
Design and Evaluation of Scalable Concurrent Queues
for Many-Core Architectures

Thomas R. W. Scogland
Department of Computer Science

Virginia Tech
tom.scogland@vt.edu

Wu-chun Feng
Department of Computer Science

Virginia Tech
feng@cs.vt.edu

ABSTRACT
As core counts increase and as heterogeneity becomes more
common in parallel computing, we face the prospect of pro-
gramming hundreds or even thousands of concurrent threads
in a single shared-memory system. At these scales, even
highly-efficient concurrent algorithms and data structures
can become bottlenecks, unless they are designed from the
ground up with throughput as their primary goal.

In this paper, we present three contributions: (1) a charac-
terization of queue designs in terms of modern multi- and
many-core architectures, (2) the design of a high-throughput
concurrent FIFO queue for many-core architectures that
avoids the bottlenecks common in modern queue designs,
and (3) a thorough evaluation of concurrent queue through-
put across CPU, GPU, and co-processor devices. Our evalu-
ation shows that focusing on throughput, rather than progress
guarantees, allows our queue to scale to as much as three or-
ders of magnitude (1000×) faster than lock-free and combin-
ing queues on GPU platforms and two times (2×) faster on
CPU devices. These results deliver critical insight into the
design of data structures for highly concurrent systems: (1)
progress guarantees do not guarantee scalability, and (2) al-
lowing an algorithm to block can actually increase through-
put.

1. INTRODUCTION
Multicore architectures have taken over the CPU market,
and many-core accelerators and co-processors, such as GPUs
and Intel Xeon Phi, are becoming available to all segments
of computing. Each new generation contains more cores,
further compounding the demands on the scalability of soft-
ware. That scalability, more often than not, is governed by
the cost of synchronization and communication.

Concurrent data structures have become basic building blocks
for the new wave of highly parallel applications, providing
intuitive abstractions atop the complexities of low-level syn-
chronization and memory coherence primitives. The result

can be both increased productivity and, when designed well,
performance. One of the most ubiquitous of these is the con-
current first-in, first-out (FIFO) queue.1

The concurrent queue has been studied extensively over the
last four decades. It has gone through a variety of forms –
from infinite-array queues [7, 3] to lock-free queues [11, 14]
to advanced distributed lock-free [8, 5] or even wait-free [9,
10] variants. As concurrency has increased, so has the con-
tention on concurrent queues and the cost of synchroniza-
tion, and frequently serialization, in these designs.

Our goal with this paper is to characterize the performance
requirements and considerations of concurrent queues in the
multi- and many-core era and to create a concurrent queue
that is tailored for high throughput, even under extreme
contention. Our design and evaluation span CPU, GPU
and co-processor architectures using the C and OpenCL pro-
gramming models.

Specifically, this paper makes the following contributions:

1. A characterization of queue designs in terms of modern
multi- and many-core architectures.

2. The design of a robust, simple, and extremely scalable
blocking FIFO queue based on the above characteriza-
tion.

3. A thorough evaluation of our queue in OpenCL and
OpenMP, including a comparison with several clas-
sic and state-of-the-art concurrent queues and demon-
strating up to a 2-fold speedup on CPUs and as much
as a 1000-fold speedup on GPUs running more than
1000 concurrent threads.

The rest of the paper is laid out as follows. Section 2 presents
the background and setup for our work, including the ma-
chine abstraction that we employ to discuss synchronization
and threading in OpenCL and OpenMP environments in-
terchangeably. Related work follows in Section 3. Section 4
characterizes the bottleneck points in concurrent queue de-
signs, and models their performance in terms of the atomic
operation throughput of many-core architectures. Section 5
presents the design of our queue and its three interfaces while
Section 6 discusses linearizability [7]. Section 7 presents our

1As we only discuss FIFO queues in this paper, the term
queue shall be used in place of FIFO queue henceforth.



experimental setup and benchmarks while Section 8 presents
the results of our experiments. Finally, concluding remarks
and future work are presented in Section 9.

2. BACKGROUND
In order to discuss the properties of our target architectures
in a uniform manner, we must first present our abstraction
of the concurrency and memory model that we use across
devices. This section discusses the abstraction that we em-
ploy in this paper in order to discuss OpenMP on CPUs and
OpenCL on CPUs, GPUs and co-processors all interchange-
ably along with our microbenchmark evaluation of atomic
operations that make this possible across each architecture.

2.1 Threading Abstraction
While the threading models of OpenMP and OpenCL are
significantly different, they can be reconciled. An OpenCL
kernel runs a set of work-groups, each consisting of work-
items or, as they are sometimes unfortunately misnamed
“threads.” We exclusively use the term “work-item” to refer
to these throughout this paper. Work-items are usually a
single lane of a vector computation, rather than an indepen-
dent thread of control. In OpenMP, there is no observable
equivalent to the work-item, though a single iteration of a
loop parallelized by an omp simd directive would be closest.

OpenCL does have an equivalent to the OpenMP thread
however, though it changes from device to device. In NVIDIA
GPUs, one thread is a “warp,” composed of 32 work-items.
In AMD GPUs, a thread is a “wavefront” of 32 or 64 work-
items. When run on CPUs, work-items may be either op-
erating system threads or individual lanes of vector calcu-
lations as on GPUs. For common CPUs, this means each
thread may be composed of one to eight work-items. The
width of the thread-equivalent used in a compiled kernel in
OpenCL can be reliably determined based on the OpenCL
1.1 kernel work group info property “preferred work group
size multiple,” which is what we use in our implementations.
To establish consistent terminology, we use the term thread
to refer to OpenMP threads on CPU and Xeon Phi or inde-
pendent groups of work-items in OpenCL. Since work-items
within a thread must execute in lockstep, it is unsafe for
more than one work-item in a thread to interact with a con-
current data structure simultaneously, thus when a thread
accesses any queue in this paper only one work-item is ac-
tive.

The additional wrinkle is that OpenCL has no mechanism
to get the number of threads that actually run concurrently.
While a user can request any number of threads, the num-
ber that run concurrently can be anywhere from one to the
requested number. We add counters as depicted in Figure 1
to all benchmarks to count the number of threads that exist
before the first thread finishes execution, which is a reliable
upper bound on the number of concurrent working threads
regardless of the behavior of the OpenCL runtime.

2.2 Memory Model
CPU models like OpenMP depend on cache-coherent shared
memory for correctness. The OpenCL standard does not
provide a sufficiently strong coherence model, or a mem-
ory flush that can be used to implement one. The stan-

void test(unsigned *num_threads, unsigned *present){
if(atomic_read(num_threads) != 0)

return;
atomic_fetch_and_add(present,1);
run_benchmark();
atomic_compare_and_swap(num_threads, 0, atomic_read(present));

}

Figure 1: Design of concurrency detection in OpenCL bench-
marks

dard states that “there are no guarantees of memory consis-
tency between different work-groups executing a kernel [4].”
Writes in different work-groups are only guaranteed to be
synchronized at the end of a kernel, and are thus available in
subsequent kernels. The standard specifically allows writes
to global memory to never become visible to other work-
groups within a single kernel.

The exception is atomic operations, available since OpenCL
1.1, which are guaranteed to be visible and coherent across
work-groups within a kernel as long as all work-groups are
executing on the same device. Thus, every write and every
read to global memory that is shared between work-groups
must be atomic to ensure correctness in OpenCL. In prac-
tice, some OpenCL devices support a more coherent memory
model than this, but it is not required and several architec-
tures do not. For example, NVIDIA GPUs present a weak
coherence model, but offer a fence/flush through the PTX
instruction membar.gl, but this is not standard OpenCL and
must be used carefully. AMD GPUs have similar instruc-
tions at the ISA level but inline assembly only accepts the
intermediate CAL language, which has no equivalent.

For consistency, we express all algorithms as a set of abstract
atomically coherent instructions. In OpenMP, the atomic
reads and writes are standard load and store instructions
while FAA and CAS use intrinsic functions. In OpenCL, all
operations are implemented with explicit atomic intrinsics,
including load and store, to maintain coherence.

3. RELATED WORK
Concurrent queues have been studied for decades, nearly as
long as computers with multiple computational units have
existed to run them. We will elide some of the early history
and refer the reader to the surveys provided by the papers
referenced below, especially the Michael and Scott [11] sur-
vey, which provides significant discussion of early designs.

Array queues. The array queue proposed by Gottlieb et
al. [3] in 1983 is notable for scaling near-linearly to 100 cores
in simulation at the time. The Gottlieb queue can scale to as
many threads as the hardware can process concurrently due
to the use of a combination of a FAA on a pair of counters to
select a location and fine-grained locking on each location in
the queue. Unfortunately however, the Gottlieb queue has
been proven to be non-linearizable [1]. Orozco et al. [13]
present two related array queues called the Circular Buffer
Queue (CB-Queue) and the High-Throughput Queue (HT-
Queue). The CB-queue merges the Gottlieb queue’s two
counters per side into one and preserves linearizability, but
the authors assert that full and empty status cannot be de-
termined for the CB-queue and provide only blocking en-
queue and dequeue calls. Their solution to the weaknesses



of the CB-Queue is the HT-Queue, which regains the ability
to detect full and empty by using the same flawed double-
counter mechanism employed by the Gottlieb queue.

Contended-CAS queues. Michael and Scott [11] present
a pair of unbounded linked-list queues, one lock-free (MS-
queue hereafter) and one lock-based. The MS-queue offers
a linearizable, lock-free queue using a portable single-word
CAS operation and has become the standard unbounded
lock-free queue. An alternative bounded variant has also
been proposed by Tsigas and Zhang (TZ-queue) [14], which
uses a slightly different mechanism but performs similarly
due to its use of contended CAS for committing operations.
Queues like these are also common components of relaxed
queues [8, 5]. Relaxed queues reduce contention by relaxing
the semantics of linearizability from a strict FIFO queue and
spreading the operations across multiple underlying queues.

List of array queues. Morrison et al. [12] combine ar-
ray and list queues to create the Linked Concurrent Ring
Queue (LCRQ). The LCRQ retains lock-freedom while avoid-
ing contended CAS operations in the common case, by using
a FAA to select a target element like a blocking array queue
might. Since the item selection method is inherently block-
ing, a dequeuer could get a location and then be forced to
wait indefinitely on a slow enqueuer, the LCRQ maintains
lock-freedom by allowing threads to skip operations that
block for too long, introducing the need for retries. After
a certain number of operations, or retries, the underlying
concurrent ring queue (CRQ) is closed, requiring enqueuers
to allocate and initialize new CRQs and then enqueue them
into the LCRQ. The downsides to this approach are the re-
liance on a double-wide CAS (which while common in x86 is
not widely available in mobile or many-core architectures)
and the reliance on the potentially frequent and expensive
allocation and initialization of new CRQs.

Combining. Hendler et al. [6] embrace the serial nature of
lock-free designs and propose a queue that uses coarse-grain
locking along with a request-and-assist model called the flat-
combining (FC) queue. Since only one thread is actually ac-
cessing the queue at any given time, fulfilling requests from
other threads, the synchronization overhead and cache co-
herence traffic are comparatively low. The downside is that
the maximum throughput of the FC queue is the maximum
throughput of a single thread, regardless of the number of
accessors. Even so, the throughput limit is higher than with
CAS queues like MS-queue, but it is still bounded to serial
performance.

Finally, several of these queues have been evaluated on CUDA
GPUs by Cederman et al. [2]. Out of a number of lock-based
and two lock-free designs (i.e., MS-queue and TZ-queue),
they conclude that for higher concurrency, the two lock-free
queue designs are nearly always highest performing. The
performance they observe for the MS and TZ queues is sim-
ilar to that found in our results for the same number of
workers on comparable GPUs.

4. QUEUE CHARACTERIZATION
Each queue type’s throughput can be modeled in terms of
the time each successful operation blocks other operations
from succeeding. In essence, the throughput is the average

number of times the critical section of each design can be
executed per unit of time. In most queues however, there
is no explicit critical section where a lock is acquired and
released. Rather the critical section is the time spent in a
successful atomic operation, or set of operations, required to
complete an action on the queue. This section benchmarks
the performance of basic atomic operations across CPUs,
GPUs and Xeon Phi and then models the scalability and
throughput of different queue types in terms of atomic op-
eration throughput.

4.1 Atomic Performance
To understand the scaling behavior of current queues, we
must first understand the scalability of atomic operations
on modern architectures. We measure the throughput of
each atomic operation on a contended memory location for
each number of threads. This is accomplished with a set
of microbenchmarks in OpenCL that execute each opera-
tion 1,000,000 times per thread, not work-item, and for each
successful operation increment a 32-bit counter in a register.
At the end of the test, each thread’s count is written to a
separate memory location in global memory to be summed
on the host. The throughput is computed as the number of
operations completed divided by the time taken to execute
the test, not including data movement or host-side setup.

Figure 2 shows the results of our atomic benchmarks for
the five atomic primitives that queue designs commonly rely
on, especially the compare-and-swap (CAS) and fetch-and-
add (FAA) instructions. The CAS test is further broken
down into two components because it is the only atomic op-
eration that can fail. Thus we present the number of CAS
operations that were attempted per unit time, and the num-
ber that actually succeeded as separate values. We do not
include results for any atomic arithmetic or bitwise opera-
tions other than add, but they all perform similarly.

The scalability of the operations on each of the three CPU
systems generally follows common knowledge, FAA is faster
than successful CAS at high contention by as much as 10×.
Neither operation scales well however, losing throughput
with additional threads on both Intel systems and gaining
only marginally on the AMD system. An unexpected result
here however was the write/xchg performance is higher than
read and FAA for most thread counts on the AMD Opteron
CPU. This is probably due to a difference in the way that
the AMD CPUs handle memory invalidation in their coher-
ence protocol, but a full analysis of the cause is beyond the
scope of this work. In the past, the higher cost of CAS has
been considered acceptable in order to offer strong progress
guarantees in concurrent algorithms, the extent of it being
limited by the comparatively small number of threads that
could be run concurrently on CPU systems.

On the GPUs and Intel’s Xeon Phi the picture is completely
different. FAA, read, write and exchange throughput scale
up dramatically as more threads are added, and attempted
CAS operations increase as well. Successful CAS throughput
does not increase however, in fact it universally falls as the
number of threads contending to update the single target
value increases. At worst, the difference between success-
ful CAS and FAA expands to 600× lower throughput with
1000 threads on the AMD 7970. The stark difference be-



●

●

●

●
●

●

● ●● ●●● ●

● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

●

●
● ● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA GTX 280 Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

250

500

750

0

20

40

60

80

0

1

2

3

4

0

200

400

600

30

60

90

0

5

10

15

10

20

30

40

50

0 200 400 600 50 100 150 200 0 100 200 300 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8

Concurrent threads

T
hr

ou
gh

pu
t i

n 
m

ill
io

n 
op

er
at

io
ns

 p
er

 s
ec

on
d

Operation ●Attempted CAS FAA READ Successful CAS WRITE XCHG

Figure 2: Contended atomic operation throughput, each thread executes its instruction 1,000,000 times, successful CAS
represents only the CAS operations that succeed in updating the value

tween these results is due to the fact that operations such as
FAA, read, write, and exchange can be executed completely
in the memory controller without any chance of failure or
retry. Contending operations are then simply queued there
for later execution. On modern hardware, a single memory
location can be incremented by FAA once per cycle in this
fashion. CAS operations can also be handled at the memory
controller, but if they fail they cannot retry without return-
ing to the program first. As a result, every failure requires
a full round-trip back to the processing core, and often an
extra read or other logic, before another attempt.

4.2 Queue Throughput Modeling
To evaluate the expected performance of each type of queue
across our target architectures, we construct an idealized
model of maximum throughput for each type based on its
critical operations. For the purpose of this section we will
model the throughput, T , of each queue class in terms of
the average latency of the atomic operations used to im-
plement it. By modeling the queues in this way, we can
extrapolate their expected scaling behavior as the number
of available threads increase in terms of the scaling of their
constituent atomics. To simplify the discussion, we treat
the arrival distribution and service latency as deterministic
and uniform and an arrival rate approaching the through-
put. Fixing these allows us to deal directly with the service
rate, or the per-operation latency.

Specifically we are going to discuss contended-CAS queues,
like the Michael and Scott or Tsigas and Zhang queues; un-
contended CAS queues, like the LCRQ or k-fifo queue; com-
bining queues, like the FC-queue; and finally FAA queues,
like the classic array queue of Gottlieb et al. or the CB-
queue. Each model is based on an idealized, minimum crit-
ical section for each type, and serves as an upper bound on
the expected throughput. They do not account for effects
of intermixing other operations on the performance of the
critical section, which can have significant effects especially
on cache-coherent devices. We leave these model extensions
to future work.

Contended-CAS queues, as the name implies, rely on a CAS
operation on a head or tail value to update the queue. While
there is some amount of variation between each instanti-
ation, we base our model on the MS-queue. The critical
section for the MS-queue is the amount of time between a
read of the head or pointer value and the completion of a
CAS to update it, since the value must not have changed in
the intervening period, or the CAS will fail. In addition to
the read and CAS, an extra write is required to update the
next pointer on an enqueue whereas an extra read to derefer-
ence the next pointer is required on dequeue. The resulting
max throughput for a given number of threads t, which we
will represent as Tt, is modeled in terms of the average la-
tency of read, rt, write, wt, and successful contended-CAS,
ct, by Equation 1. In words, two operations, one enqueue
and one dequeue, can complete after a period of three reads,
one write and two contended-CAS operations.

Tt =
2

(rt × 2 + ct) + (rt + wt + ct)
(1)

An un-contended-CAS queue behaves quite differently from
a contended version. They tend to use an FAA instruc-
tion to either round-robin between queues, in the case of
k-FIFO and similar, or to select a slot in the manner of an
array queue, which they then update with CAS for safety
but without the contention cost of contended-CAS queues.
As a result, the maximum throughput is not dependent on
successful CAS latency but rather on attempted CAS la-
tency, since in the best case there are no failures in this of
queue. The enqueue and dequeue are also more symmet-
rical in this case, since the CAS is used as both a reading
and writing operation, and no pointer chasing is required in
array-based variants. The resulting model, using Ct and at

for average attempted CAS and FAA latency respectively,
is presented in Equation 2.



● ● ● ● ● ● ● ● ● ●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●
●

●

●
● ● ● ●

● ●
● ● ●

●
●

●

●

●
●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

100

200

300

5

10

15

20

0

50

100

150

200

15

20

25

30

1

2

3

4

5

6

9

12

15

18

0 200 400 600 50 100 150 200 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8

Concurrent threads

T
hr

ou
gh

pu
t i

n 
m

ill
io

n 
op

er
at

io
ns

 p
er

 s
ec

on
d

Operation ●Combining queue Contended CAS queue FAA queue Un−Contended CAS queue

Figure 3: Predicted maximum throughput of each queue for each device and thread count

T =
1

a + r + C
(2)

The combining queue type is unique in that its throughput
is dependent on the latency of reads and writes for exactly
one thread rather than the throughput a given number of
threads is capable of. By using a single thread to perform
all operations on the queue at any given time, the maximum
throughput at any level of contention is the same. At all
numbers of threads we model the combining queue using
the atomic latency for one thread in terms of Equation 3.
This form is effectively the same as one would use for a
serial queue, except that an additional read is performed to
determine the operation to perform. This is followed by the
operation itself, a read or a write into the queue, and a write
to inform the requesting thread of completion.

T =
2

(r1 + w1 × 2) + (r1 × 2 + w1)
(3)

Lastly, FAA queues are relatively similar to the un-contended-
CAS type in behavior, except that instead of relying on a
CAS for the final update they depend on an algorithmic
guarantee that the target they receive from the initial FAA
will eventually be valid for their use. As a result, the best-
case performance is just an add, a read or write depending
on the operation, and a write to update the target for the
next thread.

T =
2

(a + r + w) + (a + w + w)
(4)

The predicted maximum throughput for each design based
on the models above and the atomic latency measured in
the last section is presented in Figure 3. On the CPUs, it
is clear why combining queues have come into favor, since

the throughput of a single thread is universally better than
that with threads on all cores contending on memory. The
contended-CAS type starts as best on all three CPUs with
one thread, but universally falls below as the number of
threads increases. The un-contended CAS and FAA queue
designs are the most promising for modern high-contention
devices such as GPUs however. The prediction for the AMD
7970 and Tesla K20c GPUs show the FAA queue throughput
reaching as much as 196 and 377 times faster respectively
than the contended-CAS queue on the maximum number of
threads. Despite the fact that the FAA queue shows the best
scaling on high thread counts, as mentioned in Section 3,
the existing array or FAA queue variants all lack at least
one desirable property of safety or usability.

5. DESIGN
The main goal of our design is to create queue with as little
overhead and as much concurrency as possible while main-
taining linearizability and usability. Given the significant
throughput advantages demonstrated in Section 4, our goal
becomes to produce a linearizable concurrent queue without
the need for contended CAS operations in the common case.
To accomplish this, we propose a queue with two distinct in-
terfaces, similar to those offered by communication libraries
(e.g., TCP sockets), each with different waiting character-
istics: (1) a high-throughput blocking interface and (2) a
low-latency non-waiting interface.

5.1 The Queue Structure
Our queue’s structure, represented in Figure 4a, is relatively
simple, containing head and tail counters as unsigned inte-
gers along with arrays of items and IDs. For simplicity we
use unsigned integers as the values, but extensions for arbi-
trary data are trivial.

In order to correctly handle integer rollover, a real concern
as 232 queue operations can complete in a matter of seconds
on GPUs, we include a #define for the maximum id value
based on the queue size. The maximum is selected such that
when the head or tail roll over to zero, the id value will do
the same. The MAX_ID value must be at least double the



1 /* Defines */
2 #define MAX_ID (UINT32_MAX/(QUEUE_SIZE*2))
3 #define MAX_DISTANCE (QUEUE_SIZE \
4 + MAX_THREADS)
5

6 /* Macros */
7 #define GET_ID(X) ((X / QUEUE_SIZE) * 2)
8

9 /* Structures */
10 typedef union {
11 uint64_t combined;
12 struct {
13 uint32_t head, tail;
14 };
15 } pair;
16

17 typedef struct {
18 union {//anonymous pair
19 uint64_t combined;
20 struct {
21 uint32_t head, tail;
22 };
23 };
24 bool closed;
25 uint32_t items[QUEUE_SIZE];
26 uint32_t ids[QUEUE_SIZE];
27 } queue_t;

(a) Definitions and Structure

1 int enqueue(queue_t *q, uint32_t item) {
2 if (atomic_read(&q->closed) != 0)
3 return CLOSED;
4 uint32_t ticket = atomic_add(&q->tail,1);
5 uint32_t target = ticket % q->size;
6 uint32_t id = GET_ID(ticket);
7 while(atomic_read(&q->ids[target])!=id){
8 if (atomic_read(&q->closed) != 0)
9 return CLOSED;

10 backoff();
11 }
12 atomic_write(&q->items[target], item);
13 atomic_write(&q->ids[target],
14 (id + 1) % MAX_ID);
15 return SUCCESS;
16 }

1 int dequeue(queue_t *q, uint32_t * p) {
2 if (atomic_read(&q->closed) != 0)
3 return CLOSED;
4 uint32_t ticket = atomic_add(&q->head,1);
5 uint32_t target = ticket % q->size;
6 uint32_t id = GET_ID(ticket) + 1;
7 while(atomic_read(&q->ids[target])!=id){
8 if (atomic_read(&q->closed) != 0)
9 return CLOSED;

10 backoff();
11 }
12 *p = atomic_read(&q->items[target]);
13 atomic_write(&q->ids[target],
14 (id + 1) % MAX_ID);
15 return SUCCESS;
16 }

(b) Blocking Interface

1 int enqueue_nb(queue_t *q, uint32_t item) {
2 if(atomic_read(q->closed) != 0)
3 return CLOSED;
4 uint32_t ticket = atomic_read(&q->tail);
5 uint32_t target = ticket % q->size;
6 uint32_t id = GET_ID(ticket);
7 if(atomic_read(&q->ids[target]) != id)
8 return BUSY;//next slot not ready
9 if(atomic_cas(q->tail,

10 ticket, ticket+1) != ticket)
11 return BUSY;//CAS failed, return
12 atomic_write(q->items[target], item);
13 atomic_write(q->ids[target],
14 (id+1) % MAX_ID);
15 return SUCCESS;//element enqueued
16 }

1 int dequeue_nb(queue_t *q, uint32_t * p) {
2 if(atomic_read(q->closed) != 0)
3 return CLOSED;
4 uint32_t ticket = atomic_read(q->head);
5 uint32_t target = ticket % q->size;
6 uint32_t id = GET_ID(ticket);
7 if(atomic_read(&q->ids[target]) != id)
8 return BUSY;//oldest not ready
9 if(atomic_cas(&q->head,

10 ticket, ticket+1) != ticket)
11 return BUSY;//CAS failed, return
12 *p = atomic_read(q->items[target]);
13 atomic_write(q->ids[target],
14 (id+1) % MAX_ID);
15 return SUCCESS;//element dequeued
16 }

(c) Non-waiting Interface

Figure 4: Structure and interfaces to the queue with the volatile keyword removed for space; All “atomic *” calls map to the
corresponding atomic intrinsic

value of MAX_THREADS+1 and the sum of MAX_THREADS and
QUEUE_SIZE, the MAX_DISTANCE, must be less than half of
the maximum value representable by the unsigned integer
type storing head and tail. All values in the data structure
should be initialized to zero.

5.2 The Blocking Interface
Our blocking functions are represented in Figure 4b.2 While
developed independently, our blocking interface could be
considered a refinement of the CB-queue or the Gottlieb
queue. It differs from each of these, however, in that it has
been explicitly designed to support inspection of the queue’s
status and access through a separate non-waiting interface.
Our blocking functions begin by acquiring a ticket for their
current transaction by atomically incrementing their respec-
tive counters on line 4. A ticket serves to select both the tar-
get location, by being modded by QUEUE_SIZE on line 3, and
the id for the transaction, which is the number of times the
algorithm has passed through the entire queue’s length, by
use of the GET_ID() macro, plus one in the dequeue case, on
line 4. Once the target id is equal to the transaction id the
current thread effectively holds a lock on that element of the
queue and leaves the loop. A value is then either added to
or copied from the queue, as appropriate on line 12, and the
id safely incremented to preserve consistency across rollover
on lines 13 and 14, which also frees the next transaction on
that slot.

Subsequent, or concurrent, calls to the blocking interface re-

2Note that the OpenMP and OpenCL implementations of all
of our interfaces are identical save for the addition of memory
qualifiers in the OpenCL version. In fact, our evaluation uses
a single source version of all queues for both OpenMP and
OpenCL tests, simply compiled with different compilers.

ceive unique target addresses and ID combinations without
retries or waiting, thanks to the FAA. As long as the queue
is not full, each enqueue can complete with a constant total
of four atomic operations. When the target item is busy, it
blocks on the loop at line 7 checking for closed status and
backing off as appropriate. The ordering imposed by incre-
menting the target address at each request has the effect of
also enforcing fair ordering and preventing individual star-
vation in this interface. Each requesting thread is served
in order of arrival, though completion may be partially out
of order if an enqueuer is scheduled out during its enqueue
operation.

Since a primary motivation of our design is producer-consumer
applications, we expect threads to wait on an empty or a
full queue regularly. Once all items that will exist have been
completely enqueued and dequeued, there must be a way to
inform the threads blocked in dequeue to exit. The closed

value in the queue is used for this purpose. Setting closed

to true causes any enqueue or dequeue that is blocking to
exit immediately with the status CLOSED and all subsequent
calls to immediately return with the same value. This is
equivalent to closing a communication channel like a socket
or file descriptor.

5.3 The Non-Waiting Interface
Figure 4c presents our non-waiting interface. Fundamen-
tally, the non-waiting functions are inverted versions of the
blocking functions. Rather than immediately reserving a
ticket, which could require them to block, the non-waiting
functions simply read the value. Having read a ticket, they
check whether the current target item is ready on line 7. If
the id value indicates the item is busy then acquiring an item
at this time would require blocking, so BUSY is returned im-



mediately. If the id matches, the thread attempts to acquire
the associated target by incrementing the counter with the
CAS on line 9. If the CAS fails, the non-waiting function
returns BUSY, otherwise it has successfully acquired a ready
target so it completes its operation and returns SUCCESS.

While we implemented the blocking interface completely
without CAS, to implement the non-waiting functions in
that way is infeasible. Specifically, there is no way to atomi-
cally acquire a specific ticket without a conditional atomic or
transaction, such as CAS, Load-Linked Store-Conditional,
or optimally a compare-and-add. Using an unconditional
FAA in place of the CAS would get a ticket, but with no
guarantee that it would be the ticket which had been checked
ahead of time.

Note that we avoid the use of the terms “wait-free,” “lock-
free” and “non-blocking” in this section. While these func-
tions do not wait, calls to either enqueue_nb() or dequeue_nb()
will fail if another operation is in progress on the slot they
request, or if the queue is full. In a non-full queue, the non-
waiting interface does guarantee that at least one thread
makes progress at a time, equivalent to the guarantees made
by other array-based queues such as the tz-queue.

5.4 The Status Inspection Interface
Much like the CB-queue, our blocking interface does not
support returning “full” or “empty” states. While they are
not required for a correct concurrent queue, these states are
often used to simplify the detection of completion in a con-
current algorithm, and as such are missed when they are
unavailable. Rather than re-designing the algorithm to ad-
dress this weakness however, we design a separate interface
that provides checks for these states as well as the number
of waiting threads on either end of the queue. The main dif-
ficulty in implementing this functionality is that head and
tail can not be directly compared. There is a distinct chance
that one, but not the other, has rolled over causing the less-
than or greater-than relationships to be reversed.

We address this case by establishing the maximum absolute
distance possible between head and tail and checking to see
if the current distance is greater than that maximum. If this
happens, it must be because one counter has rolled over and
the distance should be calculated across the rollover point.
The maximum distance between head and tail in our queue
is the sum of the queue length and the maximum number
of threads that are allowed to interact with the queue con-
currently. If the maximum distance is less than half the
maximum value representable by the counter, single-counter
rollover can be reliably detected in this fashion. For a 64-
bit unsigned integer, the sum of the queue’s length and the
maximum concurrent accessors must be less than or equal
to 263 − 1, which we believe is a reasonable limit. If more is
required, the size of the counter should be increased.

6. LINEARIZABILITY
In order to provide a proof of linearizability, we must first
define the semantics of our target data structure. Based
on instruction ordering our algorithm models a concurrent
FIFO queue. When return states, such as empty, full, closed
and busy, are included in the requirements for linearizabil-
ity however, our states do not match. We give our queue

the semantics of a channel queue: a queue which models a
double-sided communication channel, such as is presented by
file descriptors and sockets, that can return success, closed,
busy, empty or full. If a channel queue is in the closed state
then all functions will return closed. If a non-waiting func-
tion cannot complete without blocking, busy is returned. All
other cases model a concurrent FIFO queue, allowed only to
return success, full or empty. In truth, this semantic is more
common of concurrent queues in production than the tradi-
tional model’s restriction to empty, full and success, and
is modeled by the interface of the standard BlockingQueue
class in Java as well as the interface to the concurrent Wait-
ingQueue class proposed for inclusion in the C++1y stan-
dard.

Using the techniques and definitions presented by Herlihy et.
al. [7], we model access to our concurrent queue as a history
h. That history is a potentially infinite series of invocation
and response events, representing the beginning and end of
calls to functions defining our interface. Any response in h
is necessarily preceded by a matching invocation in h but it
is valid for an invocation in h to remain pending, lacking a
response, at the end of h. Events are said to be ordered in
h only if the response of an event e1 precedes the invocation
of an event e2 and this relation is denoted by e1 <h e2. Any
pair of events that cannot be compared in this way is said
to overlap, and thus may be ordered arbitrarily with respect
to one another. The history, h, is linearizable if the strict
partial order can be fixed into a total order →h such that
the specifications of the object are preserved.

Any history that can be produced by our implementation
can be associated with a history mapped onto an auxil-
iary array of infinite size. Using this auxiliary array, our
algorithm guarantees that every enqueue, blocking or non-
waiting, will monotonically increase the values of the tail
counter and thus insert elements consecutively from begin-
ning to end in the array. In the same way, our dequeues
monotonically increase the value of head and consume ele-
ments consecutively from beginning to end. Thus all items
are dequeued in the same order they were enqueued, or are
overlapped. Any element that is added is accounted for, and
cannot be removed until it is acquired. Acquisition can only
happen in order, preventing any items from being skipped or
dequeued before being enqueued. All interleaving between
the blocking and non-waiting interface are also in-order, as
they acquire and interact with the queue using the same
ticket and turn mechanism. Given these, the only source
of non-linearizable behavior possible is from multiple oper-
ations waiting on the same target item with the same id.
Given our invariant that the MAX_ID is greater than double
MAX_THREADS, this case cannot occur, as ids are not recycled
until the queue has been passed through at least MAX_ID

times. Given that invariant, even if a queue of length one
were to have the maximum number of threads waiting on
it, both ordering and fairness are preserved between those
accesses.

The above sketches a proof of the key invariant for concur-
rent queues, that if enqueue(x) < enqueue(y), where x and
y are the values enqueued, then dequeue(x) < dequeue(y)
or dequeue(x) and dequeue(y) overlap. To simplify reason-
ing about the ordering, our functions “take effect” at specific



points between their invocation and response, but as with
any algorithm employing critical sections there is no single
instruction that serves as the universal linearization point.
Operations are considered to take effect on the status of the
queue, observable only through the get_distance() func-
tion and its siblings, after committing to the addition or
removal of an element by acquiring a ticket with either FAA
or incrementing CAS. All enqueue and dequeue operations
are ordered in the sequential history by their increment of
the id associated with their target item. Any temporary
discrepancy in queue structure between invocation and re-
sponse is protected by the critical region formed between
ticket acquisition and id increment.

7. EXPERIMENTAL SETUP
In order to perform our evaluation across a wide range of
modern hardware, we have created a version of each queue
using both OpenMP and OpenCL. This section will discuss
the evaluated queues, our benchmark designs and the hard-
ware evaluated.

7.1 The Queues
In addition to our own, we include implementations of two
traditional lock-free queues, the TZ and MS queues, the
Flat Combining (FC) queue, and the LCRQ. All queues are
implemented to store 32-bit unsigned integers and where
memory allocation would normally be necessary use a non-
blocking concurrent free-list of appropriately-sized objects
that is pre-allocated before each test. The same free-list
mechanism is used on both CPUs and GPUs for consistency.

Our MS-queue implementation is directly derived from the
source code used in the original MS-queue publication [11].
It has been modified minimally to support thread-based
rather than process-based parallelism and the memory model
presented by OpenCL. The TZ-queue has been faithfully
re-implemented using the algorithm and optimizations de-
scribed in the paper proposing it [14]. The flat combining
queue is based on the authors source but reimplemented
in C/OpenCL from the original C++. Lastly, the LCRQ
is based on the pseudocode in the publication proposing
it [12]3. Our LCRQ implementation deviates in two key
ways from the original pseudocode, it includes the spin wait-
ing optimization proposed in the paper, and uses 32 rather
than 64 bit values. The value size is changed to allow the al-
gorithm to function on devices that support 64-bit but not
128-bit CAS operations. We evaluated the 32-bit version
against a 64-bit version of the algorithm and found that the
throughput remains within the range of measurement error
for all cases.

The OpenCL and OpenMP implementations of each queue
share the same source, with only memory location quali-
fiers, atomics and memory synchronization primitives dif-
ferentiated through C macros. For all fixed-length queues,
the queue length was set at 65,536 elements for the purpose
of our evaluation, separate tests with varied sizes did not
reveal significant correlation with performance except when
using very small sizes, so these results are elided.
3We did correct one error in the pseudocode, line 45 should
compare (safe,idx,val) rather than (safe,h,val) as the original
states, the text description in the original paper agrees with
this modification.

Device Cores/ Threads/ Max. Max.
device core threads achieved

GPUs/Co-processors
AMD HD5870 20 24 496 140
AMD HD7970 32 40 1280 386

AMD HD7990(one die) 32 40 1280 1020
Intel Xeon Phi P1750 61 4 244 244

NVIDIA GTX 280 30 32 960 960
NVIDIA Tesla C2070 14 32 448 448
NVIDIA Tesla K20c 13 64 832 832

CPUs
2xAMD Opteron 6272s 16 1 32 32
4xAMD Opteron 6134s 8 1 32 32

2xIntel Xeon E5405s 4 1 8 8
Intel Xeon X5680 12 2 24 24
Intel Core i5-3400 4 1 4 4

Table 1: Target hardware platforms

7.2 Benchmarks and Methodology
These queue implementations are evaluated across a pair of
microbenchmarks. The first is a traditional matching en-
queue and dequeue benchmark, essentially a balanced pro-
ducer consumer pattern. All threads execute a loop con-
taining an enqueue, a call to some work, a dequeue, and
another call to work. The work between each queue opera-
tion is comprised of 100 iterations of addition and multipli-
cation on a value read from and stored back to positions in
global memory determined by the value last received from
the queue. This work is sufficient to avoid a single thread
running through multiple operations without interference,
and decreases the performance of the highest throughput
implementations by approximately 10% compared to a ver-
sion without work4. Our second benchmark is based on an
imbalanced producer/consumer pattern. One in every four
threads only enqueues, and the other three only dequeue,
these operations are also separated by the same work as in
the first benchmark. Both benchmarks are configured to
perform as many operations as possible in five seconds and
report the number of successful operations. We selected five
seconds after running a round of tests ranging from two sec-
onds to a minute and a half per data point and finding that
anything over three seconds is sufficient to overcome vari-
ance effects across our target platforms.

The OpenMP implementation ends the test by creating an
extra thread that sleeps and sets a done value, stopping
the test after the specified time. OpenCL offers no such
mechanism, neither the extra thread nor the sleep. To get
around this, we assign one thread to execute a loop per-
forming mathematical operations on its registers for approx-
imately five seconds. Since the number of operations re-
quired changes based on the device, the test and sometimes
the queue under test, as a result of register usage changes,
our run-scripts automatically tune the number of iterations
such that each test runs for between 4.95 and 5.5 seconds
on all OpenCL platforms. The downside to this approach
is that we lose one potential thread, but with throughputs
that range up to three orders of magnitude, evaluation us-
ing a fixed time rather than a fixed number of operations is
essential.

7.3 Devices
4Some implementations, including LCRQ, perform better
with the work than without it, as a result of reduced con-
tention on the queue producing less CAS retries.



Table 1 lists the devices used to conduct our experiments,
along with their core counts, the number of thread con-
texts that can be loaded concurrently on each core, and
the maximum hardware threads on the device. Note that
the maximum threads listed in the table is the theoretical
maximum, and in the case of GPUs is not always achievable
due to limitations on available register space. The maxi-
mum achieved column lists the largest number of concurrent
threads available to our tests, not all queues make it to those
values but none make it above. All test systems run Debian
Wheezy Linux on a 64-bit 3.2.0 stock kernel. NVIDIA de-
vices use driver version 313.30 and the CUDA 5.0 SDK for
OpenCL. AMD GPUs use the AMD APP SDK version 2.8
for OpenCL and the FGLRX version 9.1.11 driver. The In-
tel Xeon Phi card uses the MPSS gold update 3 driver and
firmware. OpenMP tests were compiled with the Intel ICC
compiler version 13.0.1 with optimization level 3 and inter-
procedural-optimization turned on.

8. RESULTS AND DISCUSSION
We evaluate all queues across all hardware discussed above,
with the exception of LCRQ on AMD GPUs because the
AMD GPUs do not support bitfields or 64-bit atomic CAS.
Since our queue presents two interfaces, we present three
different configurations for it. Each is labeled in the fig-
ures as “New -” followed by which enqueue and dequeue
functions it uses for all enqueues and dequeues in the test.
The three configurations are the two homogeneous config-
urations, paired sets of blocking or non-waiting interface
calls, plus a version using the non-waiting dequeue with the
blocking enqueue. We expect that the most common use-
case would be using the blocking interface for all but one, or
perhaps a small number, of threads using the non-waiting
interface to detect algorithm completion, which is best rep-
resented by the blocking results.

8.1 CPU Performance
The CPU results based on these tests can be found in Fig-
ure 5. Each CPU is tested from two threads up to the maxi-
mum number of hardware threads supported by the system.
In multi-socket systems threads are spread in round-robin
fashion across dies using the Intel OpenMP “scatter” affin-
ity policy. While the multi-socket systems tend to maintain
or lose throughput as threads are added, the single socket
Intel Xeon X5680 gains throughput with each additional
thread. This due to the fact that the single CPU only has
one memory controller, allowing atomics to be completed
without out-of-die coherence overhead. The AMD Opteron
6272 results are also notable for having better performance
in practice than the predicted maximums from Section 4.
Since our predictions are based entirely on 100% contentious
atomic throughput, our models evidently under-predict for
platforms that gain higher throughput of atomic operations
when contention is lower.

In terms of the individual queues, in almost all cases the
highest throughput comes from our blocking interface, fol-
lowed by the LCRQ. The TZ and MS queues fare poorly
in general across each of the CPUs, their performance de-
grading with each additional thread due to the increasing
CAS retry overhead. On the AMD devices and the Xeon
X5680, the FC-queue performs materially better than the
classic lock-free variants for the matching enqueue/dequeue

benchmark. The FC-queue even gains performance with ad-
ditional threads on the AMD devices thanks to its compar-
atively low coherence overhead.

LCRQ’s performance on the AMD systems reveals an impor-
tant characteristic of its design. In the matching enqueue/d-
equeue test it scales well, performing nearly as well as our
blocking interface up to 32-cores. The producer/consumer
benchmark, on the other hand, shows LCRQ’s performance
degrading sharply as more threads are added. This is due
to retries and memory initialization overhead caused, not
by CAS, but by LCRQ operations skipping slots by mark-
ing them unsafe. Whenever an operation times out, as is
common in our imbalanced producer/consumer benchmark,
the item reserved by that operation is marked unsafe, and it
retries potentially marking many more unsafe along the way.
This also means that the matching operation on that item
must retry. Eventually, the retries cascade into the closing
of the CRQ as a whole, forcing initialization of a new CRQ
by all threads attempting to enqueue at that time. We em-
ploy the optimizations proposed to minimize this behavior,
specifically spin waiting before marking a slot unsafe and
employing a high starvation cutoff for enqueues, but still
observe the problem. The Intel X5680 does not observe this
behavior because of those optimizations, but they are insuf-
ficient for the multi-socket systems. This condition could
be avoided in LCRQ if it were allowed to wait indefinitely
for a matching enqueue, but that would make it blocking,
and can actually produce deadlocks in the algorithm, since
dequeuers might not be aware of the need to move to a new
CRQ.

8.2 Effects of Oversubscription
In order to evaluate the effect of oversubscription on through-
put, a traditional concern with blocking designs, we tested
all queues with thread counts from two to 128 on a four-
core CPU in Figure 6. All queues include a thread yield as
part of their back-off routine, immediately allowing another
thread to be scheduled in its place.

As has been shown in other recent work [12], the FC-queue
suffers greatly from oversubscription as a result of the com-
biner being scheduled out frequently. The lock-free queues,
MS, TZ and LCRQ on the other hand perform quite well
in this test, as expected since this is the environment they
are designed for. Both the MS and LCRQ designs maintain
their performance across the full range. On the other hand
the TZ-queue and our non-waiting interface tend to perform
better than either by between 10 and 75%.

Finally the blocking interface does lose performance as more
threads are added, but not so much as might be expected
from a blocking design. Since the blocking is extremely fine-
grained, and the potential concurrency extremely high, the
blocking interface actually outperforms the MS-queue and
maintains 50% of its maximum throughput with 32× more
threads than hardware thread contexts.

8.3 Accelerator Performance
This section presents throughput results with the same bench-
marks across seven many-core accelerator architectures in
Figures 7a and 7b. Please note that unlike the CPU results,



●

●

● ●
● ● ●

●
● ●

●

●

●

●

●

● ●

●

● ●
● ● ●

●
●

●

●
●

● ● ● ●
● ●

● ● ●

● ●
● ●

● ●
● ● ● ●

●

●
●

●
● ●

●

●
● ● ● ● ● ● ● ●

●
● ● ● ●

●
● ●

●
● ●

Producer/Consumer, 2 − AMD Opteron 6272s Producer/Consumer, 2 − Intel Xeon E5405s Producer/Consumer, 4 − AMD Opteron 6134s Producer/Consumer, Intel Xeon X5680

Matching Enq/Deq, 2 − AMD Opteron 6272s Matching Enq/Deq, 2 − Intel Xeon E5405s Matching Enq/Deq, 4 − AMD Opteron 6134s Matching Enq/Deq, Intel Xeon X5680

2

4

6

1

2

3

4

5

1

2

3

4

2.5

5.0

7.5

10.0

12.5

1

2

3

4

5

3

4

5

6

1

2

3

5

10

15

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25

Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

Queue
●

Flat−Combining queue

LCRQ−32bit

Michael and Scott queue

New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq

New − Non−waiting Enq&Deq

Tsigas and Zhang queue

Figure 5: Throughput on each CPU across thread counts and benchmarks

●

●
● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

Producer/Consumer Matching Enq/Deq

0

5

10

15

0

5

10

15

0 50 100 0 50 100

Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

Queue ●

Flat−Combining queue

LCRQ−32bit

Michael and Scott queue

New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq

New − Non−waiting Enq&Deq

Tsigas and Zhang queue

Figure 6: CPU performance when heavily oversubscribed,
results of tests running from two to 128 threads on a four
core Intel CPU

the range in performance on the accelerators requires us to
use a log-scale for the bandwidth axis on our plots.

The first important difference between the accelerators and
CPUs is the sheer number of thread contexts the acceler-
ators support. Even the smallest, the AMD 5870, hosts
140 concurrent thread contexts for most benchmarks, more
than four times as many as the CPUs. Recall that this
is in threads, not OpenCL work-items, for the number of
work-items multiply the threads on AMD GPUs by 64, and
NVIDIA GPUs by 32 to get the full number. The two
largest go far higher, with the 7990 reaching 1020 concur-
rently loaded threads, and the K20c hosting 832 for a total of
65,280 and 26,624 work-items respectively. The Phi device
runs the OpenMP benchmark source from the CPU tests,
so its 244 threads are standard OpenMP threads.

8.3.1 Matching Enqueue/Dequeue Results

The enqueue/dequeue results on accelerators (Figure 7a)
scale more like a single-socket CPU than a multi-socket sys-
tem. Since the accelerator cores all share a single memory
controller, this is expected. The material difference from the
CPUs is that each additional thread increases performance
noticeably for our blocking interface. On the 7990 the per-
formance scales from 0.585 million operations per second on
two threads to 380 million operations per second on 1019
threads. This makes for a 650× increase in throughput for
a roughly 509× increase in the number of threads5. Simi-
larly, the K20c attains 256× higher throughput with 415×
more threads. The cache-coherent Intel Xeon Phi coproces-
sor scales somewhat less than the GPUs, going from 0.963
Mops/s to 11.462, for a more modest but still significant in-
crease in throughput of 12× for roughly 120× more threads.
The exceptions to the rule in terms of scalability are the
GTX280 and C2070 NVIDIA GPUs, whose atomic imple-
mentations are less mature, and as a result only scale to a
fraction of the throughput of the others.

By far the best performing lock-free design across the accel-
erators is the LCRQ. On the Xeon Phi its performance is
nearly indistinguishable from that of our blocking interface.
The NVIDIA implementations do not scale to the full num-
ber of threads due to LCRQ’s high register usage, but for
the thread-counts supported the throughput is quite high.
LCRQ’s highest performance on the K20c, at 623 threads,
is 201.848 Mops/s, only 16% below the throughput of our
blocking interface with the same number of threads.

The contentious-CAS-based queues, FC-queue and our non-
waiting interface, tend to lose performance as the number of
threads increases and the rate of successful CAS operations
drops. The fastest of these, the TZ and our non-waiting

5The super-linear increase in throughput is not due to any
super-linear property of the algorithm, but rather to the fact
that the GPU tends to run in a lower performance state
when under-utilized.



● ●
●

●
●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

●
● ● ● ● ●

●

●

●
●

●
● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

16

2−4

2−2

1

4

16

64

256

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

8

2−8

2−6

2−4

2−2

1

4

2−2

1

4

16

2−2

1

4

16

64

256

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800

Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d 

(L
og

 2
)

Queue

●

Flat−Combining queue

LCRQ−32bit

Michael and Scott queue

New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq

New − Non−waiting Enq&Deq

Tsigas and Zhang queue

(a) Throughput on each accelerator for the weak-scaling matched enqueue/dequeue benchmark

●
●

●

●

●

●
● ●

●
●

●

●

●

●

● ●
●

●
●

●

● ●

●

●
●

●
● ●

● ●

●

●
●

● ● ● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

2−4

2−2

1

4

16

64

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

2−8

2−6

2−4

2−2

1

2−8

2−6

2−4

2−2

1

4

16

2−8

2−6

2−4

2−2

1

4

16

64

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800

Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d 

(L
og

 2
)

Queue

●

Flat−Combining queue

LCRQ−32bit

Michael and Scott queue

New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq

New − Non−waiting Enq&Deq

Tsigas and Zhang queue

(b) Throughput on each accelerator for the producer/consumer benchmark, of every four threads, one is producer the other three are
consumers

Figure 7: Accelerator benchmark results



design, only achieve 0.342 and 0.994 Mops/s respectively
on 1019 threads on the AMD 7990, or 1, 112× and 383×
lower respectively than the blocking interface in the same
test. The K20c results are similar, with TZ performing 0.386
Mops/s and our non-waiting performing 1.357 for differences
of 635× and 181× respectively. FC performs similarly to
these traditional designs on the GPUs, but achieves 5× bet-
ter throughput on the cache-coherent Phi, where its cache
friendly design offers material benefits. It is worth noting
that, while it is not lock free, the non-waiting interface of
our queue tends to outperform its counterparts in this space
on these architectures, seemingly due to the lower number
of instructions per operation.

8.3.2 Producer/Consumer Benchmark Results
Results for the producer/consumer test are presented in Fig-
ure 7b. As expected, the producer consumer test shows
roughly 50% lower throughput across the board due to using
50% less enqueuers than dequeuers. All queues are affected
by the imbalance roughly equally, except LCRQ.

The change in LCRQ results is most visible on the Xeon
Phi, where rather than being nearly a match for the blocking
interface, it drops to the performance of FC-queue after only
75 threads. Though LCRQ’s throughput is variable, it never
reaches half of the throughput of the blocking interface in
this test on Xeon Phi. On the NVIDIA GPUs, LCRQ is now
below the traditional lock-free designs and our non-waiting
interface by a factor of 8. LCRQ’s performance degrades
with each added thread on the k20c, reaching a low of 0.003
Mops/s with 623 threads, where the next lowest, the FC-
queue, is 0.322 Mops/s, and the blocking interface performs
91.803 Mops/s, four orders of magnitude higher throughput
than LCRQ. It is quite apparent that applications of this
nature, where consumers and producers are imbalanced, are
pathologically bad for LCRQ. None of the other queues are
materially affected by the imbalance.

9. CONCLUSIONS
In this paper, we present a characterization of concurrent
queue designs across multi- and many-core architectures,
and our design of a high-throughput FIFO queue engineered
for performance on many-core architectures. Our character-
ization found that, largely due to the unfavorable scaling
behavior of CAS operations, either an un-contended CAS
design or a FAA-based array queue should scale best. De-
spite this, there are algorithms that are difficult or imprac-
tical to implement on a queue with only a blocking inter-
face, a common FAA-queue option. To address this limita-
tion, our queue design includes both high-throughput wait-
ing and low-latency non-waiting interfaces to customize in-
teractions with the queue on a per-thread or per-interaction
basis, both of which are linearizable to the semantics of a
“channel queue.” While queues with hard progress guaran-
tees and unbounded size have their benefits, we have shown
that focusing on throughput and avoiding retry-based al-
gorithms can produce exceptionally high throughput across
a wide range of real-world multi- and many-core hardware.
Counter-intuitively, designing an algorithm that allows block-
ing to occur but increases the maximum concurrency of the
structure results in greater throughput. In fact, our evalua-
tion finds that performance can be improved by as much as

1000-fold for some problems in an environment with more
than 1000 concurrent threads.

In the future, we intend to investigate ways to create data
structures of this type that are capable of offering some of
the progress and safety guarantees of lock-free structures.
Our queue might for example serve the purpose that the
CRQ serves for the LCRQ data structure. An extension
to support blocking, rather than spinning, thread waiting
semantics could also be added by exchanging the id-based
scheme for another. Further, we believe that this queue
could be used to enhance a number of design patterns such
as dynamic load-balancing and persistent threading on GPU
and fused CPU/GPU architectures.

10. REFERENCES
[1] G. E. Blelloch, P. Cheng, and P. B. Gibbons. Scalable Room

Synchronizations. Theory of Computing Systems,
36(5):397–430, Aug. 2003.

[2] D. Cederman, B. Chatterjee, and P. Tsigas. Understanding the
Performance of Concurrent Data Structures on Graphics
Processors. Euro-Par 2012 Parallel Processing, 2012.

[3] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic
Techniques for the Efficient Coordination of Very Large
Numbers of Cooperating Sequential Processors. Transactions
on Programming Languages and Systems (TOPLAS, 5(2),
Apr. 1983.

[4] K. O. W. Group et al. The opencl specification, version 1.1,
2010. Document Revision, 44.

[5] A. Haas, M. Lippautz, T. A. Henzinger, H. Payer, A. Sokolova,
C. M. Kirsch, and A. Sezgin. Distributed queues in shared
memory: multicore performance and scalability through
quantitative relaxation. In ACM International Conference on
Computing Frontiers (CF ’13), page 1, New York, New York,
USA, 2013. ACM Press.

[6] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining
and the synchronization-parallelism tradeoff. In SPAA ’10:
Proceedings of the 22nd ACM symposium on Parallelism in
algorithms and architectures. ACM Request Permissions, June
2010.

[7] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

[8] C. M. Kirsch, M. Lippautz, and H. Payer. Fast and Scalable,
Lock-free k-FIFO Queues. In PACT ’13: Proceedings of the
22nd international conference on Parallel architectures and
compilation techniques.

[9] A. Kogan and E. Petrank. Wait-free queues with multiple
enqueuers and dequeuers. In Proceedings of the 16th ACM
symposium on Principles and practice of parallel
programming, pages 223–234. ACM, 2011.

[10] A. Kogan and E. Petrank. A methodology for creating fast
wait-free data structures. In PPoPP ’12: Proceedings of the
17th ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming. ACM Request Permissions, Feb.
2012.

[11] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
PODC ’96: Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing. ACM
Request Permissions, May 1996.

[12] A. Morrison and Y. Afek. Fast concurrent queues for x86
processors. In PPoPP ’13: Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel
programming. ACM Request Permissions, Feb. 2013.

[13] D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. R. Gao.
Toward high-throughput algorithms on many-core
architectures. ACM Transactions on Architecture and Code
Optimization, 8(4):1–21, Jan. 2012.

[14] P. Tsigas and Y. Zhang. A simple, fast and scalable
non-blocking concurrent FIFO queue for shared memory
multiprocessor systems. In SPAA ’01: Proceedings of the
thirteenth annual ACM symposium on Parallel algorithms
and architectures. ACM Request Permissions, July 2001.


