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ABSTRACT 

 

Detection and identification of important biological targets, such as DNA, proteins, and diseased human 

cells are crucial for early diagnosis and prognosis. The key to discriminate healthy cells from the diseased 

cells is the biophysical properties that differ radically. Micro and nanosystems, such as solid-state 

micropores and nanopores can measure and translate these properties of biological targets into electrical 

spikes to decode useful insights. Nonetheless, such approaches result in sizable data streams that are often 

plagued with inherit noise and baseline wanders. Moreover, the extant detection approaches are tedious, 

time-consuming, and error-prone, and there is no error-resilient software that can analyze large data sets 

instantly. The ability to effectively process and detect biological targets in larger data sets lie in the 

automated and accelerated data processing strategies using state-of-the-art distributed computing systems.  

In this dissertation, we design and develop techniques for the detection and classification of biological 

targets and a distributed detection framework to support data processing from multiple bio-nano devices. 

In a distributed setup, the collected raw data stream on a server node is split into data segments and 

distributed across the participating worker nodes. Each node reduces noise in the assigned data segment 

using moving-average filtering, and detects the electric spikes by comparing them against a statistical 

threshold (based on the mean and standard deviation of the data), in a Single Program Multiple Data 

(SPMD) style. Our proposed framework enables the detection of cancer cells in a mixture of cancer cells, 

red blood cells (RBCs), and white blood cells (WBCs), and achieves a maximum speedup of 6X over a 

single-node machine by processing 10 gigabytes of raw data using an 8-node cluster in less than a minute, 

which will otherwise take hours using manual analysis.
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Diseases such as cancer can be mitigated, if detected and treated at an early stage. Micro and nanoscale 

devices, such as micropores and nanopores, enable the translocation of biological targets at finer 

granularity. These devices are tiny orifices in silicon-based membranes, and the output is a current signal, 

measured in nanoamperes. Solid-state micropore is capable of electrically measuring the biophysical 

properties of human cells, when a blood sample is passed through it. The passage of cells via such pores 

results in an interesting pattern (pulse) in the baseline current, which can be measured at a very high rate, 

such as 500,000 samples per second, and even higher resolution. The pulse is essentially a sequence of 

temporal data samples that abruptly falls below and then reverts back to a normal baseline with an 

acceptable predefined time interval, i.e., pulse width. The pulse features, such as width and amplitude, 

correspond to the translocation behavior and the extent to which the pore is blocked, under a constant 

potential. These features are crucial in discriminating the diseased cells from healthy cells, such as 

identifying cancer cells in a mixture of cells. 
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Chapter 1 

Introduction 

1.1. Problem Statement 

The problem with the traditional technologies, including fMRI (function Magnetic Resonance Imaging), 

Computerized Tomography, and biopsy is that they can detect cancer at later stages. Miniaturization, 

coupled with omics revolution, has made robust interfaces possible to faithfully measure and transduce 

important biological interactions at fundamental levels. These endeavors provide tools to diagnose 

diseases at early stages, monitor prognosis in higher details with minimally invasive procedures, and 

follow the trends of disease progression in response to new drugs or novel therapies. However, a multi-

faceted challenge shared to these advancements is that these suffer from the noisy raw data which is 

generated at high rates. Moreover, the processing and post-processing often entail manual analysis, which  

is inefficient and error-prone. To our knowledge, there is no automated and error-resilient software that 

can detect the biological targets in real time. This possibly incurs unacceptable delays in the detection of 

medical conditions and diseases. In simple terms, the amount of measured data per unit time has grown 

exponentially both in resolution and dimensions. Therefore, it has become near impossible to extract 

useful patterns from the data in real time.  

1.1.1. Bio-Nano Sensing 

The technologies developed at a micro- and nano-scale are inherently high performing, and the data 

collected from these interfaces is often at micro- and nano-scale – generating millions of samples within a 

fraction of a second. Solid-state nanopore and micropore are examples of such devices that provide 

interfaces to translocate biological targets, such as DNA, and human cells through it. The translocation 

phenomenon of these targets through the pore blocks the output current partially that results in an 
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interesting pattern in the output. Unfortunately, the data is generated at high rates and riddled with noise 

and baseline artifacts. Furthermore, a typical blood sample which is a fraction of milliliter blood sample, 

when translocate through the solid-state micropore result in few GBs of data. In state-of-the-art, the 

performance and speed are hardly ever discussed for these devices with respect to the computing 

resources employed for measurements and analysis.  

The accurate detection and processing of interesting patterns are also critical in the analysis of the 

biological targets for diagnostics and therapy, otherwise, results into false alarms. This leads to degraded 

sensitivity and poor selectivity of the system, and therefore, loss of system integrity and reduced 

usefulness of miniaturization.  

Another key challenge that is common to bio-nano sensing is the unavailabitily of a software that 

can provide pattern-detection in real-time. Unfortunately, the collected data has to be processed and 

analyzed manually. Manual analysis is time-consuming, tedious and error-prone, and is subject to 

technician's experience. The solid-state nanopores that can sample up to 454,000 samples a second need 

backend software to record the biological events such as DNA, proteins and disease biomarkers faithfully 

at higher resolution and discretization. Unfortunately, the acquired data is complicated by large 

background noise and baseline artifacts in the measured data that poses challenge towards the accurate 

detection, and makes the manual detection process even complicated. Furthermore, applications like EEG, 

ECG, and MRI suffer from large amount of raw data where an analyst has to wait until a significant 

amount of data is accumulated, and then process it for the detection of biological targets, and further 

analysis. Thus, the useful decision-making never happens in real-time due to the offline collection of raw 

data, and the manual interventions performed on the said data. 
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1.1.2. Challenges in Bio-Nano Sensing 

The identification and analysis of patterns are fundamental to many applications. Typically, the patterns 

can be upward spikes forming peaks, or inverted peaks forming troughs. In either case, closer 

examination of peaks leads to useful insights relevant to the domain. In power distribution data, peaks 

indicate the trend pertaining to high demands. In server CPU utilization data, peaks indicate trends in the 

workload characterization. In network data, a peak corresponds to burst in the traffic. In financial data, 

peaks show sharp rises in price or volume. Medical research and modern clinical setup depict an increase 

in recording important physiological signals, which substantially involves the detection of peaks/troughs 

in the target signals. Examples include patterns in the electrocardiogram [1], electroencephalogram [2], 

neuronal activity in experimental animals [3, 4], peak inspiration and end expiration[5], patterns in 

hormone secretion [6, 7], counting smooth muscle contractions [8], and the spectral peaks in 

chromatography [9]. Additional applications such as mass spectrometry [10, 11], bioinformatics [12], 

astrophysics [13, 14], signal processing [15], image processing [16], and other related domains [17-20] – 

entail peak detection techniques. 

However, the process of peak-detection suffers from a couple of challenges. The major challenge 

is the arbitrary definition of the patterns itself. Part of the reason is the tight coupling of the definition to 

the application domain, instead of having one single universal interpretation. It can be an abrupt rise 

followed by a sudden fall in time, such as spikes in musical note. It can be a sharp rise followed by a 

gradual pattern spread, or vice versa, while monitoring the price-level of oil to capture the recession 

period.  The patterns resulting from the human respiratory system have progressive rise and fall at either 

end with the shape of the peak could be symmetric, or asymmetric. There can be an abrupt rise/fall at one 

end, while gradual transition at the other end. The task becomes even more challenging when the patterns 

are aperiodic, furthermore, they are occurring at different scales, and amplitudes. Finally, the true peaks 

that capture the useful insights are often hidden in the noise. Thus, it is very daunting to agree on a single 

definition of a pattern. Nevertheless, the existence of a wide range of applications that incorporate 
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patterns suffer from collective challenges, though each application has evolved into their idiosyncratic 

definition, and therefore, their peculiar pattern-detection algorithms. The communal challenges are 

summarized as below: 

Noise: 

The data is often riddled with baseline wander, and noise from the source. Therefore, it is necessary to 

estimate the right level of noise in order to avoid the detection of false alarms, which can adversely effect 

precision and recall of the system. 

Criterion to set the threshold: 

A static threshold to detect peaks/troughs won’t work when there are baseline shifts. This can prevent the 

detection of true peaks. In contrast, an adjustable threshold will compensate for static threshold. However, 

the criterion to setup such an adaptive threshold is very crucial in order to acheive high precision. 

Patterns at different scale/amplitude:   

This problem arises due to the patterns that occur at varying scales and magnitudes that make it 

challenging to differentiate the strong and weak pulse. This problem exists even after the patterns have 

been detected in the data against the selected threshold. However, in some case, both types of patterns are 

important. For instance, in bio-nano sensing, different types of phenomenon is captured by different 

patterns in the underlying process. 

Tunable parameters:  

Finally, the existence of highly unpredictable data result in tuning of different parameters of the devised 

algorithm. Such tuning of the algorithms based on the arising situation is unmanageable and entails 

subjectivity, which is time-consuming and error-prone. Therefore, devising self-tunable algorithms in 

order to minimize the tunable parameters is pivotal for pattern detection. 

Large-scale data: 
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The resulting noisy data from bio-nano sensors is high-throughput data. Data generated even by a single 

sensor is at 2MB per second. Multiple sensors launched in a typical clinical setup measuring biological 

targets in parallel will easily become a big data problem. 

1.2. Motivation  

Bio-nanotechnology is promising at a scale varying from human cells down to the nano-scale, such as 

proteins and DNA. Micro- and nano-scale devices enable early detection of diseases, such as cancer, and 

sense biological targets at ever finer granularity [21-29]. However, the problem with such techniques is 

that they suffer from noisy data deluge, and secondly; the detection process is done manually, which is 

too inefficient. Atop, passing a biological target, such as DNA, through a solid-state nanopore can result in 

as many as 200,000–500,000 distinct values per second [30-32]. Such as data are beyond the capabilities 

of an individual computer machine, especially for real time processing [30]. Equally important, a well-

trained technician has to spend innumerable hours to extract useful patterns from few GBs of raw data – 

collected from the translocation a blood sample, which is in few milliliters. This is non-trivial and entails 

handling of huge amounts of data. Moreover, the data-deluge that is thus created – by measurements 

(nanopores) where thousands of sensors generate lots of data – requires innovative solutions for efficient 

computing and analysis, and a cost-efficient solution in this design-space may preclude the use of 

traditional computing resources. 

Pattern-detection is of the utmost importance in disease diagnosis technologies, such as mass 

spectroscopy, ECG, and MRI, to name a few [33, 34]. With the advent of novel biological application of 

solid-state micro- and nano-scale devices [27, 35-37], the problem of pattern-recognition is now coupled 

with the enormity of the datasets [38]. In temporal measurements, it is easy to visually analyze the 

patterns and pulses when the collection time scales are minuscule and the measured events are plenty 

[34]. However, when the collected data is huge and the actual events or pulses constitute a tiny fraction of 

the acquired data, the automation of the event recognition becomes indispensable. Solid-state micropores 
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are small orifices in silicon-based membranes that have been used to electrically measure the passage of 

human cells through these [23]. When no cells are present, the ionic current is measured temporally, 

which gives a stable baseline. As soon as a cell passes through, a dip in the baseline is measured that 

stems from the blockage of the micropore. The translocation events are thus registered as pulses and the 

features of the pulses depict the pattern specific to the cell type [39]. 

Furthermore, the pattern-detection in the data is done manually, which is monotonous, time-

consuming and error-prone – thus, it is critical to automate the data analysis for efficient, and accurate 

detection of the patterns. However, this is non-trivial and entails handling of the huge amount of data as 

well as significant computing resources. This requires innovative solutions for efficient computing and 

analysis, and a cost-efficient solution in this design-space may preclude the use of traditional computing 

resources.  

Graphics Processing Units (GPUs) have been evolved into accelerators for high-throughput and data-

parallel jobs [40-42]. Originally designed for gaming purposes, accelerator-based GPU computing has 

been adopted for many compute-intensive scientific applications due to its highly parallel architecture, 

such as accelerated feature finding in proteomics datasets generated by MS [43], simulation of cardiac 

tissue in real-time [44], accelerated simulation of ECG [45], GPU-accelerated MRI reconstruction 

algorithms [46], real-time detection of biological targets using GPUs [47], parallel mining of neuronal 

spike streams coming out of MEAs [48].  GPU-based computation provides not only faster but 

economically cheaper solutions to the traditional setups. Thus, it is natural that commercialization of 

accelerators is enabling their use in analyzing large-scale data within a fraction of budget of comparable 

traditional machines. Recent efforts have also shown significant performance improvements by 

integrating advanced I/O techniques with accelerator-based GPU processing for high-performance real-

time computing [49, 50].  

An end-to-end system that encompasses bio, nano and info domains is required to acquire, 

process, and analyze the data towards the detection of biological targets, which can ultimately help in 
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disease diagnosis. Such work will lay the foundation for automated disease diagnosis as compared to the 

state-of-the-art manual processing associated with bio-nano devices.   

1.3. Objectives and Approaches 

In order to automate the process of manually analyzing the data to detect biological targets, there are 

couple of challenges tied to it: (i) selection of threshold to efficiently detect patterns and discard the noise, 

(iii) online processing of the said data for realizing instantaneous feedback, and (iii) useful feature 

computation, and classification of biological targets in the raw data. 

To decide the right threshold, we will use different threshold techniques including static and 

dynamic techniques and compare the results to find the optimal out of these techniques, this will address 

challenge (i). However, the static threshold techniques are simpler and faster, but easily results in false 

alarms due to noise and baseline wanders. In contrast, the dynamic techniques are relatively complex, but 

result in efficient detection of pattern even in the presence of noise and baseline artifacts. To enable fast 

and efficient processing of the data from a large number of bio-nano sensors, that is, addressing (ii), we 

employ parallel implementation of the detection techniques on GPUs coupled with advanced I/O 

techniques. The parallel implementation of the techniques makes it faster to process the data as compared 

to single threaded implementation. In addition to that, the advanced I/O techniques, such as double 

buffering coupled with parallel implementation overlap I/O with the computation, and further improve the 

performance. Such implementation results in a faster detection platform for the detection and analysis of 

biological targets, and matches the actual throughput of couple of bio-sensors collecting data from many 

biological targets, simultaneously. Thus, faster computational setup provides room for future bio-nano 

sensing setup in terms of catch up, which we foresee as a library of sensors where each can support 

translocation of biomolecules and therefore, results in many times faster sampling speeds than a single 

desktop computational setup. To address (iii) we adapt pattern classification techniques in order to 

classify different biological targets that are detected in the raw data. However, the classification of targets 
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into separate classes requires significant features that will help in accurate classification of the targets and 

further help in disease diagnosis. 

 

In a typical clinical experiment, few milliliters of blood sample translocation results in few GBs 

of raw data. Thus, the collected raw data from a hundred patients visiting each day can easily result into 

TBs of data. Such data is beyond the limited resources of a typical machine, and can easily overflow the 

limited resources of a typical desktop machine. Furthermore, the limited memory cannot accommodate 

the data that is beyond a few GBs. To mitigate these bottlenecks, we adapt a streaming approach and 

advanced I/O techniques, such as, double buffering to make the overall process efficient. The streaming 

approach streams data into chunks from the storage to the main memory, process it, discard the original 

data, and finally, write back only the results to the storage. Furthermore, the results, that is, the detected 

biological targets in the blood samples, roughly constitute a thousandth fraction of the patient blood 

sample data. Discarding the original raw data, and processing, and storing the important patterns not only 

results in a faster software platform but also result in efficient utilization of the limited resources of a 

machine.   

In a nutshell, the goal of my research is towards the design, and development of software 

techniques that can adapt to the changing data characteristics of bio-nano devices, and thus, automate the 

detection and classification of biological targets in the raw data. This research will lay the foundation for 

automated disease diagnosis at early stages using bio-nano devices. 
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Chapter 2  

Literature Review 

In this chapter, we present background of enabling technologies, and the work related to the research 

proposed in this dissertation. The related work discusses pattern-detection algorithms in order to automate 

the process of detecting interesting patterns across different domains and the challenges tied to them. 

Furthermore, we showcase few examples from biomedical and biophysical applications that suffer from 

the problem of data deluge, and the use of pattern-detection techniques, and graphics processing units 

(GPUs) towards automation and accelerated processing.  

2.1. Pattern-detection Algorithms 

Pattern-detection is a critical area of research in biomedical and biophysical applications, and a significant 

amount of work is focused on pattern-based work applied towards detecting interesting patterns in such 

applications. Different pattern-detection algorithms are applied across different domains; however, there 

are still challenges that are common to many pattern-detection algorithms. 

The problem of detecting patterns exists across diverse applications including mass spectroscopy, 

signal processing, image processing and bioinformatics [11, 12, 15, 16]. To address this problem, many 

pattern-detection algorithms have been developed, unfortunately, each of them work only in their target 

domain [11, 12, 15-17, 19, 20, 51, 52]. Therefore, such coupling prevents the interoperability and 

reusability of the algorithms across different domains. Efforts have been done to formalize a 
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mathematical model [51] for peak detection, however, it still suffers from large number of false alarms 

unless tailored and tuned for a particular domain.  

General approach to detect patterns consists of three steps — (i) to get rid of noise by smoothing, 

(ii) the baseline correction, and (iii) peak detection in the smoothed data as captured by Yang et. al [11]. 

The goal of the smoothing is to highlight the peaks and suppress the noise, and weak peaks. The baseline 

correction get rids of the baseline shifts, and brings the time-series data to a stable state. This improves 

the precision of peak detection process by choosing a threshold on a less noisy data with removed 

baseline artifacts. The pattern-detection algorithms include all, or a subset of these steps in order to 

accomplish the task of detecting patterns.  

The key challenge is the noise in the data. Furthermore, the nature of peaks occurring at different 

scales and amplitudes further makes the task of peak detection challenging, and easily runs into false 

positives in the detected peaks. Furthermore, peaks can have characteristics shapes, such as the observed 

peaks in mass spectroscopy. To address these challenges, wavelets have been used to detect peaks in the 

spectroscopy data [10, 53]. Pattern-detection algorithm based on Continuous wavelet transform (CWT) is 

also used for peak detection [12]. Aggregated monitoring is done based on window-based models, such as 

landmark windows, sliding windows, and damped windows [54-57]. However, the sliding window is 

widely adopted in the data stream monitoring. Therefore, it has also been generalized to the elastic 

window model. In order to find abnormal aggregates in the data streams, wavelet-based burst detection is 

proposed by [58]. The haar wavelet coefficients are stored in special data structure i.e. shifted wavelet 

tree (SWT), where each node corresponds to a specific window size and each level in the tree corresponds 

to a specific resolution. The appropriate size of window and resolution for a specific burst is selected by 

scanning the SWT. Such bursts exist in Gama Ray data streams and vary widely in their duration and 

strength. However, selecting thresholds for different window sizes is still a future work.  

Inspired from Newtonian mechanics, a momentum-based algorithm is developed that computes 

changes in the momentum as the ball traverses the time-series [59]. Such peak detection algorithm can 
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find both peaks and troughs of a signal. The algorithm computes momentum at various points and 

determines the peaks and troughs without using smoothing and thresholding. In case of highly noisy 

signals, the data will require smoothing to remove the high frequency noise. Nonetheless, adding friction 

and initial momentum as tunable parameter, so that the user can fine-tune the algorithm for a specific data 

set – can help in eliminating the smoothing step.  

To mitigate the impact of noise, the signal to noise ratio (SNR) needs to be above certain 

threshold [52, 60]. However, we are still left over with the key challenge how to set select the threshold in 

order to minimize the false alarms, and thus, have an acceptable trade-off for precision and recall that 

varies from domain to domain. One effort is to decide the threshold based on the noise-level in the data 

that stems from the mean and standard deviation in the data, such as h = (max + absolute_mean) / 2 + K * 

absolute_deviation, where max is the maximum value in the time-series, absolute_mean is the average of 

absolute values in the time-series, absolute_deviation is the mean absolute deviation, and K is the 

influence factor of deviation. In other words, K is user-specific constant. It is clear from the above 

equation that greater standard deviation results in higher threshold and vice versa. 

Another work includes peak detection in gene expression from microarray time-series data, 

followed by support vector machine (SVM) based classification into its functional groups [17]. Multiple 

methods based on score assignment were used to detect peaks, such as score is assigned based on the 

fraction of area under the candidate peak, or based the rate of the change calculated at each point i.e. the 

derivative. Peaks that were selected from multiple methods were identified as true peaks, which were fed 

to SVM for classification. Moving-based algorithm is designed to detect peaks such that values larger 

than x times the standard deviation of the time-series are considered as peaks. The extent of smoothing is 

empirically decided, such as 24 points for daily data.  

In addition to filter-based techniques and spike-shape interpolation, several techniques have been 

established to analyze neuron action potentials including feature analysis, principal component analysis, 

cluster analysis, Bayesian clustering, clustering in higher dimensions, and template matching [33]. In all 
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cases, the value of the threshold is crucial to determine the signal (above/below the threshold), and noise 

(above/below the threshold), and vice versa. Different values of the threshold result in different signal to 

noise ratios that could ultimately lead into different trade-offs between precision and false alarms. 

In addition to the challenges mentioned above, the pattern-detection algorithms depend on a 

single, or multiple threshold values. This further decides and, evaluates the effectiveness of the devised 

algorithms. Furthermore, the extent of smoothing depends on the level of noise in the data. Too much 

smoothing can not only remove noise, but also remove small peaks which might have useful meaning in 

the domain. The final criterion that decides whether the data point is a peak or not, always results from 

the comparison to a threshold. To summarize, the data generated from the above-mentioned applications 

is noisy and riddled with baseline artifacts – it is crucial for each application to define a criterion that can 

determine the threshold dynamically, instead of a one-shot static threshold, which due to slight variations 

in noise level, or baseline can easily result in false alarms. Attempts have been done to compute threshold 

dynamically [18]. Unfortunately, these algorithms work under some constraints, such as the absence of 

outliers in the data [18], reliance on a minimal threshold [59], additional parameters, such as the length of 

window [34], and algorithmic specific parameters including minimum momentum [59], where a constant 

value will not suffice for every situation. These optimizations further add to the complexity of already 

dynamic environment, and unpredictable data characteristics mainly due to baseline artifacts and noise.  

2.2. Graphics Processing Units (GPUs) 

The recent trend has shown a significant increase in the use of Graphics Processing Units (GPUs) as 

state-of-the-art accelerators, for compute- and data-intensive computing; such as feature detection in large 

amounts of protein data [43], fast mining of huge spike trains generated from Multi-Electrode Array [48], 

and other useful GPU applications [41, 46, 48, 61-63] within a fraction of a budget of the traditional 

setups. Commoditization has become commonplace for asymmetric processors and heterogeneous 

architectures with offload processing engines [42]. Recent efforts have also shown significant 
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performance improvement by integrating advanced I/O techniques with accelerator-based GPU 

processing [49] [50]. 

2.2.1. CUDA 

The programmers can harnesses the underlying massive parallel architecture of the GPUs through parallel 

programming tools.  A forerunner manufacturer of GPUs, NVIDIA Corporation, has developed Compute 

Unified Device Architecture (CUDA) [64].  CUDA is a parallel computing architecture used on all 

NVIDIA products, such as Telsa [65] and Fermi [66]. The access to the parallel computational elements 

in CUDA-GPUs is provided through various application programming interfaces (API).  The software 

developers can use variety of standard programming languages (like C, C++, C#) to access CUDA via 

APIs.  This provides abstractions to the programmers to implement parallelism at different levels of 

granularity. The programmers can express coarse-grained, fine-grained or task-parallelized abstractions 

using high-level languages. A marvelous introduction to data-parallel GPU programming in CUDA has 

been provided by Nickolls et. al [67]. 

The CUDA programming model follows Single Program Multiple Data (SPMD) style of parallel 

programming. SPMD allows programmers to write thread level parallel, or data parallel code for 

independent or coordinated threads, respectively. SPMD further enables specifying the execution 

behavior of an individual thread. Thus, the kernel functions are launched on GPU to execute compute-

intensive and data-parallel code in parallel.  The CUDA kernel is composed of light-weight threads that 

are grouped into blocks and the blocks are further grouped into the kernel grid as shown in Fig 4. The 

execution configuration for kernel-launch typically consists of 64 to 512 threads per block and a number 

of blocks in the kernel grid. However, in newer Fermi-based GPUs maximum number of threads per 

block reaches up to 1024. The thread block is further composed of batches of 32 threads called warps, 

such that number of warps per block is number of threads per block divided by 32. Shared memory within 

a block is visible to all the threads in the block and hence all the threads are synchronized. However, the 
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threads across different blocks do not have access to shared memory and are not synchronized. As for 

global memory, all the threads within a kernel launch can access it. Additionally, each thread has its own 

private local memory. To cope with branch divergence issues where half of the threads are processing one 

piece of code and half working on another within a thread block, synchronization per thread block is 

needed. Such synchronization makes sure that all the threads in the block are finished and have reached a 

destined barrier.  To this end, the programmer specifies the number of threads per block and the number 

of blocks per grid in the CUDA API for kernel launch. Furthermore, a programmer can alter the execution 

configuration of a kernel launch by changing the block dimensions. This can be done by indexing threads 

per block in 1- (x), 2- (x, y) or 3-dimensions (x, y, z) subsequently forming 1-, 2- and 3-dimesional (D) 

thread blocks respectively. The indexing scheme of threads for 1-D block stays the same. However, for 

higher dimensions it is x+yDx and x+yDx+zDy for 2-dimension (Dx, Dy) and 3-dimension (Dx, Dy, Dz) 

block sizes, respectively. Here Dx, Dy, and Dz pertain to the dimensions along x-axis, y-axis, and z-axis 

respectively. Irrespective of the different dimensionality of threads in blocks, the total number of threads 

should not exceed the maximum limit imposed by its hardware architecture, as already mentioned. Thus, 

different execution configurations can be launched to map different target applications on a GPU for 

improved performance. Single kernel can be launched instantaneously to the GPU in older architectures 

with compute capability less than 2.0. Multiple kernels are serialized and executed one by one on the 

GPU. Also, the execution configuration can only be launched by the programmer from CPU to GPU, and 

once launched, the configuration never changes for that particular kernel launch, supporting static 

parallelism. However, multiple kernels (up to 4) can be launched to execute concurrently with compute 

capability 2.0 and higher, such as Fermi [66] and Kepler [68] as shown in Fig. 5. Additionally, the 

execution configuration can be changed on fly without the intervention of the CPU in Kepler-based setup 

and therefore, facilitating dynamic parallelism. 
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2.2.2. OpenCL 

OpenCL [69] was introduced as an open standard language for programming GPUs  first broadly 

supported by all GPUs and similar devices. In addition to portability across different platforms, different 

architectures still vary in their memory requirements, and related optimizations to achieve the peak 

performance. Similar to CUDA, it consists of C/C++ part that run on CPU and the C part that run on 

GPUs. The CPU code is used to control the overall functioning of the parallel code that runs on GPU 

including memory allocation, launching the kernel, and finally, gathering the results. The GPU kernel 

follows Single-Program Multiple-Data (SPMD) style of coding. Similar to CUDA each kernel consists of 

2D and 3D grids. The difference only lies in the terminology, such as the thread-blocks referred in CUDA 

are known as work-groups in OpenCL. The workers (threads in CUDA) can synchronize with one 

another, but not across the work-groups. From CPU perspective, the basic and smallest unit of execution 

is the kernel that could be launched on the GPU. CUDA vis a vis OpenCL isolates the main memory from 

the side effects of updates to local variables by happening them only in the device memory. An 

application program can manage the attached accelerator through language extensions, such as “Jacket” 

for Matlab
1
, or PyCUDA

2
 for Python, which contain libraries including BLAS and FFT routines[70, 71]. 

 

2.3. Biophysical and Biomedical Applications 

It is common problem that most of the biophysical and biomedical applications suffer from the problem 

of processing raw data generated by sensing technologies. Handling raw data and finding interesting 

patterns in it towards useful analysis is too subjective and inefficient. Efforts have been done in order to 

automate such processing towards real-time processing and analysis. The following sections show cases 

                                                 

1 http://www.accelereyes.com 
2 http://pypi.python.org/pypi/pycuda 
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such biophysical and biomedical applications and discusses the performance improvement achieved 

through automation using graphics processing units (GPUs), and the future challenges. 

2.3.1. Automation of Mass Spectrometry Analysis 

Mass spectrometry (MS) is one of the techniques used for the expression analysis of proteins and has 

several applications in medical diagnostics, biomedical engineering and therapy. This technique is used to 

determine the mass, composition and structure of the target molecules especially peptides (digested 

proteins) for decision-making. The peptides are ionized and accelerated within mass spectrometer to get 

the fingerprint (intensity vs. mass).  

The 3D contour maps can also be generated, with x-axis showing mass-to-charge ratio, y-axis 

representing the intensity and z-axis for additional parameters. However, one scan can easily overflow 

over several gigabytes. Furthermore, the manual analysis and interpretation of useful features in the 

measured data is significantly larger job than the MS experiment itself due to the inherent noise and 

baseline artifacts. To automate the process towards faster processing, adaptive wavelet transform has been 

implemented on GPU for feature detection [43]. The ideal scenario is to have high precision and 

performance. However, there is always a trade-off between performance and precision. Data can be pre-

processed for noise removal using simple thresholding to detect the features in protein data. Additional 

preprocessing could be done to get rid of noise and get better quality results e.g., morphological filters or 

smoothing techniques. Moreover, additional post-processing includes clustering and model fitting 

techniques, but makes the process computationally expensive. The wavelet transform is robust to the 

noise by design and efficiently removes inherent chemical noise in the data. The transform slides over the 

preprocessed data and convolves kernel function to it. This makes the algorithm embarrassingly parallel 

and maps well to the massive parallel architecture of GPU. The convolution is performed in parallel by as 

many threads as data points in CUDA. The algorithm divides the input map of scan points into chunks of 

512 points (maximum number of threads per block in older architectures), and assigns each point to the 
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individual thread. Each thread performs a convolution operation on the corresponding point to its 

neighboring points. Actually more points are loaded into shared memory to facilitate convolution of 

neighboring intensities to the assigned point per thread. Unfortunately, the number of neighboring points 

to be loaded for a particular convolution of a data point can’t be determined in advance because of the 

irregular spacing in MS data. Therefore, maximum amount of memory is reserved to load all the 

associated neighboring points based on the maximum mass. However, this incurs memory pressure due to 

the limited size of shared memory. 

Two GPU-based algorithms have been implemented using NVIDIA Tesla C870, hosting 128 

cores, each operated at 1.35 GHz with a global memory of 1.5 GB and shared memory of only 16 KB 

[43]. The counter CPU implementation used 8 cores with each operated at 2.3 GHz and 16 GB main 

memory. To further accelerate the process, another implementation used on-chip shared memory. The 

GPU-based algorithm even with no approximations was not only faster, but also resulted in better quality 

results. This led to 200X speedup on real-world protein data as compared to its counter CPU-based 

implementation. Additionally, implementation on slightly older architecture of NVIDIA Quadro NVS 290 

resulted in a speedup of 10X. Given these results, larger scale proteomics, where larger number of 

proteins needed to be detected, would necessitate the use of advanced Fermi and Kepler-based GPUs. 

Such GPUs have the potential to accelerate the processing of such highly parallel algorithms e.g., 

convolution to happen in real-time due to their massively parallel architecture due to increased number of 

processing cores, number of threads per block and shared memory.  

2.3.2. Accelerated Medical Imaging 

Many neurological disorder and heart problems can be detected, in vivo through MRI. Such imaging can 

get images from different softer tissues of the body with better contrast than X-rays or Computed 

Tomography (CT). The data accumulated from imaging can be reconstructed in any plane with minimum 

loss in the image quality. The challenge in automating the MRI process is the high frequency noise in the 
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data, imaging artifacts and extended data acquisition times. The scanning trajectory profoundly affects the 

quality of reconstructed images. The trajectory can be cartesian or non-cartesian, however, the latter is 

becoming more common in MRI due to its robustness towards noise. The non-cartesian trajectory 

samples are first interpolated onto a uniform cartesian grid, and then reconstructed via fast Fourier 

transform (FFT) [72]. Such computation is easy but does not incorporate anatomical information. 

However, incorporating this information helps in reducing the noise by achieving higher signal-to-noise 

ratios per scan in optimal image reconstruction, without sacrificing the quality (resolution) of the image 

features. [73-76]. The advanced reconstruction algorithms designed for large scale problems can be real-

time solutions in clinical setup if accelerated on GPUs. For instance, advanced reconstruction of non-

uniform scan data takes less than 2 minutes on GPU as compared to its CPU-based gridded reconstruction 

which takes 23 minutes as shown by Stone, et al. [77].  

The advanced reconstructions algorithms are not only faster but are also more precise e.g., 12% 

error was reported when compared to its counter CPU-based implementation which had 42% error. The 

experimental system consisted of NVIDIA’s Quadro FX 5600 GPU operating at 1.35 GHz coupled with 

dual-core Opteron 2216 CPU. The GPU-based implementations for reconstruction algorithms include 

naive implementation, and well-tuned optimized implementations. Note that the optimization parameters 

vary across different applications and mainly depends on the inherit parallelism in the data. However, in 

this case such tuning significantly reduced the off-chip memory bandwidth by reducing the number of 

memory accesses to the global memory and resulted in improved performance i.e. runtime reduced to 59 

seconds. Additionally, running the tuned implementation on multi-GPU setup resulted in a total runtime 

of 18 seconds. Note that single-precision floating-point computation along with approximations of 

trigonometric operations though resulted in acceleration of the method and less error towards the real 

image; however, these could also degrade the quality of the final results. Improving the quality of the 

acquired images in addition to the acceleration implementation can increase the scanner throughput and 
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hence reduce the patient discomfort. Furthermore, speed-up of 2X to 9X for the same reconstruction 

algorithms has also been achieved [72, 78, 79].   

Another important issue in MRI is the performance of automated image registration algorithms. 

The purpose of automated image registration is to find mapping between the source image and the 

reference image using transformations and similarity measures followed by optimization to find the best 

transformations. The problem with these algorithms of image registration is that these involve significant 

iterations and are quite slower on a typical workstation. This delays the post-processing of medical 

images and hence increases the response time in medical diagnostics. Acceleration of up to 14X for image 

registration calculations of MRI on GPUs has been achieved [80]. However, acceleration based on latest 

GPUs is yet to be seen. 

2.3.3. Real-Time Processing of Raw data in Electrocardiography 

ECG is a well-known technique to record the electrical activity of the heart. ECG is more pervasive than 

MRI and CT with no radiations and has little discomfort to the patient. This provides 3D and even 4D 

views of the heart. Each echo coming out of human heart needs to be connected to the ECG in order to 

record the target cardiac process of the human heart. The visualization of higher dimensions of images is 

called volume rendering. The problem with this application is that the volume of the raw data acquired is 

huge, and rendering the higher dimension images in real-time is computationally-expensive and time-

consuming. It is hard to keep pace with rapid heart-beat rate, while acquiring and rendering huge volumes 

of data per cardiac cycle. However, GPUs can be exploited for rendering higher dimensional images of 

the acquired ultrasound data and can almost reach the audible heart rate [79].  GPUs have been used to 

achieve 13.03X faster computations than its counter sequential code [45]. NVIDIA GeForce 8800 GT 

engine hosting 112 cores, operated at 1.5 GHz with a device memory of 512 MB, was used for GPU-

based implementation, compared to the CPU operated at 2.4 GHz with 3 GB of main memory. The need 

of more data for GPU computation actually hampers further acceleration. However, advanced GPU-based 
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setup can result in improved performance with massive number of cores, larger memory and higher 

memory bandwidth between the CPU and GPU. 

Ray-casting is also one of the techniques used for volume-rendering. This technique transforms 

2D data into 3D projection by tracing out rays from the view point into the viewing volume. In simple 

words, ray-casting is a technique to render high quality images of the solid objects. A framework for 

ultrasound datasets that uses GPUs towards ray-casting algorithms for volume rendering has also been 

developed [81]. 

2.3.4. GPU-Accelerated Analysis of Neuron Action Potentials 

Electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and multi-electrode 

arrays (MEAs) are all used for the analysis of neuronal activity of human brain.  These approaches do not 

allow recording of a single neuron activity. Single-unit recording measures electrophysiological activities 

up to the resolution of a single neuron, measuring intracellular and extracellular events of human brain, 

called the action potentials. Cao et. al has used data mining algorithms towards the event streams (neuron 

action potentials) coming out of MEAs to study the functionality of human brain [48]. The problem in 

analyzing these interesting patterns is that the accumulated event streams from MEA have tremendously 

increased in size where a typical 64-channel MEA can easily measure millions of spikes within a couple 

of minutes. However, the actual experiments can run up to months which generate trillions of neuronal 

action potential spike data. To this end, such data deluge entails huge data storage and high-end 

computation power. This motivated the design of data mining algorithms to analyze the MEA recorded 

event streams in real-time. Furthermore, the GPU-based solution was not only a real-time approach but 

also an alternate economic solution to supercomputers by providing their implementation on a typical 

desktop computer housing GPUs. The task of finding frequency of non-overlapped occurrences of 

patterns called frequent episodes in the event streams was parallelized. Different computation-to-core 

mapping resulted in different speedups: One thread per occurrence was used to fulfill the mining of fewer 
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numbers of episodes, while the two-pass elimination was done to count larger number of episodes. The 

problem with the former approach was the under-utilization of GPU due to the data dependencies and 

branch divergence. The later approach assigned only one episode per thread. However, greater number of 

episodes fully utilized the GPU. Unfortunately, only 32 threads could be scheduled on the GPU’s 

multiprocessor which hosted just 16 KB of registers and shared memory. Given such a small number of 

threads that could be scheduled at a time on GPU, little performance enhancement was achieved. 

However, reducing the complexity of the algorithm without sacrificing the correctness helped in 

enhancing the performance. The relationship between frequency of episodes and its counting time 

followed a linear trend, and the running time of the algorithm became dominant by the sorting time with 

the increase in episode frequency.  

The two-pass elimination algorithm showed speedup of 1.2X – 2.8X over the hybrid approach for 

different datasets at different support thresholds. In fact, branch divergence and local memory were 

responsible for the improvement in two-pass elimination, which stemmed from tracking the episodes. 

More specifically, the former algorithm eliminated 99.9% of unsupported episodes of size four resulting 

in speedup of 2.53X. The two-pass elimination algorithm used less number of registers and no local 

memory, as compared to the hybrid algorithms. Moreover, the number of memory accesses was fewer in 

two-pass elimination method, when large number of episodes was used. The algorithms were evaluated 

on NVIDIA GTX280 GPU with 240 cores clocked at 1.3 GHz with 1 GB device memory, and an i7-

based CPU with a clock frequency of 2.33 GHz and 4 GB of main memory. 

2.3.5. Real-Time Analysis in Carbon Nanotubes 

Another application area that necessitates the use of real-time analysis is the processing of large amount 

of neuro-sensor data coming out of assistive technologies [26]. The duty cycle of neuron action potential 

varies from a fraction of a millisecond to few milliseconds [33], and therefore, needs sampling rate of few 

kHz. However, measuring discrete voltage signals with say thousands of electrodes, each operated at 1 
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kHz of duty cycle requires at least a million data points to be recorded faithfully per second. Consider an 

approximate resolution of 8-bits leads towards 256 distinct voltage levels per electrode. The system has to 

be capable of an actual measurement rate of at least 1 MB/sec. Given such a large number of electrodes 

(10K to 50K per µm
2
), necessary for effective measurements, and the need to adapt faster rates of action 

potentials easily overwhelms few GB/s due to the aggregated data rates. Unfortunately, the traditional 

approaches with very few electrodes rely on dumping raw data to storage devices for later processing 

incurs long turn-around delays between the actual collection of data and to generate useful electrical 

stimulants. Such unacceptable delays in assistive technologies can be mitigated with high-performance 

GPUs for recording action potentials in real time. 

2.3.6. GPU-Based Detection of Biological Targets Using Nanopores and Micropores 

Nanopore biosensors have been used to study various biophysical properties of biologial molecules [23, 

82-84]. In nanopore studies, translocation of biomolecules are monitored using a dual compartment setup, 

separated by a membrane with steady-state ionic current flowing in between. Biological molecules 

inherently carry charges and are thus translocated through the nanopore under the electrophoretic force of 

the applied bias. During translocation, the biomolecule physically blocks the pore, resulting into 

significant current blockade, called a pulse. Different hypotheses have been suggested based on pulse 

features, such as pulse-shape and width, where shape relates to the orientation of the target, while the 

width of the pulse relates to its length [21, 83, 85]. Pulses with significant distinctive characteristics have 

been observed in the case of DNA molecules that are different by as few as one to three bases [23].  

A micropore device works on the same principle except the size of the pore is larger and bigger to 

translocate biological entities, such as living cells.  Diseased cells like tumor cells are known to be 

mechaicanlly different than normal cells [39, 86-88].  Tumor cells have been found to be more elastic 

than other cell types [22, 89-91], and significantly different current blockade pulses were recorded in the 

case of tumor cells [39].   
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The detection system recordes the data at high sampling frequency (few MHz) resulting in 

millions of data samples recorded per second, in order to record the biological interactoins faithfully. 

Additionally, the raw data genrated by these sensors is riddled with inherit noise and baseline artifacts. 

Furthermore, the manual analysis on the recorded data is very tedious, time-consuming, and error-prone. 

This will become more challenging when the future nanopore design will include an array of nanopores, 

such as 2x2 nanopore matrix. Such matrix when used for DNA translocation running for an hour, with a 

sampling rate of 400,000 samples/second, and using 16 bits to represent each sample, will end up in 

approximately 11 GB of data. To this end, typical workstations will not suffice, and we will need 

techniques, such as streaming and buffering to alleviated the I/O bottleneck. However, parallel algorithms 

will be required to mitigate the computational bottleneck for processing the raw DNA data. GPUs have 

been adopted for real-time processing and analysis of the bio-targets from micropore-based detection 

system [92]. However,  the algorithm doesn’t show significant speedup on GPU due to the branch 

divergence in case of moving-average filtering algorithm. Futhermore, the algorithm starts by first 

loading a chunk of data equal to the window size of the algorithm resulting in significant memory 

accesses to global memroy. This incurs memory latency, and hence hampers the performance gain on 

GPU. The use of advanced parallel algorithms that better tailor to the GPU architecture coupled with 

CUDA-based optimizations will provide better speedups.  
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Chapter 3  

Detection and Classification of Biological Targets in Bio- 

Nano Sensing 

To address the problem of manual detection in the data deluge, a high-throughput computer-based 

automated system is required, which can detect pulses efficiently and accurately in real time. Our 

preliminary work proposes a novel solution by coupling advanced I/O techniques with GPU-based 

parallel algorithms for analyzing the large datasets produced from solid-state nanopores and detect 

biological targets in real time [92]. This approach has shown significant improvement in real-time pulse 

detection and can be used as an integral part of the next-generation production systems.  

Specifically, this work makes the following contributions: 

 Design and implementation of a static and two variations of dynamic pulse-detection algorithms 

(baseline-tracker and moving average). Each algorithm analyzes the raw input signal and detects the 

biological target by identifying the pulses in the input signal. 

 Use of advanced I/O techniques, such as double buffering and asynchronous I/O for overlapping 

I/O with the computation to minimize the I/O bottlenecks. The system is fully pipelined such that it 

streams raw data into the memory and after pre-processing the data, it is processed for pulse detection at 

GPU, and the final results are reported to the user in a human-readable format for visualization. 
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 Additional features are computed in order to minimize the overlap among the observed biological 

targets. 

 Machine learning techniques towards Cancer cells classification with and without training data.  

 

 Two-step detection technique: Moving-average based smoothing, followed by the threshold that 

is based on the statistics of the data in order to adapt to the varying characteristics of the data and thus, 

effectively detect biological targets in them. 

3.1. GPU-Based Detection of Biological-Targets in Raw Solid-State Pores 

Data 

3.1.1. System Overview 

 
Details of the implemented algorithms and the parallelization of the developed algorithms on CUDA-

enabled GPU are described here.  

A high-level overview of our designed system is captured in Fig 2. The system consists of 

different software modules such that each module implements a distinct functionality. The first module, 

the Data Pre-fetcher streams raw data into the host memory using double buffering. Data-formatter 

receives data from Data Pre-fetcher and converts the streamed data to the integer format for 

computational accelerator (GPU), and passes it over to the GPU-Manager. The GPU-Manager off-loads 

the buffered data to the device memory using asynchronous I/O, launches the GPU kernel and finally 

asynchronously copies the results back to the host memory.  

The main core (host device) accumulates, and merges the results, and produces the consolidated 

result. The Result-Analyzer collects the data from the device memory, converts it to the required format 

i.e., width and amplitude (peak) of the pulse, and finally delivers it to the user in the form of scatter plots. 

3.1.2. Algorithms for Pulse Detection 
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The main goal of the system is to efficiently detect pulses from the given dataset in real time. Different 

hypotheses have been suggested based on the pulse-shape and width, where width of the pulse relates to 

the molecule length, while the shape of the pulse, i.e., its duration and peak relate to its orientation [93, 

94]. A pulse is detected when the current signal (baseline) falls below a certain threshold of the baseline 

current, and reverts back to the original stable level after a certain time (pulse duration).  

 

Fig 1. General flow chart of the pulse detection algorithms  

 

The system detects the pulses against a pre-selected threshold based on the given criterion of acceptable 

range of the pulse width. Three pulse-detection algorithms are designed that can effectively detect the 

pulses from the given data. Fig 1 shows the general flowcharts of pulse detection algorithms. The 

algorithms differ from each other in the selection criterion of the threshold depending on whether it is 

static or dynamic. Dynamic algorithms further differ in the adapting nature of the threshold, during the 

process of detection. The updating step is only for the dynamic techniques.  
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A. Fixed Threshold Technique 

The fixed threshold technique processes signal values from the given dataset, and compares them against 

a given fixed threshold. The threshold is selected at the beginning of the detection process with some 

difference x (in nanoamperes) below the baseline. This threshold remains fixed throughout the detection 

process. If the x is selected too high, then pulses only with amplitude larger than x are detected (results in 

false negatives). Selecting x too small is also not favorable as this results in false positives (detects pulses 

with much smaller amplitude which is part of the background noise) [95]. All the data points are tested 

against this static threshold and are recorded only if it is less than it. The detected pulse can consist of a 

single data point, or it can be a group of data points. The pulses that have very small duration (e.g., less 

than three sampling periods) or those with very large duration (e.g., more than a hundred of sampling 

periods) are considered noise. When a value less than the threshold observed, the pulse-detection process 

starts. The start time and corresponding current value are recorded. The minimum signal value is tracked 

during the pulse detection process. When a value greater than threshold is encountered, the individual 

pulse-detection completes and the start time, end time and the minimum of the pulse is recorded. The 

width of the pulse is calculated from the end time and start time of the detected pulse. The pulses that fall 

in the acceptable range are recorded only. For our problem, the Min and Max of the acceptable range for 

pulse width is from 150 microseconds to 1000 microseconds when data is sampled at 75 microseconds; 

while for data sampled at 2.2 microseconds, the acceptable range varies from 5 microseconds to 1000 

microseconds. The Min is decided based upon the fact that there should at least be two samples 

contributing towards the pulse width. The Max value is selected based on the type of biomolecule being 

processed. For our problem, we know from the data characteristics and previous knowledge that the 

maximum pulse width of any significant translocation should be less than 1000 microseconds. Once the 

sampling rate is optimized and the pulse width range is selected, the criterion to reject/accept any pulse 

stays the same. Furthermore, from the domain knowledge we found that the threshold of 1200 

nanoamperes below baseline is optimum for our dataset. The reason is that the amplitude of the noisy 
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pulses is normally smaller than 1000 nanoamperes. In this way pulses are detected precisely and results of 

the automated approach are verified to be in very good agreement with human-based decisions about the 

detected pulses. 

The fixed threshold technique is the simplest approach that is designed for pulse detection. This 

approach is faster but error-prone when the baseline is not stable. It may ignore the valid pulses (false 

negatives), or may detect noisy pulses (false positives) due to the variation in the baseline. To address this 

problem, adaptive (dynamic) threshold technique is devised. Instead of using a fixed threshold, an 

adaptive threshold is used that is updated at each signal value, except while analyzing an individual pulse. 

B. Dynamic Threshold (Baseline-tracker technique) 

The baseline-tracker technique use an adaptive threshold, which keeps track of the baseline with 

difference x (nanoamperes) below it and detects pulses accordingly. This starts with a seed value that is 

less than the initial current value with a difference x. How much x the threshold should be kept below the 

baseline is decided manually by observing the noise value. Once x is optimized, there is no need to 

modify it further. This threshold is tracked in accordance with the baseline as temporal data is processed 

to detect pulses in it. The pulse-detection process starts when the signal value drops abruptly from the 

baseline and goes down the threshold value. Note that the threshold is updated at each value of the 

baseline except for the duration of pulse detection process. 

To elaborate the detection process we use the following example. For instance, we have a sequence of 

signal values: a, b, c, d, e, f, g, with T as the threshold; let’s suppose (c, d, e, f) < T, and (a, b, g) > T. For 

signal value a: since a > T, so T is updated as, T = a – x; where x is the difference by which T is kept 

below baseline for each signal value greater than threshold. We repeat this process for the next signal 

value, b which is also greater than T. For subsequent signal values; c, d, e, and f, that are smaller than T, 

we record the tstart, min and tend. After calculating the pulse width from tstart and tend we record it only if its 

width fall in the acceptable range, as described in Fixed threshold technique. The analysis of a pulse 

completes, based upon two conditions. First, when the baseline go above the threshold and second, when 
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the baseline stays below the threshold for a time greater than the acceptable range of pulse width. In the 

latter case the pulse under analysis is discarded. In this way, all the real pulses whose width falls within 

the acceptable range are recorded. 

C. Dynamic Threshold (Moving Average Technique) 

Moving average technique is another dynamic threshold technique that is adapted for the pulse detection 

process. In statistical terms, this technique is also known as running average. It maintains a running 

average calculated over a set of numbers, also called window w. The threshold is calculated based on that 

running average with some tolerance as explained below. 

For example for a window size w=5, the running average is given as:  

average5 = (yt-4+yt-3+yt-2+yt-1+yt)/5                  (1) 

For subsequent temporal data points, t = 6 and t = 7, Eq (1) becomes: 

average6 = (y2+y3+y4+y5+y6)/5                  (2) 

average7 = (y3+y4+y5+y6+y7)/5                  (3) 

To reduce the number of computations, we keep a running sum of the w most recent temporal 

data points. At every iteration new value occurring at t is added and the oldest value is subtracted from the 

sum. 

sum6 = y6+sum5–y1                    (4)             

sum7 = y7+sum6–y2                    (5) 

Then the average simply becomes: averaget = sumt/5.              

We then compute the threshold T from the running average with some tolerance x% i.e.  

T = averaget – averaget × tolerance.                   (6) 

The moving average algorithm detects pulses by comparing every signal value against the 

computed threshold. This technique differs from the Baseline-tracker technique in the computation of T. 

The individual pulse analysis (finding start time, end time and minimum among the detected points) and 

the acceptable range of pulse width are same for both methods.  
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We have observed the pulse-detection with different window sizes, and tolerance. When w is too 

small (e.g., 10 items), the algorithm runs faster but results in false positives. When w is too large e.g., 

1000, the algorithm runs slower but results in better detection of pulses. For our dataset, the best match 

between the speed and quality of pulses is achieved with window size of 200 and tolerance of 2.8%. As 

compared to other techniques moving average output matches manual detection output with a difference 

of 8.1% at the cost of increased computational complexity. 

3.1.3. Detailed Architecture 

The major software components of the developed system are as follows: 

 

Fig 2. System architecture with its major components including Data pre-fetcher, Data formatter, Pulse 

detector, and Result analyzer. 

 

A. Data Prefetcher 

 

The Data Prefetcher uses double buffering technique to overlap I/O with the computation. In double 

buffering technique, two separate buffers are used as shown in Fig 2. As the first buffer is being processed 

by the processing thread, the reader thread reads the input data from the storage device in the second 

buffer. In step 1, as soon as the reader thread completes reading the data into its buffer, it swaps the buffer 
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with the processing thread (step 2). This process continues until all the data is processed from the storage 

device.  

B. Data Formatter 

This component is responsible for reading the pre-fetched data, and converting it to the required format. 

The data is composed of sampled-time (microseconds) and corresponding current values (nanoamperes). 

The data is read in floating-point format, which is then converted into the integer format for efficient 

processing. The time is scaled to microseconds by first multiplying with 10
6
 and then converted to 

integers, while the current data is converted to integers without scaling. The integer data provides 

sufficient precision for the time and the current data. When a sufficient amount of data (at least 32 MB) is 

formatted, it is handed over to the GPU Manager component for processing (pulse-detection) on the GPU 

(step 3 in Fig 2). 

C. GPU Manager 

The GPU manager transfers the data from the host memory to the GPU memory, launches the GPU 

kernel, and copies the data back from the GPU to host memory (step 4a, 4b, and 4c in Fig 2). The GPU 

Manager uses multiple streams to transfer data from the host memory to the device memory to overlap 

data transfer (I/O) with kernel execution (step 4a). Within a kernel, the input data is divided into equal 

size chunks which are mapped to the parallel processing threads (step 4b). Normally GPU memory is 

smaller than the host memory. The system can stage different size of data (32MB to 800MB) from the 

host memory into the GPU memory. We get the size of the GPU memory using CUDA API, and use 80% 

of the GPU memory for input data. The remaining 20% GPU memory is reserved for the working and the 

output buffers.  

Based on the size of input buffer, we compute the size of the input data for each thread. For example, 

using 16K threads (256 threads per block and 64 blocks); input data size of 180MB, chunk size per thread 

is 11250 items. All threads concurrently operate on the assigned chunk to detect the pulses. Since pulses 
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in the input data are randomly distributed, some threads detect more pulses than others while some 

threads do not detect any pulses. We assigned an equal number of output slots to each thread. A thread 

that does not detect any pulses in its chunk stores only zeros in its output memory. The attributes of 

pulses (width, amplitude) detected by each thread in its chunk are accumulated in the output memory, 

which is part of the local memory on the device. The results are transferred to the host memory as soon as 

they are accumulated from a given stream (step 4c). When the results from all the threads are copied at 

the host memory, the CPU at the host machine merges the results to generate the consolidated result. 

D. Result Analyzer 

This component analyzes the detected pulse information (metadata) from the GPU. At this stage the 

resulting data is not in the exact format to be delivered to the user. The Result Formatter post-processes 

the information and generates the scatter plot of the detected pulses, which is step 5 in Fig 2. 

Since the pulses detected are much smaller in number as compared to the input measured data, 

therefore post-processing of the result is performed on the CPU rather than on the GPU. This pulse 

information is further processed to extract only the required features i.e., width and peak of each detected 

pulse by removing zeros from the result. This information is then used to get the scatter plot of the pulses 

with width (microseconds) on x-axis, and its peak (nanoamperes) on y-axis as shown in Fig 4 in the 

results section. This scatter plot is delivered to the user for further analysis. 

3.1.4.  Results 

The designed system is measured by two key aspects; the algorithmic performance (in terms of pulse-

detection), and the system performance (in terms of processing speed) for data generated in real time. For 

evaluating the algorithms’ detection capability, we show the tracking of different threshold techniques for 

the given data with a varying baseline. We observe that a fixed threshold technique does not keep track of 

the data with a varying baseline, while with dynamic threshold technique; the threshold adapts itself to the 

changing baseline. 
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For CPU implementation, Intel Core i3 CPU consisting of 2 cores, each operating at 1.2 GHz, 

with 3 GB of RAM (computer memory) is used. This machine is used for both: CPU only sequential code 

and CPU coupled with GPU code. For the parallel implementation a CUDA-enabled GeForce 310M GPU 

with 16 cores clocked at 1.5 GHz and with 1 GB GPU (device) memory is used. 

From system’s performance point of view, the sampling rate is tested with different data sizes generated 

in real-time to measure the scalability of the system. 

A. Algorithms Performance Measurements 

The data is sampled with 75 microseconds and has highly time varying baseline. The baseline is actually 

the measured data from solid-state pores. Fig 3 shows the results obtained by using the fixed threshold 

technique Fig 3 (a), and the baseline-tracker technique Fig 3 (b). This is shown that the static technique 

can’t keep track of the baseline, when it’s highly varying, while baseline-tracker can still keep track of the  

                      

(a)                                               (b)                                               (c) 

Fig 3. Shows the tracking of different threshold techniques to a noisy data. Part (a) captures fixed 

threshold technique, Part (b) captures the baseline-tracker technique, and Part(c) shows the tracking of 

moving average technique. 

 

baseline. In moving average technique once the average is calculated, on w number of points, the 

detection process starts from w+1
st
 point instead as shown in Fig 3 (c).  

B. System Output Measurements 

 

The output of all the three techniques applied to the input data are shown in the Fig 4. The data used is 

sampled with 2.2 microseconds and has relatively stable baseline than the data sample with 75 
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microseconds. Therefore, the pulses detected by fixed threshold technique shows a better overlap with the 

manual-detection, but also outputs noise Fig 4 (a). Baseline-tracker method detects pulses without noise 

but the detected pulses are more scattered as compared to the manual approach Fig 4 (b). The moving 

average approach has the best overlap with the manual approach with only 8.1% difference in the output 

Fig 4 (c). 

For static and dynamic approaches the threshold is kept 1200 nanoamperes below the baseline, which 

detects the pulses more accurately as compared to other levels of threshold. Equivalent tolerance for 

moving average technique is 2.3%, but we have used 2.8% with which we have found better overlap with 

the manual detection.  

C. System (GPU) Performance Measurements 

The GPU- and CPU-execution times for fixed, baseline-tracker and the moving average method are 

shown in Table 1 (a) – (c). 

The temporal performance is measured for data size varying from 110 MB to 2.7 GB. The 

execution time is observed to be proportional to the size of data. Table 1d shows GPU time and the 

overall system (end-to-end) time that the execution time increases in proportion to the increase in the 

input data size. This shows that our system is scalable with different input sizes at the host and device 

levels. 

This is observed that the data transfer time in the static threshold and baseline-tracker techniques is 

almost equal to the computation time, while in the case of the moving average technique more work is 

done per thread so the data transfer is still same as that of the other two techniques (static and baseline-

tracker method), but computation part takes more time. Part of the reason for the greater computation time 

is that every CUDA thread initially loads its window with fresh data points from the assigned chunk 

rather than just adding the next data point and subtracting the first data point in the window which is the 

case for rest of the data points in the chunk. 



35 

 

3.2. Classification of Biological Targets 

The classification of bio-targets entails machine learning algorithms, such as supervised learning 

techniques that learn from known patterns and then, classify the unknown based on the known patterns. 

However, the unsupervised learning techniques classify patterns without using known patterns. k-Nearest 

 

(a)                                            (b)                                           (c) 

Fig 4. Shows the comparison of results from automated techniques to the known results (a) shows output 

of static threshold technique to the known results, however, also detects noisy pulse as false positives, (b) 

shows the output of the baseline-tracker, which detected pulses with larger width, (c) shows the output of 

moving average technique, which closely matches to the known results, and differs only by 8.1%  

 

Table 1. Execution time of GPU-kernel (with data-transfer time) and CPU for input data varied from 4 

million points to 120 million points. a Fixed threshold technique b Baseline-tracker threshold technique. c 

Moving average Technique. d Scalability: Execution time with different input sizes for the moving 

average algorithm on GPU, and overall system time. 
 

System-Input (GB) GPU-Input (MB) GPU-kernel + Data-transfer time (msec) CPU-time (msec) 

0.11 (4 M points) 32 25 28.93 

0.54 (20 M points) 180 125.32 145.39 

1.1 (40 M points) 320 250.74 295.02 

1.7 (60 M points) 480 376.16 413.78 

2.2 (80 M points) 640 501.43 506.4 

2.7 (100 M points) 800 626.86 669.04 

     (a) 

System-Input (GB) GPU-Input (MB) GPU-kernel+Data-transfer time (msec) CPU-time (msec) 

0.11 (4 M points) 32 24.73 25.35 

0.54 (20 M points) 180 123.56 147.57 
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1.1 (40 M points) 320 239.67 287.02 

1.7 (60 M points) 480 366.93 428.13 

2.2 (80 M points) 640 492.12 522.44 

2.7 (100 M points) 800 612.35 675.87 

(b) 

System-Input (GB) GPU-Input (MB) GPU-kernel+Data-transfer time (msec) CPU-time (msec) 

0.11 (4 M points) 32 69.14 31.26 

0.54 (20 M points) 180 345.68 156.29 

1.1 (40 M points) 320 690.95 315.57 

1.7 (60 M points) 480 1036.63 476.24 

2.2 (80 M points) 640 1382.21 640.21 

2.7 (100 M points) 800 1727.75 810.42 

      (c) 

System-Input 

(GB) 

GPU time 

(msec) 

System time (seconds) 

Cold Buffer-cache Time Hot Buffer-cache time 

0.11 55.9 2.43 0.558 

0.55 278 9.3 2.55 

1.1 555.7 21.64 4.93 

1.65 834.9 28.5 7.36 

2.2 1115 42.2, 31 9.651 

2.7 1394 54.5, 51.4 13.1 

     (d) 

Neighbor algorithm was chosen because of its simplicity and quickly learning capability to learn from the 

known data and then, evaluate the new data based on the features of the known data. Additionally, k-

Means algorithm, an unsupervised technique was used to classify the data into known patterns. The 

subsections capture the implementation and application of k-Nearest Neighbor and k-Means to the 

biological data collected from Solid-State micropores. 
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3.2.1. Feature Computation  

This module takes input from the pulse-detector as shown in Fig 6 (a-c) and gives useful features to the 

next module on GPU for further pattern-mining captured as in Fig 6 (d). The pulse width and amplitude 

alone are insufficient to visualize the clusters from different cell types due to the overlap seen in 2D 

scatter plots. Therefore, features pertaining to the morphology (width, amplitude), geometry (falling slope 

and rising slope) as well as statistics (mean, and standard deviation) per pulse are computed. Hybrid 

feature as the average of mean and standard-deviation of each pulse are also computed to facilitate the 

visualization.  

Pulse and its features:  

When the signal (current) falls below the given threshold of baseline current, and reverts back to its 

original level, all the current values (p1, p2... pn) included in this dip form pulse. The duration between the 

start of the pulse and end of the pulse is the pulse width (tk – t1), where (t1, t2... tk) are the corresponding 

time instances at which the pulse current values were sampled. However, the pulse amplitude is the 

minimum value among the recorded values of the pulse i.e. }{min 1min ii pkp  . Rising slope is the 

measure of steepness of the pulse, minp to kp  i.e., 
min

min

tt

pp
m

k

k
rise




 . However, falling slope measures 

how abruptly the pulse falls towards its minimum and is defined as: 
i

i
fall
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




min

min . In case the 

numerator becomes zero (very rare) is also taken care of so that the system does not fall back into the 

halted state. Consequently, the system doesn’t record such a pulse. The mean is simply the average of the 

recorded values per pulse,
k

p
k

i i  1 , and the standard-deviation per pulse is given by: 
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. The hybrid feature of a pulse is computed as the average of mean and standard-

deviation i.e., 
2

s
. 

The abovementioned features are further used not only to visualize the natural clusters of 

different cell types, but also to separate them out with the least amount of overlap in them. Pulse width, 

amplitude, and mean are the best features to discriminate the clusters using 3D scatter plots, in addition to 

the width, amplitude and standard-deviation. Unfortunately, the scatter plot still results in 50% overlap 

between WBCs cluster and cancer cluster. The ultimate goal is to minimize this overlap as much as 

possible. However, with little more visual inspection width, amplitude, and hybrid feature are found to 

completely remove the overlap between WBCs and cancer cluster. 

3.2.2. k-Nearest Neighbor Machine Learning 

This algorithm works mainly in three steps. First step is to find Euclidean distance between each test 

sample to every training sample, which yields an mn  matrix, where n is the total number of test 

samples, and m is the total number of training samples. Second step is the sorting of all training samples 

to each test sample, to get a row-wise sorted matrix. Finally, the assignment of test sample is done to the 

class with maximum proportion in k selected training samples. These steps are shown in Fig. 5, separated 

by synchronization barriers to guarantee the completion of previous step before proceeding to the next 

step.  In the following we present the mathematical formulation of the aforementioned steps. 

Calculating Euclidean Distance: Given two points i = (i1, i2... in) and j = (j1, j2... jn), the 3-space 

Euclidean distance is given by: 

])(...)()[( 22

22

2

11 nnjiij jijijiDD             (7) 
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In our case, i and j are the indices of the samples in A and B, which are the test and training sets, 

respectively. The goal is to find distance from every sample in test (vertex) to every sample in training 

(edge) set i.e., test (0, 1… n), and training (0, 1… m). This naturally evolves into fully connected bipartite 

graph [96]. The algorithmic complexity becomes |)|*|(| BAO , where || A  and || B  is the cardinality of 

A and B i.e., n and m, respectively, and the running time is )( nmO  .   

To achieve the task of distance computation in parallel, we distribute the workload among threads 

such that each thread finds one of the mn  distances.  The indices per test and training samples are 

computed as: mthreadtest idid / , and mthreadtraining idid % , where ),...,1,0( mnthreadid  in 

order to make sure that the distance from each test sample to every training sample is computed – 

employs per thread per distance computation. Using 3D, i.e., width, amplitude and hybrid feature, the 

Euclidean distance in 3D space between ith  test sample (testi) and 
thj training sample (trainingj) is given 

by: 

])..(

)..()..[(

2

22

hybridtraininghybridtest

amplitudetrainingamplitudetestwidthtrainingwidthtest
D

ji

jiji

ij



  

(8) 

Sorting distance matrix: Once we compute distances from each test sample to every training sample, we 

get an mn distance matrix, such that dij  in the distance matrix is the distance between ith  test sample to 

the 
thj  training sample as shown below: 
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Each row is sorted in the ascending order with the closest training samples 1id  next to its 

respective test sample i, and subsequently, the farthest training sample imd  at the end of the row, as given 

below. 
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Decision in k neighborhood: Finally, we select first k training samples for each test sample and 

classify the test sample based on the maximum participation of training samples from a particular class. 
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The computed proportions from all participating classes are used to compute the maximum 

proportion, such that for each test sample, ipropij

c

j  }{max 1 . The test sample is assigned with the color 

of the class that is occurring with the largest proportion in its k neighborhood.  
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A. k-Nearest Neighbor Classifier 

Once the features per pulse are computed, these are fed to the pulse classifier to classify these into their 

respective clusters. The pulse classifier use machine-learning technique including k-Nearest Neighbor to 

detect cancer cluster and deliver results to the visualization module. The k-Nearest Neighbor groups the 

overall data into the training and test samples, and based on the training samples, the test samples are 

classified. The pulse-classifier can be executed either on the CPU or onto GPU selected by the user. 

Normally, the GPU memory is smaller than the main memory. However, the detected pulses are relatively 

smaller in number and are easily accommodated in GPU memory. The GPU uses multiple threads in 

order to run machine-learning algorithm in parallel. The parallel machine-learning algorithm is executed 

on GPU, as explained below. 

The test samples (n) are classified using k-Nearest Neighbor classification based on different 

percentages of training samples (m). Generally, larger proportion of training samples results in better 

classification of the test samples. First of all, Euclidean distance for each test sample to every training 

sample is computed as explained before. This results in mn  matrix. To compute each distance in 

parallel at finer granularity, threads equal to mn  are launched such that each thread is responsible to 

compute distance per pair of a test and training sample. However, the amount of training samples and the 

remaining test samples impact the total amount of threads responsible for computing Euclidean distance. 

That is, the total number of threads launched could be as minimum as 1nx , or xm1  when the proportion 

of training samples is huge ( 1n ) and vice versa. The number of threads could be as maximum as 

mn , when 50% of data is used as training samples. 

In our case, 50% proportion requires approximately 130x131 = 17161 threads, accomplished with a 

configuration of 67 blocks and 256 threads per block. The output of the Euclidean-distance kernel is 

distance-matrix containing test samples as rows, and training samples as the columns. The distance-

matrix is fed to the sorting kernel in order to sort the matrix row-wise, i.e., to achieve sorted training 

samples in ascending order for each test sample based on its distance from the test sample. Finally, the 
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sorted distance-matrix is the input to the decision-making kernel. This kernel selects the first k sorted 

training samples (m1, m2… mk) for each test sample and computes the proportions of each class (prop1, 

prop2… propk) in them. The maximum proportion out of these is calculated such that propmax = maxi=1 

k{propi}. The test sample is then assigned to the class i, i.e., the class with the largest proportion in its k 

neighborhood. 

B. Visualization 

Visualization provides statistical information effectively in abstract form [97]. Thus, the results are 

organized into 3D scatter plots for pattern analysis of cancer cell and ultimately disease. Humans can 

better visualize up to three dimensions, and the task becomes tedious beyond three dimensions due to the 

increased number of features leading to the curse of dimensionality. Consider 2D scatter plots, there exists 

30 different ways 56  of selecting 2 out of total 6 pulse features. This becomes more critical in case of 

3D scatter plots. That is, there are 120 possible ways 456   for selecting 3 out of 6. To reduce this 

manual overhead, we select features without repetition such that the order does not matter. Therefore, 

selecting 3 out of 6, the total number of possible scatter plots leads to 6!/(3!(6-3)!) = 20. To further reduce 

the number of scatter plots and non-significant features, such as falling slope and rising slope are ignored.  

These do not contribute much to separate out different clusters any ways. Given a total of 5 features and 

selecting 3 out of these, the total number of combinations (where order doesn’t matter), comes out to 

be5!/(3!(5-3)!) = 10. Finally, only two combinations out of 10 ways, i.e., (width, amplitude, mean) and 

(width, amplitude, standard deviation) are found the best for discriminating the clusters of RBCs, WBCs, 

and cancer. However, to further separate out clusters, hybrid feature based on the average of mean and 

standard deviation per pulse is used. These features including width, amplitude and hybrid feature 

completely separated the cancer cells from WBCs and RBCs. 
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Fig 5. Block diagram of k-Nearest Neighbor algorithm. The first step finds the Euclidean distance from 

all test samples to the training samples. The next step sorts the distances row-wise such that every test 

sample gets training samples to it in ascending order, with the closest first. Finally, k training samples are 

selected from each set and based on the maximum proportion of class, the test sample is classified to that 

class. 
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C. Results 

Experimental Setup 

i7-based GPU setup: The system used for experimental setup was i7-based CPU coupled with NVIDIA 

Quadro FX 580. The CPU was equipped with 4 cores clocked at 1.6 GHz and total memory of 6 GB. The   

GPU used in our setup had 500 MB global memory, 64 KB constant memory, 16 KB per block shared 

memory and 8K of registers. Also, the GPU hosted a total of 32 cores, that is, 4 multiprocessors (MP), 

with 8 cores per MP, clocked at 1.12 GHz.  

CUDA: With the given hardware and CUDA capability 1.1, the execution configuration could have a 

maximum of 512 threads per block. To achieve sorting in the case of k-Nearest Neighbor algorithm on 

GPU, CUDA-based thrust library [98] was used. For CPU-based counter execution, quick sort was 

adopted provided by the C library [99]. To measure the execution of kernel functions within the machine-

learning algorithm, built-in CUDA timer functions i.e., CUDA events including cudaEventCreate(), 

cudaEventRecord() followed by cudaEventSynchronize() were used. These made sure that previously 

issued CUDA events were recorded on the GPU. CUDA syncthreads() was used to attain the 

synchronization across all the thread blocks. 

Pthreads: We used Pthread library [100] to implement double buffering. During our experiments, buffers 

of size 200,000 each were found optimal for our problem. The integer size on 64-bit Intel machine 

running Linux OS with gcc complier was 4 bytes. Given the time and current values in integers per 

sample contributed to 8 bytes per sample, overall results were limited to 1.6 MB per buffer.   

Lines of code: We implement our system using C and CUDA with 349 lines of code for moving-average 

filering, 53 for feature extraction, and 600 for k-Nearest Neighbor algorithm. 

Datasets:  Three different bio-sets describing several profiles of RBCs, WBCs and cancer cells, were 

tested. This data was collected from the micropore experimental setup with a pore diameter of 12 

micrometer [39]. These bio-sets contained current values in microamperes, sampled at a rate of 2.2 

microseconds. The raw data occupied around 9 GB of the storage device, pertaining to 360 million 
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current values. After pre-fetching the data into main memory, and pre-processing the raw data into the 

integers, the total amount of data shrank down to 2.88 GB, resulting in 68% reduction of the total 

acquired raw data.  This could easily fit in the available 6 GB main memory.  

i. Detection Results 

Empirically, pulses that had widths greater than four samples (approximately 9 microseconds), and 

amplitudes greater than 1000 nanoamperes, were only recorded. The moving-average filtering used a 

sampling window of 2000 samples to achieve better detection of pulses. This reduced the pre-processed 

data to a total of 261 pulses –– 26 RBCs, 208 WBCs, and 27 cancer cells. We were able to detect cancer 

cells from the raw data with an accuracy of 70%. 

Typically the standard-deviation (noise) of the acquired data from cancer cells, WBCs and RBCs 

was found 492, 499, 463 nanoamperes respectively. Therefore, cancer and WBCs requires the threshold 

away from the baseline, as compared to RBCs. Thus to detect cancer cells and WBCs threshold was set to 

0.036. However, a threshold of 0.026 was chosen to precisely detect RBCs, as shown in Fig 6. The insets 

in Fig 6 (a) – (c), show typical pulses of each type in detail. The baseline shift and the tracking of moving 

average filtering were also captured in Fig 6 (a). Obviously, cancer cell pulses were larger as compared to 

the WBCs and RBCs. Also, RBCs pulses fluctuated and were unstable as compared to the cancer and 
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(a)

 

(b)

 

(c)

 

(d)

 

Fig 6. Shows the detection results with gray line as moving-average based threshold. (a) Data of 

Cancer cells with baseline shift acquired from solid-state micropore, (b) WBCs data collected 

from solid-state micropore, (c) Raw data of RBCs collected from solid-state micropore, (d) 

Typical pulse showing its width, amplitude (minimum), falling slope and rising slope. 

 

WBC pulses. The two edges emerging out in the RBC pulses led to the insight that RBCs were clumped 

together when passed through the micropore – most probably due to their small size [39]. 

Additionally, features of the detected pulses were computed, such as pulse-width, pulse-

amplitude, mean, standard deviation, falling slope and rising slope from the recorded samples per pulse. 

The width, amplitude, falling slope and rising slope were captured in Fig 6 (d). Pulse-width and pulse-

amplitude were found statistically significant features in separating out the clusters. However, these 
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features still resulted in a 50% overlap of cancer cells with the WBC cluster. With further statistical 

analysis, we found that the average of mean and standard deviation (hybrid feature) when used as third 

dimension to the width and amplitude separated out the cancer cluster completely. 

Therefore, pulse width, amplitude and hybrid feature were used for further analysis of different 

cluster types. The next section shows the statistical significance of the distinguishing features. 

ii. Statistical Significance of Features 

Table 2. The average of the features for the three different types of pulses 

Cell 

types 

Average pulse 

amplitude 

(microamp) 

Average translocation 

time 

(microseconds) 

Average of hybrid 

feature (microamp) 

Average of falling 

slope  

 

Average of rising 

slope 

Cancer 8.7 ±  3.9 103.3 ±  74.9 23.4 ±  1.1 -497.2 ±  180.6 349.9 ±  138.5 

WBCs 2.7 ±  1.1 21.7 ±  7.9 13.1 ±  0.6 -507.8 ±  207.3 412.3 ±  158.2 

RBCs 2.3 ±  0.8 20.6 ±  9.1 11.3 ±  0.2 -470.2 ±  265.1 359.3 ±  149.3 

 

We found average pulse amplitude greater for cancer cells and subsequently followed by the amplitude of 

WBCs and RBCs in Table 1. Such behavior was also seen for average translocation time, and hybrid 

feature. However, in case of falling slope, we observed larger average for WBCs than cancer cells while 

in the case of rising slope larger average of RBCs than cancer cells was seen. Such behavior of slopes did 

not make these useful for distinguishing the three types of human cells. 

ANOVA Analysis of Pulse Features: Single-factor analysis of variance (ANOVA) was performed for the 

pulse translocation time (pulse-width), pulse-amplitude, falling slope, rising slope and hybrid features. 

We found p-value < 0.001 for pulse-width, pulse-amplitude, and hybrid feature, and therefore, these are 

significantly distinguishing features as compared to the slopes whose p-value > 0.05. Furthermore, the F-

test models the variance between clusters to the variance within clusters. Greater F values results in 

compact clusters and hence more significant feature as compared to smaller values of F which means 



48 

 

scattered clusters resulting in overlap regions. The features are given below in the order of their 

significance with the highest F-value for hybrid feature: 

slopefallingslopegriwidthpulseamplitudepulsehybrid FFFFF   sin   

3290.6 > 179.9 > 129.5 > 2.9 > 0.38 

iii. Classification Results 

The k-Nearest Neighbor is a supervised machine learning technique, where we first train the data by 

assigning labels to the samples, followed by the test samples which are classified based on the training 

data. The test sample is classified as the class that has maximum participation in its neighborhood k.  

Different proportions i.e. 20%, 50% and 80% of the data were used as training data, and when k was 

kept 5 and 10, as shown in Fig 7. Accurate results were observed for larger amounts of training data. 

Furthermore, since cancer cluster was already separated out from the other two clusters using hybrid 

feature, otherwise overlapped, therefore, cancer cluster was detected 100% accurately in all cases except 

for 20% training data and when k =10, explained below. 

a. Case with 20% Training Sample Data and k = 5 / k= 10:  

In this case since the size of training data was small, therefore there was not enough information to 

classify the test data accurately. Note that 20% of RBCs, WBCs and cancer mean 5 RBCs, 42 WBCs, and 

5 cancer cells respectively. 

In case of k = 10, only one cancer cell was classified incorrectly as WBC as shown in Fig 7. 

However, all RBCs were classified as WBCs, again due to the small size of training data, which didn’t 

capture enough information to allow RBCs to be classified accurately. Another reason for this 

misclassification was the large neighborhood as compared to k = 5 shown in Fig 7, in which the 

proportion of WBCs was always larger, and the decision was in favor of WBCs even though the test point 
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was actually from RBCs, thus resulting in false positive. Such large proportion of WBCs in k = 10 points 

was also responsible for the misclassification of one cancer cell. 

b. With 50% Training Sample Data and k = 5 / k = 10: 

In this case, cancer cluster was classified accurately. However, 50% of training sample meant half of the 

input data i.e. detected pulses were used as training, while half of them were used as test data.  

For k = 5, all RBCs were classified correctly as shown in Fig 7. However, 25 WBCs were 

misclassified as RBCs. So there were 25 false-positives in RBC cluster, while 25 false-negatives in WBC 

cluster. In case of k = 10, 18 WBCs were misclassified as RBCs as shown in Fig 7 (c). This showed that 

50% of the training data didn’t have enough representatives of WBCs to classify these correctly. 

Furthermore, the significant overlap between RBCs and WBCs was also one reason for this 

misclassification.  

c. Case for 80% Training Sample Data and k = 5 / k = 10: 

Increasing the percentage of training sample data reduced the misclassification rate of WBCs. That is, in 

case of k = 5, only 2 WBCs were classified incorrectly as RBCs, as shown in Fig 7 (e). However, in the 

case of k = 10, we were able to classify the test data accurately for all types of cells captured in Fig 7 (f). 

d. Accuracy of Classification:   

The accuracy measures using confusion matrix for 50% and 80% of training data are shown in Table 3. 

The matrix captures the actual number of different cell types, and the predicted number of cells after 

classification, for k = 5 and k = 10, respectively. The total human cells were 261, out of which 26 were 

RBCs, 206 were WBCs and cancer cells were total 27. With an 80% of training samples from each cell 

type, the 20% of the test data was actually 6 RBCs, 42 WBCs and 6 cancer cells. However, 2 false-

positive resulted in case of RBCs, stemming from the misclassification of WBCs as RBCs. Furthermore,  
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(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

(f)

 

Fig 7. The results of k-Nearest Neighbor algorithm are shown with varying amount of training sample 

data.  (a), (b) show cluster outcomes with training samples of 20% and k=5 and k=10 respectively.  (c), (d) 

show cluster outcomes with training samples of 50% and k=5 and k=10 respectively. (e), (f) show cluster 

outcomes with training samples of 80% and k=5 and k=10 respectively.  
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Table 3. Confusion matrix showing accuracy of classification for different training sample-sizes (80%, 

50%) 

Training Sample=80% 

 k = 5 k = 10 

Actual 

Class 

Predicted class 

RBCs WBCs Cancer RBCs WBCs Cancer 

RBCs 6 2 0 6 0 0 

WBCs 0 40 0 0 42 0 

Cancer 0 0 6 0 0 6 

Training Sample=50% 

 k = 5 k = 10 

Actual 

Class 

Predicted class 

RBCs WBCs Cancer RBCs WBCs Cancer 

RBCs 13 25 0 13 18 0 

WBCs 0 79 0 0 86 0 

Cancer 0 0 14 0 0 14 

 

in case of 50% training samples, the number of false-negatives in WBCs was 25 and 18, for k = 5, and k = 

10, respectively, which were miss-classified as RBCs. 

iv. Performance Results 

This sub-section highlights the performance of algorithms on both CPU and GPU. The Euclidean distance 

computation resulted in up to 3X speedup on the GPU as compared to CPU (Table 4).  The reason that 

sorting was slower on GPU is due to copying of data back and forth for each test sample. The decision-

making part is implemented only on CPU due to branch divergence issues. 

Table 4. Show the performance analysis of k-Nearest Neighbor algorithms on CPU vs. GPU. Execution 

time for the main steps of k-Nearest Neighbor algorithm is shown. 

k-Nearest Neighbor 

GPU kernel 

execution time 

(msec)  

k = 5, 10 

Train = 20% samples 

Test = 80% samples 

Matrix = 210x51 

(threads, blocks)= 

(256, 42) 

Train = 50% samples 

Test = 50% samples 

Matrix = 130x130 

(threads, blocks) = (256, 

67) 

Train = 80% samples 

Test = 20% samples 

Matrix = 54x207 

(threads, blocks) =(256, 

44) 

euclid_dist 0.1427, 0.1428 0.217, 0.2216        0.165, 0.1668 

sorting_with_keys 143.38, 143.5  113.67, 113.9          44.48, 42.25 

CPU time (msec) k 

= 5, 10 

Single thread execution 

euclid_dist 0.53, 0.526 0.526, 0.53        0.54, 0.55 

sorting_with_keys 1.15, 1.05  1.05, 1.06         1.43, 1.43 
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decision_making 0.245, 0.249 0.180, 0.184 0.134, 0.14 

3.2.3. k-Means Pattern Mining 

For implementing k-means on GPU, we do not require any training samples, therefore all the samples are 

considered at once to find the natural clusters i.e., the compact cloud of samples. To achieve this, first k 

random centroids are selected, and given samples are assigned to the centroids based on their affinity 

determined by the Euclidean distance. All the samples are assigned to their respective centroids which 

results in k clusters. The centroids are then updated by taking the average of the samples assigned per 

cluster. These steps are shown in Fig. 8, with the first step computing Euclidean distance, second finding 

minimum centroid to a given sample and assignment of sample to it, and finally updating the centroids. 

Calculating Euclidean Distance: The task of finding Euclidean distance from all N samples in set A to 

every k centroid in set B, arises into a fully connected bipartite graph [96]. The algorithmic complexity 

comes out to be: |)|*|(| BAO , where || A  and || B  is the cardinality of A and B i.e., N and k, 

respectively.  Therefore, the distance equation with the most distinguishing features i.e. width, amplitude 

and hybrid feature is given by:  
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Computing Minimum Distance Centroid: The minimum distance to each samples is computed such that  
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idij

c

j  }{min 1 . Each sample is assigned to its minimum distance centroid. Once all the samples are 

grouped into their respective clusters.  

Updating Centroids: The centroids are updated by computing the average of the samples assigned to each 

cluster:  


iN

i ii samplesum
1

implies that new centroid is: 
i

i
i

N

sum
newc _ , where i = 1 to k. The whole 

process is repeated until the centroids converge, i.e, 0|_|  ii newcc .  

 

Fig. 8. Show block diagram of k-means mainly divided into three steps. The first step computes distances 

from each sample to all the k centroids. Next, the closest centroid is computed, and the sample is assigned 

to it. Finally, if not converged, the centroids are updated based on the samples assigned to it. 

A. k-Means Classifier  

Once the features per pulse are computed, they are fed to the pulse classifier to classify them into their 

respective clusters. The pulse classifier use pattern-mining technique including k-means to detect cancer 

cluster and deliver results to the visualization module. 
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The parallel clustering algorithm executed on GPU is explained below. 

k-Means classifies the input samples into natural cluster. However, this technique is sensitive to 

the initial choice of clusters. To cope with this, we assigned random labels to all the samples and then k-

samples were selected randomly as initial centroids to have an unbiased selection of the initial clusters. 

Additionally, the technique is also sensitive to the shape of clusters, and can only search for hyper-

spherical clusters. The main reason for this problem is the use of Euclidean distance which works on the 

proximity of the samples in a given cluster. For instance, two rectangular-shaped clusters intersecting 

each other with its portions across the edges can be realized as part of the other cluster based on the 

notion of proximity of Euclidean distance. More sophisticated distance metrics based on the symmetry 

can tailor k-means algorithm to detect such clusters [101]. In our problem all the three clusters are 

naturally spherically shaped and are identified by 3-means. Nonetheless, 4, 5, and 6-means are able to 

identify cancer cluster explicitly, however, they mine further smaller clusters in RBCs and WBCs. 

Input to k-Means algorithm consists of features of the detected pulses. This module launches 

Euclidean distance kernel to find the distance of each sample to the randomly selected k centroids. This 

results in kn  distance matrix, with rows the sample data and columns the centroids: )...,( 21 kccc . 

Another kernel is launched to find the minimum distance out of the k distances for each sample 

i.e., }{min 1min ii ckc   and assign the color i of the closest centroid to the sample ic . This reduces the 

distance matrix to 2n  with sample data along with the assigned color. Finally, centroids are updated 

based on the assigned samples to it. i.e.,  


isum

i
i

i
i

sum

sample
newc

1
_ . The process is repeated until the 

results converge i.e., there is no or negligible difference between inewc _  and ic . We use separate thread 

for each sample during the Euclidean-distance finder and min-distance finder kernel, but for updating 

centroids, the number of threads is equal to the number of centroids. 
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B. Results 

i. Classification Results 

The input data to k-means is detected pulses with no labels to them. Fortunately, the Cancer cluster is 

well-separated as compared to the RBCs and WBCs cluster, and thus forming a natural cluster in the data. 

k-Means is able to detect the Cancer cluster with any value of k starting with 2, as shown in Fig 9. 

Obviously, we see two clusters in the figure, the Cancer cluster and the other two clusters from the RBCs 

and WBCs. However, the Cancer cluster is not dense, but is uniform and well-separated from the rest of 

the lower cluster forming dense cloud. Therefore, Cancer cluster is detected naturally with different 

number of centroids, even with the number of centroids greater than 2. In the latter case, all the remaining 

centroids are concentrated in the lower cluster. 

ii. Convergence Results 

The Table 5 shows the initial choice of centroids, the number of samples initially found closer to the 

selected centroids, and later, the algorithm formed final centroids with the number of samples per cluster. 

The results show that in all cases Cancer cluster is converged to a centroid of 103, 8715, 44195 i.e., width, 

amplitude, and hybrid feature respectively, for all its 27 samples.  

Different values of k were successful in detecting the cancer cluster. The results are shown for k = 

2, 3, 4, 5, 6 and 7-means.  

iii. Performance Results 

This sub-section highlights the performance of algorithms on both CPU and GPU. In case of computing 

Euclidean distance for k-means on GPU, trend is observed that as the number of k increases, the GPU 

approaches the speed of CPU, such that for k = 7, we see improved performance on GPU instead. Part of 

the reason is the increase in the number of threads, in addition to the larger occupancy of the GPU.  



56 

 

 

(a) 

 

(b)

 
(c) 

 

(d)

 
(e) 

 

(f)

 

Fig 9. k-Means shows the detection of cancer as a natural cluster in the classified clusters stemming from 

the detected pulses. Different values of k starting from 2 to until 7 are tested, all of them detected Cancer 

cluster separately due to its larger dimensions. (a) 2-means detected two clusters. The red cluster is 

inclined towards the bulk of the data, while the green cluster has detected cancer, (b) 3-means detects the 

three clusters including cancer (green) cluster, (c) 4-means, (d) 5-means, (e) 6-means, and (f) 7-means 

detects cancer as a natural cluster, while the lower bulk of data forms 6 sub-clusters. 
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Table 5. Show k-Means with different number of initial and final centroids, and their convergence at a 

particular iteration. 

k-Means Initial centroids 

(width, amplitude, 

hybrid) 

# 

samples 

per 

cluster 

Final centroids 

(width, amplitude, 

hybrid) 

# 

samples 

per 

cluster 

2-means: 

convergence 

@ iteration 

# 4 

1. 15, 2206, 23542 

2. 31, 3164, 25908 

89 

172 

1. 21, 2690, 25078 

2. 103, 8715,44195 

234 

27 

3-means: 

convergence 

@ iteration 

# 5 

1. 15, 2206, 23542 

2. 31, 3164, 25908 

3. 18, 2630, 25817 

89 

81 

91 

1. 21,2497,23550 

2. 21, 2823,26141 

3. 103, 8715,44195 

96 

138 

27 

4-means: 

convergence 

@ iteration 

# 8 

1. 15, 2206, 23542 

2. 31, 3164, 25908 

3. 18, 2630, 25817 

4. 18, 2470, 24849 

60 

79 

72 

50 

1. 20, 2308, 22538 

2. 19, 2639, 26579              

3. 23, 2875, 24735 

4. 103, 8715,44195 

39 

90 

105 

27 

5-means: 

convergence 

@ iteration 

# 12 

1. 15, 2206, 23542 

2. 31, 3164, 25908 

3. 18, 2630, 25817 

4. 18, 2470, 24849 

5. 22, 1672, 25192 

59 

79 

61 

39 

23 

1. 20, 2311,22508 

2. 20, 2345, 24749 

3. 19, 2630, 26674 

4. 36, 4819, 25168 

5. 103, 8715,44195 

38 

93 

79 

24 

27 

6-means: 

convergence 

@ iteration 

# 9 

1. 15, 2206, 23542 

2. 31, 3164, 25908 

3. 18, 2630, 25817 

4. 18, 2470, 24849 

5. 22, 1672, 25192 

6. 23, 2790, 25152 

41 

27 

70 

52 

31 

40 

1. 20, 2326, 22030 

2. 19, 2378, 25632 

3. 20, 2380, 24120 

4. 19, 2704, 27016 

5. 36, 4867, 25213 

6. 103, 8715,44195 

26 

68 

65 

52 

23 

27 
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7-means: 

convergence 

@ iteration 

# 10 

1. 15, 2206, 23542 

2. 31, 3164, 25908 

3. 18, 2630, 25817 

4. 18, 2470, 24849 

5. 22, 1672, 25192 

6. 23, 2790, 25152 

7. 34, 3543, 21917 

46 

72 

54 

30 

23 

21 

16 

1. 18, 2025, 23897 

2. 19, 2704, 27016 

3. 23, 2773, 24365 

4. 18, 2348, 25648 

5. 36, 4867, 25213 

6. 20, 2348, 21996 

7. 103, 8715,44195 

34 

52 

34 

66 

23 

25 

27 

 

Table 6. Shows execution time for the main steps of k-Means algorithm CPU vs. GPU 

 k-Means, Total number of samples = 261  

 GPU time (msec) k = 2 

 

k = 3 

 

k = 4 

 

k = 5 k = 6 k = 7  

 euclid_dist 0.046 0.045 0.044 0.043 0.042 0.041  

 min_dist 0.01 0.012 0.014 0.016 0.017 0.019  

 update_centroids 0.688 0.687 0.688 0.689 0.687 0.687  

 CPU time (msec) k = 2 k = 3 k = 4 k = 5 k = 6 k = 7  

 euclid_dist 0.014 0.02 0.027 0.0324 0.038 0.045  

 min_dist 0.0032 0.003 0.0032 0.0033 .0034 0.0033  

 update_centroids 0.003 0.003 0.003 0.006 0.006 0.006  

3.3. Two-Step Detection 

The pulse is essentially a sequence of data points falling abruptly downwards and reverting back to the 

normal baseline forming a valley, with an acceptable base width.  The goal of this work is to 

automatically detect the pulses with their distinguishing features in the noisy data generated from solid-

state micropores. 
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Ideally the noise should be eliminated completely from the data in order to detect all the useful pulses 

efficiently, differentiating the rogue pulses (cancer cells) from the good pulses (healthy cells) based on 

their features. However, in practice there are many challenges posed by the sensor noise, noisy pulses, 

and subjectivity. Furthermore, the useful pulses are very sparse in the collected data, due to the high 

throughput data to capture the translocation behavior of the target cells in detail [92]. In order to mitigate 

the impact of noise, otherwise cannot be eliminated completely, and to efficiently detect the pulses, the 

designed technique is geared towards first reducing the noise and then detecting the pulses in the raw data 

[102]. Additionally, the automated technique needs to be faster to make it amenable for online monitoring 

setup. Towards this end, our design is composed of a three-step process.  

 The raw data is converted to suitable format, that is, integers. Integer arithmetic avoids round-off 

errors, and also reduces the total size of acquired data.  

 Second, the data is smoothed using moving average filtering to reduce the variation in the data and 

thus, the noise. However, the extent of smoothing is based on the size of sampling window used in 

moving-average filtering. 

 To automatically select the threshold, it is computed from the mean and standard deviation of the 

smoothed data [34]. Finally, the threshold is used to detect the pulses falling below its level, along 

with their features, such as width and amplitude of the pulse.  

 Integer processing, and recursive moving-average filtering [92, 103, 104] makes the technique faster, 

effective, and suitable for online monitoring and prognosis. Our technique efficiently detects the 

pulses and results are delivered in the form of scatter plot for further analysis towards diagnosis.  
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(a)                                                 (b)                                                      (c) 

Fig 10.  Smoothing of noisy data from different cell types and pulses in them. (a) Cancer pulse detection 

with highlighted pulses in insets. (b) White blood cell pulses with suppressed noise.  The enhanced pulses 

are shown in the insets. (c)  Red blood cell pulses with and without smoothing. RBCs have comparatively 

smaller pulses.  The cancer pulses are larger as compared to other cell types. Also, the cancer pulses 

retain their shapes even after smoothing.  

3.3.1. Methods 

A. Pre-processing of Noisy Data 

The acquired raw data was converted to integers for faster processing, and in addition integer arithmetic 

avoids round-off errors. Furthermore, this resulted in smaller size as compared to the raw data. Typical 

raw profile of cell translocation data comprised of 4 million samples, forming a 112 MB file. Using Intel 

i7-based CPU with gcc compiler running on top of linux operating system, the integer size of 4 bytes 

reduced 112 Megabytes (MB) to 57 MBs, almost half the size of original.  

B. Smoothing 

Low-pass filtering based on moving average smoothing got rid of high-frequency noise and left out low-

frequency pulses. The cut-off frequency to decide which band of frequencies should be allowed to pass 

was inversely proportional on the size of sampling window used in moving-average filtering. Larger the 

size of sampling window, greater was the extent of smoothing, that is, cut-off frequency was low and only 

extremely low frequencies were allowed to pass. In contrast, higher cut-off frequency allowed fairly 

higher frequencies and thus, resulted in little smoothing. In that case, the size of sampling window was 
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smaller. Our approach tested moving-average for different size of sampling, that is, 5, 10 and 20. 

However, higher sampling size resulted in too much smoothing such that the original shape of the pulse 

was not preserved. We found sampling size of 5 to be optimal for our problem. 

For a given time-series, ,...., 1ii xx , the running sum with a sampling window of size k  is given 

by: 

)...,(_ 1 kiii xxxsumrunning            (15) 

Subsequently, the moving average is computed by dividing the running sum over the size of sampling 

window. 

ksumrunningaveragemoving /__            (16) 

To recursively compute the running average, the next value in the window was added, while the 

trail value in the window was dropped off. This way the k-1 summations and one division were eliminated 

by only one addition, one subtraction, and one division. This resulted in improved performance, 

especially for large size of sampling window. 

kii xxsummovingsummoving  __          (17) 

C. Compute threshold 

Many techniques have been developed to detect peaks in time-series data[34]. Our approach was based on 

computing threshold from the statistics of the smoothed data. The mean for threshold was computed 

initially from the samples of size equal to that of moving-average window and was used then for further 

analysis of the data.  

deviationstdmeanThreshold _*4                  (18) 
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However, the threshold was re-computed after every 200,000 samples. This way the threshold was 

trained with few samples, and then tested for thousands of samples. Additionally, the value of k, which 

was domain-specific, varied. For larger values of k, it was away from the smoothed baseline and could 

miss small useful pulses. In contrast, it was close to the baseline and could pick false pulses. In our case, 

we found k=4 as optimal. The threshold not only detected the pulse, but also computed its features 

including the width and amplitude.  

D. Post-processing 

The noisy pulses were eliminated with their width and amplitude not falling in the acceptable range, and 

only useful pulses were recorded. The final results in the form of scatter plots were delivered for analysis. 

3.3.2. Results 

A. Datasets 

Datasets were collected for red blood cells (RBCs), white blood cells (WBCs), and cancer cells passed 

through solid-state micropore of 12 μm diameter.  Overall data collected from a typical blood sample 

consisted of 90 profiles (around 10 GB raw data). A typical profile of cells data contained 4 million raw 

data points sampled at 2.2 microseconds. The current values were processed at the scale of nanoamperes, 

however, the results are shown in microamperes for the sake of simplicity. 

B. Smoothing 

Moving-average based smoothing eliminated high-frequency noise. The baseline noise was removed 

while the pulses were smoothly shaped, as shown in Fig 10 (a) – (c). However, cancer cells formed 

significantly larger pulses and thus were better shaped than WBCs. In contrast, RBCs were smaller and 

their pulses were simply bell-shaped.  These couldn’t be further categorized. The sample size of window 

was 10 in that case. 
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                   (a)                                         (b)                                    (c) 

 

               (d                                             (e)                                                  (f) 

Fig 11. Typical pulses from each cell type shown along with the smoothing. 

Moving-average filtering is used for smoothing with sampling window size of 

5, 10 and 20 for: (a) Typical cancer pulses, (b) Typical WBC pulses and (c) 

Typical RBC pulses.  
 

 

Greater smoothing resulted in reduction of variation in the baseline to a greater extent. However, 

it also altered the shapes of the pulses significantly. This is clear from Fig 11 (a)-(c), where smoothing 

with a sample size of 5 resulted in better pulse shapes.  However, the sample size of 10 and 20 didn’t 

shape the pulse precisely but resulted in higher reduction of noise.  

i. Impact of Threshold Selection 

Different levels of threshold detected different number of pulses. Closer the threshold to the baseline, that 

is, Threshold = mean – 3*standard-deviation, resulted in the detection of noisy pulses (false positives). 

However, threshold away from the baseline, such as Threshold = mean – 5 × standard-deviation, missed 

even useful pulses (false negatives). Smoothing with a sample window of 5 followed by Threshold = 

mean – 4 × standard-deviation was found optimal for the detection of pulses from the three different 
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types of cells, captured in Fig. 12 (a), (b) and (c). The threshold was sufficiently below the smoothed 

baseline in all the three cases.   

ii. Scatter Plots 

Finally, the width and amplitude of the detected pulses were computed and dispalyed as scatter plots. Fig. 

12 shows the pulses detected from all three different types of data.The resulted scatter plots showed the 

pulses spreaded horizontally, due to the fact that smoothing reduced the ampitude of the pulse due to 

eliminating the vertical fluctuations.  It, however, increased the horizontal width of the pulses. The  

 

Fig 12. Smoothing of the pulses apparently reduces the amplitude of the pulses and 

increases the widths. Therefore, the detected pulses are scattered instead of forming 

compact clusters. Pulses detected in RBCs, WBCs and Cancer with (a) 5-sample moving 

average and Threshold = mean – 4 × standard-dev. (b) 7-samples moving average with a 

Threshold = mean – 4 × standard-dev.  The larger smoothing (shown in b) eliminates the 

noisy pulses as compared to pulses of (a) with less amount of smoothing.  
 

overlap was also seen among different kinds of pulses because some of the smaller pulses in cancer cells 

resembled closely to larger pulses of WBCs in their widths and amplitudes.  

iii. Statistics 

The variation removed by different levels of smoothing is delineated in Table 7. Greater smoothing, such 

as 20-sample moving average resulted in higher suppression of variation in the original signal, such as the 

standard deviation for RBCs was reduced from ±465.9 nanoamperes to ±65.5 nanoamperes, however this 

also deteriorated the shape of the pulse to greater extent. 
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Cancer pulses have greater pulse amplitude and width than the other cell types, as captured in 

Table 8. The p-value < 0.01 for translocation time shows that all cell types significantly differs from each 

other. In contrast, p-value > 0.01 for pulse amplitude shows that different cell types do not differ 

significantly from each other. 

Table 7. Shows the impact of extent of smoothing to the variation in the original data 

Types of cells  

Sampling Type  

RBCs WBCs Cancer 

Cells 

Original-signal ±465.9 ±469.09 ±492.1 

5-sample smoothing ±152.72 ±188.94 ±181.03 

10-sample smoothing ±93.16 ±143.26 ±135.87 

20-sample smoothing ±65.5 ±124.79 ±116.18 

 

Table 8. 5-sample moving-average and threshold = mean – 4 × standard-deviation 

Pulse features  Cancer WBCs RBCs 

Pulse amplitude 

average (microamp) 

8.3 ± 3.89 3.14 ± 

1.01 

1.6 ± 5.4 

Pulse width average 

(millisec) 

30.1 ± 

25.17 

15.0 ± 

90.3 

27.8 ± 

36.84 

 

Automated pulse detection can greatly improve the online monitoring of cancer detection and 

diagnosis, and simplifies the clinical procedure, where raw data will be collected from many patients 

visiting per day. This can help physicians to change their strategies in order to combat deadly diseases 

like at very early stages. 

3.4. Discussion 

Our work has proposed a novel real-time system for the detection in millions of data points generated 

from biological targets when passed through a nanopore.  However, the performance gap between I/O 
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operations and multi-core processing speed is a bottleneck for high-throughput data acquisition. 

Furthermore, the I/O and processing implementations are sequential in nature, the data is first read into 

the system, and then it is processed. To address this problem, Data Pre-fetcher (discussed in section 2.4.1) 

uses advanced I/O prefetching techniques, such as double buffering to overlap the I/O operations with the 

computation. This improves the system performance by reducing execution stalls. For further improving 

the system performance, integer processing is used, i.e., the raw data (floating-point numbers) is 

converted to integers, which enables efficient processing as compared to the floating-point computations. 

With such a design, a sampling rate of 2.3 million samples per second is achieved, as compared to the 

original rate of the electrical measurement setup which is 454 Kilo samples per second (5x improvement).  

The GPU implementation for static and baseline-tracker technique results in 1.11x and 1.12x 

speed up over its counter CPU implementation. However, for moving average technique CPU is 2.2x 

faster than GPU. For static and baseline-tracker technique much time is spent in data transfer in addition 

to the computation time on GPUs. However, in case of moving average technique more time is spent in 

computation since every thread calculates its initial average on GPU which results in performance 

degradation, whereas on CPU the initial average is calculated only once. This shows that the GPU is 

faster but less clever than CPU due to its limited I/O and memory resources. The recent trends in CPUs 

(core i7) and GPUs (NVIDIA Tesla 2070) can result even in better speed-ups.  

Furthermore, the input data is not parallel and consists of independent (background noise) and 

dependent data points (pulses); this hybrid nature of data poses an automation challenge on efficiently 

using GPU. To address this problem, the number of threads that can be used in our system is restricted. 

Therefore, if we increase beyond 16 K threads, the number of pulses detected is reduced because 

significant amount of  pulses start to lie at the boundaries of data-chunks assigned to each thread and 

cannot be tracked across different data chunks.  
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The impact of automated threshold detection algorithms is evaluated in the cases of time-varying baseline 

and noisy data. The moving average detection technique is found closer to the manual detection technique 

with 8.1% difference in the output, less number of false alarms, and the detection is more tolerant to noise 

than fixed and baseline-tracker technique at the cost of computational overhead. 

Hence the designed GPU-based real-time system is almost 5x faster than the electrical 

measurement setup. This work can have wide implications when hundreds of bio-sensors are measuring 

temporal data from the physiological or molecular interactions of living systems. 
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Chapter 4 

 

Distributed Detection of Cancer Cells in High-Throughput 

Cellular Spike Streams 

Detection and identification of important biological targets, such as DNA, proteins, and diseased human 

cells is crucial towards early disease diagnosis and prognosis. The key to differentiate healthy cells from 

the diseased cells is the biophysical properties that differ significantly. Micro and nanosystems, such as 

solid-state micropores and nanopores, can measure and translate these properties of human cells and DNA 

into electrical spikes to decode useful biological insights. Nonetheless, such approaches result in large 

data streams that are often plagued with inherit noise and baseline wanders. Moreover, the extant 

detection approaches are tedious, time-consuming, and error-prone, and there is no error-resilient 

software that can analyze large datasets instantly. The ability to effectively process and detect biological 

targets in larger datasets lies in the automated and accelerated data processing strategies using state-of-

the-art distributed computing systems. To this end, we propose a distributed detection framework, which 

collects the raw data stream on a server node that then splits/distributes the data into segments across the 

worker nodes. Each node reduces noise in the assigned data segment using moving-average filtering, and 

detects the electric spikes by comparing them against a statistical threshold (based on the mean and 

standard deviation of the data), in a Single Program Multiple Data (SPMD) style. Our proposed 

framework enables the detection of cancer cells with an accuracy of 63% in a mixture of Cancer cells, 

Red Blood Cells (RBCs), and White Blood Cells (WBCs), and achieves a maximum speedup of 6X over 

a single-node machine by processing 10 gigabytes of raw data using an 8-node cluster in less than a 

minute. 

Diseases such as cancer can be mitigated, if detected and treated at an early stage. Micro and 

nanoscale devices such as micropores and nanopores, enable the translocation of biological targets, such 
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as, DNA, proteins, and human cells at its finer granularity. These devices are tiny orifices in silicon-based 

membranes and the output is a current signal, measured in nanoamperes. Solid-state micropore is capable 

of electrically measuring the biophysical properties of human cells, when a blood sample is passed 

through it [23]. The passage of cells via such pores results in an interesting pattern (pulse) in the baseline 

current, which can be measured at a very high rate, e.g., 500,000 samples per second [92]. The pulse is 

essentially a sequence of temporal data samples that abruptly falls below and then reverts back to a 

normal baseline with an acceptable predefined time interval, i.e., pulse width. The pulse features, i.e., 

width and amplitude correspond to the translocation behavior and the extent to which the pore is blocked, 

under a constant potential. These features are crucial in discriminating the diseased cells from healthy 

cells such as, identifying cancer cells in a mixture of cells [39]. 

 

4.1. Introduction 

The task of detecting interesting patterns is critical in many biomedical applications including ECG and 

MRI [102], [33], [34] in order to find useful insights towards disease diagnosis. With the advent of novel 

biological applications of micro and nanoscale devices [105], [36], [27], [37], we are able to detect the 

biological targets, such as DNA and human cells, at finer granularity. Unfortunately, the problem with 

these devices is that they the detection of biological targets with these devices have many challenges. The 

devices produce large amounts of raw data and the task of pattern detection is coupled with the enormity 

of the datasets [92], [38]. For example, the data collected from the translocation of a typical biopsy 

sample through a pore is about 10 GB. The state-of-the-art detection and analysis is based on the visual 

inspection, which is tedious, error-prone, and even an expert has to spend innumerable hours to analyze a 

blood sample, which is in the magnitude of gigabytes. In addition, the available software, such as pClamp 

can only analyze a subset of the total acquired data. Furthermore, due to the highly dynamic nature of data 

produced by the bio-nano sensors, the useful patterns are very sparse in the data and are orders of 

magnitude smaller than the total acquired data. In a clinical setup, the raw data collected from many 



70 

 

patients' biopsy samples, using multiple solid-state micropores quickly becomes too large to be handled 

by a single workstation. These challenges motivate the design of an automated and distributed detection 

technique, which can effectively acquire and process the raw data (collected from many micropores) for 

detecting and identifying useful patterns.  

Recent trends show the efficacy of using distributed computing in genomics [106], [107], [108], 

[109], proteomics [110], [111], and other large-scale applications, such as physics [112] and astronomy 

[113].  

In this paper, we design and develop a novel distributed technique that distributes/splits the data 

across multiple nodes and enables individual nodes to acquire and process its raw data segments to detect 

and identify useful pulses. 

Furthermore, the integer processing and recursive moving-average filtering [92] and [114] makes the 

technique faster and amenable for online monitoring. To this end, our proposed framework performs the 

following steps: 

 Splits the collected raw data into a number of segments, one for each participating node in the 

system. 

 For an improved performance, each raw data segment is acquired by individual nodes using 

double buffers. 

 Each node converts the raw data into integers for efficient processing, i.e., to avoid round-off 

errors and also reduce the total size of the acquired data. 

The integer data is then smoothed using moving-average filtering to reduce the noise in the data. The 

useful patterns in the de-noised data are detected using a threshold that is based on the mean and standard-

deviation of the data. 

Evaluation of our system using the datasets of real cancer cells show that our technique can detect 

pulses with 63% accuracy, and process 10 gigabytes of raw data on an 8-node cluster in less than a 

minute, a task that would rather take several hours when using the extant manual process. Our framework 
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produces output in the form of scatter plots, which can be further used by physicians/scientists to infer 

useful information for disease diagnosis and useful decision-making. 

The rest of the paper is organized as follows. In Section 4.2, we discuss the design and algorithm of 

our distributed framework. Section 4.3 presents our experimental setup and results with rigorous 

performance evaluation and comparison between the distributed system and single node implementation 

with an increasing size of input raw data and different size of double buffers. Finally, we discuss success 

stories and limitations in Section 4.4. 

4.2. Design 

We present the design and implementation of our framework for splitting and distributing the data stored 

on an NFS shared storage across multiple nodes. Each node then processes the raw data segment assigned 

to it in a SPMD (Single Program Multiple Data) style using the following software modules: pre-

processor, smoother, detector, and post-processor. The high-level work flow of our distributed framework 

is shown in Fig 13. The pre-processor formats its segment of raw data and reads the data efficiently using 

double buffers. The smoother reduces the noise and eliminates baseline shifts.  

The detector detects pulses in the data based on a threshold computed from the statistics of the 

smoothed data. Finally, the consolidated results from all the nodes are merged and delivered for further 

analysis. 

Distributed Design: 

 

The data is collected on the shared storage of an NFS server and then distributed among participating 

nodes such that each node gets its own data segment using the system modules as below.  The pre-

processor at each node retrieves its data segment from the shared NFS storage and optimizes the overall 

processing from two perspectives: (i) the pre-processor overlaps the data transfer with the computation 

using double buffering; and (ii) converts the raw data into an integer format to avoid round-off errors, as 

well as enable reliable and data efficient processing. The raw data segment is read from the storage device 
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in chunks for subsequent processing. However, the time required to process a given chunk comprises of 

the data transfer phase from the storage and the subsequent computation phase while the data is held in 

 

Fig 13. Distributed Detection Framework: Data can be collected from multiple bio-nano sensors on a 

shared storage of a high-speed server. Clusters nodes retrieve their own data segment from the shared 

storage and process it in parallel. Each data segment is processed by the individual node in four steps, 

including input reader, smoother, detector, and pre-processor that delivers result for useful decision-

making.  

 

the main memory of the node. Double buffering enables us to partition the main memory into two buffers, 

which are switched alternatively between the data transfer and the computation phase. For example, 

copying of the data chunk k in buffer A and the computation on chunk k-1 in buffer B is achieved 

simultaneously. This enables processing of the data chunks in a pipeline fashion in order to improve the 

overall performance. 

In the next step, the smoother removes noise and baseline wanders from the integer data. The cut-

off frequency is an important factor used to decide band of frequencies that need to be passed in order to 
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only capture the interesting patterns in time domain. However, the cut-off frequency is inversely 

proportional to the size of the sampling window used in moving-average filtering. Higher cut-off 

frequency allows higher frequencies to pass, and thus results in slighter smoothing, and vice versa. In this 

case, the size of the sampling window is smaller. We tested the moving-average technique with different 

size of sampling window, i.e., 5, 10, and 20, and found 5-sample moving average to be the most effective 

for our problem.  

Different techniques have been designed to detect peaks in temporal data [34]. The detector 

module detects pulses against a statistical threshold that is based on the mean and standard-deviation of 

the smoothed data. Furthermore, the mean and standard-deviation are computed from the number of 

samples equal to the size of window used in moving-average (5 in our case), and then used for the 

detection of patterns in the smoothed data samples as given by Eq. 19: 

Threshold = mean - 4   std-deviation (19) 

The value of 4 in Eq. 19 is selected based on the empirical knowledge. However, our framework 

has the capability to automatically adapt to the changing characteristics (i.e., mean and standard-

deviation) of the input data. The threshold is re-computed based on the initial k samples of the buffer of 

size N. The computed threshold stays constant for N-k data samples of a given buffer. In addition to that, 

our framework allows for experts to adjust the size of sampling window in moving average technique and 

the domain-specific value in Eq. 19 in order to further tailor and tune the detection according to the 

dynamic characteristics of the collected data. 

In case of high variations in data, the buffer size can be reduced in order to allow the threshold to 

quickly adapt to the data and vice versa. The threshold detects the pulses along with their width and 

amplitude in smoothed data. The acceptable range of pulses for our problem is greater than 3 data 

samples, and less than 45 data samples. From the domain knowledge, we know that fewer samples (i.e., 

less than or equal to 3) are noisy pulses, while pulses with a width less than or equal to 45 data samples 

constitute a useful pulse that stems from a human cell [39]. The detected pulses along with their features 
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are delivered to the post-processor. The post-processor stores the features of the detected pulses in a 

comma separated values (csv) format on the storage device, which can be later used for further analysis in 

the form of scatter plots. 

 

Algorithm 

During the initialization phase, the data is split into number of segments equal to the number of nodes, 

and assigned to individual nodes according to static data distribution strategy. Each node then processes 

its data segment through several time-steps. Note that the size of double buffers is always less than or 

equal to the size of an individual data segment.  

The duration of a time-step is directly proportional to the size of double buffers that is used. 

Larger buffers result in coarser time-steps and thus the given data segment can be processed within few 

time-steps. Conversely, smaller buffers result in fine-grained time-steps and therefore, requires large 

number of time-steps in order to process a given data segment. 

Distributed Detection Algorithm: 

Initialize(); 

For each sample in the data-segment 

 DataConversion(); 

Smoother(); 

Detector(); // detects patterns 

For each of the detected patterns 

ComputeFeatures();  

The algorithm shows that during a given time-step, each node concurrently processes its assigned data 

segment based on the offset, as shown in the following steps: 

 Initially, each node reads the assigned data segment using double buffering technique and converts 

the raw data into integer data. 

 The converted data is then de-noised using smoothing. 
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 Patterns in the de-noised data are detected against the threshold, which is computed from the statistics 

of the data.  

 Compute useful features (i.e., width and amplitude) of the detected patterns. 

 

4.3. Evaluation 

In this section, we first explain the experimental setup of our target distributed system. Then, we show the 

impact of different levels of smoothing and threshold on the detection of different cell types and 

summarize statistics of distinguishing features of the detected pulses. Next, we analyze the speedup 

achieved on a distributed system in comparison to a single node for an increasing size of input data. We 

also examine the impact of the size of double buffers on overall execution time. Finally, we show the 

performance impact of using different interconnects for the nodes, such as 1 Gbps Ethernet and 

Infiniband. 

 

 
(a) Temporal data of Cancer Cells.           (b) Temporal data of WBCs 
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(c) Temporal data of RBCs 

Fig 14. Noisy raw data and its smoothed version for different cell types with distinguishing pulses and the 

pulses in them are highlighted in insets. Different features of the RBCs, WBCs, and Cancer cells are 

summarized in Table  9. This demonstrates that cancer pulses are larger as compared to other cell types 

and retain their shapes even after smoothing. 

 

 
(a) Typical Cancer pulse                                  (b) Typical WBC pulse 

 
                                                              (c) Typical RBC pulse 

Fig 15. Typical pulses from each cell type and their moving-average filtering with sampling window size 

of 5. 
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Fig 16. Scatter plot of different types of cells and their features detected from a mixture of cell types. 

Pulses detected in RBCs, WBCs and Cancer cells with Threshold = mean - 4 x std-deviation. The 

detected pulses are scattered instead of forming compact clusters because of the smoothing effect that 

results in reduced amplitude and increased width of the pulses. 

 

Table  9. Summary statistics of pulse features from Red Blood Cells (RBCs), White Blood Cells (WBCs), 

and Cancer cells. 

       

 
Pulse Features RBCs WBCs Cancer Cells 

 

Pulse Amplitude 
1.6 ± 5 3.14 ± 1 8.3 ± 4 

 

(microamp) 

 

Pulse Width 15.0 ± 

90 

27.8 ± 

31 
30.1 ± 25 

(msec.) 

 

Table 10. The maximum size of double buffers that can be used in comparison to the integer data, i.e., 

converted from raw input data. 
 

Raw Input Data  Integer Data Double Buffers 

Num. Samples Size Size Max. Size 

Profiles (Billion) (GB) (GB) (GB) 

90 0.36 10 1.44 0.72 

180 0.72 20 2.88 1.44 

270 1.08 30 4.32 2.16 

540 2.16 60 8.64 2.16 

 
 

Table 11. Summary of the variation reduced in the raw data due to different levels of smoothing. 

       

 
Sampling Type RBCs WBCs Cancer Cells 

 

Raw signal ±465.9 ±469.1 ±492.1 

 

5-sample smoothing ±152.7 ±188.9 ±181.0 

 

10-sample smoothing ±93.2 ±143.3 ±135.9 

20-sample smoothing ±65.5 ±124.8 ±116.2 
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Datasets: The biological raw datasets are collected from the translocation of a typical biopsy sample via a 

micropore. The sample consists of Red Blood Cells (RBCs), White Blood Cells (WBCs), and Cancer 

cells. A typical profile of cells contains around 4 million samples recorded over a period of 2.2 

microseconds. The overall data collected from a sample consists of 90 profiles (i.e., 360 million samples 

= 10 GB of raw data), as shown in Table 10. Each sample has a resolution of 2 bytes and can measure up 

to 65,535 nanoamperes.  

Micropore assembly: The biopsy sample is translocated through a Micropore of 12 micrometer radius 

and 200 nm long. The calibration of sampling frequency is an important factor to achieve the maximum 

throughput out of the pore. Decreasing sampling frequency results in a stable baseline with less noise, but 

cannot capture the useful translocation events at finer granularity. Conversely, higher sampling frequency 

results in the noisy data, which can suppress some of the translocation events. The optimal sampling 

frequency found for the micropore is 0.4 MHz.  

A. Detection of Target Corpuscles 

The level of threshold and the extent of smoothing are the two important parameters in order to 

effectively detect useful pulses. Changing the level of smoothing or threshold affects shape and count of 

the detected pulses, respectively.  

Impact of Smoothing: Smoothing helps to eliminate the noise and baseline shifts, however, it also 

reduces information available in raw data, i.e., it affects shape of pulses, as shown in Fig 10. Larger 

smoothing reduces variations in the baseline to a greater extent, but at the cost of significantly changing 

the pulse shape. We achieved better smoothing of the pulse shape with a sample size of 5 as compared to 

a sample size of 10 and 20, which results in higher reduction of noise and deterioration of pulses. For 

clarity, we have only shown smoothing achieved by 5-sample moving average in Fig 11. The results also 

demonstrate that cancer pulses are larger than other cell types and retain their shapes even after 

smoothing, thus making them amenable to such proposed automated detection. 
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Impact of Threshold: Different thresholds result in different count of the detected pulses. Threshold 

closer to the baseline e.g., Threshold = mean - 3 x std-deviation results in the detection of noisy pulses 

(false positives) in addition to the useful pulses. However, threshold away from the baseline e.g., 

Threshold = mean - 5 x std-deviation results in miss-detection of useful pulses that are smaller in size 

(false negatives). Smoothing with 5-sample moving average followed by a Threshold = mean - 4 x std-

deviation is found optimal for our datasets, as captured in Fig 11. 

Detected Pulses: 

Figure Fig 16 shows the scatter plots of the detected pulses from all the three different types of data. The 

plots show the width and amplitude of the detected pulses along x-axis and y-axis, respectively.  

The reason for horizontal spread observed in the plot is due to smoothing that actually reduces the 

amplitude of the pulse by eliminating vertical fluctuations in the pulse, however, this increases the 

horizontal width of the pulses. We also observe overlap among different types of pulses. This is because 

that some of the smaller pulses in the cancer cluster closely resembled to the larger pulses of WBCs due 

to their similar widths and amplitudes. The average of the translocation time and the amplitude of the 

detected pulses show that these features are different for each cell type and that they differ significantly in 

their size and stiffness i.e., the extent to which they block the pore when the pass through it, as shown in 

Table  9. 

Pulse Statistics: Increasing smoothing decreases variation in the data, as shown in Table 11. Greater 

smoothing (e.g., 20-sample moving-average) results in higher suppression of noise in the original signal 

(i.e., the standard deviation for RBCs is reduced from 465.9 nanoamperes to 65.5 nanoamperes), as 

compared to 10-sample and 5-sample moving average, which results in fairly small reduction in noise.   

As show in Table  9, Cancer pulses have greater pulse amplitude and width than other cell types. 

Furthermore, the p-value < 0.01 for the translocation time shows that the cell types significantly differ 

from each other. In contrast, p-value > 0.01 for pulse amplitude shows that the cell types do not differ 

significantly. 
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Fig 17. Scalability of our framework on a single node: Execution time for an increasing size of double 

buffers for an increasing input raw data (i.e., 10 GB, 20 GB, 30 GB, and 60 GB). Note that 10 GB 

corresponds to a single biopsy sample, 20 GB is equivalent to two biopsy samples, and so on.  

 

B. Performance and Scalability 

Next, we discuss the performance of automated pulse detection on a single node versus multiple nodes on 

a distributed system. We show the scalability achieved over multiple nodes. In addition, we also discuss 

the impact of changing the size of double buffers on overall execution time.  

An Increasing Input Raw Data: The input data processed by our distributed framework ranges from 10 

GB to 20 GB, 30 GB, and 60 GB. These datasets correspond to the raw data collected from typical blood 

sample(s) when translocated through a solid-state pore. Furthermore, when a 60 GB raw data is converted 

to integer data, it reduces to about 8.64 GB, slightly larger than the memory footprint of a cluster node, as 

shown in Table 10. The time taken to process these different datasets on a single node versus multiple 

distributed nodes is shown in Fig 17 and Fig 18, respectively. 

Performance on a Single Node: We show the scalability achieved with a single node on our target 

cluster machine. The 10 GB raw data is processed for different size of double buffers (i.e., 180 MB, 360 

MB, 720 MB, and 1.44 GB), 20 GB with a double buffer size of 360 MB, 720 MB, 1.44 GB, and 2.88 

GB, and so on, as captured in Fig 17. The maximum size of double buffers is kept less than the total size 

of the integer data in order to make sure that we process the given data in chunks and do not overflow the 
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memory footprint of the machine. We observe linear scalability for an increasing size of input data. 

Additionally, we do not see significant change while changing the size of double buffers. However, we 

see slight degradation in performance, when we increase the size of double buffers i.e., in case of 30 GB 

and 60 GB.  

 

Fig 18. Framework scalability with an increasing size of double buffers. Scalability of our distributed 

framework on cluster nodes. Execution time for an increasing size of input raw data (i.e., 10 GB, 20 GB, 

30 GB, and 60 GB). Double buffers of size 90MB is used to facilitate split/distribution of the given raw 

datasets across 8 nodes.  

 

Impact of Double Buffers: The execution time with respect to different double buffer sizes for an 

increasing size of input raw data is shown in Fig 17. We do not see significant difference in the execution 

time for different double buffers. This shows that the results are scalable with varying size of double 

buffers. However, slight overhead is incurred in case of large buffer size, such as when using the 2.16 GB 

double buffers to process 60 GB of raw data, as captured in Fig 17. 

Speedup Achieved on Multiple Nodes: Execution of our distributed detection system for 2, 4, and 8 

nodes is shown in Fig 18. We observe the performance when the number of nodes is increased for a given 

dataset. However, we do not see significant performance improvement when the size of double buffers is 

larger, due to the overhead incurred in the critical path. Additionally, we are able to process 60 GB of raw 

data, collected from six biopsy samples, using 8 nodes in less than 15 minutes. 

Overhead in Speedup: The overhead in speedup is smaller in the case of fewer nodes as compared to the 

large number of nodes as shown in Fig 19. In case of 2 nodes, the overhead in speedup is 5%, 16.2%, 
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14.2%, and 20.1% for an input data of 10 GB, 20 GB, 30 GB, and 60 GB, respectively. While in case of 4 

nodes, we observe an overhead of 20%, 22%, 42%, and 53% for an input of 10 GB, 20 GB, 30 GB, and 

60 GB, respectively. However, the parallelization of 10 GB, 20 GB, 30 GB, and 60 GB, results in 16%, 

35.2%, 66%, and 78% overhead, respectively. We observe that the overhead increases with the increase in 

the size of input data. 

Impact of Interconnects: We observe a large difference between the underlying interconnects, i.e., 1 

Gbps Ethernet and Infiniband. The performance increase achieved from the Infiniband is 23.1% 

compared to 1 Gbps Ethernet, as shown in Fig 20. 

Selection of Parameters: In case of moving-average filtering, a size of 5 for the sampling window is 

found optimal for the signal-to-noise ratio in our datasets. Based on the empirical knowledge, the value of 

k=4 is found suitable in order to subtract k times standard-deviation from the mean of the data and thus, 

compute the threshold, as shown in Eq. 19. Finally, the increase in size of double buffers is scalable with 

an increasing size of input data, as far as, their size (double buffers) does not overflow the memory 

footprint.  

4.4. Discussion 

In this work, we present a distributed detection approach that can acquire and process raw data collected 

from bio-nano sensors at an accelerated speed. In our experiments, we show that the designed framework 

can process data at a maximum throughput of 36 MB/sec. In other words, the framework has the ability to 

support the collection of raw data and its online processing from about 18 micropores simultaneously 

(each calibrated at a sampling rate of 2 MB/sec). In order to further accelerate the detection process, we 

need to incorporate fine-grained parallelism at the chunk level with the use of accelerator, such as, 

graphics processing units (GPUs). Such faster platforms will demand an increased sampling rate from the 

micropore-based experimental setup.  
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Fig 19. Speedup achieved by our distributed framework on cluster nodes for an increasing size of input 

raw data w.r.t. different number of nodes. 

 

Nevertheless, the sampling rate depends on many factors including the speed and size of the 

biological targets that are translocated via micropores. 

The accuracy achieved with our detection technique is about 63%, mainly because of the highly 

dynamic nature of data generated from bio-nano sensors, and secondly, due to the moving-average 

filtering and 

 

Fig 20. Comparison of Execution time on 1 Gbps Ethernet vs. Infiniband. Performance comparison of 1 

Gbps Ethernet and Infiniband is tested on 8 nodes for an increasing size of input raw data (i.e., 10 GB, 20 

GB, 30 GB, and 60 GB. 
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sophisticated approaches, such as machine learning techniques are needed. Such approaches, while 

computationally expensive, are more error-resilient and can differentiate between the noise and 

information (actual patterns) with an increased accuracy. While developing more robust and error-

resilient detection algorithms, the need for an increased accuracy also stresses advancements on bio-

nanotechnology to detect biological targets with an increased signal-to-noise ratio, while sensing them at 

finer granularity.   

Our distributed computing framework splits the overall data on a shared storage among nodes, 

and enables each node to retrieve the assigned data chunk with its offset. Chances are rare for useful 

patterns to span across the boundaries of the split data segments and become a false alarm. The reason is 

that the patterns are very sparse in the data and the size of patterns is orders of magnitude smaller than a 

data segment (few bytes vs. gigabytes).  

In addition to splitting the data into segments across nodes, we use double buffers within each 

node to overlap I/O with the computation, while enable processing of large datasets in chunks. 

Furthermore, to address large-scale processing of data, which is greater than the memory footprint, 

requires careful consideration of the memory usage. In order to achieve this, the breakdown for the size of 

double buffers is the physical memory limit. In our experiments, we are able to process 60 GB of raw data 

by keeping the aggregated size of double buffers to a maximum of 4.26 GB (2.13 GB for an individual 

buffer).   

However, increase in the size of buffers results in an increase in the critical path of the overall 

computation, and become effective until after reading the very first chunk of a data segment. In addition 

to that, buffers larger than the size of memory footprint can either crash due to segmentation faults, or 

results in paging, if virtual memory is enabled. Conversely, very small buffers result in too much 

swapping and I/O that leads to an increased communication rather than the computation itself. Therefore, 

we need an optimal size of double buffers that is selected based on the total size of the input data in order 

to read large amount of raw data efficiently. Our experiments show that as far the size of double buffers is 
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less than the size of the integer version of input data and within the memory footprint, delivers an 

acceptable performance. 

In our distributed setup, the splitting of data segments across nodes and the assignment of 

functional nodes is determined statically. In our future work, we aim to determine the status of nodes on 

fly and subsequently, utilize the node only if it is alive in order to achieve fault tolerance. Furthermore, 

we have assumed an even distribution of workload across the participating nodes.  

This is possible in our framework, since the interesting patterns are very sparse in the datasets and 

therefore, a node will barely have larger number of patterns than its neighbors. Nonetheless, with the 

advent of high-performance sensors with high-quality of raw data (i.e., enhanced information with respect 

to the noise and baseline shifts), we will need to design dynamic load balancing techniques. One such 

strategy is to throttle the amount of data that is fed to a node on fly and assign future data to another node 

that is idle or relatively less burdened. 
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Chapter 5 

Conclusion 

In conclusion, bio-nano sensing approaches are promising to detect biological targets at finer granularity 

but are tied to collective challenges, including large amount of raw data and manual processing atop. This 

dissertation addresses these challenges by realizing software techniques – adapt to the noisy bio-nano 

devices and automate the detection of biological biomarkers – as well as expedite classification and 

identification of the diseased cells, etc.  

Parallel implementation of detection techniques, while using GPUs; provide 5X faster system 

design as compared to the electrical measurement setup. In addition to that, a GPU-based approach 

coupled with advanced I/O techniques can detect biological molecules in the collected data in few 

minutes, which will otherwise take a couple of hours, if analyzed manually. We also provide results for 

static and dynamic detection techniques. Adaptive detection techniques are more robust to noise with an 

increased complexity and computation; however, the results are in a good agreement with the known 

biosets - within an error of 8.1%.   

This work also addresses the challenge of detecting and classifying diseased cells in a blood 

sample that is actually a mixture of different types of human cells. Machine learning techniques including 

supervised and unsupervised algorithms have been adapted and trade-off between accuracy and 

performance has been discussed. k-Nearest Neighbor algorithm can classify different types of human cells 

to a higher accuracy at the cost of an increased percentage of training data; however, training part is 

computationally expensive. With the use of an 80% of training data, we were able to classify all types of 

human cells with 100% accuracy using useful features. In contrast, k-Means classifies only cancer cells 

with an accuracy of 100%; however, such an approach does not need training data – a computationally 

efficient approach. Nonetheless, these classifiers used the features of the pulses, which were detected with 

an accuracy of 70% in the typical biological assay taken from a blood sample.  
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Another important use case addressed by this work is to efficiently process large amounts of data 

for the detection of biological targets that can be collected from multiple bio-nano sensors simultaneously 

in an online clinical setup. Employing an 8-node cluster machine enables detection of cancer cells in a 

typical biological assay, mere 0.5 milliliter of blood, in less than a minute, as compared to manual 

detection, which will take a couple of hours and is also subject to personnel’s experience. A comparison 

of results while varying number of nodes is investigated as well; however, increasing number of nodes 

does not show a linear speedup due to the I/O bottlenecks that mainly arise due to the shared storage 

device from which the data chunks are retrieved and split across the participating nodes. Nevertheless, 

such an investigation shows a promising result with distributed computing – leaving room for improved 

algorithms that can reduce execution stalls in a distributed setup.  

5.1. Future Work 

This work lays groundwork for automated disease diagnosis and innovative endeavors towards devising a 

statistical model for an accurate detection and classification of biological targets with the least number of 

tuning parameters and a high-throughput implementation. In addition to that, simulation of protein 

interactions which is crucial towards drug design and disease diagnosis is also discussed.  

The ability to automatically adapt to the noisy data collected from bio-nano devices with varying 

noise levels and statistics, and subsequently, enable detection and classification of different types of 

biological targets, lies in a statistical model that will leverage advanced machine learning techniques, such 

as autoregressive moving-average, artificial neural networks, and support vector machines.    

In a real clinical setup, where many patients are visiting and data is generated from different 

sensors including solid-state micropores, bare micropores, and nanopores with different data 

characteristics, such as varying mean and standard deviation, the detection objective becomes 

challenging. To cope with such a scenario, we need a model for threshold-based detection technique 

which can automatically adapt to such noisy data instead of tuning parameters, while hopping from one 
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sensor data to another. Filtering noise in the raw data followed by threshold modeled on statistics of the 

data will enable detection of targets with a higher accuracy. Consequently, we need classification 

algorithms to further classify the detected patterns. Our future work includes the design of combined 

model-based approach that can effectively filter and classify biological targets in the raw data with 

varying characteristics collected from different bio-nano sensors. 

In a situation, where large amount of data is collected from many sensors, we need to accelerate 

the overall computations. The advanced I/O techniques coupled with GPU-based setup will accelerate the 

overall process by overlapping the computation with I/O [115]. Such framework has impact in a real 

clinical setup where many patients are visiting each day and the collected biological assay need to be 

analyzed for instantaneous feedback. Data collected from one blood sample easily results in few GBs of 

data. Thus, the data collected from hundreds of patients visiting per day will lead to TBs of data. The 

designed framework will enable to process the data in minutes, which otherwise consumes innumerable 

hours through manual processing. Additionally, the advanced I/O techniques will not only process data at 

higher sampling speed, but it will also ensure efficient utilization of the limited memory of the system by 

feeding it with the optimal chunk size. Furthermore, the useful patterns constitute very small fraction of 

the total acquired raw data. Recording only the required results and discarding the raw data will result in 

an efficient utilization of the attached storage to the system. 

Such approaches will enable the detection of biological targets at finer granularity, an increased 

resolution, and a higher throughput. However, this leaves more room for the bio-nano measurement setup 

in terms of catch up. The bio-nano sensing measurement depends on many factors, such as length of the 

molecule, speed of the molecule, and the sampling rate of the sensor. The designed framework will only 

show the strength of the algorithms but will further help in accelerating the detection and classification of 

biological targets at large scale in order to support multiple sensors in an online setup. 

Another important future direction that this work intrigues is the study of protein interactions that 

helps in understanding important protein behavior, such as folding and unfolding. However, the 
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simulation of proteins is highly compute-intensive and time-consuming, and the simulation of just an 

entire set of a bacterial cytoplasm takes almost a year to complete. Our goal is to explore the impact of 

large-scale distributed systems and cloud computing towards the acceleration of protein interactions. 

State-of-the-art protein simulations are limited to small number of biomolecules due to limited computing 

resources. Accelerating these simulations can help in understanding the unknown behavior of many 

proteins and thus, can help towards improved drug design which can ultimately help in disease diagnosis. 

However, uncovering useful insights about proteins interaction using In vitro experiments is a daunting 

task. The main bottleneck is that In vivo experiments limit the simulation of the whole set of biomolecules 

simultaneously. The reactions that occur in a living cell result into In vivo crowding. Single cell studies 

under cryoelectron tomography have revealed the crowded cytoplasm to In vivo models of cells and 

quantified the noise where the biomolecules follow non-uniform distribution [116-121]. Computational 

approaches exist that can theoretically predict the diffusion in the cytoplasm that stem from the crowding 

and related interactions [122-124]. Furthermore, how the crowding and diffusion of biomolecules affect 

the function of the cell is of important research. The designed simulations reduce the gap between In vivo 

and In vitro experiments by modeling the associated proteins at and up to the granularity of atomic level. 

The modeled rates of diffusion in proteins and respective thermodynamics stabilities almost match the In 

vivo results [124].  

Whole the approach is promising, there are still some limitations. (1) The models simulate 

electrostatic potentials between macromolecules only, and not the hydrodynamic interactions (HI) 

between them due to limited computing resources. Part of reason is the inclusion of HI makes the 

diffusion coefficient (Dtrans) slower as compared to the case that does not consider HI, and hence can 

further de-accelerate the simulation process.  (2) The interaction of macromolecules requires modeling at 

micro- and nano-scale, which in turn necessitates very high resolution data collection – using time steps at 

picosecond intervals. Such resolution makes the simulations extremely hungry for the storage, memory, 

and computing power.  
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Computing power seems to be a bottleneck in enabling better discovery in this domain. For 

instance, the use of few GBs memory of a typical desktop machine restricted the types of macromolecules 

that can be modeled to mere 51 molecules, where many times more exist in the system. The data 

resolution similarly had to be reduced to enable an approximated computation.  

In summary, the impact of a large-scale distributed computing in protein simulations: 

1. The molecular trajectories of the atom dynamics, which are computed to simulate various behaviors 

of the proteins including folding, involve massive amounts of data. For instance, typical trajectories 

store at least 12 bytes of data per trajectory per atom, and a simulation can involve hundreds of 

millions of atoms, capturing the behavior at millions of time steps. This means a few GB are required 

per time-step [125] for bulky and complex macromolecular structures. State-of-the-art models are 

limited to simulate only a few microseconds of the interaction and used coarser time-steps. Even then 

using a desktop machine with few GBs of memory took several minutes to simulate one million time 

steps [126]. The entire simulation is expected to take almost a year [124]. Better system architectures, 

and the use of accelerators, such as GPUs, are promising here.  The parallel implementation of 

trajectory simulations using GPUs will make the simulation faster. This will enable larger simulations 

in the same wall clock time as compared to the sequential simulation. 

2. Typical cellular models consist of hundreds of millions of biomolecules, and simulation trajectories 

arising from such models, often stores thousands of frames. The storage requirements varies from 

hundreds of GBs to several TBs. Simulation of E. coli model [116] that consists of 20,000 active 

particles, while 600,000 obstacles and demands 500 simulations runs such that each run further 

consists of 5000 time steps. The storage requirement for such simulations demands up to 750 GB 

with 1.5 GB per simulation. Cloud-based technologies with huge amount of storage and memory can 

help in providing larger space to hold and process many times more simulations. 

Such cloud-based setup will enable simulations of larger set of biomolecules. Furthermore, 

coupled with parallel implementation will further enable larger simulations achievable in the same wall-
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clock time, as compared to non-cloud based setups. In general large-scale distributed systems or cloud 

computing will open endeavors for modeling protein interactions and other important intracellular 

environment. In a nutshell, this will help expediting custom drug design and related use cases. 
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