The Use of Transgenic Tobacco as a Production and Delivery System for a Vaccine Against Hemorrhagic Enteritis Virus of Turkeys

Yuying Tian

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in Veterinary Medical Sciences

Stephen. M. Boyle, Chair Carole. L. Cramer F. William. Pierson

July, 2000 Blacksburg, Virginia

Keywords: Transgenic, Tobacco, Hemorrhagic Enteritis, Vaccine, Turkey

Copyright 2000, Yuying Tian

The Use of Transgenic Tobacco as a Production and Delivery System for a Vaccine Against Hemorrhagic Enteritis Virus of Turkeys

Yuying Tian

(ABSTRACT)

Hemorrhagic enteritis virus (HEV) causes an acute viral disease in turkeys characterized by bloody diarrhea and death. Current live HEV virus vaccines are immunosuppressive and predispose turkeys to secondary bacterial infections. Data indicates that the capsid proteins (fiber, penton base, hexon) of HEV are capable of stimulating protective antibodies against an HEV challenge.

Using tobacco as a model, we sought to determine if a plant could be used to synthesize the HEV fiber protein and produce sufficient antigen to stimulate protective antibodies. To introduce the fiber gene into plants, the coding region of the HEV fiber gene was fused to either a constitutive plant promoter (35S) or a wound inducible promoter (hmg2) on plasmids adapted for *Agrobacterium*-mediated transformation. Approximately sixty transgenic plants of each construct were generated and determined to contain the HEV fiber gene based on amplification of specific HEV DNA sequences by the polymerase chain reaction. Plants were screened by Northern dot blot to identify lines expressing high levels of fiber mRNA. Expression of fiber protein was observed in selected lines of transgenic tobacco by Western blot analysis using turkey anti – HEV serum. The accumulation of fiber protein in leaves of tobacco transformants was quantified by Sandwich ELISA. Fiber protein from these plants has undergoing large – scale purification and concentration for a turkey immunization trials to determine if plant expressed fiber antigen is capable of inducing protective antibodies against HEV in turkeys.

DEDICATION

This thesis is dedicated to my great parents and husband, Xuhai Zhang, Zhiqian Tian, and Yongqun He, with my deepest love and gratitude

ACKNOWLEDGMENTS

I would like to thank the following people for their assistance during my graduate program:

Dr. S. Boyle, Dr. C. Cramer, and Dr. F. Pierson for their enthusiastic guidance and encouragement, who gave me the space to create, develop, and achieve my goals. Their willingness to talk through problems and insight into the unknown helped me through many difficulties. They not only taught me strategies of solving research problems, but also how to be a good scientist.

Dr. J. Lee, Dr. T. Wilkins and Dr. C.Cramer for providing financial assistance for me as well as for research funding.

Dr. G. Schurig, Dr. E. Grabau, Dr. C. Denbow, Dr. R. Vemulapalli, and Dr. F. Medina-Bolivar for providing guidance in graduate program.

Students and technicians, Eugenia McMeans, Selester Bennett, Angie McCarthy, Leen Verbiest, Carla Hegeman, for providing me with great help and daily amusement.

Finally, to my parents and my husband for their priceless support. I am the luckiest person in this world for having their brilliant love. Although my parents live far away in China, I can still feel their inexhaustible love by their every single call, letter and card. And my husband is the one I can always rely on when I need him. Nothing is a problem for us. We know we are not alone. We are a team.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSiv
TABLE OF CONTENTSv
LIST OF ABBREVIATIONSviii
LIST OF TABLESx
LIST OF FIGURESx
CHAPTER I. INTRODUCTION
Strategies to make transgenic plants
Transgenic plants as oral vaccines5
Edible vaccines for humans6
Edible vaccines for livestock including poultry9
Hemorrhagic enteritis of turkeys10
CHAPTER II. MATERIALS AND METHODS
Hemorrhegic enteritis virus purification from turkey spleen
Analysis of purified HEV by SDS-PAGE and western blotting
Fiber protein purification from <i>E. coli</i> by nickle affinity chromatography14
Hyperimmune serum absorption by <i>E. coli</i> total protein
Analysis of purified fiber protein by western blot analysis
Polyclonal antibody production using <i>E. coli</i> -produced fiber protein
Western blot analysis for rabbit serum
Turkeys for protection test
Fiber protein immunization and challenge
Immuno-double-diffusion analysis of turkey spleen and serum
Western blot analysis for turkey serum
Construction of plant vectors for plant transformation
Generation of transgenic tobacco
Tobacco genomic DNA extraction and PCR
RNA extraction and hybridization
Screening of transgenic tobacco with high expression by dot blot analysis23
Protein extraction from selected transgenic tobacco
Hyperimmune serum absorption by nontransgenic tobacco total protein24
SDS/PAGE and Western blot analysis
Sandwich ELISA25
Fiber protein purification from tobacco leaves by immuno-affinity column26
Rubisco crystallization
CHAPTER III. RESULTS
Fiber protein purification from recombinant <i>E. coli</i>
by nickle affinity chromatography
Polyclonal antibody production

Virus purification	29
Protection trial	30
Generation of expression vectors and selection of transformed plants	31
Confirmation of fiber gene intergration in tobacco genome	31
Transcription of the fiber gene	32
Hyperimmune serum absorption	33
Expression of the fiber transgene in transgenic tobacco	33
Fiber protein purification from tobacco by immuno-affinity column	35
Rubisco crystallization	35
CHAPTER IV. DISCUSSION	37
REFERENCES	43
VITA	53

LIST OF ABBREVIATIONS

Ag	antigen
Ab	antibody
BCIP	5-bromo-4-choloro-3-indolyl phosphate disodium
CaMV	cauliflower mosaic virus
CETAB	hexodecyltrimethyl ammonium
cm	centimeter
CPMV	cowpea mosaic virus
CsCl	cesium cloride
CT	cholera toxin
CT-B	cholera toxin subunit B
DIG	digoxigenin
DNA	deoxyribonucleic acid
EDTA	ethylenediamintetra acetic acid
ELISA	enzyme-linked immunosorbant assay
g	gram
HbsAg	hepatitis B surface antigen
HCl	hydrochloric acid
HE	hemorrhagic enteritis
HEV	hemorrhagic enteritis virus
HEV-A	hemorrhagic enteritis virus avirulent strain
HIV	human immunodeficiency virus
IgA	immunoglobulin A
IgG	immunoglobulin G
IPTG	isopropyl-beta-thiogalactopyranoside
i-rNV	insect cell made virus-like particle of Norwalk virus
Kb	kilobase pair
kDa	kilodalton
LT	heat labile enterotoxin
LT-B	heat labile enterotoxin subunit B
M	molar
mM	millimolar
	milligram
mg	-
μg M~Cl	microgram
MgCl ₂	magnesium chloride
$MgSO_4$	magnisium sulfate
min	minute
ml	milliliter
μl	microliter
MOPS	3-N-morpholino proponesulfonic acid
m RNA	message ribonucleic acid
MS	murashige and skoog
NaCl	sodium chloride

NaOAc	sodium acetate
NBT	notri blue tetrazolium chloride
PBS	phosphate buffered saline
PCR	polymerase chain reaction
RNA	ribonucleic acid
SDS	sodium dodecylsulfate
SDS-PAGE	sodium dodecylsulfate polyacrylamide gel electrophoresis
SpaA	cell surface adhesion protein antigen A
TEV 5'UTR	tobacco etch virus leader sequence
T-DNA	transfer DNA
TGEV	transmissible gastroenteritis virus
TMV	tobacco mosaic virus
t-rNV	tobacco made virus-like particle of Norwalk virus
Tris	trizma base
UV	long wavelength ultraviolet light
V	volt

LIST OF TABLES

Table 1. Candidate vaccines for human diseases

Table 2. Candidate vaccines for animal diseases

LIST OF FIGURES

- Figure 1. Immunoblot analysis of fiber protein purified from recombinant E. coli.
- Figure 2. Immunoblot analysis of fiber protein purified from recombinant E. coli.
- Figure 3. Immunoblot analysis of rabbit anti-fiber serum.
- Figure 4. Immunoblot analysis using rabbit anti-fiber serum to detect fiber expression in transgenic plants.
- Figure 5. Immunoblot analysis of HEV purified from infected turkey spleens.
- Figure 6. Immunoblot analysis of anti fiber serum from turkeys immunized by *E. coli* produced fiber protein.
- Figure 7. Generation of transgenic plant using *Agrobacterium* mediated transformation
- Figure 8. Plasmids used for expression of the HEV fiber sequence in plants.
- Figure 9. Restriction endonuclease digestion to confirm insertion of 35S:fiber fragment (2.3 kb) in pBIB-HYG clones.
- Figure 10. Restriction endonuclease digestion to confirm insertion of HEV fiber fragment (1.4 kb) in pBIB-HYG.
- Figure 11. Detection of the HEV fiber gene by PCR amplification of plant genomic DNA.
- Figure 12. Dot blot analysis of transgenic tobacco total RNA.
- Figure 13. Northern blot analysis of fiber mRNA transcription in transgenic tobacco.
- Figure 14. Immunoblot analysis of fiber production in transgenic tobacco.
- Figure 15. Quantification of fiber protein from transgenic tobacco leaves by ELISA.
- Figure 16. The effect of serum absorption using nontransgenic tobacco total protein.
- Figure 17. Immunoblot analysis of plant produced fiber protein purified by immuno affinity column.
- Figure 18. Coomassie blue staining and immunoblot analysis of tobacco protein after the rubisco crystallization.