
Optimization of Physical Unclonable Function Protocols for

Lightweight Processing

Carol Suman Pinto

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Patrick R. Schaumont, Chair

Michael S. Hsiao

Leyla Nazhandali

August 10, 2016

Blacksburg, Virginia

Keywords: Physical Unclonable Functions (PUFs), Static Random Access Memory

(SRAM), Cryptographic protocols

Copyright 2016, Carol Suman Pinto

Optimization of Physical Unclonable Function Protocols for Lightweight

Processing

Carol Suman Pinto

(ABSTRACT)

Physically unclonable functions are increasingly used as security primitives for device identi-

fication and anti-counterfeiting. However, PUFs are associated with noise and bias which in

turn affects its property of reliability and predictability. The noise is corrected using fuzzy ex-

tractors, but the helper data generated during the process may cause leakage in min-entropy

due to the bias observed in the response. This thesis offers two optimization techniques for

PUF based protocols. The first part talks about the construction of a secure enrollment

solution for PUFs on a low-end resource-constrained device using a microcontroller and a

secure networked architecture. The second part deals with the combined optimization of

min-entropy and error-rate using symbol clustering techniques to improve the reliability of

SRAM PUFs. The results indicate an increase in min-entropy without much effect on the

error rate but at the expense of PUF size.

This research is supported by CISCO Systems Inc.

Acknowledgments

I would like to thank everyone who has played a crucial role in the pursuit of my Master’s

thesis:

Dr. Patrick Schaumont for taking me under his wing and providing guidance, knowledge,

and encouragement during my work at Secure Embedded Systems Lab. I’m grateful for his

belief and patience that drove this work to completion.

Dr. Michael Hsiao and Dr. Leyla Nazhandali for being on my review committee. Dr. Paul

Plassmann for his advice throughout my academic journey here at Virginia Tech.

Dr. Aydin Aysu for his insights and assistance throughout my research at Secure Embedded

System Lab and my colleagues Shravya Gaddam, Harsha Mandadi and Hemendra Rawat

for their time and help.

My mother Jacintha Barboza, my aunt Precilla Katwa, my uncles Jossy Barboza, and Deven

Katwa, without their love and support, I wouldn’t be at Virginia Tech pursuing my Masters.

My friends and roommates who have been a constant source of support and encouragement.

iii

Contents

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Outline . 4

Chapter 2 Background and Related Work 5

2.1 Physical Unclonable Functions . 5

2.1.1 PUF Properties . 6

2.1.2 Types of PUFs . 7

2.1.3 Quality Measures . 8

2.1.4 Cryptologic primitives . 8

2.1.5 PUF Improvements . 9

2.2 Secure Architectures . 10

iv

2.2.1 Basic Security Mechanisms and Concepts 10

2.2.2 Existing Security Solutions for Microcontrollers 11

2.2.3 SANCUS . 12

2.3 PUF-based Protocols . 14

Chapter 3 Design Optimizations: Processing component 15

3.1 Existing Model . 15

3.1.1 System Architecture . 16

3.2 Optimization using microcontrollers . 19

3.3 PUF Enrollment Solution . 19

3.3.1 Hardware architecture . 19

3.3.2 Software architecture . 21

3.3.3 Protocol . 22

3.3.4 Security Analysis . 22

Chapter 4 Design Optimizations: Coding Algorithms 24

4.1 SRAM Noise Pattern Analysis . 24

4.1.1 Reason for noise in SRAM PUFs . 24

4.1.2 Biased and Noisy PUF Model . 25

v

4.1.3 Noise and probability distribution analysis using state flow diagrams 27

4.2 Symbol Encoding using Look Up Tables . 32

4.2.1 Construction of Transition Tables . 32

4.2.2 Typical grouping approaches . 34

4.2.3 Grouping with a balance between probability distribution and error rate 36

4.2.4 Change in error correcting parameters 38

4.2.5 Security Analysis . 38

Chapter 5 Experimental Results and Discussion 39

5.1 Enrollment Solution . 39

5.1.1 Implementation Cost and Performance Analysis 39

5.2 Look up tables . 41

5.2.1 Implementation . 41

5.2.2 Performance Evaluation . 41

Chapter 6 Conclusions and Future Work 52

6.1 Conclusions . 52

6.2 Future Work . 53

Bibliography 55

vi

List of Figures

2.1 A simple PUF representation . 6

3.1 Device attestation using Fusion PUF [1] . 17

3.2 Block Diagram of the Software Architecture of Fusion PUF [1] 18

3.3 Block Diagram of the Hardware Architecture of PUF Enrollment Solution . . 20

3.4 Block Diagram of the Software Architecture of PUF Enrollment Solution . . 21

4.1 Error rate and probability when SRAM bits of noise n and bias p are grouped

into 2-bit symbols . 26

4.2 Error rate and probability when SRAM bits of n=0.1 and p=0.3 are grouped

into 2-bit symbols . 28

4.3 Grouping based on probability . 29

4.4 Grouping based on error rate . 30

4.5 An alternate grouping option . 31

vii

4.6 State flow diagram for SRAM bits from a SASEBO board 33

5.1 Comparison of min-entropy values for SRAM for simulated p and n values . 43

5.2 Comparison of symbol error rate values for SRAM for simulated p and n values 43

5.3 Comparison of bit error rate values for SRAM for simulated p and n values . 44

5.4 Comparison of min-entropy values for SRAM on SASEBO board 44

5.5 Comparison of symbol error rate values for SRAM on SASEBO board 45

5.6 Comparison of bit error rate values for SRAM on SASEBO board 45

5.7 Comparison of min-entropy values for SRAM on DE2 board 46

5.8 Comparison of symbol error rate values for SRAM on DE2 board 46

5.9 Comparison of bit error rate values for SRAM on DE2 board 47

5.10 Comparison of min-entropy values for SRAM on PIC32 board 47

5.11 Comparison of symbol error rate values for SRAM on PIC32 board 48

5.12 Comparison of bit error rate values for SRAM on PIC32 board 48

5.13 Histogram of SRAM byte values of DE2 board upon 2 bit to 1 bit clustering 51

5.14 Histogram of SRAM byte values of SASEBO board upon 4 bit to 2 bit clustering 51

viii

List of Tables

2.1 Comparison of Security solutions for Microcontrollers 13

4.1 Transition table for the SRAM data in fig. 4.1 where p(00) = p ∗ p, p(01) =

p ∗ (1− p), p(10) = (1− p) ∗ p, p(11) = (1− p) ∗ (1− p). 27

4.2 Transition table for the SRAM data in fig. 4.6 34

5.1 Hardware utilization in terms of logic cells 40

5.2 Software utilization in bytes . 41

5.3 SRAM Datasets . 42

5.4 Comparison of the three approaches in terms of BCH parameters for an ex-

pected entropy of 128 bits and FRR of 10−3 50

ix

Chapter 1

Introduction

In this chapter, we discuss the motivation and contributions of the thesis.

1.1 Motivation

Internet of Things has facilitated an increase in networked embedded systems in our every-

day life. A severe problem faced by manufacturers these days is the illegal duplication of

the remotely deployed networked devices. One method to avoid counterfeiting is to track

carefully and control the production and deployment of these devices. This process can be

done remotely using cryptographic techniques, including authentication. A typical method

used to authenticate a device is using a secret key stored in a secure non-volatile memory

region. However, invasive or side-channel attacks can result in the exposure of the secret

key causing security failures. The above scenario led to the development of Physical Unclon-

1

2

able Functions (PUFs) which exploits the manufacturing variations of the device [2]. Since

PUFs depend on the intrinsic characteristics of the device, it’s hard to be manipulated or

duplicated. Hence, PUFs form a more secure alternative to traditional secret key storage

methods creating a potential solution to identifying authentic devices.

The first step of PUF-based authentication solutions is the enrollment where manufacturer

extracts the PUF data to create a unique identifier for the device. Ideally, this step needs to

take place in a secure execution environment. However, there isn’t any work that provides

a practical solution to the enrollment problem. The first part of the thesis tries to reduce

the complexity of the processing element and the software overhead observed in a complete

network integrated PUF-based solutions without sacrificing the security objectives.

SRAM PUFs [3, 4] are quite popular among all the PUFs. The reason is that the SRAMs

are one of the standard components in most of the devices obviating the need to create

additional hardware for the PUF. Also, the large size of SRAM offers a huge amount of data

for analysis. The noisy bits observed due to environmental changes and aging need to be

fixed to create reliable SRAM PUFs. A typical solution is to use an Error Correcting Code

(ECC) to locate the noisy bits. But, implementing an error-correcting algorithm can turn out

to be quite expensive in case of low-end devices. An efficient data processing algorithm for

PUFs can not only improve reliability but can also enhance the min-entropy of the SRAM

PUF-data, which is lost due to the bias in specific devices[5]. This change can improve

the implementation costs for a resource-constrained device. The second part of the thesis

analyzes the SRAM data from multiple devices and provides an efficient processing technique

3

that can eliminate the bias of the bits while keeping the error rate in consideration.

1.2 Contributions

This work offers the following resource optimization techniques for PUF based authentication

protocols.

• Use of a lightweight Trusted Computing Base (TCB) to support enrollment.

The manufacturer needs to communicate securely with the device, attest the PUF

data extraction software and collect the data in an isolated execution environment.

The above design technique serves as a solution for secure enrollment of PUF data pro-

vided isolation be achieved using appropriate secure architectures for low-end resource-

constrained devices.

• Use of lookup tables to support combined optimization of bias and bit error rate.

The byte level dependencies observed in SRAM data [5] is exploited using look up

tables by careful and simultaneous analysis of bias and bit error rates. This technique

of using simple lookup tables provides a significant improvement in min-entropy and

symbol error rate which can result in a small implementation of decoding logic.

4

1.3 Thesis Outline

In Chapter 2, we summarize the existing work on physical unclonable functions and secure

architectures. Chapter 3 and Chapter 4 describes our design which reduces the complexity of

the processing component, and the coding algorithm. Chapter 5 evaluates the performance

of our implementation. Ultimately, Chapter 6 concludes this work.

Chapter 2

Background and Related Work

In this chapter, we discuss the background of two main elements of thesis - Physical Unclon-

able Functions and Secure Architectures.

2.1 Physical Unclonable Functions

Physically Unclonable Functions (PUFs) are physical objects which are unclonable across

circuits due to random manufacturing variations of the underlying physical device [2]. These

defects also impact the challenge-response behavior of the PUF.

For a given m-bit Challenge Ci, Response Ri = PUF(Ci), where Ri is of n-bits. PUF serves

as a function that provides a mapping between challenges and responses.

5

6

Figure 2.1: A simple PUF representation

PUFCHALLENGE RESPONSE
m n

2.1.1 PUF Properties

The following properties need to hold for a PUF:

Reliability

On querying the same challenge multiple times, a PUF will return a same response with

high probability. The different responses are due to noise induced by the environmental

variations such as ambient temperature, voltage ramp up curves, the aging process, etc. The

stabilization is then achieved using a suitable error correction method.

Unpredictablity

It is infeasible for an adversary to replicate physically the PUF such that it would provide

the exact response for every possible challenge. Also, it’s hard to guess the response to an

unknown challenge, even if the adversary has observed multiple challenge-response pairs.

7

2.1.2 Types of PUFs

Memory-based and Delay-based PUFs

Maes et al. explain how the positive-feedback loops which are used to store the bits contribute

to the device-specific characteristics of memory-based PUFs [6]. The perfectly balanced loop

has an equal chance of becoming logic 1 or 0, but the manufacturing variations introduce an

imbalance resulting an unpredictable power-up state. SRAM PUFs [3, 4], Buskeeper PUFs

[7], Latch PUFs [8] and D Flip-Flip PUFs [9] are the most widely used memory-based PUFs.

Delay-based PUFs exploit the race conditions within the integrated circuit [10]. They include

Arbiter PUFs [11] and Ring Oscillator PUFs [12]. Arbiter PUF is based on the delay

difference observed in two identical paths caused due to the process variations while Ring

oscillator PUF is based on the random frequency variations on identical ring oscillators [6].

Strong and Weak PUFs

Strong PUFs exhibit an enormous number of challenge-response pairs. This vast number

makes it impossible to clone physically with the exact behavior or to predict response to a

random challenge. Also, the finite-read out speed ensures that a software learning model

will never be able to access all the challenge-response pairs [13].

Weak PUFs support only a small number of challenge-response pairs. These responses can

be used as a unique key or seed in encryption protocols [14].

8

2.1.3 Quality Measures

A PUF’s reliability is evaluated using its average Intra-Hamming distance over the output

responses to identical challenges on the same PUF instance. PUF’s uniqueness is assessed us-

ing the average Inter-Hamming distance over the output responses to the identical challenges

on different PUF instances [15].

2.1.4 Cryptologic primitives

The PUF responses need to be reliable and unpredictable for use in many PUF-based ap-

plications [16]. PUFs are usually combined with helper data algorithms to fix the noisy and

the uniformly random behavior. Delvaux et al. [17] provide an overview of the helper data

algorithms for PUF-based key generations.

Generation Phase and Reproduction Phase

During the generation phase, the PUF response of the device to a specific challenge is

recorded and enrolled at a secure location. The reproduction phase involves observing the

PUF response at a later time, locating the error bits and fixing them. This regenerated

response is used to compare against the response observed during enrollment.

9

Fuzzy Extractor and Reverse Fuzzy Extractor

Fuzzy extractors [18] are used to correct the noisy bits to generate PUF responses useful

for cryptologic operations. The algorithm assumes that the verifier sends the response and

the error decoding algorithms in the reproduction phase execute at the verifier side. Van

Herrewege et al. proposed Reverse Fuzzy Extractor [19] where the compute intensive error

decoding takes place at the verifier side.

2.1.5 PUF Improvements

Reliability

The reliability issue of SRAM PUFs is solved using Error Correction Codes(ECC). But the

information leaks and computational costs limit the use of ECC. Bhargava et al. proposed

reliability enhancements for SRAM PUFs by accelerated aging, multiple evaluation and using

activation signal controls [20]. Cortez et al. proposed matching of voltage ramp-up time to

ambient temperature to improve the SRAM PUF reliability [21]. Bit selection algorithm

[22] utilizes the information of reliable bits observed during enrollment for better results. Yu

et al. proposed a Maximum Likelihood symbol coding method for PUF bits with bit error

improvements [23].

10

Unpredictability

Several debiasing schemes are proposed that transform the biased PUF distributions into a

non-biased PUF distribution resulting in a high min-entropy, but with the assumption that

biased PUF response bits are i.i.d bits. Index-based syndrome coding [24] proposed by Yu

et al. provides significant benefits over XOR masking by not leaking additional min-entropy.

Maes et al. proposed von Neumann-like extractors for several variations of debiasing schemes

to achieve better reliability of PUF bits [25].

2.2 Secure Architectures

The growing number of network connected devices pose a major security requirement to

ensure that the system properties are not affected by the presence of an adversary. PUF-

based device authentication solutions are deployed at a remote location, and they need to

be running securely for the verifier to ensure that an adversary has no access to it.

2.2.1 Basic Security Mechanisms and Concepts

The conventional security mechanisms such as platform integrity, secure storage, isolated

execution, device authentication, attestation, and provisioning employ trust anchors such as

device keys, isolated memory or cryptologic mechanisms [26].

• Platform integrity is achieved when the manufacturer can detect or prevent the unau-

11

thorized modifications to its platform either at boot or runtime time.

• Secure storage enables denial of unauthorized access to securely stored data.

• Isolated execution is supported when a secure code can execute while being immune

to malicious code in the environment.

• Device authentication is achieved by the verifier when it can identify the device.

• Attestation involves verifying the software running on the device while provisioning

includes secure transmission of data to the trusted software on the device.

• Secure communication suggests that the data exchange between the verifier and the

device happens in a protected manner.

2.2.2 Existing Security Solutions for Microcontrollers

Security mechanisms can be implemented using secure coprocessors [27], hardware-assisted

virtualizations [28], Trusted Platform Modules (TPMs) [29], Trusted Software Modules(TSMs)

[30], secure microkernels [31], and trusted hypervisors [32, 33]. These approaches are very

expensive in terms of manufacturing cost and energy consumption in case of resource-

constrained devices [26].

The basic security services for low-end devices can be implemented using purely software

based attestations that depend on the response time [34, 35]. CARMA [36] reduces the

hardware trusted computing base(TCB) by leveraging the Cache-as-RAM execution mode

12

and not trusting the peripherals, buses, and the memory. SMART [37] offers minimal hard-

ware architecture for trusted execution by ensuring that the secret key is available only when

executed from the trusted code present in ROM. Other approaches such as SANCUS [38]

manage tasks using CPU instructions and implement Memory Access Logic(MAL) to avoid

the attacks due to malicious code. However, any violation of the code in case of SMART [37]

and SANCUS [38] result in the reset of the device. TrustLite [39] enables multiple protected

tasks to run in parallel by providing a programmable, execution-aware memory protection

(EA-MPU) subsystem. It also avoids the problem of reset using Secure Loaders which restore

the necessary access protection rights. TYTAN [40] also makes use of the execution-aware

memory protection (EA-MPU) while supporting secure inter-process communication, local

and remote attestation. Table 2.1 provides a comparison of different security mechanisms

among the selected few security approaches.

The recent device authentication and secure key generation applications use PUF based

solutions. PUFs eliminate the requirement of storing the key in a secure nonvolatile memory,

hence are immune to invasive attacks [41].

2.2.3 SANCUS

SANCUS [38] is a security architecture developed for low-end resource-constrained networked

embedded devices. The security mechanisms are implemented as mentioned below.

• Isolated Execution: This is achieved by the use of a Memory Access Logic (MAL)

13

Table 2.1: Comparison of Security solutions for Microcontrollers

CARMA SANCUS SMART TYTAN

Platform
Integrity

Keys generated
by SAKE [42]

Key based
HMAC

Correctness
Secure boot

and EA-MPU*

Secure Storage -
Memory

Access Logic
Key access

controls
Key associated

with a task

Isolated
Execution

Cache-as-RAM
Memory

Access Logic

ROM
execution
control

Execution
aware memory
protection unit

Device
Authentication

SAKE [42] Key based Key based
RTM*

Measurements

Attestation &
Provisioning

PIONEER [34]
Key based &

software
identity

Key based &
Memory

attestation

RTM*
Measurements

Secure Com-
munication

SAKE [42] Key based
HMAC

Correctness

IPC
Proxy(between

tasks)
Open Source No Yes No No

*EA-MPU: Execution Aware Memory Protection Unit, RTM: Root of Trust Measurements

circuit to drive the access rights of a software module. MAL ensures that the data

in the protected data section is executable only if the program counter is in the text

section of the executed module. The MAL circuit also ensures that other software

modules can enter the text section through well-defined entry points.

• Remote Attestation: The symmetric key unique to a module and device is available to

the software provider. The same key is generated on the device side and is accessible

to the module only using processor instructions. The MAC generated using this key is

sent across to the verifier in order to attest the software configuration.

14

• Secure Communication: When software provider requests for a data from the software

module, the MAC over the data using symmetric key provides strong assurance that

the data has been produced by the module on the specific device.

2.3 PUF-based Protocols

Aysu et al. proposed a mechanism to authenticate a device by cryptographically linking

multiple PUFs on the PCB [1]. This prototype uses a µClinux operating system which con-

tributes to almost 80% of software resources, which is quite expensive. This thesis provides

an improvement over the approach by the use of SANCUS [38] on OpenMSP430 from the

OpenCores project [43].

Several approaches use PUFs for software protection. Kohnhuser et al. uses SRAM PUFs

to protect the software against modifications on a low-cost ARM-based microcontroller [44].

The PUF data is used to verify the authenticity of the device while hashing of the code

measures the integrity of the software. Gora et al. proposed a system that utilized the PUF

key to decrypt the actual software code before executing it [45]. Nithyanand et al. proposed

a system based approach using IP-PUFs, where PUF is continuously associated with the

control flow of the program [46]. The above approaches use PUFs as a trust anchor. The

work described in this thesis relies on SANCUS [38] for the protection of the software, while

the software particularly aims at the function of PUF enrollment.

Chapter 3

Design Optimizations: Processing

component

In this chapter, we discuss the PUF Fusion Model [1] and how the prototype is optimized

using a simpler processing component thereby providing an efficient solution for the PUF

enrollment problem.

3.1 Existing Model

Aysu et al.[1] proposed a protocol of authenticating a remotely located PCB using its compo-

nents and memory elements. These elements form the component-level PUFs characterized

through the probability of a bit error e, and the probability d of a bit-flip between two

instances of the same component. The paper discusses how multiple component PUFs can

15

16

be merged taking the error and inter-distance characteristics into consideration.

The paper [1] recommends the Reverse Fuzzy Extractor protocol [47] which implements

mutual authentication between the server monitored by the infrastructure operator and the

remotely installed device. The setup phase includes the secure enrollment of PUF data

where the operator registers the device’s public ID and the PUF data. The second phase is

the authentication step where the server requests the device for the helper data and board

ID. The server then reconstructs the noisy PUF using the enrolled PUF associated with the

board ID. This step is succeeded by hash operations to verify the knowledge by both the

parties.

3.1.1 System Architecture

Hardware components

The design comprises of a Nios-II softcore processor with several FPGA components on

Altera DE2-115. The two PUFs implemented are SRAM PUF and Ring Oscillator PUF

(RO PUF). The SRAM PUF includes a SRAM controller that measures the power-up state

at a requested memory location and transfers it to the sender. The RO PUF includes multiple

ring oscillators that exploit the frequency variations to produce a suitable PUF response.

17

FPGA

PUF

SRAM

PUF

PCB

TCB

OS

USER Protocol

Server
Enrollment

Trusted
Channel

Fusion

 (dSRAM,eSRAM)

hacker
hacker

(dPCB, ePCB)

Valid PCB
List

Remote Site

Infrastructure
Operator

1
2
3
..

 (dFPGA, eFPGA)

Figure 3.1: Device attestation using Fusion PUF [1]

18

Software components

The software component on the device included an µCLinux operating system with kernel

modules that had access to the PUF data. The kernel modules are assumed to be within

a TCB and are accessible only to the application installed by the infrastructure provider.

JTAG UART aids the exchange of requests and responses between the server and client

applications. The protocol guarantees that the data received is indeed from the software

installed on the particular device. Figure 3.2 gives an overview of the software architecture

implemented in [1].

DATABASE

SERVER

APPLICATION
JTAG UART

CLIENT

APPLICATION

PCB

APPLICATION

FUZZY

EXTRACTOR

MODULE

RO MODULE
SRAM

MODULE

NETLINK SOCKETS uClinux
INTER KERNEL MODULE

COMMUNICATION

SRAM PUFRO PUF

MEMORY

MAPPED

REGISTER

iowrite iowriteioread ioread

MEMORY

MAPPED

REGISTER

Figure 3.2: Block Diagram of the Software Architecture of Fusion PUF [1]

19

3.2 Optimization using microcontrollers

The µCLinux kernel comprises of around 86.7% of the total of the software resources. This

memory overhead can be eliminated by using a no OS system. A microcontroller with an

efficient security architecture can form a suitable alternative to the system proposed by [1].

Section 2.2.2 provides an overview of the available solutions which can help to achieve a

secure execution of PUF protocols within microcontrollers.

3.3 PUF Enrollment Solution

In this section, we discuss the construction of a solution for PUF enrollment.

3.3.1 Hardware architecture

System design

Figure 3.3 shows the hardware architecture of the prototype. The design includes the open-

MSP430 of the OpenCores project [43] with the Memory Access Logic and SPONGENT-

128/128/8 implemented by SANCUS [38]. The design also incorporates the SRAM PUF and

Ring Oscillator PUFs from the PUF Fusion prototype [1].

20

FPGA

PCB

data ctl RO freqaddr

ad d ctl

SRAM Controller RO PUF

SRAM

Server
Side

Protocol

chal.

resp.
UART

PLL Clock
Source

SoC
Clock

openMSP430

Memory Backbone

RAM ROM

program
memory
interface

data
 memory
interface

Figure 3.3: Block Diagram of the Hardware Architecture of PUF Enrollment Solution

21

PUF design and integration

The SRAM PUF design in the demonstrator uses an onboard static RAM (ISSI IS61WV102416BLL)

and a FSM controller. The RO design comprises of 256 ROs to generate a 255-bit output.

The openMSP430 architecture maps the SRAM PUF and the RO PUF within 512B of

the peripheral memory space. The client software communicates with the hardware PUF

modules using memory-mapped I/O.

3.3.2 Software architecture

DATABASE

SERVER

APPLICATION

UART CLIENT

APPLICATION

PCB

SECURE PUF MODULE

SRAM PUFRO PUF

MEMORY

MAPPED

REGISTER

MEMORY

MAPPED

REGISTER

I/O I/O

FUNCTION CALL
 MONITORED BY SANCUS

APPLICATION

KN

Figure 3.4: Block Diagram of the Software Architecture of PUF Enrollment Solution

Figure 3.4 shows the software architecture of the PUF enrollment prototype. It consists of

22

three main components. (i) the server application sends the challenge for PUF extraction,

(ii) the secure PUF extraction module which can communicate with PUFs, and (iii) the

client application that loads, protects and interacts with the secure module.

The application is compiled using modified LLVM provided by SANCUS. The PUF module

benefits from the SANCUS by using certain special attributes to annotate global variables

and functions.

3.3.3 Protocol

The infrastructure provider creates a client application that is loadable on all of its devices. It

is possible because the vendor has the knowledge of all the elements that it needs to create

the module key KN,SP,SM [38]. The server application initiates the extraction and sends

a request to the client application. The host client application loads the secure module,

enables protection and extracts the PUF data. It then evaluates the MAC over the data and

returns it. The server application now compares the MAC with the locally computed MAC

to identify if the returned PUF data is precisely from the software module installed by itself

on its device.

3.3.4 Security Analysis

The prototype benefits from the security properties supported by SANCUS. The module

needs to be thoroughly checked for accurate implementation since SANCUS doesn’t provide

23

resistance against implementation breaks [38]. It is important to note that PUF extraction

module relies on the isolation offered by the SANCUS which depends on a key stored in

NVM. Our assumption is that the key is common or known for all the devices where the

provider plans to install the PUF extraction software.

Chapter 4

Design Optimizations: Coding

Algorithms

In this chapter, we discuss the SRAM Noise and entropy analysis and how this is used to

create a suitable debiasing solution at low error rate expense.

4.1 SRAM Noise Pattern Analysis

4.1.1 Reason for noise in SRAM PUFs

A standard 6T SRAM consists of two nominally matched cross-coupled CMOS inverters and

two access transistors. The CMOS manufacturing variations result in a mismatch between

the inverter pairs causing the bias in the power up state. Along with the process changes, the

24

25

power state is also affected by the voltage supply, ambient temperature, aging effects. Fuzzy

extractors are used as post-processing modules in PUF based techniques that can correct

these noisy bits. But the helper data generated using fuzzy extractors can result in leakage

of secret information in case of strongly biased PUF responses [48].

4.1.2 Biased and Noisy PUF Model

PUF Bias

Given a SRAM response of n bits, a bias of p indicates that any random bit in the n bit

response is likely to be ‘0’ with a probability of p where 0 ≤ p ≤ 1. An ideal unbiased PUF

has p = 0.5.

PUF Noise

Delvaux et al. [17] considers error rate to be independent and identically distributed (i.i.d.)

among PUF response bits and derives them using normally distributed manufacturing vari-

ability and noise components. In this thesis, we evaluate the error rate e based on the

number of bit flips observed during multiple measurements for the same challenge at every

bit position.

26

State flow diagram and Transition Matrix

Figure 4.1 shows an a generic PUF model created for an SRAM with error rate e and bias p.

Each transition indicates the probability of switching to another symbol and how the bias

p and the error rate e influences it. The symbol error rate is evaluated by adding all the

outgoing transitions to another symbol. The symbol bias, on the other hand, is estimated

by multiplying the bit dependent biases.

00

11

0110

p(10) * e * (1-e)

p(00) * (1-e) * e

p(00) * e *(1-e)

p(01) * e * (1-e)
p(11) * (1- e) * e

p(10) * (1- e) * e
p(11) * e * (1-e)

p(01) * (1-e) * e

p(00) * (1-e) * (1-e)

p(11) * (1-e) * (1-e)

p(10) * (1-e) * (1-e)

p(01) * (1-e) * (1-e)

p(00) * (1-e) * (1-e)

p(01) * (1-e) * (1-e)

p(11) * (1-e) * (1-e)

p(10) * (1-e) * (1-e)

Pr
ob

ab
ili

ty

p * p

p * (1-p)

(1-p) * (1 - p)

p > 0.5

Figure 4.1: Error rate and probability when SRAM bits of noise n and bias p are grouped
into 2-bit symbols

Table 4.1 provides an overview of the transition matrix that can be used to represent the

27

Table 4.1: Transition table for the SRAM data in fig. 4.1 where p(00) = p ∗ p, p(01) =
p ∗ (1− p), p(10) = (1− p) ∗ p, p(11) = (1− p) ∗ (1− p).

00 01 10 11
00 p(00) ∗ (1− e) ∗ (1− e) p(00) ∗ (1− e) ∗ e p(00) ∗ e ∗ (1− e) p(00) ∗ e ∗ e
01 p(01) ∗ (1− e) ∗ e p(01) ∗ (1− e) ∗ (1− e) p(01) ∗ e ∗ e p(01) ∗ e ∗ (1− e)
10 p(10) ∗ e ∗ (1− e) p(10) ∗ e ∗ e p(10) ∗ (1− e) ∗ (1− e) p(10) ∗ (1− e) ∗ e
11 p(11) ∗ e ∗ e p(11) ∗ e ∗ (1− e) p(11) ∗ (1− e) ∗ e p(11) ∗ (1− e) ∗ (1− e)

state flow diagram. The sum of all elements in a transition matrix evaluates to 1. Also,

the sum of the off-diagonal elements equals the error rate e. The symbol probabilities are

evaluated by adding the elements of the row corresponding to the symbol. For example, the

sum of all elements of the row corresponding to symbol ‘00’ gives us p(00).

4.1.3 Noise and probability distribution analysis using state flow

diagrams

Figure 4.2 shows a state flow diagram created using simulated SRAM an error probability of

0.1, and a bias of 0.3 towards 0. The SRAM bits are read two bits at a time. Every outgoing

transition indicates the likelihood of a 2-bit symbol switching to another 2-bit symbol upon

successive accesses of the PUF using the same challenge. For example, the probability of

switching from symbol ‘11’ to symbol ‘10’ is calculated as p(symbol) * p(error/no-error in

the first bit) * p(error/no-error in the second bit) which results in 0.0784. Since, p = 0.3,

probability of individual symbols are as follows : p(00) = 0.09, p(01) = 0.21, p(10) = 0.21,

p(11) = 0.49. These values clearly indicate the bias towards the symbol ‘11’. The total

28

11

00

0110

0.0189 0.0441

0.0441

0.01890.0081

0.0189 0.0081

0.0189

0.00490.0009

0.0021

0.0021

0.3969

0.1701

0.0729

0.1701

p(11) = 0.49

p(01) = 0.21p(10) = 0.21

p(00) = 0.09

P
ro

b
ab

ili
ty

0.49

0.21

0.09

Figure 4.2: Error rate and probability when SRAM bits of n=0.1 and p=0.3 are grouped
into 2-bit symbols

29

symbol error rate obtained by calculating the sum of all the outgoing transitions from one

state to another state is 0.19.

1

0

0.4713

0.0387

0.0931

0.3969

p(1) = 0.51

p(0) = 0.49
11

00

0110

0.0189 0.0441

0.0441

0.01890.0081

0.0189 0.0081

0.0189

0.00490.0009

0.0021

0.0021

0.3969

0.1701

0.0729

0.1701

p(11) = 0.49

p(01) = 0.21p(10) = 0.21

p(00) = 0.09

Pr
ob

ab
ili

ty

0.49

0.51

0.21

0.09

Figure 4.3: Grouping based on probability

A straight forward method of de-biasing the above model is by grouping symbols such that

the probability distribution is uniform as shown in figure 4.3. But grouping the symbols

solely based on probability doesn’t ensure the best possible error rate which is 0.1318 in this

case. Similarly, classifying the symbols entirely based on reducing the error rate (0.1) would

not lead to an ideal distribution of symbols as seen in figure 4.4. Figure 4.5 shows another

combination of symbols which is possible but doesn’t yield best results with 0.18 bit error

rate.

30

1

0

0.63

0.07 0.03

0.27

p(1) = 0.7

p(0) = 0.3
11

00

0110

0.0189

0.0441

0.0441

0.0189

0.0081

0.0189

0.0081

0.0189

0.0049

0.0009
0.0021

0.0021

0.3969

0.1701

0.0729

0.1701

p(11) = 0.49

p(01) = 0.21p(10) = 0.21

p(00) = 0.09

Pr
ob

ab
ili

ty

0.49

0.21

0.09

0.30

0.70

Figure 4.4: Grouping based on error rate

31

1

0

0.4756

0.1044 0.0756

0.3444

p(1) = 0.58

p(0) = 0.42

11

00

0110

0.0189

0.0441

0.0441

0.01890.0081

0.0189 0.0081

0.0189

0.00490.0009

0.0021

0.0021

0.3969

0.1701

0.0729

0.1701

p(11) = 0.49

p(01) = 0.21p(10) = 0.21

p(00) = 0.09

P
ro

b
a

b
ili

ty

0.49

0.21

0.09

0.58

0.42

Figure 4.5: An alternate grouping option

32

This kind of grouping of symbols within a state flow model implies that it is possible to

develop a suitable debiasing model by considering both the probability distributions and bit

error rates. It is also important to note that the high probability symbols contribute the most

to the error rate. For example, symbol error rate of switching from high probability symbol

‘11’ to other symbols is 0.0931 while symbol error rate of switching from low probability

symbol ‘00’ to other symbols is 0.0171. As a result of which grouping symbols to reduce

error rate will result in placing higher probability symbols in the same group causing an

imbalance.

4.2 Symbol Encoding using Look Up Tables

This section explains how the state flow diagrams described above are utilized in the simul-

taneous analysis of error rate and probability distribution in achieving a de-biasing solution.

4.2.1 Construction of Transition Tables

The state flow diagrams provide an insight to how bits are related and can be combined

to obtain a rather uniform distribution while optimizing the bit error rate. It is important

to note that the error transitions are not exactly symmetric in the case of actual SRAM

measurements. Figure 4.6 shows that symbol ‘10’ has a higher probability compared to

other 2-bit symbols for a SRAM on a SASEBO board.

33

10

01

11

00

0.015043
0.01295

0.013843

0.0059340.006524

0.006827 0.005904

0.013443

0.0010740.001782

0.000352

0.000346

0.405

0.185

0.104

0.221

p(10) = 0.43

p(11) = 0.204

p(00) = 0.244

p(01) = 0.118

Pr
ob

ab
ili

ty

0.43

0.244

0.118

0.204

Figure 4.6: State flow diagram for SRAM bits from a SASEBO board

34

The state flow diagrams observed can also be analyzed using a transition table shown in

table 4.2. From the figure, the probability of switching from symbol ‘00’ to symbol ‘10’

0.01504. The total error rate is calculated by adding all the off-diagonal elements while the

probability of a symbol is measured by adding the row elements for that symbol.

Table 4.2: Transition table for the SRAM data in fig. 4.6

00 01 10 11
00 0.221754 0.006827 0.01504 0.000352
01 0.006524 0.104181 0.001782 0.005904
10 0.013843 0.001074 0.405448 0.01295
11 0.000346 0.005934 0.013443 0.184595

4.2.2 Typical grouping approaches

Priority: Uniform probability distribution

Achieving a uniform probability distribution among the group of symbols is a partition

problem which can be solved using dynamic programming or other approaches. The resulting

distribution ensures a high min-entropy among the resulting bits but at the expense of bit

errors. Algorithm 1 provides a detailed sequence of operations involved in clustering based

on probabilities of individual symbols.

35

Algorithm 1: Clustering algorithm to achieve an uniform probability distribution

Function SymbolClusteringBasedOnProbability(n,k)

Input : Input number of bits n, and output number of bits k
Output: Labels for each of the n-bit symbols

Generate the input n-bit transition matrix for the SRAM type;
Create n initial cluster nodes with each symbol in it’s own cluster;

num clusters← n;
while num clusters < k do

for i← 1 to num clusters do
probability[i]← Probability(cluster[i]);

end

sorted indices← SortDescending(probability);
new cluster index← Min(sorted indices(1), ..., sorted indices(k));

MergeClusters(cluster(new cluster index), cluster(k+1));
num clusters← num clusters− 1;

end

Priority: Reduction of error rate

A low error rate can be achieved by grouping symbols which are most likely to confuse with

each other. Since the symbols with higher probability have a greater tendency to confuse

among each other, the resulting distribution will result in a low min-entropy. Algorithm 2

provides a detailed sequence of operations involved in clustering based on error rate associ-

ated with every symbol.

36

Algorithm 2: Clustering algorithm to achieve a low symbol error rate

Function SymbolClusteringBasedOnError(n,k)

Input : Input number of bits n, and output number of bits k
Output: Labels for each of the n-bit symbols

Generate the input n-bit transition matrix for the SRAM type;
Create n initial cluster nodes with each symbol in it’s own cluster;

num clusters← n;
while num clusters < k do

for i← 1 to num clusters− 1 do
for j ← i to num clusters do

distance[i][j]← ClusterDistance(cluster(i), cluster(j));

end

end
[index i, index j] = MinDistance(distance);

MergeClusters(cluster(index i), cluster(index j));
num clusters← num clusters− 1;

end

4.2.3 Grouping with a balance between probability distribution

and error rate

In this thesis, we propose an alternate algorithm that jointly considers the effect of symbol

distribution on min-entropy and bit error rate. Algorithm 3 provides the detailed sequence of

operations involved. At every step, the error rate and probability distributions are precom-

puted before combining the two symbols. This comparison is made to ensure that balance is

probability is achieved while maintaining a low effective error rate. The labels are then used

to create a look-up table to generate the de-biased PUF-responses. The advantage of this

approach is that the clustering combinations are pre-calculated before deploying it on the

devices. Hence, more advanced machine-learning based approaches can be used to analyze

37

and efficiently create cluster combinations.

Algorithm 3: Clustering algorithm that jointly optimizes error rate and min-entropy

Function SymbolClusteringWithProbabilityErrorBalance(n,k)

Input : Input number of bits n, and output number of bits k
Output: Labels for each of the n-bit symbols

Generate the input n-bit transition matrix for the SRAM type;
Create n initial cluster nodes with each symbol in it’s own cluster;

num clusters← n;
while num clusters < k do

for i← 1 to num clusters do
probability[i]← Probability(cluster[i]);

end
sorted indices← SortDescending(probability);

for i← 1 to k do

new cluster ← {cluster(sorted indices(1)), cluster(sorted indices(k + 1))};
noise k[i]← CalculateNoise(new cluster);
prob dist k[i]← CalculateProbabilityDistribution(new cluster);

end
sorted position← SortAscending(noise k);
for i← 1 to k do

j = sorted position(i);
if Max(prob dist k[j]) <= 1/k then

index← j;
break;

end

end

MergeClusters(cluster(sorted indices(index)), cluster(k+1));
num clusters← num clusters− 1;

end

38

4.2.4 Change in error correcting parameters

The algorithm suggested in this thesis considers the tradeoff between min-entropy and error

rate. It efficiently provides an increase in min-entropy at the cost of a greater number of

bits read from the SRAM PUF. But considering the large size of SRAM present on any

off the shelf component and requirement of no additional hardware makes it feasible for its

implementation. Also, the approach makes it possible for certain SRAMs to create PUF

based security solutions which inherently did not possess good min-entropy or error rate as

observed in [48].

4.2.5 Security Analysis

The look-up table is unique for a particular device and is known only to the infrastructure

provider. As a result, the look-up tables add an extra layer of randomness in a PUF-

authentication systems where the adversary is not aware of the expected PUF response in

spite of having physical contact with the device.

The look-up tables can be used along with SANCUS [38] to provide an improved enrollment

solution. SANCUS protects the data section containing the look-up table making impossible

for the adversary to access the code region or guess its implementation.

Chapter 5

Experimental Results and Discussion

In this chapter, we discuss the implementation costs and performance of SANCUS based

enrollment solution as well as the effect of look-up tables.

5.1 Enrollment Solution

5.1.1 Implementation Cost and Performance Analysis

The enrollment solution is demonstrated using an Altera DE2-115 FPGA board. The hard-

ware components of the device were implemented using the Altera Quartus II toolchain

version 15.0. Table 5.1 provides a comparison of hardware utilization of FPGA components

among the three approaches. The table shows that the SANCUS based solution is more

expensive compared to the simple OpenMSP430 based solution due to the comparatively

39

40

high hardware cost provided by the hardware-only TCB implementation of SANCUS. It is

also important to note that the presence of a TCB was assumed in the case of the PUF

Fusion with NIOS processor-based solution. Hence additional hardware or software based

TCB solution is required.

Table 5.2 provides an overview of memory footprint in case of the three approaches. A bare-

metal environment proves to offer a lower memory utilization when compared to µClinux

based solution. SANCUS adds a few additional bytes of overhead due to the modifications

required for registering a new protected module.

Table 5.1: Hardware utilization in terms of logic cells

Components
NIOS +

PUFFusion

SANCUS +
MSP430 +
PUFFusion

MSP430 +
PUFFusion

Processor 2254 4705 2108
MM interconnect 671 0 0

RO-PUF 4385 4407 4407
SRAM controller 5 35 36

SDRAM controller 327 0 0
JTAG-UART 146 161 163

PLL 8 0 0
Total 7796 9308 6714

The protocol takes about 455.148 microseconds for the complete operation. The device

returns the PUF data and the MAC associated with the data in 307.506 microseconds.

41

Table 5.2: Software utilization in bytes

Components
NIOS +

PUFFusion

SANCUS +
MSP430 +
PUFFusion

MSP430 +
PUFFusion

RO-PUF 38820 484 484
SRAM PUF 35128 136 136

SANCUS Overhead 0 112 0
Board Application 35360 4060 4060

uClinux Kernel 1475069 0 0
Total 1,584,377 4792 4680

5.2 Look up tables

5.2.1 Implementation

We analyzed the SRAM measurements of DE2, SASEBO, and PIC32, as shown in table 5.3.

For each of the board type, an n-bit transition matrix was generated examining n bits at a

time. This transition matrix was later subjected to the clustering algorithm to evaluate the

appropriate mappings for each of the symbols. The SRAM bits are read again, mapped to

appropriate symbols, and the min-entropy and bit error rate are evaluated for the mapped

SRAM response.

5.2.2 Performance Evaluation

Figures 5.1 - 5.3 give a comparison of min-entropy and error rate values for simulated SRAM

values. It is evident that the min-entropy improves in the case of probability based approach

42

Table 5.3: SRAM Datasets

Board name
Number of

boards
Number of

measurements

DE2 22 5
SASEBO 90 11

PIC32 33 9

and drastically decreases in the case of error minimization based approach. The clustering

approach proposed by this thesis tries to achieve a balance between the probability and the

error rate providing a feasible de-biasing solution.

Figures 5.4 - 5.12 present the comparison of min-entropy and error rate values for SASEBO,

DE2 and PIC32 boards for various bit conversions. It is evident that the min-entropy in

the case of clustering method based on probability error balance is greater than the initial

entropy observed in the SRAM data. Also, the symbol error rate in the case of the clustering

method proposed by the thesis is lesser than the original symbol rate. Also, the min-entropy

and error rate of the mapped SRAM measurements closely resemble the results from the

transition matrix. This indicates that applying a look table on the SRAM data at runtime

results in a PUF response expected by the algorithm, i.e. there is a decrease in symbol error

rate and an increase in min-entropy.

43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix for
p = 0.3 and n = 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Evaluation of the transition matrix for
p = 0.49 and n = 0.05

Figure 5.1: Comparison of min-entropy values for SRAM for simulated p and n values

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix for
p = 0.3 and n = 0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Evaluation of the transition matrix for
p = 0.49 and n = 0.05

Figure 5.2: Comparison of symbol error rate values for SRAM for simulated p and n values

44

0

0.05

0.1

0.15

0.2

0.25

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix for
p = 0.3 and n = 0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Evaluation of the transition matrix for
p = 0.49 and n = 0.05

Figure 5.3: Comparison of bit error rate values for SRAM for simulated p and n values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.4: Comparison of min-entropy values for SRAM on SASEBO board

45

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.5: Comparison of symbol error rate values for SRAM on SASEBO board

0

0.02

0.04

0.06

0.08

0.1

0.12

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.02

0.04

0.06

0.08

0.1

0.12

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.6: Comparison of bit error rate values for SRAM on SASEBO board

46

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.7: Comparison of min-entropy values for SRAM on DE2 board

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.8: Comparison of symbol error rate values for SRAM on DE2 board

47

0

0.02

0.04

0.06

0.08

0.1

0.12

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.02

0.04

0.06

0.08

0.1

0.12

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.9: Comparison of bit error rate values for SRAM on DE2 board

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.10: Comparison of min-entropy values for SRAM on PIC32 board

48

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.11: Comparison of symbol error rate values for SRAM on PIC32 board

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(a) Evaluation of the transition matrix

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2 to 1 4 to 1 4 to 2

Fr
ac

ti
o

n

Bit Conversions

Original Probability Error Minimization Probability Error Balance

(b) Measurements using the mapped SRAM bits

Figure 5.12: Comparison of bit error rate values for SRAM on PIC32 board

49

Table 5.4 shows that using a clustering method with a balance of error rate and probability

results in the reduction of BCH block size but an increase in the number of blocks. Many

of the PUF based solutions use fuzzy extractors with complex decoding logic on the device

side [49, 50]. In such cases, a reduction of BCH block size can be advantageous. But the

clustering algorithms do not work well for SRAM data from DE2 boards and PIC32 boards.

A possible reason for this behavior is that the bias observed in SRAM data from SASEBO

is greater than that of SRAM values from DE2 and PIC32 boards. This bias is evident from

the histograms of DE2 and SASEBO boards in the figures 5.13 and 5.14. It implies that the

clustering approaches work well only in the case of SRAM input bits with a significant bias.

50

Table 5.4: Comparison of the three approaches in terms of BCH parameters for an expected
entropy of 128 bits and FRR of 10−3

Board type Bit Conversion Priority PUF size
BCH parame-

ters(n,k,t)
BCH blocks

SASEBO 1 to 1 Original 4599 (511,211,41) 9

SASEBO 2 to 1
Probability 9180 (255, 47, 42) 36
Error rate 11176 (127, 29, 21) 88

Probability Error balance 9180 (255, 47, 42) 36

SASEBO 4 to 1
Probability 9180 (255, 45, 43) 36

Probability Error balance 11684 (127, 22, 23) 92

SASEBO 4 to 2
Probability 10200 (255, 47, 42) 40

Probability Error balance 9652 (127, 22, 23) 76

DE2 1 to 1 Original 21336 (127, 29, 21) 168

DE2 2 to 1 Probability Error Balance 42672 (127, 29, 21) 336

PIC32 1 to 1 Original 1020 (255, 107, 22) 4

PIC32 2 to 1
Probability 2040 (255, 107, 22) 4
Error rate 2040 (255, 107, 22) 4

Probability Error balance 2040 (255, 107, 22) 4

PIC32 4 to 1 Probability 21336 (127, 29, 21) 42

PIC32 4 to 2
Probability 420240 (255, 47, 42) 412

Probability Error balance 22484 (511, 121, 58) 11

51

0

1000

2000

3000

4000

5000

6000

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

Fr
e

q
u

e
n

cy

SRAM Values

(a) Before clustering

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

Fr
e

q
u

e
n

cy

SRAM Values

(b) After clustering

Figure 5.13: Histogram of SRAM byte values of DE2 board upon 2 bit to 1 bit clustering

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

Fr
e

q
u

e
n

cy

SRAM Values

(a) Before clustering

0

50

100

150

200

250

300

350
1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

Fr
e

q
u

e
n

cy

SRAM Values

(b) After clustering

Figure 5.14: Histogram of SRAM byte values of SASEBO board upon 4 bit to 2 bit clustering

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis proposed two resource optimization techniques for PUF based device authentica-

tion protocols. The first approach is to optimize the processing element and add a protected

execution environment to create a secure enrollment solution for PUFs. The secure ar-

chitecture SANCUS guarantees the security of the PUF extraction software by making it

impenetrable because of its secure loading and Memory Access Logic based implementation.

The helper data generated from a biased PUF response can result in leakage of entropy. The

second part of this thesis offers a suitable debiasing solution which jointly optimizes the min-

entropy and error rate. This form of combined optimization is necessary because favoring

either min-entropy or the error rate can result in the deviation from the expected PUF

52

53

behavior. The implementation proposed by this thesis comes at the expense of PUF size.

But considering the massive size of SRAM available in commercial off-the-shelf components,

this method offers feasible solutions for strongly biased PUFs where a low min-entropy would

make PUF based solutions unrealizable in such devices.

6.2 Future Work

This thesis concentrates on optimizing the min-entropy and error rate while converting the

symbols from two bits to one bit, four bits to one bit, and four bits to two bits. This approach

can be extended to analyze the behavior in case of a higher number of bits. Also, a careful

decision must be taken during symbol reassignment when the target number of symbols are

greater than one. For example, two-bit symbols which tend to often confuse with each other

need to have a Hamming distance of one instead of two. This Hamming distance can affect

the overall bit error rate.

PUF based authentication methods usually employ BCH for noise correction. Since our

clustering approach deals with PUF data symbols, it is better to consider strategies that

deal with coding algorithms that work better with symbols. There have been several other

schemes that employ symbol based decoding with PUF data [51, 23]. It is interesting to

analyze how these approaches can improve the overall performance of target PUF responses

generated using look-up tables.

The clustering approach suggested in this thesis considers a simple method of joint opti-

54

mization of min-entropy and error-rate. Machine learning based approaches can be used to

arrive at the sweet spot between min-entropy and error-rate. These computationally inten-

sive methods are feasible because the analysis is not run-time and happens well before the

implementation is deployed on the resource-constrained device.

Bibliography

[1] A. Aysu, S. Gaddam, H. Mandadi, C. Pinto, L. Wegryn, and P. Schaumont, “A design

method for remote integrity checking of complex PCBs,” pp. 1517–1522.

[2] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,”

Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[3] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM state as an identifying

fingerprint and source of true random numbers,” IEEE Transactions on Computers,

vol. 58, no. 9, pp. 1198–1210, 2009.

[4] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA Intrinsic PUFs and

Their Use for IP Protection,” Lecture Notes in Computer Science, vol. 4727, pp. 63–80,

2007.

[5] A. Aysu, E. Gulcan, D. Moriyama, P. Schaumont, and M. Yung, “End-To-End Design of

a PUF-Based Privacy Preserving Authentication Protocol,” Lecture Notes in Computer

55

56

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 9293, pp. 556–576, 2015.

[6] R. Maes, V. Rozic, I. Verbauwhede, P. Koeberl, E. V. der Sluis, and V. van der Leest,

“Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS,” Euro-

pean Solid-State Circuits Conference, pp. 486–489, 2012.

[7] P. Simons, E. Van Der Sluis, and V. Van Der Leest, “Buskeeper PUFs, a promising al-

ternative to D Flip-Flop PUFs,” Proceedings of the 2012 IEEE International Symposium

on Hardware-Oriented Security and Trust, HOST 2012, pp. 7–12, 2012.

[8] Y. Su, J. Holleman, and B. Otis, “A1.6pJ/blt 96% stable chip-ID generating circuit

using process variations,” Digest of Technical Papers - IEEE International Solid-State

Circuits Conference, pp. 15–17, 2007.

[9] R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic PUFs From Flip-Flops on Reconfig-

urable Devices,” Workshop on Information and System Security, no. 71369, pp. 1–17,

2008.

[10] S. Katzenbeisser, Ü. Kocaba, V. Rožić, A.-R. Sadeghi, I. Verbauwhede, and C. Wachs-

mann, “PUFs: Myth, fact or busted? A security evaluation of Physically Unclonable

Functions (PUFs) cast in silicon,” Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 7428 LNCS, pp. 283–301, 2012.

57

[11] J. Lee, D. L. D. Lim, B. Gassend, G. Suh, M. V. Dijk, and S. Devadas, “A technique

to build a secret key in integrated circuits for identification and authentication applica-

tions,” Proceedings of 2004 Symposium on VLSI Circuits., pp. 176–179, 2004.

[12] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and

secret key generation,” Proceedings - Design Automation Conference, pp. 9–14, 2007.

[13] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber, “Modeling

attacks on physical unclonable functions,” Proceedings of the 17th ACM conference on

Computer and communications security - CCS ’10, p. 237, 2010.

[14] J. L. Zhang, G. Qu, Y. Q. Lv, and Q. Zhou, “A survey on silicon PUFs and recent

advances in ring oscillator PUFs,” Journal of Computer Science and Technology, vol. 29,

no. 4, pp. 664–678, 2014.

[15] R. Maes and V. Van Der Leest, “Countering the effects of silicon aging on SRAM PUFs,”

Proceedings of the 2014 IEEE International Symposium on Hardware-Oriented Security

and Trust, HOST 2014, pp. 148–153, 2014.

[16] R. Maes and I. Verbauwhede, Physically Unclonable Functions: A Study on the State

of the Art and Future Research Directions. 2010.

[17] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data algorithms for puf-

based key generation: Overview and analysis,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 34, no. 6, pp. 889–902, 2015.

58

[18] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate

Strong Keys from Biometrics and Other Noisy Data,” vol. 38, no. 1, pp. 97–139, 2008.

[19] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A. R. Sadeghi, I. Ver-

bauwhede, and C. Wachsmann, “Reverse fuzzy extractors: Enabling lightweight mutual

authentication for PUF-enabled RFIDs,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 7397 LNCS, pp. 374–389, 2012.

[20] M. Bhargava, C. Cakir, and K. Mai, “Reliability enhancement of bi-stable PUFs in 65nm

bulk CMOS,” Proceedings of the 2012 IEEE International Symposium on Hardware-

Oriented Security and Trust, HOST 2012, pp. 25–30, 2012.

[21] M. Cortez, S. Hamdioui, V. Van Der Leest, R. Maes, and G. J. Schrijen, “Adapting

voltage ramp-up time for temperature noise reduction on memory-based PUFs,” Pro-

ceedings of the 2013 IEEE International Symposium on Hardware-Oriented Security and

Trust, HOST 2013, pp. 35–40, 2013.

[22] K. Xiao, M. T. Rahman, D. Forte, Y. Huang, M. Su, and M. M. Tehranipoor, “Bit

selection algorithm suitable for high-volume production of SRAM-PUF,” Proceedings

of the 2014 IEEE International Symposium on Hardware-Oriented Security and Trust,

HOST 2014, pp. 101–106, 2014.

[23] M. D. Yu, M. Hiller, and S. Devadas, “Maximum-Likelihood Decoding of Device-Specific

Multi-Bit Symbols for Reliable Key Generation,” Hardware Oriented Security and Trust

59

(HOST), 2015 IEEE International Symposium on. IEEE, 2016.

[24] M. D. Yu and S. Devadas, “Secure and Robust Error Corrections for PUF,” Institute

of Electrical and Electronics Engineers, 2010.

[25] R. Maes, V. Van Der Leest, E. Van Der Sluis, and F. Willems, “Secure key generation

from biased PUFs,” Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9293, pp. 517–

534, 2015.

[26] J. Ekberg, “Mobile Trusted Computing,” Fruct.Org, 2011.

[27] S. W. Smith, “Outbound Authentication for Programmable Secure Coprocessors,” Es-

orics, vol. 2502, pp. 72–89, 2002.

[28] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. a. Waldspurger, D. Boneh,

J. Dwoskin, and D. R. Ports, “Overshadow: a virtualization-based approach to

retrofitting protection in commodity operating systems,” Proceedings of the 13th inter-

national conference on Architectural support for programming languages and operating

systems - ASPLOS XIII, p. 2, 2008.

[29] “Trusted Computing Group: Tpm main specification,” http://www. trustedcomputing-

group.org/.

60

[30] J. S. Dwoskin and R. B. Lee, “Hardware-rooted trust for secure key management and

transient trust,” Proceedings of the 14th ACM conference on Computer and communi-

cations security, pp. 389–400, 2007.

[31] B. Pfitzmann, J. Riordan, C. Stueble, M. Waidner, and A. Weber, “The PERSEUS

System Architecture,”

[32] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig, “Trust visor:

Efficient TCB reduction and attestation,” Proceedings - IEEE Symposium on Security

and Privacy, pp. 143–158, 2010.

[33] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez, S. Berger, J. L. Griffin, and

L. Van Doorn, “Building a MAC-based security architecture for the Xen open-source

hypervisor,” Proceedings - Annual Computer Security Applications Conference, ACSAC,

vol. 2005, no. i, pp. 276–285, 2005.

[34] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla, “Pioneer: Verifying

Code Integrity and Enforcing Untampered Code Execution on Legacy Systems,” ACM

SIGOPS Operating Systems Review, 2005.

[35] A. Seshadri, A. Perrig, L. Van Doom, and P. Khosla, “SWATT: SoftWare-based ATTes-

tation for embedded devices,” Proceedings - IEEE Symposium on Security and Privacy,

vol. 2004, pp. 272–282, 2004.

61

[36] A. Vasudevan, J. M. McCune, J. Newsome, A. Perrig, and L. van Doorn, “CARMA:

a hardware tamper-resistant isolated execution environment on commodity x86 plat-

forms,” pp. 48–49, 2012.

[37] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART: Secure andMinimal

Architecture for (Establishing a Dynamic) Root of Trust,”

[38] J. Noorman, B. Preneel, K. U. Leuven, P. Agten, W. Daniels, R. Strackx, C. Huy-

gens, F. Piessens, A. Vanherrewege, and I. Verbauwhede, “Sancus : Low-cost trustwor-

thy extensible networked devices with a zero-software Trusted Computing Base,” 22nd

USENIX Security, 2013.

[39] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite,” Proceedings of

the Ninth European Conference on Computer Systems - EuroSys ’14, pp. 1–14, 2014.

[40] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl, “TyTAN:

Tiny trust anchor for tiny devices,” Proceedings of the 52nd Annual Design Automation

Conference on - DAC ’15, pp. 1–6, 2015.

[41] S. Schulz, C. Wachsmann, and A.-r. Sadeghi, “Lightweight Remote Attestation using

Physical Functions,” 2011.

[42] A. Seshadri, M. Luk, and A. Perrig, “SAKE: Software attestation for key establishment

in sensor networks,” Ad Hoc Networks, vol. 9, no. 6, pp. 1059–1067, 2011.

[43] O. Girard, “OpenMSP430,” http://opencores.org/project,openmsp430, p. 125, 2009.

62

[44] F. Kohnhäuser, A. Schaller, and S. Katzenbeiss, “PUF-Based Software Protection for

Low-End Embedded Devices,” Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9229,

pp. 315–316, 2015.

[45] M. A. Gora, A. Maiti, and P. Schaumont, “A flexible design flow for software IP binding

in FPGA,” IEEE Transactions on Industrial Informatics, vol. 6, no. 4, pp. 719–728,

2010.

[46] R. Nithyanand and J. Solis, “A theoretical analysis: Physical unclonable functions

and the software protection problem,” Proceedings - IEEE CS Security and Privacy

Workshops, SPW 2012, pp. 1–11, 2012.

[47] R. Maes, “PUF-Based Entity Identification and Authentication,” Physically Unclonable

Functions: Constructions, Properties and Applications, vol. 9783642413, no. i, pp. 1–

185, 2013.

[48] P. Koeberl, J. Li, A. Rajan, and W. Wu, “Entropy loss in PUF-based key genera-

tion schemes: The repetition code pitfall,” Proceedings of the 2014 IEEE International

Symposium on Hardware-Oriented Security and Trust, HOST 2014, pp. 44–49, 2014.

[49] R. Maes, P. Tuyls, and I. Verbauwhede, “A soft decision helper data algorithm for

SRAM PUFs,” IEEE International Symposium on Information Theory - Proceedings,

pp. 2101–2105, 2009.

63

[50] V. Van der Leest, B. Preneel, and E. V. der Sluis, “Soft Decision Error Correction for

Compact Memory-Based PUFs Using a Single Enrollment,” pp. 268–282, 2012.

[51] S. Puchinger, M. Sven, M. Bossert, M. Hiller, and G. Sigl, “On Error Correction for

Physical Unclonable Functions,” SCC 2015; 10th International ITG Conference on Sys-

tems, Communications and Coding; Proceedings of, pp. 1–6, 2015.

