of the

same finger. The main factors that cause distortion in different impressions of the same finger

(intra-class variations) are displacement, rotation, partial overlap, non-linear distortion, variable

pressure, changing skin condition, noise and feature extraction errors [13].

4.3.1 Minutiae Distance Distortion

This distortion is observed by considering the spatial distance between any two minutia points.

Let (x1, y1), (x2, y2) be two minutiae points, then the distance between these points is calculated

as √ ((x1-x2)
2
 + (y1-y2)

2
). A set of 8 impressions of the same finger is considered to analyze

distortion in minutiae distances. 50 corresponding minutiae are identified in these fingerprints

manually. First, the minutiae that match around the core region are identified and depending on

these, remaining minutiae are identified. The distance between minutiae pairs is calculated and

the distortion of this distance is analyzed for all the fingerprints. A graph showing the minutiae

distance distortion is shown in Figure 4.1. With 50 minutiae identified in the fingerprints, the

largest minutiae distance among all the minutiae pairs is 316 which is the final value on X-axis.

This value can differ for different fingerprints depending on the minutiae considered and the

49

distance between them. The graph shown here is an example of the distortion in minutiae

distances.

Figure 4.1 Minutiae distances distortion

X-axis shows the spatial distance between minutia pairs. Y-axis shows the maximum amount of

distortion observed across 8 fingerprints as a percentage of the actual distance. It can be seen that

for lower lengths, the amount of distortion is very high. For example, for a distance of 14, the

distortion is 100%. For higher lengths, the distortion is around 20% of the distance. So, the

threshold is dependent upon the side length of the triple. The threshold is selected such that as

the distance increases, the threshold decreases. The chart showing distance threshold that is used

in this matching algorithm is shown in Figure 4.2

Figure 4.2 Distance threshold

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

% Distortion

0

20

40

60

80

100

20 50 80 100 150 200 300 400

Distance Threshold

50

The X-axis of the graph shows minutiae distances and the Y-axis shows the threshold used. The

graph shown in figure 4.1 is plotted by considering different impressions of the same finger. But,

the graph shown in Figure 4.2 is plotted by considering multiple impressions of different fingers.

Around 40 different fingerprints are considered and multiple impressions of these 40 fingers are

analyzed to calculate the maximum distortion for every minutia distance. The graph is

particularly plotted for X-axis values 20, 50, 80, 100, 150, 200, 300, 400. It should be noted that

maximum distortions are chosen for the minutiae distances.

4.3.2 Displacement of Minutiae

For two impressions of the same finger that are already aligned, the minutiae that are almost at

the same level in the fingerprints, tend to move higher or lower which changes their positional

coordinates because of the pressure variations. When minutiae extracted from two impressions

(aligned) of the same finger are compared, they do not follow the same order. By using triplet

based features which are translation invariant, the displacement of minutiae can be overcome.

Also, the minutiae distance thresholds will subdue this displacement effect.

4.3.3 Ridges Crossed Distortion

The number of ridges crossed between any two corresponding minutiae points of two

fingerprints of the same finger varies to a great extent. The factors that cause this distortion are

given below.

 The number of ridges crossed between two minutiae points varies because of the

movement of minutiae coordinates. For example, consider two minutiae points separated

by some distance. Assume that there exists a ridge ending between the line joining these

minutiae points. Consider the same two minutiae points and the ridge ending in a

different impression of the same finger. Because of the movement of minutiae

coordinates, the ridge ending might move lower or higher and it would not be present

between the line joining the two minutiae points anymore. Hence, the number of ridges

crossed for the two minutiae points for these two fingerprints differs by 1.

51

 For a triplet, it is observed that the number of ridges crossed between two minutiae is not

proportional to the side length joining the two minutiae. In many cases, it is observed that

the largest side does not always have higher ridge counts. Further analysis showed that

the sides which have ridge flow almost parallel to them have fewer ridges crossed on

them. In Figure 4.3, some examples of ridge counts which have fewer ridges crossed are

shown. In such cases, the feature extracting tool does not always give the true ridges

crossed and hence a different threshold must be used.

To solve this problem, the ridge counts are divided into two types, high confidence and low

confidence ridge counts. In Figure 4.4, examples of high confidence ridge counts which have

ridge flow direction almost perpendicular to the line segment joining the minutiae are shown. To

differentiate between high confidence and low confidence ridge counts, an optimum ratio of side

length to ridge count should be calculated. For most of the high confidence ridge counts in a

fingerprint, this ratio is 10. There are many sides whose ratio falls below 10; however they still

have high confidence ridge counts. A ridge count is considered to be low confident if it satisfies

(10 * (rc + 4) < d) where rc is the ridge count and d is the side length. This condition is deduced

after observing multiple ridge counts and their distances. For high confidence ridge counts, a

lower threshold is used and for low confidence ridge counts, higher threshold is used because

low confidence ridge counts vary to a great extent across different impressions of the same

finger. For threshold calculation, different impressions of the same finger are observed. For the

analysis of distortion, a set of 35 different fingerprints are randomly selected. For these 35

different fingerprints, multiple impressions are considered and the corresponding minutiae are

located. Finally, for high confidence ridge counts, a threshold of 5 is selected and for low

confidence ridge count, a threshold of 12 is selected to account for distortion and feature

extracting errors. By the condition used to check low confidence ridge count, it is possible for an

originally high confidence ridge count to be considered low confidence ridge count. This is

acceptable because by considering it as a low confidence ridge count, just the threshold is

increased. This would not affect the comparison of different impressions of same finger. But, it

would increase the number of triple matches for which some optimizations are proposed which

will be discussed later.

52

Figure 4.3 Low confidence ridge count

Figure 4.4 High confidence ridge count

4.3.4 Angular Distortion

From the previous discussion, we know that the thresholds for distance and ridges crossed are

higher because of the distortion in fingerprints. Hence, it is possible for an acute angled triplet to

match an obtuse angled triplet based on just distances and ridges crossed. However, the

difference between the corresponding angles should not be too high. For example, a triple with

one of its angles as 30 should not match a triple whose same angle is 110 . In Figure 4.5, some

examples of triples matched based on distance and ridges crossed are shown. The triples in

Figure 4.5 (a) match with each other and triples in Figure 4.5 (b) match with each other based on

distances and ridges crossed as matching criteria. Δpqr matches Δijk in both (a) and (b). Angle q

53

is an acute angle and angle j is an obtuse angle in both cases. Though these triangles are

dissimilar, they match because of the higher thresholds of distance and ridge counts. Though

Figure (a) can be considered a match because the triples look similar, Figure (b) cannot be

considered a match. For this, internal angles of the triples are used in comparison and threshold

is calculated. Angular distortion is analyzed for fingerprints of the same finger (35 different

fingerprints are considered) and the maximum angular distortion between two corresponding

angles of any two triples that ideally match is observed to be 65 . ost of the matching triples

have a very small angular distortion of 5 -15 . But there are some triples whose angular distortion

is higher because of movement of minutiae. Using angles as one of matching criteria eliminates

some false matches. Hence, Figure 4.5 (b) becomes an invalid match.

4.3.5 Minutia Orientation Distortion

The orientation or direction of a minutia point is extracted as the angle made by the tangent to

the ridge with the horizontal axis. This angle differs across fingerprints of the same finger. For

example, it is observed that the orientation of minutia point in a fingerprint is 4 and it is 232 for

the same minutia point in a different impression of the same finger. This distortion is mostly

observed for ridge endings. By using direction differences of the minutiae in a triple, the number

of false matches can be decreased. For a triple, three direction differences can be calculated

(one for each side). Since, direction is not completely reliable, only one of the three direction

differences is used as a matching criterion. A threshold is calculated after analyzing fingerprints

of the same finger (35 different fingerprints are considered). A threshold of 40 is used.

Figure 4.5 Angular distortion

i i
p

(a) (b)

p

q

r

j

k

q

r

j

k

54

4.4 Triplet-based Matching using Core Points

Since the thresholds for side lengths and ridges crossed are higher, each triple of the reference

fingerprint has many matches in the target fingerprint. By using just side lengths and ridges

crossed as matching criteria, different fingerprints also had higher matching scores. It was

observed that most of the matches were false matches. Mining rare features requires matching

criteria, which are neither stringent nor relaxed. By using a few matching criteria, it is not

possible to extract rare features in fingerprints. The matching criteria should be relaxed such that

two impressions of the same finger match should still match and they should be stringent enough

to ensure that dissimilar triples do not match because of relaxed thresholds. The thresholds for

distances, ridges crossed, angles and directions are already relaxed and these thresholds cannot

be modified. So, other matching criteria should be used to reduce the number of false matches.

Though these falsely matched triples look similar, they are scattered at different locations in the

fingerprints. Level 1features (core-points and delta points) would help in identifying the position

of the triple in the fingerprint. The rest of this section describes the novel parameters that are

used for triplet matching.

4.4.1 Novel Parameters for Triplet-based Matching

Combination of Ridges crossed and Side lengths: In general, smallest side, largest side and sum

of the sides of triples are used as matching criteria because comparing every side of reference

triple with every side of target triple requires more comparisons. Using just these criteria, for two

fingerprints of the same finger, some of the reference triples may not have exact matches. This is

because, for some features, the smallest side is almost equal to the intermediate side or the

largest side is almost equal to the intermediate side because of distortion and the corresponding

sides are not compared. Similarly, sorting of ridges crossed also does not ensure that the

corresponding ridges crossed are compared. In these cases, it is difficult to identify the

corresponding matching minutiae in the triples. By identifying the corresponding minutiae

between two triples, the amount of randomness can be reduced when the comparisons are

55

extended for 6-points and 9-points. It would also ensure that the corresponding sides, ridge

counts, angles and directions are compared.

In this work, a combination of distance and ridge count is used to compare triples. Let d1, d2, d3,

rc1, rc2, rc3 be the three sides and three ridges crossed of a triple, then the combinations used

for comparisons are (d1, rc1), (d2, rc2), (d3, rc3). Every combination from reference triple is

compared with every combination of target triple. Hence, the combinations of (d1, rc1), (d2,

rc2), (d3, rc3) can match the target triple in any order, so all such orders are considered. Let r1,

r2, r3 represent distance and ridges crossed combinations ((d1, rc1), (d2, rc2), (d3, rc3)) for

reference triple and t1, t2, t3 be the distance and ridges crossed combinations for target triple.

There are six combinations in which a reference triple can match the target triple. The following

are the six combinations.

1. r1 matches t1, r2 matches t2, r3 matches t3

2. r1 matches t1, r2 matches t3, r3 matches t2

3. r1 matches t2, r2 matches t1, r3 matches t3

4. r1 matches t2, r2 matches t3, r3 matches t1

5. r1 matches t3, r2 matches t1, r3 matches t2

6. r1 matches t3, r2 matches t2, r3 matches t1

The triples that have two sides and ridges crossed almost equal to each other (isosceles) usually

match in 2 of the above combinations. The triples that have all sides and ridges crossed almost

equal to each other (equilateral) match in all the above combinations. Other matching parameters

discussed below are used to check for the valid combination after this step.

Core Distance: The centroids of all the triples are calculated and the distance between the

centroid of the triple and the core-point is used as a matching criteria. These centroid distances

are analyzed for different fingerprints of the same finger (35 different fingerprints are used). It is

observed that the maximum distortion of core distance is 60 pixels and hence the threshold is set

to 60 pixels. In Figure 4.6, the red-colored line joining core and centroid of the triple shows the

core distance. For fingerprints with two cores, the core distances are calculated with respect to

both the cores. When the fingerprints are not aligned, the location and the order in which the core

points are extracted may not be the same for two fingerprints. So, rotation invariant core distance

56

should be used. For this, the distances from core 1 in reference fingerprint are compared with

distances from core 1 and core 2 in target fingerprints and the triples are considered to match if

reference core 1 distance matches with either core 1 or core 2 target distances. Similarly, two

triples are considered to match if core 2 distance in reference triple matches with either core 1 or

core2 target distances.

Figure 4.6 Distance between core and centroid of triple

Minutia Distance: The distances of all the vertices from the core point are calculated and used as

matching criteria. By analyzing different fingerprints of the same finger, the maximum distortion

is observed to be 60 pixels and the threshold is set to the same. In Figure 4.7, the distance

between core point and the minutiae of a triple is shown by red-colored lines. For fingerprints

with 2 cores, if minutiae distances from core 1 and core 2 of reference triple match with minutiae

distances from either core 1 or core 2 of target triple, then the two triples are considered to be a

match.

57

Figure 4.7 Distance of minutiae from core

Farthest vertex from the core: For all the triples, the vertex which is farthest from the core is

calculated as the one whose distance from the core is greater than that of the other two vertices.

In cases where the height of the triple is small or the distances of all the vertices from the core

are almost equal, the farthest vertex cannot be definitely set and it is set to 0 in such cases. In

Figure 4.8, the farthest vertex from core is 1.

Figure 4.8 Farthest and nearest vertices

Nearest vertex to the core: For all the triples, the vertex which is closest to the core is calculated

as the one whose distance from the core is lesser than that of the other two vertices. In cases

where the height of the triple is small or the distances of all the vertices from the core are almost

equal, the farthest vertex from the core is set to 0. In Figure 4.8, the nearest vertex to the core is

3.

58

For fingerprints with 2 cores, farthest and nearest vertices are identified for both the cores. If the

farthest and nearest vertices from core 1 and core 2 of reference triple match with the farthest

and nearest vertices respectively either from core 1 or core 2 of target triple, then those triples are

considered to match.

Delta distance: The distance between the centroid of the triples and the delta point is calculated

and used as a matching criterion. The threshold is calculated by analyzing different impressions

of the same finger and the maximum distortion is observed to be 55 pixels and the threshold is

set to the same. It should be noted that all the fingerprints do not have delta points. So, the delta

distance is compared only if both reference and target fingerprints have delta points. For

fingerprints with 2 cores, if delta distances from core 1 and core 2 of reference triple match with

delta distances from either core 1 or core 2 of target triple, then those triples are considered to

match. In Figure 4.9, the delta distance is shown by a red-colored line joining delta point and the

centroid of triple.

Figure 4.9 Delta distance

The parameters core distances, minutiae distances, farthest and nearest vertex to the core help in

identifying the location of triple.

Handedness of the triple: In Figure 4.10(i) a reference triple (a) and a target triple (b) that

incorrectly match are shown. Here (b) is the reflection of (a). Even when fingerprints are rotated,

these triples should not match. The cross product of the shortest side and the longest side is

calculated for both triples and sign of the cross product is used to compare the two triples. Cross

Product is given by ̅̅ ̅ ̅̅ ̅ In the Figure 4.10(i), the cross product of the reference triple is

positive while the cross product of the target triple is negative and hence they do not match.

59

Figure 4.10(ii) shows another example where the cross products are positive for both reference

and target triples and they match. The handedness is not valid for triples with any of its two sides

almost equal. Also there should be a minimum difference between the smallest side and the

intermediate side, intermediate side and largest side. Also, it is possible that the minutiae points

may be collinear or almost collinear. In such a case, for the reference triple Δpqr in Figure

4.10(i), the minutiae point p could be on either side of ̅̅ ̅. So, the possibility of collinearity is

also checked and if it is exists, such triples are not considered.

High confidence and low confidence ridge counts: From section 4.3.3, we know that the ridges

crossed between any two minutiae points is divided into two types, high confidence and low

confidence and they are used as a matching criterion.

Sum of ridge counts: Sum of ridge counts is also used as a matching criterion. It eliminates

many false matches; hence it is used in the beginning before all the other matching criteria.

Internal angles: The slopes of the sides of the triples (m1, m2, m3) are calculated and the angles

of inclination (θ1, θ2, θ3) are calculated for all the sides. The internal angles α1, α2, α3 are

calculated as the difference of the angles of inclination of the sides forming that angle. The

internal angles of the triple are analyzed for different fingerprints of the same finger and it is

observed that the maximum angular distortion is 65 . Let (x1, y1), (x2, y2), (x3, y3) represent

(b) (a)

r

p

q

p

q

r

(b) (a)

r

p

q

p

q

r

Figure 4.10 (i) Incorrectly matched triplets because (b) is reflection of (a). (ii) Correctly
matched Triplets

(i) (ii)

60

coordinates of the minutiae of the triple. The slopes, angles of inclination, internal angles are

given by the following equations.

 ()

Direction of Minutia: The direction of minutia is also considered as one of the matching criteria.

For any side of the triple, the difference in the direction of minutiae forming the side is

considered as the direction of that side. The direction is calculated for all the three sides of the

triple. However, the comparison is only performed for one among the three direction differences

because the direction of minutiae is not reliable in some cases. The direction difference of a line

segment joining minutiae m and n is calculated as follows

Here θm and θn are the directions of minutiae m and n respectively.

Selection of best order: Though some parameters of the triple require higher thresholds for

matching, other parameters of the triple do not have much distortion. For example, consider a

triple with side lengths 80, 99, 120 and ridges crossed 5, 5, 9. Consider the same triple in a

different fingerprint of the same finger whose side lengths are 104, 110, 130 and ridges crossed

are 4, 5, 10. Though the difference between the corresponding side lengths is higher, the

difference of corresponding ridges crossed is lower. So, the distortion is not on the same levels

for all the parameters.

61

When two triples are matched in more than 1 order, the other parameters can be compared to

select the best order. However, all the parameters cannot be considered to check the amount of

variation in the fingerprints. Angles cannot be considered because of greater distortion and

direction is not reliable. Distance of vertices from a core and ridges crossed are considered to

select the best order. For fingerprints with 2 cores, the matching cores are first identified. This is

done simply by checking the minutiae distances from both the cores for all the orders. If the

minutiae distances from reference core1 match minutiae distances from target core2 for all the

orders, then reference core 1 and target core 2 are the matching cores. The amount of variation is

calculated for all the 6 parameters (3 minutiae distances + 3 ridges crossed) for all the orders. It

is the difference between corresponding parameters of the two triples. Consider two triples that

match in orders 1 and 2. Let ref_rc1, ref_rc2, ref_rc3, ref_leg11, ref_leg12, ref_leg13 be the

ridges crossed and the distance of vertices from the core point for reference triple and let tar_rc1,

tar_rc2, tar_rc3, tar_leg11, tar_leg12, tar_leg13 be the ridges crossed and the distance of vertices

from the core point for target triple. The amount of variation for both the orders is calculated as

follows. For first order, differences are calculated as abs (ref_rc1 – tar_rc1), abs (ref_rc2 –

tar_rc2), abs (ref_rc3 – tar_rc3), abs (ref_leg11 – tar_leg11), abs (ref_leg12 – tar_leg12), abs

(ref_leg13 – tar_leg13). For second order, the differences are calculated as abs (ref_rc1 –

tar_rc1), abs (ref_rc2 – tar_rc3), abs (ref_rc3 – tar_rc2), abs (ref_leg11 – tar_leg11), abs

(ref_leg12 – tar_leg13), abs (ref_leg13 – tar_leg12). The corresponding differences of first and

second orders are compared. The order with less distortion is selected as the final order of that

reference triple. Similarly, the best order is selected when the triples match in more than 2

orders.

The matching criteria used for 3-point comparisons and their thresholds are listed out in Table

4.1.

Encoding Matched Combinations: By using the parameters above, the reference triple can

match the target triple in any combination or order. Since there are 6 combinations, the naïve

method to store them would be to use an array of 6 elements for every combination of reference

and target triples that match. To reduce the data complexity, these 6 combinations are encoded.

The total number of combinations possible with 6 elements is 63. (The triples can match in 1 or 2

or 3 or 4 or 5 or 6 combinations. Total = 6C1 + 6C2 + 6C3 + 6C4 + 6C5 + 6C6).

62

Table 4.1 Matching criteria for 3-point comparisons

Parameters Threshold

Side lengths or Distance 35% for smaller distances. Gradually decreases

with distance. 20% for larger distances

Ridge Count High confidence – 5, Low confidence – 12

Core distance 60 pixels

Minutia Distance 60 pixels

Delta Distance 55 pixels

Farthest Vertex from Core -

Nearest Vertex to Core -

Handedness of Triple -

Internal Angles 65

Direction of Minutia 40

All the combinations and their encoded indices are shown in Figure 4.11. For example, if the

triples match in 1, 2, 3, 4 combinations, then they are stored as 45. These combinations are later

decoded in 6-point and 9-point comparisons.

0 – {1}

1 – {2}

2 – {3}

3 – {4}

4 – {5}

5 – {6}

6 – {1, 2}

7 – {1, 3}

8 – {1, 4}

9 – {1, 5}

10 – {1, 6}

11 – {2, 3}

12 – {2, 4}

13 – {2, 5}

14 – {2, 6}

15 – {3, 4}

16 – {3, 5}

17 – {3, 6}

18 – {4, 5}

19 – {4, 6}

20 – {5, 6}

21 – {1, 2, 3}

22 – {1, 2, 4}

23 – {1, 2, 5}

24 – {1, 2, 6}

25 – {1, 3, 4}

26 – {1, 3, 5}

27 – {1, 3, 6}

28 – {1, 4, 5}

29 – {1, 4, 6}

30 – {1, 5, 6}

31 – {2, 3, 4}

32 – {2, 3, 5}

33 – {2, 3, 6}

34 – {2, 4, 5}

35 – {2, 4, 6}

36 – {2, 5, 6}

37 – {3, 4, 5}

38 – {3, 4, 6}

39 – {3, 5, 6}

40 – {4, 5, 6}

41 – {1, 2, 3, 4}

42 – {1, 2, 3, 5}

43 – {1, 2, 3, 6}

44 – {1, 2, 4, 5}

45 – {1, 2, 4, 6}

46 – {1, 2, 5, 6}

47 – {1, 3, 4, 5}

48 – {1, 3, 4, 6}

49 – {1, 3, 5, 6}

50 – {1, 4, 5, 6}

51 – {2, 3, 4, 5}

52 – {2, 3, 4, 6}

53 – {2, 3, 5, 6}

54 – {2, 4, 5, 6}

55 – {3, 4, 5, 6}

56 – {1, 2, 3, 4, 5}

57 – {1, 2, 3, 4, 6}

58 – {1, 2, 3, 5, 6}

59 – {1, 2, 4, 5, 6}

60 – {1, 3, 4, 5, 6}

61 – {2, 3, 4, 5, 6}

62 – {1, 2, 3, 4, 5, 6}

Figure 4.11 Encoding the combinations

63

4.4.2 Algorithm for 3-point Comparisons

The algorithm for 3-point comparisons is detailed in Figure 4.12.

4.4.3 Parameters for 6-point and 9-point Comparisons

As discussed before, a 6-point is formed by the combination of 2 triples and a 9-point is formed

by the combination of 3 triples. The results of triple matches are used for 6-point and 9-point

comparisons. For every reference triple, the index of the matching target triple and the

combination in which it matches is stored. The matching criteria used for 6-point and 9-point

comparisons are given below.

For every triple in reference fingerprint

 For every triple in target fingerprint

 Check Sum of Ridge counts and the Core distances

 Check all Distance and Ridges Crossed combinations

 For all combinations of Distance and Ridges crossed that are true

 Check Minutiae Distances from core, Angles, Direction Differences

 For all combinations that are true from above step

 Check if the target triple is a reflection of reference triple

 Check Farthest Vertex from Core

 Check Nearest Vertex to Core

 If Fingerprints have delta points, check delta distance

 Select the best combinations in which reference and target triples match

 Check the matching score for the combinations

 Triples match

Figure 4.12 Algorithm for triple comparisons

64

Figure 4.13 Centroid distance shown for a 6-point feature

Centroid Distance: The centroids are calculated for all the triples in a 6-point feature and a 9-

point feature and the distance between the centroids of all the triples is calculated. In Figure 4.13

and Figure 4.15, the centroid distances for 6-point and 9-point features respectively are shown.

Similar to the threshold for the side lengths of triples, the centroid distance is not set to a

constant. It gradually decreases with the distance. The lower centroid distances have higher

threshold and higher centroid distances have lower threshold. After analyzing different

impressions of the same finger, threshold values are calculated. The graph showing the

thresholds used for centroid distances is shown in Figure 4.14.

Figure 4.14 Centroid distance thresholds

0

20

40

60

80

100

120

140

20 50 100 150 200 300

Centroid Distance Threshold

Centroid
Distance
Threshold

65

Figure 4.15 Centroid distances shown for a 9-point feature

Minutiae Distances: The distance between the all the minutiae in the 6-point and 9-points are

calculated. Since the order in which a reference triple matches a target triple is already known,

the corresponding distances of a reference combination (either 6-point or 9-point) are compared

with the distances of a target combination. In Figure 4.16, the comparison of a reference with a

target 6-point combination is shown. In the figure, the order in which reference triple 1 matches

target triple 1 is 2 and the order in which reference triple 2 matches target triple 2 is 4. So,

minutiae 1, 2, 3 from reference triple 1 match minutiae 1′, 3′, 2′ from target triple 1 respectively.

And, minutiae 4, 5, 6 from reference triple 2 match minutiae, 5′, 6′, 4′ from target triple 2

respectively. The minutiae distances which are compared are (̅̅̅̅ vs ̅̅ ̅̅ ̅), (̅̅̅̅ vs ̅̅ ̅̅ ̅), (̅̅̅̅ vs

 ̅̅ ̅̅ ̅ , ̅̅̅̅ vs ̅̅ ̅̅ ̅ , (̅̅̅̅ vs ̅̅ ̅̅ ̅̅ , (̅̅̅̅ vs ̅̅ ̅̅ ̅̅ , (̅̅̅̅ vs ̅̅ ̅̅ ̅̅ , (̅̅̅̅ vs ̅̅ ̅̅ ̅), ̅̅ ̅̅ ̅ vs ̅̅ ̅̅ ̅). Without

identifying the corresponding minutiae in the triples, each minutia distance from reference 6-

point has to be compared with every minutiae distance from target 6-point. But by using the

method in this work, the corresponding minutiae are identified and the randomness in matching

the 6-points and 9-points can be reduced.

66

Ridges Crossed across all minutiae: The number of ridges crossed across all the 6-point and 9-

point combinations is used as a matching criterion. The thresholds for high confidence and low

confidence ridge counts are same as those for 3-point comparisons.

Farthest and nearest minutia point: Figure 4.17 shows incorrectly matched 6-point and 9-point

features. These features match because of the higher thresholds that were considered for distance

and ridge counts. The triples marked in red are the target triples which almost look like

reflections of their corresponding reference triples. Many of such features are already eliminated

by the farthest and nearest vertex to core point from triple comparisons (3-point). To eliminate

any other features that might have been missed, for each 6-point and 9-point feature, farthest and

nearest minutiae point with respect to the centroid of the other triple are used. In Figure 4.17 (i),

the farthest minutia in Δabc with respect to the centroid of Δpqr is minutia b, but the farthest

point in Δabc of target with respect to Δpqr is a. Since the farthest points with respect to Δpqr

are not equal, it can be concluded that these 6-points feature do not match. In the 9-point feature

in Figure 4.17 (ii), Δpqr and Δabc are the already matched 6-point features. There is no definite

farthest point in Δijk with respect to Δpqr because both j and k are almost equidistant to Δpqr.

But there exists a farthest point in Δijk with respect to Δabc which is minutia k in reference. In

target, the farthest point in Δijk with respect to Δabc is j. Since the farthest points with respect to

Δabc do not match, it can be concluded that the 9-point features do not match. The nearest points

are calculated only if the results from the farthest point calculation are true.

5
’

3

2

1

4

5

6

1
’

3
’

2
’

6
’

4
’

Figure 4.16 Matched 6 point features

67

The matching criteria used for 6-point and 9-point comparisons and their thresholds are shown in

Table 4.2

Table 4.2 Matching criteria for 6-point and 9-point comparisons

Parameter Threshold

Centroid Distance Gradually decreases with distance

Minutiae Distances Gradually decreases with distance

Ridges crossed High confidence – 5, Low confidence - 12

Farthest Minutia point -

Nearest Minutia point -

4.4.4 Algorithm for 6-point Comparisons

The algorithm for 6-point comparisons is shown in Figure 4.18. Whenever a condition is checked

and if it is not satisfied, then the reference and target 6-points do not match and the control exits

the loop.

r r
q

p

r q

k j

i a

b

c
k j

i

c

b

a
q

p

b

c

a

a

(i) Incorrectly matched 6-point feature

Figure 4.17 Incorrectly matched 6-point and 9-point features

(ii) Incorrectly matched 9-point feature

p

b

c

p

q r

Reference Target
Reference Target

68

4.4.5 Algorithm for 9-point Comparisons

The algorithm for 9-point comparisons is shown in Figure 4.19. The results from 6-point

comparisons are used for 9-point comparisons. Every 6-point feature is combined with a 3-point

feature to form a 9-point feature. For a reference and target 9-point features to match, 3 centroid

distances, 27 Minutiae distances, 27 Ridge Counts should be compared. But only 2 centroid

distances, 18 Minutiae distances, 18 Ridge counts are compared because the triples in 6-point

feature are already matched.

Figure 4.18 Algorithm for 6-point comparisons

For every i
th
 reference triple

 For every (i+1)
th

 reference triple

 Check if i
th

 and (i+1)
th

reference triples form a valid 6-point feature

 For every match of i
th

 triple in target

 For every combination in which target triple matches i
th

reference triple

 For every match of (i+1)
th

 triple in target

 For every combination in which target triple matches (i+1)
th

reference triple

 Check if centroid distances of reference and target 6-points match

 Check if Ridge Counts of reference and target 6-points match

 Check if Minutiae distances of reference and target 6-points match

 Check if Farthest and Nearest minutiae points of reference and target 6-points match

 6-points match and save the indices of reference and target triples

69

4.4.6 Algorithm for Mining Rare Features

Some of the fingerprints in the FBI database have as many as 100 minutiae. With just 50

minutiae, number of 3-points formed is 19,600, number of 6-points formed is 15.89 million and

the number of 9-points formed is 2.5 billion. Because of the data complexity and longer run-

times, a small set of 35 high quality minutiae is considered. With 35 minutiae, number of 3-

points formed is 6545, number of 6-points formed is 1.6 million and the number of 9-points

formed is 70.6 million. As discussed before, there is a limit on the smallest side and the largest

side of the triple. Triples with smallest distance >= 25 and largest distance <= 200 are

considered. The limit on the smallest distance is chosen to be 25 because the minutiae distances

that are <25 have as high as 100% distortion (section 4.3.1). The limit on the largest distance is

chosen to be 200 to form smaller local structures (triples) which are lesser prone to distortion

[22]. Also, a limit on the largest angle of triple is used. Some triples are in the form of a straight

For all 6-point features (Formed by i
th

 and (j)
th

 3-point features) with matches

 For every (j+1)
th

 3-point feature

 Check if i
th

, (j)
th

 and (j+1)
th

 reference triples form a valid 9-point feature

 For every match of (j+1)
th

 triple in target

 For every combination in which target triple matches (j+1)
th

reference triple

 Check if centroid distances of reference and target 9-points match

 Check if Ridge Counts of reference and target 9-points match

 Check if Minutiae distances of reference and target 9-points match

 Check if Farthest and nearest minutiae points of reference and target 9-points match

 9-points match; go to the next 9-point feature

Figure 4.19 Algorithm for 9-point comparisons

70

line (largest angle 1 0) and the matching triple in another impression of the same finger forms a

triangle. It is observed that these triples have higher number of matches and hence all the triples

with largest angle 170 are not considered. Finally, the number of triples considered is also

limited to 1500. The algorithm for mining rare features in a fingerprint is shown in Figure 4.20.

In the first step, the reference fingerprint is compared with a few target fingerprints and only 3-

point features and 6-point features are compared. This is to eliminate some of the 6-point

features that have more matches. Such 6-point features may not be rare features and it is less

likely that these 6-points might form a rare 9-point feature. After the first step, a set of 3000

unmatched 6-points is considered and all possible 9-point combinations are formed. A limit of

1million is chosen for the number of 9-point combinations considered. All the limits are chosen

to reduce data complexity and longer run-times. It should be noted that because of these limits, it

is possible to miss some of the rare features from identification. However, we were able to

identify a small set of rare features for every fingerprint with these limits. The 9-point

combinations thus formed are the final set of features that are compared across the fingerprints in

the database to find rare features. The number of 9-points matched is checked after every 100

files to check if there are any unmatched features left. If all the 9-points have matches, then there

are no rare features in the selected 9-points of the reference fingerprint. Also, for every new

fingerprint, the number of core points is checked to ensure that fingerprints of the same type are

compared.

4.4.7 Database Profiling

The FBI database consists of single-core (right loop or left loop), two-core (whorl and two loops)

and arch-type (tented arch and arch) fingerprints. The feature extracting tool [38] that was used

extracts all the minutiae and core-points. To verify that the number of cores extracted from the

fingerprint is true, different impressions of the same fingerprint with high quality are analyzed.

The database is formed by considering all the good quality fingerprints with true core points. For

the fingerprints with arch-type core, core points were not extracted by the tool. The core points

for all the arch-core fingerprints were identified manually. A database consisting of 11,036

fingerprints whose location and number of core points are reliable is formed. This database

consists of 2143 two-core, 8313 single-core and 580 arch-type fingerprints. It should be noted

71

that 18,649 fingerprints from FBI database are used in Chapter 3; however, because of unreliable

detection of location and number of core points, only 11,036 fingerprints from this database are

used for mining rare features. All the fingerprints in the database are manually checked to verify

the number of core points. The reference fingerprints that are used to mine rare features and

target fingerprints used in comparisons are selected from these 11,036 fingerprints from FBI

database.

Yes

Compare Reference fingerprint with a few

different target fingerprints by comparing

only 3-points and 6-points

Collect unmatched reference 6-

points and form 9-points from

these 6-points

Continue comparison of the

reference fingerprint with the

remaining fingerprints. Compare

only the unmatched 6-points and

thus formed 9-points

Are all 9-

points

matched?

Display rare 9-points No rare features found

Figure 4.20 Algorithm for mining rare features

No

72

4.4.8 Results

For each core type, 10 fingerprints are randomly selected from the FBI database formed with

11,036 fingerprints (section 4.4.7). So, totally 30 fingerprints are selected for mining rare

features. Although only 30 fingerprints are selected, rare features that are unique to some N

fingerprints can be identified in any randomly selected fingerprint by using this method. These

30 fingerprints are used as reference and the database is searched to identify statistically rare

features in these fingerprints. It is observed that for all core types, rare 3-point features and rare

6-point features do not exist. But rare 9-point features exist. For a reference fingerprint, as the

number of fingerprints compared increases, number of 9-point features with matches also

increases. From a million 9-point features, a few features are left after comparing with hundreds

of fingerprints. The number of unmatched 9-point features left after comparing with every 100,

500, 1000, 1500 fingerprints is shown in the results below. For a 9-point feature which is left

unmatched after comparing with 1000 fingerprints, it can be concluded that such feature occurs

only once in 1000 fingerprints which makes it a rare feature. It should be noted that this 9-point

feature may find a match if a slightly different database is used. But, the probability of finding a

match for this 9-point in randomly sampled 1000 fingerprints is less.

For all the tables below, the number of minutiae considered for the reference fingerprint and the

number of 3-points formed from those minutiae are shown. In the third column, the number of

identical-core fingerprints compared with the reference is given. The fourth column represents

the sum of the number of identical-core fingerprints and fingerprints of other core types. The

reference fingerprint is compared with the entire database, but whenever a fingerprint of a

different core type is encountered, the feature matching is not performed because of core

dissimilarity and the next fingerprint is compared. The table also gives the number of 9-point

features considered for that fingerprint and rare 9-point features are given in the last column.

Results for Arch-Core Fingerprints: The results for arch-type fingerprints are shown in Table

4.3. Each row represents a reference fingerprint. For Fingerprint 1 (with 35 minutiae and 1164

triples, from a set of 128638 9-point features), 115 features are left unmatched (rare features)

after comparing with 580 arch-core fingerprints. It can be observed from the table that

fingerprints 1-4 have some rare 9-point features left after comparing them with the entire

73

database. Fingerprint 4 has 545 rare 9-point features when a set of 1 million 9-point features is

considered. The fingerprints 1-6 have at least 1 rare feature in 500 arch-core fingerprints and all

the fingerprints have at least 1 rare feature in 100 fingerprints (see fourth column). For example,

fingerprints 5 and 6 are compared with 502 and 536 arch-core fingerprints respectively and 1

rare 9-point feature is identified for both the fingerprints. So, both these fingerprints have at least

1 rare feature when compared with 500 arch-core fingerprints.

Table 4.3 Rare 9-point features in arch-core type fingerprints

Fingerprint # Minutia #3-points

#Arch-core

fingerprints

compared

Fingerprints

compared

#9-points

considered

Rare 9-

points

1 35 1164 580 11036 128638 115

2 35 1500 580 11036 882863 15

3 35 1500 580 11036 233522 4

4 34 1500 580 11036 1000000 545

5 35 1164 502 10958 166420 1

6 33 1500 536 10992 921097 1

7 35 1500 400 10856 1000000 1

8 35 938 200 10656 471692 16

9 29 970 100 10556 784687 3

10 34 956 100 10556 215473 16

In Table 4.4, the number of 9-point features that are left unmatched after comparing with

fingerprints of arch-core type at different intervals are shown. Since the number of arch-core

type fingerprints is 580 in the database, two intervals, one at 100 and another at 500 are shown. It

can be seen from the table that for fingerprint 1, 2,856 9-point features are left unmatched after

comparing with 100 fingerprints and 123 9-point features are left unmatched after comparing

with 500 fingerprints.

74

Table 4.4 Rare 9-point features in arch-core fingerprints at different fingerprint intervals

Table 4.5 Rare 9-point features in two-core fingerprints

Fingerprint

100

Fingerprints

compared

500

Fingerprints

compared

1 2856 123

2 24353 15

3 4063 12

4 37857 665

5 2432 1

6 742 1

7 4505 0

8 459 0

9 3 0

10 16 0

Fingerprint

Minutia
#3-points

#Two-core

fingerprints

compared

Total

fingerprints

compared

#9-points

considered

Rare 9-

points

1 35 1150 2143 11036 660919 2

2 32 1500 1964 10857 638523 1

3 35 1398 1027 9920 250809 1

4 35 1197 1439 10332 643892 1

5 35 892 500 9393 581095 3

6 35 1500 500 9393 632564 2

7 35 1500 500 9393 947147 6

8 34 1500 200 8923 717588 1

9 35 775 700 9423 273409 6

10 35 1500 400 9123 1000000 1

75

Results for Two-Core Fingerprints: The results for two-core fingerprints are shown in Table

4.5. It shows that fingerprint 1 has 2 rare features when compared with the entire database. For

fingerprints 1-4, at least 1 rare feature was found when compared with 1000 fingerprints. For

fingerprints 1-7, at least 1 rare feature was found in 500 fingerprints.

For two-core fingerprints, Table 4.6 shows the number of unmatched 9 point features identified

after comparing with 100, 500, 1000, 1500 fingerprints.

Table 4.6 Rare 9-point features in two-core fingerprints at different fingerprint intervals

Results for Single-Core Fingerprints: The results for single-core fingerprints are shown in

Table 4.7. It shows that for 1-2 fingerprints, at least 1 rare feature was found when compared

with 1000 fingerprints. For the fingerprints from 1-6 and 10, at least 1 rare feature was found

when compared with 500 fingerprints.

For single-core fingerprints, Table 4.8 shows the number of unmatched 9 point features present

after comparing with 100, 300, 600, 900, 1000 fingerprints.

Fingerprint

100

fingerprints

compared

500

fingerprints

compared

1000

fingerprints

compared

1500

fingerprints

compared

1 286590 2585 301 80

2 68777 1107 26 1

3 12010 74 1 0

4 23668 31 1 0

5 15765 3 0 0

6 14603 2 0 0

7 5807 6 0 0

8 41 1 0 0

9 48679 29 0 0

10 3356 0 0 0

76

Table 4.7 Rare 9-point features in single-core fingerprints

Table 4.8 Rare 9-point features in single-core fingerprints at different fingerprint intervals

Fingerprint

Minutia

#3-

points

#Single-core

fingerprints

compared

Total

fingerprints

compared

#9-points

considered

Rare 9-

points

1 29 1437 1300 4023 1000000 5

2 35 1500 1000 3723 1000000 3

3 35 1500 900 3623 706722 15

4 35 1500 800 3523 787825 16

5 35 1500 500 3223 1000000 11

6 28 896 800 3523 790150 1

7 30 811 100 2823 761774 231

8 33 1500 100 2823 1000000 12

9 35 1500 300 3023 1000000 1

10 35 1500 900 3623 818980 1

Fingerprint

100

Fingerprints

compared

300

Fingerprints

compared

600

Fingerprints

compared

900

Fingerprints

compared

1000

Fingerprints

compared

1 63472 940 17 7 7

2 169299 28444 503 4 3

3 15625 380 19 15 0

4 223982 3468 75 0 0

5 26297 379 0 0 0

6 21962 279 15 0 0

7 231 0 0 0 0

8 15 0 0 0 0

9 159 1 0 0 0

10 40266 470 14 1 0

77

From the above results, it can be seen that arch-core fingerprints have more rare features

compared to single-core and two-core fingerprints. This is because of their lower proportion in

the database. Also two-core fingerprints have more rare features compared to single-core

fingerprints because of the comparatively lower proportion of two-core fingerprints in the

database and also because of more matching criteria; with 2 cores, total 6 minutiae distances of

which 3 are from a core are considered and with 1 core, only 3 minutiae distances from the core

are considered. The matching criteria of two-core fingerprints help in locating the position of

triple in a fingerprint more accurately.

In Figures 4.21 and 4.22, some rare 9-point features identified in a single-core fingerprint are

shown. The fingerprint used in this figure is taken from SD-27 (Special Database).These rare

features are statistically rare 9-point features.

From the above results, for fingerprints of different cores, it can be seen that some of the

fingerprints have at least one rare feature when compared with 1000 fingerprints of identical

core. This means that this rare feature occurs only once in 1000 fingerprints. Also, these 30

fingerprints have many rare 9-point features when compared with a small set of 100 fingerprints.

The rare features identified by the above algorithm are statistically rare features. These rare

features can be very valuable when they are identified in the latent fingerprint. They will boost

the confidence of the evidence and help in making a confident court judgment. It should be noted

that the rare features identified in N randomly sampled fingerprints may find a match in a set of

different N randomly sampled fingerprints. There is always a probability of finding a match for

these rare features. However, their occurrence would be still statistically rare. Even if these

features find a match in a different set of fingerprints, they will have a few matches which still

makes them rare.

The algorithm used in this work can be applied to any fingerprint database to extract rare

features. The tolerance parameters are relaxed enough to ensure that impressions of the same

finger match, so they need not be changed when a new database is used.

78

 Figure 4.21 Rare 9-point features identified in a single-core fingerprint

79

Figure 4.22 Additional rare 9-point features identified in a single-core fingerprint

80

Chapter 5: Conclusions and Future Work

In this thesis, a method was proposed to accelerate fingerprint triplet-based matching techniques

using GPUs. Also, another method was proposed for mining rare features in fingerprints using

core points.

In Chapter 3, an existing algorithm used for fingerprint matching is parallelized and implemented

on GPUs. Shared Memory and other optimization techniques were used to accelerate the

algorithm. The sequential and parallel algorithms are applied on a large database of 18,649

fingerprints and the execution times are compared. The parallel algorithm takes less than two

hours whereas the sequential algorithm takes 60 hours. A speedup of 40.2 times was obtained by

using the parallel algorithm. Thus, this method shows that using GPUs for fingerprint matching

can greatly reduce the matching time for larger databases.

In Chapter 4, various kinds of distortion that are observed in fingerprints are discussed. It was

observed that the distortion is higher for spatial distances and ridges crossed between minutiae

and methods were proposed to cope with these distortions. By using higher thresholds, the

number of matches between two fingerprints is large even though the fingerprints are from

different fingers. To reduce the number of matches, usage of core points was proposed which

helped in identifying the location of triples in the fingerprints and thereby reduced number of

matches. A set of novel parameters was used for triplet matching and it was extended to 6-point

and 9-point comparisons. This algorithm helped in eliminating false matches and it can be used

as a fingerprint matching tool. The same algorithm was used for mining rare features in

fingerprint and it was observed that in every fingerprint that was used for mining rare features,

there were a small percentage of rare 9-point features. Some rare 9-point features that were

identified in some of the fingerprints occur only once in 1000 fingerprints. These rare features

when identified in a latent fingerprint can help in increasing the confidence of the evidence.

The rare features identified by this method are truly statistically rare and there is no possibility

for false positives. This is because of the relaxed thresholds used. Although the rare feature can

find a match in a slightly different database, it would still have a few matches which would still

make that feature rare. However, there is a chance that some of the rare features might not have

81

been identified (presence of false negatives) because of relaxed thresholds. A feature which is

rare might have found a match because of relaxed thresholds.

There is lot of scope for future work in this area. There are many 3-points, 6-points and 9-points

that still have false matches. There is scope to reduce such false matches by using more matching

parameters. Because of these false matches, a feature which may be originally rare may find a

match in the database. The key to find rare features is to reduce the number of false matches.

Ridge Flow as Matching Parameter: The ridge flow patterns form the non-minutiae features of

the fingerprints. These ridge flow patterns have higher discriminatory power when the triples are

compared. A combination of minutiae and non-minutiae based features would help in reducing

the false matches in fingerprint matching.

Minutiae Density as Matching Parameter: The neighboring minutiae around a triple can be

used in some way to reduce the number of matches. A circle of some fixed radius can be

considered around a triple allowing some tolerance levels and various characteristics of minutiae

that fall in this circle can be analyzed such as the number of minutiae, distance, ridge counts,

location of minutiae with respect to the core and the triple.

Quantifying Rarity: This thesis work shows that for the 30 fingerprints that were randomly

selected to mine rare features have a small set of rare features. But how these rare features

influence the matching score between two fingerprints has to be quantified. Depending on the

number and occurrence of these rare features, a method has to be developed to understand their

effect on the matching score. For example, a rare feature whose occurrence is 1 in 1000

fingerprints has higher confidence level than a rare feature whose occurrence is 1 in 100

fingerprints.

Parallelization using GPUs: By using the techniques used for parallelizing fingerprint matching

algorithm discussed in Chapter 3, a new parallel algorithm can be developed for triplet based

matching using core points and for mining rare features.

Calculation of Tolerance Parameters: In this work, to calculate the tolerance parameters, the

corresponding minutiae were identified manually, which is the most time-consuming process.

There is a need for a tool, which would identify the corresponding minutiae and calculate the

82

tolerances for all kinds of distortions. There are some existing methods [39, 40]which help in

selecting the thresholds to some degree, but development of a fully functional tool would aid

fingerprint matchers.

Reducing the search space of 9-point features: It was identified that some triples, which are

almost equilateral or almost isosceles in shape have more matches across fingerprints. It is less

likely that any 9-point feature formed by such triples is a rare feature. By removing 9-point

features formed by such triples from the search space, time taken for comparisons can be greatly

reduced.

Handling Data Complexity: In this work, only a small set of minutiae and only a maximum of 1

Million 9-point features from the reference fingerprint are considered. A task for future

implementations would be to consider all the possible 9-point features from all the minutiae to

mine rare features. There is a need to find methods to handle data complexity and longer run-

times involved in this kind of approaches.

83

Bibliography

[1] A. Newman, Fingerprinting's Reliability Draws Growing Court Challenges, N.Y. Times,

April 7, 2001.

[2] D. R. Ashbaugh, Quantitative-qualitative friction ridge analysis: An introduction to basic

and advanced ridgeology, Boca Raton, FL: CRC Press, 1999.

[3] M. R. Hawthorne, Fingerprints: Analysis and Understanding, CRC Press, 2008.

[4] S. Pankanti, S. Prabhakar and A. K. Jain, On the Individuality of Fingerprints, vol. 24, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2002, pp. 1010-1025.

[5] National Institute of Justice, Forensic Sciences: Review of Status and Needs, U.S

Department of Justice, 1999.

[6] National Institute of Justice, Forensic Friction Ridge (Fingerprint) Examination Validation

Studies, U.S. Department of Justice, Solicitation, 2000.

[7] National Research Council of the National Academies, Strengthening Forensic Science in

the United States: A Path Forward, Washington, DC: The National Academies Press, 2009.

[8] K. E. Hoyle, N. J. Short, M. S. Hsiao, A. L. Abbott and E. A. Fox, "Minutiae+ friction

ridges= triplet-based features for determining sufficiency in fingerprints," London,

Proceedings: 4th International Conference on Imaging and Crime Detection (IDCP-11),

Nov. 2011.

[9] K. Hoyle, Minutiae Triplet-Based Features with Extended Ridge Information for

Determining Sufficiency in Fingerprints, Blacksburg, VA, USA: MS Thesis, Virginia

Polytechnic Institute and State University, 2011.

[10] M. A. Medina-Pérez, M. García-Borroto, A. E. Gutierrez-Rodriguez and L. Altamirano-

84

Robles, Improving Fingerprint Verification Using Minutiae Triplets, vol. 12, Sensors, 2012.

[11] X. Tan and B. Bhanu, Fingerprint matching by genetic algorithms, vol. 39, Pattern Recogn,

2006, pp. 465-477.

[12] G. Parziale and A. Niel, A Fingerprint Matching Using Minutiae Triangulation, Springer

ed., vol. 3072, Berlin/Heidelberg: International Conference on Biometric Authentication

(ICBA), 2004, pp. 1-50.

[13] D. Maltoni, D. Maio, A. K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition

(2nd Edition), Springer, 2009.

[14] H. C. Lee and R. E. Gaensslen, Advances in Fingerprint Technology, New York: Elsevier,

2001.

[15] C. Champod, C. J. Lennard, P. Margot and M. Stoilovic, Fingerprint Detection Techniques,

CRC Press , 2004.

[16] C. Wilson, G. Candela and C. Watson, Neural network fingerprint classification, vol. 1,

Journal of Artificial Neural Networks, 1994, pp. 203-228.

[17] S. Chikkerur and N. Ratha, Impact of Singular Point Detection on Fingerprint matching

performance, Proc. Fourth IEEE Workshop Automatic Identification Advanced

Technologies, 2005, pp. 207-212.

[18] X. Jiang and W. Y. Yau, Fingerprint minutiae matching based on the local and global

structures, vol. 2, Proceedings. 15th International Conference on Pattern Recognition, 2000,

pp. 1038-1041.

[19] N. Ratha, R. Bolle, V. Pandit and V. Vaish, Robust Fingerprint Authentication Using Local

Structural Similarity, Proc. Fifth IEEE Workshop Applications of Computer Vision, 2000.

[20] R. Germain, A. Califano and S. Colville, Fingerprint matching using transformation

parameter clustering, vol. 4, IEEE Computational Science and Engineering, 1997, pp. 42-

85

49.

[21] B. Bhanu and X. Tan, A Triplet Based Approach for Indexing of Fingerprint Database for

Identification, Springer ed., vol. 2091, Berlin/Heidelberg: Audio- and Video-Based

Biometric Person Authentication, 2001, pp. 205-210.

[22] Z. M. Kovacs-Vajna, A fingerprint verification system based on triangular matching and

dynamic Time Warping, IEEE Transactions on Pattern Analysis and Machine Intelligence,

2000, pp. 1266-1276.

[23] T. Jea and V. Govindaraju, A minutia-based partial fingerprint recognition system, vol. 38,

Pattern Recognition, 2005, pp. 1672-1684.

[24] T. Jea, Minutiae-Based Partial Fingerprint Recognition, NY, USA: MS Thesis, State

University of New york, 2005.

[25] M. Ghazvini, H. Sufikarimi and K. Mohammadi, Fingerprint Matching Using Genetic

Algorithm and Triangle Descriptors, Tehran, Iran: Proceedings of the 19th Iranian

Conference on Electrical Engineering, 2011, pp. 1-6.

[26] X. Chen, J. Tian, X. Yang and Y. Zhang, An algorithm for distorted fingerprint matching

based on Local Triangle Feature Set, vol. 1, IEEE Transactions on Information Forensics

and Security, 2006, pp. 169-177.

[27] J. Zheng, Y. Gao and M. Zhang, Fingerprint Matching Algorithm Based on Similar Vector

Triangle, Tianjin, China: Proceedings of the 2nd International Congress on Image and

Signal Processing (CISP '09), 2009, pp. 1-6.

[28] Y. Feng, J. Feng, X. Chen and Z. Song, A Novel Fingerprint Matching Scheme Based on

Local Structure Compatibility, vol. 4, Hong Kong, China: Proceedings of the 18th

International Conference on Pattern Recognition, 2006, pp. 374-377.

[29] W. Xu, X. Chen and J. Feng, A Robust Fingerprint Matching Approach: Growing and

Fusing of Local Structures, vol. LNCS 4642, Seoul, Korea: Proceedings of the 2nd

86

International Conference on Biometrics, 2007, pp. 134-143.

[30] N. Vandal and M. Savvides, CUDA accelerated iris template matching on Graphics

Processing Units (GPUs), IEEE Conference on Biometrics, Theory, Applications and

Systems (BTAS), 2010.

[31] A. Abate, M. Nappi, S. Ricciardi and G. Sabatino, GPU accelerated 3D face registration /

recognition, Springer ed., vol. 4642, Heidelberg: International Conference on Biometrics

(ICB), 2007, pp. 938-947.

[32] P. Gutierrez, . Lastra, F. Herrera and J. Benitez, A high performance fingerprint matching

system for large databases based on GPU, IEEE Transactions on Information Forensics and

Security, 2013.

[33] NVIDIA, "GPU Computing," [Online]. Available: www.nvidia.com.

[34] NVIDIA, Popular GPU-Accelerated Applications.

[35] NVIDIA, "GeForce GTX 200 GPU Technical Brief," 2008.

[36] NVIDIA, CUDA Programming Guide.

[37] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman and A. K. Jain, "FVC2000: Fingerprint

Verification Competition," vol. 24, IEEE Transactions on Pattern Analysis and Machine

Intelligence, March 2002.

[38] Neurotechnology, "Verifinger SDK," 2012. [Online]. Available:

http://www.neurotechnology.com.

[39] L. Shen, A. Kot and W. Koo, Quality Measures of Fingerprint Images, Springer ed., vol.

2091, J. Bigun and F. Smeraldi, Eds., Berlin / Heidelberg: Audio- and Video-Based

Biometric Person Authentication, pp. 266-271.

[40] Y. He, J. Tian, Q. Ren and X. Yang, Maximum-Likelihood Deformation Analysis of

Different-Sized Fingerprints, Springer ed., vol. 2688, J. Kittler and M. Nixon, Eds., Berlin /

87

Heidelberg: Audio- and Video-Based Biometric Person Authentication, 2003, pp. 1062-

1062.

