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A fingerprint matching algorithm with a novel set of matching parameters based on core points 

and triangular descriptors is proposed to discover rarity in fingerprints. The algorithm uses a 

mathematical and statistical approach to discover rare features in fingerprints which provides 

scientific validation for both ten-print and latent fingerprint evidence. A feature is considered 

rare if it is statistically uncommon; that is, the rare feature should be unique among N (N>100) 

randomly sampled prints. A rare feature in a fingerprint has higher discriminatory power when 

it is identified in a print (latent or otherwise). In the case of latent fingerprint matching, the 

enhanced discriminatory power from the rare features can help in delivering a confident court 

judgment. In addition to mining the rare features, a parallel algorithm for fingerprint matching 

on GPUs is also proposed to reduce the run-time of fingerprint matching on larger databases. 

Results show that 1) matching algorithm is useful in eliminating false matches. 2) each of the 30  

fingerprints randomly selected to mine rare features have a small set of highly distinctive 

statistically rare features some of whose occurrence is one in 1000 fingerprints. 3) the parallel 

algorithm implemented on GPUs for larger databases is around 40 times faster than the 

sequential algorithm. 
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Chapter 1: Introduction 

 

1.1 Motivation 

 

Fingerprint evidence has been challenged many times in the past because of lack of scientific 

backing of fingerprint identification process [1]. The process of matching latent fingerprints has 

never been scientifically tested. There is a need for scientific validation of latent fingerprint 

evidence because Automated Fingerprint Identification Systems (AFIS) and human examiners 

face great challenges from latent fingerprints as they have very few details and it is difficult to 

make a court judgment about identification or exclusion of the evidence. In the jury, a latent 

fingerprint with some kind of distinctiveness proves to be highly distinguishing and will provide 

significant confidence to the evidence.  

Friction ridge patterns on human fingers are considered to be unique to every individual [2, 3, 4], 

but there has been no proven mathematical or statistical approach to quantify the rarity of these 

friction ridge patterns. In this work, the individuality of fingerprints is explored by finding 

statistically rare features with high discriminatory power that are obtained after comparisons with 

thousands of fingerprints. The goal to identify individuality in fingerprints is further motivated 

by the need expressed by National Institute of Justice (NIJ) in [5, 6] and by the National 

Academy of Sciences (NAS) in [7] for validating the science behind fingerprint identification 

methods.   

The existing fingerprint triplet-based matching techniques take a significant amount of time 

when they are run sequentially on a Central Processing Unit (CPU) [8, 9]. When a large database 

of fingerprints is considered, the matching can take up to several days. The use of multi-

triangular features which are formed by combining multiple triples in a fingerprint showed that 

certain distinctive features can be extracted from fingerprints [9]. Each fingerprint has millions 

of multi-triangular features and these further increases the total run-time because, as the number 

of the multi-triangular features increases in a fingerprint, the number of computations and 
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comparisons required increases and hence the run-time of the algorithm increases. There is a 

need to reduce the run-time and GPGPUs (General Purpose computing on Graphics Processing 

Units) provide the ideal platform for parallelizing triplet-based feature matching techniques and 

help in reducing the time taken. The feature matching technique [8] is easily parallelizable given 

that the same matching criteria are applied for all the features. This matching technique is similar 

to SIMD (Single Instruction Multiple Data) where the same matching technique is applied for all 

the data. Also, GPUs are suitable to applications that are computationally intensive and operate 

on large data sets. The thousands of triangular features and millions of multi-triangular features 

can be compared simultaneously on multiple threads of a GPU and all the computations related 

to matching can be performed on the GPU.  

1.2 Contributions of this Thesis 

 

Although the main focus of this thesis work is mining rare features in fingerprints, the work 

initially started with parallelizing an existing triplet-based feature matching algorithm and 

mining rare features by using the same GPU parallel algorithm. The tolerance levels of some of 

the matching parameters used for parallelization were stringent and it was later realized that 

these tolerance levels needed to be changed. The work related to fingerprint matching on GPUs 

is retained in this thesis because it shows methods and optimization techniques which can 

accelerate the algorithm. Though triangular features are used in a hierarchical fashion in this 

thesis (3-points, 6-points and 9-points), most of the triplet-based matching algorithms use only 

triangles (3-points) for fingerprint matching [10, 11, 12]. The GPU parallel algorithm technique 

proposed for 3-point comparisons can very well be used for fingerprint matching (using different 

tolerances) and equivalent speedups can be achieved. The method used for 6-point and 9-point 

comparisons on GPUs can also be adopted for future implementations. The contributions of this 

thesis are as follows: 

 Parallelizing fingerprint triplet-based feature matching on GPUs. 

 Detailed discussion of distortion in different impressions of the same finger. 

 Development of a novel fingerprint triplet-based matching algorithm using core points 

for mining statistically rare features in a fingerprint to aid in latent fingerprint matching.  
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 Identification of some rare features in 30 fingerprints that are randomly selected from a 

database of 11,036 fingerprints. 

1.3 Outline 

 

Chapter 2 lays the background for this thesis. Triplet based feature matching techniques and 

previous works on rarity in fingerprints are discussed. Since this work involves usage of GPUs 

for fingerprint feature matching, NVIDIA GPU architecture and CUDA (the parallel 

programming and computing platform) are briefly discussed. 

Chapter 3 discusses the GPU implementation of triplet based feature matching algorithms on two 

different databases. Some optimizations and usage of shared memory which enhanced the GPU 

speedup are also discussed. 

Chapter 4 discusses the matching algorithm using core points for finding statistically rare 

features in fingerprints. The different kinds of distortion in fingerprints are also discussed.  

Chapter 5 concludes the thesis work and proposes some future work. 
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Chapter 2: Background 

 

2.1 Fingerprint Representation 

 

Fingerprints are characterized and defined by their unique ridges and valleys (see Figure 2.1). 

Ridge details in a fingerprint are described in a hierarchical fashion – Level 1: Overall global 

ridge flow pattern, Level 2: Minutia points, Level 3: Pores, Local shape of ridges. Fingerprint 

ridges usually form distinctive shapes in certain regions called singular regions or singularities 

broadly classified into loop, whorl and delta. Minutiae are the smaller details of the fingerprints 

where a ridge comes to an end, called ridge ending or termination, or a ridge divides into two, 

called ridge bifurcation (see Figure 2.2). The minutiae are usually represented by x- and y- 

coordinates and the angle made by the tangent to the ridge with the horizontal axis as shown in 

Figure 2.3. Minutiae are the most commonly used features in automated fingerprint matching. At 

Level 3, ridge attributes such as shape, width, edge contour, sweat pores, incipient ridges, scars 

and creases can be extracted. Though level 3 features are highly distinctive, their reliable 

detection requires high resolution scanners. 

 

                             Figure 2.1 Ridges and valleys in a fingerprint 
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Figure 2.2 Minutiae ridge ending and ridge bifurcation 

 

Figure 2.3 a) a ridge ending minutia: [x0, y0] are the minutia coordinates; θ is the angle that the 

minutia tangent forms with the horizontal axis; b) a bifurcation minutia: θ is now defined by 

means of the ridge ending minutia corresponding to the original bifurcation that exists in the 

negative image. [13] (from D. Maltoni, D. Maio, A. K. Jain and S. Prabhakar, Handbook of 

Fingerprint Recognition (2nd Edition), Springer, 2009) (Used under fair use) 

2.2 Latent Fingerprints 

 

Latent fingerprints are the impressions which are accidentally left on any surface and they may 

not be obvious to the naked eye, but are extracted through more refined techniques. They are 

usually partial fingerprints with limited details (fewer minutiae) and pose a great challenge for 

fingerprint matching. One such latent fingerprint is shown in Figure 2.4. These prints are 

deposited because of the sweat produced from the fingers that adheres to the friction ridges of the 
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finger and when the finger is placed on any surface such as glass, table and wall, an impression is 

left behind. To expose these latent impressions, fingerprint technicians use powder dusting, 

ninhydrin spraying, iodine fuming and silver nitrate soaking [14]. Better procedures [15] have 

been developed based on chemical reagents and systemic approaches to expose and lift the latent 

fingerprints when they are deposited on wet surfaces and untreated wood. [13].  

 

Figure 2.4 Latent fingerprint 

2.3 Fingerprint Classification 

 

As the number of enrolled users increases in a fingerprint identification system, more 

comparisons are required to identify a fingerprint match. Hence, the time required for performing 

these comparisons also increases. Decreasing the number of comparisons required can reduce the 

time taken. In order to achieve this, the fingerprints in the database are partitioned into subsets. 

Typically fingerprints can be divided into five classes based on global ridge patterns –right loop, 

left loop, whorl, arch and tented arch [13]. These five classes of fingerprints are shown in Figure 

2.5. Some parts of the ridge patterns of a fingerprint form semicircles or closed loops known as 

core points. Some parts form a triangular pattern called as a delta point. The core regions are 

shown by blue-colored dots and delta regions are shown by orange-colored dots in Figure 2.5. 

The fingerprints with a right loop or a left loop have a single core point and a single delta point. 

A whorl has two core points and two delta points. A tented arch has a single delta point. An arch 

has no core points and no delta points.  
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(a) 

Figure 2.5 Classification of fingerprints (a) right loop (b) left loop (c) whorl (d) two loops (e) 

tented arch (f) arch. 

(b) 

(c) (d) 

(e) (f) 
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The distribution of the five classes of fingerprints is non-uniform in a typical database. Wilson et 

al. considered more than 222 million prints and found that the proportions of fingerprints in arch, 

tented arch, left loop, right loop and whorl is 3.7%, 2.9%, 33.8%,  31.7% and 27.9%, 

respectively [16]. In the FBI database that is used for this work, the percentage of tented arch and 

arch together, left loop and right loop together and whorl are 5.3%, 75.3% and 19.4%, 

respectively. Hence, by classifying the fingerprints into these classes, the number of fingerprints 

to be used for identification purposes drastically decreases. Singular points, when reliably 

detected, also help in reducing the fingerprint verification time [17]. In this thesis work, singular 

points are used for fingerprint matching. 

2.4 Previous Work in Triplet-Based Fingerprint Matching 

 

Fingerprint matching can be classified into correlation-based matching, minutiae-based matching 

and non-minutiae feature-based matching. In correlation-based techniques, the two fingerprint 

images to be compared are aligned over one another and the amount of correlation is calculated. 

The correlation is computed locally over certain regions of interest in the fingerprint to overcome 

non-linear distortion. 

Non-minutiae based feature matching is mostly used in the cases where the area of the 

fingerprint is small with 4-5 minutiae in it. In these cases, minutiae based matching cannot be 

used. For non-minutiae based feature matching, the most commonly used features are number, 

type and position of core and delta points, global and local texture information, geometrical 

attributes and spatial relationship of ridge lines (length and curvature of ridge lines is compared) 

and level 3 features. These techniques are often used in addition to minutiae based techniques to 

improve accuracy. 

Minutia based matching is well known and used widely. Fingerprint is represented as a feature 

vector with minutiae as its elements. Each minutia is further described by many characteristics 

such as location, type, quality and orientation. Typically, minutiae are represented as m = (x, y, θ) 

where (x, y) is the location of minutia in the fingerprint and θ represents the direction of the 

minutia. A reference fingerprint r and a target fingerprint t can be represented as shown below. 
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The reference and target fingerprints are considered a match when the spatial distance between 

the minutia points is smaller than a tolerance r0 and the direction difference between them is 

smaller than a tolerance θ0. The tolerances are considered to compensate for the feature 

extraction errors and the plastic distortion that cause the minutiae positions to change. The 

fingerprints need to be aligned to maximize the number of matching minutiae. This alignment 

requires displacement and rotation of the fingerprints. Scale should also be considered when the 

fingerprints are taken at different resolutions. Also distortion tolerant geometric transformations 

are considered while matching fingerprints.  

Alignment is the most important step for minutia based matching. A few matching segments of 

pairs of minutiae between both the fingerprints are identified and the alignment parameters 

(displacement, rotation) are derived based on them. The fingerprints are aligned and the 

remaining minutiae in the fingerprints are compared within some tolerance levels. The best 

alignments are compared for consistency. The maximum number of mated pairs, fraction of 

mutually consistent alignments, minutiae direction and ridge counts determine the final score. 

This method is computationally very expensive since it works in an iterative fashion. Many 

algorithms have been proposed for fingerprint alignment that use singularity- based (core point 

and delta point) pre-alignment in which the singularities are superimposed and ridge based pre-

alignment in which the length and orientation of ridges is compared.  

To avoid the need to perform alignment, global and local minutiae matching algorithms have 

been proposed that use the global spatial relationships and local features which are translation 

and rotation invariant. One method using global minutiae matching involves using an intrinsic 

coordinate system (ICS) which runs along hypothetical axes defined according to the ridge 

orientation. Local minutiae matching involve use of local structures which are invariant to global 

transformations such as translation and rotation. However, by using only local minutiae for 

fingerprint matching, the global spatial relationships which have high distinctive power are 

eliminated and therefore reduce the information for discriminating fingerprints. Some of the 

earliest approaches of local minutiae matching involved use of local structures which are defined 
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by the number of minutiae falling inside some regions followed by some local structures defined 

by the relationship between a minutiae and its neighboring minutiae invariant to translation and 

rotation of fingerprints.   

Jiang et al. used local structures that are formed by a central minutiae and its two nearest 

neighboring minutiae (see Figure 2.6) [18]; the feature vector vi for the central minutia mi whose 

closest minutiae are mj and mk is defined by the following. 

vi = {dij, dik, θij, θik, φij, φik, nij, nik, ti, tj, tk} 

dij is the distance between minutiae mi and mj, θij is the direction difference between the angles θi 

and θj of minutiae mi and mj, φij is the direction difference between angle θi of minutia mi and the 

edge joining mi and mj, nij is the number of ridge counts between minutiae mi and mj, ti is the type 

of minutia mi.  

 

Figure 2.6 Features of local structures used by Jiang and Yau [13] (from D. Maltoni, D. Maio, A. 

K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition (2nd Edition), Springer, 2009) 

(Used under fair use) 

 

Ratha et al. used graph notation, a star in which all the minutiae around a central minutia whose 

distance is smaller than dmax are the vertices in the graph and the edges are formed by joining the 

central minutia with the remaining minutiae in the graph [19]. Each star in the input fingerprint is 

compared against every star in the template.  
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The matching of local structures invariant to translation and rotation forms the basis for most of 

the fingerprint matching techniques proposed after year 2000 [13]. Minutiae triangles or triplets 

have been first used by Germain et al. for fingerprint indexing [20]. Later, Bhanu et al. used 

minutia triangles for fingerprint indexing in which they chose angles, triangle handedness, 

triangle type, triangle direction and maximum side length as the parameters [21]. Kovacs-Vajna 

et al. and Parziale et al. also used minutiae triangles for fingerprint matching [12, 22]. Kovacs-

Vajna et al. used only those triangles which are formed by Delaunay triangulation (minutiae 

points forming triangles are selected such that no point lies inside the circumference of any 

triangle) to cope with the non-linear deformations in fingerprint. By using Delaunay 

triangulation, triangles with smaller angles are skipped. They showed that distortion in local 

areas can be more easily controlled than global deformations. Jea et al. used minutia triangles for 

partial fingerprint matching [23, 24]. Their triangle selection and matching procedure is similar 

to that of Jiang and Yau [18]. However, minutia type and ridge counts are removed in their 

method because minutia type is difficult to distinguish between fingerprints of the same finger 

and ridge counts are not extracted by all the feature extracting tools.  

Tan et al. and Ghazvini et al. used minutiae triangles for fingerprint verification using genetic 

algorithms [11, 25].  Tan et al. used a fitness function that checks the global consistency of 

minutiae followed by minutiae triangles to verify detailed matching. Chen et al., Zheng et al. and 

Feng et al. also used minutiae triangles for fingerprint matching [26, 27, 28] where they used 

different matching parameters to overcome the non-linear distortion in fingerprints. The most 

commonly used matching parameters in the above methods are spatial distances between 

minutiae, type, angles, direction, ridge counts between minutiae. Some methods have avoided 

use of minutiae type because it is unreliable and also spatial distances which are highly distorted. 

Medina-Perez et al. proposed an algorithm called M3g1 for triplet based matching which 

discards some of the unmatched triplets (which are typically matched by other algorithms) in the 

initial stage and used direction and side lengths as the basic matching criteria [10]. This thesis 

work is similar to the methods used by Hoyle et al. and Xu et al. in which minutiae triangles are 

used in a hierarchical fashion forming 2-triangle and 3-triangle combinations [9, 29]. 
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2.5 Previous Work on Rarity in Fingerprints 

 

Hoyle et al. mined for distinctive features fingerprints and they discovered a set of 10 rare 

features in a database of 93 fingerprints [9]. Rare features are the features whose occurrence is 

low in a database. Some of the parameters that they used in mining for rare features are intra-

shared ridge segments, inter-shared ridge segment, intra ridge counts, total ridge counts, side 

lengths to ridge count ratio and vice-versa. Intra-shared ridge segments refer to minutiae in a 

triplet that share the same ridge and inter-shared ridge segment refers to minutiae in a 2-triangle 

or 3-triangle combination that share the same ridge. Hoyle et al. searched for rare features by 

fine-tuning their parameters such that a single feature is returned after every search. This thesis 

work is similar to the work of Hoyle et al. in that the methods used in this thesis also search for 

statistically rare features in a fingerprint by using single, two and three triangle combinations, 

however the search is performed using different matching parameters that use singular points and 

predefined search parameters are not used while mining for rare features. Also minutia type is 

not considered because of the ambiguity in ridge endings and bifurcations [13]. Identifying 

minutiae that share the same ridge segment also depends largely on minutiae type. When a ridge 

bifurcation becomes a ridge ending because of finger pressure variations, the minutiae that 

shared the same ridge (when the minutia was a bifurcation) before do not share the same ridge 

anymore. Hence, inter and intra shared ridge segments are not used in this work. The search for 

rare features in this work returns a set of unmatched triangles for each fingerprint after 

comparing with a larger database. By using a larger database, rare features that are truly 

statistically rare can be identified because a feature that is rare in 100 fingerprints may find a 

match in 1000 fingerprints. So, the confidence of rare features obtained by using larger databases 

is higher. 

2.6 NVIDIA GPU 

 

GPUs are used widely in applications that are computationally intensive because they can 

distribute the work among several cores. GPUs are well suited for applications that involve data 
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parallel computations where the arithmetic intensity is much higher than memory operations. 

The latency for memory operations is hidden on a GPU with arithmetic calculations. 

GPUs have already been used in various biometric applications such as Iris Matching, Face 

recognition and fingerprint matching [30, 31, 32]. Fingerprint matching becomes challenging 

especially when large databases are considered because of the longer run-times. There are some 

existing techniques that use GPUs to accelerate fingerprint matching algorithms. Gutierrez et al. 

used GPUs for fingerprint matching on large databases [32]. They consider a 3-dimensional 

structure called cylinder associated with each minutia which stores the contributions of each of 

the neighboring minutiae based on their location and direction. They use only location and 

orientation of the minutiae as the matching criteria.    

GPUs have always been used for graphics applications since their invention, but in the recent 

years, they are widely used for accelerating scientific applications marking the advent of 

GPGPUs, or General Purpose computation on GPU.           

Many real-world applications can be parallelized on a GPU and can run significantly much faster 

than on a CPU [33]. GPUs are used in a wide variety of applications such as computation 

chemistry and biology, bioinformatics, defense and intelligence, computational finance, 

electronic design automation, computer aided design, computer vision, video processing, 

scientific computing to name a few [34].  

A CPU consists of a fewer cores while a GPU consists of thousands of smaller and efficient 

cores designed for parallel computing. A combination of CPU and GPU are generally used 

where the serial portion of the application runs on the CPU and the parallel portion of the 

application runs on the GPU. The data is transferred between CPU and GPU.  

Fingerprint matching is both data intensive and computation intensive application. In this thesis 

work, GPUs are used for fingerprint matching on larger databases by using triangular features. 

All the comparisons which involve computations are performed on the GPU. 
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2.7 CUDA 

 

CUDA stands for “Compute Unified Device Architecture”. CUDA is a general purpose 

computing platform developed by NVIDIA for programming on GPUs. CUDA has extensions in 

C and C++ which can be used for parallel programming. CUDA can also be used with other high 

level languages such as FORTRAN. Figure 2.7 shows a code snippet of a saxpy program on 

CPU and GPU. The parallel code for this saxpy program is written in CUDA. 

 

Figure 2.7 Comparison of code between CPU and GPU [33] (from NVIDIA, "GPU Computing," 

[Online]. Available: www.nvidia.com) (Used under fair use) 

In this work, the GeForce GTX 285 device is used. The GeForce GTX 200 GPUs consist of 10 

Thread Processing clusters (TPC). Each TPC consists of 3 Streaming Multiprocessor (SM) and 

each SM in turn is made up of 8 Streaming Processors or Thread Processors.  So, the total 

number of cuda cores or processor cores is 10*3*8 = 240 as shown in Table 2.1 [35].  

Table 2.1 Number of GPU processing cores (from NVIDIA, "GeForce GTX 200 GPU Technical 

Brief," 2008) (Used under fair use) 

Chip TPCs SMs per TPC SPs per SM Total SPs 

GeForce GTX 200 GPUs 10 3 8 240 

 

http://www.nvidia.com/
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In Figure 2.8, the architecture of GeForce GTX 200 GPUs [35] is shown. Each SM consists of 

shared memory and registers. All the SMs access the same local and global memory. 

While programming in CUDA, terms like device, host and kernel are used extensively. A device 

is nothing but the GPU, CPU is the host and kernel is the function that runs on the device. The 

kernel consists of the parallel portion of the application. The threads run in blocks of a grid. A 

grid is a 3-dimensional structure though the third dimension is always 1. A grid consists of 

blocks distributed in a 2-dimensional manner. Each block consists of several threads. In Figure 

2.9, a grid of 6 blocks with 2 rows and 3 columns is shown and Block (1, 1) consists of threads 

with 3 rows and 4 columns [36].  

Streaming Multiprocessor 

Streaming Multiprocessor 

Streaming Multiprocessor 

Texture Cache 

Local and Global Memory 

Shared Memory 

Constant Cache 

Instruction 

Unit 

Registers 

Processor .. 
Registers 

Processor 1 

Registers 

Processor 

Figure 2.8 NVIDIA GT200 architecture [36] (NVIDIA, CUDA Programming Guide ) (Used 

under fair use) 
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There is a limit on number of threads per block, number of blocks per grid. For GTX 285, Figure 

2.10 shows the maximum number of threads and blocks. It also shows some more device 

properties which will be discussed subsequently.  

When a grid is launched, the blocks are enumerated and distributed to the multiprocessors and 

threads in a block run concurrently on one multiprocessor. It is also possible for a multiprocessor 

to run more than one block at a time if there is enough number of hardware resources (shared 

memory and registers) on it to run multiple blocks. In a multiprocessor, threads are executed in 

groups of 32 parallel threads called warps. When a block is assigned to a multiprocessor, the 

threads in that block are divided into warps and these warps get scheduled by a warp scheduler.  

Memory Hierarchy: Each thread has some local memory associated with it. Each block has 

16KB of shared memory accessible to all the threads in that block. All the blocks have access to 

the same global memory. Memory accesses from global memory are much slower than those 

from shared memory. Threads in a block can co-operate with each other by using shared 

 

Block 

(0, 0) 

Grid 

Block 

(0, 1) 

Block 

(0, 2) 

Block 

(1, 0) 

Block 

(1, 1) 

Block 

(1, 2) 

 

Thread 

(0, 0) 

Block (1, 1) 

Thread 

(0, 1) 

Thread 

(0, 2) 

Thread 

(0, 3) 

Thread 

(2, 1) 

Thread 

(2, 0) 

Thread 

(1, 3) 

Thread 

(1, 2) 

Thread 

(1, 1) 

Thread 

(1, 0) 

Thread 

(2, 2) 

Thread 

(2, 3) 

Figure 2.9 Grid of thread blocks (NVIDIA, CUDA 
Programming Guide ) (Used under fair use) 



17 

 

 

 

memory. If all the threads in a block use the same data, this data can be transferred to shared 

memory. After the data is transferred, computations are performed in each thread. Some threads 

may finish copying data to shared memory faster than the other threads. To ensure that all the 

threads in a block finish copying data to shared memory, the function __syncthreads () is used. 

 

Figure 2.10 GTX 285 properties 

2.8 Terminology 

 

This section defines some of the terms used extensively in this thesis. 

3-point feature or triplet or triangle combination: A 3 point feature or a triplet is formed by 

joining any 3 minutia in a fingerprint. A fingerprint containing 50 minutiae has 
50

C3 = 19600 3-

point features.  

6-point feature or two-triangle combination: A 6-point feature is formed by joining any 6 

minutia in a fingerprint. It can also be formed by combining any two 3-point features, but all the 

6 minutia points in the two 3-point features should be different. A fingerprint containing 50 

minutiae has 
50

C6 = 15.89 million 6-point features 

9-point feature or three-triangle combination: A 9 point feature is formed by joining any 9 

minutiae in a fingerprint. It can also be formed by combining three 3-point features. It can also 

be formed by joining a 6-point feature with a 3-point feature with all the minutia points different 

from each other.  A fingerprint containing 50 minutiae has 
50

C9 = 2.50 billion 9-point features. 
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Ridge count or Ridges crossed: The number of the ridges crossed between any two minutiae 

points is the ridge count. In Figure 2.11, an example of ridges crossed between two minutiae 

points is shown. 

 

Figure 2.11 In this example, number of ridges crossed between a and b is 8. [13] (from D. Maltoni, D. 

Maio, A. K. Jain and S. Prabhakar, Handbook of Fingerprint Recognition (2nd Edition), 

Springer, 2009) (Used under fair use) 
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Chapter 3: Fingerprint Feature Matching Using GPUs 

 

3.1 Need for GPUs 

 

Each fingerprint has as many as thousands of 3-point features and millions of 6-point and 9-point 

features. On a CPU, every feature of the fingerprint is matched in a sequential way. The 

matching of millions of features takes significant amount of time. Also, when thousands of 

fingerprints are compared, the computational time increases further. On a GPU, because of 

multiple smaller and efficient cores, multiple threads can run in parallel and thereby multiple 

feature comparisons can be performed in parallel.  

The rest of the chapter discusses GPU comparisons on two databases.  The basic idea of 

implementation is similar for both the databases. For the second database, some optimizations 

and shared memory are used which reduced the time taken to a great extent.  

3.2 Databases 

 

The databases used in this work are FVC2000 DB1 (Fingerprint Verification Competition 2000 

Database 1) [37] with 93 fingerprints, and an FBI database with 74,140 fingerprints. Fingerprint 

matching of FVC2000 DB1 database is discussed first, and later the FBI database fingerprint 

matching is discussed. 

3.3 GPU Comparisons of FVC2000 DB1 Fingerprints 

3.3.1 Input Files 

 

The FVC2000 fingerprints were processed to get text files called minutia files with extension 

.min. The software used to extract the features is NIST Biometric Image Software (NBIS) 

developed by National Institute of Standards and Technology (NIST). These minutia files are 
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augmented by ridge ID numbers for each minutia by our internally developed tool (by Nathan 

Short, Virginia Tech). These ridge ID numbers are the IDs of the ridges forming the minutia 

points. These minutia files contain the coordinates of minutia points, the direction of the minutia 

point given by angle (theta), the quality of minutia, the type of minutia and the ridges of the 

minutia point. The type of minutia is either a ridge ending or a ridge bifurcation. For a ridge 

ending, the number of ridges is 1 whereas for a ridge bifurcation, the number of ridges is 3. The 

quality range for these minutia points is 0-4. A sample minutia file is shown in Figure 3.1.For 

example, the first row in Figure 3.1 shows a minutia point with x-coordinate 56, y-coordinate 

136, angle of 0.1717 radians, quality of 4, minutiae type 1( ridge ending) and formed by a ridge 

whose ridge ID is 21. Some of the minutiae in this figure whose quality is <3 have a type 0. 

These minutiae are false minutiae and they are not considered. Minutiae with type 2 are ridge 

bifurcations. All the minutia points which have quality greater than or equal to 3 are considered.  

 

X-

coordinate 

Y-

coordinate 

Angle Quality Type Ridge 

ID 1 

Ridge 

ID 2 

Ridge 

ID 3 

56 136 0.1717 4 1 21   

284 216 0.35564 2 0 22   

16 197 3.12586 2 0 22   

186 125 1.20723 4 1 23   

115 121 2.20939 4 1 25   

283 275 0.60209 2 0 24   

283 259 0.74768 2 0 26 23 25 

259 270 0.86077 3 1 27   

46 134 2.2026 3 2 29 20 28 

 

Figure 3.1 Sample minutia file 

Also, other data that gives the number of ridges crossed between any two minutia points in a 

fingerprint is used. This data is extracted into ridge count files. Figure 3.2 shows an example of 

one such file. These files have the coordinates of the two minutia points and the ridge count 

between them. For instance, in Figure 3.2, (216, 36) and (111, 31) are coordinates of 2 minutia 

points in a fingerprint and the ridges crossed between them is 3. 
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Figure 3.2 Sample ridge count file 

Comparisons on GPU: The fingerprint feature matching is performed in a step by step manner 

by comparing one fingerprint at a time with the reference fingerprint. In this work, 3 point, 6 

point and 9 point comparisons are made on GPU. Firstly, 3 point comparisons are made on GPU, 

then the results from 3 point comparisons are further used for 6 point comparisons whose results 

are used for 9 point comparisons as shown in Figure 3.3.  

3.3.2 Single Triangle (3-point) Comparisons on the GPU 

 

A triple is formed by a combination of any 3 minutiae points and thousands of such triples exist 

in each fingerprint. On a CPU, the matching can be performed sequentially by comparing a 

single triangle from the reference fingerprint with all the triples from the target fingerprint. In 

contrast, in this implementation on GPU, in each thread, 32 such comparisons are made in 

parallel and the result is stored in a 32-bit integer value. Memory is allocated for reference and 

target triples on GPU and this data is transferred onto GPU using CUDA APIs. A two 

dimensional grid as illustrated in Figure 3.4 is launched to perform comparisons on GPU. 
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The number of blocks is calculated based on the number of reference and target triples. Each 

block consists of 256 threads. In each row of the grid, 256 triples of the reference fingerprint are 

Compare reference 3-points 

with target 3-points 

Collect only those reference 3-

points that have matches and 

their matched target 3-points 

Combine 2 triples to 

form a 6-point and 

compare with target 

Collect only those reference 6- 

points that have matches and 

their matched target 6-points 

Combine each 6-point feature with 

a 3-point feature to form a 9-point 

feature and compare with target 

Figure 3.3 GPU comparisons flowchart 
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compared with all the triples from the target fingerprint. In the first row, the first 256 triples are 

compared with target triples and in the second row, the next 256 triples are compared. In the last 

row of the grid, the last 256 triples of the reference fingerprint are compared.  

The number of rows is given by the following equation. 

                
                           

                        
 

In Figure 3.4, 5 rows of blocks are shown. In the first row, triples 0-255 from reference 

fingerprint are used for comparisons. In the second row, triples 256-511 are used and the last row 

i.e. the fifth row, triples 1024-1279 are used. In each thread of the block, a reference triple is 

compared.  

In each block, 256 triples from the reference fingerprint are compared with 32 triples from the 

target fingerprint. In the first column, 256 reference triples are compared with 0-31 target triples. 

In the second column, 32-63 target triples are compared. The block structure is illustrated in 

Figure 3.5.   

T0, T1, T2 … T255 are the threads in Block (0, 0). In thread T0, reference triple 0 is compared 

with 0-31 target triples. In thread T1, reference triple 1 is compared with 0-31 target triples. 

Similarly, for Block (1, 0) which is in the next row of Block (0, 0), in thread T0, reference triple 

256 is compared with 0-31 target triples and in thread T1, reference triple 257 is compared with 

0-31 target triples. In Block (0, 1) which is in the same row as Block (0, 0), in thread T0, 

reference triple 0 is compared with 32-63 target triples and in thread T1, reference triple 1 is 

compared with 32-63 target triples. 

Matching Criteria: The side lengths of the triples, the sum of angles, the sum of number of ends 

and bifurcations, the sum of number of ends, the sum of number of bifurcations are compared 

between reference and target triples. Reference triples with largest distance > (150) and smallest 

distance < 10 are not considered in comparisons. Local structures have lesser distortion [22], 

hence only those triples whose side lengths are ≤150 are selected. Also the smallest distance 

between minutiae is selected to be >10 to eliminate false minutiae extraction because minutiae 
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are usually not that close to each other. The target triples which match the above criteria are 

considered to be matched.  

 

Figure 3.4 Grid structure for 3-point comparisons 
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Consider a reference triple compared with 32 target triples in a thread. The results for these 

comparisons are stored in an array whose size is equal to the total number of threads in the grid 

given by the following equation. 

                               

                                                           

                              

For the grid shown in Figure 3.4, the array size is 5 * 80 * 256 = 102400. The data transfer 

between CPU and GPU takes considerable time and the amount of data transferred should be 

reduced. Hence, in a block, though 32 target triples are compared, the result is stored in a single 

integer.  

After all the threads finish comparisons, the results are transferred back to CPU. The number of 

triple matches which is the sum of matches of all the reference triples is calculated from these 

results. The results are stored in two arrays – one for the reference triples and the other for target 

triples. The elements in the array are stored in such a way that triples at the same index in the 

two arrays match. Matched reference and target arrays are shown in Figure 3.6. N+1 is the 

number of 3-point matches. R0, R1, R2, R3 … RN are reference triples and T0, T1, T3, T3 … 

0 

0 

1 

… 

31 

T0 

254 

0 

1 

… 

31 

T25

2 

0 

1 

… 

31 

T2 

1 

0 

1 

… 

31 

T1 

255 

0 

1 

… 

31 

T25

Block (0, 0) 

………. 

Figure 3.5 Block structure for 3-point comparisons 
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TN are target triples. Also, R0 matches T0, R1 matches T1, R2 matches T2, R3 matches T3, and 

R4 matches T4 and so on.  

3.3.3 Two Triangle (6-point) Comparisons on the GPU 

 

The matched reference and target arrays from 3-point comparisons are used for 6-point 

comparisons. Two 3-point features can be combined to form a 6-point feature. For example, in 

Figure 3.6, (R0, R1) together form a 6-point feature. Similarly, (R0, R2), (R0, R3) … (R0, RN), 

(R1, R2), (R1, R3) … (R1, RN) … RN-1, RN) form 6-point features. Though a 6-point feature is 

formed by combining two triples, the actual number of minutiae points in a 6-point feature can 

be less than 6 because two triples can have more than one minutiae point in common. In Figure 

3.7 valid and invalid 6-point features are shown. Similarly, 6-point features can be formed by 

combining elements of matched target array. Whenever a 6-point feature is formed from 

elements of reference matched array, a 6-point feature is also formed from the elements of the 

same indices of target matched array. For example, 6-point features (R0, R1) and (T0, T1) are 

formed together and compared. Some of the other comparisons are ((R0, R2) -> (T0, T2)), ((R0, 

R3) -> (T0, T3)), ((R1, RN) -> (T1, TN)) and so on. 

Reference [3-point matches] = {R0, R1, R2, R3, R4, R5, R6, R7…….RN} 

Target [3-point matches] = {T0, T1, T2, T3, T4, T5, T6, T7…….TN} 

 

Figure 3.6 Matched reference and target arrays 
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minutia points 
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5 
6 3 

1 

2 
4 

5 

Invalid 6 point feature with 5 

minutia points 

Figure 3.7 Valid and invalid 6-point features 
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The number of blocks is based on the number of 3-point matches. The main idea is to combine 

one index form the reference matched array with the remaining indices to form a 6-point feature 

and compare in one block.  If n is the number of 3-point matches which is also the size of the 

reference matched array, then the number of blocks is also equal to n. These bocks are 

distributed into the 2-dimensional grid with number of rows equal to √ n and number of columns 

is equal to √n or √n + 1. The grid structure is illustrated in Figure 3.8. In Block 0, all the 

combinations that can be formed with R0 and the remaining 3-point features R1, R2, R3 … RN 

are formed and compared with target 6-point features which are also formed in the exact same 

way as that of reference 6-point features. 

The number of threads in a block is fixed at 256. The number of 6-point features compared in a 

thread is given by the following equation. 

                                          
                        

   
  

 

   
 

Matching criteria: In a 6-point feature, the centroids of both the triples are calculated and the 

distance between the two centroids is calculated. The centroid distances of the reference and 

target fingerprints are compared to find a match. The reference 3-points involved in the 6-point 

feature already match with target 3-points. So, in a 6 point feature, on adding the matching 

criteria for 3-point comparisons, totally 6 sides, sum of angles of both the triples, types of 

minutiae, centroid distances are used for comparisons. Similar to 3-point comparisons, the results 

are saved in two reference arrays – one for each of the triples involved in forming the 6-point 

feature. Similar arrays are also formed for the target triples as shown Figure 3.9. The elements 

R10, R20 from the Reference arrays form a 6-point feature and they match with the 6-point 

feature formed by elements T10, T20 from the target arrays. 
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Figure 3.8 Grid Structure for 6-point comparisons 

 

 

 

 

 

 

 

 

 

 

Ref [3-point matches] = {R0, R1, R2, R3, R4, R5, R6, R7…….RN} 

Tar [3-point matches] = {T0, T1, T2, T3, T4, T5, T6, T7…….TN} 

 

Block 0  

R0+R1->T0+T1 

R0+R2->T0+T2 

R0+R3->T0+T3 

….. 

R0+RN->T0+TN 

Block 1 

R1+R2->T1+T2 

R1+R3->T1+T3 

R1+R4->T1+T4 

….. 

R1+RN->T1+TN 

Block N-1 

RN-1+RN 

→ 

TN-1+TN 

………. 

Grid  

R0+R1->T0+T1: Reference triple R0 is combined with reference triple R1 and 

compared with target triple combination of T0 and T1 

Reference 1 [3-point matches] = {R10, R11, R12, R13, R14, R15, R16, R17…….R1N} 

Reference2 [3-point matches] = {R20, R21, R22, R23, R24, R25, R26, R27…….R2N} 

Target1 [3-point matches] = {T10, T11, T12, T13, T14, T15, T16, T17…….T1N} 

Target2 [3-point matches] = {T20, T21, T22, T23, T24, T25, T26, T27…….T2N} 

Figure 3.9 6-point matches 
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3.3.4 Three Triangle (9-point) Comparisons on the GPU 

 

The matched reference1, reference2, target1 and target2 arrays from 6-point comparisons and 

matched reference and target arrays from 3-point comparisons are used for 9-point comparisons. 

A 6-point feature can be combined with a 3-point feature to form a 9-point feature. In Figure 

3.11 three arrays of reference triples and also three arrays of target triples are shown. (R10, R20, 

R30) together forms a 9-point feature. Similarly, (R10, R20, R31), (R10, R20, R32) … (R10, 

R20, R3N), (R11, R21, R31), (R11, R21, R32) … (R11, R21, R3N) … (R1N, R2N, R3N) form 

9-point features. It should be noted that only elements of the same index from Reference1 and 

Reference2 arrays form a 6-point feature and it can be combined with any element of Reference3 

array. Some invalid 9-point features may also be formed. Figure 3.10 shows valid and invalid 9-

point features. The invalid features are filtered out before comparisons. 9-point features are also 

formed by combining elements of matched target arrays. Whenever a 9-point feature is formed 

from elements of reference matched arrays, a 9-point feature is also formed from the elements of 

the same indices of target matched arrays. For example, 9-point features (R10, R20, R30) and 

(T10, T20, T30) are formed together and compared. Some of the other comparisons are ((R10, 

R20, R31) → (T10, T20, T31)), ((R10, R20, R32) → (T10, T20, T32)), ((R10, R20, RN0) → 

(T10, T20, TN0)) and so on. 
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Valid 9-point feature with 9 

minutia points 
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2 4 

5 
6 3 
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Invalid 9-point feature with 7 

minutia points 

Figure 3.10 Valid and invalid 9-point features 
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Similar to the grid structure of 6-point comparisons, the number of blocks in the grid of 9-point 

comparisons is based on the number of 6-point matches.  If n is the number of 6-point matches, 

then the number of blocks is also equal to n. These bocks are distributed into the 2-dimensional 

grid with number of rows equal to √ n and number of columns is equal to √n or √n + 1. The grid 

structure is illustrated in Figure 3.11. In Block 0, all the combinations that can be formed with 

R10, R20 and the 3-point features from reference3 array R30, R31, R32… R3N are formed and 

compared with target 9-point features which are also formed in the exact same way as that of 

reference 9-point features.The number of threads in a block is fixed at 256. The number of 9-

point features compared in a thread is given by the following equation.  

Figure 3.11 Grid structure for 9-point comparisons 

Ref1 [3-point matches] = {R10, R11, R12, R13, R14, R15, R16, R17…….R1N} 

Ref2 [3-point matches] = {R20, R21, R22, R23, R24, R25, R26, R27…….R2N} 

Ref3 [3-point matches] = {R30, R31, R32, R33, R34, R35, R36, R37…….R3N} 

Tar1 [3-point matches] = {T10, T11, T12, T13, T14, T15, T16, T17…….T1N} 

Tar2 [3-point matches] = {T20, T21, T22, T23, T24, T25, T26, T27…….T2N} 

Tar3 [3-point matches] = {T30, T31, T32, T33, T34, T35, T36, T37…….T3N} 
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combination of T10, T20, T30 
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R10+R20+R3N->T10+T20+T3N

……….. 

Block  

R11+R21+R30->T11+T21+T30 

R11+R21+R31->T11+T21+T31 

R11+R21+R32->T11+T21+T32 

……….. 

R11+R21+R3N->T11+T21+T3N

Block  

R1N+R2N+R30->T1N+T2N+T30 

R1N+R2N+R31->T1N+T2N+T31 

R1N+R2N+R32->T1N+T2N+T32 

……….. 

R1N+R2N+R3N->T1N+T2N+T3N
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Matching criteria: In a 9-point feature, the centroids of the three triples are computed and the 

distance between the first triple’s centroid and third triple’s centroid, second triple’s centroid and 

third triple’s centroid are calculated. It should be noted that distance between first triple’s 

centroid and second triple’s centroid is already compared in 6-point comparisons. The centroid 

distances of the reference and target 9-point features are compared to find a match. The reference 

3-points involved in the 9-point feature already match with target 3-points. So, in a 9 point 

feature, on adding the matching criteria for 3-point comparisons, totally 9 sides, sum of angles of 

the three triples, types of minutiae, centroid distances are used for comparison. 

3.3.5 Results 

 

The correctness of the GPU parallel algorithm is verified by comparing the 3-point and 6-point 

matches of CPU and GPU. The results are identical for both of them. Table 3.1 shows the time 

taken for 3-point and 6-point comparisons on CPU and GPU. The fifth and last columns show 

the speedup obtained for the GPU parallel algorithm.  

The table shows results for 24 randomly selected fingerprints compared with a single reference 

fingerprint with 5456 triples to demonstrate the speedup obtained by using the parallel algorithm. 

Though only 24 fingerprints are selected, any number of fingerprints can be used for matching. 

For any target fingerprint compared with any reference fingerprint, similar speedups can be 

observed. The GPU and CPU times are shown in milliseconds (ms).  

The fingerprints with fewer minutiae and therefore fewer triple combinations take less time even 

on a CPU which can be observed for fingerprints 3, 12, 21 which take 10 ms, 40 ms and 40 ms 

on a CPU respectively.  On a CPU, the comparison is performed with multiple ‘if’ conditions. If 

an ‘if’ condition does not satisfy, then the rest of the comparison is skipped. But on a GPU, none 

of the comparisons are skipped because comparisons run independently on separate threads. So, 

the results from GPU are obtained only after all the threads finish comparisons and hence the 

time which was reduced on a CPU by skipping the comparisons cannot be reduced. 
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Table 3.1 Results of 3-point and 6-point comparisons 

File Number of 

triples 

3 point CPU 

(ms) 

3 point 

GPU 

(ms) 

3 point 

speedup 

(ms) 

6 point 

CPU 

(ms) 

6 point 

GPU (ms) 

6 point 

speedup 

(ms) 

1 8436 190 60 3.17 4770 760 6.28 

2 3654 80 20 4.00 350 50 7.00 

3 680 10 10 1.00 70 10 7.00 

4 10660 260 30 8.67 4580 710 6.45 

5 5456 140 20 7.00 2550 360 7.08 

6 20825 550 60 9.17 33310 5570 5.98 

7 13244 280 30 9.33 22210 3830 5.80 

8 1771 50 10 5.00 270 40 6.75 

9 1771 50 10 5.00 140 20 7.00 

10 4960 120 10 12.00 350 50 7.00 

11 2300 60 10 6.00 580 80 7.25 

12 1540 40 10 4.00 150 20 7.50 

13 3276 90 10 9.00 650 90 7.22 

14 5984 160 20 8.00 2870 450 6.38 

15 11480 320 30 10.67 13740 2390 5.75 

16 12341 310 30 10.33 9580 1550 6.18 

17 19600 440 60 7.33 7880 1250 6.30 

18 11480 310 30 10.33 3230 500 6.46 

19 5984 140 10 14.00 1750 230 7.61 

20 9139 240 20 12.00 3540 530 6.68 

21 1540 40 10 4.00 70 10 7.00 

22 18424 410 40 10.25 36330 6740 5.39 

23 23426 570 60 9.50 40630 7750 5.24 

24 16215 360 50 7.20 9190 1480 6.21 

Average Speedup 7.79  6.56 
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The average speedup obtained for 3-point comparisons is 7.79 and for some of the fingerprints, 

the speedup is as high as 14 (Fingerprint 19 in Table 3.1). The average speedup obtained for 6-

point comparisons is 6.56. For 6-point comparisons, the invalid 6-points are resolved only on 

GPU and since in each block, the valid 6-point combinations differ, there are multiple unused 

threads running on the GPU. If the invalid 6-points are resolved on CPU before passing them to 

the GPU, it would take much longer on CPU because there are millions of 6-point combinations 

that can be formed. Hence, though it takes longer, the 6-point features are resolved only on GPU. 

It should be noted that shared memory was not used for this method. By moving the target triples 

into shared memory, the time for memory transfer can be reduced to a great extent. Also, the 

total time for GPU comparisons is the sum of times taken for data transfer between CPU and 

GPU and the actual computations on GPU. It is observed that the data transfer takes considerable 

amount of time because unnecessary data was being copied to GPU. The following section 

describes usage of shared memory and the optimizations that were used to reduce the data 

transfer time.  

3.4 GPU Comparisons of FBI Database Fingerprints 

 

The FBI database consists of 74,140 rolled fingerprint images from which there were 2,575 

different subjects providing multiple impressions of 23,942 unique fingerprints. This database 

was provided by FBI CJIS. These fingerprints are grouped into very good, good, bad and ugly 

fingerprints based on the global image quality score assigned by Verifinger SDK [38]. In this 

work, fingerprints from very good and good groups are considered because of their quality. A 

single unique fingerprint is considered from multiple impressions of same finger and a database 

of 18,649 fingerprints is formed out of these good quality fingerprints. 

3.4.1 Input Files 

 

The FBI fingerprints are processed into text files called fts files. The feature extraction tool used 

was Neurotechnology’s Verifinger SDK [38]. These files are similar to the minutia xyt files 

discussed in the previous section and contain x and y coordinates, angle of orientation (theta), 



34 

 

 

 

quality of the minutia, type of minutia, ridge curvature, ridge density and the ridges involved in 

forming the minutia point. The quality range of the minutia points is 0-100. Some additional 

information related to core points and delta points is also extracted into these files. A sample fts 

file is shown in Figure 3.12. In this figure, ‘Q’ represents the quality of the fingerprint, ‘C’ 

represents the core points, ‘D’ represents the delta points and ‘M’ represents the minutia points in 

the fingerprint.  For the core points, the location and angle of orientation are shown. For delta 

points, the locations are shown. In the Figure 3.12, an fts file of a fingerprint with two core 

points and two delta points is shown. The core points are located at (390, 334) and (456, 361) 

coordinates and with angles of orientation 1   and 14   respectively. The delta points are located 

at (546, 404) and (210, 455).  The first minutia point is located at coordinates (285, 108) with 

angle of orientation of 120
0
,  a quality of 30, minutia type of 1(ridge ending), ridge curvature of 

124, ridge density of 6 and ridge ID of the ridge forming this minutia is 195.  Ridge endings are 

represented by 1 and ridge bifurcations are represented by 2. The average of the qualities of all 

the minutiae points in a fingerprint fts file is calculated and all the minutiae points greater than or 

equal to average quality are considered. Hence, the quality factor considered for each fingerprint 

fts file is different. 

 

Figure 3.12 Sample fts file 

Similar to the FVC 2000 database, ridge count files are used for this database too. The ridge 

count files are in the form of a two dimensional array with each element in a line giving the 

number of ridges crossed between two minutia points. For example, let n be the total number of 

minutiae in the fingerprint. The first line in the file gives the number of ridges crossed between 
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minutia 0 and 0-n minutiae in the fingerprint, second line gives the number of ridges crossed 

between minutia 1 and 0-n minutiae in the fingerprint and so on. In Figure 3.13, a sample ridge 

counts file with 11minutiae is shown. The first line shows the number of ridge counts between 

first minutia and all the 11 minutiae. 

 

Figure 3.13 Sample ridge count file 

3.4.2 3-point GPU Comparisons 

 

In section 3.3, it is discussed that the limit for the largest side is ≤ 150 and the limit for the 

smallest side is > 10 pixels. Instead of applying this condition while matching the fingerprint 

features, the reference triples are filtered out before the actual comparisons. So, when the 

reference triples are formed, all those triples whose largest side > 150 and smallest side < 10 

pixels are not considered. This would reduce the number of triples and thus many unnecessary 

comparisons can be avoided and therefore reduces the time taken. For example, the number of 

triples for a reference fingerprint from FBI database before this condition was applied is 1140 

and it reduced to 865 on applying this condition and for another reference fingerprint from FBI 

database with originally 39,711 triples, the number of triples reduced to 14,818 on applying this 

condition. This is one of the optimizations used when compared to the sequential comparisons 

and also the GPU comparisons of FVC 2000 fingerprints discussed in section 3.3 
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For GPU matching, the reference and target fingerprint data have to be transferred from CPU to 

GPU.  The time taken for this transfer is high because the data structure used for triples is very 

large. The data structure size used for triples is 84 bytes. The original data structure for a triple is 

shown in Figure 3.14. 

On the GPU kernel, not all of the data members in the Triple data structure are used. Since only 

largestDistance, smallestDistance, sumofDistances, largestDistanceThreshold, 

smallestDistanceThreshold, sumDistanceThreshold and the ridges crossed rc1, rc2, rc3 are 

compared, a smaller data structure can be used with data members as shown in Figure 3.15. The 

thresholds are calculated on the GPU kernel instead of copying it to the GPU. Further, the ridge 

counts are always less than 100 and it is a 2-digit number. The ridge counts rc1, rc2 and rc3 are 

sorted and can be combined to form a single integer value shown below. This reduction of the 

struct Triple{ 

int i; 

int j; 

int k; 

int sum_dist; 

int smallest_dist; 

int largest_dist; 

float sum_dist_thresh; 

float smallest_dist_thresh; 

float largest_dist_thresh; 

int d1, d2, d3; 

int th1, th2, th3; 

int rc1, rc2, rc3; 

int sum_rc; 

int small_rc; 

int large_rc; 

}; 

 
Figure 3.14 Original triple data structure 
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data structure size does not affect the number of matches because all the required data are copied 

to the GPU. 

                                                          

The new data structure of size 16 bytes is shown in Figure 3.16. 

 

 

 

 

 

 

 

 

 

 

 

As discussed in Chapter 2, a GPU consists of 30 streaming multiprocessors and every block of 

GPU grid executes on a single streaming multiprocessor. At any time, 32 threads from a block, 

known as a warp, run on a streaming multiprocessor. Hence, the number of threads in a block is 

chosen to be a multiple of 32. The implementation is similar to the discussion in section 3.3 with 

additional usage of shared memory. The number of threads per block is set as 512 which is also 

the maximum number of threads per block (ThreadsPerBlock = 512). Also, all the blocks in a 

row use the same set of reference triples.  

In all the blocks of row 0, 0-512 reference triples are used for comparisons. In each thread of a 

block, a reference triple is compared with a set of target triples. Let x be the total number of 

Struct smallTriple{ 

int rc1, rc2, rc3; 

int largestDistance; 

int smallestDistance; 

int sumofDistances; 

}; 

 Figure 3.15 Modified triple data structure 

Struct smallTriple{ 

int rcCombined; 

int largestDistance; 

int smallestDistance; 

int sumofDistances;  

}; 

 
Figure 3.16 New triple data structure 
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triples in reference fingerprint and y be the total number of triples in target fingerprint. The 

number of rows in the grid is calculated based on the number of the reference triples given by the 

following equation. 

                         
    

               
                             

Usage of shared memory: A shared memory of 16KB is available for each streaming 

multiprocessor. In other words, 16KB shared memory is available for each block. In all the 

threads of a block, the same set of target triples are compared with reference triple. For example, 

let b be the number of target triples compared in a block. In thread 0 of block 0, the reference 

triple 0 is compared with 0-b target triples. In thread 1, the reference triple 1 is compared with 0-

b target triples. Similarly, in each thread of the block, 0-b target triples are compared with a 

reference triple. Since the same set of target triples are compared in all the threads of a block, by 

moving these triples into shared memory, the time to fetch this memory is reduced to a great 

extent. Otherwise in each thread, the triples will have to be fetched from global memory. 

Because only 16KB is available in shared memory, the number of target triples that can be 

copied into shared memory is limited and it can be calculated based on the size of ‘smallTriple’ 

which is given by the following equation. 

    
            

                   
  

     

  
      

Although the number of target triples that can be copied into shared memory from the above 

equation is 1000, all the 1000 triples cannot be copied because of a small buffer memory used for 

shared memory. So, 992 target triples are copied into shared memory. Whenever memory is 

fetched from shared memory, it is done in 32 bytes at a time. Hence, the number 992 is selected 

which is also a multiple of 32. So, the number of comparisons per thread in a block is 992 

(ComparisonsPerThread = 992). 

The number of columns in the grid is calculated based on number of comparisons per thread in a 

block and it is given by the following equation. 
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GPU Kernel Function: Firstly, the 992 triples are copied into shared memory. Since there are 

512 threads in each block, in each thread, 2 reference triples can be copied into shared memory. 

Figure 3.17 shows the copying of reference triples into shared memory. 

 

 

 

 

 

In thread 0, reference triples 0 and 1 are copied into shared memory. In thread 1, reference triples 

2 and 3 are copied into shared memory and so on. The comparisons cannot be immediately 

started after copying reference triples into shared memory because it has to be ensured that all 

the threads finish copying triples into shared memory. The function __syncthreads () ensures that 

all the threads finish copying triples into shared memory. In each thread, a reference triple is 

compared with 992 target triples. These 992 target triples are now fetched from shared memory; 

hence the data transfer takes lesser time when compared to fetching the data from global 

memory. 

In first row of the block, 0-511 reference triples are used for comparison. In second row of the 

block, 512-1023 reference triples are used for comparison and so on. Similar to CPU 

implementation, the smallest distance, largest distance, sum of distance are copied into local 

variables and their thresholds are also calculated.  

Matching Criteria: Unlike section 3.3 where type of minutia, angle of orientation (which gives 

the direction of minutia) was used, here, only side lengths of the triples and the ridges crossed 

are used. The minutiae type is not taken into consideration because in practice, ridge endings 

may appear as bifurcations and vice versa depending on the finger pressure against the surface 

idx = threadIdx.x * 2; 

tidx = blockIdx.y * 992 + idx; 

for(i = 0; i < 2; i++) 

targetTriplesSharedMemory[idx+i] = targetTriples[i+tidx]; 

 

Figure 3.17 Shared memory 
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where the fingerprint impression is formed [13]. Also, a large variation was observed in the 

minutia direction when corresponding minutiae are compared in two different impressions of the 

same finger. Hence, largest side, smallest side, sum of sides and sorted ridges crossed are used.  

 

In the reference fingerprint, only a set of 50 high quality minutiae are selected. This is because of 

the number of possible 6-point features that can be formed with 50 minutiae is 
50

C6 = 158 

million. Some of the fingerprints in the FBI database contain more than 100 minutiae and the 

number of 6-point features formed with 100 minutiae is very huge. To avoid this data 

complexity, only a set of 50 minutiae are considered for reference fingerprints. By this approach, 

some of the rare features which may be identified by using minutiae outside the set of 50 

minutiae may be missed out. But by considering only 50 minutiae, rare features were still 

identified in this work (Chapter 4).  Hence, the main aim of this work is not lost. It should be 

noted that all the good quality minutiae are considered for the rest of the target fingerprints in the 

database, the limit of 50 minutiae is set only for reference fingerprint. 

The total number of threads running on GPU is blocksPerGrid_x * blocksPerGrid_y * 

threadsPerBlock where threadsPerBlock = 512, where the maximum of blocksPerGrid_y could 

be 512. Some of  the fingerprints have as many as 500,000 3-point features and given that 

number of target triples compared in a block in any given row is 992, the maximum value of 

blocksPerGrid_y = 500,000/992 ≈505. The value of blocksPerGrid_x is less than 40 because 

only 50 minutiae are considered for reference fingerprint and the total triple combinations with 

50 minutiae are 19600. So, given that threads per block is 512, the maximum value of 

blocksPerGrid_x = 19600/512 ≈ 39. So, the maximum number of total number of threads is 

given by 39 * 512 * 512 = 10,223,616 ≈ 10 million. In each thread, comparisons of 992 target 3-

point features are made. So, total number of comparisons on GPU is 10,223,616*992 ≈10 billion. 

It is also observed that in each thread, a reference triple has just 4 matches when compared to 

992 target triples. So, an array of 5 short integers is allocated to each of the threads running on 

GPU.  Whenever a match is found on GPU, the index of the matched target 3-point feature 

ranging between 0-991 is copied into the 5 integer array starting from index 1. Index 0 of the 5 

integer array is used to keep track of the number of matches for that reference triple. The target 

3-point feature index ranges between 0-991 because in each block, the 992 target 3-point features 
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are copied into shared memory. This index should be decoded into the original target 3-point 

index on CPU.  

The matched reference and target triples are stored in two arrays- reference matched array and 

target matched array similar to the implementation in section 3.3. 

3.4.3 6-point GPU Comparisons 

 

From the results of 3-point comparisons, for each reference triple, the matching indices of the 

target triples are known. For comparisons on GPU, the minutiae of all the triples, centroid 

distances, ridges crossed should be passed to the GPU. Ridges crossed are passed as a separate 

data structure. The minutiae and centroid coordinates are passed to GPU as a data structure as 

shown in Figure 3.18. 

The data for all the matched reference 3-points and target 3-points is copied onto GPU. The 

ridges crossed between all the minutiae points of reference and target triples are also copied onto 

GPU. Similar to 3-point comparisons, a two-dimensional grid is launched. The number of 

threads per block and the number of blocks in y-direction (columns) is fixed at 512. The number 

of rows of the grid is calculated based on total number of 3-point matches and number of 

columns and it is given by the following equation. 

                  
                    

   
                                

struct minTriple{ 

short centroid x-coordinate; 

short centroid y-coordinate; 

unsigned char i; //minutia 1 

unsigned char j; //minutia 2 

unsigned char k; //minutia 3 

int tri_id; // index of the original reference triple 

}; 

Figure 3.18 Data structure for 6-point comparisons 
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The number of comparisons per thread is given by the following equation. 

                
                    

   
                                

Shared Memory: Shared memory is used to store ridges crossed of the reference fingerprint. The 

number of ridges crossed for all minutia combinations is stored in a 2-dimensional array as 

already discussed and the number of minutiae in fingerprint could be a maximum of 255. But for 

the reference fingerprint, only a few 50 high quality minutiae are considered and the ridges 

crossed array is an array of 50x50 with 2500 elements. So, it is possible to store the ridges 

crossed of only the reference fingerprint in shared memory. Shared memory of data type 

‘unsigned char’ of 2500 array size is used. In each thread of a block (512 threads per block), 5 

ridges crossed can be copied into shared memory. After the copy, __syncthreads() function is 

called to make sure that all the threads finished copying reference ridges crossed into shared 

memory. 

Matching Criteria: The centroids are calculated for both the triples involved in the 6-point 

feature and the distance between these two centroids is calculated. There are 9 ridges crossed 

between the minutia points of first triple and the second triple. Adding matching criteria from 3-

point comparisons, totally 6 side lengths, 15 ridge counts, centroid distances are used for 6-point 

comparisons. 

GPU Kernel Function: In each block, the elements of an index of the matched reference and 

target arrays are combined with the remaining elements of the matched array. This combination 

is a 6-point feature and it should be noted that all these 6 points do not form a valid combination 

i.e. all these 6 points may not be different and the validity of 6-point is checked before the actual 

comparison is made. The 6-point feature is formed and comparison is made at the same time. For 

example, in block 0, index 0 of reference matched array is combined with indices 1, 2, 3...n as 

discussed above, where n is the total number of 3-point matches and the same combination is 

formed from elements of target matched array and the reference and target 6-points are 

compared. In each thread, specific number of combinations given by compPerThread is made. 

The validity of the 6 point feature is checked by comparing all the minutia points of the two 

triples being combined. For the valid 6-point features, the 9 ridges crossed arrays of reference 

and target features are sorted and compared in a one-one manner. For the matched 6-point 
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features, centroid distances are calculated for reference and target features and compared. The 

matches for 6-point features are stored in a 1-dimensional array such that each index of this array 

is given by ref1* Number of reference triples + ref2 where ref1 is the index of the 1st reference 

triple and ref2 is the index of the 2nd reference triple in the 6-point feature.  

3.4.4 Results 

 

Table 3.2 shows results for 3-point comparisons using the FBI fingerprint database. The results 

are obtained by comparing a reference fingerprint of 50 minutiae and 19408 triple combinations 

with 10 randomly selected fingerprints.  

Table 3.2 Results for 3-point comparisons of a reference fingerprint compared with 10 target 

fingerprints from FBI database on GPU 

Fingerprint # Triples CPU 

matches 

GPU 

matches 

CPU time 

(ms) 

GPU 

time 

(ms) 

Speedup 

1 67379 5172 5172 18366 233 78.8 

2 39589 3325 3325 6680 211 31.65 

3 113216 7596 7596 30901 273 113.1 

4 73075 5557 5557 16702 237 70.4 

5 15136 1486 1486 2334 191 12.2 

6 62125 3876 3876 16805 226 74.3 

7 37760 3576 3576 6340 205 30.9 

8 91719 5772 5772 25479 247 103.1 

9 61701 4691 4691 15554 222 70 

10 67162 5911 5911 17929 227 78.9 

 

The number of triples is all the possible triples formed by all the good quality minutiae in 

fingerprints. The CPU and GPU matches are the total number of matches of all the triples of 

reference fingerprint when compared with a target fingerprint. The average speedup obtained for 
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comparisons of these 10 fingerprints is 66.38. It can be observed from Table 3.2 that for 

fingerprint 5, the speedup obtained is the lowest. This is because the number of triples for this 

fingerprint is just 15K which is small compared to other fingerprints. GPUs give the best results 

when the data is large and the application is computation-intensive. In this case, the data is small 

and hence the time taken for comparisons on GPU and CPU is almost the same. The CPU and 

GPU results for the fingerprints are also provided in the table to verify the correctness of GPU 

comparisons.  

Table 3.3 shows the results for 6-point GPU comparisons. From the reference fingerprint, 50 

minutiae are chosen which give 19408 triple combinations and 155 million valid 6-point 

features. 

Table 3.3 Results for 6-point comparisons of a reference fingerprint compared with 10 target 

fingerprints from FBI database on GPU 

Fingerprint CPU 

matches 

GPU 

matches 

CPU time 

(ms) 

GPU 

time 

(ms) 

Speedup 

1 3 3 14910 332 44.90 

2 0 0 8990 263 34.18 

3 7 7 34920 451 77.42 

4 2 2 21078 335 62.91 

5 1 1 2533 197 12.85 

6 2 2 16587 284 58.40 

7 2 2 8670 255 34 

8 4 4 28339 358 79.15 

9 0 0 17429 312 55.86 

10 4 4 20743 349 59.43 

 

The CPU and GPU matches shown in the table are the total number of matches for all the 6-point 

features of the reference fingerprint when compared with a target fingerprint. It should be noted 

that the time taken for the comparisons shown in Table 3.3 is the sum of the times taken for 3-
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point and 6point comparisons, i.e. the execution times shown here include time taken for 3-point 

comparisons.  The average speedup obtained for these 10 fingerprints is 51.91. The CPU and 

GPU matches are provided to verify the correctness of GPU matches. The number of matches is 

quite low for 6-point comparisons because of the stringent conditions that were used. It was 

assumed that the ridges crossed between any two minutiae points remains constant irrespective 

of the distortion, hence the matching criteria was to find exact ridges crossed between two 

minutia points without any threshold. But, it was observed later that the ridges crossed do not 

remain constant for two different fingerprints of the same finger (Chapter 4).  

Table 3.4 shows results for the overall 3-point and 6-point comparisons when a reference 

fingerprint is compared with all the fingerprints in the FBI database. The number of good quality 

unique fingerprints considered from the FBI database is 18,649 (section 3.4). The table shows 

the results for 4 fingerprints from the database. Although only 4 fingerprints are selected to 

demonstrate the speedup, the GPU time taken for any reference fingerprint follows the same 

pattern. These 4 fingerprints are used as a reference one-by-one and compared with the entire 

database of 18,649 fingerprints. 

Table 3.4 Results after comparing with 18,649 fingerprints 

Fingerprint 

3 points 6 points 
GPU 

time 

(minutes) # Matched Unmatched 

# 

(million) 

Matched 
% 

Unmatched 

1 19408 19408 0 155 44011 99.97 86.3 

2 19552 19552 0 158 118332 99.92 96.8 

3 19409 19409 0 155 30001 99.98 86.1 

4 19504 19504 0 157 76498 99.95 89.0 

Average GPU time 89.55 



46 

 

 

 

The results in Table 3.4 show that through this GPU implementation technique, thousands of 

fingerprints can be compared with a single fingerprint in less than 2 hours and also ensuring 

accuracy and precision in matching. The average time taken for these 4 fingerprints is 89.55 

minutes. The time taken for the same comparisons to be done on CPU per fingerprint is around 

60 hours which is nearly 2.5 days. The overall speedup obtained by this implementation is 40.2  

                
     

     
      

The table also shows the number of unmatched 3-points and 6-points after comparing with the 

entire database. It can be observed from the table that the number of unmatched 3-points is 0 for 

all the 4 fingerprints after comparing with the database. This shows that rare 3-point features do 

not exist. But the percentage of unmatched 6-points left after comparing with the database is 

>99%. This is because of the stringent thresholds that were used for side lengths and ridge counts 

for 6-point comparisons. The distortion in fingerprints and thresholds required to overcome this 

distortion is discussed in chapter 4.  The results at the end of the chapter 4 show that fingerprints 

do not have rare 6-point features but have a few rare 9-point features.  

The significance of this GPU algorithm is to show that the triplet-based matching techniques can 

be accelerated through GPUs. The methods used in this algorithm can be used for future 

implementations and equivalent speedups can be achieved. 
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Chapter 4: Mining Rare Features  

 

4.1 Overview 

 

The technique that was used for fingerprint triple-based feature matching is used to search for 

rare features in fingerprints. A feature is considered rare if it is statistically uncommon; that is, 

the rare feature should be unique among N randomly sampled prints. This rare feature could be a 

3-point feature, 6-point feature, 9-point feature, 12-point feature or even higher. A feature which 

is rare in a database of 1000 fingerprints may find a match in a database of 2000 fingerprints. So, 

the rare features identified by the method proposed in this work may find a match if a slightly 

larger database is considered. However, the importance of this method is establishing the fact 

that fingerprints contain a small percentage of rare features that are unique to a set of 

fingerprints, i.e. the rare feature occurs only once in some N fingerprints. When comparing two 

fingerprints, when the matching features contain some rarity that was previously identified 

within the print, the confidence in the match is increased. In other words, a match that contains 

rare features would yield higher confidence in the conclusion than a match that does not contain 

any rare features. 

4.2 Challenges in Mining Rare Features 

 

From the results obtained from comparisons on FBI database (Chapter 3), it was observed that 

for all the reference fingerprints, there are around 99% of the 6-point features that are rare.   The 

results of the algorithm discussed in Chapter 3 are verified by making two simple comparisons of 

reference fingerprint. Two cases for a reference fingerprint are considered a) different impression 

of the same finger b) fingerprint from a different finger. For a), the reference fingerprint and its 

impression should have many matches because they are fingerprints of the same finger, although 

it would not be a complete match because some minutiae in the reference fingerprint may not be 

present in the second impression due to the portion of fingerprint acquired. But, it was observed 
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that fingerprints a) and b) both have very few matches with reference fingerprint. This is 

problematic, since we would expect that many features should match when two images of the 

same finger are being compared. This problem is because of the stringent matching criteria that 

were used. It was assumed that the number of ridges crossed between any two minutiae would be 

identical for two fingerprints of the same finger. So, one-one exact comparisons of ridge counts 

for corresponding sides of a triple are made. However, it is observed that the number of ridges 

crossed between corresponding minutiae in different impressions of the same finger varied. This 

is because of the non-linear distortion of fingerprint minutiae. Feature extraction errors also 

account for variations in ridge counts. It was also observed that a constant distance threshold 

could not be used for all spatial distances in the fingerprint.  Different kinds of distortion will be 

discussed in the next section. 

4.3 Distortion 

 

This section describes the extent of distortion and types of distortion between fingerprints of the 

same finger. The main factors that cause distortion in different impressions of the same finger 

(intra-class variations) are displacement, rotation, partial overlap, non-linear distortion, variable 

pressure, changing skin condition, noise and feature extraction errors [13].  

4.3.1 Minutiae Distance Distortion 

 

This distortion is observed by considering the spatial distance between any two minutia points. 

Let (x1, y1), (x2, y2) be two minutiae points, then the distance between these points is calculated 

as √ ((x1-x2)
2
 + (y1-y2)

2
). A set of 8 impressions of the same finger is considered to analyze 

distortion in minutiae distances. 50 corresponding minutiae are identified in these fingerprints 

manually. First, the minutiae that match around the core region are identified and depending on 

these, remaining minutiae are identified. The distance between minutiae pairs is calculated and 

the distortion of this distance is analyzed for all the fingerprints. A graph showing the minutiae 

distance distortion is shown in Figure 4.1. With 50 minutiae identified in the fingerprints, the 

largest minutiae distance among all the minutiae pairs is 316 which is the final value on X-axis. 

This value can differ for different fingerprints depending on the minutiae considered and the 
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distance between them. The graph shown here is an example of the distortion in minutiae 

distances. 

 

Figure 4.1 Minutiae distances distortion 

X-axis shows the spatial distance between minutia pairs. Y-axis shows the maximum amount of 

distortion observed across 8 fingerprints as a percentage of the actual distance. It can be seen that 

for lower lengths, the amount of distortion is very high. For example, for a distance of 14, the 

distortion is 100%. For higher lengths, the distortion is around 20% of the distance. So, the 

threshold is dependent upon the side length of the triple. The threshold is selected such that as 

the distance increases, the threshold decreases. The chart showing distance threshold that is used 

in this matching algorithm is shown in Figure 4.2 

 

Figure 4.2 Distance threshold 
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The X-axis of the graph shows minutiae distances and the Y-axis shows the threshold used. The 

graph shown in figure 4.1 is plotted by considering different impressions of the same finger. But, 

the graph shown in Figure 4.2 is plotted by considering multiple impressions of different fingers. 

Around 40 different fingerprints are considered and multiple impressions of these 40 fingers are 

analyzed to calculate the maximum distortion for every minutia distance. The graph is 

particularly plotted for X-axis values 20, 50, 80, 100, 150, 200, 300, 400. It should be noted that 

maximum distortions are chosen for the minutiae distances. 

4.3.2 Displacement of Minutiae 

 

For two impressions of the same finger that are already aligned, the minutiae that are almost at 

the same level in the fingerprints, tend to move higher or lower which changes their positional 

coordinates because of the pressure variations. When minutiae extracted from two impressions 

(aligned) of the same finger are compared, they do not follow the same order. By using triplet 

based features which are translation invariant, the displacement of minutiae can be overcome. 

Also, the minutiae distance thresholds will subdue this displacement effect. 

4.3.3 Ridges Crossed Distortion 

 

The number of ridges crossed between any two corresponding minutiae points of two 

fingerprints of the same finger varies to a great extent. The factors that cause this distortion are 

given below. 

 The number of ridges crossed between two minutiae points varies because of the 

movement of minutiae coordinates. For example, consider two minutiae points separated 

by some distance. Assume that there exists a ridge ending between the line joining these 

minutiae points. Consider the same two minutiae points and the ridge ending in a 

different impression of the same finger. Because of the movement of minutiae 

coordinates, the ridge ending might move lower or higher and it would not be present 

between the line joining the two minutiae points anymore. Hence, the number of ridges 

crossed for the two minutiae points for these two fingerprints differs by 1.  
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 For a triplet, it is observed that the number of ridges crossed between two minutiae is not 

proportional to the side length joining the two minutiae. In many cases, it is observed that 

the largest side does not always have higher ridge counts.  Further analysis showed that 

the sides which have ridge flow almost parallel to them have fewer ridges crossed on 

them. In Figure 4.3, some examples of ridge counts which have fewer ridges crossed are 

shown. In such cases, the feature extracting tool does not always give the true ridges 

crossed and hence a different threshold must be used.  

To solve this problem, the ridge counts are divided into two types, high confidence and low 

confidence ridge counts. In Figure 4.4, examples of high confidence ridge counts which have 

ridge flow direction almost perpendicular to the line segment joining the minutiae are shown. To 

differentiate between high confidence and low confidence ridge counts, an optimum ratio of side 

length to ridge count should be calculated. For most of the high confidence ridge counts in a 

fingerprint, this ratio is 10. There are many sides whose ratio falls below 10; however they still 

have high confidence ridge counts. A ridge count is considered to be low confident if it satisfies 

(10 * (rc + 4) < d) where rc is the ridge count and d is the side length. This condition is deduced 

after observing multiple ridge counts and their distances. For high confidence ridge counts, a 

lower threshold is used and for low confidence ridge counts, higher threshold is used because 

low confidence ridge counts vary to a great extent across different impressions of the same 

finger. For threshold calculation, different impressions of the same finger are observed. For the 

analysis of distortion, a set of 35 different fingerprints are randomly selected. For these 35 

different fingerprints, multiple impressions are considered and the corresponding minutiae are 

located. Finally, for high confidence ridge counts, a threshold of 5 is selected and for low 

confidence ridge count, a threshold of 12 is selected to account for distortion and feature 

extracting errors. By the condition used to check low confidence ridge count, it is possible for an 

originally high confidence ridge count to be considered low confidence ridge count. This is 

acceptable because by considering it as a low confidence ridge count, just the threshold is 

increased. This would not affect the comparison of different impressions of same finger. But, it 

would increase the number of triple matches for which some optimizations are proposed which 

will be discussed later. 



52 

 

 

 

 

Figure 4.3 Low confidence ridge count 

 

Figure 4.4 High confidence ridge count 

4.3.4 Angular Distortion 

 

From the previous discussion, we know that the thresholds for distance and ridges crossed are 

higher because of the distortion in fingerprints. Hence, it is possible for an acute angled triplet to 

match an obtuse angled triplet based on just distances and ridges crossed. However, the 

difference between the corresponding angles should not be too high. For example, a triple with 

one of its angles as 30  should not match a triple whose same angle is 110 . In Figure 4.5, some 

examples of triples matched based on distance and ridges crossed are shown. The triples in 

Figure 4.5 (a) match with each other and triples in Figure 4.5 (b) match with each other based on 

distances and ridges crossed as matching criteria. Δpqr matches Δijk in both (a) and (b). Angle q 
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is an acute angle and angle j is an obtuse angle in both cases. Though these triangles are 

dissimilar, they match because of the higher thresholds of distance and ridge counts. Though 

Figure (a) can be considered a match because the triples look similar, Figure (b) cannot be 

considered a match. For this, internal angles of the triples are used in comparison and threshold 

is calculated. Angular distortion is analyzed for fingerprints of the same finger (35 different 

fingerprints are considered) and the maximum angular distortion between two corresponding 

angles of any two triples that ideally match is observed to be 65 .  ost of the matching triples 

have a very small angular distortion of 5 -15 . But there are some triples whose angular distortion 

is higher because of movement of minutiae.  Using angles as one of matching criteria eliminates 

some false matches. Hence, Figure 4.5 (b) becomes an invalid match. 

 

 

 

 

 

 

4.3.5 Minutia Orientation Distortion 

 

The orientation or direction of a minutia point is extracted as the angle made by the tangent to 

the ridge with the horizontal axis. This angle differs across fingerprints of the same finger. For 

example, it is observed that the orientation of minutia point in a fingerprint is 4 and it is 232 for 

the same minutia point in a different impression of the same finger. This distortion is mostly 

observed for ridge endings. By using direction differences of the minutiae in a triple, the number 

of false matches can be decreased. For a triple, three direction differences can be calculated  

(one for each side). Since, direction is not completely reliable, only one of the three direction 

differences is used as a matching criterion. A threshold is calculated after analyzing fingerprints 

of the same finger (35 different fingerprints are considered). A threshold of 40  is used. 

Figure 4.5 Angular distortion 
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4.4 Triplet-based Matching using Core Points 

 

Since the thresholds for side lengths and ridges crossed are higher, each triple of the reference 

fingerprint has many matches in the target fingerprint.  By using just side lengths and ridges 

crossed as matching criteria, different fingerprints also had higher matching scores. It was 

observed that most of the matches were false matches. Mining rare features requires matching 

criteria, which are neither stringent nor relaxed. By using a few matching criteria, it is not 

possible to extract rare features in fingerprints. The matching criteria should be relaxed such that 

two impressions of the same finger match should still match and they should be stringent enough 

to ensure that dissimilar triples do not match because of relaxed thresholds.  The thresholds for 

distances, ridges crossed, angles and directions are already relaxed and these thresholds cannot 

be modified. So, other matching criteria should be used to reduce the number of false matches. 

Though these falsely matched triples look similar, they are scattered at different locations in the 

fingerprints. Level 1features (core-points and delta points) would help in identifying the position 

of the triple in the fingerprint. The rest of this section describes the novel parameters that are 

used for triplet matching. 

4.4.1 Novel Parameters for Triplet-based Matching 

 

Combination of Ridges crossed and Side lengths: In general, smallest side, largest side and sum 

of the sides of triples are used as matching criteria because comparing every side of reference 

triple with every side of target triple requires more comparisons. Using just these criteria, for two 

fingerprints of the same finger, some of the reference triples may not have exact matches. This is 

because, for some features, the smallest side is almost equal to the intermediate side or the 

largest side is almost equal to the intermediate side because of distortion and the corresponding 

sides are not compared. Similarly, sorting of ridges crossed also does not ensure that the 

corresponding ridges crossed are compared. In these cases, it is difficult to identify the 

corresponding matching minutiae in the triples. By identifying the corresponding minutiae 

between two triples, the amount of randomness can be reduced when the comparisons are 
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extended for 6-points and 9-points. It would also ensure that the corresponding sides, ridge 

counts, angles and directions are compared.   

In this work, a combination of distance and ridge count is used to compare triples. Let d1, d2, d3, 

rc1, rc2, rc3 be the three sides and three ridges crossed of a triple, then the combinations used 

for comparisons are (d1, rc1), (d2, rc2), (d3, rc3). Every combination from reference triple is 

compared with every combination of target triple. Hence, the combinations of (d1, rc1), (d2, 

rc2), (d3, rc3) can match the target triple in any order, so all such orders are considered. Let r1, 

r2, r3 represent distance and ridges crossed combinations ((d1, rc1), (d2, rc2), (d3, rc3)) for 

reference triple and t1, t2, t3 be the distance and ridges crossed combinations for target triple. 

There are six combinations in which a reference triple can match the target triple. The following 

are the six combinations. 

1. r1 matches t1, r2 matches t2, r3 matches t3 

2. r1 matches t1, r2 matches t3, r3 matches t2 

3. r1 matches t2, r2 matches t1, r3 matches t3 

4. r1 matches t2, r2 matches t3, r3 matches t1 

5. r1 matches t3, r2 matches t1, r3 matches t2 

6. r1 matches t3, r2 matches t2, r3 matches t1 

The triples that have two sides and ridges crossed almost equal to each other (isosceles) usually 

match in 2 of the above combinations. The triples that have all sides and ridges crossed almost 

equal to each other (equilateral) match in all the above combinations. Other matching parameters 

discussed below are used to check for the valid combination after this step.  

Core Distance: The centroids of all the triples are calculated and the distance between the 

centroid of the triple and the core-point is used as a matching criteria. These centroid distances 

are analyzed for different fingerprints of the same finger (35 different fingerprints are used). It is 

observed that the maximum distortion of core distance is 60 pixels and hence the threshold is set 

to 60 pixels. In Figure 4.6, the red-colored line joining core and centroid of the triple shows the 

core distance. For fingerprints with two cores, the core distances are calculated with respect to 

both the cores. When the fingerprints are not aligned, the location and the order in which the core 

points are extracted may not be the same for two fingerprints. So, rotation invariant core distance 
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should be used. For this, the distances from core 1 in reference fingerprint are compared with 

distances from core 1 and core 2 in target fingerprints and the triples are considered to match if 

reference core 1 distance matches with either core 1 or core 2 target distances. Similarly, two 

triples are considered to match if core 2 distance in reference triple matches with either core 1 or 

core2 target distances. 

 

Figure 4.6 Distance between core and centroid of triple 

Minutia Distance: The distances of all the vertices from the core point are calculated and used as 

matching criteria. By analyzing different fingerprints of the same finger, the maximum distortion 

is observed to be 60 pixels and the threshold is set to the same. In Figure 4.7, the distance 

between core point and the minutiae of a triple is shown by red-colored lines. For fingerprints 

with 2 cores, if minutiae distances from core 1 and core 2 of reference triple match with minutiae 

distances from either core 1 or core 2 of target triple, then the two triples are considered to be a 

match. 
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Figure 4.7 Distance of minutiae from core 

Farthest vertex from the core: For all the triples, the vertex which is farthest from the core is 

calculated as the one whose distance from the core is greater than that of the other two vertices. 

In cases where the height of the triple is small or the distances of all the vertices from the core 

are almost equal, the farthest vertex cannot be definitely set and it is set to 0 in such cases. In 

Figure 4.8, the farthest vertex from core is 1. 

 

Figure 4.8 Farthest and nearest vertices 

Nearest vertex to the core: For all the triples, the vertex which is closest to the core is calculated 

as the one whose distance from the core is lesser than that of the other two vertices. In cases 

where the height of the triple is small or the distances of all the vertices from the core are almost 

equal, the farthest vertex from the core is set to 0. In Figure 4.8, the nearest vertex to the core is 

3.  
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For fingerprints with 2 cores, farthest and nearest vertices are identified for both the cores. If the 

farthest and nearest vertices from core 1 and core 2 of reference triple match with the farthest 

and nearest vertices respectively either from core 1 or core 2 of target triple, then those triples are 

considered to match. 

Delta distance: The distance between the centroid of the triples and the delta point is calculated 

and used as a matching criterion. The threshold is calculated by analyzing different impressions 

of the same finger and the maximum distortion is observed to be 55 pixels and the threshold is 

set to the same. It should be noted that all the fingerprints do not have delta points. So, the delta 

distance is compared only if both reference and target fingerprints have delta points. For 

fingerprints with 2 cores, if delta distances from core 1 and core 2 of reference triple match with 

delta distances from either core 1 or core 2 of target triple, then those triples are considered to 

match. In Figure 4.9, the delta distance is shown by a red-colored line joining delta point and the 

centroid of triple. 

 

Figure 4.9 Delta distance 

The parameters core distances, minutiae distances, farthest and nearest vertex to the core help in 

identifying the location of triple. 

Handedness of the triple: In Figure 4.10(i) a reference triple (a) and a target triple (b) that 

incorrectly match are shown. Here (b) is the reflection of (a). Even when fingerprints are rotated, 

these triples should not match. The cross product of the shortest side and the longest side is 

calculated for both triples and sign of the cross product is used to compare the two triples. Cross 

Product is given by   ̅̅ ̅     ̅̅ ̅  In the Figure 4.10(i), the cross product of the reference triple is 

positive while the cross product of the target triple is negative and hence they do not match. 
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Figure 4.10(ii) shows another example where the cross products are positive for both reference 

and target triples and they match. The handedness is not valid for triples with any of its two sides 

almost equal. Also there should be a minimum difference between the smallest side and the 

intermediate side, intermediate side and largest side. Also, it is possible that the minutiae points 

may be collinear or almost collinear. In such a case, for the reference triple Δpqr in Figure 

4.10(i), the minutiae point p could be on either side of   ̅̅ ̅. So, the possibility of collinearity is 

also checked and if it is exists, such triples are not considered. 

 

 

 

 

 

 

 

 

High confidence and low confidence ridge counts: From section 4.3.3, we know that the ridges 

crossed between any two minutiae points is divided into two types, high confidence and low 

confidence and they are used as a matching criterion.  

Sum of ridge counts: Sum of ridge counts is also used as a matching criterion. It eliminates 

many false matches; hence it is used in the beginning before all the other matching criteria. 

Internal angles: The slopes of the sides of the triples (m1, m2, m3) are calculated and the angles 

of inclination (θ1, θ2, θ3) are calculated for all the sides. The internal angles α1, α2, α3 are 

calculated as the difference of the angles of inclination of the sides forming that angle. The 

internal angles of the triple are analyzed for different fingerprints of the same finger and it is 

observed that the maximum angular distortion is 65 .  Let (x1, y1), (x2, y2), (x3, y3) represent 
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Figure 4.10 (i) Incorrectly matched triplets because (b) is reflection of (a). (ii) Correctly 
matched Triplets 
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coordinates of the minutiae of the triple. The slopes, angles of inclination, internal angles are 

given by the following equations. 

    
       

       
                     

    
       

       
                     

    
       

       
                     

                                           

      (                                 ) 

                                           

Direction of Minutia: The direction of minutia is also considered as one of the matching criteria. 

For any side of the triple, the difference in the direction of minutiae forming the side is 

considered as the direction of that side. The direction is calculated for all the three sides of the 

triple. However, the comparison is only performed for one among the three direction differences 

because the direction of minutiae is not reliable in some cases. The direction difference of a line 

segment joining minutiae m and n is calculated as follows 

                                                 

Here θm and θn are the directions of minutiae m and n respectively. 

Selection of best order: Though some parameters of the triple require higher thresholds for 

matching, other parameters of the triple do not have much distortion. For example, consider a 

triple with side lengths 80, 99, 120 and ridges crossed 5, 5, 9. Consider the same triple in a 

different fingerprint of the same finger whose side lengths are 104, 110, 130 and ridges crossed 

are 4, 5, 10. Though the difference between the corresponding side lengths is higher, the 

difference of corresponding ridges crossed is lower. So, the distortion is not on the same levels 

for all the parameters. 
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When two triples are matched in more than 1 order, the other parameters can be compared to 

select the best order. However, all the parameters cannot be considered to check the amount of 

variation in the fingerprints. Angles cannot be considered because of greater distortion and 

direction is not reliable. Distance of vertices from a core and ridges crossed are considered to 

select the best order.  For fingerprints with 2 cores, the matching cores are first identified. This is 

done simply by checking the minutiae distances from both the cores for all the orders. If the 

minutiae distances from reference core1 match minutiae distances from target core2 for all the 

orders, then reference core 1 and target core 2 are the matching cores. The amount of variation is 

calculated for all the 6 parameters (3 minutiae distances + 3 ridges crossed) for all the orders. It 

is the difference between corresponding parameters of the two triples. Consider two triples that 

match in orders 1 and 2. Let ref_rc1, ref_rc2, ref_rc3, ref_leg11, ref_leg12, ref_leg13 be the 

ridges crossed and the distance of vertices from the core point for reference triple and let tar_rc1, 

tar_rc2, tar_rc3, tar_leg11, tar_leg12, tar_leg13 be the ridges crossed and the distance  of vertices 

from the core point for target triple.  The amount of variation for both the orders is calculated as 

follows. For first order, differences are calculated as abs (ref_rc1 – tar_rc1), abs (ref_rc2 – 

tar_rc2), abs (ref_rc3 – tar_rc3), abs (ref_leg11 – tar_leg11), abs (ref_leg12 – tar_leg12), abs 

(ref_leg13 – tar_leg13). For second order, the differences are calculated as abs (ref_rc1 – 

tar_rc1), abs (ref_rc2 – tar_rc3), abs (ref_rc3 – tar_rc2), abs (ref_leg11 – tar_leg11), abs 

(ref_leg12 – tar_leg13), abs (ref_leg13 – tar_leg12). The corresponding differences of first and 

second orders are compared. The order with less distortion is selected as the final order of that 

reference triple. Similarly, the best order is selected when the triples match in more than 2 

orders.  

The matching criteria used for 3-point comparisons and their thresholds are listed out in Table 

4.1. 

Encoding Matched Combinations: By using the parameters above, the reference triple can 

match the target triple in any combination or order. Since there are 6 combinations, the naïve 

method to store them would be to use an array of 6 elements for every combination of reference 

and target triples that match. To reduce the data complexity, these 6 combinations are encoded. 

The total number of combinations possible with 6 elements is 63. (The triples can match in 1 or 2 

or 3 or 4 or 5 or 6 combinations. Total = 6C1 + 6C2 + 6C3 + 6C4 + 6C5 + 6C6). 
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Table 4.1 Matching criteria for 3-point comparisons 

Parameters Threshold 

Side lengths or Distance 35% for smaller distances. Gradually decreases 

with distance. 20% for larger distances 

Ridge Count High confidence – 5, Low confidence – 12 

Core distance  60 pixels 

Minutia Distance 60 pixels 

Delta Distance 55 pixels 

Farthest Vertex from Core - 

Nearest Vertex to Core - 

Handedness of Triple - 

Internal Angles 65  

Direction of Minutia 40  

 

All the combinations and their encoded indices are shown in Figure 4.11. For example, if the 

triples match in 1, 2, 3, 4 combinations, then they are stored as 45. These combinations are later 

decoded in 6-point and 9-point comparisons. 

 

 

 

 

 

 

 

 

 

0 – {1} 

1 – {2} 

2 – {3} 

3 – {4} 

4 – {5} 

5 – {6} 

6 – {1, 2} 

7 – {1, 3} 

8 – {1, 4} 

9 – {1, 5} 

10 – {1, 6} 

11 – {2, 3} 

12 – {2, 4} 

13 – {2, 5} 

14 – {2, 6} 

15 – {3, 4} 

 

16 – {3, 5} 

17 – {3, 6} 

18 – {4, 5} 

19 – {4, 6} 

20 – {5, 6} 

21 – {1, 2, 3}  

22 – {1, 2, 4} 

23 – {1, 2, 5} 

24 – {1, 2, 6} 

25 – {1, 3, 4}  

26 – {1, 3, 5} 

27 – {1, 3, 6} 

28 – {1, 4, 5} 

29 – {1, 4, 6} 

30 – {1, 5, 6} 

31 – {2, 3, 4} 

 

32 – {2, 3, 5} 

33 – {2, 3, 6} 

34 – {2, 4, 5} 

35 – {2, 4, 6} 

36 – {2, 5, 6} 

37 – {3, 4, 5} 

38 – {3, 4, 6} 

39 – {3, 5, 6}  

40 – {4, 5, 6} 

41 – {1, 2, 3, 4} 

42 – {1, 2, 3, 5} 

43 – {1, 2, 3, 6} 

44 – {1, 2, 4, 5} 

45 – {1, 2, 4, 6} 

46 – {1, 2, 5, 6} 

47 – {1, 3, 4, 5} 

 

48 – {1, 3, 4, 6} 

49 – {1, 3, 5, 6} 

50 – {1, 4, 5, 6} 

51 – {2, 3, 4, 5} 

52 – {2, 3, 4, 6} 

53 – {2, 3, 5, 6}  

54 – {2, 4, 5, 6}  

55 – {3, 4, 5, 6} 

56 – {1, 2, 3, 4, 5}   

57 – {1, 2, 3, 4, 6} 

58 – {1, 2, 3, 5, 6} 

59 – {1, 2, 4, 5, 6} 

60 – {1, 3, 4, 5, 6} 

61 – {2, 3, 4, 5, 6} 

62 – {1, 2, 3, 4, 5, 6}  

 

Figure 4.11 Encoding the combinations 
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4.4.2 Algorithm for 3-point Comparisons 

 

The algorithm for 3-point comparisons is detailed in Figure 4.12.  

 

 

 

 

 

 

 

 

 

 

 

 

4.4.3 Parameters for 6-point and 9-point Comparisons 

 

As discussed before, a 6-point is formed by the combination of 2 triples and a 9-point is formed 

by the combination of 3 triples. The results of triple matches are used for 6-point and 9-point 

comparisons. For every reference triple, the index of the matching target triple and the 

combination in which it matches is stored. The matching criteria used for 6-point and 9-point 

comparisons are given below.  

 

For every triple in reference fingerprint 

  For every triple in target fingerprint 

    Check Sum of Ridge counts and the Core distances  

      Check all Distance and Ridges Crossed combinations 

        For all combinations of Distance and Ridges crossed that are true 

          Check Minutiae Distances from core, Angles, Direction Differences 

            For all combinations that are true from above step 

              Check if the target triple is a reflection of reference triple 

                Check Farthest Vertex from Core 

                  Check Nearest Vertex to Core 

                     If Fingerprints have delta points, check delta distance 

                       Select the best combinations in which reference and target triples match 

                         Check the matching score for the combinations 

                           Triples match 

  

Figure 4.12 Algorithm for triple comparisons 
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Figure 4.13 Centroid distance shown for a 6-point feature 

Centroid Distance: The centroids are calculated for all the triples in a 6-point feature and a 9-

point feature and the distance between the centroids of all the triples is calculated. In Figure 4.13 

and Figure 4.15, the centroid distances for 6-point and 9-point features respectively are shown. 

Similar to the threshold for the side lengths of triples, the centroid distance is not set to a 

constant. It gradually decreases with the distance. The lower centroid distances have higher 

threshold and higher centroid distances have lower threshold. After analyzing different 

impressions of the same finger, threshold values are calculated. The graph showing the 

thresholds used for centroid distances is shown in Figure 4.14. 

 

Figure 4.14 Centroid distance thresholds 
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Figure 4.15 Centroid distances shown for a 9-point feature 

Minutiae Distances: The distance between the all the minutiae in the 6-point and 9-points are 

calculated. Since the order in which a reference triple matches a target triple is already known, 

the corresponding distances of a reference combination (either 6-point or 9-point) are compared 

with the distances of a target combination. In Figure 4.16, the comparison of a reference with a 

target 6-point combination is shown. In the figure, the order in which reference triple 1 matches 

target triple 1 is 2 and the order in which reference triple 2 matches target triple 2 is 4. So, 

minutiae 1, 2, 3 from reference triple 1 match minutiae 1′, 3′, 2′ from target triple 1 respectively. 

And, minutiae 4, 5, 6 from reference triple 2 match minutiae, 5′, 6′, 4′ from target triple 2 

respectively. The minutiae distances which are compared are (  ̅̅̅̅  vs     ̅̅ ̅̅ ̅), (  ̅̅̅̅  vs     ̅̅ ̅̅ ̅), (  ̅̅̅̅  vs 

    ̅̅ ̅̅ ̅ ,    ̅̅̅̅  vs     ̅̅ ̅̅ ̅ , (  ̅̅̅̅  vs      ̅̅ ̅̅ ̅̅ , (  ̅̅̅̅  vs      ̅̅ ̅̅ ̅̅ , (  ̅̅̅̅  vs      ̅̅ ̅̅ ̅̅ , (  ̅̅̅̅  vs     ̅̅ ̅̅ ̅),    ̅̅ ̅̅ ̅ vs     ̅̅ ̅̅ ̅). Without 

identifying the corresponding minutiae in the triples, each minutia distance from reference 6-

point has to be compared with every minutiae distance from target 6-point. But by using the 

method in this work, the corresponding minutiae are identified and the randomness in matching 

the 6-points and 9-points can be reduced.  
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Ridges Crossed across all minutiae: The number of ridges crossed across all the 6-point and 9-

point combinations is used as a matching criterion. The thresholds for high confidence and low 

confidence ridge counts are same as those for 3-point comparisons. 

Farthest and nearest minutia point:  Figure 4.17 shows incorrectly matched 6-point and 9-point 

features. These features match because of the higher thresholds that were considered for distance 

and ridge counts. The triples marked in red are the target triples which almost look like 

reflections of their corresponding reference triples.  Many of such features are already eliminated 

by the farthest and nearest vertex to core point from triple comparisons (3-point). To eliminate 

any other features that might have been missed, for each 6-point and 9-point feature, farthest and 

nearest minutiae point with respect to the centroid of the other triple are used. In Figure 4.17 (i), 

the farthest minutia in Δabc with respect to the centroid of Δpqr is minutia b, but the farthest 

point in Δabc of target with respect to Δpqr is a. Since the farthest points with respect to Δpqr 

are not equal, it can be concluded that these 6-points feature do not match. In the 9-point feature 

in Figure 4.17 (ii), Δpqr and Δabc are the already matched 6-point features. There is no definite 

farthest point in Δijk with respect to Δpqr because both j and k are almost equidistant to Δpqr. 

But there exists a farthest point in Δijk with respect to Δabc which is minutia k in reference. In 

target, the farthest point in Δijk with respect to Δabc is j. Since the farthest points with respect to 

Δabc do not match, it can be concluded that the 9-point features do not match. The nearest points 

are calculated only if the results from the farthest point calculation are true.   
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Figure 4.16 Matched 6 point features 
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The matching criteria used for 6-point and 9-point comparisons and their thresholds are shown in 

Table 4.2 

Table 4.2 Matching criteria for 6-point and 9-point comparisons 

Parameter Threshold 

Centroid Distance Gradually decreases with distance 

Minutiae Distances Gradually decreases with distance 

Ridges crossed High confidence – 5, Low confidence - 12 

Farthest Minutia point - 

Nearest Minutia point - 

 

4.4.4 Algorithm for 6-point Comparisons  

 

The algorithm for 6-point comparisons is shown in Figure 4.18. Whenever a condition is checked 

and if it is not satisfied, then the reference and target 6-points do not match and the control exits 

the loop. 
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Figure 4.17 Incorrectly matched 6-point and 9-point features 
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4.4.5 Algorithm for 9-point Comparisons  

 

The algorithm for 9-point comparisons is shown in Figure 4.19. The results from 6-point 

comparisons are used for 9-point comparisons. Every 6-point feature is combined with a 3-point 

feature to form a 9-point feature. For a reference and target 9-point features to match, 3 centroid 

distances, 27 Minutiae distances, 27 Ridge Counts should be compared. But only 2 centroid 

distances, 18 Minutiae distances, 18 Ridge counts are compared because the triples in 6-point 

feature are already matched.  

 

Figure 4.18 Algorithm for 6-point comparisons 

For every i
th
 reference triple 

  For every (i+1)
th

 reference triple 

    Check if i
th

 and (i+1)
th 

reference triples form a valid 6-point feature 

      For every match of i
th

 triple in target 

        For every combination in which target triple matches i
th 

reference triple 

          For every match of (i+1)
th

 triple in target 

            For every combination in which target triple matches (i+1)
th 

reference triple 

              Check if centroid distances of reference and target 6-points match 

                Check if Ridge Counts of reference and target 6-points match 

                  Check if Minutiae distances of reference and target 6-points match 

                    Check if Farthest and Nearest minutiae points of reference and target 6-points match 

                      6-points match and save the indices of reference and target triples 
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4.4.6 Algorithm for Mining Rare Features 

 

Some of the fingerprints in the FBI database have as many as 100 minutiae. With just 50 

minutiae, number of 3-points formed is 19,600, number of 6-points formed is 15.89 million and 

the number of 9-points formed is 2.5 billion. Because of the data complexity and longer run-

times, a small set of 35 high quality minutiae is considered. With 35 minutiae, number of 3-

points formed is 6545, number of 6-points formed is 1.6 million and the number of 9-points 

formed is 70.6 million. As discussed before, there is a limit on the smallest side and the largest 

side of the triple. Triples with smallest distance >= 25 and largest distance <= 200 are 

considered. The limit on the smallest distance is chosen to be 25 because the minutiae distances 

that are <25 have as high as 100% distortion (section 4.3.1). The limit on the largest distance is 

chosen to be 200 to form smaller local structures (triples) which are lesser prone to distortion 

[22]. Also, a limit on the largest angle of triple is used. Some triples are in the form of a straight 

For all 6-point features (Formed by i
th

 and (j)
th

 3-point features) with matches 

  For every (j+1)
th

 3-point feature 

    Check if i
th

, (j)
th 

 and (j+1)
th

 reference triples form a valid 9-point feature 

      For every match of (j+1)
th

 triple in target 

        For every combination in which target triple matches (j+1)
th 

reference triple 

          Check if centroid distances of reference and target 9-points match 

            Check if Ridge Counts of reference and target 9-points match 

              Check if Minutiae distances of reference and target 9-points match 

                Check if Farthest and nearest minutiae points of reference and target 9-points match 

                  9-points match; go to the next 9-point feature 

Figure 4.19 Algorithm for 9-point comparisons 
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line (largest angle 1 0 ) and the matching triple in another impression of the same finger forms a 

triangle. It is observed that these triples have higher number of matches and hence all the triples 

with largest angle   170  are not considered. Finally, the number of triples considered is also 

limited to 1500. The algorithm for mining rare features in a fingerprint is shown in Figure 4.20. 

In the first step, the reference fingerprint is compared with a few target fingerprints and only 3-

point features and 6-point features are compared. This is to eliminate some of the 6-point 

features that have more matches. Such 6-point features may not be rare features and it is less 

likely that these 6-points might form a rare 9-point feature. After the first step, a set of 3000 

unmatched 6-points is considered and all possible 9-point combinations are formed. A limit of 

1million is chosen for the number of 9-point combinations considered.  All the limits are chosen 

to reduce data complexity and longer run-times. It should be noted that because of these limits, it 

is possible to miss some of the rare features from identification. However, we were able to 

identify a small set of rare features for every fingerprint with these limits.  The 9-point 

combinations thus formed are the final set of features that are compared across the fingerprints in 

the database to find rare features.  The number of 9-points matched is checked after every 100 

files to check if there are any unmatched features left. If all the 9-points have matches, then there 

are no rare features in the selected 9-points of the reference fingerprint. Also, for every new 

fingerprint, the number of core points is checked to ensure that fingerprints of the same type are 

compared. 

4.4.7 Database Profiling 

 

The FBI database consists of single-core (right loop or left loop), two-core (whorl and two loops) 

and arch-type (tented arch and arch) fingerprints.  The feature extracting tool [38] that was used 

extracts all the minutiae and core-points. To verify that the number of cores extracted from the 

fingerprint is true, different impressions of the same fingerprint with high quality are analyzed. 

The database is formed by considering all the good quality fingerprints with true core points. For 

the fingerprints with arch-type core, core points were not extracted by the tool. The core points 

for all the arch-core fingerprints were identified manually. A database consisting of 11,036 

fingerprints whose location and number of core points are reliable is formed. This database 

consists of 2143 two-core, 8313 single-core and 580 arch-type fingerprints. It should be noted 
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that 18,649 fingerprints from FBI database are used in Chapter 3; however, because of unreliable 

detection of location and number of core points, only 11,036 fingerprints from this database are 

used for mining rare features. All the fingerprints in the database are manually checked to verify 

the number of core points. The reference fingerprints that are used to mine rare features and 

target fingerprints used in comparisons are selected from these 11,036 fingerprints from FBI 

database. 
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Figure 4.20 Algorithm for mining rare features 
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4.4.8 Results 

 

For each core type, 10 fingerprints are randomly selected from the FBI database formed with 

11,036 fingerprints (section 4.4.7). So, totally 30 fingerprints are selected for mining rare 

features. Although only 30 fingerprints are selected, rare features that are unique to some N 

fingerprints can be identified in any randomly selected fingerprint by using this method. These 

30 fingerprints are used as reference and the database is searched to identify statistically rare 

features in these fingerprints. It is observed that for all core types, rare 3-point features and rare 

6-point features do not exist. But rare 9-point features exist. For a reference fingerprint, as the 

number of fingerprints compared increases, number of 9-point features with matches also 

increases.  From a million 9-point features, a few features are left after comparing with hundreds 

of fingerprints. The number of unmatched 9-point features left after comparing with every 100, 

500, 1000, 1500 fingerprints is shown in the results below. For a 9-point feature which is left 

unmatched after comparing with 1000 fingerprints, it can be concluded that such feature occurs 

only once in 1000 fingerprints which makes it a rare feature. It should be noted that this 9-point 

feature may find a match if a slightly different database is used. But, the probability of finding a 

match for this 9-point in randomly sampled 1000 fingerprints is less. 

For all the tables below, the number of minutiae considered for the reference fingerprint and the 

number of 3-points formed from those minutiae are shown. In the third column, the number of 

identical-core fingerprints compared with the reference is given. The fourth column represents 

the sum of the number of identical-core fingerprints and fingerprints of other core types. The 

reference fingerprint is compared with the entire database, but whenever a fingerprint of a 

different core type is encountered, the feature matching is not performed because of core 

dissimilarity and the next fingerprint is compared. The table also gives the number of 9-point 

features considered for that fingerprint and rare 9-point features are given in the last column. 

Results for Arch-Core Fingerprints: The results for arch-type fingerprints are shown in Table 

4.3. Each row represents a reference fingerprint. For Fingerprint 1 (with 35 minutiae and 1164 

triples, from a set of 128638 9-point features), 115 features are left unmatched (rare features) 

after comparing with 580 arch-core fingerprints. It can be observed from the table that 

fingerprints 1-4 have some rare 9-point features left after comparing them with the entire 
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database. Fingerprint 4 has 545 rare 9-point features when a set of 1 million 9-point features is 

considered. The fingerprints 1-6 have at least 1 rare feature in 500 arch-core fingerprints and all 

the fingerprints have at least 1 rare feature in 100 fingerprints (see fourth column). For example, 

fingerprints 5 and 6 are compared with 502 and 536 arch-core fingerprints respectively and 1 

rare 9-point feature is identified for both the fingerprints. So, both these fingerprints have at least 

1 rare feature when compared with 500 arch-core fingerprints. 

Table 4.3 Rare 9-point features in arch-core type fingerprints 

Fingerprint # Minutia #3-points 

#Arch-core 

fingerprints 

compared 

# 

Fingerprints 

compared 

#9-points 

considered 

Rare 9-

points 

1 35 1164 580 11036 128638 115 

2 35 1500 580 11036 882863 15 

3 35 1500 580 11036 233522 4 

4 34 1500 580 11036 1000000 545 

5 35 1164 502 10958 166420 1 

6 33 1500 536 10992 921097 1 

7 35 1500 400 10856 1000000 1 

8 35 938 200 10656 471692 16 

9 29 970 100 10556 784687 3 

10 34 956 100 10556 215473 16 

 

In Table 4.4, the number of 9-point features that are left unmatched after comparing with 

fingerprints of arch-core type at different intervals are shown. Since the number of arch-core 

type fingerprints is 580 in the database, two intervals, one at 100 and another at 500 are shown. It 

can be seen from the table that for fingerprint 1, 2,856 9-point features are left unmatched after 

comparing with 100 fingerprints and 123 9-point features are left unmatched after comparing 

with 500 fingerprints. 
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Table 4.4 Rare 9-point features in arch-core fingerprints at different fingerprint intervals 

 

 

 

 

 

 

 

 

 

 

Table 4.5 Rare 9-point features in two-core fingerprints 

 

Fingerprint 

100 

Fingerprints 

compared 

500  

Fingerprints 

compared 

1 2856 123 

2 24353 15 

3 4063 12 

4 37857 665 

5 2432 1 

6 742 1 

7 4505 0 

8 459 0 

9 3 0 

10 16 0 

Fingerprint 
# 

Minutia 
#3-points 

#Two-core 

fingerprints 

compared 

# Total 

fingerprints 

compared 

#9-points 

considered 

Rare 9-

points 

1 35 1150 2143 11036 660919 2 

2 32 1500 1964 10857 638523 1 

3 35 1398 1027 9920 250809 1 

4 35 1197 1439 10332 643892 1 

5 35 892 500 9393 581095 3 

6 35 1500 500 9393 632564 2 

7 35 1500 500 9393 947147 6 

8 34 1500 200 8923 717588 1 

9 35 775 700 9423 273409 6 

10 35 1500 400 9123 1000000 1 
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Results for Two-Core Fingerprints: The results for two-core fingerprints are shown in Table 

4.5. It shows that fingerprint 1 has 2 rare features when compared with the entire database. For 

fingerprints 1-4, at least 1 rare feature was found when compared with 1000 fingerprints. For 

fingerprints 1-7, at least 1 rare feature was found in 500 fingerprints.  

For two-core fingerprints, Table 4.6 shows the number of unmatched 9 point features identified 

after comparing with 100, 500, 1000, 1500 fingerprints.  

Table 4.6 Rare 9-point features in two-core fingerprints at different fingerprint intervals 

 

 

 

 

 

 

 

 

 

Results for Single-Core Fingerprints:  The results for single-core fingerprints are shown in 

Table 4.7. It shows that for 1-2 fingerprints, at least 1 rare feature was found when compared 

with 1000 fingerprints. For the fingerprints from 1-6 and 10, at least 1 rare feature was found 

when compared with 500 fingerprints. 

For single-core fingerprints, Table 4.8 shows the number of unmatched 9 point features present 

after comparing with 100, 300, 600, 900, 1000 fingerprints.  

 

 

Fingerprint 

100 

fingerprints 

compared 

500  

fingerprints 

compared 

1000  

fingerprints 

compared 

1500  

fingerprints 

compared 

1 286590 2585 301 80 

2 68777 1107 26 1 

3 12010 74 1 0 

4 23668 31 1 0 

5 15765 3 0 0 

6 14603 2 0 0 

7 5807 6 0 0 

8 41 1 0 0 

9 48679 29 0 0 

10 3356 0 0 0 
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Table 4.7 Rare 9-point features in single-core fingerprints 

 

Table 4.8 Rare 9-point features in single-core fingerprints at different fingerprint intervals 

Fingerprint 
# 

Minutia 

#3-

points 

#Single-core 

fingerprints 

compared 

# Total 

fingerprints 

compared 

#9-points 

considered 

Rare 9-

points 

1 29 1437 1300 4023 1000000 5 

2 35 1500 1000 3723 1000000 3 

3 35 1500 900 3623 706722 15 

4 35 1500 800 3523 787825 16 

5 35 1500 500 3223 1000000 11 

6 28 896 800 3523 790150 1 

7 30 811 100 2823 761774 231 

8 33 1500 100 2823 1000000 12 

9 35 1500 300 3023 1000000 1 

10 35 1500 900 3623 818980 1 

Fingerprint 

100 

Fingerprints 

compared 

300  

Fingerprints 

compared 

600  

Fingerprints 

compared 

900  

Fingerprints 

compared 

1000  

Fingerprints 

compared 

1 63472 940 17 7 7 

2 169299 28444 503 4 3 

3 15625 380 19 15 0 

4 223982 3468 75 0 0 

5 26297 379 0 0 0 

6 21962 279 15 0 0 

7 231 0 0 0 0 

8 15 0 0 0 0 

9 159 1 0 0 0 

10 40266 470 14 1 0 
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From the above results, it can be seen that arch-core fingerprints have more rare features 

compared to single-core and two-core fingerprints. This is because of their lower proportion in 

the database. Also two-core fingerprints have more rare features compared to single-core 

fingerprints because of the comparatively lower proportion of two-core fingerprints in the 

database and also because of more matching criteria; with 2 cores, total 6 minutiae distances of 

which 3 are from a core are considered and with 1 core, only 3 minutiae distances from the core 

are considered. The matching criteria of two-core fingerprints help in locating the position of 

triple in a fingerprint more accurately. 

In Figures 4.21 and 4.22, some rare 9-point features identified in a single-core fingerprint are 

shown. The fingerprint used in this figure is taken from SD-27 (Special Database).These rare 

features are statistically rare 9-point features.  

From the above results, for fingerprints of different cores, it can be seen that some of the 

fingerprints have at least one rare feature when compared with 1000 fingerprints of identical 

core. This means that this rare feature occurs only once in 1000 fingerprints. Also, these 30 

fingerprints have many rare 9-point features when compared with a small set of 100 fingerprints. 

The rare features identified by the above algorithm are statistically rare features. These rare 

features can be very valuable when they are identified in the latent fingerprint. They will boost 

the confidence of the evidence and help in making a confident court judgment. It should be noted 

that the rare features identified in N randomly sampled fingerprints may find a match in a set of 

different N randomly sampled fingerprints. There is always a probability of finding a match for 

these rare features. However, their occurrence would be still statistically rare. Even if these 

features find a match in a different set of fingerprints, they will have a few matches which still 

makes them rare.  

The algorithm used in this work can be applied to any fingerprint database to extract rare 

features. The tolerance parameters are relaxed enough to ensure that impressions of the same 

finger match, so they need not be changed when a new database is used. 
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 Figure 4.21 Rare 9-point features identified in a single-core fingerprint 
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Figure 4.22 Additional rare 9-point features identified in a single-core fingerprint 
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Chapter 5: Conclusions and Future Work 

 

In this thesis, a method was proposed to accelerate fingerprint triplet-based matching techniques 

using GPUs. Also, another method was proposed for mining rare features in fingerprints using 

core points.  

In Chapter 3, an existing algorithm used for fingerprint matching is parallelized and implemented 

on GPUs. Shared Memory and other optimization techniques were used to accelerate the 

algorithm. The sequential and parallel algorithms are applied on a large database of 18,649 

fingerprints and the execution times are compared. The parallel algorithm takes less than two 

hours whereas the sequential algorithm takes 60 hours. A speedup of 40.2 times was obtained by 

using the parallel algorithm.  Thus, this method shows that using GPUs for fingerprint matching 

can greatly reduce the matching time for larger databases.  

In Chapter 4, various kinds of distortion that are observed in fingerprints are discussed. It was 

observed that the distortion is higher for spatial distances and ridges crossed between minutiae 

and methods were proposed to cope with these distortions. By using higher thresholds, the 

number of matches between two fingerprints is large even though the fingerprints are from 

different fingers. To reduce the number of matches, usage of core points was proposed which 

helped in identifying the location of triples in the fingerprints and thereby reduced number of 

matches. A set of novel parameters was used for triplet matching and it was extended to 6-point 

and 9-point comparisons. This algorithm helped in eliminating false matches and it can be used 

as a fingerprint matching tool. The same algorithm was used for mining rare features in 

fingerprint and it was observed that in every fingerprint that was used for mining rare features, 

there were a small percentage of rare 9-point features. Some rare 9-point features that were 

identified in some of the fingerprints occur only once in 1000 fingerprints. These rare features 

when identified in a latent fingerprint can help in increasing the confidence of the evidence.  

The rare features identified by this method are truly statistically rare and there is no possibility 

for false positives. This is because of the relaxed thresholds used. Although the rare feature can 

find a match in a slightly different database, it would still have a few matches which would still 

make that feature rare. However, there is a chance that some of the rare features might not have 
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been identified (presence of false negatives) because of relaxed thresholds. A feature which is 

rare might have found a match because of relaxed thresholds. 

There is lot of scope for future work in this area. There are many 3-points, 6-points and 9-points 

that still have false matches. There is scope to reduce such false matches by using more matching 

parameters. Because of these false matches, a feature which may be originally rare may find a 

match in the database. The key to find rare features is to reduce the number of false matches.  

Ridge Flow as Matching Parameter: The ridge flow patterns form the non-minutiae features of 

the fingerprints. These ridge flow patterns have higher discriminatory power when the triples are 

compared.  A combination of minutiae and non-minutiae based features would help in reducing 

the false matches in fingerprint matching. 

Minutiae Density as Matching Parameter: The neighboring minutiae around a triple can be 

used in some way to reduce the number of matches. A circle of some fixed radius can be 

considered around a triple allowing some tolerance levels and various characteristics of minutiae 

that fall in this circle can be analyzed such as the number of minutiae, distance, ridge counts, 

location of minutiae with respect to the core and the triple. 

Quantifying Rarity: This thesis work shows that for the 30 fingerprints that were randomly 

selected to mine rare features have a small set of rare features. But how these rare features 

influence the matching score between two fingerprints has to be quantified. Depending on the 

number and occurrence of these rare features, a method has to be developed to understand their 

effect on the matching score. For example, a rare feature whose occurrence is 1 in 1000 

fingerprints has higher confidence level than a rare feature whose occurrence is 1 in 100 

fingerprints. 

Parallelization using GPUs: By using the techniques used for parallelizing fingerprint matching 

algorithm discussed in Chapter 3, a new parallel algorithm can be developed for triplet based 

matching using core points and for mining rare features.  

Calculation of Tolerance Parameters: In this work, to calculate the tolerance parameters, the 

corresponding minutiae were identified manually, which is the most time-consuming process. 

There is a need for a tool, which would identify the corresponding minutiae and calculate the 
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tolerances for all kinds of distortions.  There are some existing methods [39, 40]which help in 

selecting the thresholds to some degree, but development of a fully functional tool would aid 

fingerprint matchers. 

Reducing the search space of 9-point features: It was identified that some triples, which are 

almost equilateral or almost isosceles in shape have more matches across fingerprints. It is less 

likely that any 9-point feature formed by such triples is a rare feature. By removing 9-point 

features formed by such triples from the search space, time taken for comparisons can be greatly 

reduced.  

Handling Data Complexity: In this work, only a small set of minutiae and only a maximum of 1 

Million 9-point features from the reference fingerprint are considered. A task for future 

implementations would be to consider all the possible 9-point features from all the minutiae to 

mine rare features. There is a need to find methods to handle data complexity and longer run-

times involved in this kind of approaches. 
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