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Coal is one of the most abundant and economic sources for global energy production.
However, the burning of coal is widely recognized as a signi�cant contributor to
atmospheric particulate matter linked to deleterious respiratory impacts. Recently,
we have discovered that burning coal generates large quantities of otherwise rare
Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal.
These nanoscale Magnéli phases are biologically active without photostimulation and
toxic to airway epithelial cellsin vitro and to zebra�sh in vivo. Here, we sought to
determine the clinical and physiological impact of pulmonary exposure to Magnéli
phases using mice as mammalian model organisms. Mice were exposed to the
most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via
intratracheal administration. Local and systemic titanium concentrations, lung pathology,
and changes in airway mechanics were assessed. Additional mechanistic studies were
conducted with primary bone marrow derived macrophages. Our results indicate that
macrophages are the cell type most impacted by exposure to these nanoscale particles.
Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting
in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In
the lungs, these nanoparticles become concentrated in macrophages, resulting in a
feedback loop of reactive oxygen species production, cell death, and the initiation of
gene expression pro�les consistent with lung injury within6 weeks of exposure. Chronic
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exposure and accumulation of Magnéli phases ultimately results in signi�cantly reduced
lung function impacting airway resistance, compliance, and elastance. Together, these
studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely
a signi�cant nanoscale environmental pollutant, especially in geographic regions where
coal combustion is a major contributor to atmospheric particulate matter.

Keywords: cytotoxicity, air pollution, nanoparticle, Ti xO2x� 1, in vivo , environmental exposure

INTRODUCTION

Coal combustion is a signi�cant component of the global energy
portfolio and accounts for approximately 30% of the world's
overall energy needs (1). The global use of coal has continued
to increase over the last half century, especially in developing
countries, such as China and India, due in part to abundant
supplies and favorable economic factors (1). The burning of
coal on such a massive global scale has also resulted in a
range of detrimental environmental and human health concerns.
While the long-term e�ects of increased coal burning, such as
rising greenhouse gas emissions and climate change are clearly
a concern, the much more visible short-term consequences
associated with air pollution must also be addressed. Coal-
burning is a signi�cant contributor to atmospheric particulate
matter with aerodynamic diameter< 2.5mM (PM2.5), which is
the most concerning fraction for human health (2).

The smallest fraction of PM2.5 is ultra�ne nanoscale PM
associated with air pollution. These nanoparticles have highly
signi�cant biological impacts and can have detrimental e�ects
on human health (3). These mostly incidental nanomaterials
are unintentionally produced as byproducts of anthropogenic
processes and typically enter the environment shortly after
generation (4). Until recently, the majority of incidental
nanomaterials either went unnoticed or were not evaluated
for potential detrimental impacts on environmental health.
However, we now know that many of these nanomaterials
can contribute disproportionately to environmental chemistry
impacting multiple earth systems (4). Likewise, due to their
nano-scale size, these particles can readily penetrate many
of the physiological and cellular barriers used to protect
biological systems. For example, depending on size, shape,
and composition, many nanoscale particles can readily enter
the airway and gastrointestinal tract of mammals, translocate
epithelial cell barriers, access the bloodstream, and a�ect
the function of vital body systems (3). The convergence of
nanoscience, environmental health, and biomedical research are
beginning to provide signi�cant insight into the impacts of
incidental nanomaterials across earth systems and in human
health (4).

As evidence of the progress being made in identifying
and characterizing new incidental nanomaterials, recent work
identi�ed novel titanium suboxides, de�ned as Magnéli phases
(TixO2x� 1), which are generated during coal combustion (1).
TixO2x� 1 is produced during coal combustion at speci�c
temperatures and oxygen fugasities from stoichiometric TiO2
titanium oxide that is a common accessory mineral in nearly all
coals worldwide (1). Magnéli phases were originally discovered

during the investigation of a coal ash spill into the Dan River
(North Carolina, USA), where these novel titanium suboxides
were found downstream from the spill site (5). Magnéli phases
were observed in the size ranges of a few tens to hundreds of
nanometers and exhibit a unique electron di�raction pattern
compared to anatase and rutile, the two most common titanium
oxide minerals found in coal (5). Since the discovery of Magnéli
phases in this riverine environment, subsequent analyses ofcoal
ash samples from power plants throughout the United States
and China, each utilizing various types and compositions of
coal, revealed that Magnéli phases are widespread and were
present at every site tested (5). Magnéli phases were found with
compositional ranges between Ti4O7 and Ti9O17, with the most
frequent being Ti6O11 (5). Subsequent analyses of power plant
stack emissions, sludge from waste water treatment plants, and
road dust from Chinese urban areas were all found to contain
Magnéli phases (5).

Together, these data illustrate that Magnéli phases generated
as incidental nanoparticles through the combustion of coal are
widespread in the environment. However, there is currently a
paucity of data related to thein vivo relevance and physiological
e�ects of Magnéli phases in the mammalian respiratory system.
In the current manuscript, we demonstrate that Magnéli phases
are concentrated and ultimately sequestered in lung associated
macrophages. Magnéli phase phagocytosis signi�cantly impairs
mitochondrial function and stimulates reactive oxygen species
(ROS) production by the macrophages. Ultimately, these trigger
pathways associated with apoptosis and lung injury. Consistent
with these �ndings, mice chronically exposed to Magnéli phases
demonstrate signi�cantly decreased lung function. Together,
these data reveal the signi�cant impact of these incidental
nanoparticles on overall respiratory function and provide further
evidence of the need for improved environmental monitoring to
screen for these and similar materials.

MATERIALS AND METHODS

Magnéli Phase Fabrication and
Characterization
Magnéli phases were synthesized using a tube furnace (diameter
D 8.9 cm) with a heating and cooling rate of 5� C min� 1 and
an N2 atmosphere (�ow rateD 0.28 m3 min� 1) as previously
described (1). Heating and cooling processes were isothermal
at the target temperature for 2 hours (h). The process includes
heating pulverized coal with TiO2 nanoparticles. Magnéli phases
were produced using commercial P25 nanoparticles, which is
a mixture of the 80% anatase and 20% rutile forms of TiO2.
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Magnéli phase samples were characterized using a scanning
transmission electron microscope operating at 200 kV and
equipped with a silicon drift detector-based Energy Dispersive
X-ray Spectroscopy (EDS) system as previously described (1).

Experimental Animals
All mouse studies were approved by the respective Institutional
Animal Care and Use Committees (IACUC) at Virginia Tech
and East Carolina University, and were conducted in accordance
with the Federal NIH Guide for the Care and Use of Laboratory
Animals. All studies utilized age and gender matched wild type
C57Bl/6J mice.

Cytokine and Lactate Acid Dehydrogenase
(LDH) Assessments in Bone
Marrow-Derived Macrophages (BMDMs)
BMDMs were harvested from mice using standard protocols
(6). Brie�y, harvested bone marrow cells were cultured
for 6 days in Dulbecco's Modi�ed Eagle Media (DMEM)
supplemented with 10% fetal bovine serum (FBS), L-Glutamine,
1� penicillin/streptomycin, and 20% L929-conditioned medium.
After this 6-day incubation, BMDMs were re-plated at 250,000
cells/well and were allowed to adhere to the plate for
24 h. Cells were then treated with di�erent concentrations
of Magnéli phase particles (0, 1, 10, 100, or 1,000 ppm)
overnight. Following these treatments, cell-free supernatant
was collected, and cytokine levels were assessed via enzyme-
linked immunosorbent assay (ELISA). Lipopolysaccharide (LPS)
was used at 1mg/mL as a positive control for cytokine
release. LDH activity was measured in the supernatant to
assess cytotoxicity.

Transmission Electron Microscopy to
Assess Magnéli Phase Phagocytosis
Following treatment with Magnéli phases, treatment media
was discarded and BMDMs (1� 106 cells/well) were �xed
with 2.5% Gluteraldehyde in 0.1 M Sodium Cacodylate directly
in the cell culture plate for at least 1 h. Following �xation
in 2.5% glutaraldehyde in 0.1 M Na cacodylate, samples were
washed two times in 0.1 M Na cacodylate for 15 min each,
post-�xed in 1% OsO4 in 0.1 M Na cacodylate for 1 h and
washed two times in 0.1 M Na cacodylate for 10 min each.
Fixative was removed and cells were dehydrated with increasing
concentrations of ethanol for 15 min each as follows (15,
30, 50, 70, 95, and 100%). The dehydration was completed
with propylene oxide for 15 min. The samples were then
in�ltrated with a 50:50 solution of propylene oxide:Poly/Bed
812 (Polysciences Inc., Warrington, Pennsylvania, USA) for6–
24 h followed by complete in�ltration with a 100% mixture
of Poly/Bed 812 for 6–12 h. The samples were embedded in
fresh 100% Poly/Bed 812 using Beem embedding capsules
(Ted Pella Inc., Redding, California, USA) overnight. These
were then placed into a 60� C oven for at least 48 h to cure
and harden. The embedded samples were trimmed and thin
(60–90 nm) sections were cut and collected on copper grids
(Electron Miscroscopy Sciences). These sections were stained

with aqueous uranyl acetate and lead citrate and examined
and photographed using a JOEL JEM 1400 transmission
electron microscope.

Mitochondrial Stress Test
Oxygen Consumption Rate (OCR) of BMDMs after exposure
to nanoparticles was determined using a Seahorse XF96
Extracellular Flux Analyzer (Agilent Technologies). Seahorse
96-well cell culture microplates were seeded at 100,000 cellsper
well and subjected to a 24-h incubation with Magnéli phases.
Following the incubation, cells were washed with OCR assay
media (1 mM pyruvate, 2 mM glutamine, and 10 mM glucose)
twice and then immersed in a total volume of 180mL of media
in each well immediately before the assay. Plates were then
placed in the XF96 to establish a basal level of respiration.
Afterwards, three separate injections were performed: the
ATPase inhibitor oligomycin (1mM), the mitochondrial
uncoupler carbonilcyanide p-tri�ouromethoxyphenylhydrazone
(FCCP) (3mM) and the mitochondrial electron transport
chain complex III inhibitor antimycin A (2mM), respectively.
Each condition was measured three times before moving to
the next injection. Data is represented as pmol of oxygen
per minute.

Mitochondrial Membrane Potential and
ROS Assessments
Cells were grown following the conditions described above
and plated at 100,000 cells per well in black walled, clear,
�at bottom Corning Costar 96-well microplates. Images were
collected in three di�erent channels with a 60� objective
using Hoechst 33258 (100 nM) to counterstain nuclei,
dichloro�uorescein (DCF) (100mM) to monitor reaction to
H2O2 injury, and tetramethylrhodamine, methyl ester (TMRM)
(10 nM) to assess mitochondrial membrane potential. The
following excitation/emission �lters were selected to collect the
�uorescence signal for each channel on the instrument; DAPI
(Excitation 390.0 nm/18.0 nm bandpass, Emission 435.0/48.0nm
bandpass), FITC_511 (Excitation 475.0 nm/28.0 nm bandpass,
511.0 nm/23.0 nm bandpass), Cy3 (Excitation 542.0 nm/27.0
bandpass, Emission 587.0 nm/45.0 nm bandpass), respectively.
Prior to the start of the imaging protocol, wells were treated
with TMRM and DCF for 30 min, protected from light, in a
37� C/5% CO2 incubator and washed twice with phosphate
bu�ered saline (PBS). Sequential images were taken in 10
�elds of view for each channel in each well containing cells.
After a basal level of �uorescence was obtained for each �eld,
all wells were treated with 500mM H2O2 to induce injury
and a second round of images were obtained following the
same procedure. Images were analyzed in an automated
fashion using GE's InCarta software version 1.6. Multiple
parameters were collected from each plate by creating custom
“masks” that incorporated the �uorescent target of interest.
Data are expressed as the mean pixel value under the mask
minus mean pixel value for the local background or, more
simply, Intensity-Background.
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Quanti�cation of Titanium Concentration
in Tissues Using Inductively Coupled
Plasma Mass Spectrometry (ICP-MS)
ICP-MS analysis was performed on Agilent 7900 ICP-MS
operating in helium collision mode to reduce/remove polyatomic
interferences. Data was acquired in spectrum mode and utilized
a 3-point peak pattern for quantitative analysis. Each data point
acquisition had three replicates and utilized 250 sweeps per
replicate. Titanium levels were monitored at both 47 and 49
m/z to additionally check for potential interferences at either
value. The instrumental parameters for ICP-MS are shown in
Supplemental Figure S2A.

Scandium (45 m/z) was used as an on-line addition internal
standard. A calibration curve that ranged from 0.04 to 10
ppb titanium in solution was used to quantify titanium
in the samples according to their response ratio with the
scandium internal standard (Ti/Sc). An Anton-Parr Multiwave
GO microwave system that utilized modi�ed Te�on (PTFE-
TFM) microwave vessels was used in the microwave digestions.
This microwave oven provides feedback from the digestion
conditions based on temperatures and whether excessive venting
was detected.

Ultrapure water was puri�ed with a Millipore MilliQ water
puri�cation system set at 18.2 MOhm. Single element stock
solutions of 1,000 ppm titanium (Ti) and scandium (Sc) for
ICP-MS analysis were obtained from Inorganic Ventures. Nitric
acid (67–70 w/w%) and hydro�uoric acid (47–51 w/w%) were
both trace metals grade and obtained from Fisher Scienti�c.
Suprapur hydrogen peroxide (30 w/w%) was also trace metals
grade and obtained from Merck. Lung tissue samples were stored
in a freezer at� 20� C until analysis. When ready, the samples
were removed from the freezer and allowed to come to room
temperature. The entirety of the provided samples was weighed
directly into PTFE-TFM microwave vessels and ranged from
approximately 200–300 mg.

One milliliter of ultrapure water (18.2 M• ), 1.5 mL of 70%
(w/w) nitric acid (HNO3), 0.3 mL of 10% (w/w) hydro�uoric acid
(HF), and 0.2 mL of 30% w/w hydrogen peroxide (H2O2) were
added to each vessel. The vessels were then capped appropriately
and loaded into the carousel of the microwave digestion system.
The samples were digested using a temperature gradient that
ramped from room temperature to 180� C over 20 min, then held
at 180� C for 10 min before cooling back to 60� C over 10 min. All
samples digested clear and colorless, with no visible particulates
in solution.

Each of the digested samples was decanted into fresh, separate
15 mL polypropylene (PP) tubes, and their corresponding
digestion vessels were rinsed with 2 mL of 2% (w/v) HNO3 and
decanted into their respective tubes for a 5 mL total volume.
The concentrated samples were then vortexed and shaken to mix
immediately before being diluted 1:100 in 2% (w/v) HNO3 to
ensure homogeneity of the dilute samples. The 1:100 dilution
was necessary to reduce the total concentration of HF withinthe
samples themselves so that it did not attack the quartz portions
of the ICP-MS instrumentation.

Intratracheal (i.t.) Administration and
Imaging of Magnéli Phases in the Lung
Wild-type C57Bl/6 mice were treated with one dose of 100
ppm of Magnéli phases using i.t. administration, following
anaesthetization with iso�urane. Mice were euthanized
using CO2 and lungs were harvested 7 days following i.t.
administration. To assess chronic e�ects of Magnéli phases in the
lung, mice were treated i.t. with 100 ppm of Magnéli phases three
times per week. Lungs were harvested at 6 weeks after the initial
treatment. Hematoxylin and eosin (H&E) stained lung slides
were evaluated using dark�eld microscopy (Cytoviva, Auburn,
AL, USA) and images were collected at a magni�cation of
100X. Magnéli phase localization and lung histopathology were
also evaluated by a board-certi�ed veterinary pathologist using
H&E stained sections prepared from formalin �xed, para�n
embedded tissues. Immunohistochemistry was conducted on
the formalin �xed, para�n embedded tissues using an APAF1
polyclonal antibody (Invitrogen; PA5-85121) and rabbit speci�c
HRP/DAB (ABC) Detection IHC kit (Abcam).

Gene Expression Pro�ling and Pathway
Analysis
Total RNA was harvested from whole lungs using FastRNA Pro
Green Kit following manufacturer's protocols (MP Biomedicals).
Total RNA was pooled from 3-8 individual mice per group for
RT2 Pro�ler PCR Array Platform (QIAgen) cDNA reaction. Gene
expression was evaluated using PAMM-212Z and PAMM-052Z
arrays (Qiagen) following manufacturer's protocols. The genelist
for these arrays and functional categories are available through
the manufacturer (Qiagen). Ingenuity Pathways Analysis (IPA)
and the manufacturer's array software (Qiagen) was used to
analyze gene expression data and conduct pathway analysis. IPA
data were ranked and evaluated based onz-score as previously
described by the research team (7–9).

Pulmonary Function Testing
Male C57Bl/6J mice were exposed to PBS or Magnéli phases
three times/week for 6 weeks (18 total doses). Brie�y, mice
were anesthetized with iso�urane and received Magnéli phases
(100 ppm) in 50ml by i.t. administration as described above
for the chronic exposure assessments. Pulmonary function
testing was performed 24 h following the last exposure. All
mice were anesthetized with tribromoethanol (TBE) (400
mg/kg), tracheostomized, and baseline pulmonary function was
recorded using the FlexiVent system (SCIREQ, Montreal, QC,
Canada) (10, 11).

Mice were ventilated with a tide volume of 10 ml/kg at a
frequency of 150 breaths/min and a positive end expiratory
pressure (PEEP) of 3 cm H2O to prevent alveolar collapse. In
addition, mice were paralyzed with pancuronium bromide (0.8
mg/kg) to prevent spontaneous breathing. Electrocardiogram
(EKG) was monitored for all mice to determine anesthetic depth
and potential complications that could have arisen during testing.
A deep in�ation perturbation was used to maximally in�ate the
lungs to a standard pressure of 30 cm H2O followed by a breath
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hold of a few seconds to establish a consistent volume history.
A snapshot perturbation maneuver consisting of a three-cycle
sinusoidal wave of inspiration and expiration to measure total
respiratory system resistance (R), dynamic compliance (C), and
elastance (E). A Quickprime-3 perturbation, which produced
a broadband frequency (0.5–19.75 Hz) over 3 s, was used to
measure Newtonian resistance (Rn), which is a measure of
central airway resistance. All perturbations were performeduntil
three acceptable measurements with coe�cient of determination
(COD) � 0.9 were recorded in each individual subject.

After three baseline measurements of lung function using
“snapshot” and “Quickprime-3” perturbations, mice were
challenged with aerosolized saline or cumulative doses of 1.5, 3,
6, 12, and 24 mg/ml methacholine (MCh) (Sigma-Aldrich, St.
Louis, MO) generated by an ultrasonic nebulizer for 10 s without
altering the ventilation pattern (10–12). These challenges were
followed by assessments with “snapshot” and “Quickprime-3”
perturbations every 30 s. Between each dose of methacholine,a
deep in�ation perturbation was initiated to reset lung hysteresis.
For each animal, all perturbations were performed until six
acceptable measurements with COD� 0.9 were recorded.

Replicates
All studies were repeated at least three independent times
unless noted.

Statistical Analysis
Single data point comparisons were evaluated by Student's
two-tailed t-test. Multiple comparisons were evaluated for
signi�cance using Analysis of Variance (ANOVA) followed
by either Tukeys or Newman–Keuls post-test, as appropriate.
Graphs and statistical analyses were performed and generated
using GraphPad Prism software 8 (GraphPad, San Diego, CA).
All data are presented as mean� the standard error of the mean
(SEM) with p � 0.05 considered signi�cant. Data shown are
representative of at least three independent studies.

RESULTS

Magnéli Phases Are Cytotoxic in Murine
Bone Marrow-Derived Macrophages
In initial toxicity studies, Magnéli phases (Ti6O11) were found
to be toxic to dechorionated zebra�sh embryos at 100 ppm (1).
Thus, we chose this formulation and dose as the focus of our
subsequent studies. Utilizing previously described methods, we
generated Magnéli phases that were predominately composed
of Ti6O11 (1) (Figure 1A). The resultant nanoparticles were
con�rmed by electron microscopy analysis and X-ray di�raction
patterns, as previously described (1) (Figures 1B,C). These
nanoparticles have excellent light absorption in the near-infrared,
UV, and visible light range (1). Likewise, the Magnéli phases also
display a low amount of photocatalytic activity, as previously
reported (1). The resultant nanoparticles used in our studies
ranged in size from a few tens of nm to hundreds of nm (1).

Once inhaled, nanoparticles are rapidly phagocytosed by
resident macrophages in the lungs, which represent the
predominate cell type responsible for neutralization and

clearance (13). To evaluate the e�ect of Magnéli phases on these
cells, we generated primary bone marrow derived macrophages
(BMDMs) using established protocols (13). The BMDMs were
treated with varying doses of Ti6O11 Magnéli phases across a 0–
1,000 ppm range and over a 24-h time course (Figures 1D–H).
Transmission electron microscopy (TEM) assessments revealed
Magnéli phases, concentrated in phagolysosomes within treated
macrophages at all concentrations and timepoints evaluated
(Figures 1D,E). Morphology assessments did not appear to show
high levels of macrophage activation following phagocytosis.
However, at 100 ppm, a signi�cant number of macrophages
demonstrated morphology consistent with increased cell death,
speci�cally apoptosis (Figure 1F). Several features were noted,
including cell shrinkage, loss of membrane integrity, and
membrane blebbing (Figure 1F). To quantify cell death, we
utilized trypan blue exclusion and manual counting using a
hemacytometer. Here, we observed a dose dependent increase in
cytotoxicity between 10 and 1,000 ppm, ranging from 19.75�
2.63% to 44.25� 4.787%, respectively (Figure 1G). The average
cell death over the same 24-h time range in the mock treated
macrophages was 16.25� 2.062% (Figure 1G). Macrophage cell
death did not initiate immediately, requiring 24 h post-exposure
to peak (Figure 1H). Using 100 ppm, cell death was assessed over
a time course, with almost double the number of macrophages
undergoing cell death at 24 h post-exposure (15.25� 0.957%
mock vs. 31.25� 3.403% Ti6O11 Magnéli phase treatment)
(Figure 1G). Together, these data show that Ti6O11 Magnéli
phases, at levels observed in the environment as incidental
nanoparticles generated through the industrial burning of coal,
are cytotoxic to mammalian macrophages.

Nanoparticle exposure typically drives macrophage activation
and the production of in�ammatory mediators (13). The cells
generated using the methods detailed here are skewed towardM1
polarized, pro-in�ammatory macrophages (6). Likewise, the cell
death induced by the Magnéli phases were originally predicted to
generate damage associated molecular patterns, such as aberrant
ATP production or Calcium e�ux similar to that described
for A549 cells (14), that should drive innate immune system
signaling in the macrophages. Here, we monitored the generation
of several potent pro-in�ammatory mediators, including IL-
1b, IL-6, and TNF (Figures 1I–K). Consistent with electron
microscopy �ndings indicating apoptosis as the method of cell
death and the lack of morphological features associated with
macrophage activation, we did not observe any statistically
signi�cant increases in either gene transcription by rtPCR or at
the protein level by ELISA for any pro-in�ammatory mediators
evaluated (Figures 1I–K). Indeed, at the gene transcription level,
we observed several mediators and transcription factors actively
down-regulated (Figure 2). These data indicate that cell death
and in�ammation induced by Magnéli phases are not linked.
Despite higher levels of cytotoxicity, cell death and Magnéli phase
exposure are not su�cient to signi�cantly activate elementsof the
innate immune system associated with in�ammation.

Previous studies have shown that nanoparticle phagocytosis
by macrophages can impair their function, resulting in greater
susceptibility to a myriad of pathogens (15, 16). To evaluate
macrophage functionality 24 h following either mock or Magnéli
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FIGURE 1 | Magnéli phase phagocytosis results in increased cell deathin bone marrow-derived macrophages.(A–C) Characterization of Magnéli phases used in this
study. (A) Schematic illustrating Magnéli phase generation.(B,C) TEM images of Magnéli phases formed by annealing P25 TiO2 nanoparticles with coal in a pure
N2 atmosphere for 2 h at 900� C. Electron diffraction patterns were characteristic of Magnéli phases and con�rmed these as predominately Ti6O11 particles. Particles were

(Continued)
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FIGURE 1 | between 10 and 200nm in size.(D) Un-treated bone marrow-derived macrophages (1� 106 cells/well) and(E) macrophages treated with Ti6O11 (1, 10,
100, or 1,000 ppm) were visualized using TEM (Scale bar: 5mm). Magnéli phases appear as punctate dark dots in the macrophages and are concentrated in
phagolysosomes.(F) Macrophages containing Magnéli phases demonstrate morphological features consistent with apoptosis, including cell shrinking and membrane
blebbing (red arrows) (Scale bar: 1mm). (G,H) Cytotoxicity was evaluated using trypan blue exclusion(G) across the Ti6O11 dose range and(H) at 100 ppm over a
24 h time course. (I,J) In�ammation was evaluated by assessing the production of pro-in�ammatory cytokines, such as(I) IL-1b, (J) IL-6, and (K) TNF in the cell free
supernatant following exposure to different doses of Magnéli phases.(L) Macrophage function was evaluated by assessing the abilityof macrophages to phagocytose
�uorescent Escherichia coli24 h post-exposure to 100 ppm Magnéli phases. Data are expressed as mean� SEM (n D 3 independent experiments). **p < 0.01.

phase exposure, live cells containing nanoparticles were sorted
and co-exposed to �uorescently labeledE. coli. In macrophages
lacking the Magnéli phases, we observed a signi�cant increase in
mean �uorescence intensity (MFI: 10,630� 290) compared to
those containing the nanoparticles (7,826� 114.2) (Figure 1L).
Thus, cells containing Magnéli phases were signi�cantly less
e�cient at bacterial phagocytosis, implying that nanoparticle
sequestration has a deleterious impact on macrophage function.

Magnéli Phase Phagocytosis Activates
Apoptosis Signaling Pathways Modulated
Through the Mitochondria
To better de�ne mechanisms underlying Magnéli phase
cytotoxicity, we pro�led gene expression and utilized Ingenuity
Pathway Analysis to decipher changes in gene networks and
pathways associated with a range of biological functions in
macrophages. BMDMs were collected 24 h post-exposure to 100
ppm Ti6O11. Total RNA was collected and gene expression was
pro�led using rtPCR based gene expression arrays (Qiagen).
Changes in gene expression were de�ned as signi�cant if
the change was� 2-fold di�erent between the mock and
treated cells. Based on the pattern of gene expression changes,
apoptosis signaling was the top canonical pathway that was
signi�cantly increased following Magnéli phase exposure
(Figure 2; Supplemental Figure S1A). Individually, there
were no clear networks or relationships identi�ed between
the top 10 dysregulated genes (Supplemental Figure S1B).
However, analysis of the congregate gene expression patterns
and networks revealed a strong relationship between genes
associated with apoptosis signaling with a focus on mitochondria
(Figure 2A). Here, we observed signi�cant increases in gene
expression associated with both pro-apoptotic BCL-2 family
members, speci�callyBax (Figure 2A). Up-stream analysis
revealed a signi�cant increase inp53signaling and down-stream
analysis revealed a signi�cant increase inApaf1 (Figure 2A).
Consistent with these �ndings, Caspases-3,� 6, and� 9 were all
found up-regulated following Magnéli phase exposure, while
Caspase-7 was signi�cantly downregulated (Figure 2A). We also
observed a signi�cant up-regulation in the gene encoding ICAD,
which is associated with DNA fragmentation during apoptosis
(Figure 2A). In addition to apoptosis, pathway analysis further
revealed that in�ammation and in�ammatory forms of cell
death, such as necroptosis, were signi�cantly down-regulated
following Magnéli phase exposure (Figures 2A,B). While we
realize the general limitations of utilizing gene expression data
to de�ne cell death pathways, the data indicates signi�cant
changes in genes associated with apoptosis pathways and is

consistent with the electron microscopy and in�ammation data
(Figure 1). Beyond cell death, very few additional pathways
were found to be signi�cantly impacted following Magnéli
phase phagocytosis at the time points and conditions evaluated
here, with a notable exception being a general downregulation
of genes associated with NF-kB signaling (Figure 2A). This
�nding is consistent with the lack of in�ammation and cytokine
responses observed following exposure (Figures 1I,J). To
better evaluate our �ndings compared to those previously
reported for TiO2 exposure, we compared our �ndings to gene
expression patterns associated for TiO2 in the IPA database
(Supplemental Figure S1C). In general, many of the same
pathways are altered for both Magnéli phases and TiO2,
including the down-regulation ofTnf and the up-regulation of
Ifng (Supplemental Figure S1C). However, the major di�erence
between Magnéli phases and TiO2 is associated with Caspase-
3/-7 regulation. Caspase-7 is down regulated in both cases; but,
Caspase-3 is signi�cantly up-regulated following Magnéli phase
exposure and is central in the apoptosis pathways identi�ed
(Figure 2A; Supplemental Figure S1C). This is in contrast to
the down-regulation of Caspase-3 and cell death mechanisms
previously described following TiO2 exposure (17). Together,
these data suggest that macrophage cell death induced by
Magnéli phase exposure occurs though the mitochondrial
pathway of apoptosis and is associated with the activation of
pro-apoptotic BCL-2 family members, including a potential
p53-BAX-APAF1 axis.

Magnéli Phase Exposure Results in
Signi�cant Mitochondrial Dysfunction
Previous studies have revealed that nanoparticles can
signi�cantly impair mitochondria function and the convergence
of signaling pathways on the mitochondria identi�ed in the
gene expression pro�ling and pathway analysis together warrant
higher resolution functional assessments. We �rst utilizedan
Agilent Seahorse XF cell mitochondrial stress test to evaluate
the oxygen consumption rate (OCR) in BMDMs treated for
24 h with either mock, 100 ppm, or 1,000 ppm Magnéli phases
(Figure 3A). At both doses, the basal respiration and the
maximal respiratory capacity (MRC) were signi�cantly increased
in BMDMs treated with Magnéli phases compared to mock
(Figure 3A). Cells treated with 1,000 ppm of Magnéli phases
did not show the typical decline in OCR after the addition of
oligomycin (Oligo), a known ATP synthase inhibitor, indicating
an increase in proton leak in the mitochondria (Figure 3A).
Proton leak is typically associated with mitochondrial damage
and stress (18, 19). Likewise, these cells only showed a minimal
change in MRC following the addition of the proton ionophore
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FIGURE 2 | Macrophage exposure to Magnéli phases activates gene expression pro�les associated with apoptosis and mitochondria dysfunction. (A) Gene
expression was evaluated using real time PCR based Superarrays (Qiagen). For each gene target on the array, fold change was calculated based on11 Ct values.
Genes found to be� 2-fold change in expression from untreated specimens were de�ned as signi�cant. The resultant data was evaluated using Ingenuity Pathway
Analysis (IPA) to de�ne pathways and global correlations between gene expression pro�les and biological functions. Cell death signaling, speci�cally apoptosis, was

(Continued)
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FIGURE 2 | the top pathway up-regulated in the macrophages following Magnéli phase exposure. IPA further identi�ed gene expressionpro�les consistent with
mitochondria dysfunction as a potential factor associatedwith the increased apoptosis signaling.(B) Pathways associated with in�ammation and speci�cally
in�ammation associated cell death (i.e., pyroptosis and necroptosis) were signi�cantly down-regulated at the level of gene transcription. Either fold change in gene
expression or z-score values are displayed for each node as appropriate.

FIGURE 3 | Alterations in cellular energetics and mitochondrial membrane potential in macrophages treated with Ti6O11. (A) Oxygen consumption rate (OCR) and(B)
extracellular acidi�cation rate (ECAR) were measured usingAgilent Seahorse XF96 Analyzer in mock and Ti6O11 treated BMDMs at either 100 ppm or 1,000 ppm.(C)
Mitochondrial membrane potential was evaluated using tetramethylrhodamine (TMRM) in macrophages treated with vehicle (blue) or 100 ppm Magnéli phases (green),
with H2O2 used to induce maximum loss of membrane potential in each group. (D) Cellular oxidative stress was evaluated using dihydrodichloro�uorescein (DCF)
�uorescence. All data are expressed as mean� SEM (n D 3/group). AU, Arbitrary Units. *p < 0.05, #p < 0.05, **p < 0.01.

FCCP (Figure 3A), which likely re�ects the signi�cant increase
in cells undergoing cell death. The BMDMs treated with
100 ppm Magnéli phases showed the most dramatic shifts,
with the highest level of basal respiration and the largest
MRC increase, following FCCP treatment (Figure 3A). The
impressive increase in MRC suggests that Magnéli phase
exposure resulted in a substantially higher reserve capacity
in BMDMs, which is also likely associated with the increased
energy demands of the cells following increased damage,
stress, and cell death. Complementing the OCR data, we also

evaluated the extracellular acidi�cation rate (ECAR), whichis
an assessment of glycolysis. While we did not observe signi�cant
di�erences in ECAR following exposure to Magnéli phases
at 1,000 ppm, we did observe a signi�cant increase following
exposure to 100 ppm (Figure 3B). These data indicate a shift
in the substrate utilization, likely due to increased cellular
metabolism in cells treated with 100 ppm Magnéli phases.
Together, these data indicate that Magnéli phase exposure results
in altered mitochondrial bioenergetics that can signi�cantly
contribute to damage associated processes, such as reactive
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oxygen species (ROS) generation and the activation of cell
death cascades.

Because proton leak is also a sign of mitochondrial damage
and stress, we next investigated mitochondrial membrane
potential (MMP), as decreases in MMP are associated with
mitochondrial membrane damage and changes in mitochondrial
function. The cell-permeant dye, tetramethylrhodamine
(TMRM) accumulates in active mitochondria with healthy
MMPs. A decrease in TMRM �uorescence indicates a loss
of mitochondrial membrane potential. BMDMs treated with
100 ppm Magnéli phases had signi�cantly lower TMRM
�uorescence (86.26� 13.06 AU) compared to mock (613.60�
51.89 AU) (Figure 3C), indicating treatment signi�cantly altered
mitochondrial membrane potential. The subsequent additionof
H2O2 to each sample was used as a positive control and resulted
in signi�cant decreased TMRM �uorescence compared to basal
�uorescence in the mock treated cells, with a much smaller
decrease in the cells treated with Magnéli phases (Figure 3C).
Together, these data suggest that Magnéli phase exposure results
in a signi�cant decrease in mitochondrial membrane potential,
and con�rms severe mitochondrial membrane damage.

The production and modulation of ROS is a common
biological response in macrophages to nanoparticle exposure,
is associated with cytotoxicity, and is commonly involved in
mitochondrial stress (20–22). Increased ROS production is a
signi�cant driver of cell death and stress following TiO2 exposure
(20). A previous study assessed ROS levels in A549 alveolar
epithelial cell lines following TiO2 and unde�ned Magnéli
phase exposure (14). Under the conditions evaluated, the TiOx
nanoparticles increased intracellular Ca2C that was associated
with low levels of cytotoxicity, but no signi�cant changes on
ROS production were observed (14). Due to the inherent
di�erences in nanoparticle responses between di�erent cell types
and the potent cytotoxic e�ects of dysregulated ROS production,
we next evaluated this response following exposure to Ti6O11
nanoparticles in macrophages. For this we utilized another
cell-permeant dye, 2

0
,7

0
-dichloro�uorescin diacetate (DCFDA),

which is oxidized by ROS into the �uorescent DCF. BMDMs
challenged with 100 ppm Magnéli phases for 24 h had a
signi�cantly higher level of ROS production (1,105� 94.17)
compared to mock exposed cells (76.39� 7.22) (Figure 3D).
Taken together, these data suggest that macrophages treated
with Magnéli phases show increased ROS production and loss
of mitochondrial membrane potential after 24 h. All of which
are indications that these particles induce mitochondrial stress
and are consistent with the induction of mitochondria-mediated
apoptosis following Magnéli phase exposure.

Magnéli Phases Are Sequestered in
Lung-Associated Macrophages and
Concentrate in the Tissue After a Single
Exposure
In the only in vivo toxicity study conducted to date, Magnéli
phases were shown to be bioactive and toxic to zebra�sh at
100 ppm (1). These studies provided the �rst indication that
these incidental nanoparticles could be biologically activeand

potentially toxic to a variety of animal species, including humans.
However, the impact of Magnéli phases in mammals and the
mechanism of toxicity were not explored (1). Thus, we next
sought to extend these �ndings using mice and a respiratory
exposure model. Mice were exposed to 100 ppm Ti6O11
Magnéli phases in 1� PBS via intra-tracheal administration using
methods previously described to evaluate nanoparticle toxicity
and tra�cking in the respiratory tract (13, 23). To quantify the
concentration of Magnéli phases in the lungs over time, we
utilized inductively coupled plasma mass spectrometry analysis
to detect titanium levels (Figure 4A; Supplemental Figure S2A).
Immediately following i.t. administration, tissues including the
lungs, liver, spleen, and kidneys were removed, digested, and
processed for ICP-MS. These data represent the maximum
deposition control (Figure 4). As expected, no titanium was
detected in tissues outside of the lungs or in any tissues that were
not exposed to the Magnéli phases. However, in exposed lungs,
we observed 14.46� 4.32mg/g of lung tissue immediately after
deposition (Figure 4A). Within 24 h post-exposure, titanium
levels detected in the lungs dropped to 3.40� 1.19mg/g of
lung tissue (Figure 4A). However, surprisingly, after this single
exposure to the Ti6O11 Magnéli phases, the levels of titanium
in the lungs were maintained over the course of a week with
levels holding steady at 5.30� 1.23mg/g (Day 3) and 5.91�
1.30mg/g (Day 7) (Figure 4A). Titanium levels were below the
level of detection in all of the other tissues evaluated at the time
points assessed (Supplemental Figure S2B). Together, these data
emphasize the potential consequences of even a single exposure
to Magnéli phases, which are retained in the lungs at signi�cant
levels for an extended duration following inhalation.

We next sought to identify where in the lungs the
Magnéli phases were being sequestered. We initially utilized
histopathology assessments of H&E stained lung sections to
evaluate both nanoparticle deposition and pathology. Lungs
were �xed by gravity in�ation with formalin and para�n
embedded for staining as previously described (13, 23).
Lung pathology was evaluated by a board-certi�ed veterinary
pathologist (S.C.O.). Control mice received either vehicle or
were challenged with a 1 mg/ml dose of LPS (Figures 4B,C).
As anticipated, lung histopathology was normal in the vehicle
treated animals (Figure 4B). Conversely, we observed signi�cant
airway in�ammation in the LPS treated animals, characterized
by predominately macrophage and neutrophil in�ltration
concentrated around the airways and vasculature (Figure 4C). In
the experimental animal groups, we did not observe signi�cant
evidence of in�ammation in the mice exposed to Magnéli
phases at 1, 3, or 7 days post-exposure (Figure 4D). However,
Magnéli phases were readily observed as punctate foci within
cells in the lungs under light microscopy conditions (Figure 4D).
Further assessments at higher magni�cation revealed that
the vast majority of Magnéli phases were sequestered in
macrophages, with no nanoparticles observed under light
microscopy conditions associated with or within any other cell
type in the lung or observed in the vehicle control specimens
(Figures 4B,D). To con�rm the association of Magnéli phases
with the macrophages in the lungs, we conducted enhanced
dark�eld microscopy (Cytoviva) (Figures 4E–G). A reference
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FIGURE 4 | Magnéli phases concentrate in pulmonary macrophages following a single exposure and are retained in the lung.(A) Following a single airway exposure
to 100 ppm, titanium associated with the Magnéli phases wereretained in the lungs and detected using ICP-MS for over 7 dayspost-expsure. Control tissues were
collected from animals exposed to 100 ppm Ti6O11 and immediately euthanized.(B–D) Representative H&E stained tissue sections used for histopathology
evaluation.(B) Vehicle control showing no nanoparticles or pathology.(C) Signi�cant airway in�ammation was observed in LPS treated animals, but no evidence of
in�ammation was found in the mice treated with Magnéli phasesat any timepoint evaluated.(D) Larges areas of macrophages containing Magnéli phases werefound
in all treated animals (yellow box).(E–G)The majority of pulmonary macrophages contain Magnéli phases, with no other cell types appearing to contain or associate
with the nanoparticles determined using dark �eld microscopy. Dark�eld images were taken of(E) Ti6O11 nanoparticles alone or the lungs of mice 7 days
post-exposure to either(F) PBS or (G) 100 ppm Magnéli phases.(G) Particles in the tissues were identi�ed by bright punctate dots, almost exclusively localized in
macrophages. Representative H&E stained lung sections (Scale barD 50 mm). All data are expressed as mean� SEM (n D 7/group). **p < 0.01.

image of Magnéli phases was generated and used to identify
the nanoparticlesin vivo (Figure 4E). As anticipated, we did
not detect any Magnéli phases in the vehicle control specimens
(PBS) (Figure 4F). However, consistent with our pathology

assessments, Magnéli phases were con�rmed in macrophages
throughout the lungs and were readily identi�ed by their
distinctive punctate staining (Figure 4G; green arrow). Together,
these data show that Magnéli phases are e�ectively phagocytosed
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by lung-associated macrophages; however, the nanoparticles are
not e�ectively cleared from the tissue, remaining at steady levels
over the course of at least 7 days following a single exposure.

Based on ourex vivo �ndings that Magnéli phases are
cytotoxic, we next evaluated thein vivo impact of nanoparticle

sequestration on macrophages and lung tissue. Bronchoalveolar
lavage �uid (BALF) was collected following euthanasia and
cellularity was evaluated following di�erential staining. In both
the PBS and Magnéli phase treated specimens, macrophages
were the dominate population of cells recovered (Figure 5A).

FIGURE 5 | Magnéli phases concentrate in pulmonary macrophages, resulting in signi�cant dysfunction.(A) Representative images of BALF cytology from PBS and
Ti6O11 (100 ppm) treated mice.(B) Differential cell counts in the BALF after treatment with PBS, Ti6O11, or LPS. (C) Gene expression pro�ling and analysis using
Ingenuity Pathway Analysis software identi�ed gene transcription patterns associated with increases in apoptosis, formation of reactive oxygen species, and wound
healing/�brosis. Data are expressed as mean� SEM (n D 3 mice per PBS treated group,n D 7 mice per Ti6O11 treated group, and n D 4 per LPS treated group).
*p < 0.05.
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This is in contrast to the highly in�ammatory conditions
observed following LPS treatment (data not shown) or following
exposure to nanoparticles with immunostimulatory properties,
where neutrophils are the dominate cell type observed (24–27).
Magnéli phases were readily identi�ed in macrophages collected
from the lungs of exposed mice at all time points evaluated,
with 71 � 10.16% of the macrophages containing at least 1
readily observable nanoparticle under 40� light microscopy
(Figure 5A). Consistent with ourin vitro cytotoxicity data, many
of the macrophages recovered from the airways demonstrated
morphological features consistent with cellular stress and death
(Figure 5A). The cell populations recovered in the BALF
were further quanti�ed using a hemocytometer (Figure 5B).
Macrophages, neutrophils, and lymphocytes were recovered in
the BALF from mice exposed to either PBS or Magnéli phases
(Figure 5B). The quantity and populations of cells recovered
in BALF are routinely utilized as surrogates to characterize
lung in�ammation (28). Compared to �ndings commonly
reported following exposure to immunostimulatory agents,
such as LPS, and consistent with the pathology evaluations
shown in Figures 4B–D, the number and populations of cells
recovered following exposure to Magnéli phases indicate that
these nanoparticles do not induce signi�cant lung in�ammation
(Figure 5B). Indeed, assessments of in�ammatory mediator
levels, such as IL-6, in the BALF following either Magnéli
phase exposure or LPS exposure, further con�rm these �ndings
(Supplemental Figure S3A). Consistent with the increased
cytotoxicity, we observed a signi�cant decrease in the number
of macrophages recovered in the BALF from mice exposed to
Magnéli phases (Figure 5B). No other cell populations appeared
to be impacted (Figure 5B). Together, these data indicate that
airway exposure to a single dose of Magnéli phases at a range
previously found in environmental samples following incidental
nanoparticle release and cytotoxic to zebra�sh embryos indeed
facilitates macrophage cell death in the mammalian lung.
Consistent with the apoptosis �ndings (shown inFigures 1,
2), neither in vivo macrophage cell death nor exposure to the
Magnéli phases result in signi�cant in�ammation.

To better de�ne the mechanisms underlying thein vivo
response to Magnéli phase exposure, lung tissue was collected
7 days post-exposure. Total RNA was isolated and processed
for gene expression pro�ling using the SuperArray platform
and IPA, as previously described (7–9). The gene expression
pro�ling analysis revealed signi�cant changes in several pathways
associated with cell death and lung function. The three top
pathways predicted by IPA analysis to be signi�cantly activated
7 days post-exposure to the Magnéli phases were (1) apoptosis—
speci�cally apoptosis of monocytes; (2) formation of ROS;
and (3) �brosis. In all three cases the combination of genes
up-regulated and down-regulated were predicted to have an
activating e�ect on the pathways identi�ed (Figure 5C). Also, of
note, no pathways were predicted to be signi�cantly inhibited
based on the gene expression patterns evaluated and no pathways
associated with in�ammation were signi�cantly modulated
following Magnéli phase exposure. The predicted activation of
apoptosis of monocytes and formation of ROSin vivoare highly
consistent with the �ndings from ourin vitro studies and further

emphasize the detrimental impact that the Magnéli phases are
having on the macrophage populations in the lungs following
exposure. The �brosis gene expression signature is intriguing.
The 7-day timeframe of the exposure model is far too soon for
lung �brosis to present in the mice and no pathologic features
associated with �brosis were detected in our specimens by
histopathology, collagen, or �bronectin assessments (Figure 4).
It is possible that we are identifying gene signatures associated
with �brosis at a very early time in the lungs, prior to pathological
disease onset. However, this gene expression pattern would also
be consistent with increased regeneration and repair processes in
the lungs, perhaps associated with the increased cell death.

Repeated Exposure to Magnéli Phases
Results in Signi�cant Nanoparticle
Accumulation in the Lungs
In most cases of incidental nanoparticle release into the
environment, biological exposure to Magnéli phases are expected
to occur repeatedly and for an extended duration. Thus, we
next sought to determine the impact of chronic airway exposure
to the Ti6O11 nanoparticles over a 30-day time period. Under
these conditions, we observed a signi�cant increase in titanium
concentrations in the lungs, which accumulated to levels that
were � 6-fold higher (35.82mg/g of lung) than levels observed
after a single exposure (5.92mg/g of lung) (Figure 6A). Similar to
the �ndings from the single exposures, pathology assessments of
the lungs again revealed that the majority of the Magnéli phases
detectable under bright-�eld microscopy were sequestered in
lung-associated macrophages (Figure 6B). Despite the increased
concentrations of nanoparticles in the lungs, we did not
observe any pathologic features associated with increased
in�ammation or di�erences in pro-in�ammatory mediators,
such as IL-6, IL-1b, or TNF levels, in the lungs (Figure 6B;
Supplemental Figures S3A–F). Pathology assessments revealed
no evidence of interactions with other cell types beyond
the macrophages under bright-�eld microscopy. To better
de�ne nanoparticle-cell interactions, we evaluated specimens
using enhanced dark �eld microscopy (Cytoviva) (Figure 6C).
Consistent with our bright �eld data and similar to what we
observed following the single exposure, the Magnéli phases
are overwhelmingly concentrated in macrophages in the lung
(Figure 6C). It should be noted that we did identify punctate
staining associated with alveolar epithelial cells, indicating that
under chronic exposure conditions, there are some interactions
between other cell types in the lungs and the Ti6O11nanoparticles
(Figure 6C). However, compared to the macrophages, Magnéli
phase interactions with these cells were more sporadic and
involved far fewer nanoparticles per cell (Figure 6C). Using cells
recovered following BALF and evaluated following di�erential
staining assessments, the number of macrophages containing
Magnéli phases per 100 cells was determined and used to generate
a phagocytic index (29). Following the single exposure to Magnéli
phases, we calculated the phagocytic index to be 71.14� 3.84 on
day 7, with the majority of macrophages recovered containing
> 1 nanoparticle per cell (Figure 6D). However, following the
multiple exposures, the phagocytic index signi�cantly increased

Frontiers in Immunology | www.frontiersin.org 13 November 2019 | Volume 10 | Article 2714



McDaniel et al. Pulmonary Exposure to Magnéli Phases

FIGURE 6 | Repeated exposures concentrates Magnéli phases in pulmonary macrophages.(A) Using ICP-MS, we quanti�ed the amount of titanium in the lungs
following multiple airway exposures to 100 ppm Ti6O11 over a 30 day period.(B) Histopathology using H&E stained tissue sections reveled signi�cant airway
in�ammation LPS treated animals, but no evidence of in�ammation in the mice treated with Magnéli phases. Larges areas of macrophages containing Magnéli
phases were found in all treated animals (Scale barD 20 mm).(C)Dark�eld images were taken of mouse lungs post-repeated exposures, on day 30. Particles in the tissues

(Continued)
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FIGURE 6 | were identi�ed by bright punctate dots. Almost all particleswere concentrated in macrophages (green arrows). However,small numbers of Ti6O11

nanoparticles were found associated with alveolar epithelial cells (green arrows). Representative H&E stained lung sections (Scale barD 50 mm). (D) Phagocytic Index
(number of BALF macrophages containing Magnéli phases per 100 cells).(E–G)APAF1 immunohistochemistry staining from(E) saline,(F) LPS, and (G) Magnéli
Phase exposed lungs.(G) Following Magnéli Phase exposure, only endothelial cells and macrophages containing particles were broadly positivefor APAF1.(E) In
saline exposed mice, only endothelial cells were positive for APAF1;(F) whereas, LPS exposure resulted in a range of cell types staining positive for APAF1.
Macrophages in each image are identi�ed by red arrows. All data are expressed as mean� SEM (n D 7/group). **p < 0.01.

to 91.00� 2.17 on day 30, again with almost all macrophages
recovered containing> 1 nanoparticle per cell (Figure 6D).
Together, these data are consistent with the Magnéli phases
being sequestered in the macrophages. Following cell death,
the nanoparticles likely continue to concentrate in the lungs
as cells undergoing apoptosis and associated debris (including
the Magnéli phases) are further phagocytosed by additional
macrophages, creating a positive feedback loop.

Our gene expression pro�ling data indicated that this
sequestration resulted in apoptosis. To further evaluate this,
we conducted immunohistochemistry targeting APAF1, which
is an important mediator in mitochondria mediated apoptosis
and was signi�cantly up-regulated at the gene expression
level (Figure 2A). Immunohistochemistry revealed that Ti6O11
treatment resulted in signi�cant increases in APAF1C cells in
the lungs. Consistent with previous data, endothelial cellshave
high levels of APAF1C staining, which was observed in the Saline
treated animals (Figure 6E). However, we did not observe any
signi�cant staining in other cell types, including macrophages
(Figure 6E). In LPS treated lungs, we observed robust staining
in multiple cell types in the lungs, including endothelial
cells, epithelial cells, macrophages, and neutrophils (Figure 6G).
However, in the Magnéli phase treated animals, we did not
observe the same level of widespread staining (Figure 6F).
Rather, the APAFC cells were predominately limited to the
endothelial cells and macrophages containing Magnéli phases
(Figure 6F). Also, of note, only the macrophages containing
Magnélli phases were APAFC . Together, these data are consistent
with our other �ndings localizing thein vivo e�ects of the
Magnélli phases to the macrophage compartment in the lungs.

Magnéli Phase Exposure Attenuates Lung
Function and Impacts Airway
Pathophysiology
Based on the data above, we predicted that exposure to Magnéli
phases would negatively impact mammalian lung function.
To directly test this hypothesis, we determined the impact
of multiple exposures of Ti6O11 nanoparticles over a 30 day
period of time on basal air�ow and airway mechanics utilizing
a computer-controlled small-animal ventilator with highly
sensitive pressure transducers (Flexivent) to quantify airway
opening pressures, volume, and air�ow (10, 11). In addition
to basal measurements, we also determined whether exposure
to these Magnéli phases modulates lung pathophysiology and
airway mechanics following exposure to the bronchoconstricting
agent methacholine. To evaluate airway mechanics, a snapshot
perturbation maneuver that consisted of a three-cycle sinusoidal
wave of inspiration and expiration was used to measure total
respiratory system resistance (R), dynamic compliance (C), and

elastance (E). A Quickprime-3 perturbation, which produced
a broadband frequency (0.5–19.75 Hz) over 3 s, was used to
measure Newtonian resistance (Rn), which is a measure of central
airway resistance. For the methacholine studies, after three
baseline measurements of lung function, mice were challenged
with aerosolized saline or increasing doses of 1.5, 3, 6, 12,
and 24 mg/ml of methacholine, generated by an ultrasonic
nebulizer for 10 s without altering the ventilation pattern,
followed by assessments every 30 s (30, 31). Between each dose of
methacholine, a deep in�ation perturbation was initiated toreset
lung hysteresis.

Consistent with our hypothesis, exposure to Magnéli
phases resulted in signi�cant increases in basal resistance and
Newtonian resistance (Figures 7A,B). These data indicate
that the accumulation of Ti6O11 nanoparticles signi�cantly
attenuates baseline lung function. The increased basal resistance
and Newtonian resistance suggests that the airway diameter
and lung volumes are reduced under baseline conditions. We
also observed an increase in basal elastance and the converse
decrease in compliance (Figures 7C,D). These �ndings re�ect
defects in alveolar and elastic tissue in the lungs and indicate
that exposure to Magnéli phases results in increased lung
sti�ness and reduced lung expansion abilities. Beyond baseline
assessments, we also sought to evaluate lung function following
methacholine challenge, which is commonly used to induce
smooth muscle constriction in the lungs. Despite the increased
baseline resistance and Newtonian resistance, the lungs of mice
exposed to Magnéli phases showed minimal increases in airway
constriction following methacholine challenge (Figures 7E,F).
This is in contrast to the unexposed animals, which demonstrated
the anticipated dose dependent increases (Figures 7E,F). These
data indicate that the lungs of these mice lack the capacity to
properly function and are likely at maximum for resistance and
Newtonian resistance. Methacholine challenge also results in
increased elastance and decreased compliance in untreated mice
(Figures 7G,H). However, similar to the resistance measures,
Magnéli phase exposure resulted in minimal changes in elastance
and dynamic compliance, indicating a sti�ening of the lungs
(Figures 7G,H). Together, these data are consistent with Magnéli
phase exposure resulting in signi�cant detrimental changes in
lung mechanics and function.

DISCUSSION

In initial toxicity studies, Magnéli phases (Ti6O11) were found
to be toxic to dechorionated zebra�sh embryos at 100 ppm,
without concurrent solar radiation (1). This is in contrast
to TiO2 nanoparticles, which are photocatalytically active and
toxic at the same concentrations in conditions where solar
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FIGURE 7 | Chronic exposure to Magnéli phases signi�cantly attenuateslung function. (A–D) Baseline pulmonary function parameters including(A) total respiratory
system resistance (R),(B) Newtonian resistance (Rn),(C) elastance (E), and(D) dynamic compliance (C) were measured by FlexiVent in control and Ti6O11 exposed
mice. (E–H) Assessment of AHR to methacholine (MCh) in control and Ti6O11 exposed mice. (E) Total respiratory system resistance (R),(F) Newtonian resistance
(Rn),(G) elastance (E), and(H) dynamic compliance (C) dose response curves following challenge with increasing concentrations of MCh in aerosolizedsaline (0, 1.5,
3, 6, 12, and 24 mg/ml) for control and Ti6O11 exposed mice were examined on FlexiVent. All data are expressed as mean� SEM (n D 7/group). *p < 0.05, ****p <
0.0001, compared to the PBS treated control group.

radiation is present (1). The mechanism of cytotoxicity associated
with TiO2 has previously been associated with the increase
in ROS generation (32, 33). Prior to data presented in the

current study, the physiological impact in mammalian cells and
cytotoxicity mechanisms associated with Magnéli phases were
unclear. To date, only one additional study has explored the
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cytotoxicity of these nanoparticles in mammalian cells (14). The
cytotoxicity of three di�erent Magnéli phases and two di�erent
TiO2 formulations were evaluated utilizing A549 cells, which are
a human lung alveolar epithelial cell line (14). In these studies,
rather than using speci�c formulations of Magnéli phases, the
nanoparticles were evaluated based on size, ranging from 192
to 795 nm in average diameter (14). In the A549 cells, the
TiOx Magnéli phases demonstrated low levels of cytotoxicity in
some of the size ranges evaluated and increased intracellular
Ca2C , but no signi�cant changes in ROS levels were observed
(14). Thus, the authors concluded that in A549 cells Magnéli
phases had either similar or reduced cytotoxicity compared to
TiO2 nanoparticles with cell death associated with di�erent
mechanisms related to Ca2C �ux ( 14).

The prior studies using zebra�sh embryos also provides
critical insight into generalin vivo toxicity and immediate
relevance to aquatic organism exposure (1). However, the impact
of Magnéli phases on other terrestrial biological systems and the
extension of these �ndings to human physiology is somewhat
limited. Similarly, thein vitro studies using the A549 model
provides important insight related to the interaction of Magnéli
phases with a human alveolar epithelial cell line and a comparison
with TiO2 nanoparticles (14). However, while the A549 cells are
certainly relevant, when nanoparticles are internalized through
the airway, several other cell types beyond the alveolar epithelial
cells are arguably more critical to the host response (13). Based
on data presented here, interactions between Magnéli phases and
alveolar epithelial cells appear quite limitedin vivo. Our data
indicates that the vast majority of nanoparticles are sequestered
in lung-associated macrophages. These cells are the primary
phagocytic cell in the airway and these �ndings are similar to
other studies evaluating nanoparticle deposition in the lungs (13,
23, 24). Likewise, our data indicates that the macrophages are not
able to e�ectively breakdown and clear the concentrated Magnéli
phases from the lungs. Even more concerning, this sequestration
occurs even after a single challenge and suggests that even short
term, low dose exposure to Magnéli phases may pose a potential
health risk.

Once phagocytosed by macrophages, our data reveals that
Ti6O11 Magnéli phases are cytotoxic and induce apoptosis, which
is considered a non-in�ammatory form of cell death. This �nding
is consistent with the lack of in�ammatory signaling in theex vivo
primary macrophages andin vivo �ndings. However, the lack of
in�ammation, both in vitro and in vivo, following nanoparticle
exposure was quite unexpected. As discussed above, we observed
active suppression of gene expression pathways associated with
necroptosis (Figure 2B), which is a proin�ammatory form of
cell death. While this was also unexpected, similar �ndings have
been reported for other metal-based nanoparticles. Indeed, the
ability to attenuate in�ammation while inducing cell deathis a
favorable characteristic for engineered nanomaterials generated
for biomedical and therapeutic applications. For example, zinc
oxide nanoparticles induce high levels of apoptosis associated
with increased ROS production and signi�cant depletion of
glutathione in human pulmonary adenocarcinoma cell lines and
have well de�ned anti-in�ammatory activities (34, 35). Thus, it
is tempting to speculate a similar model applies to the Magnéli

phases evaluated here. Similarly, silver nanoparticles haveshown
e�ects in neutrophils that are consistent to those described here
for the Magnéli phases in macrophages (36). Silver nanoparticle
exposure triggers activation and maturation in speci�c subsets
of neutrophils, followed by increased levels of IL-8 (36).
However, classical pro-in�ammatory pathway activation, overall
in�ammation and necrotic cell death are signi�cantly attenuated
following exposure (36). The implication of these data indicate
that silver nanoparticles stimulate neutrophil up-take as the cell
attempts to minimize in�ammation and stimulate nanoparticle
clearance (36). It is possible that a similar mechanism is also
occurring in macrophages, where Magnéli phase nanoparticle
phagocytosis is occurring, but the cells are not able to e�ectively
degrade or clear the nanoparticles.

Mitochondria are critical in the activation of apoptosis in
mammalian cells and the Bcl-2 family is central in the regulation
of these processes (37). Our data reveals that this pathway is
signi�cantly dysregulated following Magnéli phase exposure and
provides insight into the mechanism underlying the increased
apoptosis observed following nanoparticle exposure. These
data are consistent with �ndings associated with a diverse
range of metal-based nanoparticles. For example, gadolinium
oxide (Gd2O3) nanoparticles have been shown to induce
apoptosis through dysregulation of BCL2/BAX signaling and
ROS production in response to DNA damage in human
neuronal cells (38). Likewise, similar to the gene expression
pattern observed following Magnéli phase exposure, silver
nanoparticle exposure also increases caspase 3, Bax, and P53
expression, increased ROS signaling, and apoptosis in the MCF-
7 human adenocarcinoma cell line (39). But, as discussed
above and also similar to Magnéli phases, silver nanoparticle
exposure results in an attenuated immune system response
(36). Interestingly, lower doses of Magneli phases (100 ppm)
increased maximal respiration, consistent with the concept of
mitochondrial hormesis, whereby ROS upregulate mitochondria
as a compensatory mechanism to �ght cellular stressors (40).
This is consistent with our observation that higher doses (1,000
ppm) were associated with functional decrements, including
uncoupled respiration and a loss in respiratory reserve in
macrophages. Likewise, the dramatic shifts observed in the OCR
and ECAR at 100 ppm further emphasize that the mitochondria
are dysfunctional and indicates that Magnéli phase exposure
results in signi�cantly altered mitochondrial bioenergetics. This
likely contributes to damage associated processes, such as ROS
generation and the activation of cell death cascades. Together,
these data support a model whereby Magnéli phases directly
impair mitochondrial function following exposure and induce
cell death in macrophages through the mitochondrial-mediated
intrinsic apoptosis pathway.

Despite the lack of in�ammation in the lungs following
Magnéli phase exposure, it is clear that the sequestration and
concentration of these nanoparticles and resultant macrophage
cell death signi�cantly a�ects lung function. We observed
signi�cant changes in resistance, compliance, and elastanceat
baseline and following methacholine stimulation (Figure 7).
At baseline, the increase in resistance following repeated
Magnéli phase exposure re�ects a narrowing of the central and
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conducting airways, including the trachea, bronchi, bronchioles,
and terminal bronchioles. Similarly, the reduction in compliance
and corresponding increase in elastance at baseline re�ect
the need for greater pressures to increase lung volume in
animals exposed to Magnéli phases. Following stimulation with
methacholine, we observed predicted changes in R, Rn, E,
and C in animals unexposed to Magnéli phases, re�ecting
normal lung function. However, in mice exposed to the
nanoparticles, we observed relatively minimal changes in lung
mechanics from baseline (Figure 7). This suggests that the lungs
have already reached their near maximum potential for the
parameters assessed in this study. Together, these consequential
alterations in airway mechanics indicate that the lungs of
mice exposed to Ti6O11 Magnéli phases are signi�cantly sti�er
and more constricted compared to unexposed animals. This
in�uences both baseline lung function and normal airway
contractility following stimulation. These �ndings are consistent
with restrictive lung disease and are similar to �ndings reported
for silica associated models of �brosis, which are characterized
by low levels of in�ammation and the production of pro-
�brotic growth factors that ultimately result in �brotic lesions
due to diminished lung clearance of the silica particles (41–44).
These �brotic lesions are directly associated with diminished
macrophage function. Macrophages that concentrate the silica
particles are highly e�ective in directly stimulating �brogenesis
associated growth factors in the lungs that can impair lung
function. These �ndings are consistent with those presented
here following exposure to Magnélli phases and we speculate
that a similar mechanism underlies the observed decrease in
lung function.

Due to the widespread environmental distribution of
incidental Magnéli phases in the air and water associated
with global coal combustion, it is critical that we have a
better understanding of their biological impacts. Improved
understanding of the dynamics associated with nanoparticle
physicochemistry, cellular, and organismal responses following
exposure, environmental transport, and global distribution
patterns are all critical for providing a basis for establishing
future frameworks to determine potential risks to human health
and inform environmental policy decisions. Our �ndings here
are highly cautionary, as a single exposure to Magnéli phases
can result in potentially harmful long-term health e�ects.
Unfortunately, there is currently no practical way to limit the
formation of Magnéli phases and other nanoparticle formation
during the coal burning process. However, in countries with
strong environmental regulations, most of these nanoparticles
can be captured by particle traps prior to �nal emission of exhaust
gas. While we have provided the �rst evidence of the detrimental
impacts of Magnéli phase exposure in mammals, it is clear that
further toxicology studies are necessary and future assessments of
the impact of these nanoparticles on human health is warranted.
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Supplemental Figure S1 | Apoptosis signaling was signi�cantly increased in
macrophages following exposure to Magnéli phases.(A) IPA revealed that cell
death and apoptosis signaling pathways were signi�cantly up-regulated following
Ti6O11 exposure. The top molecular and cellular functions predicted to be
impacted by exposure were associated with cell death, cellular function and
maintenance, DNA repair, and cellular organization.(B) The 10 genes most
impacted (the top 5 up-regulated and down-regulated) by Magnéli phase
exposure in macrophages have broad and diverse biological functions. (C)
Macrophage responses to Magnéli phases produce a gene expression pattern
similar to that observed following exposure and activationfollowing titanium
dioxide. However, Magnéli phase exposure is signi�cantly less in�ammatory (lower
levels ofIFNG, IGF1, and FASLG), while inducing higher levels of apoptosis and
increased mitochondria dysfunction. The activation of gene networks associated

with Caspase 3 is a signi�cant difference observed here for Magnéli phases, which
is down-regulated following titanium dioxide exposure.

Supplemental Figure S2 | Titanium was not found in tissues and organs outside
of the lungs. (A) Table showing ICP-MS instrument parameters used for the
detection of titanium in tissue.(B) Blood, liver, and kidneys were evaluated for
titanium levels over the course of 7 days post-exposure to a single dose of Magnéli
phases at 100 ppm. All levels in all tissues were below the level of detection, with
the exception of a single liver sample, shown here 3 days post-exposure.

Supplemental Figure S3 | Magnéli phases are non-in�ammatory.(A,B)
Pro-in�ammatory cytokine levels were evaluated by gene expression using rtPCR
and protein evaluations using ELISA in allin vitro and in vivostudies. However, no
signi�cant increases in the majority of potent pro-in�ammatory mediators were
detected. (A–F) IL-6, IL-1b, and TNF levels were evaluated in bronchoalveolar
lavage �uid (BALF) by ELISA following either(A–C) a single exposure of 100 ppm;
(D–F)chronic exposures of 100 ppm Magnéli phases; or(A–F)airway exposure to
1 mg/ml of lipopolysaccharide (LPS). LPS induced a robust IL-6, IL-1b, and TNF
response; however, no exposures to the Magnéli phases signi�cantly induced
these proin�ammatory mediators. � p < 0.05.
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