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Abstract

This thesis presents the Planning System DLVX, which supports the novel Plan-
ning Language K. The language allows to represent AI planning problems in
a declarative way and is capable of representing incomplete knowledge as well
as nondeterministic effects of actions. After explaining some basics, the syntax
and semantics of this language will be formally described and some results on
the computational complexity of our language will be given, proving that I
is capable of expressing hard planning problems, possibly involving incomplete
knowledge or uncertainty, such as secure (conformant) planning,.

A translation from various planning tasks specified in K to a logic program-
ming framework will be shown subsequently. We have implemented a prototype
of a planning system, DLVX, on top of the disjunctive logic programming sys-
tem DLV, to show the practical use of our translation. This prototype will be
presented in detail. Finally, examples and experimental results will be given,
together with an outlook to further research.
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Chapter 1

Introduction

Planning is an important field in Artificial Intelligence research. Planning en-
ables an agent to synthesize a sequence of actions to achieve a certain goal.
Over the last four decades, several approaches to represent and solve planning
problems have been developed. For solving problems, translating planning prob-
lems into classical logic (SAT-Problems) or logic programs has been proposed
([33],[27],[54],[37],[16]). Among recent approaches high level action languages
have been developed, such as the C action language ([30],[31],[36]), to represent
problems in a declarative way. Most of these languages and current translations
are based on extensions of classical logic and describe transitions among possible
states of the world (where each fluent has to be either true or false). However,
agents naturally do not have a complete view of the world, and have to reason
with incomplete knowledge. Nonmonotonic reasoning techniques, like default
logic [50] and logic programming under the Answer Set Semantics [26] are well
suited to deal with such incomplete information.

The goal of this work was to develop a declarative planning language by
extending existing languages. The new language, K, should provide expressive
power similar to these existing languages and allow the straightforward trans-
lation to an existing formalism capable of nonmonotonic reasoning.

1.1 Terminology

A planning problem in terms of AT consists of

Fluents: Fluents represent time and action dependent predicates, for example
alive.

Actions: Actions can be performed under certain preconditions having effects
on fluents, for example an action shoot can have the effect that the fluent
alive becomes false under the precondition that the fluent loaded is
true. Effects of actions can be deterministic (shoot always makes the
fluent alive false), or nondeterministic.
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(Knowledge) States: States are informally a momentary view of the world,
i.e. what is known about fluents at a certain point in time. States might
be specified completely (each fluent is either to be true or false), or incom-
pletely (the truth value of some fluents is unknown).

Initial State: The initial state comprises the knowledge of the agent about
fluents before starting to act.

Goal: An agent performs actions to achieve a goal, which is a state in which
certain fluents are required to be true (resp. false).

Plan: A plan is a sequence of actions that the agent performs to achieve the
goal.

We distinguish between optimistic and secure (conformant) planning: An
optimistic plan is a sequence of actions which might achieve the goal, but
not necessarily. For instance if the agent should kill somebody (achieve goal
-alive), performing action shoot might be an optimistic plan. It is not se-
cure however, if we do not know whether loaded holds initially. A secure plan
for this informal example would be to first perform an action load followed by
shoot.

Furthermore, we distinguish between sequential planning, where at each
point in time only one action might be performed and concurrent planning,
where parallel actions are allowed.

1.2 Overview

This thesis gives a detailed view on the novel language K, extending the work
presented in [15]. Furthermore, the planning system DLVX is presented, which
allows solving hard planning problems, including secure (conformant) planning
under incomplete initial knowledge and nondeterministic action effects under
certain restrictions. The system allows both sequential and concurrent planning.

Compared with similar action languages, K is closer in spirit to Answer Set
Semantics [26] than to classical logic, allowing to formulate incomplete knowl-
edge and nondeterministic action effects using default negation. The nature of
the language allows a straightforward translation of planning domains given in
K to answer set programs. Based on this translation, we have built a planning
system on top of the disjunctive logic programming system DLV.

After giving a short review of logic programming, Answer Set Semantics and
the action language C in (Chapter 2), a detailed presentation of the language
K follows in Chapter 3. There, syntax, semantics and complexity results for
the planning language KC are presented. The subsequent Chapter 4 explains I
programs are translated into logic programs.

After this basic translation a method for checking plans is presented, which
allows us to generate secure plans, which achieve the goal even under incomplete
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initial knowledge or nondeterministic action effects. Extensions of the transla-
tion include sequential planning and an optimization of the translated program,
which aims at reducing the grounded logic program.

Chapter 5 discusses the planning system DLVX and its features. knowledge
representation in the language of X using our prototype is discussed in Chapter 6
where it is shown how to solve some well-known planning problems from the
literature using our system. After some experimental results in Chapter 7, the
work is concluded giving an outlook to further investigations and research.



Chapter 2

Preliminaries

2.1 Review of Answer Set Programming

In this section, we give a short review of Answer Set Programming (function-

free Disjunctive Logic Programming with classical negation and constraints) and

point out how Answer Set Programming can be used for temporal reasoning.
Due to [38] a general logic program is a set of rules of the form

Ao+ Aq,...,Ap,not A1, ..., n0t A,

where n > m > 0, and each A; is a (function-free) atom, Ao is called head of
the rule, the part right of the arrow is called body.

Answer Set Programming, first introduced in [26] provides additional fea-
tures like disjunction in the head, constraints and classical negation “=” (some-
times referred as “extended” Logic Programming) in addition to negation-as-
failure (not ).

This review is given detailed enough to provide the basis for the further
development of a new planning language in the subsequent chapters, which
should incorporate similar features.

2.1.1 Syntax of Disjunctive Logic Programs

In the following we will give a short review of Disjunctive Logic Programming
with classical negation and constraints.

A term in terms of logic programming is a constant or a variable symbol.

An expression of the form A(ti,...,ts) is called (function-free) atom, where A
is a predicate symbols and a possibly empty list of terms ¢y, .. .,%y, also referred
as “parameters” sometimes. f is called arity of P.

Notation: for constant symbols we will use strings beginning with lowercase
letters or numbers, for variables strings beginning with an uppercase letter. As
predicate symbols we allow any string beginning with a letter.
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A literal is an atom A(ti,...,ty) or a strongly negated atom —A(t1,...,t¢).,
where — represents classical negation.

A literal/atom is called ground if it does not contain any variable symbols.

A disjunctive logic program Pi is a set of rules of the form
LiV...VLg ¢ Lgy1,...,Ly,not Lyyq,...,n0t L. (2.1)

wheren >m >k >0and L; (i =1,...,m) is a literal. If the head of a rule is
empty, we denote this rule as “constraint”.

A rule is called called ground if it contains only ground literals. Consequently
a program containing only ground rules is called ground as well.

The Herbrand universe HUn of a program II is the set of all constant symbols
occurring in II.

A ground instance of a rule r finally is a ground rule r’ where each variable
occurring in r is substituted by an element of Hif.

2.1.2 Semantics of Disjunctive Logic Programs -
Answer Sets

The semantics of disjunctive logic programs treats a rule with variables as a
shorthand for the set of its possible ground instances. ' So it is sufficient to
define the semantics only in terms of ground (variable-free) programs.

First we consider only programs without not (m = n in every rule 2.1 of the
program):

Definition 1. LetII be a disjunctive logic program without variables and without
not . Let Lit be the set of all ground literals in the language of II. A subset S
of Lit is called answer set if

1. for any rule L1V ...V Ly < Lgy1,..., L. from 11, if Lypyq,..., Ly € S,
then, for somei=1,...,k, L; €S2

2. if S contains complementary literals, then S = Lit.

3. there is no smaller subset S’ C S satisfying 1. and 2.

INote that in many practical answer set systems, such as DLV, usually only safe rules are
allowed. A rule is safe, if each variable occurring in a head literal or in a body literal preceded
by not also occurs in at least one body literal which is not preceded by not [56]

2Whenever the head is empty, this means that for any answer set the following condition
must hold: {Lgy1,...,Lm} Z S. This way integrity constraints can be modeled.
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For example the program

a<.
bV —c + a.

has two answer sets {a,b} and {a,—c}.

Now let II be an arbitrary disjunctive logic program without variables:

Definition 2. Let II be a disjunctive logic program. For any set S C Lit let
II° be the program obtained from II by deleting

1. each rule that contains not L in the body with L € S, and
2. all formulae of the form not L from the bodies of the remaining rules

AsTI® does not contain default negation not , its answer sets are already defined.
If some answer set of IIS coincides with S then we say that S is an answer set
of I1.

For example a program consisting of the following rules

a + not b.
bV —c <+ a.

has the answer set {a, —c}.

2.1.3 Using Answer Set Programming for Temporal Rea-
soning and Planning

The general idea behind using Answer Set Programming for temporal reason-
ing is encoding certain facts about the world which can change over time (the
fluents) and can be influenced by actions with predicates extended by an extra
integer parameter called time-step. This is basically the same approach as used
for the situation calculus [42] to model actions in first-order logic.

For instance, alive(azel,0) means that azel is alive at time 0 (time-step 0
will be referred as initial state). The action shoot(azxel,0) would mean that
azel is shot at time 0. The following example shows how to encode effects of
actions:

alive(azel,0) + .
alive(X,T1) V —alive(X,T1) < shoot(X,T), alive(X,T), T1 =T + 1.
alive(X,T1) < not—alive(X,T1),alive(X,T), T1=T + 1..

This can be read as follows:

- azel is initially alive.
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- To shoot somebody who is alive at a certain point in time possibly causes
the person to be not alive at the next point in time.3

- The third rule serves to handle the frame problem [43] in a very elegant way
using the expressive power of default negation: Unless there is evidence
that a person is not alive, and was alive before, we assume that the person
will remain alive.

Although the implementation of action domains sketched here gives an idea
of how action/planning domains can be expressed in Answer Set Programming,
encoding is not really self-explanatory or easy to read. This is why we will intro-
duce a new planning language called K in the following, which allows describing
planning domains in a more natural way, and subsequently show how this lan-
guage can be translated to disjunctive logic programs similar to the example
above.

Remark(Notation): In the subsequent chapters, whenever using logic pro-
gramming rules, the prolog/datalog rule operator “-” will be used instead of
“7” for reasons of consistence with the implementation. By analogy we will
use “=” instead of “~” and “v” instead of “V” for classical negation and dis-
Jjunction respectively in examples.

2.2 Review of C Action Language

As mentioned before in the introduction there have already been proposals to
translate high level action languages to logic programs before, the most recent
for action language C, by Lifschitz and Giunchiglia ([30], [28]. A translation for
C to Answer Set Programming is proposed in [36] and [35].

C more or less served as a starting point for our research, and a major part
of our language I, which will be presented subsequently, is based on the work
of Lifschitz, Giunchiglia, McCain and Turner. That is why first of all a short
review of this action language is given.

The language is based on a set o of propositional symbols partitioned into o/
(fluent names) and ¢! (action names). Based on these symbols there are two
kinds of propositions in C: static laws of the form

caused F' if G
and dynamic laws of the form

caused F if G after U

3Disjunction in the head can be used to model nondeterministic effects of actions
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where F,G are (propositional) formulae over o#! and U is a formula over 0. A
set of such propositions is called Action Description. If the head (formula F') of
all propositions is either a literal or the symbol 1 and G, U are conjunctions,
then the Action Description is called definite.

For a definite Action description D a translation Ipr(D) to a logic program is

introduced in [35]. T is a positive integer. The language of Ipr (D) has two kinds

of atoms: fluent atoms - fluent names of D followed by (t) where t = 0,...,T

and action atoms - action names of D followed by (¢) where t =0,...,T — 1.
Program [pr (D) consists of the following rules:

(i) for every static law
caused F if Ly A...A L,

in D we add the rules

F(t) + not Ly(t),...,not Ly(t).

for all t = 0,...,T ((L) stands for the complementary literal to L, if
F = 1, then F(t) is empty, i.e. the rule has an empty head ),

(i) for every dynamic law
caused F if Ly A...AN Ly, after L,,;1 A...ANL,
in D we add the rules
F(t+1) «not Ty 1),...,n0t T 1), Lngr (&), -, Ln(t).
forallt=0,...,T -1
(iii) the rules

—B(t) + not B(t).
B + -B(t).

where B is a fluent atom with time stamp 0 and or an action atom.

The last rules represent that occurrence of actions at every point in time, and a
complete initial state are “guessed” by the program. Informally, what is shown
in [35] is, that the answer sets of this translated program correspond to what
we called optimistic plans in the introduction.

In the following we will give a formal description of a language, which extends
C and is more close to Answer Set Programming, allowing a straightforward
translation, without the necessity to complete the initial state and incorporating
negation as failure in the language itself, which will prove to be very flexible for
the representation of actions and planning.



Chapter 3

Planning Language K

3.1 Syntax of K

For our further considerations we use the following disjoint sets:

0%t is a set of action names.

l

ofl is a set of fluent names.

o'V is a set of type names (object types).

These names are effectively predicate symbols with associated arity (> 0).
Furthermore, let ¢¢°™ and o?*" be the disjoint sets of constant and variable
symbols, respectively.!

ot U ot represent the dynamic knowledge whereas ot¥Prepresents the static
background knowledge (independent from time and actions).
Each K program consists of three parts which will be defined in detail below:

e a disjunction free stratified logic program TI*¥? (over predicate names in
ot¥P) called static background knowledge.

e an action description as defined below.

e a query representing a certain goal, which the planning system/agent
should achieve.

3.1.1 Actions, Fluents and Types

An action A € 02! (with arity m) can refer to a number of objects, which
is written A(o01,...,0,) (like an atom in classical logic) and called an action

atom, in analogy to an action we say A is“executed on the objects ” o1, ..., 0p,

IFollowing logic programming conventions described in Section 2.1, constant and variable
symbols are denoted as strings starting with a lower or uppercase character, respectively.

13
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where o1,...,0, may be either variables, or constant symbols from the static
background knowledge (o1, ...,0, € 6°°™ U g¥?"), for example
move(blockl,table)

to describe an action, where the block block1 is moved to the table. A fluent
F € of! (with arity m) can refer to a number of objects, which is written as
F(01,...,0m), and called a fluent atom, where again o01,...,0,, are elements
of o™ U o¥%". Fluents describe certain relations among objects which are
influenced by actions and time. for example

on(blockl,block?2).

describing that the block block1 is placed on top of blockl.

Finally, static relations (invariable over the time) among the possible objects
are defined through the type atoms which represent certain facts that are inde-
pendent of actions, for example

location(table), block(blockl), ...

Those type predicates representing static knowledge about the world are called
the static background knowledge. This knowledge is defined in a disjunction-
free, stratified, logic program ( For a definition of stratification see [1],[12]).

3.1.2 Literals

An action (resp. fluent, type) literal is an action (resp. fluent, type) atom, which
is possibly preceded by the true negation symbol “=”. Literals preceded by “—”
are called negative Literals, otherwise positive. A literal (or any other syntactic
object) is ground if it does not contain variables.

For any literal [, let —.I denote its complement, i.e. —[ if [ is an atom and
a if | = —a. Similarly, for a set L of literals, =.L = {=.l |l € L}. A set L of
literals is consistent, if L N —.L = (). Furthermore, L™ (resp., L™ ) denotes the
set of positive (resp., negative) literals in L.

The set of all action (resp. fluent, type) literals is denoted as L,c¢ (resp. Ly,
Liyp). Furthermore, let then Ly 4yp = L51U Lyyp; Layn= LU LS, (dyn stands
for dynamic literals); and £ = L4y, U L],.2.

3.1.3 Action/Fluent Declarations

All actions and fluents have to be declared using a statement of the following
form:

Definition 3. A statement of the form:

p(Xi,...,X,) requires t1,...,tn (3.1)

2Note that in this definition only positive action literals are allowed. This is because in
general there is no intuitive meaning of something like “the opposite of an action occurs”
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is called an action (resp. fluent) declaration where p € L7, (resp. p € L},),
Xi,..., Xn €0%, t1,...,t;m € Liyp, n is the arity of p, and all X; occur also
inty,...,tm andn > 0. If n =0, the requires part may be skipped.

That means all variables have to be “bound” to a type in the declaration,
for example :

move (B,L) requires block(B), location(L)
or

on(B,L) requires block(B), location(L)

3.1.4 Causation Rules

Causation rules are used to define static and dynamic dependencies.

Definition 4. Causation rules (rules, for short) are of the form

caused f if bq,...,bg,not bg41,...,n0t I
after ai,...,am,n0t ayy1,...,00t a,

(3.2)

where f € L U {false}, bi,...,by € Lyityp, Q1,-.-,0n € L, 1 >k >0, and
n > m > 0. Rules where n = 0 are referred to as static rules, all other rules
as dynamic rules as these rules describe changes between states as explained
below. When l = 0, the if part can be omitted; likewise, if n = 0, the after
part can be skipped. If both | =n =0, also caused is optional.

Given a causation rule r, let h(r) = {f}, post*(r) = {b1,..., b}, post (r) =
{bks1,--- 01}, pret(r) ={a1,...,am}, pre=(r) = {am+1,--.,an}, and lit(r) =
{fabla"'ablaala"-;an}-

Static rules are used to model static state constraints in an action do-
main. Dynamic rules (rules with a non-empty after part) on the contrary can
be used to model constraints for state transitions and effects of actions.

3.1.5 Initial State Constraints

While the scope of general static rules is over all knowledge states, it is often
useful to specify rules only for the initial states. Static rules can optionally be
under initial scope in our language, using the keyword initially:

Definition 5. Initial state constraints are static rules of the form (3.2)
preceded by the keyword initially.

That means the rule only constrain the initial state of knowledge whereas
generally rules apply to all states, for example:

initially caused f if G
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3. For an initial state constraint ic. h(ic), post™(ic), post~(ic), pret (ic), and
pre~(ic) are defined as for its rule part.

3.1.6 Constraining Executability of Actions

With the framework defined so far we can forbid actions whenever certain pre-
conditions are NOT fulfilled, using a rule with h(r) = false:

caused false after ay,...,am,n0t amy1,...,00t a,

where a; € £, is an action, to express nonexecutability of action a; under
certain conditions. However, in some cases it would be preferable to be able to
express, when an action is executable, the simplest example is STRIPS-like [25]
planning, where we have a list of preconditions for every rule.

K allows STRIPS-style conditional execution of actions introducing special
rules modeling executability conditions. A difference is that X allows several
alternative executability conditions for an action which are even beyond the
repertoire of standard STRIPS. (Though this can be achieved by state of the
art planners which accept PDDL* planning language as input, an extension of
STRIPS where logical formulae are allowed in the precondition. Anyway Koffers
even more flexibility than these planners.

Definition 6. An executability condition is an expression of the form
executable a if by,...,bnp,n0t byy1,...,n0t by (3.3)

where a € L, and by,...,b, € L, andn > m > 0. Ifn = 0, the if part is

act
usually skipped, expressing unconditional executability.

Given an executability condition e, let h(e) = {a}, post™ (e) = post=(e) = 0,
pret(e) = {b1,...,bm}, pre=(€) = {bm+1,...,bn}, and lit(e) = {a,by,...,bp}.

3.1.7 Safety Restriction

In K, all rules (including initial state constraints) and executability conditions
have to satisfy the following syntactic restriction, which is similar to the notion
of safety in logic programs [56] (a definition of Safe Datalog can be found in
[58]):

31f the fluent literal f is ground then it has to be a legal instantiation in terms of the dec-
laration, that means the constants have to correspond with the types given in the declaration
for that fluent. (This restriction will be refined later in this section with the definition of a
legal fluent instantiation)

4PDDL is the language used for the ATPS planning competition introduced for ATPS’98,
see ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz for the language
specification.




CHAPTER 3. PLANNING LANGUAGE K 17

Definition 7. An initial state constraint, a causation rule or an executability
condition r is called safe iff all variables in a default negated type literal t
(t € (post™(r)Upre™(r)) N Liyp), also occur in at least one literal which is not
a default negated type literal.

Thus, safety is required only for variables appearing in default negated type
literals, while it is not required at all for variables appearing in fluent and
action literals. The reason is that the range of the latter variables is implicitly
restricted by the respective fluent/action declaration. Also the safety of the rule
head in logic programs (corresponding with the caused part or executable part
of a rule or executability condition) is implicit by the range restriction of the
fluent /action declarations.

So the difference to the usual notion of safety is that we do not require safety
for fluents and action literals since they are typed by definition and therefore
already range-restricted by the declaration: We can rewrite all rules and exe-
cutability conditions with a default negated action or fluent literal in terms of
the requires clause of the declaration to guarantee safety:

Formally each rule or executability condition r is transformed to a new rule/executability
condition 7' with the same head (h(r') = h(r)) where pre*(r) is extended with

the substituted requires part of the fluent/action declaration (see 3.1) of the

fluent /action in the head: That means, assuming h(r) = b(X), let

b(Y) requires t;(Y1),...,tm(Ym)
be the corresponding declaration. Then
pret (') = pret(r) Ut (Y1), .-, 0(tm (Y )

where 6 is a substitution, such that (Y) = X. If h(r) = false then pre*(r') =

+
pret(r).

Additionally for each fluent/action in pre™(r), i.e. for all default negated ac-
tions/fluents, we have to add the substituted requires part of the corresponding
action/fluent, declarations to pre*(r’). This yields the following new pre* (r’):
Let p; € pre=(r) \ Ltyp = {p1,...,pn} where p; = b;(X;) has a declaration of
the form:

b,(?z) requires tl,z’ (?Li), .. ;tmi,i(Ymi,i)
then

pret () =pret() U | {0t1i(V14),- o, 0(tmi(Vimei))}
i€{1,...,n}

where 6 is a substitution, such that §(Y;) = X; for all i € {1,...,n}.
Analogously for each fluent in post~(r) (the default negated fluents), we have
to add the requires part to postt(r’): Let p; € post™(r) \ Liyp = {p1,---,Pn}
where p; = b;(X;) has a declaration

b,(?z) requires t]_,z' (?1,1'), .. ;tmi,i(Ymi,i)
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then

postt (') = post(r)U | {0(t1i(V1,0)); -+ -5 0(tme i (Vimii)}
i€{l,...,n}

where @ is a substitution, such that (Y;) = X; for all i € {1,...,n}.
Finally post~(r) and pre™(r) remain unchanged:

post™(r') = post™(r)

pre=(r') = pre=(r')
As the rule/executability condition 7’ is uniquely characterized by h(r’), pre™ (r’),
pre~ (1), post™(r’) and post™ (r’) the rewriting is now completely defined.

So the safety restriction defined above is always understood w.r.t. this
rewriting.

Example: Given an action move and fluents on, occupied with declarations

move(B,L) requires block(B), location(L).
on(B1,L) requires block(B), location(L).
occupied(B) requires location(B).

the executability condition

executable move(B1,L1) if not occupied(B1l), not occupied(L1),
Bl # L1.

and the causation rule
caused on(B1,L1) after move(B1,L1).
are rewritten to:

executable move(B1,L1) if not occupied(B1l), not occupied(L1),
B1 # L1, block(B1), location(Ll),
location(B1).

caused on(B2,L2) after move(B2,L2), block(B2), location(L2).

3.1.8 Action Descriptions, Planning Domains
and Planning Problems

Definition 8. An action description is a pair {D,R) where D is a finite
set of action and fluent declarations and R is a finite set of safe executability
conditions, safe causation rules, and safe initial state constraints, s.t. there
erists a declaration for each action or fluent name occurring in R.

Definition 9. A planning domain is a pair PD = (II, AD), where Il is a
normal stratified datalog program (referred to as background knowledge) that
is safe (in the standard LP sense), and AD is an action description.

PD is positive, if no default negation occurs in AD.



CHAPTER 3. PLANNING LANGUAGE K 19

Definition 10. A query is of the form

915+ -+>9m,>00t Gmi1,...,00t gn ? (7) (3.4)
where g1,...,9n € Ly are variable-free, n > m >0 and i > 0.

The list of literals ¢1,...,gm,n0t gm+1,-..,n0t g, is called the goal and i is
a positive integer which is called plan length. The query can be read as: “Is
there a plan achieving the goal in i steps?”

Definition 11. A planning problem (PD,q) is a pair of a planning domain
PD and a query q.

3.2 Semantics of

First we will define the legal instantiations of a planning problem. This is similar
to the grounding of a logic program—the difference is that only correctly typed
fluent and action literals are generated.

3.2.1 Instantiation

Let PD = (I, (D, R)) be a K planning domain, and let M be the (unique, finite)
answer set of the static background knowledge II.

Let substitutions and their application to syntactic objects be defined as
usual (assignments of constants to variables). We first define the notion of legal
action (resp. fluent) instantiations:

Definition 12. For each action (resp. fluent) p given the declaration
p(X) requires t1,...,tm

in D, let 0 be a substitution. Then 0(p(X)) is a is a legal action (resp. flu-
ent) instantiation, if 0 is a (ground®) substitution defined over X such that
{6(t1),...,60(tm)} C M. By Lpp we denote the set of all legal action and fluent
instantiations.

Legal Instantiations of Rules

Legal instantiations of rules and initial state constraints are defined as above
with the following difference: Substitutions of the default negated literals in the
if or after part are not restricted to legal action/fluent instantiations. Still
the legal instantiations remain finite and unique, as the instantiations of those
default negated literals are uniquely determined by the safety restriction (see
section 3.1.7.

Definition 13. Let r be a safe K causation rule or initial state constraint:
5

i.e. a substitution which substitutes all variables with constants



CHAPTER 3. PLANNING LANGUAGE K 20

caused f(X) if bi(X1),-..,bmwes (Xpmpos ),

not bmp05+]_(me05+1), . ,IlOt bm(X—m)
after bpi1(Xmt1),- -« bpwos (Xpwos),
not bpwosy1(Xprost1),--.,n0t bp(Xy)

Let 0 be a substitution. Then the rule r'

caused O(f(X)) if (bi(X1)),...,0(bmpos (Xmpos)),
not e(bmp05+1(me05+1)), ...,not H(bm (X—m))
after 0(bp41(Xmt1)),-- -, 0(bppos (Xppos)),
not O(bpros41(Xppost1)),...,n0t 8(by(X,))

is a legal rule instantiation of the rule r iff

1. 8(f(X)) is a legal fluent instantiation.

2. for each b; € Layn : 6(bi(X;)) is a legal action/fluent instantiation, where
ie{l,... mPPU{m+1,...,nP%}

3. for each bj € Liyp : 6(b;(X;)) is in M, where
je{1,...,n}
Legal Instantiation of Executability Conditions
The legal instantiations of executability conditions are defined analogously:

Definition 14. Let ¢ be a safe K executability condition:

executable a(X) if b1 (X1),...,bm(Xm), L
not bpy1(Xmt1),---,n0t bp(Xy)

Let 0 be a substitution. Then the executability condition '

executable 8(a(X)) if 0(b1(X1)),---,0(bm(Xm)), L
not O(bmt1(Xm41)),--.,n0t 8(bn(Xy))

is a legal instantiation of executability condition c iff all the following condi-
tions hold:

1. 8(a(X)) is a legal action instantiation.

2. for each b; € Layn : 6(b; (X)) is a legal action/fluent instantiation, where

ie{l,...,m}
3. for each bj € Ly : 0(b;(X;)) is in M, where
jef{l,...,n}

Finally: The instantiation of a planning domain PD = (II, (D, R)) consists
of all possible legal instantiations of R according to the declarations in D, i.e.:
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e The set of all legal instantiations of the initial state constraints (static
rules under initial scope).

e The set of all legal instantiations of the causation rules.
e The set of all legal instantiations of executability conditions.

Using a more formal compact description we can define the instantiation of
a planning domain as follows:

Definition 15. Given a planning domain PD = (II,(D, R)) where M is the

unique answer set of 11
poy=J | {6},
reEROEO,

where ©, is the set of all substitutions 6 defined over all variables in r, such
that 1it(8(r)) N Layn C Lpp and (post™ (6(r)) Upret (8(r))) N Liyp C M hold. In
other words, actions and fluents must agree with their declarations and positive
type literals must agree with the background knowledge.

PD| has a ground action description, in which all fluent and action literals
agree with their declarations and all type literals agree with the background
knowledge.

This instantiation makes the planning problem ground in the sense of logic
programming and allows us to define the semantics in terms of a ground program
without loss of generality:

So in the following, whenever we speak about literals, rules, action descrip-
tions and planning domains respectively, we refer to legal instantiations. The
semantics of a general planning problem with variables is determined by its
instantiation.

3.2.2 States and State Transitions

In analogy to the definition of stable models and answer sets [26] (see Chap-
ter 2.1), we will first define the semantics for positive (i.e., default negation free)
planning problems. Subsequently we define a reduction from general planning
problems to positive ones.

In what follows, let PD be a planning domain with instantiation PD} =
(I, (D, R)), and M be the unique answer set of II.

States and State Transitions in Positive Planning Domains

Definition 16. A consistent set of ground fluent literals is called state. A
tuple t = (s, A, s') where s,s' are states and A is a set of action atoms is called
o state transition.

Given (the legal instantiation of) a positive planning domain, a minimal
consistent set sg of fluent literals which satisfies the initial state constraints is
called a legal initial state:
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Definition 17. A state sg s called legal initial state for a positive PD iff for
each initial state constraint and static rule respectively ¢ € R, h(c) is in so if
postt(c) C so UM holds and sq is minimal under this condition.

In other words for each initial state constraint or causation rule in PD
(initially) caused f if by,...,b,
fisin sg if
1. for all b; € Ly : b; € sp, i € {1,...,n}
2. forall bj € Lyp: M =05 j € {1,...,n}.

Given a positive planning domain and a state s, a set of action atoms A =
{ai,...,ar} is called executable action set w.r.t. state s iff for each a; in A
there exists an executability condition

executable a; if b1,...,by,a4,,...,0a;,
such that
1. {b1,...,bn} CsUM and
2. a;; € Aforall je€{1,2,...,n}°
This leads to the following definition:

Definition 18. For a positive PD and a state s, a set A C LY., is called
executable action set w.r.t. s iff for each a € A there exists an executability
condition e € R such that h(e) = {a}, pret(e) CsUAU M.

Definition 19. For a positive PD a state transition t = (s, A, s') is called legal
state transition if A is an ezecutable action set w.r.t. s and s' is a minimal
consistent set that satisfies all causation rules w.r.t. sU AU M, i.e. for every
causation rule r € R, if (i) post™(r) C s' UM, (i) pret(r) CsU AU M hold,
then h(r) # {false} and h(r) € s'.

In other words for each causation rule:
caused f if b1,...,b, after bp41,...,bn
fisin s if
1. forall b; € Ly :b; €8',i€ {1,...,m} and
2. forallb; e Ly:bjes,je{m+1,...,n} and
3. for all by € Lyyp: M |=bi, k€ {1,...,n} and

6This is useful to model compound actions, i.e. actions which may only occur together
with special other actions. If we disallow concurrent actions (see Section 3.2.6) clearly the
occurrence of other actions in the if part of an executability condition does not make sense.
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4. forall by € Lot : € Ajle {m+1,...,n}.

As this definition leads to an inconsistent state when the head of a static/dynamic
rule is false this can be used to formulate integrity constraints, which rule out
certain constellations of fluents/actions, for instance:

caused false after move(B,L), move(B,L1), -equal(L,L1)

expresses that one block can not be moved to two different locations simul-
tanously.

3.2.3 Reduction

Definition 20. For an arbitrary PD and a state transition t = (s, A,s'), the
reduction PD! = (I, (D, R!)) is a planning domain where R is obtained from
R by deleting those r € R, for which either post™(r)N(s'UM) # @ or pre=(r)N
(sUAUM) # 0 holds, and by deleting all not L (L € L) from the remaining
r € R. Note that PD? is positive and ground.

That means the reduction is the positive problem domain obtained from a
general problem domain by deleting;:

1. All causation rules and initial state constraints which contain not f in the
if part and f € s’ (for f € Ly).

2. All dynamic causation rules which contain not f in the after part and
fes (for feLly).

3. All dynamic causation rules which contain not a; in the after part and
a; €A (fOI‘ a; € Eact)-

4. All causation rules and initial state constraints resp. which contain not b
in the if part or after part and b € M (for b € Lyyp).

5. all executability conditions which contain not f in the if part and f € s
(for fecl ﬂ).

6. all executability conditions which contain not a; in the if part and a; € A
(for a; € Laet)-

7. all expressions of the form not L (for L € £) from the remaining causation
rules and executability conditions.

3.2.4 States and State Transitions In General

Definition 21. For an arbitrary PD, a state sq is called legal initial state iff
so is a legal initial state for PDt with t = (0,0, sq).”

"Note that in contrast to the positive definition now there can be several legal initial states
due to the nonmonotonic effects of using default negation.
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A set of action atoms A is an executable action set in PD w.r.t. a state s iff
A is executable w.r.t. s in PD' with t = (s, A, ).

A transition t = (s, A,s') is a legal state transition in PD iff it is a legal
transition w.r.t PD'3

3.2.5 Transition Sequences and Plans

Definition 22. A sequence of legal state transitions T = {({so,Ao,51), ---,
($n—1,An_1,8,)), n >0, is a legal transition sequence for PD, if

1. sg is a legal initial state of PD and
2. all (si—1,Ai-1,8:), 1 <1i<m, are legal state transitions of PD.

In particular T = () is empty if n = 0.

Optimistic Plans
This directly leads to the following simple definition of a plan:

Definition 23. Given a planning problem PP = (PD,q), where q has form
(8.4), a sequence of action sets (Ao, ..., A;), is an (optimistic) plan for PP,
if a legal transition sequence T' = {{so, Ao, 51), - - -, (Si—1, Ai—1, i) in PD exists
such that T establishes the goal, i.e.,

1. {g91,---,9m} C s; and

2. {gm+17"'7gn}msi :®

Secure Plans

However, the existence of an optimistic plan does not guarantee that executing
the plan, due to incomplete information and possible alternative transitions,
will always lead to the goal deterministically. To achieve that, we need a more
strict definition that guarantees determinism of plan execution:

An optimistic plan p = (4y,..., A, 1) is called secure plan iff for all
possible legal initial states so executability of p is guaranteed and leads to the
goal:

Definition 24. An optimistic plan (Ao,...,A;) for PP as previously is a
secure plan, if for every legal initial state sq and legal transition sequence
T = ((s0, A0, 51), ---, {sj-1,4j_1,8;)) such that 0 < j <1, it holds that

1. if j =i then T establishes the goal, and

2. ZfJ <'i, then Aj is executable in 8j w.r.t. PD, i.e., some legal transition
(8j,4j,8j41) exists.

8 Also here now several different successor states can be possible due to the nonmonotonicity
of default negation where in the positive definition the successor state was uniquely determined
by the actions.



CHAPTER 3. PLANNING LANGUAGE K 25

3.2.6 Concurrent Actions

Our definition of transitions allows concurrent actions, that means more than
one atomic action may occur at once. Sometimes it is desired in planning to
prohibit concurrent actions to gain sequential plans. For this purpose we define
the set of all legal state transitions under no concurrency as follows:

If T denotes the set of all legal state transitions ¢t = (s, A, s') then T™°"c C
T denotes the set of all legal state transitions where A has at most one element
(|A] < 1). Kmecome denotes the fragment of K which allows only atomic actions.

For the nonconcurrent case an optimistic (resp. secure) plan p™°°°"™® may
consist only of atomic actions, that means |Ao|,|A41],...,|4i—1] < 1, which
implies that all state transitions t to carry out the plan have to be in K™o¢on¢;
Such a plan {Ag,...,A;—1) is called sequential.

3.2.7 Language Enhancements

In this section we define some shortcuts to express inertia, default knowledge,
nonexecutability of actions and for modeling incomplete knowledge.

Default Knowledge

First we define a shortcut for modeling default knowledge, assumptions which
are true in the absence of more specific knowledge, using the keyword default.
This statement may also be used under initial scope (modeling default knowl-
edge in the initial state):

(initially) default f.
which is equivalent to the (static) causation rule
(initially) caused f if not -.f.

where f is a fluent literal.

Inertia

In planning it is often useful to declare some fluents as inertial, which means
that these fluents keep their truth values in a state transition, unless explicitly
affected by an action. Inertia of fluents is strongly related to the frame problem
[43, 51], which has been studied intensively in the AI literature.

To allow for an easy representation of inertia, we have enhanced the language
with a shortcut

inertial f.
which is equivalent to the (dynamic) causation rule
caused f if not —.f after f.

where f is a fluent literal.
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Reasoning under Incomplete Knowledge

For reasoning under incomplete knowledge we introduce totalization rules (pos-
sibly under initial scope) to model completion of incomplete knowledge of an
agent about a fluent:

(initially) total f if by,...,bg,not bgt1,...,n0t b;

after ai,...,am,n0t am41,...,n0t ay.

which is a shortcut for

(initially) caused f if not —f,b1,...,bg,n0t bgy1,...,n0t I
after a1,...,ay,n0t ayy41,...,00t ay.
(initially) caused —f if not f,b1,...,bg,n0t bgy1,...,n0t Y
after ay,...,am,not am41,...,00t ay.

where f is a positive fluent literal. Such total statements if preceded by key-
word initially, only complete the initial state. In this case the after part
has to be empty (m = n = 0).° These rules guarantee total state information
w.r.t. a given fluent. This means that for any fluent where no other information
exists a truth value is “guessed”, which allows us to generate plans in which the
value of an undefined fluent is essential.

Furthermore, we can restrict guessing to the case when some preconditions
hold in the current state (by,...,bg,not bgy1,...,not b;) and model nondeter-
ministic changes over a transition ( ay,- .., am,n0t Ay, ---,00t ay).

So the total statement forces to guess the truth value of a fluent, if it is
unknown in a state. In this sense K allows conditional totalization of fluents.
As we will see in the subsequent chapters and the examples later on, the if
part in totalization rules allows more compact modeling of some examples, and
more efficient translation to logic programming. This is especially helpful in the
initial case to “guess” in case of incomplete initial knowledge, but also to model
nondeterministic effects of actions.

Nonexecutability of Actions

Finally, it may be convenient to explicitly forbid executing an action under
specific circumstances. To this end, we introduce

nonexecutable a if B.
where a is an action atom, as a shortcut for
caused false after a,B.

In case of conflicts, nonexecutable A overrides executable A.

9Note that this is a remarkable difference to Lifschitz’ C Action Language [30, 36, 35] where
the totality of fluents in all states is implicit. In our language a fluent must be declared to
be possible incomplete in using this total primitive. This approach on the other hand is
closer to Answer Set Programming whereas C Action Language is oriented towards planning
as satisfiability, due to Kautz and Selman [33], where total interpretations are implicit and
there is no possibility for conditional totality of fluents.
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3.3 Complexity of K

In this section, we present some results on the computational complexity of
planning in K for the ground (propositional) case (see [2, 9] and references
therein for related results).!? In particular, we consider here the following three
problems:

e Deciding, given a propositional planning problem (PD, q), whether some
optimistic plan exists.

e Deciding, given an optimistic plan P = (A4,..., A,) for a propositional
planning program (PD, q), whether P is secure.

e Deciding, given a propositional planning problem (PD, g), whether some
secure plan exists.

We say that an arbitrary planning domain PD is proper if, given a state s and
an action set A, the existence of a legal state transition (s, A, s} is polynomially
decidable (i.e., we can check efficiently the existence of a successor state s'). A
planning problem (PD,q) is proper if the underlying planning domain PD is
proper.

We call a legal transition (s, A,s1) determined, if s; = s holds for every legal
transition (s, 4, s2) (i.e., executing A on s leads to a unique new state), and we
call a planning domain deterministic, if all legal transitions in it are determined.

The existence of a secure plan can be decided by composing an algorithm for
constructing optimistic plans and an algorithm for checking security of an op-
timistic plan (this is actually the algorithm of the current prototype, presented
in the subsequent chapters). Our membership proofs for deciding the existence
of an optimistic plan actually (nondeterministically) construct such a plan, and
thus we can easily derive upper bounds on the complexity of deciding the ex-
istence of a secure plan from the complexity of the combined algorithm. (We
will repeatedly use slightly simpler algorithms, though, which do not actually
generate optimistic plans in the first step.)

We remark here that the formulation of security checking is, strictly speak-
ing, a promise problem, since it is asserted that P is an optimistic plan, which
can not be checked in polynomial time in general (and thus legal inputs can
not be recognized easily). However, the complexity results that we derive below
would remain the same, even if P were not known to be an optimistic plan.

We will consider the three problems from above under the following two
restrictions:

Proper vs general planning domains We pay special attention to proper
planning domains, and contrast them to general planning domains.

10The results and proofs given here are taken from [17].
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In fact, our proofs of the lower bounds for proper planning domains apply
to a particular syntactic subclass, which is defined as follows. We call a
planning domain PD = (II, AD) plain, if the background knowledge II is
empty, and AD satisfies the following conditions:

e Executability conditions refer only to fluents.

e No default negation —neither explicit nor implicit through language
extensions— is used in the post-part of causation rules in the ’always’
section. In particular, inertia rules are disallowed.

e Given that ay,...,a,, are all ground actions, AD contains the rules

caused false after o;, «; 1<i<j<m
caused false after not a;, not as, ..., not a,, .

They ensure that in each legal state transition t = (s, 4,s"), |[A| =1
must hold. Thus, noConcurrency is implicitly enforced, and each
optimistic plan (thus also each secure plan) must be sequential.

It is easy to see that under these conditions, given some state s and an
action set A, deciding whether some legal transition (s, A,s') exists is
polynomial. In other words, PD is proper. Moreover, each legal transition
is clearly determined, and thus PD is also deterministic.

We call a planning problem PP = (PD,q) plain if PD is plain.

Fixed vs arbitrary plan length We analyze the impact of fixing the length
i in the query ¢ = Goal ? (i) of (PD,q) to a constant.

Note that, in general, the length of a possible plan for (PD,q) can be
exponential in the size of the string representing ¢ (which, as usual, is
represented in binary), and also exponential in the size of the string rep-
resenting the whole input (PD, q). Thus, storing a complete possible plan
in the working memory requires exponential space in general. If i is fixed,
however, then the representation size of the plan is linear in the size of
(PD, q)-

Properness even holds if we allow, what will be called “stratified” default
negation in the post-part of causation rules in the ’always’ section: For this
we need to adapt the definition of stratified logic programs to our language:

Definition 25. A planning domain PD is stratified, if there is an assignment
str(i) of integers 0,1,... to the fluent literals in PD (=Lg;) such that for each
causation rule v in PD the following holds: Taken h(r) = f, if g € postt(r)
then str(f) > str(g) and if g € post—(r) then str(f) > str(g).

The problem of deciding whether some legal transition (s, A4, s') exists can,
be reduced to a the problem whether a logic program has a stable model, the
translation will be shown in the next chapter. For stratified planning domains
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this translated logic program is stratified in the sense of logic programming.
Stratified logic programs, however, always have a unique stable model, so to
decide whether a legal transition exists is trivial and therefore stratified planning
domains are proper.

Allowing stratified default negation especially affects inertia rules, where
default negation occurs in the post-part of causation rules:

caused f if not —.f after f.

Plain programs would not even allow any form of inertia, whereas we can
allow inertia, as long as the domain remains stratified, without hurting proper-
ness.

Determinism though does not hold anymore, as inertia rules can be used to
“inherit” nondeterminism to subsequent states, i.e.

total a.

can be emulated for the fixed-length case with the following translation for given
plan length n:

initially total guessi.
initially total guesss.

initially total guess,.
inertial guess:.
inertial guessa.

inertial guess,.
initially ¢;.
caused t> after t;.

caused t, after t,_1.
initially total a.

caused a after guessi,ti.
caused —a after not guessi,ti.

caused a after guessy,t,.
caused —a after not guessn,tn.

Obviously this translation is polynomial and based only on inertia-rules,
which do not hurt stratification. This translation shows furthermore that proper-
ness is not influenced by allowing total statements for the fixed-length case.

3.3.1 Results

In the derivation of the lower bounds of our results, the background knowledge
IT of the planning domain PD = (II, AD) will always be empty.

We start with noting the following auxiliary result on checking initial states
and legality of state transitions.
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Lemma 1. Given a state so (resp., a state transition t = (s, A,s')) and a
propositional planning domain PD = (I1,{D, R)), checking whether sq is a legal
initial state (resp., t is a legal state transition) is possible in polynomial time.

Proof. The unique answer set M of the stratified normal logic program II can
be computed in polynomial time (cf. [12]). Given M, the reduction PD! can
easily be computed in polynomial time. Checking whether s¢ is a legal initial
state for PD* amounts to checking whether s is the least fix-point of a set of
positive ground rules, which is well-known polynomial. Overall, this means that
checking whether s is a legal initial state of PD is polynomial. From M, ¢, and
PD?, it can be easily checked in polynomial time whether A is executable w.r.t.
s and, furthermore, whether s’ is the minimal consistent set that satisfies all
causation rules w.r.t. s U A by computing the least fixpoint of a set of positive
rules and verifying constraints on it. Thus, checking whether ¢ is a legal state

transition is polynomial in the propositional case. O
Corollary 1. Given a sequence of state transitions T = (t1,...,t,), where
t; = (8i—1,44,8;) fori=1,...,n, and a propositional planning domain PD =

(I, (D, R)), checking whether T is legal w.r.t. PD is possible in polynomial time.

An optimistic plan P = (4,,..., A,) can be generated nondeterministically,
by guessing legal transitions (s; 1, A4;, s;) subsequently, starting from some (non-
deterministically generated) legal initial state so. Since this requires only poly-
nomial workspace and NPSPACE = PSPACE, the problem is in PSPACE. On
the other hand, propositional STRIPS, which is PSPACE-complete [9], can be
easily reduced to K:

Theorem 1. Deciding whether for a given ground planning problem PP =
(PD, q) an optimistic plan ezxists is PSPACE-complete. Hardness holds even in
the case where PP is plain (thus, proper).

Proof. A proof of membership in PSPACE is the discussion above (note Lemma 1).
We remark that the problem can be solved by a deterministic algorithm in poly-
nomial workspace as follows. Similar as in [9], design a deterministic algorithm
REACH(s, s',£) which decides, given states s and s’ and an integer £, whether a
sequence t1,. . . ,tp of legal transitions t; = (s;_1, A;, s;) exists, where s = sy and
s' = sy, by cycling trough all states s" and recursively solving REACH(s, s”, |£])
and REACH(s", s', |£] +1). Then, the existence of an optimistic plan of length
£ can be decided cyclic through all pairs of states s, s’ and testing whether s is a
legal initial state, s" satisfies the goal in given in ¢, and REACH(s, ', £) returns
true. Since the recursion depth is O(log £), and each level of the recursion needs
only polynomial space, Lemma 1 implies that this algorithm runs in polynomial
space.

For the PSPACE-hardness part, we describe how propositional STRIPS
planning as in [9] can be reduced to planning in K, where the planning do-
main PD is plain.

Recall that in propositional STRIPS, a state description s is a consistent
set of ground literals, and an operator op has a precondition pc(op), an add-list
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add(op), and a delete-list del(op), which all are lists of propositional literals. The
operator op can be applied in s if pc(op) C s holds, and its execution yields the
state op(s) = (s \ del(op)) U add(op) (where s’ must be consistent). Otherwise,
the application of op on s is undefined. A goal v, which is a set of literals, can
be reached from a state s, if there exists a sequence of operators op1, ..., opy,
where £ > 0, such that s; = op;(s;—1), fori =1,...,£, where sg = s, and 7y C sy
holds. Any such sequence is called a STRIPS-plan (of length £) for s,v. Given
s,7, a collection of STRIPS operators ops,...,0p,, and an integer £ > 0, the
problem of deciding whether some STRIPS-plan of length at most ¢ exists is
PSPACE-complete [9]. As easily seen, this remains true if we ask for a plan of
length exactly £ (just introduce a dummy operation with empty precondition
and no effects).

Each STRIPS operator op; is easily modeled as action in language K using
the following statements in AD:

executable op; if pcop;)
caused L after op; for each L € add(op;) \ del(op;)
caused L after op;, L for each L ¢ add(op;) U del(op;)

The last rule is an inertia rule for the literals not affected by op.

The initial state s of a STRIPS planning problem can be easily represented
using the following constraints in the initially’ section of a K program for
PD:

caused L for all L € s.

Finally, AD contains the mandatory rules for unique action exection in a
plain planning domain:

caused false after op;, op; 1<i<j<n
caused false after not op;, not opz, ..., not op, .

It is easy to see that for the planning problem PP = (PD,q) where q¢ =
v 7 (£), some optimistic plan exists iff a STRIPS-plan of length £ for s, exists.
Since PP can be constructed in polynomial time from the STRIPS instance,
this proves the PSPACE-hardness part. O

If the number of steps in ¢ is fixed, the complexity decreases because alto-
gether there is fixed number of guesses, which have polynomial size.

Theorem 2. Deciding whether for o given ground planning problem PP =
(PD, q) an optimistic plan exists is NP-complete, if the number of steps in q is
fized. Hardness holds even if PP is plain (thus, proper).

Proof. The problem is in NP, since a legal transition sequence T = {t1,...,%;)
where t; = (sj_1,A4;,s;) for j = 1,...,4, such that s; satisfies the goal in
g = Goal ?(i) can be guessed and verified in polynomial time if ¢ is fixed.
NP-hardness for plain planning problems is shown by a simple reduction
from the satisfiability problem (SAT). Let ¢ = C1 A--- A Ci be a CNF, ie., a
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conjunction of clauses C; = L;1 V-V L; r,; where the L; ; are classical literals
over propositional atoms z1,...,Zy,.
Then, put the following clauses into the initially’ section:

caused z; if not —x; forallj=1,...,n

caused —z; if not z; forallj=1,...,n

caused false if —L;1, ..., —Lim, foralli=1,...,k
caused 0.

Here 0 is a further atom. Clearly, a legal initial state exists iff ¢ is satisfiable.
Thus, a plan P exists for the query @ = 0 ? (0) iff ¢ is satisfiable. Since PD is
easily constructed from ¢, the result follows. O

Deciding the existence of a secure plan appears to be harder, since it allows
us to encode also planning under incomplete initial states as in [2]. Already
recognizing a secure plan is difficult.

Theorem 3. Given a ground planning problem PP = (PD,q) and an optimistic
plan P for PP, deciding whether P is secure is (a) 1Y -complete in general and
(b) coNP-complete, if PP is proper. The hardness results hold even if the number
of steps in q 1is fixed.

Proof. The plan P = (A4,...,A;) for PP is not secure, if a legal transition
sequence T = (t1,...,ts), where t; = (s;_1,A;j,s;), for j =1,..., £ exists, such
that either (i) £ = ¢ and s; does not satisfy the goal in ¢, or (ii) £ < ¢ and
for no state s, the tuple (sg, Asy1,s) is a legal transition. A legal transition
sequence T of length £ can, by Corollary 1, be guessed and verified in polynomial
time. Condition (i) can be easily checked. Condition (ii) can be checked by a
call to an NP-oracle in polynomial time. It follows that checking security is in
coNe™ = 1Y in general. If PP is proper, condition (ii) can be checked in
polynomial time, and thus the problem is in coNP. This shows the membership
parts.

1Y -hardness in case (a) is shown by a reduction from deciding whether a
quantified Boolean formula (QBF) ® = VX 3Y ¢ is true, where X,Y are disjoint
sets of variables and ¢ = C ...C} is a CNF over X UY. This problem is well-
known I17'-complete, cf. [47]. Without loss of generality, we may assume that ¢
is satisfied if all atoms in X UY are set to true.

The ’initially’ section contains the following constraints:

caused z; if not —x; forall z; € X
caused —z; if not z; forall z; € X
caused 0

The ’always’ section contains the following rules. Suppose that L; 1, ... L; p;
are all literals over atoms from X that occur in C;, and similarly that K; 1,
... K; m, are all literals over atoms from Y that occur in Cj.
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caused y; if not —y; after 0 forall y; € X
caused —y; if not y; after 0 forally; € X
caused false if —K;i,..., —K;m;

after 0, _Lz',l,---, _Li,ni for allz:l,,k
caused 1 after 0
Note that, by these rules, there are 2/X| legal initial states Sgs ees s%lx‘
which correspond 1-1 to the truth assigments to the atoms in X. Each such s}
contains precisely one of z; and —z;, for all z; € X, and the atom 0. The causal
rules for y; and —y; effect that in each legal state s; wich follows the initial
state, exactly one of y; and —y; is contained. That is, s; must encode a truth
assignment for Y. The rules with false in the head check that the assignment
to X UY, given jointly by s} and s1, must satisfy all clauses of ¢. Furthermore,
1 must be contained in s; by the last rule.

Let us introduce a dummy action a. Then, the assumption on ® implies
that P = {(so, A1,51)), where sg = X U {0}, 41 = {a}, and s; = X UY U {1},
is a legal transition sequence, and thus P = (A;) is an optimistic plan for the
query 17 (1).

It is not hard to see that P is secure iff @ is true. Since (PD,q) is easily
constructed from ®, this proves the hardness part of (a). The hardness part
of (b) is established by a variant of the reduction, in which Y is disregarded
(i.e., Y = 0), and the rules are modified as follows: false is replaced by 1, and
the rule with effect 1 is dropped. Note that the resulting planning domain is
plain. Then, the plan P = (A;) is secure, iff VX ¢ is true, i.e., the CNF ¢ is
unsatisfiable. Since deciding this is coNP-complete, this proves coNP-hardness
in case (b). O

When looking for a secure plan, the complexities of generating an optimistic
plan and checking security combine, even if the number of steps is bounded.
Intuitively, we can build a secure plan step by step only if we know all states
that are reachable after the steps A;, ..., A; so far when the next step A;y1
is generated. Either we store these states explicitly, which needs exponential
space in general, or we store the steps Aj,..., A; (from which these states can
be recovered) which also needs exponential space in the representation size of
(PD, q). In any case, such a nondeterministic algorithm for generating a secure
plan needs exponential time.

In general, deciding whether a given ground planning problem PP = (PD, q)
has a secure plan is NEXPTIME-complete. Hardness holds even if the planning
problem is plain (thus, proper), this result is given without proof here (proof
can be found in [17]. Hence, NEXPTIME actually captures the complexity of
deciding the existence of a secure plan. Note that NEXPTIME strictly contains
PSPACE, and thus this problem cannot be efficiently translated to traditional
STRIPS planning.

More interesting for our observations in the following is the existence of a
secure plan if the number of steps is fixed:
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Theorem 4. Deciding whether a given ground planning problem PP = (PD, q)
has a secure plan is (a) T -complete if the number of steps in q is fized and
(b) ©F -complete if number of steps in q is fivred and PP is proper (S¥-hardness
holds even for plain PP).

Proof. A legal transition sequence T' = {(s0,A41,51),-..,(si—1,4i,s;)) of fixed
length ¢ that induces an optimistic plan P = (Ay,..., A;) can be guessed and
verified in polynomial time (Corollary 1), and by Theorem 3, checking whether
P is secure is possible with a call to an oracle for I} in case (a) and for coNP
in case (b). Hence, it follows that the problem is in %I in case (a) and in ¥
in case (b).

For the hardness part of (a), we transform deciding the validity of a QBF
& = 3ZVX3IY ¢, where X,Y, Z are disjoint sets of variables and ¢ = Cy ...Cy
is a CNF over X UY U Z, which is ¥f-complete [47], into this problem. The
transformation is in spirit of the reduction in the proof of Theorem 3.

The ’initially’ section of the K program for PD contains the following
constraints:

caused z; if not —z; forallz; € X
caused —z; if not z; forallz; € X
caused O.

We introduce, for each atom z; € Z, an action set,,, which has the following
executability condition:

executable set,, if 0.

The ’always’ section of the program contains the following rules. Suppose

that L; 1, ...L;p, are all literals over atoms from X U Z that occur in Cj, and
similarly that Kj; 1, ... K; m,; are all literals over atoms from Y that occur in Cj.
caused z; after 0, z; forall z; € X
caused —z; after 0, —z; forall z; € X
caused z; after 0, sety for all z; € Z
caused —z; after 0, not set,, for all z; € Z

caused 1 after 0

caused y; if not —y; after 1 forally; €Y
caused —y; if not y; after 1 forally; €Y
caused false if —L;1,..., —Ljnp,

after 1, —K;1,..., Kim; foralli=1,...,k
caused 2 after 1.

Given these action descriptions, there are 2!/X| many legal initial states 58,

ey s%lxl, which correspond 1-1 to the possible truth assignments to the vari-
ables in X and contain 0. Only in these states s} actions are executable, which
assign a subset of Z the value true. Every state s¢ reached from s{ by a le-

gal transition must, for each atom a € Z U X, either contain a or —a, and it
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contains the atom 1. Next, each state sy reached from such a s’i must contain
either y; or —y;, for every y; € Y, and it contains the atom 2.

It is not hard to see that an optimistic plan for the goal 2 exists iff there is
an assignment to all variables in X UY U Z such that the formula ¢ is satisfied.
Any such plan must be of form P = (A4;,0), where Ay C {set,, | 2; € Z}.
Furthermore, P is secure iff A; represents an assignment to the variables in
Z such that, regardless of which assignment to the variables in X is chosen
(which corresponds to the legal initial states sj), there is some assignment to
the variables in Y (i.e., there is at least some state s} reachable from si, by
doing nothing), such that all clauses of ¢ are satisfied; any such s} contains 2.
In other words, P is secure iff @ is true.

Since PD is constructible from @ in polynomial time, it follows that deciding
whether a secure plan exists for PP = (PD, q), where ¢ = 2 ? (2), is ¥{-hard.
This proves part (a).

For the hardness part of (b), we modify and simplify the construction for
part (a) as follows. We assume that Y =, and

e replace false in rule heads by 1, and 1 in the bodies by 0.
e remove the rules for 1 and 2 (and those for y;, —y;).

Clearly, the resulting planning domain is plain. We have again 2/X| initial
states s}, which correspond to the truth assignments to X. An optimistic plan
for the goal 1 is of the form P = (A;) where A; C {set,, | 2z; € Z} and
corresponds to an assignment to Z U X such that ¢ is false. The plan P is
secure iff every assignment to X, extended by the assignment to Z encoded by
A, makes ¢ false.

It follows that a secure plan for PP = (PD, q), where ¢ = 1 ? (1), exists iff
the QBF 3ZVX—¢ is true. Evaluating a QBF of this form is ¥'-hard (recall
that ¢ is in CNF). Since PP is constructible in polynomial time, this proves
P hardness for part (b). O

If we exclude concurrent actions, the complexity remains unaffected in the
general case (cf. Theorem 4). However, it is lower if the plan length is fixed.
Recall that DT is the class of problems which are the conjunction of a problem
in NP and a problem in coNP.

Theorem 5. Deciding whether a given ground planning problem PP = (PD, q)
has a secure sequential plan is (a) II¥ -complete, if the number of steps in q is
fized, and (b) DT -complete if the number of steps in q is fived and PP is proper
(D¥ -hardness holds even for plain PP).

Proof. If the plan length ¢ in the query ¢ = Goal ? (7) is fixed, the number of
candidate sequential secure plans, given by (a + 1), where a is the number of
actions in PD, is bounded by a polynomial.

A candidate P = (4;,...,A4,) is not a secure plan, if (i) no initial state
so exists, or (ii) like in the proof of Theorem 3, a legal transition sequence
T = (t1,...,ts), where t; = (s;_1,A;,s;), for j = 1,...,{ exists, such that



CHAPTER 3. PLANNING LANGUAGE K 36

either (ii.1) £ = 7 and s; does not satisfy the goal in ¢, or (ii.2) £ < i and for no
state s, the tuple (sg, Agt1,5) is a legal transition. The test for (i) is in colNP,
while the test for (ii) is in ¥ in general and in NP if PP is proper (cf. proof of
Theorem 3). Note that (i) is identical for all candidates.

Thus, the existence of a sequential secure plan can be decided by the con-
junction of a problem in NP and a disjunction of polynomially many instances
of a problem in I’ in case (a) and in coNP in case (b); since NP C II¥’ and
both 1Y and coNP are closed under polynomial disjunctions and conjunctions of
instances (i.e., a disjunction resp. conjunction of instances can be polynomially
transformed into a single instance), it follows that the problem is in I’ in case
(a) and in D¥ in case (b).

1Y -hardness for case (a) follows from the reduction in the proof of Theo-
rem 3. There, a secure, sequential plan exists for the query 1 ? (1) iff the plan
P = ({a}) is the secure.

D¥-hardness in case (b) is shown by a reduction from deciding, given CNFs
¢=N1LiaVLiaVLizand = \;L K1V K;2V K3 over disjoint sets of
atoms X and Y, respectively, whether ¢ is satisfiable and 1 is unsatisfiable.

The ’initially’ section of the K-program for PD contains the following
constraints:

caused z; if not —ux; for all z; € X
caused —z; if not z; for all z; € X
caused y; if not —y; forally; €Y
caused —y; if not y; forally; €Y
caused Li,l if —Li,g, —Lz'73 for all i = 1, PRI 1)

The ’always’ section contains the following rules:
caused f after —K;; —K;2, —K;3 foralli=1,...,m

Obviously, these rules satisfy the conditions for a plain planning domain.
Now introduce a dummy action o, and add the mandatory action execution
constraints of a plain planning domain (which enforce that a must be executed).
Then, for the query ¢ = f 7 (1), the only candidate for a sequential secure plan
is P = ({a}). As easily seen, P is a secure plan for ¢ iff ¢ is satisfiable (which is
equivalent to the existence of legal initial states) and 1 is unsatisfiable (which
means that f is true in each state reachable by executing « on an initial state).
This proves the hardness part of (b). O

3.3.2 Conclusions and Considerations upon Implementa-
tion

The Y- and ¥ -completeness results in Theorem 4 imply that even short

secure plans can not be efficiently expressed in systems which allow to solve

only problems in NP, such as Blackbox [34], CCALC [39], smodels [45], or

satisfiability checkers. The hardness results rely on the fact that parallel actions
are possible. Note that Baral et al. [2] report the related result that deciding
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in language A [27], which gives rise to proper, deterministic planning domains,
the existence of an, in our terminology, secure sequential plan whose length is
polynomially bounded is %Z'-complete.

Note that furthermore D¥-completeness in Theorem 5 implies that the se-
cure planning problem is still not efficiently representable in systems with ex-
pressiveness limited to NP. Nevertheless we will present a translation to the
more powerful formalism of Answer Set Programming, i.e. logic programming
with classical negation and disjunction in the head, also referred as Extended
Disjuncitve Logic Programming. EDLP under the stable model semantics is
MY -complete for the propositional case due to [13], [12].

This allows the following conclusions considering the translation to ASP:

Theorem 2 shows that optimistic planning with fixed plan length can be
reduced efficiently to extended LP under the answer set semantics, which will
be shown in the next section, as both problems are NP-complete: Given a
propositional extended logic program, deciding whether an answer set exists is
NP-complete [4]. Properness does not matter for optimistic planning.

By a related result in [4], extended logic programming (logic programming
with classical negation) is coNP-complete. This means that there must be an
efficient algorithm in extended logic programming to check plan security for
proper domains due to the result in Theorem 3(b).

Unfortunately, checking whether a planning domain is proper is not feasible
in general, so we will reduce our observations to a certain subclass of proper
domains. As stated above, plain domains remain proper, if we extend them by
stratified default negation. The translation, which will be proposed subsequently
in fact only works correctly on stratified domains, although due to the results
above there should be a translation of the check to extended logic programming
which works for all proper domains.

At least it would be interesting to lift the restriction to stratified domains
a little bit more by finding a more general class of proper domains, which are
easy to check. Stratification restricts us to programs that for example do not
even allow total statements or pairs of inertial positive and negative rules:

caused f if not -f after f.
caused -f if not f after f.

Obviously such a pair of rules standing alone does not harm properness, as they
never can fire concurrently.

There exist promising results in [48] which state that we could possibly allow
default negation more generously while properness of domains is still guaranteed,
this will be part of further investigations.

The further results finally allow the assumption and hope that even an ef-
ficient translation for general secure checking (Theorem 3(a)) and the problem
of secure plan existence for sequential planning (Theorem 5) can be found using
the increased expressive power of disjunctive logic programming, which is also
IT¥-complete as stated above. Also the ¥ result in Theorem 4 seems to be
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very promising for finding further translations. This will also be part of further
investigations.



Chapter 4

From K to Disjunctive
Logic Programming

In order to find plans for problems given in language K, it is desirable to trans-
late these planning problems to problems in logic programming which can be
processed by logic programming systems, like DLV [23] or Smodels [46, 52].
These systems can efficiently find models under the answer set semantics and
stable model semantics respectively.

The translation given in here is based on the translation for Action Language
C proposed by Lifschitz, see Section 2.2, but is closer to logic programming: Our
language for example allows default negation directly and the translation will
be straightforward and very simple.

After giving a basic translation, which allows us to find optimistic plans for a
given planning problem by calculating the answer sets of a logic program, some
refinements will be explained and a method for checking plan security using
logic programming will be shown, which is applicable for a certain subclass of
(proper) planning domains.

4.1 Basic Translation

Given a (non-ground) K planning problem P = (PD,q) we will now give a
simple translation that will create a disjunctive logic program PLF. Tt will
be shown that the answer sets of this logic program correspond with the valid
(optimistic) plans of P.

We start with the translation of the query g¢:

g1 (71), . ,gm(ym),not Im+1 (ym—i-l); ...,not gn(yn)? (1)

39
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is translated to:
time(T) : — 0< T <.
actiontime(T) : — 0< T < 1.

goal : —g1(X1,4);- s gm(Xm»),00t gma1(Xmi1,4),...,00t gn(Xn,1).
: — not goal.
(4.1)

This translation introduces two auxiliary predicates time, actiontime, which
will be used to describe time as a parameter for the actions and fluents. time(T)
is true for all possible points of time T' € {0,1,...,i}, whereas actiontime(T)
is true only for all but the maximum points of time, to describe that actions
may not occur in the final state.

4.1.1 Typing and Safety

For PD = (II, AD) the background knowledge II is already given as a logic
program and all the rules in IT and facts can be directly included into PZ¥
without translation.

The initial state constraints, causation rules and executability conditions
in AD then have to be transformed according to the rewriting pointed out in
Section 3.1.7 to achieve safety in the translated program.

The resulting planning domain will be translated as follows:

4.1.2 Executability Conditions

Each executability condition e: o o o
executable a(X) if b1(X1),..., 0 (X m),n0t b1 (Xma1), - --,n0t by (Xy)
is translated to the following LP rule:

!

a(X,T) v —a(X,T) : — actiontime(T),b1(X1), .- bm(X.,),

— _ (4.2)
not bm+1(X;n+1), ...,not bn(X:l).

—

where b;(X;) (i € {1,...,n}) denotes the literal
° bz(yz) iff b; € ot¥? and
o b;(X;,T) iff b; € o/t

These rules “guess”, whether an action occurs at a certain point of time or not,
for example given that action move has the declaration:

move(B,L) requires block(B), location(L).

we translate

executable move(B,L) if not occupied(B), not occupied(L), B # L.
to:

move(B,L,T) v -move(B,L,T) :- block(B), location(L), not occupied(B),
not occupied(L), B # L.
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4.1.3 Causation Rules
Each causation rule c:

caused f(X) if b1 (X, ),_ <y bk (Xk),_not b1 (X rgt )_, ..,not b(X;) -
after a1(Y1),...,am(Y m),n0t ami1(Ymt1), .- -,n0t an(Yy)

is translated to the following LP rule:
FX,T1) = b (X)), -, be(X),mot bpy1 (X jyr), - - -, mot b(X)),
a1 (X)), -, am(X ), 00t a1 (Vgr), - 00t an(V,), (4:3)
actiontime(T), T1 =T + 1.

—

where b;(X;) (i € {1,...,1}) denotes the literal
e b;(X;) iff b; € 0*¥P and
o b;(X;,T1) iff b; € o/t

and a; (7;) (j € {1,...,n}) denotes the literal
e a;(Y;) iff a; € o' and
e a;(Y;,T)iff aj € 02t U7l

For rules with an empty after part (static rules), 71 = T + 1 may be skipped
in the resulting LP rules, as the variable 7' does not appear anywhere else in
the rule.

A short example (given fluent on has the declaration: on(B) requires
block(B) . and move has the same declaration as mentioned above)
caused on(B,L) after move(B,L).
caused -on(B,L1) after move(B,L), on(B,L1), L # L1.
will be translated to:

on(B,L,T1) :— move(B,L,T), block(B), location(L), actiontime(T),
T1 =T+ 1.

-on(B,L1,T1) :- move(B,L,T), block(B), location(L1l), on(B,L1),
actiontime(T), T1 = T+1.

For rules having false in the caused part and an empty if part (for example
the nonexecutable rules) actiontime(T), T1 = T + 1 can be replaced with the
single literal actiontime(T), whereas on the other hand for rules having false
in the caused part and an empty after part time(T'1) is sufficient (as operator
T will not occur in the translation.)

So rules with false in the caused part are translated to LP rules with an empty
head (often denoted as (strong) integrity constraints in the literature [7], [6],
[21], [8]), for instance

caused false if on(B,L), on(B,L1), L<>L1.

is translated to:

:- on(B,L,T1), on(B,L1,T1), L<>L1, time(T1).
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4.1.4 Initial State Constraints

Finally each initial state constraint ic: - L
initially caused f(X) if b1(X1),-- -, bm, (Xm), 00t byt1 (Ximg1), - - -, 0ot by (Xy).
is translated to:

FX,0) = bi(XY), - bin(X )00t byt K1), - - - smot ba(X,).  (4.4)

where b;(X;) (i € {1,...,n}) denotes the literal
o b:;(X) iff b; € o7 and
. bz(yz,O) iff b; € afl.

Example:

initially caused false if on(B,L), on(B,L1), L # L1.
is translated to:

:- on(B,L,0), on(B,L1,0), L # L1.

The inequality predicate “#£” and the less predicate “<” are assumed to have
the normal meaning.

4.1.5 Compact Translation for the total Statement

It is obvious that the basic translation for the total statement is rather ineffi-
cient: A statement

total f if by,...,bg,not bgt1,...,n0t I
after aj41,...,am,n0t Apt1,...,00t ap.

is first rewritten to two causation rules

caused f if not —f, b1,...,bg,not bgy1,...,no0t b
after ai,...,am,not am41,...,n0t ay.

caused —f if not f,bi,...,bg,not bgy1,...,n0t Y
after ai,...,am,not am41,...,n0t ay.

which are then translated to two LP rules following the basic translation
4.3. Tt is easy to see that in disjunctive logic programming this can be modeled
easier using a guessing rule similar to the translation 4.2 for the executability
of actions. So we directly translate the rule:

Each totalization rule ¢ is first transformed according to the rewriting pro-
posed in section 3.1.7 to achieve safety. The resulting executability condition
t':

total f if by,...,bg,not bg41,...,n0t Yy
after ai,...,am,not apy41,...,00t a,.
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is then translated to the following LP rule:

FX,T1) vV —f(X,T1) : — by(X}), ., be(X}),n0t bpy1(Xgpr), - - - ,not b(X)),

a1 (X1);s - 0 (X )y 00t @1 (Vigi1)s - - -, 00t an (V)
actiontime(T), T1 =T + 1.
(4.5)

where b;(X;) (i € {1,...,1}) denotes the literal
o () iff b; € 017 and
o b;(X;,T1) iff b; € o7t

and a; (7;) (j € {1,...,n}) denotes the literal
e a;(Y;) iff a; € o'¥P and
e a;(Y;,T)iff a; € 02t Uo7l

These rules “guess” the truth value of a fluent in a each state. When the total-
ization rule is under ¢ initial scope (i.e. preceded with the keyword initially),
we can proceed analogously, skipping the actiontime(T) and T1 =T + 1 and
substitute all occurrences of the time variable T' in rule (4.5) with 0.

4.1.6 A Short Example

As a short example we will give the Axel Shooting domain already mentioned
in Section (2.1.3):

Background knowledge is empty for this domain and there is one fluent alive
and one action shoot which take one argument, shoot is always executable and
can kill a person, so PD consists of the following (safe) rules and declarations:

shoot(X) requires person(X).
alive(X) requires person(X).

executable shoot(X).

initially caused alive(azel).

inertial alive(X) if person(X).

total alive(X) after shoot(X), person(X).

The goal query g is of course that Axel survives:
alive(azel)? (1)

The background knowledge contains one fact:
person(axel).

pLP

The translated program is shown be in Figure 4.1. It has two models
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my = { person(azxel), time(0), time(1), actiontime(0), alive(azel,0),
—shoot(azel,0), alive(azel, 1), goal}

ma = { person(azxel), time(0), time(1), actiontime(0), alive(azel,0),
shoot(azel,0), alive(azel, 1), goal }

resp. optimistic plans: p; = (B), po = ({shoot(azel)}), that means either no
action is performed and axel survives or azxel survives the shot.

4.1.7 Soundness and Completeness of the Basic Transla-
tion

The answer sets of the generated LP program PP obviously correspond to the
optimistic plans of the original K program:

Theorem 6. Given a (non-ground) K planning problem P = (PD, q) each an-
swer set of PLY corresponds to an optimistic plan of P (soundness of Trans-
lation) and each optimistic plan has some corresponding stable model of PL¥
(completeness of translation).

We have seen that in the translation all action and fluent literals are extended
by a time stamp. Given an answer set Mp of PIP we get the corresponding
optimistic plan by ordering the action literals in the model by this time stamp:
For all fluent literals in Mp with time stamp ¢ corresponds with the state, which
the literal belongs to and all action literals in the answer set with a common
time stamp correspond to an executable action set. Together these build up a
legal transition sequence which makes the goal true and therefore an optimistic
plan.

First of all it is obvious by the translation that the grounding of P’ LP ot
PLP by definition exactly represents the translation of the P’ = (PD', q) where
PD' is the legal instantiation of PD, which means we can focus on ground
planning problems in the following.

Another obvious observation is that M C Mp. This means that the model
of the static background knowledge is included in each answer set of P’ LP.

In the following it will outlined how to prove that each optimistic plan of P
has a corresponding answer set of PXY and vice versa:

Proof sketch: Soundness. The proof sketch is based on the following lemma:

Lemma 2. If Mp is an answer set of PLT then the set of all positive and
negative fluent literals with time stamp 0 so C Mp represents a legal initial state
given by the set of fluent literals s{, which is defined by deleting the timestamp
operator from the literals in sq.

Proof sketch: Lemma. To prove this we, first have to show that the
corresponding fluents build a legal initial state:

By definition of the translation all the fluents in s¢ can only be
inferred by the translation of initial state constraints and static rules
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time(T) : — 0< T < i.
actiontime(T) : — 0< T < i.
goal : — alive(azel,1).

: — not goal.

shoot(X,T) V —shoot(X,T) : — actiontime(T), person(X).
alive(azel,0) : —.
alive(X,T1) : — not —alive(X,T1),alive(X,T), person(X),
actiontime(T),T1 =T + 1.
alive(X,T1) V —alive(X,T1) : — shoot(X,T), person(X),
actiontime(T),T1 =T + 1.

Figure 4.1: Translation of a simple planning domain to a logic program

(with timestamp 0): For programs with default negation it’s easy to
see that the reduction P? with t = (0,0, s) exactly coincides with

the disjunctive logic program PXF™? concerning the initial state
constraints and static rules (with timestamp 0). So if Mp (2 so)
is an answer set, then it also follows that s{ is a legal initial state,
which finally proofs the lemma. O

In a similar way it can be shown that the set of all action atoms A; with
timestamp 4 in the answer set Mp (a(i) € Mp) represent an executable action
set for state i represented by s;, the set of all fluent literals with time step 4,
and subsequently that (s}, A}, si,;) is a legal state transition (s}, Aj, s, are
the corresponding fluent literals/action atoms built from s;, A;,s;41 € Mp by
removing the time stamp).

Furthermore, the constraint 4.1 guarantees that the goal query is satisfied
in the last state, and this finally shows part one (soundness) of theorem 6. O

Proof sketch: Completeness. Assume (Ao, ..., A;_1),4 > 0is an optimistic plan.
From 3.2.5 we know that consequently a legal transition sequence T' = ({s¢, Ao, $1),
.oy (8i—1,Ai_1,8;)) in PD exists such that T establishes the goal.
Proof idea: Now, if we add the time stamps to the corresponding flu-
ent/action literals, we have to show that:

MUshUAjUSs, U...Us\_UA!_ UsiU-AJU...U-4] | U
{time(0), actiontime(0), . . ., actiontime(i—1), time(i—1), time(i), goal }

is an answer set of PLP, where s}, (A} resp.) are the literals (atoms) obtained
from extending fluent literals s; (action atoms Aj) by time stamp k and —A}
is the set of all the negative literals obtained from (i) building the set Ay of all
legal action instantiations ¢ Ay (ii) extending the action atoms in this set by
time stamp k, (iii) classically negating all the atoms in this set A_jﬂ
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It follows by construction of the translated rules and constraints (4.1)-(4.4)
and the definition of the language that the set constructed above is an answer
set for PLP. O

4.2 Extending the Translation

The basic translation is sufficient for translating optimistic planning of I pro-
grams. Also the enhanced statements inertial, default, nonexecutable and
total can be translated straightforward using the basic translation for their cor-
responding static and dynamic rules. Still we cannot express sequential plans
(see Section 3.2.6) and cannot describe secure plans (see Section 3.2.5) in terms
of logic programming.

In this section a solution for these two problems will be given by extending
the basic translation. Furthermore, at the end of this section we will propose
an optimization to make the translation more efficient.

4.2.1 How to Rule Out Concurrent Actions

In order to allow sequential plans only (see Section 3.2.6) we have to add con-
straints to PL¥ which forbid all concurrent actions. For all action names a
occurring in PD we add:

i —a(X1,Xa,..., X, T),a(Y1,Ya,...,Y,,T), X1 #Y3.
L= a(X1,X2...,XH,T),(I(Y17Y.2,...7Yn,T),X2 ;é )/2

= a(X1,Xo, ..., Xn, T),a(Y1,Ys, ..., Y, T), Xn # Y.

where n is the arity of action a. These constraints rule out all concurrent actions
of the same action name. Further more we have to forbid all different actions
to occur at once, so add a constraint

= a(X1, X, o, X, T),a' (Y1, Ya, ..., Yo, T).

for each pair of different action names in a,a’ in PD, where m denotes the arity
of action a and n the arity of a' respectively.

For example in a blocks world domain, where there is only one action
move (B,L), expressing a block B is moved to a location L, we add the following
constraints to PLP in order to achieve sequential plans:

:- move (X1, Xo,T), move(Y1,Y2,7T), X1 #Y1.
:- move(Xy, X5, T), move(Y,Y>,T), X1 #Y1.
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4.2.2 Security Check for Plans

Due to the complexity results in the previous section 3.3 it is obvious that secure
(conformant) planning cannot simply be reduced to answer set programming in
general. Still it is possible to give a translation to check a plan for security,
which works for a subclass of proper domains, which will be presented now.

Checking Properness of Domains

According to the complexity results in the previous chapter (Section 3.3) we
saw that in general checking security is rather difficult, even with fixed plan
length, though the complexity of the problem is much lower for proper planning
domains, allowing us to translate the plan check to Extended Logic Program-
ming.

Checking properness on the other hand is not a trivial problem as well, so it
is best to restrict ourselves to a certain subclass of programs, which are proper
for sure.

A simple method is to only allow plain domains, which on the other hand
reduces the expressive power of general K and the possibilities to express many
practical examples. Especially it is impossible to deal with uncertainty of any
kind apart from the initial state. A possible extension to this is additionally
allowing default negation as long as it remains stratified due to Definition 25.

Unfortunately allowing only stratified negation in the post part of all causa-
tion rules under always scope is rather restrictive, as, for example, total rules
or a pair of rules like:

caused f if not — f after f.
caused —f if not f after —f.

will be forbidden. But these rules simply represent inertia of f and — f, which
standing alone does not harm properness as f and —f are mutually exclusive.
General use of total at least could be emulated by using the approach shown
in Section 3.3 for fixed plan length, however,

Some more sophisticated ideas to allow a more generous use of default nega-
tion will be mentioned in the prospects given in Chapter 8, the current frontend
implements only a very simple stratification check on the non-ground program,
described in Chapter 5.

Security Check for Stratified Domains

The approach shown here is strongly related to cautious reasoning in logic pro-
gramming ([18], [14]). The basic idea how to realize cautious query evaluation
in DLV depends on the following assumption: When we want to know whether
a goal is bravely true (i.e. there exists a model which contains the goal) we add
a constant

: — not goal.
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which rules out all models not containing the goal. This more or less coincides
with the translation of planning goals in PLF (see 4.1).

On the other hand, if we want to guarantee that the goal is true in all mod-
els, we have to turn the question round and show that there is no model NOT
containing the goal, so we modify the constraint to:

: — goal.

and whenever we find no model, then “goal” is cautiously true. Unfortunately
this is not sufficient for our translation of planning problems to implement se-
cure planning, the main difference is that here we also have to guarantee plan
execution to be checked apart from the goal itself:

When a plan is p secure that means that

e the goal is true in all models (this is more or less the cautious reasoning
part) AND

e all actions of plan p are executable under any possible initial state and

e the execution of p must be guaranteed, and no other actions are allowed
to be executed.

e any execution of an action of p leads to a legal subsequent state

Thus, rewriting the goal alone is not sufficient. Finding secure plans takes
two steps:

1. Finding an optimistic plan p

2. rewriting the program PLF such that the restrictions above are fulfilled.

Model generation for a non-ground logic program like PL¥ is divided in two
steps:

1. grounding the program.
2. model generation.

As for large program instances grounding is an essential task in terms of per-
formance, it would be desirable to find a way to check plan security in terms
of the grounded program by adding constraints and rules to the ground version
PLP,L.

The models generated then correspond to optimistic plans, as shown above.
To check whether an optimistic plan of length n is secure we first add the
plan (which is of course ground by definition) p = (4o, A1,...,An—1), where
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Ai = {a;i1(Xin1),---»aik; (Xik;)} to the ground program PLF| as constraints
which forbid that the actions of the plan do NOT occur:

— —|a0,1 (X(],l, 0)

LT Ao, kg (XO,ko; 0).
(4.6)

i ﬂan,l’l(XO,l,n — ].)

t = P80 1k (X 1k, — 1)

This forces the guessing rules generated in the basic translation to allow only
guesses where actions of the checked plan p occur. Furthermore, we have to
remove all guessing rules from PP | which do not guess actions in the plan p:
remove all ground rules of the form 4.2:
ai(t) V —ai(t) : — actiontime(t), By, ..., By,not Byt1,...,n0t By,.
where a; ¢ p. This guarantees that no other actions than the actions in the
checked plan can occur.

Now we have to change the goal constraint to enforce cautious reasoning.
This could be managed by simply rewriting the goal constraint:

: — not goal.

to
: — goal.

Whenever a model is found, we can conclude that there is a possible situation
when the goal is not achieved, i.e. the goal query is cautiously true when no
model is found for the modified program.

Still, rewriting the goal constraint alone still does not guarantee plan secu-
rity:

1. situations when actions in the plan p are not executable are not covered,
as in this case neither a;(t) nor —a;(t) are in a possible model and the
constraints (4.6) do not “fire”. So to guarantee that the actions in the
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plan are always executable we have to add more rules to PLF]:

notex : — not ao,l(XO’l,O),not _|0,0’1(X0’1,0).

notex : — not GO,Q(X()’Q,O),nOt _|0/0,2(X0,2,0).

notex : — not ag ko (Xo,ke,0), 00t —ag ko (Xo,ke,0)-

notexr : — not an_lvkn—l(Xn_lykn—l7n —1),not _'an—l,kn—l(Xn—l,kn—lan - 1).

2. Furthermore, in all situations whenever a constraint is violated or an in-
consistency arises, the existence of a model serving as a witness for insecu-
rity can be prevented. Thus, the translation of constraint rules has to be
modified analogously: All constraints (rules with empty head) emerging
from the translation above have to be rewritten to rules with only notex
in the head: This is necessary for all rules (4.3) “caused false...” but
not for initial state constraints (4.4), so we do not rewrite rules for the
initial state.

For example
:- on(B,L,T1), on(B,L1,T1), L<>L1, time(T1).
from the example above is rewritten to

notex :- on(B,L,1), on(B,L1,1), L<>L1, time(1).
notex :- on(B,L,1), on(B,L1,1), L<L1, time(2).

notex :- on(B,L,1), on(B,L1,1), L<>L1, time(n).
:- on(B,L,0), on(B,L1,0), L<>L1.

for all ground instantiations of the constraint, where n is the max. plan
length.

Fluent inconsistencies are caught by introducing rules:
notex : —f(X,T),~f(X,T)
for all legal fluent instantiations f(X) and time steps 7' > 0.

3. When we enforce sequential planning like described above also the con-
straints (4.2.1) and (4.2.1) have to be rewritten to LP rules with only notex
in the head, to exclude concurrent actions, shown here for the example
given above:

notex :- move(Xi, X2,7T), move(Y1,Y2,T), X1 #Y1.
notex :- move(Xi,X2,T), move(Y1,Y>,T), X1 #Y1.
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Finally modify the goal constraint to:
: — goal,not notex.

So the default negated auxiliary predicate notex in the goal finally guarantees
that all actions in the plan must be executable and that the computation com-
plies with the constraints.

So someone can read the rewritten goal as follows:
“If

(i) the goal is not guaranteed to be reached executing all actions in plan p or
(if) some actions in p cannot securely be executed or
(iii) a constraint is violated when executing the actions in p

then the plan is NOT secure.”
This satisfies all conditions for plan security given on page 45.

Now taken the previous example from section 4.1.6 let us check plan py =
({shoot(azxel)}). The rewritten program for checking the plan ps is shown in
Figure 4.3. This program has a model:

m = {person(azel), time(0), actiontime(0), alive(azel,0), shoot(azel,0),
time(1), —alive(azel, 1)}

which serves as a witness proving plan ps to be NOT secure.

On the other hand, the rewritten program for the empty plan p;, shown in
4.2 has no model, and therefore the plan is secure, i.e. to do nothing lets azel
survive for sure.

Limitations of the Current Approach

The current approach only works for domains, where for each non-goal state
there exists at most one successor state. This is why we have to restrict ourselves
to stratified domains where this condition is fulfilled trivially.

time(0).

time(1). actiontime(0).
goal : —alive(azel,1).

: —goal,not notex.

alive(azel,0) : —.
alive(azel,1) : —not —alive(azel, 1), alive(axel,0), person(axel), actiontime(0).

alive(axel, 1) V —alive(azel, 1) : —shoot(azel,0), person(axel), actiontime(0).

notex : —alive(azel, 1), —alive(azel, 1)

Figure 4.2: Rewritten program for checking plan p;.
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time(0).

time(1). actiontime(0).
goal : —alive(azxel,1).

: —goal,not notex.

shoot(azel,0) V mshoot(azxel,0) : —actiontime(0), person(azxel).

alive(axel,0) : —person(azxel).
alive(azel, 1) : —not —alive(X, 1), alive(azel,0), person(azel), actiontime(0).
alive(azel, 1) V —alive(azel, 1) : —shoot(azel,0), person(axel), actiontime(0).

: —shoot(axel,0).notex : —not shoot(azel,0),not —shoot(azel,0).

notex : —alive(azel, 1), —alive(azel, 1)

Figure 4.3: Rewritten program for checking plan ps.

If the domain would not be stratified there might be examples where the
current approach to check plan security might fail due to illegal successor states.
That is why planning domains have to meet with the restriction of stratification
for secure planning.

As a simple example for a non-proper unstratified domain where the pro-
posed check does not work, take the planning problem Ppopr0p consisting of the
following causation rules and query:

initially total f.

caused = if not y after f.
caused y if not z after f.
caused z if not z after f.
executable a.

caused g after a.

g? (1)

a is an action in this example and x, y, z, £ and g are fluents respectively. The
current translation of this program PLD is shown in Figure 4.4 (for better
readability the time and actiontime rules have been skipped here). This pro-
gram has obviously only one model, which includes the goal: {a(0), g(1), goal,—f(0)}.
Though still, plan p = ({a}) is not secure:

Taken the legal initial state {f}, {a} is an executable action set, but there is no
successor state, hence no legal transition exists, which contradicts plan security.
But, if there is no successor state, the security check for plan p = ({a}) will
falsely state that the plan is secure. The current translation of the security
check tries to find a model for the program in Figure 4.5. Unfortunately the
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a(T) V —a(T), actiontime(T). f(0) V = f(0).
z(T1) : — not y(T1), f(T), actiontime(T), T1 =T + 1.
y(T1) : — not 2(T1), f(T),actiontime(T), T1 =T + 1.
z(T1) : —not z(T1), f(T),actiontime(T), T1 =T + 1.
9(T1) : — a(T),time(T), T1=T + 1.
goal : —g(1)

—not goal

Figure 4.4: Translation of a domain P,,pop to DLP.

resulting program has no model due to the inconsistency in the successor state,
when f is guessed initially. Therefore plan p is falsely assumed to be secure.
So the current implementation can only deal with domains, where the existence
of a successor state can be determined easily. The current check only looks
for failed constraints or simple inconsistencies by contradictory literals, that is
why we have to require stratified domains in the current approach of checking
security. Obviously, domain Pp,prop is not stratified.

Security Check for domains with total rules: Note that the total state-
ment, if not preceded by initially, also does not meet the restriction to
stratified domains, which is obvious when considering the corresponding pair
of causation rules.

So in general the security check proposed here, also might fail for domains
with total rules. For example the simple domain:

total g.
caused false if -g.

g? (1)

would have no secure plan, according to the current translation. The constraint
caused false if -g, rewritten to

: —g(0).
notex : — — g(1).

would “fire” notex in case —g is guessed at time 1, and therefore the empty plan
would not be stated as secure by the current check.

At least, even if we allow total statements, the check works in terms of
soundness, i.e. a plan stated to be secure is indeed secure, nevertheless it is
not complete as it is too cautious: In general, not all secure plans are found, as
shown with this example. However, in Chapter 6 we will give an example, where
the security check works even in presence of total. The problem obviously only
occurs, when allowing constraints and total rules in conflict.
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a(0) V —a(0), actiontime(0).

f(0) vV =£(0).

=a(0).

notez : —not a(0),not —a(0).

f(0) vV =£(0).

z(1) : — not y(1), f(0), actiontime(0), 1 =0+ 1.
y(1) : — not z(1), f(0), actiontime(0), 1 =0+ 1.
z(1) : — not z(1), f(0), actiontime(0), 1 =0+ 1.
g(1) : — a(0),time(0), 1 =0+ 1.

notex : —f(0), - f(0).

notex : —g(0),—g(0).

notex : —x(0), —z(0).

notex : —y(0), —y(0).

notex : —z(0),-z(0).

notex : —f(1),—~f(1).

notex : —g(1),—g(1).

notex : —x(1), ~x(1).

notex : —y(1), -y (1).

notex : —z(1),-2(1).

goal : —g(1).

: —goal,not notex.

Figure 4.5: Checking plan p = ({a}) for domain Pyoprop
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Security Check for domains with mutual exclusive rules: As mentioned
above, pairs of positive and negative inertia of the same fluent are also forbidden,
as they harm the demand for stratification. Nevertheless, pairwise inertia for a
fluent f could be allowed safely, as inertia depends on the state of the fluent f
in the preceding state. So for

inertial f.
inertial -f.

which corresponds to the rules:

caused f if not -f after f.
caused -f if not f after -f.

only one of both rules can fire. So it would be possible to take advantage of
this mutually exclusivity of rules: A solution for this problem would be to check
stratification of a domain PD for both rules: Take the remaining rules of the
domain together with the positive inertia rule, denoted as domain PD’, then
take the remaining rules together with the negative inertia rule, denoted as
domain PD". The security check will work, if both domains PD’ and PD" are
stratified. This method can be applied not only for inertia but for all pairs of
rules, where the after parts are not satisfiable simultaneously.

4.2.3 Optimization for Sequential Planning through Bina-
rization

In the rest of this section we examine a possible optimization of the translation
which has not yet been implemented in the prototype introduced in the next
chapter. Nevertheless performance tests with manual encoding of planning do-
mains in DLV have shown that the optimized translation presented here could be
a valuable extension of the current implementation (see Chapter 7).

In general for logic programs the size of the grounded program is an imma-
nent speed factor, so if we can efficiently reduce the size of the ground instanti-
ation we can speed up the computation of models and plans. The idea for the
following optimization is due to a side note in [33]. They state that “Taking
¢ the the number of elements (constants) in the largest type, d the maximum
depth of quantifier nesting in any schema, and k to be the number of literals
in the longest schema, the total length of the instantiated theory is bounded
by O(kc?).” This upper bound also holds for an LP program, where ¢ anal-
ogously is the number of constants in the rule, d is the maximum number of
variables occurring in a rule, and k is the maximum number of literals in a rule.
Under sequential planning for any action predicate the time variable T in the
translation somehow is the “key” for the action predicate identifying the unique
action at time 7. So due to Kautz’ and Selman’s idea “to replace predicates
that take three or more arguments by several predicates that take no more than
two arguments” we can split all action predicates a with arity > 2. For example
let us extend the shoot(X) action from above to a binary action shoot(G, P)
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which expresses that someone shoots at person P with using G which would
result in an ternary LP predicate shoot(G, P,T) that can be split to two binary
predicates shoot1 (G, T), shooty(P,T).

We have to adapt the translation as follows:

For each executable statement e (rewritten due to section 3.1.7):
executable a(X) if b1 (X1),---,bm(Xm), 00t i1 (Xmt1),-- -, 00t by(Xp)
we add the following rules:

a1(Y1,T) V —a1(Y1,T) : — By,actiontime(T).
GQ(Y-QJT) \ _'GQ(YanT) :_B%al(}/l:T)'

ar (Y, T) V =01 (Y, T) : — Bg,a1(Y1,7T),02(Y2,T),... yap—1(Ye—1,T).

where X = (Y1,Y2,...,Y}), i.e. arity of a is k. B; denotes the subset of the
body in rule 4.2, with all literals successively eliminated, which do not contain
the variables Y;,Y; ;1 nor are transitively bound with another predicate which
depends on Y;. To further improve the translation, we do not have to add
all a1(Y1,T),a2(Y2,T),... ,a;—1(Yi—1,T) in the body for guessing a;, but it is
sufficient to add those which contain variables bound in By.

Now we have to ensure that only complete actions occur, i.e. that no action
is only partly executed. So for each action a with arity k& we also add the rule

action(T) : — ap (Y, T).
and finally we add the constraint
: —not action(T), actiontime(T). (4.7

The auxiliary predicate action(T') guarantees that a complete action is taken in
each state.

Now we have to add constraints to ensure that no concurrent actions occur:
For each action a with arity & we add the following constraints:

= ay(X,T),a1(X",T), X # X'.
:— as(X,T), ax(X',T), X # X'

= ap(X,T),a (X", T), X # X"
Furthermore, for each pair of action names a, a’ we add the constraint:

c—a1 (X, T),a1(Y,T).
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which forbids concurrent actions on the one side and on the other eliminates
partly execution of an action. Together with constraint 4.7 this guarantees that
exactly one complete action is executed at each point in time.

Note that there is a possibly important semantic difference between this
optimized translation and the original one, as the optimized translation only
accepts plans with exactly one action taken a time whereas the original definition
of sequential plans allows transitions without any actions occurring. Anyway
this can easily be remedied by introducing a “nop” action, which has no effects
at all.

Furthermore, we now have to adapt the causation rules and initial state
constraints accordingly: For each causation rule ¢ (before rewriting it) with a
non-empty after part !
caused f(X) if b1(X1),...,bx(Xt),n0t bgy1(Xgt1),---,n0t b(X;)

after a1(Y1),--,am(Ym),n0t ami1 (Ying1),---,n0t an(Yy)

we substitute each a;(V;) € Loct, i € {1,2,...,n}, where V; = (Y1,Ys,...) with
the corresponding (possibly default negated) unary literals a;1(Y1),a:2(Y2) ...
where we take only the literals where Y; is bound in some other literal in the
rule. The resulting causation is translated straightforward like above.

For instance take the action shoot(G, P) from above, which has two parameters
and let us assume the following K representation of action shoot and its effects:
alive(P) requires person(P).
loaded(G) requires gun(QG).
shoot(G, P) requires gun(G),person(P).
executable shoot(G, P) if loaded(G), gun(G), person(P).

The fluent loaded describes that gun G is loaded, gun and person represent
type predicates defined in the background knowledge. The basic translation of
the executable statement under sequential planning would result in:

shoot(G,P,T) V —shoot(G,P,T) : — actiontime(T), gun(QG), person(P).

: — shoot(G, P,T), shoot(G',P',T),G # G'.

: — shoot(G, P,T), shoot(G',P',T), P # P'.

Applying the split technique for the binary shoot-action would result in:

shoot1 (G, T) V —shoot1(G,T) : — loaded(G), gun(Q), actiontime(T).
shoota(P,T) V —shooty(P,T) : — person(P),shoot,(G,T).
action(T') : —shoota(P,T).

: — not action(T), actiontime(T).

: — shooty (X, T), shoot1(X',T), X # X'.

: — shootz(X,T), shooto( X', T), X # X'.

1 Actions may only occur in the after part
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the effects of shoot 2 are described with:

caused -alive(P) after shoot(G,P).
caused -loaded(G) after shoot(G,P).

again let us first take a look at the basic translation:

— alive(P,T1) : — shoot(G, P,T), person(P),actiontime(T),T1 =T + 1.
—loaded(G,T1) : — shoot(G, P,T), gun(P),actiontime(T), T1=T + 1.

whereas in the version using the splitting technique this would look as follows:

— alive(P,T1) : — shoots(P,T), actiontime(T), T1 =T + 1.
— loaded(G,T1) : — shoot1(G,T), actiontime(T), T1 =T + 1.

What we can see here, is an improvement similar to projection in databases,
a similar improvement for logic programming in general is described in [22]:
Intuitively only the “relevant parts” of an action predicate are used in the
translated rules, and action guesses only use binary predicates, which both
reduces the size of the grounded program.

2For simplicity reasons we do not assume total nondeterminism here, like above.



Chapter 5

The Planning System DLVA

We have implemented a fully operational prototype supporting the K language
as a frontend on top of the DLV system [18]. This frontend is invoked by the
command-line option -FP of DLV. It reads K files, that is, files as described in
the following subsection, whose names carry the extension .plan, and option-
ally also background knowledge in the form of stratified datalog programs and
transforms these into the core language of DLV using the translation from Chap-
ter 4. The frontend then invokes the DLV kernel and translates possible solutions
back into output appropriate for the planning user. Additionally in the current
implementation it is possible to accept input from the C action language.

5.1 DLV Core Language and Syntax

The core language of DLV is disjunctive datalog (function-free logic program-
ming) under the Answer Set semantics [26] with integrity constraints , strong
negation, and queries, as described in Section 2.1. Integer arithmetics and var-
ious builtin predicates are also included in the core language. Rules have the
form:

a1 V ...V Gy = bi,...,bg,not bgy1,...,n0t by,

where m,n > 0. ai,...am,b1,...,b, are literals a(t1,...,ty) or a strongly
negated atom -a(ty,...,tz).

As usual, constants are starting with a lower case letter, while variables are
starting with an upper case letter.

The planning frontend accepts such DLV programs as input for the back-
ground knowledge, and planning input of the form presented in the subsequent
sections will be translated to DLV programs.

59
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5.2 DLVX Frontend

5.2.1 Synopsis and Command Line Options:

The planning frontend can be invoked from the command line using the following
syntax:
$ d1 [input-files] [options]

input-files Allowed input files are

e normal DLV programs consisting of DLP rules and constraints (back-
ground knowledge).

e planning input files described below, with file name extension .plan
(All files with this extension are automatically treated as planning
input.)

options To invoke the planning frontend at least one of the following options
has to be used:

-FP planning with K input in interactive mode (for each optimistic plan
found, the user will be asked, whether plan security should be checked,
and whether DLV should continue to search for other plans.)

-FPopt find optimistic plans in batch mode. Optimistic plans will be
printed without user interaction.

-FPsec find only secure plans in batch mode. Only secure plans will be
printed without user interaction. This works only for stratified do-
mains, the current method for checking whether domains are strati-
fied is described in detail in Section 5.3.3

-FPc For historical reasons using this option DLV also accept a subset of
Lifschitz’ C Action language as input (see Section 2.2 for Details),
i.e. what is described as “definite” domains there. The translation
of C input, is in accordance with [35].1

In addition to these options one can specify the maximum plan length
from the command-line using option -planlength=i where i is a positive
integer. A full description of all DLV command-line options can be found
in the DLV online manual [23].

5.2.2 DLV® Programs

A K planning domain, as implemented in DLV, consists of various (optional)
sections that start with a keyword followed by a colon. The overall structure
of a K program is shown in Figure 5.1. <fluent declarations> and <action
declarations> are sequences of declarations as defined in Section 3.1.3, and

1For C input special K language features like total, executable or default negation can
not be used. Also the keyword securePlan is not allowed.
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fluents: <fluent declarations>
actiomns: <action declarations>
always: <rules>
initially: <init rules>
[noConcurrency.] [securePlan.]
goal: <query>? (i)

Figure 5.1: Structure of DLV* programs

<rules> is a sequence of causation rules (including the enhanced statements us-
ing keywords total, default, nonexecutable) and executability conditions
which apply to any state. <init rules> is a sequence of static rules which
apply to the initial state only, that means initial state constraints (including
the enhanced statements using total, default).

The declaration of the plan length in parentheses at the end of the goal
query is optional. As mentioned above plan length can also be set from the
command-line using option -planlength=:. In case the plan length is declared
in the input file this overrides the command-line option. Plan length defaults
to 0 when not declared.

Comments in DLVX programs are preceded by ’%’ and might be placed any-
where in the input file.

By default, bLV® will look for plans allowing concurrent actions (that is,
plans that may contain transitions (s, 4, s') with |A| > 1). By specifying

noConcurrency.
the user can ask for sequential plans only. In the presence of the keyword
securePlan.

or the command-line option -FPsec, DLVX will only compute secure plans, as
opposed to the default situation where all (optimistic) plans are computed and
the user interactively decides whether to check their safety.

5.3 Implementation

5.3.1 Programming Environment

DLV is fully implemented in C++ and the planning frontend has been integrated
into the core program. The scanner and parser for the frontend have been
implemented using the scanner generator flex, a free version of lex, which
ships with many UNIX derivates, and yacc, a free version of the parser generator
bison.?

2flex and yacc and the can be downloaded at http://wuw.gnu.org
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5.3.2 DLV Kernel

The internal language of the DLV system is function-free DLP with true negation
[26] and strong and weak integrity constraints [21] (extended DLP). The kernel is
an efficient engine for computing answer sets of a program, described in [49],[18].

The system architecture is shown in Figure 5.2. The core system accepting
extended DLP as input consists of the Query Processor (QP), which controls
system execution and together with the integrated frontends performs prepro-
cessing of the input, and postprocessing of the generated models. First the input
program is passed to the Rules and Graph Handler (RGH) which splits the input
into subprograms. These subprograms are dispatched to the Intelligent Ground-
ing Module, which efficiently generates an optimized ground program, which has
the same stable models, but is in general much smaller than the (traditionally)
grounded input program. QP then again invokes RGH, which generates two
partitionings into components of the grounded program. They are used by the
Model Generator (MG) and the Model Checker (MC), and enable a modular
efficient program evaluation. MG then produces “candidates” for stable models
which are checked for stability by the MC.

5.3.3 Integration of the Planning Frontend

So now, let us see how the planning frontend integrates into this structure:
Files with suffix “.plan” are first processed by the Plan Translator (PT), which
consists of the scanner and parser. PT parses the input and produces an EDLP
program, according to the translation described in Chapter 4.

Simple Stratification Check Parallel with parsing the input, a dependency
graph of the fluents (FDG) is produced: PT produces a node for each positive
and each negative fluent name occurring in the input. For each causation rule

caused G(X) if Fi(X1), --- Fu(Xm),
not Fpy1(Xmy1), ... not Fn(X,) after ...

for all F; with 7 < m a positive directed arc (F;, G) is added to FDG, for all
F; with m < j < n a negative directed arc is added. If this graph contains no
cycles with a negative arc, the program is stratified for sure.

The frontend allows secure planning only if FDG does not contain cycles
with negative arcs. However, as this FDG check processes only fluent names and
not the ground program, which would be too expensive, proper, even stratified
input could falsely be rejected for secure planning, as we have seen in Section 6.6.

A known bug in the current implementation is that stratification is not
checked correctly for the total statement. Instead of treating a total statement
like its corresponding two causation rules, the current implementation handles
total statements as follows: For each total statement

total G(X) if Fi(X1), ... Fu(Xm), o
not Fp41(Xme1), ... not Fp(X,) after ...
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Figure 5.2: System Architecture of DLVX

for all F; with ¢ < m two positive directed arcs (F;,G),(F;,—G) are added
to FDG, for all F; with m < j < n two negative directed arcs are added. This
current approach is a tradeoff that allows to use total in the always section of
a program, which would be forbidden in general when taking the corresponding
pair of causation rules

caused G(X) if not —G(X)...
caused —G(X) if not G(X)...

instead, as those rules always build a cycle in the FDG. As mentioned in Sec-
tion 4.2.2 this could cause that not necessarily all secure plans are found when
using totality. However totality is escpecially important if nondeterministic ac-
tion effects should be encoded. We will show an example in Section 6.7.5, where
we use total, which works fine.

The translated program, together with the background knowledge defined in
an extra file is fed into QP, which optimizes the program, produces the ground
program, and generates models, like explained above.

Each generated plan is dispatched to the Plan Checker (PC) by QP. For
optimistic planning we are ready. PC simply orders the model by the time
stamps and displays the fluents and actions. Some detailed examples and a
sample run of DLVX will be presented in Chapter 6.
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Under secure planning (which is activated either via the command-line op-
tion -FPsec, using keyword securePlan in the input, or in interactive mode, by
manually enforcing security check), the plan checker makes a copy of the ground
program which is then rewritten as described in section 4.2.2 with respect to
the plan generated by QP. Afterwards PC calls another instance of MG/MC to
check the rweritten program. If this rewritten program has no model, the plan
is stated to be secure.

After checking plan security, the next plan delivered by QP is processed, and
so forth.

5.4 Known Limitations and Bugs

As mentioned above, we cannot (yet) deal with general K programs, when con-
sidering secure planning, but have to restrict input to stratified programs. For
a real stratification check, we would have to check the rules translation and
grounding. After grounding, however, building the dependency graph would
be more expensive. The current approach is a tradeoff, in accordance with the
current implementation of the security check.

After all, even stratified programs are a rather small subclass of all possible
proper programs. It would probably be preferable to implement an ”even cycles”
approach which is expensive but more general, in principle very similar to the
results in [48]: According to the results there, programs with only an even
number of negative arcs in each cycle of the (ground version of the) fluent
dependency graph constructed while parsing are also guaranteed to be proper.
This is has not yet been examined in detail so far and should be part of further
investigations, as efficient graph algorithms must be implemented to check for
“odd cycles”.

At least it would be nice to exploit mutual exclusiveness of positive and
negative inertia rules for example, a pair of rules:

inertial a ( = caused a if not -a after a)
inertial -a ( = caused -a if not a after -a)

would be rejected by the system, though they never can fire both in a state. Un-
fortunately in general this mutual exclusiveness of rules can only be checked on
the ground level, which is beyond the current implementation, and capabilities
of the current approach, which only checks on the non-ground input.

As outlined above and with the example in Section 4.2.2, the current implemen-
tation has some problems with the general use of the total statement, possibly
not recognizing all secure plans, as totality is not treated strictly by the current
implementation of the stratification check. Nevertheless, as we will see in the
next chapter, many examples of nondeterministic domains using total can be
encoded and will be solved correctly. It might be rewarding to look for stronger
syntactical checks which really only allow domains, where it is guaranteed that



CHAPTER 5. THE PLANNING SYSTEM DLV* 65

all secure plans will be found. On the other hand, this check should not be as
strict as pure stratification.

As already pointed out in the last chapter, because of the translation possibly
several models represent the same plan in nondeterministic planning domains,
so plans are eventually computed more than once as each model stands for a
distinct combination of states and actions (i.e. transition sequence), not only
the sequence of actions itself.

Another problem with a similar cause arises, when combining DLV command-line
option -n=¢ with secure planning. This option tells DLV to compute at most ¢
answer sets for an input program. In combination with optimistic planning this
is no problem, as each model corresponds to an optimistic plan, so if we want
to find only the first optimistic plan, we can use option -n=1. However, this
option tells QP to terminate after ¢ models are found, so in general it does not
work with secure planning enabled (-FPsec). For instance taking n=1, the first
model/plan found is not necessarily secure, but subsequent plans found could
be. So the meaning of this option is not really intuitively clear, as the user
might expect that DLV searches for exactly one secure plan. Two alternative
fixes are possible, either adding a new commandline option, which refers only to
the number of computed plans, or adapting the existing option -n, which might
be confusing, as it would not strictly refer to the number of computed models
any longer, so the first approach seems preferable.

Furthermore, using our current prototype we cannot compute minimal length
plans, but only plans with a fixed length. A fast fix to remedy this drawback, is
using a shell script calling DLV in a loop increasing the argument to command-
line option -planlength until a plan is found. Unfortunately this is rather
expensive and many things are computed repeatedly, so it would be nice to
integrate this feature into the DLVX frontend.



Chapter 6

Knowledge Representation

in /C

6.1 A Simple Blocks World Instance

initial: goal:

b]
bl a2 2

Figure 6.1: A blocks world example.

Now we are ready to present a sample run of the DLVX frontend. We start
with a short blocks world example. Referring to Figure 6.1, we want to turn
the initial configuration of blocks into the goal state! in three steps, where only
one move is allowed in each step (i.e., concurrent moves are not permitted).

First of all, the static background knowledge II consists of the rules and
actions in file “blocks.bk” (see Figure 6.2). This program describes the relevant
objects in our planning domain.

The action description for the blocks world needs one action move and two
fluents on, and occupied. We first assume that the knowledge on the initial state
is complete (we know the location of all blocks) and correctly specified. We will
then show how to deal with incorrect or incomplete initial state specifications.
The domain is specified in file “blocks.plan” (see Figure 6.3).

Intuitively, the executable statement for action move says that a block B
can be moved on location L # B if both B and L are clear (note that the table

IThe blocks world example given in this section is an implementation of the well known
Sussman anomaly [55] which is similar to the implementation in [19].
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block(a). block(b). block(c).
location(table).
location(B) :- block(B).

Figure 6.2: blocks.bk

fluents: on(B,L) requires block(B), location(L).
occupied(B) requires location(B).

actions: move(B,L) requires block(B), location(L).

always: executable move(B,L) if not occupied(B), not occupied(L),
B <> L.

inertial on(B,L).

caused occupied(B) if on(B1,B), block(B).
caused on(B,L) after move(B,L).
caused -on(B,L1) after move(B,L), on(B,L1), L <> L1.

initially: on(a,table). on(b,table). on(c,a).

noConcurrency.
goal: on(c,b) ,on(b,a) ,on(a,table)? (3)

Figure 6.3: Basic version of blocks.plan

is always clear, as it is not a block). The causation rules for on and -on specify
the effect of a move. It is worthwhile noting that the totality of these fluents is
not enforced (like in satisfiability planning). Both on(x,y) and -on(x,y) may
happen to be not true at a given instant of time.

Actually, the rule for -on could be replaced by “caused -on(B,L1) if
on(B,L), L <> L1.” stating: wherever a block is, it is not anywhere else.
This rule would give us a sharper description of the state making fluent on total
at every instant of time. Nevertheless, the extra knowledge derived for -on from
this rule is useless for our goal, as —on does not appear in the body of any rule,
and -on(x,y) is used only to override the inertial property on(x,y) after mov-
ing x from y. Thus, we refrain from using the more general rule which would
cause a computational overhead (as more inferences are to be done during the
computation) without providing relevant benefits.

The execution of this program on DLVX computes the following:

PLAN: move(c,table,0), move(b,a,1), move(c,b,2)

Here, the additional argument in a move atom represents the instant of time
when the action is executed, just like described in the previous chapter. Thus,
the above plan requires to first move ¢ on the table, then to move b on top of
a, and, finally, to move c on b. It is easy to see that this sequence of actions
leads to the desired goal.

To demonstrate how DLVX is called from the command-line and how computed
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plans are presented in detail, the output produced by a sample run on the files
“blocks.bk” and the planning problem file “blocks.plan” is shown in Figure 6.4.

In this first simple example only one plan is found, which is obviously secure.
For each plan found DLVX displays all known fluents in each STATE and ACTIONS
occurring in that state. Finally the full plan is shown, which can be tested for
security before displaying the next plan.

6.2 Checking Correctness and Completeness of
the Initial State

In the previous example, the knowledge on the block locations in the initial
state is complete and correctly specified with respect to domain laws. To ensure
that an arbitrary given (partial) knowledge state is not flawed, we should check
it properly. We should here verify that every block: (i) is on top of a unique
location, (ii) does not have more than one block on top of it, and (iii) is sup-
ported by the table (i.e., it is either on the table or on a stack of blocks which
is on the table) [37]. To this end, we add the declaration:

supported(B) requires block(B).
And we add the following rules in the initially section:

caused false if on(B,L), on(B,L1), L<>L1.

caused false if on(B1,B), on(B2,B), block(B), B1<>B2.
caused supported(B) if on(B,table).

caused supported(B) if on(B,B1), supported(B1l).
caused false if not supported(B).

The resulting DLVX program does not compute any plan if the initial state
is either incomplete (in the sense that not all block locations are known) or in-
correctly specified. Note that, under noConcurrency, the action move preserves
the properties (i),(ii), (iii) above; thus, we do not need to check these properties
in all states, if concurrent actions are forbidden.
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$ d1 blocks.plan blocks.dl -FP

STATE 0: occupied(a,0), on(a,table,0), on(b,table,0), on(c,a,0)
ACTIONS: move(c,table,0)

STATE 1: on(a,table,1), on(b,table,1), on(c,table,1), -on(c,a,1)
ACTIONS: move(b,a,1)

STATE 2: occupied(a,2), on(a,table,2), on(b,a,2), on(c,table,2),
-on(b,table,2)

ACTIONS: move(c,b,2)

STATE 3: on(a,table,3), on(b,a,3), on(c,b,3), -on(c,table,3),
occupied(a,3), occupied(b,3)

PLAN: move(c,table,0), move(b,a,1), move(c,b,2)

Check whether that plan is secure (y/n)? y
The plan is secure.

Search for other plans (y/n)? vy

$

Figure 6.4: Sample run of DLV

6.3 Reasoning under Incomplete Knowledge

Suppose now that there is a further block d in Figure 6.1. The exact location if
d is unknown, but we know that it is not on top of c.

We look for a plan that works on every possible initial state (i.e., no matter
if on(d,b) or on(d,table) holds), and reaches the goal on(a,c), on(c,d),
on(d,b), on(b,table) in four steps. We modify the background knowledge II
by adding the fact block(d) . in “blocks.bk” and change the planning domain
file:

1. change the goal g to
on(a,c),on(c,d),on(d,b),on(b,table)? (4)
2. add -on(d,c) and total on(X,Y) in the initially section
3. add the command securePlan.
The execution of this program on DLV computes the following two secure plans:

PLAN: move(d,table,0), move(d,b,1), move(c,d,2), move(a,c,3)
PLAN: move(d,c,0), move(d,b,1), move(c,d,2), move(a,c,3)

The plans are clearly valid on all possible legal initial states. Since the effects
of all actions are determined, these plans are also secure.?

2When running this example each plan is displayed twice, which represents the application
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Note that an optimistic 2-step plan exists: move(c,d,0), move(a,c,1), as
c could initially be on b. However, this plan is not secure.

6.4 Compact Representation Using Conditional
Totalization

The following is an extension to the results already published in [15]. Using
conditional totalization (non empty if part in the total statement), leads to
an even more compact representation of the blocks world example.

Instead of adding -on(d, c) and total on(X,Y) we can add the single state-
ment total on(d,L) if L <> c in the initially section. The final version
of our blocks world planning problem in DLV is shown in Figure 6.5.

6.5 Translation of the Example

Finally to take a closer look at the resulting logic program of our final version of
the blocks world domain, the translated rules in DLV can be examined using the
command-line options --print-edb, --print-idb and --print-constraints
to watch the generated rules and constraints of the resulting program, according
to the basic translation in Chapter 4.1:

$ dl blocks.plan blocks.dl -FP —print-edb —print-idb —print-constraints

As the output of this command is not really compact and already includes some
internal optimizations of DLV, a more readable version of the translated program
is shown in Figure 6.6 (lines marked with %’ are comments). Each model of
this program corresponds to an optimistic plan of the blocks world problem.

In order to check plan security, the DLVX frontend internally implements the
translation to DLV pointed out in Section 4.2.2. As this translation refers to
the grounded program, due to space restrictions I will do without a detailed
description of this rather long example here, one can refer to the two short
examples in the previous chapter.

6.6 How DLVX Deals with Unstratified Domains

As pointed out before, the secure check (see Section 4.2.2) does only work cor-
rectly for domains which are stratified. The current version of DLVX cannot
check properness in general but implements a more restrictive check, demand-
ing stratification of the predicate symbols (on the non ground level) of a domain,
details can be found in Chapter 5.

of the plan on each of the the two different legal initial states. The reason for this is that each
plan found by DLVX stands for a model of the translated program PLP and of course two
different initial states represent different models
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fluents:

actions:

always:

initially:

goal:
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on(B,L) requires block(B), location(L).

occupied(B) requires location(B).

supported(B) requires block(B).

move(B,L) requires block(B), location(L).

executable move(B,L) if not occupied(B), not occupied(L),
B <> L.

inertial on(B,L).

caused occupied(B) if on(B1,B), block(B).

caused on(B,L) after move(B,L).

caused -on(B,L1) after move(B,L), on(B,L1), L <> L1.

caused false if on(B,L), on(B,L1), L<>L1.

caused false if on(B1,B), on(B2,B), block(B), B1<>B2.
caused supported(B) if on(B,table).

caused supported(B) if on(B,B1), supported(B1).
caused false if not supported(B).

total on(d,B) if B <> c.
on(a,table).
on(b,table).

on(c,a).

noConcurrency.
securePlan.

on(c,b) ,on(b,a) ,on(a,table)? (4)

Figure 6.5: The final version of blocks.plan
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% ba

o o o

ab

Figure 6.6: Translation of the final version of the blocks world problem.
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Recalling from the last chapter, (see Figure 4.4) the DLV represen-
tation of this problem is:

fluents: f. g. x. y.

always: caused x if not y after f.
caused y if not after f.
caused if not x after f.
executable a.
caused g after a.

initially:total f.
goal: g? (1)

DLVX recognizes that the domain is not stratified, and computes only opti-
mistic plans:

$ d1 noprop.plan -FP

Cannot check whether plans are secure because the domain is
probably not proper.

STATE 0: -£(0)

ACTIONS: a(0)

STATE 1: g(1)

PLAN: a(0)

Unfortunately, the restrictive policy also rules out actually stratified programs,
for instance, the rule:

caused holds_spoon(righthand) if not holds_spoon(lefthand).

would be forbidden, as the parameters lefthand, righthand are not considered
by the stratification check.

On the other hand the current check does not recognize violations of stratifi-
cation due to the total statement in general. The example from Section 4.2.2,
would be accepted as input:

fluents: g.

always: total g.
caused false if -g.

goal: g? (L

Anyway, DLVX does not find a secure plan on this example.
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6. Further Examples of ro lem Sol ing in

This section contains some more encodings of planning problems from the liter-
ature, which should further illustrate the practical use of language K and how
well-known planning problems can be described with our language. In particu-
lar, Section 6.7.3 discusses concurrent actions, an example in Section 6.7.5 shows
the capabilities of DLVX dealing with nondeterministic action effects.

1

Another example for dealing with incomplete initial knowledge is an encoding
of the famous ale Shooting Problem (see [32]), which has in some variations
already appeared in the previous chapters. We assume here that the agent has
a gun and does not know whether it is initially loaded. This can be modeled as
follows:

fluents: alive. 1loaded.
actions: load. shoot.
always: executable shoot if loaded.

executable load if not loaded.

caused -alive after shoot.
caused -loaded after shoot.
caused loaded after load.

initially: total loaded.
alive.

goal: -alive?(1)

Obviously, the total statement leads to two possible legal initial states:
loaded, alive and -loaded, alive . The first one enables an optimistic
plan executing shoot; however, because of the second one, this plan is not
secure. As desired, DLV produces the following output:

PLAN: shoot(0)
Check whether that lan is secure (y/n)? y
The 1lan is NOT secure.

y d

Thi examplei a variation of the Monkey and Banana problem a de cribed in
the CC  Cmanual (< L htt //www.cs.utexas.edu/users/mccain/cc/>).
It how that in K applicability of action can be formulated very intuitively
through the executable tatement. The encodingin CC (' u e many nonexecutable
tatement in tead.
In the background knowledge we have three object : the monkey, the banana
and a box:
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ob ect(box).
ob ect(mo key).
ob ect(ba a a).

T planning wo Id a location numb dwit int g . Int b ginning,
t monk yi atlocation 1,t boxi atlocation 2,andt bananai anging
fomt cilingov location3. T monky allgtt banana by moving
t box towa d it, climbing t box, andt n ga pingt banana anging
fomt ciling. W olv ti pobl muingt following DLV p og am:

flue ts

actio s

al ays

i itially

at(0,L) requires ob ect(0), i t(L).
o Box.
hasBa a a.

alk(L) requires i t(L).
ushBox (L) requires i t(L).
climbBox.

gras Ba a a.

caused at(mo key,L) after alk(L).
caused -at(mo key,L) after alk(L1l), at(mo key,L), L<>L1.
executable alk(L) if ot o Box.

caused at(mo key,L) after ushBox(L).

caused at(box,L) after ushBox(L).

caused -at(mo key,L) after ushBox(L1l), at(mo key,L), L<>L1.
caused -at(box,L) after ushBox(L1), at(box,L), L<>L1.
executable ushBox(L) if at(mo key,L1), at(box,Ll1), ot o Box.

caused o Box after climbBox.

executable climbBox if ot o Box, at(mo key,L), at(box,L).
caused hasBa a a after gras Ba a a.

executable gras Ba a a if o Box, at(mo key,L), at(ba a a,L).
i ertial at(0,L).

i ertial o Box.

i ertial hasBa a a.

at(mo key,1).
at (box,2) .
at(ba a a,3).

O O curre Cy.

goal

hasBa a a 7 (4)

Fo t i planning p obl m, DLV find t following plan, w ic i cu

PLAN

t u now

alk(2,0), ushBox(3,1), climbBox(2), gras Ba a a(3)

ow owtoc ckco ctn oft initial tat . Simila tot

lock Wo 1d xampl in S ction 6.2, w int oduc an w flu nt:

ob ectIsSome here(0) requires ob ect(0).
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Fut mo ,w addt following con t aint and ul int initial tat :

i itially caused false if at(0,L), at(0,L1), L<>L1.
caused false if o Box, at(mo key,L), ot atBox(L).
caused ob ectIsSome here(0) if at(0,L).
caused false if ot ob ectIsSome here(D).

T con t aint gua ant a co ct initial tat . Simila to t lock
Wo 1d domain, w could now fo xampl allowt u to p cify unc tain
initial knowl dg about t po ition of t monk y by placing

at(mo key,1).
wit :
total at(mo key,X).

int i itially ction.

T i xampl i a va iation of a planning p obl m fo ock t int oduc d by
loo[57]. T a twoon -way ock t ,w ic cant an po t ca go obj ct
fomon plac toanot . T objct av tob load dont  ock t and
unload d at t d tination. T i xampl ow t capability of K to d al
wit concu nt action ,a t two ockt canb load d, can mov , and can

b unload d in pa all 1.
T Dbackg ound knowl dg conit oft plac ,t two ockt andt
obj ct tot an po t:

rocket(so us). rocket(a ollo).
cargo(food). cargo(tools). cargo(car).
lace(earth). lace(mir) . lace(moo ).

T action d c iption fo t ock t planning domain comp i ¢ ac-
tion move( ,L),load( , )andu load( , ).T flunt a at ( ,L)(w
t ock tcu ntlyi),at ( ,L)(w t cagoobjctcu ntlyi), i (, )
(d cibing t at an obj cti inid a ock t) and has uel( ) (t ockt a
fuland canmov ). Nowl tu olv t pobl moft an po tingt ca tot
moon and food and tool to Mi , givnt atallobj ct a initiallyont at
and bot ockt av ful W wit t following DLV p og am:

flue ts at ( ,P) requires rocket( ), 1lace(P).
at ( ,P) requires cargo( ), lace(P).
i ( , ) requires rocket( ), cargo( ).
has uel( ) requires rocket( ).

actio s move( ,P) requires rocket( ), lace(P).
load( , ) requires rocket( ), cargo( ).
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u load( , ) requires rocket( ), cargo( ).

al ays caused at ( ,P) after move( ,P).
caused -at ( ,P) after move( ,P1), at ( ,P).
caused -has uel( ) after move( ,P).
executable move( ,P) if has uel( ), ot at ( ,P).

caused i ( , ) after load( , ).
caused -at ( ,P) after load( , ), at ( ,P).
executable load( , ) if at ( ,P), at ( ,P).

caused at ( ,P) after u load( , ), at ( ,P).
caused -i ( , ) after u load( , ).
executable u load( , ) if i ( , ).

o executable move( ,P) if load( , ).

o executable move( ,P) if u load( , ).

o executable move( ,P) if move( ,P1), P<>P1.
o executable load( , ) if load( , 1), <> 1.

ertial at ( ,L).
ertial at ( ,L).
ertial i ( , ).
ertial has uel( ).

He e e e

i itially at ( ,earth).
at ( ,earth).
has uel( ).

securePla .

goal at (car,moo ), at (food,mir), at (tools,mir)7(3)
T o executable tat m nt xclud imultan ou action a follow :
loading/unloading a ock t and moving it;
moving a ock t to two diff nt plac ;
loading an obj ct on two diff nt ock t .

Fo t giv ngoal, DLV find two cu plan,w int fi ton ockt
sousfli tot moonanda ollofli toMi,andint condon t ol
a int c ang d:

PLAN 1load(food,so us,0), load(tools,so us,0), load(car,a ollo,0),
move(so us,mir,1), move(a ollo,moo ,1),
u load(food,so us,2), u load(tools,so us,2),
u load(car,a ollo,2)

PLAN load(car,so us,0), load(food,a 0llo,0), load(tools,a o0llo,0),
move(so us,moo ,1), move(a ollo,mir,1),
u load(car,so us,2), u load(food,a ollo,2),
u load(tools,a ollo,2)
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f

T nxt xampl i Tow of Hanoi, a gam wit t p g and a va iabl
numb ofdik ,wic av tob movdfomonp gtoanot . Allt dik

av diff nt iz and a di k may b mov d only to an mpty p g o onto a
lag dik. T wvaiabl numb ofdik canb ncod d 1 gantly, lik own
int following p og am d fining t backg ound knowl dg :

3 egs, disks

eg( 1).

eg( 2).

eg( 3).

locatio (X) - eg(X).

locatio (X) - i t(X).

smaller( , 1) - i t(), i t( 1), < 1.
smaller( ,P) - i t( ), eg(P).

Ti pogamallow u totll DLv ow many di k ould b tapl d by
u ing command-lin option -N= : i ti a builtin p dicat in DLV, w ic i
tu fo allpoitiv int g fom to .Sot m aningoft p og am abov
itatt dik a numb dfom ton,fo xampl uing “-N=2" m an
w av t dik: ,1and2.

T actiond ciptioni v y imila tot block wo ld xampl wit on
action move and flu nt and flu nt o and occu ied. T flu nt u £fi ished
indicat ,w t w av ac dt goal:

flue ts o ( ,L) requires i t( ), locatio (L).
occu ied(L) requires locatio (L).
u fi ished.

actio s move( ,L) requires i t( ), locatio (L).

al ays executable move( ,L) if ot occu ied( ), ot occu ied(L),
smaller( ,L).
i ertial o ( ,L).
caused occu ied(L) if o ( ,L).
caused o ( ,L) after move( ,L).
caused -o ( ,L1) after move( ,L), o ( ,L1).
caused u fi ished if ot o ( maxi t, 2).
caused u fi ished if ot o ( , 1), succ( , 1),
< maxi t.

i itially caused o ( , 1) if i t( 1), succ( , 1).
o (maxi t, 1).

O O curre Cy.

goal ot u fi ished?
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maxi ti a builtin con tant in DLV, automatically ttot numb giv n
wit command-lin option -N= ,t p dicat succ p nt t wucc o
lation of int g
T i xampl ow owt command-lin option -planl ngt = and -N=
canb u dto cal up planning domain . Fo in tanc ,if w av t di k
wn datlat vn tp to ac t goal. Sow av toinvok DLV u ing
t  following command:

dl ha oi. la ha oi.bk - P -N=2 - la le gth=

DLV find t following ( cu ) plan,w ic i t xp ct d olution:

PLAN movedisk(0, 2,0), movedisk(1, 3,1), movedisk(0,1,2),
movedisk(2, 2,3), movedisk(0, 1,4), movedisk(1,2, ),
movedisk(0,1, )

T 1 p bl c X DV c 1 d 1
d c c -ffc d c c , ly ¢ pl
lk 1d , d c 1 lv “b b 1 7p bl [ ],
p bl d d ol (LS LAz ). T
p bl v 1 1 , cc bdchbd n :w v
b | d b ( ) lv y T
pc p ck c ¢ Ildc b b. T 1 b 1,
c c b d d .P bl ¢ : Fl 1, c
l vy xc bl d ff c 1 cl d D k
p ck 1 q | b cl d d ff ¢
d b b pck ¢ .D k I «
1 (b 1 cl )
I 1 (b 1) 1 k b cl d
1 , cl d k T | l y
d b bW 1 k ¢ 1 k dff l
p bl , c v d d [11]:
m nt let th akae T fi d b v,
¢ ¢c b b , y ¢ y
, k c p ck c b b, d
c
lu t arm d(P) r qu r a kag (P).
du k d(P) r qu r a kag (P).
u a
ato du k(P,T) r qu r a kag (P), to 1 t(T).
al ay rt al arm d(P).

au dduk d(P) at r du k 4d(P).
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au d -arm d(P) a t r du k(P,T).
au d du k d(P) a t r du k(P,T).

au du a arm d(P).
uta 1 du k(P,T) ot du k 4(P).
t ally total arm d(P).
au 4 al arm d(P), arm d(P1), P <> P1.
goal otu a *?
A , k X p fl u a xp
y b c d.ou a , p ck
arm d.
w d duk pck y ¢, y il du k 4
c y Xp p ck dy b d kd. T 1
y ’ p by dd k ,b Py
, v p ck b d kd, c Xp d c
y ¢
A c ¢ c fi ( d d k
p ck d ), p b c y b vd p by
d k p ck
A v y b b ck dk d
d ¢ b dfi d , v b p ck
by p -N= c d :
to 1 t(t1).
a kag (P) - t(P), P > 0.
F c, Vv p ck ,¢ DV c d:

dl t. 1la t. k - P -N=2 - 1lal gth=1

T y d p cp

PLAN du k(1,t1,0), du k(2,t1,0)
PLAN du k(2,t1,0)

PLAN du k(1,t1,0), du k(2,t1,0)
PLAN du k(1,t1,0)

PLAN du k(1,t1,0)

PLAN

PLAN du k(2,t1,0)

PLAN du k(1,t1,0), du k(2,t1,0)

y p b p ck d kd c c
d PYP dp ck
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C m nt let th 1 n N
d c , d c ffc ,.
y C d v fl .
W v dd f logg d d c
lu t logg d(T) r qur to 1 t(T).
ato lu h(T) r qur to 1 t(T).
d y ¢
au d - logg d(T) a t r 1lu h(T).
au d logg d(T) a t r du k(P,T).
uta 1 1lu h(T).
mod y uta 1 tyo ato duk
uta 1 du k(P,T) ot du k d(P),
00 urr y.
T xc by du k dp d
c c c b d vy , d k
y v f b d y
F p ck ¢ p :
dl t.1la t. k-P -N=2 - la 1 gth=1
PLAN du k(2,t1,0), 1u h(t1,1), du k(1,t1,2)
PLAN du k(2,t1,0), 1u h(t1,1), du k(1,t1,2)
PLAN du k(2,t1,0), 1u h(t1,1), du k(1,t1,2)
PLAN du k(1,t1,0), 1u h(t1,1), du k(2,t1,2)
PLAN du k(1,t1,0), 1u h(t1,1), du k(2,t1,2)
PLAN du k(1,t1,0), 1u h(t1,1), du k(2,t1,2)
Ecop d , P p
Xp d
C m nt let th 1 n an m lt
X 7 b b vd c p
b ). T k dv p
oo urr y. k bv b v dc Xp C Y,
c d, by dd
d:
tado oo urr y
o uta 1 1lu h(T) du k(P,T).

uta 1 du k(P,T)
uta 1 du k(P,T)

du k(P1,T), P
du k(P,T1), T

.d

81

p ck

lu h:

ot logg d(T).

b c¢ d.
C J
d c p
b )
let let T
py
c cC
y C
<> P1.
<> T1.
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A ck d , c , dc p b ¢
¢ fic o uta 1 . I dd , v
dd ¢ tol t(t2). to 1 t(t3). ... b ck dk d
p
F c, MT 2)pv fid 2 C P 12 p
d k p ck fi p, fl b c d p,
d p b d k p ck d p).
Ec p d fiv d fiv p b ,
v 12 P ¢ dl:

dl mt . la t2t. k -N=4 - 1la 1 gth=3 - P

PLAN du k(3,t1,0), du k(4,t2,0), 1u h(t1,1), 1u h(t2,1),
du k(1,t1,2), du k(2,t2,2)
PLAN du k(3,t1,0), du k(4,t2,0), 1u h(t1,1), 1u h(t2,1),
du k(2,t1,2), du k(1,t2,2)

C m nt let th netan 1 n F y
b v d , ¢ c c d k p ck-
. T ¢ v , c ff ¢ c du k b dfid b
total:

total logg d(T) a t r du k(P,T).

F d2p ck d p dfid c
p .
PLAN du k(2,t1,0), 1u h(t1,1), du k(1,t1,2)
PLAN du k(1,t1,0), 1u h(t1,1), du k(2,t1,2)
, C p d p d dff p b
d d 3p b ,2p b d k
fi p,2p b d k,y d 12 )., T fi v
U ) i 6.7
A db , p b pb ¢ P -
y y ¢ p b . k ¢ k
y p d cd U ) ki .T y d -
c ffec ¢ :
total logg 4(T) a t r du k(P,T).
ote that the number o extracted plans is not monotonic with the number o packa es in
this problem, as or instance T results in 5 2 possible plans or two toilets, an
odd number o packa es, does not en orce the a ent to dunk a maximum number o packa es
in every step. whereas the only possibility to reach the oal or T in three steps is

to dunk packa es in the rst and packa es in the third step, while ushin the toilets in
between.
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lu t arm d(P) r qu r a kag (P).
logg d(T) r qur to 1 t(T).
du k d(P) r qu r a kag (P).

u a

ato du k(P,T) r qu r a kag (P), to 1 t(T).
lu h(T) rqur to 1 t(T).

al ay rt al arm d(P).

rt al logg 4(T).
au ddu k d(P) at r du k d(P).
au d - logg d(T) a t r 1lu h(T).
au d -arm d(P) a t r du k(P,T).
r

total logg d4(T) a t r du k(P,T).
au du a arm 4d(P).
uta 1  1u h(T).
uta 1 du k(P,T) ot du k d(P), ot logg d(T).
tado oo urr y
o uta 1 du k(P,T) 1u h(T).
o uta 1 du k(P,T) du k(P1,T), P <> P1.
o uta 1 du k(P,T) du k(P,T1), P <> T1.
t ally total arm d(P).
au d al arm d(P), arm d(P1), P <> P1.
goal otu a 7

F 67: tu . la:DV p TU
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P
ff T
- logg d(T) ff 1u h(T)
fl logg d(T) ff du k(P,T)
H X lu h du k -

H fl k S 22
DV



r or a
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