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Diffusion of muonic atoms
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Transport of muonic hydrogen and deuterium atoms in gaseous hydrogen and deuterium is stud-

ied in the diffusion approximation and by means of the multiple-collision expansion. The diffusion
coefficient is derived. Numerical results of the time-dependent problem in slab geometry are
presented for a number of initial energies, temperatures, and pressures.

I. INTRODUCTION

An understanding of the transport of muonic hydrogen
and/or deuterium atoms in a medium of molecular hy-
drogen and/or deuterium is of interest in the analysis of
muon experiments' and also in the study of muon-
catalyzed fusion. In this paper we develop a method
for treating this transport which is basically a modified
time-dependent diffusion theory, similar to the Selengut-
Goertzel method developed in the 1950s for treating
neutron transport in H20 reactors. The muonic situation
is considerably more complicated than the neutron case,
because muonic atoms can be exited and de-excited be-
tween hyperfine states by colliding with the molecules.
The hyperfine splitting, negligibly small in the case of or-
dinary atomic hydrogen, is around 0.183 eV for muonic
hydrogen because it is proportional to the muonic mass
squared. Since the kinetic energy of the muonic atom
during this diffusion process varies in the range from
about 1 eV to thermal energy, we see that the hyperfine
splitting cannot be ignored.

Actually, the kinematics for the processes considered
here have been developed and published previously.
The results of Ref. 9 will be used extensively in the
present work.

Since we are using a variant of diffusion theory, our re-
sults are not applicable to some of the experimental data,
namely, those experiments which were done in optically
thin systems. For such systems we suggest a multiple-
collision expansion, which we have implemented to low
order. Results of these calculations are presented along
with the diffusion theory results.

The outline of the remainder of this paper is as follows.
In Sec. II we show how the diffusion approximation is ob-
tained from the (linear) transport equation and in particu-
lar derive an expression for the diffusion coefficient. The
parameters in the diffusion equation are certain scattering
kernels and average scattering angles, which were ob-
tained already in Ref. 9. Doppler correction and the
effect of molecular rotations were also included in Ref. 9.

In Sec. III, we show how to separate the uncollided
flux, which can be computed analytically. Then the
diffusion equation is solved for the collided flux, with
such cross sections as are available. ' " All calculations
are done in slab geometry, which is an excellent model of

the experimental setup. For the sake of clarity, the calcu-
lations do not take into account the finite lifetime of the
muon (r =2 ps), since it is independent of the scattering
process and its effect can be included by multiplying all
the results by the factor exp( —t/r ).

The diffusion equation has been solved numerically on
the Cray XM-P at the Pittsburgh Computer Center. The
numerical techniques are standard, and we do not give
any details in the paper. In Sec. IV we present results for
a number of initial source energies and a number of tem-
peratures for both muonic hydrogen and deuterium
atoms diffusing in molecular hydrogen and deuterium, re-
spectively. In Sec. V we present the results of low-order
multiple-scattering calculation which can be applied to
optically thin media. Our results are seen to compare
favorably with the results of a Monte Carlo simulation. '

II. DERIVATION OF THE DIFFUSION
EQUATION

where t is time, x is the position, p is the cosine of the an-
gle between the velocity and the x axis, and E is the ener-
gy. We assume the muonic atoms to be diffusing in an
infinite slab of thickness d. The notation is standard. '

4 obeys a linear Boltzmann equation'

=fX(E',p'~ E,p )@(t, x,p', E')d p'dE' . (2)

Here v is the speed of the muonic atom [equal to
(2E/m}' ] and X(E}is a diagonal matrix

Xs(E)
X(E)= Xr(E) (3)

where Xs(E) [Xz-(E)] is the total cross section for

The muonic atoms can exist in two hyperfine states
(singlet and triplet in the case of hydrogen and doublet
and quartet in the case of deuterium). We denote the an-
gular flux of muonic atoms as a two component vector

Qs(t, x, p, E)
4(t, x,p, E)=

~ ( E)
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scattering of singlet (triplet) muonic atoms. The scatter-
ing kernel X(E',p'~E, p)=X(E'~E,po), where po is
the cosine of the scattering angle, can be written as

course, the normal nonreentrant condition at x =+d/2.
For the diffusion approximation, we replace this with the
usual extrapolated-endpoint condition

X(E',p'~E, p)

Xss(E' p'-E p} Xrs(E' p'-E p}
Xsr(E', p' E,p) Xrr(E', p' E,p)

4o(+d') =0,
where the extrapolated endpoint d' is defined by

(loa)

Here X,b is the scattering cross section for an atom in the
spin state a to scatter to spin state b. The total cross sec-
tions of Eq. (3) are related to those of Eq. (4) by

X,(E')= fdEdp[X„(E',p'~E, p)

+Xob(E', p'~E, p)] . (5)

To develop a diffusion theory, the standard procedure is
to expand the angular flux in a series of Legendre polyno-
mials and retain only the first two terms:

d'= —,'d +0.7 a=5, T .
X, (E)(1—Po„)

We see that there is some ambiguity because the extrapo-
lated endpoint is a function of energy and furthermore it
is different for the singlet and triplet case. We use an
average which should be a good approximation for thick
slabs, where the second term in Eq (10b) is a small correc-
tion. The restriction to optically thick slabs is necessary
for the validity of diffusion theory anyway.

The x dependence is treated by Fourier expansion

4(t, x,p, E)= ,'@o(t,x,—E)+', p@,(t—, x,E),
where 4o is the total flux (or simply the flux) and 4, the
current. We obtain the following equations, known in
neutron transport theory as the P-1 approximation:

1 B@ (ot, xE) 84,
+X(E)4o

v Bt BX

@o(t,x,E)= g 4o„(t,E)cos(B„x),
n=1

where

(2n —1)n.
n

Equation (9) then yields

(12)

1 8@i(t, xE)

v Bt

Xp E ~E 4o t x E dE 7a

8+O
+X(E)4q

= fX,(E'~E)4,(t, x,E')dE' . (7b)

1 B@o„(t,E)
+ [D (E)B„+X(E)]Co„

V Bt

Xo E ~E C o t x E dE ~ 13

M
3detM '

~T ~TTPOTT

~sTPosT

~TsPoTs

&s —&SSPoss

(9b)

(9c)

The boundary condition for the angular Aux is, of

The kernels Xo(E'~E) and X,(E'~E) are the zeroth
and the first moments of the scattering kernel
X(E',p'~E, p). Xo(E'~E) is derived in Ref. 9. In the
spirit of the Selengut-Goertzel approximation we set

fX,(E'~E)P, (E')dE'

XSS(E)PoSS(E) XTS(E)PoTS(E)
@)(E), (g)

XST(E)pOST(E) XTT(E)pOTT(

where the average cosine of the scattering angle for
scattering from spin state a to spin state b, po,b(E), is
also derived in Ref. 9. Also, as is customary in diffusion
theory, the term 84&/dt is neglected.

We thus arrive at the diffusion equation

1 ae, a'e,D+X(E)4—o
v Bt

=fXO(E'~ E}@O(t, x,E')dE' (9a)

and the diffusion matrix D is given by

III. THE UNCOLLIDED FLUX

The accuracy of the diffusion approximation can be im-

proved considerably by separating the uncollided flux 4"
and using the first collisions as the source for the
diffusion equation. Clearly 4" can be defined analytical-
ly, as follows.

The initial source of muonic atoms is isotropic and in-

dependent of x, so 4" satisfies

B4" t Q(p M

+p, +X(Eo)4"=So5(t)5(E Eo), —
Uo r)t Bx

(14)

where So is the source strength (atoms/cm). The Laplace
transform of Eq. (14) gives

4 "(p,x,p }+p +Xk "=So5(E Eo ) . (15)—
VO BX

Here p is the transform variable and 4 "(p,x,p) the
transformed flux. Since we are only interested in the
solution inside the slab (

~

x
~

& d /2), we may consider X
and So as constants, independent of x. The equations for
singlet and triplet are decoupled, so it suSces to solve for
one species:
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Spvp
P,"(p,x,p}=

p +bravo

X 1 —exp
Pvp

I +&avo dx+—
2

we can write it as a sum of the uncollided part X"and the
collided part X', where

&."(t)=2/"„(t,d /2)

and

~

x
~

& d/2, p &0, a =S, T (16a) =Spu pexp[ X,—(Ep )upt]
1, vpt (d

d
vpt &d .

vpt

(20)

SpUp
P,"(p,x,p) =

p +bravo

1 —exp
JMvp

5' +~a "o d —x
2

Integration over all times and setting Sp ——(2d) ' (corre-
sponding to a single atom inside the slab at t =0) yields
the ratio of atoms that eventually escape from the slab
without suffering a single collision (escape probability' )

1 —H pvot —x ——
2

if p&0,

~x
~

&d/2, p&0, a=ST. (16b)

Performing the Laplace inversion yields

P,"(t,x,p) =Spupexp( X, v pt —)

U(5g ) =— (1—e ')+E,(5, )
1 1

a
(21)

where 5, =X,d is the optical width for the atoms in state
a and E2(x) is the exponential integral

E~(x)= f e "'t 'dt . (22)
1

Ijk ( t x p) =Spvpexp( —X,upt}

d
1 —H pvot —x+—

2
if p(0,

(17) This quantity can give insight into the applicability of the
diffusion approximation and/or multiple collision expan-
sion.

%e will also need the nth Fourier component of the to-
tal uncollided Aux

where H(x) is the Heaviside function

1, q)0
H(q)= '0'

0

As we shall see, we need only the zeroth moment Pp, (as
a source for the collided flux) and the first moment P"„
(to obtain the emergent flux). They can be computed by
integration, recalling Eq. (6):

Pp ( t x ) =Spvpexp[ —X,(Ep )upt]

8sod
Pp„, (t)= 2 exp[ —vpX (Ep)t]

(2n —1)

X 1+ sin(2n —1 )re
(2n —1)mr

1 sin(2n —1)nr
1 ——+ H r 1—

2n —1)mr

(23a)

d/2 —x d
2 — 1 — H upt ——+x

upt 2

x +d/21— H v, t —x-—
uot 2

(19a)

where

upt7—
d

IV. RESULTS

(23b)

x. d/2 —x
vpt

2
dH vpt ——+x
2

and

Sp Vp
P"„(t,x) = exp[ —X,(Ep)upt]

As we mentioned in Sec. III, the accuracy of the
diffusion approximation can be improved by separating
the uncollided Aux. The nth Fourier component of the
collided flux @p„(t,E) then obeys the zero initial condi-
tion and satisfies Eq. (13) with the right-hand side supple-
mented by the source:

x +d/2
uot

~ss(Ep } ~TS(Ep }
S„(t)— y (E ) y (E )

4 pn(t), (24)

dXH u, t —x ——
2

(19b)

The quantity that is usually measured in an experiment is
the emerging flux X(t), i.e., the number of atoms escap-
ing from the slab per second. As in the case of the Aux,

where 4p„was defined by Eq. (23).
The modified Eq. (13) can be solved numerically. We

used the multigroup method to discretize the energy vari-
able. The Auxes, the cross sections, and the diffusion ma-
trix were taken to be independent of energy in each
group. The trapezoidal formula was used for numerical
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FIG. 1. Emerging flux for deuterium diffusing in a slab of
E.width d = 1 cm, at p = 1 bar and T =300 K, varying

FIG. 3. Same as Fig. 1, for d =1 cm, T =300 K E =1eV,
varying p.

ration. B approximating the time derivative y the
forward difference we obtained an explicit numerica
scheme, where the knowledge of 4(t) suffices for the cal-
culation of 4'(t +b t). The first three terms in the
Fourier expansion were retained and 20 energy groups

heWe resent the results of several calculations for t ee presen
case of deuterium (Figs. 1 —3) and hydrogen ( ig. . e
atomic cross sections (Ref. 10 for hydrogen and Ref. 11
for deuterium) were used and convertedd to molecular
cross sections, as explained in Ref. 9. In the case of hy-
drogen, the effect of rotations of the scatterers was taken
into account by replacing the hyperfine splitting constant

=0.183 eV) with the effective inelastic energy transfer
fr(E), as defined in Ref. 9. For deuterium, however,eft'

the hyperfine splitting is small ( Q =0.049), so this
correction was ignored. Only the emerging flux
X(t)=Xs+XT is plotted, since present experiments can-
not distinguish between the atoms in the two hyperfine
states.

Figure 1 shows the effect of varying the initial energy
Eo(EO ——1, 0.5, and 0.1 eV) in the case of deuterium
diffusing in a slab of width d =1 cm, p =at =1 bar and

=300 K. Diffusion at two different temperatures
T =300 K and T =200 K is shown in Fig. 2 or
cm, =1 bar, E0=1 eV. Finally, pressure has been

a '. = = KE =leV.aried on Fig. 3 for d =1 cm, T =300, o
—— eva

Diffusion in hydrogen is more interest&ng because tthe
cross sections vary as a function of energy over two or-
ders of magnitude. The initial statistical mixture (75%
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FIG. 2. Same as Fig. 1, for d =1 cm, p ==1 bar, Eo ——1 eV,
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FIQ. 4. Emerging flux for hydrogen diffusing in a slab of'

width d =5 cm, p =1 bar, T =300 K, Eo = 1 eV.
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triplet, 25% singlet} changes into predominantly singlet
during the first few average collision times. Atoms in the
singlet state have a smaller cross section and hence
diffuse faster. This results in a bump on the emerging
flux curve (the case d = 5 cm, p = 1 bar, T =300 K,
Eo ——1 eV is shown in Fig. 4). The prediction of the
bump, though surprising when it was first obtained, was
confirmed by a very simple model, which is presented in
the Appendix.

V. MULTIPLE-SCATTERING EXPANSION

0.50

0,40—

0.30

C)

0.20

In optically thin media, the diffusion approximation is
not valid. Most atoms escape from the medium without
suffering a single collision. In this case it is convenient to
use the multiple collision expansion for the angular flux

@u+ y @(n I

n=1
(25)

where 4(") is the n times collided flux.
Here we present a low-order implementation of Eq.

(25), in which we retain only 4" and 4"', and neglect the
rest. 4" is defined analytically by Eq. (17). Clearly, the
source for 4"' are first collisions. We take this source to
be isotropic, which is a good approximation. Further-
more, we assume that all atoms contributing to 4"' trav-
el with the average speed v1, i.e., we model the continu-
ous speed distribution of 4"' by 5(u —u t ). In the case of
elastic scattering,

3A +1
3A(A+1) ' ' (26)

where A is the ratio of the masses of the target molecule
and the muonic atom.

Then 4' "obeys the equation

(1) (1)1 84 (t x,p) 8@
U1

+p +
&

—— t, x
X

(27)

where E, =mu t l2 and the source S' "equals

&ss(Eo } &rs(Eo)
S (t)x) — ~ (E ) ~ (E )

4o(t, x) .
2 sr o rr o

(28)

Equation (27} can be readily solved by integration along
the characteristics' and yields

P',"(t,x,p}=f exp[ —X,(E, )u, (t —r)]

(30)

&(S,[r,x —pu, (t r}]dr . (29—)

The once collided emerging flux X "(t),
X'"(t)=2f p+'"(t, d I2,p)dp,

0

can be found by numerical quadrature. Trapezoidal rule
was used for numerical evaluation of formulas (29) and
(30).

We employed the above calculation in the case of deu-
terium muonic atoms in a slab of width d =0.23 cm,
filled with gaseous deuterium at pressure p =0.188 bar

O. I 0

0.00 I I I

0.00 20.00 40.00 60.00 80.00 IOO.OO

t(IO ns}

FIG. 5. Comparison of the multiple-collision expansion with
the Monte Carlo simulation for deuterium, d =0.23 cm,
p =0.188 bar, T =300 K, Eo ——2 eV.

and T =300 K, which corresponds to optical thickness
5=0.52 (Fig. 5). These parameters were used in an ex-
periment done by Siegel. ' Frotn Eq. (21) we see that
55% of the atoms contribute to the uncollided emerging
flux, while numerical integration shows that 26% con-
tribute to the first collided emerging flux. Thus we are ig-
noring 19% of the atotns, namely, those that suffer more
than one collision on their way out of the slab.

Unfortunately, the analysis of the experiments has not
been completed yet, so we can only compare our calcula-
tion with a Monte Carlo simulation. ' Although the
agreement is apparently good, the two should not be
compared directly, because in the experiment the source
of muonic atoms is not a 5 function in energy, but rather
a continuous distribution. In the Monte Carlo simulation
this distribution is taken to be a Maxwellian. The calcu-
lation gives Green's function of the problem, while the
experiment yields its convolution with the initial source.
We hope that comparison of our calculation with the ex-
periment will yield some information about the energy
distribution of the source. We plan to improve the calcu-
lation by taking into account more terms in the rnultiple-
collision expansion.
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APPENDIX In the case of hydrogen, the initial condition is

&TS

Here we present the analytically solvable one-speed
model, in which all the atoms are assumed to be moving
with the same speed v. Simple as it is, the model reason-
ably describes the diffusion process; in particular, it pre-
dicts the bump on the emerging Aux curve in the case of
hydrogen.

Under the one-speed assumption and neglecting the
off-diagonal elements in the diffusion matrix D, the
diffusion equation (13) yields

—XsT —B„Dss2

The eigenvalues and eigenvectors are

co+ =
~ I

—A,s —A. T —os —o T

+[(As —Ar+crs cr T)—+4oso r]'i j

and

1

u+ = (co++ks+crs)
Q~ OT

(33)

(34a)

(34b)

&ST
4o„(t),

~TS n TT and the solution of Eq. (33) is a sum of two exponentials

(31) %(t)=C+ v+ exp(co+t)+ C v exp(co t), (35a)

—Os —~s O'T

(32)

where the matrix is constant. The main contribution
comes from the first Fourier mode, so we set n =1. To
simplify the notation we rewrite Eq. (31) as

with

C+ = C =—' —C
4(u+ —u )' 4 + ' (35b)

In the thermal region os ——0 and the solution (35)
simplifies into

1 34'T

4 4(A,s —A, T
—o T

~St 30 T —~T+~Tifs e
4(A,s —A, T —o T }

(36)

We are interested in seeing when the emerging Aux

X = ll.sos+A, TpT,

exhibits a bump. Since A. T is much smaller than A,s, we ignore it. Then X has a maximum at

1 3' T
ln

o T
—A,s As(4cr T A, s}—,

subject to the condition

30'T )As

(37)

(3&)

(39)

which is the requirement of an optically thick slab, needed for the validity of the diffusion approximation in the first
place.

The one-speed model of course cannot predict the initial decay in the emerging Aux, which is due to slowing down.
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