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by
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F. C. Lee, Chairman
Electrical Engineering

(ABSTRACT)

Analytical expressions describing the input current spectrum of the flyback Pulse-Width-
Modulated, Zero-Current-Switched Quasi-Resonant-Converter, and Zero-Voltage-Switched
Quasi-Resonant-Converter are derived in terms of normalized circuit parameters. These an-
alytical results are tested against experimental results. The same numerical example is pre-
sented for these three converters in which the input current spectrum is computed for various
line/load conditions and the results are mutually compared. Detailed experimental resuits are
presented for the same three converters as well as for the flyback Zero-Voltage-Switched
Multi-Resonant-Converter. The effects of any parasitic oscillations in the experimental circuit

are also considered.
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Chapter 1

INTRODUCTION

One important aspect of designing switching power converters is the design of the input filter
to sufficiently attenuate the pulsating current waveform in order to meet stringent electro-
magnetic interference requirements. To design an input filter properly, certain information
needs to be known, such as, how much attenuation is needed over its input current spectrum?
These types of questions were often addressed experimentally after a specific converter was
built; however, it would be better to have mathematical expressions so that the input current
spectrum could be considered in a more general way. In this thesis, analytical equations
describing the input current spectrum for the PWM converters, Zero-Current-Switched Quasi-
Resonant-Converters (ZCS-QRC), and the Zero-Voltage-Switched Quasi-Resonant-Converters
{ZVS-QRC) using a flyback converter as an example. These expressions will be derived in
terms of circuit parameters so that they can be used for different operating conditions. By
deriving the equations in terms of circuit parameters, the effects of different operating condi-
tions {for instance, line and load conditions) can be seen by examining the equations. All of

the analytical results will be tested for accuracy against experimental results.
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Also, since each of these power conversion techniques has a different input current waveform,
it is expected that each also has a different input current spectrum. For example, the PWM
converters have a mostly square-wave input current waveform, while the resonant converters
have a more sinusoidal input current waveform. In the frequency domain, the spectrum of the
square-wave current shape would be expected to have a higher number of significant har-
monics than the spectrum of the sinusoidal-type waveforms. This relationship between the

shape of the input current waveform with its spectrum will also be discussed.

The derived analytical expressions will be shown to be very accurate as long as the effects
of any circuit parasitics are neglected; however, also in this work, is a study of typical parasitic
effects on the input current spectrum. For this study of experimental results, four converters
will be studied- each from a different power conversion technique. The experimental circuits
tested include the three previously considered, and also the flyback Zero-Voltage-Switched
Multi-Resonant-Converter (ZVS-MRC). All experimental results will be shown for the same

operating condition so that comparisons among the conversion techniques can be made.

In Chapter 2, a complete analytical description of the input current spectrum of the flyback
PWM converter will be derived. The equations will be tested against results obtained from
an experimental circuit. Also, a theoretical example will be presented, and spectral plots for

different line/load conditions will be shown.

Chapter 3 contains an analytical derivation of the flyback ZCS-QRC. The derived equations
will be tested experimentally. A simplification in the description of the input current waveform
will be made, and the results will be used in other equations. The same theoretical example
as in Chapter 2 will be used to compute the spectrum for the ZCS-QRC case. The results will
be compared to the PWM case. Also, an analytical comparison of the normalized spectrum

of the ZCS-QRC and the PWM converter will be presented.
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Chapter 4 continues with the analytical derivation of the flyback ZVS-QRC. As before, the
analytical results will be tested experimentally. Again, the same theoretical example will be
used to compute the spectrum of the flyback ZVS-QRC so that it can be compared to both the

PWM and ZCS cases.

Chapter 5 is devoted to experimental results. In this chapter, experimental circuits for the
flyback PWM, the flyback ZCS-QRC, the flyback ZVS-QRC, and the flyback ZVS-MRC will be
built and their respective input current spectral plots shown. Differences between the exper-

imental results ant the projected results are explained in terms of parasitics in the circuits.
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Chapter 2

Pulse-Width-Modulated (PWM) Converter

2.1 Introduction

In this chapter, the input current spectrum for the flyback family of PWM converters will be
derived. The expression for the spectrum will be a function of only external parameters {such
as conversion ratio) and a design parameter of the input current ripple, ¢ [2]. The result will

be a function expressed in the following form: f = fiM, &, m), where m is the Fourier variable.

An experimental test circuit of the flyback PWM converter will be presented. The converter
will be run under certain operating conditions and the input current spectrum will.be recorded
using a spectrum analyzer. The recorded values will be compared against values obtained

from the derived equations.
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Also, to show the effect of line/load changes on the input current spectrum, a numerical ex-
ample will be presented. For this example, specifications will be given, and the spectrum for

several conditions will be calculated.
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2.2 Flyback PWM

Figure 2.1 shows a flyback PWM converter. The converter can be divided into the input and
the output. The input section consists of the voltage source, Vg, and the switch, S;, while the

output section consists of diode, Dy, capacitor, C;, and the load, R,.

Figure 2.2 shows an equivalent circuit of the flyback PWM converter. This circuit was con-
structed by reflecting the input (primary) side elements to the secondary side. Notice that L,
is the equivalent magnetizing inductance of the transformer of Fig. 2.1. This inductance, along

with the capacitor C;, create the output filter.

V; and J,, of Fig. 2.2 can be written in terms of the converter of Fig. 2.1. The basic transf-

ormations are:

v

9
V= & . (2.1
I,‘n = n”m 3 (22)

where n is defined as the turns ratio.

Pulse-Width-Modulated (PWM) Converter 6



Figure 2.1. Simplified flyback PWM converter
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Figure 2.2. Simplified buck/boost PWM converter
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2.3 Input Current Equations

The flyback circuit of Fig.2.2 has only two stages during normal operation: (1) when switch
St is on, and (2) when switch S, is off. During the interval when the switch is on (t,, = DT),

the input current can be written as:

L
Int) = h + Lt 0<t<Ty , (2.3)
on
where
Al
ho=lh=—5" . (2.4)

/
Ly = = | (2.5)

where Al is the ripple current associated with the inductor L,. During the other interval, when

the switch is off, the input current is zero.

Since the inductor current should be represented in terms of a dimensionless percent ripple,

¢, rather than a dimensioned current term [2,4,7], the input current can be written as:

h=hi+ai-—  o<t<t,
lin(t) = on . : (2.6)
0 ton<t<Ts
where ¢ can be defined as [2]:
Al J2
¢ = (2.7)

Pulse-Width-Modulated (PWM) Converter g



Incorporating the turns ratio of the transformer shown in Fig. 2.1-- i.e., using (2.1) and (2.2),

(2.6) can be used to write the input current equation for the flyback PWM converter as:

j 1 /X—/)(Hzl,(:tL O<t<t,,
Fin(t) = -+ on . (2.8)
0 top <t<Ts
where the following definitions still apply:
/
Iy = —5"- , (2.9)
Al /2
= mL ) (2.10)
/X
ton = DT | (2.11)

The only variable to be scaled by the turns ratio n is /, { represented by the 1/n term ). Notice
that reflecting the current to the primary side has no effect on £&. Theoretical waveforms of the

flyback PWM converter are shown in Fig. 2.3.
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2.4 General ‘Solution of the Fourier Coefficients

To find the Fourier coefficients of a function f(¢t), the following equations must be solved [9]:

T
ay, = ij ftycos xu,t dt  m =012, ... (2.12)
TS 0
2 T
by = —f ft)sinx,t dt m=012, .. (2.13)
Ts Jg

This allows the function f(t) to be rewritten as a collection of sine and cosine terms:

oo
ft) = Z 8y, COS Xt + b sin Xt (2.14)

m=0
where

Xm = 2mmf; . (2.15)

The magnitude of the m* Fourier coefficient can be written as:
2 2
Cm = ~/8m +bpy m=012, .. (2.16)

To find the input current spectrum, Eq. (2.12) through ({2.16) need to be solved with
f(t) = 1'ia(). Although this will yield correct expressions, it is not the easiest way to solve the

equations.

A better representation of f(t) can be found by shifting the time axis to the right until time

t =0 corresponds to the time when J/,,(f) = /. This shift is shown in Fig. 2.4. Since I, is the

Pulse-Width-Modulated (PWM) Converter 12



exact middle of the ramp current, the switch is on for a duration of ¢,,/2 on either side of the
new t = 0 point. Recall that when computing a Fourier series, a time shift is legal as long as

the integration still encompasses one period.

Using this shift allows some terms in the integration to be solved with the help of symmetry

properties of odd functions. Equation (2.8) can be rewritten as:

t ¢
jlx+pt ——%’— <t< ——‘-’21
, 1
Pin(t) = 57+ 9 ; b (2.17)
( 0 2L <t<T -2
2 s 2
where
2/
p= 2 (2.18)
ton
Now, using (2.17) as f(t), (2.12) and (2.13) can now be written as:
Lon
a, = 212 (4 tphcosx t dt 2.19)
me TS n ton x p m ' .
2 1 .
b, = —T_FI (I +pt)sinx,t dt . (2.20)
Integrating and simplifying:
2 I
am = e SNty . (2.21)
2 P11 t
b, = T,n—n—F[-)—(;sm Qm——%"—cosﬂm] . (2.22)

Pulse-Width-Modulated (PWM) Converter 13



where

t
O = Xp—2- = mnD = mn M"L (2.23)
Equation (2.16) then becomes:
/
Cm = 7Cm . (2.24)
where
2 2
¢yl = g > [(1 +§—2> sin®0,, + &2 cos®a,, —-—;— sin 29,.,,] :
m°n Om m
(2.25)

Equation (2.25) is completely a function of only three parameters: ¢’ = f(M, &, m), and since
it is independent of inductor current, it can be considered to be a normalized representation.
The worst-case spectrum for the flyback PWM converter can be found using (2.24) with

M = Muax, I = lo‘max and é = éc-

Pulse-Width-Modulated (PWM) Converter 14
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2.5 Experimental Results

The purpose of this section is to test the analytical results of the previous sections against
experimental results. In the previous sections, a complete analytical expression for the input

current spectrum of the PWM flyback converter was developed.

The PWM flyback converter of Fig. 2.5 was constructed and tested. The experimental circuit
waveforms are shown in Fig. 2.6. The current waveform was fed into the HP8568B spectrum
analyzer, and the peak levels of the first twenty harmonics were recorded. The experimental
data for the first twenty harmonics obtained from the spectrum analyzer are shown in Table

2.1,

For the analytical results, {2.24) to (2.25) were used with numbers obtained from the actual
experimental waveforms of Fig. 2.6. The analytic computations were performed to yield the

first twenty harmonics. The theoretical results are also shown in Table 2.1.

An overplot of the experimental data with the theoretical data is shown in Fig. 2.7. The two
sets of data correspond well throughout the entire spectrum shown; therefore, the equations
presented in the previous sections do provide an accurate description of the input current

spectrum for the PWM flyback converter.
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Table 2.1.

Experimental and theoretical PWM spectral data

m || Theoretical | Experimental
(dB) (dB) ll
1 6.6 67 |
2 9.1 -9.0
3 -3.1 -3.1
4 -14.6 -15.2
5 -1.7 -7.6
6 -17.4 -18.3
7 -10.7 -10.6
8 -19.1 -20.7
9 -13.1 -12.8
10 -20.1 -20.8
11 -15.0 -14.7
12 -20.9 -21.0
13 -16.7 -16.5
14 -21.5 -21.3
15 -18.3 -18.2
16 -21.9 -21.3
17 -19.7 -20.0
18 -22.3 -21.3
19 -21.1 -21.8
20 -22.6 214

Pulse-Width-Modulated (PWM) Converter
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2.6 A Theoretical Example

To examine the changes in the spectrum as a function of line and load conditions, a numerical

example will be presented. For this example, assume the following operating conditions:

e V,=21Vto32V

® Vinomina = 24V

e V,=5V

e |/,=1Atc5A

e f = 200kHz

¢ n = 3turns

e ¢ =01

Also, assume that the converter is operating in the continuous conduction mode at all times.

Six specific cases are of interest: low-line, light-load; low-line, full-load; nominal-line, light-
load; nominal-line, full-load; high-line, light-load; high-line, full-load. The spectral data of

these six cases were computed and graphed in Figs. 2.8 {a-f), respectively.

According to [2], for PWM converters, a value of 0.1 to 0.2 should be assigned to £. when de-
signing for the worst-case. Therefore, when designing PWM converters to meet given spec-
ifications, &é. should be used for the case of maximum inductor current, i.e., full-load. The

spectrum for the low-line, full-load case was computed for ¢ = ¢, = 0.1. As the line/load

Pulse-Width-Modulated (PWM) Converter 21



conditions change, so must the value of (. To account numerically for this change in &, &,
must be scaled by the new line/load conditions of duty cycle {actually M) and output current
(/) of each case. Doing this, the input current spectrum for the remaining cases can be cal-

culated.

Examining Figs. 2.8 (a-f), patterns in the envelope of the spectrum can be seen. Peaks and
valleys in the spectrum seem to move with a change in line/load conditions. In fact, examining
the figures closely reveals that the dependence is mostly on line conditions (M and D) and is
independent of load conditions (/). This corresponds to the derived equations which, although

a function of the load current, are more a function of the conversion ratio.
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Figure 2.8. Spectrum for different cases of the flyback PWM converter: (a) low-line and light-

load, (b} low-line and full-load, (c) nominal-line and light-load, (d) nominal-line and
full-load, (e) high-line and light-load, and (f) high-line and full-load
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2.7 Extensions to Other Converters

Equations (2.24) and (2.25) were derived to express the input current spectrum for flyback
converters in terms of external parameters and a design constraint, £. The generality of these

equations is worth discussion.

The input current waveform of flyback PWM converters consists of a pulsed current, and the
equations derived were for this pulsed current. A pulsed input current, however, is not unique
to flyback converters. The buck type converters also have a pulsed input current. This would
allow (2.24) and (2.25) to be used to describe the input current of buck converters as long as
the equations for the duty cycle D, the conversion ratio M, and the average inductor current

I, are all changed accordingly.
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2.8 Summary

In this chapter, the compiete analytical expressions of the input current spectrum for flyback
PWM converters were derived. These equations were presented with the inductor current
term factored out. By doing this, the effect of other parameter changes (as for M and &) can
be seen more clearly. Also, this normalized format will allow a comparison of the PWM con-

verters to resonant converters.

The analytical results were also tested against experimental results. A fiyback PWM converter
was built, and the input current spectrum was recorded from a spectrum analyzer. The ex-
perimental results were then compared to results obtained by using the derived expressions
for the input current spectrum. Since these two sets of results corresponded well, the derived

expressions can be used to predict the input current spectrum of the flyback PWM converter.

Also, an example was presented in which specifications for a converter were given. These
specifications were used to compute the spectrum at various line/load conditions. For that
example, it was evident that the spectrum was mostly dependent on load conditions and was

almost independent of line conditions.
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Chapter 3
Zero-Current-Switched Quasi-Resonant Converter

(ZCS-QRC)

3.1 Introduction to ZCS-QRC

By employing an LC resonant tank in the circuit, the main switch current can be shaped so
that during the on-time of the switch, the current has a quasi-sinusoidal form. This action
forces the current to be zero at turn-off. Because of this shape, for the same average current
the peak current will be higher in ZCS-QRC than for the PWM converter. Relating this to the
spectrum, it would be expected that the magnitudes of the lower harmonics are higher for ZCS
than for PWM; also, because of the quasi-sinusoidal shape of the waveform, the magnitudes

of the higher harmonics should fall off faster for ZCS than for PWM.

The ZCS technique is valid for all of the basic converters; however, only the flyback converter

will be studied. All the equations will be derived for an equivalent circuit converter and di-
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rectly applied to the isolated flyback converter by using simple transformations that arise from

reflecting the primary side elements of the flyback converter to the secondary side.
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3.2 Flyback ZCS-QRC

Figure 3.1 shows a schematic of a flyback ZCS-QRC. The resonant elements L, and C, shape

the switch current waveform during the on-time to ensure turn-off at zero current.

Diode D, needs to be included for half-wave mode operation. As the current through the
switch begins to resonate, D, is forward biased. When the current reaches zero, the switch
is opened. Without diode D,, the current could still flow in the opposite direction by way of the
inherent body diode (D,) of the switch. Diode D, stops this reverse flow of the resonant current

and clamps the input current at zero when switch S; is off.,
The output stage, Dg, Cr, R., is also shown in Fig. 3.1.

To find an equivalent circuit for Fig. 3.1, simply reflect the primary side elements to the sec-
ondary side. The resonant inductor (L,) is scaled down by the square of the turns ratio, n.
Also, the input voltage (V) and the input current (/';;) are scaled down and up, respectively,

by n.

The ideal switch and diodes transfer to the secondary without any change. So far all of the
components have been defined for use in the secondary side. The flyback converter has now

been reduced to the equivalent circuit shown in Fig. 3.2.

The converter of Fig. 3.2 is a direct result of Fig. 3.1 as explained above. L, and C, represent
the resonant elements that shape the switch current waveform. All of the diodes
(Do, Dy, Dy}, the output capacitor (Cy), the output resistance (R.), and the switch (S;) function

in the same way as they did for the circuit of Fig. 3.1.
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The output filter inductance, L, is the only element that was not described above. In the
flyback converter of Fig. 3.1, when the switch is off, the energy stored in the transformer is
delivered to the output. This current circulates through the secondary side inductance of the
transformer. This inductance, along with the output capacitance, combine to create an output
filter. The value of this secondary side inductance is usually large enough so that it can be

correctly modeled as a constant current source during normal operation.

The following basic transformations are made so that elements of Fig. 3.2 can be written in

terms of elements of the converter in Fig. 3.1:

L, = Lo | (3.1
r - 2 ’ . )
n
C, =C, , (3.2)
V
g
V,- - n y (33)
’,'n = n”"n . (3‘4)

Since the resonant capacitor C, of the flyback converter was originally placed on the second-
ary side, no scaling is needed to transform this element to its equivalent value. The other

elements, however, need to be scaled accordingly.

For the converter of Fig. 3.2, the key circuit parameters, namely, characteristic impedance,

resonant angular frequency, and conversion ratio are defined as:

Lr
Z=\/& (3.5)
w, = — (3.6)
o = —_—— .
VLrCr
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and

<|°<

: (3.7)

respectively.

Also, the normalized output impedance Q is defined as the ratio of the output impedance to

the characteristic impedance:

Q=== . (3.8)

Now that the relations between the Figs. 3.1 and 3.2 have been established mathematically,

the general description of the operation can be discussed.
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Figure 3.1. Circuit diagram of a flyback ZCS-QRC
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Figure 3.2. Circuit diagram of an equivalent flyback ZCS-QRC
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3.3 Stages of Operation

To describe the operation of the ZCS-QRC of Fig 3.2, one switching cycle can be divided into
four stages. As for the buck converter presented in [1], the state equation(s) of each stage

can be found and solved.

The output inductor L, in Fig. 3.2 can be modeled as a current source. From [1], the magnitude
of this current source is found to be:

Vi+ Vv,
Zy '

- M
o (3.9)

Iy

where M, Q, and Z, are defined as in the previous section.

Initially, assume that the current /, is being delivered to the load and that switch S, is open.

Now the four stages of operation can be described.
e STAGE 1. Inductor-Charging Stage [Ty, 7]

At time T,, switch S, closes, and the current through L;; I, rises linearly until time T, when
all of I, is through the inductor. The voltage drop across the resonant inductor is constant

at V; + V, during this stage.

The initial condition and the governing state equation for this stage are:

IL(©0) =0, (3.10)
dl;
L = VitV . (3.11)

Zero-Current-Switched Quasi-Resonant Converter (ZCS-QRC) 33



At time T;, all of the current is depleted from the load so that diode Dy is off. The duration

of this stage is found to be:

1
Ton = Ly (3.12)

The equivalent circuit of the the inductor-charging stage is shown in Fig. 3.3{a).

e STAGE 2. Resonant Stage [Ty, T.]

At time T, when diode D, turns off, the reactive elements L, and C, begin to resonate. This
resonate action causes /;, to be sinusoidal during this interval. For half-wave mode op-

eration, the switch is opened when current first reaches zero, attime T;

The initiai conditions and state equations for this stage are:

’L,(O) =1/ . (3.13)
Vc,(o) = -V, , (3.14)
and
d’L,
L, p =V,-——Vcr , (3.15)
ch,
C, p =ILr—Ix, (3.16)

respectively. Using the initial conditions, the solutions to (3.15) and (3.16) can be found

to be:

Vi+V, |
Lt =L+ Z sinwyt (3.17)
o]

r
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Ve () = V= (V+ Vo) cos wt . (3.18)

The time it takes from the the beginning of this stage until /,, = 0 can be found to be:

Ty = wio , (3.19)
where
-Z.1
_ L—1 o'X
a = sin (——_V;+Vo) . (3.20)

Since half-wave mode operation is assumed, the following constraint is imposed on «:
r<oa< —mn . (3.21)
An equivalent circuit of the resonant stage is shown in Fig 3.3(b).
e STAGE 3. Capacitor-Discharging Stage [7,, T3]

At time T,, when there is no current through switch Sy, it is opened. Since diode Dy is still
reverse biased, capacitor C, will discharge through the current source /, until the voltage
on the capacitor has decreased enough to let diode D, become forward biased, at time

T:. The resonant capacitor has an initial condition of:

Ve (0) = V= (Vi+ Vj)cosa (3.22)

The following state equation describes the capacitor discharge through the constant cur-

rent source /,;

c, = - . (3.23)

Zero-Current-Switched Quasi-Resonant Converter (ZCS-QRC) 35



The capacitor-discharging stage has a duration of Ty, which is found to be:

1 Vi+V,

Tos = B "z, (1—cosa) . (3.29)

An equivalent circuit of the capacitor-discharging stage is shown in Fig. 3.3(c).
® STAGE 4. Passive Stage [T, T.].

At time T3, the voltage across C, is low enough to forward bias diode D,. Since the voitage
across V¢, is now clamped at a constant of — V,, no current is being delivered to the

capacitor. Thus,

dve,

Cr dt

=0 . (3.25)

Therefore, all of the current is now being delivered to the output. This current will con-
tinue to freewheel through the output until switch S is turned on again, starting a new

switching cycle. The duration of the passive stage can be described as:

Tay = Ts—Tog — T4 — T3 (3.26)

where T; is the period of the switching cycle.

An equivalent circuit of the passive stage is shown in Fig. 3.3(d).
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Figure 3.3. Stages of equivalent flgback ZCS-QRC circuit: (a) inductor-charging stage, (b} reso-
nant stage, (c) capacitor-discharging stage, and (d) passive stage
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3.4 Input Current Equations

Section 3.3 described the four stages of operation associated with zero-current-switching. As
was mentioned above, descriptions of the operation of Fig. 3.2 can be extended to the flyback
ZCS-QRC of Fig. 3.1. Also included in the descriptions in the previous sections were the
equations of the resonant inductor current, /,, of each stage. Notice that for the converter of

Fig. 3.2, the following relation exists:
lin(®) = 1,0 . (3.27)
Now, the pieces of the input current can be assembled into one function.

During [To, T1], the resonant inductor was found to be charging linearly. Given (3.11), the input

current can represented by:
Iinf(t) =yt To<t<Ty , (3.28)
where y is the constant slope of the current during this interval.

Vit Y,
y = L— . (3.29)
r

The input current during the resonant stage [Ty, T.] was found to have the form of (3.17);

however, for the initial condition of /() = I, to be met, (3.17) needs to be rewritten as:
/in(t) = IX + u Sin (Do(t - T01) T1<t<T2 R (330)

where u is defined as:
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Y+,

7 (3.31)

For the remaining two stages of the switching cycle, the switch is open, and diode D, is
blocking any reverse current:

In(t) = 0 Tp<t<T, (3.32)

In() = 0 Ta<t<T, (3.33)

The total continuous representation of the input current for the ZCS-QRC circuit of Fig. 3.2 can

be written as:

yt To<t<T1
In®) = I+ usinogt—Ty) Ty<t<T, (3.34)
0 T,<t<T,

Theoretical waveforms representing these equations are shown in Fig. 3.4.

In order to find the expression of the input current of the flyback ZCS-QRC of Fig. 3.1, (3.34)
needs to rewritten in terms of its converter components (L,, C,, V;). To do this, the simple

transformations found in Section 3.2 (rewritten here as (3.35)-(3.37)) need to be used:

LO

=2 (3.35)
n

c =C, . (3.36)
v

Vi = —=- (3.37)

Notice that these transformations should first be used in the expressions that describe the key

circuit parameters, namely, the characteristic impedance, the resonant angular frequency,

Zero-Current-Switched Quasi-Resonant Converter (ZCS-QRC) 39



and the voltage conversion ratio. Using the above transformations, the key circuit parameters

become:
1 Lc
Z, = — /= (3.38
o n co )
n
W, = —/ (3.39)
° JLC,
and
v
M=n-2, (3.40)
Vg

respectively.

Although (3.34) is the correct form of the input current equation of the flyback converter, the
values of the variables change with the transformation. Also, note that the magnitude of the
input current of the flyback converter is scaled down by n, as shown in (3.4). Therefore, the

complete expression of the input current of the flyback ZCS-QRC of Fig. 3.1 is:

yt To<t<T,
Pi®) =—od hetusinolt—To)  Ty<t<T, (3.41)
0 To<t<T,
where the following definitions now apply:
v
M Vg (1+M)
ly = QN Z, , (3.42)
v
g (1+M)
—n—"——'_zo wo B (343)
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u 5 Z : (3.44)
To = B g (3.45)
Tia = 5 - (3.46)

Notice that « can still be defined as:
o« = sin"(—%) . (3.47)

All of the equations in this section are used in order to describe the input current of the flyback

ZCS-QRC in terms of its parameters: V,, L,, C., n.
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Figure 3.4. Theoretical waveforms of equivalent flyback ZCS-QRC
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3.5 General Solution of the Fourier Coefficients

To find the Fourier coefficients of the input current, apply the following equations [10]:

Ts

a, = —Tzs—f ft) cos xtdt  m=01,.2, .. (3.48)
2 [

b, = Tsf fitysinxtdt m=0,12,.. (3.49)

This allows the function f(f) to be rewritten as a collection of sine and cosine terms so that:

) = ) 8mcosxyt + bpsinxyt , (3.50)

m=20
where
Xy, = 2mnfs . (3.51)
The magnitude of the m* Fourier coefficient is written as:

Cm = am>+b,° m=012,.. (3.52)

Using f(t) = I'i(t) where /' ,x(t) is represented in (3.41) will yield the Fourier coefficients of the

input current for the flyback ZCS-QRC.

The integration is performed in Appendix A. The final results of the integrations assign the

following values to a, and by,;
I
am = 7 am ., (3.53)
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by = by, | (3.54)

where

w
mﬂ'a'm = % [ x—r: ( coSs XmT01 - 1) + on01 sin XmT01:|

+ [ sin x,,T4 — sin xp,To1]

Y , (3.55)
_ —N’_E { X—,: [ [ofe 1) meA coSs CDOT12 — COSs me01]

+ 8in X, T 4 sin onu}

and

Q 0 o
i [ X, Sin X Toy — woTgq COS x,,,Tm]
+ ( €0S X, Tgq — COS Xy T4)
(3.56)

w
—%— { x_,: [ sin x;,Tgq — sin x;, T4 cOs 0 Tq5]

+ €0S X, T4 sin on12}
Also note that the following definition was made in Appendix A:

dp= —2—1. (3.57)

Cm = 7Cm . (3.58)
where
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¢m =@+ (3.59)

These results represent the complete general form of the input current spectrum for the

flyback ZCS-QRC of Fig. 3.1.

Equations (3.58-3.59) represents the normalized spectrum independent of inductor (load) cur-

rent and can be used in an analytical comparison.
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3.6 Experimental Results

The purpose of this section is to test the analytical results of the previous sections against
experimental measurements. In the previous sections, a complete analytical expression for

the input current spectrum of the flyback ZCS-QRC was developed.

The flyback ZCS-QRC converter shown in Fig. 3.5 was constructed and tested. The exper-
imental waveforms are shown in Fig. 3.6. A current probe was placed so that the input current
waveform could be recorded on the oscilloscope. The coaxial cable was then disconnected
from the scope and placed on the signal input to the spectrum analyzer. The magnitudes of
the input current spectrum were recorded from the spectrum analyzer and are shown in Table

3.1.

The parameters {f,, f;, Tn, etc.) used in the equations of the theoretical computations were
determined from the experimental waveforms. Once these parameter values were deter-
mined, the magnitudes of the input current spectrum could be computed. Only the first twenty

harmonics are shown in Table 3.1.

An overplot of the experimental data with the theoretical data is shown in Fig. 3.7. The two
sets of data correspond well at the lower harmonics. It seems, however, that around harmonic
14, the two sets of data do not correspond to each other as well as they did for the lower

harmonics.

Examining the oscillograms of Fig. 3.6 closely shows that the input current has a oscillation

imposed on it during the off-time of the switch.
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It is known [15] that an attenuated sine wave disturbance in the time domain enters the fre-
quency domain as a bell-shaped function centered around the sine wave’s frequency; there-
fore, it would be expected that the experimental data be higher {in db) than the theoretical
data for the same harmonic number. Any discrepancy between the theoretical data and the

experimental data should be at harmonic number:

f(high frequency attenuated sine wave)  g5MHz 14 3.60
f (switching) "~ 680kHz ' (3.60)

Therefore, the significant difference between the experimental data and the theoretical data

should be symmetrical around harmonic number fourteen.

Figure 3.8 shows a plot of the theoretical data subtracted from the experimental data. As ex-
pected, the difference between the two data sets is only significant symmetric to harmonic

number 14.

Therefore, the analytical resuits achieved in Chapter 3 do represent an accurate description

of the input current spectrum of the flyback ZCS-QRC.
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Table 3.1.

Experimental and theoretical ZCS-QRC spectral data

Fl— Theoretical Experimental
(dB) (dB) |
1 8.2 8.4
2 6.8 7.0
3 4.3 4.8
4 0.4 1.1
5 -5.6 -4.7
6 -16.9 -17.0
7 -21.5 -16.8
8 -17.2 -13.6
9 -20.2 -16.0
10 | -31.7 -25.1
11 -26.2 -25.4
12 -234 -17.7
13 -26.6 -17.5
14 -46.5 -24.0
15 -29.4 -18.8
16 -26.1 -19.1
17 -28.1 -29.7
18 -37.0 -38.2
19 -335 -24.5
20 -28.7 -229
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3.7 A Theoretical Example

To examine the change in the spectrum as a function of line and load conditions, a numerical

example will be presented. For this example, assume the following operating conditions:
e V,=21Vto32V

®  Vinomina = 24V

e V,=5V

* /,=1At05A

®  fimax = 1MHZ

¢ n = 3turns

The values of the resonant tank elements were calculated using the procedure described in

[2]. The component values of the resonant tank are:
) f, = 2.4 MHz, and
] Z, =420

Also, assume that the converter operates in half-wave mode.

Zero-Current-Switched Quasi-Resonant Converter (ZCS-QRC) 53



Six specific cases are of interest: low-line light-load, low-line full-load, nominal-line light-load,
nominal-line full-load, high-iine light-load, high-line full-load. The spectral data of these 6

cases were computed and graphed in Figs. 3.9 {(a-f)

When examining Fig. 3.9, it is evident that the flyback ZCS-QRC spectrum exhibits a strong
relationship to line/load conditions. Although there is a dependency on the line conditions,
there is a much stronger sensitivity on the load conditions. This strong sensitivity is shown
in the analytical equations because the load current is directly proportional to the magnitude

of the spectral components.
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3.8 Comparisons to PWM

3.8.1 Comparison of Numerical Examples

The theoretical exampie presented in the previous section was for a well-designed ZCS-QRC
where Qmin / Mmex = 1. This is similar to theoretical examples presented for the PWM con-
verter in Section 1.6 where ¢ = ¢. = 0.1 for a well-designed PWM converter. Therefore the

two sets of results (plots) can be compared.

The spectrum of the PWM converter is very different than the spectrum of the ZCS-QRC for the
example presented. One difference is the dependency on line/load conditions. The spectrum
of the ZCS-QRC appears to be completely different for each condition shown, whereas the

spectrum of the PWM converter only changes significantly with a change in the load condition.

Another difference between the two sets of spectrums is the slope of the envelopes. For most
cases, the ZCS-QRC spectrum stays significant at low harmonics but rapidly declines at higher
harmonics; however, the PWM spectrum decreases rapidly at first and stays relatively con-

stant at higher harmonics.

When designing the input filter, remember that the PWM converter will usually have the gen-
eral shape as shown in Chapter 2, but the ZCS converter has a dependence on line and load
conditions. If this variation is small (smaller than the case shown) so that the variation of the

switching frequency is small, the spectrum will be much better in ZCS-QRC than in PWM.
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3.8.2 Comparison of Analytical Equations

To compare the analytical results of the ZCS-QRC to the PWM converter, a ratio can be used.
Define the variable r as the ratio of the input current spectrum of the flyback ZCS-QRC to the

input current spectrum of the flyback PWM converter. That is:

(€’ mzes

r= —(C'm)pwm . (3.61)

From [2], it is known that for a flyback ZCS-QRC the peak resonant input current is dependent
on line variation when the converter is operated in its buck region, but is independent of line
variation when operated in its boost region (M > 1). Therefore, for this comparison, conver-
sion ratios greater then one will be used. Also in this comparison, only the worst case will
be considered because this is what a converter is typically designed for. For both the PWMN
and ZCS converters, the worst case occurs at low line and full load (Mmax, Qmin). The ratio r
was computed for a given Mn,, and m by using (2.25) and (3.59) (note that for each M., a new
resonant tank had to be calculated using the algorithm shown in [2]). A 3-D plot showing r

as a function of Mn. and the harmonic number m is shown in Fig. 3.10.

There are several interesting points to make about Fig. 3.10. The first concerns the reason
why r is very large at the second harmonic for low values of Muax. This is not so much because
the second harmonic of the ZCS-QRC is large, but more because the second harmonic of the

PWM converter is small, thus the ratio ris large.

Anocther interesting point about Fig. 3.10 is that for the first harmonic (m = 1), r keeps in-
creasing as M. increases. This is because as M becomes large, so does the ratio of the

switching frequency to the resonant frequency [2]:

b Mmae (3.62)
fo  1+Mpax '
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As this ratio increases, the current will take nearly the whole switching cycle to complete one
resonant cycle. This forces the amplitude of the fundamental harmonic to become larger and
the ratio r to increase. In contrast, for PWM converters, as Mn., increases, so does the duty

cycle D because:

M
D = max

T (3.63)

Therefore, as D increases, the amplitude of the fundamental decreases because the input

current almost appears as a DC current.

Finally, it is interesting to note that besides the first two harmonics, the ratio r is always less
than one. In fact, for the most part, the ratio r is close to zero, demonstrating that the spec-
trum for the flyback PWM converters is much less than the spectrum for a flyback ZCS-QRC
for a given Mmx = 1. This is important to know when considering the input fiiter for a con-
verter because it is typically much easier to filter out the first few harmonics than to filter out
a broad range of harmonics. Aiso, even though r may be greater than one for the first two
harmonics, the spectrum of the flyback ZCS converter decreases faster than the spectrum of

the flyback PWM converter.
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3.8.2.1 Approximation for Operation in Boost Region

According to [2], when the flyback ZCS-QRC operates in the boost region ( Mmx =1 ), the
converter equations are independent of percent line-load variation. At the worst-case condi-
tion of Qmin/Mmex = 1, it would be advantageous to have an equation that could describe the
first few harmonics in simple analytical terms. By simplifying the complex expressions for the
input current spectrum of the ZCS-QRC, values could be obtained without the help of a com-

puter.

For ZCS-QRC converters, zero current switching is guaranteed as long as Qmin / Mmax = 1.
At the boundary condition when Qnin / Mmax = 1, the input current is about to lose zero current
switching. That is, the input current has a slope of zero and a value of zero at the end of the
on-time. For a smaller vaiue of Z,, Qmin / Mmax < 1, and the input current will not be able to ring
back down to zero. In a well-designed converter, this boundary condition marks the point of
low-line and full-load, which according to [4] is the place of maximum current stress; therefore,

it would be desirable to find the spectrum at the boundary condition.

At the point of Qmin/Mnax = 1, the peak input current is twice the inductor current of /.. Also,

as M. increases, so does the effective on-time ratio of the converter which is given by:

£ Mmax

s
—_— = = 3.64
fo Mmax + 1 (3.64)

One way to simplify the equations is to approximate the actual waveform. After several at-
tempts, a raised sine wave {a sine wave with a DC bias) was found to offer a sufficient ap-
proximation for the ZCS-QRC input current spectrum for low harmonics. Consider a raised

sine wave of the following form:

ity = Iy + I sinwyt —lh<t<ty , (3.65)
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where J, is defined as in the previous sections. A plot of f(t) is shown in Fig. 3.11.

The variable w, can be found from (3.64) as:

Mmax+ 1
wy, = 2nfy——— (3.66
o] s Mmax )
The variables ¢ and ¢ can be found by observing that they occur when — w,t;, = — #/2 and
w.ty = 3n/2, respectively. Therefore, ¢, and t; are defined as:
Mmasz
o= —77—7—— , (3.67)
0 4(Mmax + 1)
IM o T
ty = ——2X S (3.68)
4(Mmax+ 1)
Using {3.67) and (3.68), the Fourier coefficients can be found {Appendix B). They are:
4"x (Mmax+ 1)2 3
am = g > 3 5 (sin Xpto — sin xmto) , (3.69)
(Mmax + 1) — M "Mpay
4l (Mmax + 1)? 3
by = ox 7 3 2 (cos Xmlog — cOs xmto) . (3.70)
(Mmax + 1) — m"Mpax
where
Mmax + 1
m# —F—— 3.71
Mmax ( )
and
an =20, (3.72)
M
by = | ——— (3.73
m X Mmax + 1 )
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where

Mmax + 1
m= —/ " . 3.74
Mrax 3.74)

It is interesting to note that since M,...> 1 is of interest, and m is an integer greater than or
equal to one, the only time the equality of (3.72) and (3.73) is valid is when both m = 2 and

Mmax = 1

Squaring a, and b, , adding together and then taking the square root, will give the magnitude

of each coefficient. From Appendix B, the final result is:

2
2/, Mmax + 1) sin( maM ax ) m % Mpax +1
c e (Mrax + 1)2 - m2Mmax2 Mmax + 1 Mmax
m —
’ Mmax m = Mmax+ 1
o Mmax + 1 7 Mmax
(3.75)
which can be written as:
sin ————-————mﬂMmax
21 Mmax + 1 9 Mpmax + 1
mmn 2 m Mmax
1— (_m—1
em = Ly . (3.76)
) Max m = Mmax + 1
X Mmax + 1 Mpax
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The above relation gives an approximation for the spectrum of the input current for the flyback
ZCS-QRC. Because the sine wave approximation is only an approximation to the actual

waveform, (3.75) is only valid at the lower harmonics for Mp., = 1 and Qumin/Mmax=1.
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Figure 3.11. Raised sine wave approximation shown with the actual theoretical waveform
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3.8.2.2 Approximation of Ratio of ZCS-QRC Spectrum to PWM Spectrum

To find a meaningful approximation for the ratio r of the input current spectrum of the flyback
ZCS-QRC to the input current spectrum of the flyback PWM converter, several items need to
be considered. First, the only point of interest would be for the worst-case design point: for
PWM at ¢ = £, and for ZCS-QRC at Qumin/Mmax=1. At Qmin/Mmax1, the ZCS-QRC has the fol-

lowing approximation for the on-time ratio:

f; Mmax

S
—_ = — 3.77
fO Mmax + 1 l ( )
while for the PWM converter, the on-time ratio is:
Mmax
D= Moy +1 (3.78)

Therefore, by taking the ratio r at Qnmin/Mmax = 1, the amount of time the switch is on allowing

the current to flow is comparable.

Also, to avoid the problems associated with percent line-load variation of ZCS-QRC [2], only

the flyback converter operating in the boost region { Mma = 1) will be considered.

Using (2.24) for the input current spectrum of the PWM converter and (3.75) for an approxi-

mation of the input current spectrum for the ZCS-QRC, the ratio r can be written as:
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/ sin @,
\/Y_ m = Mmax+1
2 Mmax
r =< Ll v , (3.79)
Mpax + 1
m_1 m = —maxT '
2 ¥ Mmax
where
& 2 2 2 &
C B C .
y = |1+—F [sin0p + {cos0y, — —B:SIH 20, , (3.80)
m
and
Mmax
O0p = mn Moo+ 1 (3.81)

Also, & is a very small number (on the order of 0.1) [2]. Since ¢&. is relatively small and

Mmax = 1, the following approximation can be made:

y~ sin®0,, . (3.82)
for
Max + 1
m# —X (3.83)
Mmax

At the condition, when m = 2 and M..x = 1, 8, becomes = and y becomes £.2. Therefore, the

ratio r can now be written as:
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1 + Mmax + 1

Mmax

1
r= < T+ . (3.84)

_ Mrax+1

m 1 =
2 ‘fc Mmax

Table 3.2 shows both the theoretical ratio and the approximated ratio of the ZCS-QRC spec-
trum to the PWM spectrum for Mo.x=>1, 1 < m < 5. The percent errors shown in the table
are relatively low for the first two harmonics. For the harmonic numbers greater than 2, the
percent errors increase significantly. The percent errors are relatively large for higher har-
monics because of the two approximated waveforms. When y was approximated as sin®f,, the
effect of the input current ripple was basically neglected; i.e., the input current waveform for
the PWM converter was approximated as a square wave. Also adding to the percent errors
of the higher harmonics is the shape and duration of the approximated waveform. With this
approximation, the lower two harmonics contain most of the information about the height of
the waveform, but the higher harmonics make up the smaller details (such as the differences
caused by the linear charging stage and the actual time duration of the resonant current).
Although some of the percent errors are relatively large, the approximation can still be used
to issue a conservative guess of the actual spectral ratio. Also, the fact that the magnitudes
of the harmonics where m >3 are larger in the fiyback PWM converter than in the flyback

ZCS-QRC converter is preserved.

These equations do show certain insight into the ratio of the input current spectrum of the
flyback PWM converter to the input current spectrum of the flyback ZCS-QRC converter. For

instance, both the theoretical ratio as well as the approximated ratio show that the magnitude
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of the first harmonic of a well-designed ZCS-QRC spectrum operating at Qmin/Mmax = 1 is al-
ways larger than the magnitude of the first harmonic of a well-designed PWM spectrum op-
erating at low line and full load for M., = 1. Also, the approximated ratio shows the strong
dependence on M. This dependence causes the first harmonic to continualily increase for

an increase in Mmay.

A third item to consider is effect of the ripple current on the ratio at the point of m = 2 and
M.x = 1. At this condition, the PWM input current waveform has a duty cycle of 0.5. As &,
approaches 0, the current waveform of the PWM converter approaches an ideal square wave.
It is known [9] and shown later in Chapter 5 that the second harmonic (and subsequent even
number harmonics) is zero. Therefore, as (. decreases, the second harmonic of the PWM
converter decreases and the ratio increases. This dependence on &, can be seen clearly in

equation (3.84).
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Table 3.2. Theoretical, approximated, and percent error values of the ratio of the ZCS-QRC
spectrum to the PWM spectrum

rL — ]
m=1 _ m=2
Mmax || Approxi- | Theor- Error || Approxi- | Theor- Error
mation etical (%) mation etical (%)
(Amps) | (Amps) (Amps) | (Amps)
1.0 1.33 1.38 -3.6 18.7 171 -7.7
1.2 1.42 1.48 -3.9 5.26 5.49 -4.2
1.4 1.52 1.58 -4.0 2.77 3.02 -8.2
1.6 1.61 1.68 -4.2 1.94 2.14 -9.4
1.8 1.70 1.78 -4.3 1.53 1.70 -10.1
2.0 1.80 1.88 4.4 1.29 1.44 -10.5
22 1.90 1.98 4.5 1.12 1.26 -10.8
2.4 1.99 2.09 -4.5 1.01 1.13 -11.1
2.6 2.09 2.19 -4.6 0.921 1.04 -11.2
2.8 2.19 2.29 4.6 0.853 0.962 -11.3
3.0 2.29 2.40 -4.6 0.800 0.903 -11.4
m=23 || m=4
Mmax || Approxi- | Theor- Error || Approxi- | Theor- Error
mation stical %) mation etical (%)
(Amps) (Amp& (Amps) | (Amps)
1.0 0.800 0.903 -11.4. 0.333 0.638 -47.8
1.2 0.596 0.668 -10.7 0.266 0.451 -41.0
1.4 0.485 0.524 -7.5 0.225 0.362 -37.9
1.6 0.415 0.404 2.8 0.198 0.314 | -37.1
1.8 0.368 0.244 50.8 0.178 0.280 -36.4
2.0 0.333 0.638 -47.8 0.164 0.252 -35.0
2.2 0.307 0.630 -51.2 0.152 0.224 -31.9
24 0.287 0.520 -44.8 0.143 0.192 | -255
26 0.271 0.464 -41.7 0.136 0.159 -14.2
2.8 0.257 0.429 -40.0 0.130 0.211 -38.3
3.0 0.246 0.404 -39.1 0.125 0.652 -80.8
m=5
Mmax Approxi- Theor- Error
mation etical (%)
{(Amps) {(Amps)
1.0 0.191 0.302 -36.9
1.2 0.155 0.232 -32.9
14 0.133 0.155 -14.2
1.6 0.118 0.456 -74.1
1.8 0.107 0.318 -66.4
2.0 0.099 0.286 -65.4
22 0.092 0.272 -66.0
2.4 0.087 0.266 -67.2
2.6 0.083 0.266 -68.7
2.8 0.080 0.270 -70.5
3.0 0.077 0.281 -72.7
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3.9 Extension to Other Converters

Because of the way that the equations have been defined and derived, they can be extended

to other families of converters, such as the buck ZCS-QRC and the boost ZCS-QRC.

in [1], it is shown that the general shape of the input current for the buck ZCS-QRC and the
boost ZCS-QRC is similar to the flyback ZCS-QRC presented in this chapter. In fact, only

chang.es in the definitions of the variables of (3.53) to (3.58) need to be made.
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3.10 Summafy

In this chapter, the flyback ZCS-QRC was considered. For this converter, the input current
spectrum was derived in terms of external parameters. The final analytical equations of the
input current spectrum were displayed in a normalized fashion: that is, they were displayed

so that the inductor current term could be omitted.

The experimental results were shown to be accurate when eliminating parasitic effects such

as ringing on the secondary.

Also in this chapter, the same theoretical example used in the PWM chapter was used here.
Plots were shown for different line/load conditions. The plots were compared to the PWM

case, and similarities and differences were discussed.

Finally, a comparison of the analytical equations of PWM and ZCS was made. Several inter-
esting points concerning the ratio of the input current spectrum of ZCS to PWM for a given

Mnax greater than one were discussed.
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Chapter 4
Zero-Voltage-Switched Quasi-Resonant-Converter

(ZVS-QRC)

4.1 Introduction

In PWM operation, the voltage across the main power switch changes abruptly during turn-on.
This, coupled with the junction capacitance of a MOSFET, causes high switching losses in the
circuit. These turn-on losses could be avoided if the switch is turned on with zero volts across
it. To do this, a resonant tank is employed to help shape the voltage waveform during the

off-time so that a zero voltage condition occurs at the end of the off-time, i.e. at turn-on [1].

During turn-off, the input current is diverted away from the main switch to the resonant
capacitor. Since the input current is then proportional to the derivative of the resonant-

capacitor voltage, the current will also be quasi-sinusoidal during the off-time. This quasi-
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sinusoidal current waveform should have much lower magnitudes of the spectrum when

compared to the spectrum of the choppy input current of the PWM converter.

Although this zero-voltage-switching technique can be applied to any of the basic types of

converters, only the flyback converter will be studied in detail.

The equations desired are for the flyback converter. By reflecting the primary side elements
of the flyback converter to the secondary side, an equivalent converter can be constructed.

The final equations presented here will be for a flyback ZVS-QRC.
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4.2 Flyback ZVS-QRC

Figure 4.1 shows a schematic of a flyback ZVS-QRC. The reactive elements L, and C, make

up the resonant tank that ultimately shapes the switch voitage waveform.

The anti-parallel diode, D, of switch Sy is shown because it plays an important role in the
shaping of the voltage waveform of the resonant capacitor (and switch). As the voltage across
capacitor C, resonates, it will eventually forward bias the anti-parallel diode and clamp the
voltage across the switch at zero (ideally). This is known as half-wave mode operation. The

switch then should be turned on at zero voltage.
Also shown in Fig. 4.1 is the output stage for the flyback converter, Dy, C;, and R,.

To find an equivalent circuit of Fig. 4.1, reflect the primary side elements to the secondary
side. The resonant inductor (L,) and the resonant capacitor (C,) are scaled down and up, re-
spectively, by the square of the turns ratio n. Also, the input voltage (V,) is scaled down by

the turns ratio, while the input current (/';,) is scaled up by the turns ratio.

The ideal switch S; and diode D, transfer to the secondary without any change. Now all of the
components have been defined for use in the secondary side. The flyback converter has now

been reduced to the equivalent circuit shown in Fig. 4.2.

In Fig. 4.2, L, and C, make up the resonant tank. Diodes D, and Dy, switch Sy, capacitor C,, and

resistor R, contribute in the same way as they did for the flyback converter of Fig. 4.1.

Element L;, usually a relatively large inductance, serves as part of the output filter. This

inductance can be represented in a flyback converter as the secondary side inductance of the
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transformer. Since the inductance is relatively high, L; acts as a current source during normal

operation.

The elements L., C,, V,, and /;, of Fig. 4.2 can be written in terms of the notation used for the

flyback converter of Fig. 4.1. The basic transformations are:

L

L= —5 (4.1
n
2

C,=n"C, , 4.2)
1"
g

V, = - (4.3)

and
,[n = n,’m . (44)

where n is defined as the turns ratio.

For the circuit of Fig. 4.2, the key circuit parameters, namely characteristic impedance, reso-

nant angular frequency, and conversion ratio are known to be:

L
N (4.5)
w, = 1 (4.6)
0 Lc, :
VO
M= = 4.7)

respectively.
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Also, define Q as the normalized load resistance; i.e., the ratio of the output load resistance

to the characteristic impedance:

Q=5 . (4.8)

Now that the global variables have been formally defined, following is a description of the

operation.
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Figure 4.1. Circuit diagram of a flyback ZVS-QRC
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Figure 4.2. Circuit diagram of an equivalent flyback ZVS-QRC
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4.3 Stages of Operation

Similar to the boost converter presented in [1], the flyback converter can also be divided into
four stages during each switching cycle. The stages are used to describe the circuit during
intervals of the switching period. For the different stages, the state equation(s) can be found

and solved.

For the converter shown in Fig. 4.2, the inductor L, is considered to be large so that it acts as

a constant current source of magnitude /.. From [1], / is found to be:
. (4.9)

where M, Q, Z, are defined in Section 4.3.

Initially, assume that all of the current, /,, circulates through S, L,, and V;. Diode D, is initially
off so that no current is being delivered to the load. The operation of the circuit can be de-

scribed by the following four stages:
e STAGE 1. Capacitor-Charging Stage [T;, T4]

At time Ty, switch Sy opens, and the current begins to charge capacitor C,. The capacitor

continues to charge until the voltage acress it, V¢,, reaches V, + V..

The initial condition and the governing state equation for this stage are:

Ve(© =0 , (4.10)
dve,
Cr—pm =k - (4.11)
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At time Ty, diode D, is no longer reverse biased, and it begins to conduct. Time T, signi-

fies the end of this stage. The duration of this stage is found to be:

Tyt = C,——~ (4.12)

The equivalent circuit of the capacitor-charging stage is shown in Fig. 4.3(a).
e STAGE2.ResonantStage [Ty, T2 ]:

At time T, diode D, conducts and begins to build up current from /. . As the current
through D, increases, the current through L, decreases (so that I, remains constant) . The
reactive elements L, and C, now begin to resonate, and a quasi-sinusoidal voltage forms
across C, . In half-wave mode operation, after V., reaches zero (at time T,), switch S,

turns on.

The initial conditions and state equations for this stage are:

1LO) =1, (4.13)
Ve 0) = Vo +V; (4.14)
and
di
L,Tt’- =Vi+Vo+ Ve (4.15)
dve,
Cr—rm =1, (4.16)

respectively. The following time-dependent solutions are found:

IL(t) = Ixcos wet (4.17)
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Ve () = Vit Vo+ Zolgsin gt (4.18)

Time T, is the time when V¢, =0 . With this condition, it can be seen that the duration of

the resonant stage, Ty, is

n2=-g§, (4.19)
where,
-V. -V
it i )
« = sin (—Zo’x ) . (4.20)

It is also important to note that since the circuit operates in the half~wave mode, « is de-

fined as:

r<a< & (4.21)

An equivalent circuit of the resonant stage is shown in Figure 4.3(b).

e STAGE 3. Inductor-Charging Stage [ 7., T3 ] :

At time T, switch Sy turns on, and the current through L., /., rises linearly until J, = /.
At time T, when /I, =I,, diode D, is naturaily commutated. The initial condition and state

equation for this stage are:

1, (0) = I cos(a) , (4.22)
dly,
L, el Vi+V, , (4.23)

respectively. The inductor charging stage has a duration of T3, which is defined as:
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1 Zoly

Tps = Be V4V, (1—cosa) . (4.24)

The inductor-charging stage can be represented by the circuit shown in Fig. 4.3(c).
¢ STAGE 4. Passive Stage [T, T4l:

At time T3, diode D, is cut off, and no current is delivered to the load. The current, /, is
flowing through only V,, Sy, and L,. Since this current is not time varying during this stage,

there is not a voltage drop across the inductor L,:

dl,

Ly dt

=0 . (4.25)

This stage will continue until the end of the switching cycle. Therefore, the duration of the

passive stage can be described as:

Tag = Ts—=Toy —T1a—Toz (4.26)

where T is the period of the switching cycle.

An equivalent circuit of the passive stage is drawn in Fig. 4.3(d).
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Figure 4.3. Stages of equivalent flyback ZVS-QRC: (a) capacitor-charging stage, (b) resonant
stage, (c) inductor-charging stage, and (d) passive stage
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4.4 Input Current Equations

The parts of the description for the input current waveform can now be assembled into one

continuous function.

For the capacitor-charging stage [T, T1], the input current was found to be constant:

In®) = b, To<t<T, . (4.27)

During the resonant stage [Ty, T,], the input current was found to have the form of (4.17). But
for the initial conditions of /. (0) = I, to be met, {(4.17) must be rewritten as:
i) = Iy cos wy(t = Toy) Ty<t<T, . (4.28)

During the inductor-charging stage, the input current was found to have a constant siope. Let

y represent this constant slope:

y = M, din T,<t<T (4.29)
dt dt 2 3
_ v+, (4.30)
y ""—""'Lr . .

This is the slope of the input current only during the inductor charging stage. The endpoints

of the input current for this interval are:

lin(Tg) = Iycosa | (4.31)
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lin(Ta) = Iy (4.32)

where,

Ty =T+ Ty (4.33)
T3 = T01 + T12 + T23 . (434)

Also, a can be written as:
o« = sin_1(— %) . (4.35)

Using the endpoints and the slope, the equation of the input current for the inductor-charging

stage can written as:

Iin®) = v+y(t—Toy —Tq0) T<t<Ty , (4.36)

where v is the constant:

v=],cos(x) . (4.37)

At time T; (when the input current reaches /), the input current stays constant until the end
of the switching cycle; therefore, the input current of the passive stage can be described

simply as:

In®) = I, Ta<t<T, . (4.38)

The total continuous representation of the input current for the converter of Fig. 4.2 can be

written as:
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Iy To<t<T,
Iycos wy(t—Tyy)  Ty<t<T,

Lo(t) = . (4.39)
VA Y(E—To —Typ)  To<t<Ty

Iy Ta<t<Tg

Theoretical waveforms of the circuit of Fig. 4.2 are shown in Fig. 4.4.

The general description of the input current of the circuit shown in Fig. 4.1 is similar to that
of the equivalent circuit of Fig. 4.2. In order to express the input current equation of the
equivalent converter in terms of the elements of the original converter (L,, C., V;), the simple

transformations found in Section 4.2 (rewritten here in (4.40) - (4.42)) need to be used in (4.39).

LO
Ly=— , (4.40)
n
C, = C,n? | (4.41)
r o)
vV, = -\ig— 4.42
I— n - (4.42)

The first items to mention that change from the transformations are the basic characteristics:
the characteristic impedance, the angular resonant frequency, and the conversion ratio. The

new representations of these characteristics are:

1 Lo
Z,= — [= 4.43
°o= 2 c, (4.43)
w, = — , (4.44)
VLoCo

and
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Vo
M = nvo o (4.45)
respectively.

Although {4.39) is also the correct form to describe the input current of the flyback converter,
the variables change with the transformations. It is also important to note that the input cur-
rent of the flyback converter is scaled down by n from (4.39). Therefore, the complete ex-

pression for the input current of the flyback ZVS-QRC is:

I To<t<T,

r g Ikcos wo(t = Toy)  Ty<t<T, was)
T Nyt =Ty = Typ)  Tp<t<T, '

Iy Ta<t<T,
where the following definitions now apply:
V
M Yg (1+M)
IX = '6—’7—2—0 3 (4.47)
v = I cos(a) , (4.48)
Vv
g9 1+M)
y = —n—T CDO N (449)
1 Q
Tt = o, W7 (4.50)
Tie = oo (4.51)
Tys = “«j'o'%“ —cosa) . (4.52)
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The following definitions have not changed:
x = sin“’(—TQw—) , (4.53)
Tag = Ts—=Tor—T12—Toz . (4.54)

These equations (along with Z,, w,, M ) are now all a function of the flyback converter pa-

rameters: V,, L,, Co, n; thus (4.46) fully describes the input current of the flyback ZVS-QRC.
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Figure 4.4. Theoretical waveforms of equivalent flyback ZVS-QRC
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4.5 General Solution of the Fourier Coefficients

Equation (4.46) represents the input current for the flyback converter. One way to find the

Fourier coefficients is to apply the following equations [3]:

a, = —% f fit) cos(xf)dt m=0,1,2, . (4.55)

b= 725— Jf(t) sin(xpfidt m=0,1,2, .. (4.56)

so that the function f{t) can be written as a collection of sine and cosine terms of the form:
o0
)= Y. (anCOSxpt + bysinxpt) . (4.57)
m=0
where
Xm = 2mnfy . (4.58)

The magnitude of the m* Fourier coefficient can be written as:
/.2 2
Cp=A/8m +bny m=0,1,2, .. (4.59)

Using f(t) = I"n(t) where I',,(f) is represented in (4.46) will yield the proper analytical result.
The integration and simplification processes, however, are very tedious and enduring. Shift-

ing the axes will help to simplify matters somewhat.

Shifting the vertical axis will only cause a change in the DC term {m = 0) of the Fourier series.

Since only the AC terms (m=>1) are of interest, a vertical shift can be used to simplify the in-
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tegrations. A logical vertical shift would be to shift the axis so that I is now at the zero level.

This effect is shown in Fig. 4.5(a).

A time shift will also help to simplify the integration by shifting the time axis to the right so that
time T, now represents t=0. We can take advantage of the time zero when it comes to
evaluating the integrals. In calculating the Fourier coefficients, a time shift is legal as long
as the integration still encompasses one period. The effect of the time shift on the input cur-

rent waveform is shown in Fig. 4.5(b).

The final form of the expression for the input current of the flyback ZVS-QRC, including both

the time shift and the amplitude shift, is shown in (4.60):

0 Tor<t<0
" 1 — I+ 1, cos w,t 0<t<Tyy (4,60)
it =7"* ) )

" I(cos a—1)+y(t—Typ) Tip<t<Tip+ Ty

Note that shifting the horizontal (time) axis essentially causes time zerc and time T, to switch,

so that:

T01<0 (4.61)

1.Q

The integration is performed in Appendix C. The final solution of the Fourier coefficients is

shown below. The cosine terms have values of:

am="pam . (4.63)
where

Zero-Voltage-Switched Quasi-Resonant-Converter (ZVS-QRC) g1



, .
mray’ = —sinx, Ty,

1 @Dy . .
t5- [ X, Sin woT19 €08 Xy T1o — COS w, T4 SIN Xme]
m

+ (cos a — 1)(sin X, T4 — sin X, T4p)

Q . Q wg
+ 3\7“’07‘23 Sin X, T4+ M Xy (cos X, T4 — COS X1 T12)

The sine terms have values of:

where

maby,' = (€08 XpT1n — 1)

w
+—-1—-(cos @oT1p €OS X T1p + —2 sin woTqn 8IN Xy Tp — 1)

dm Xm
- I%— woT03 €OS X T4
— (cos a — 1) cos X, T4 — €OS Xy T45)
Q29 ($in xpT o — sin Xy T
+ﬁ‘m(5'”"m 4 — SiN X, T40)

Also, the following equations apply:

Ta=Tia+ Ty .

Therefore, the magnitude of the Fourier coefficients is:

[ 2 2
Cm=A/8n t+bpy

(4.64)

(4.85)

(4.66)

(4.67)

(4.68)

(4.69)

These results are the complete general form for the Fourier coefficients of the input current

for the flyback ZVS-QRC shown in Fig. 4.1.
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4.6 Experimental Results

The purpose of this section is to test the analytical results of the previous sections against
experimental results. In the previous sections, a complete analytical expression for the input

current spectrum of the flyback ZVS-QRC is presented.

The flyback ZVS-QRC converter shown in Fig. 4.6 was constructed and tested. The exper-
imental waveforms are shown in Fig. 4.7. A current probe was placed so that the input current
waveforrﬁ could be displayed on the oscilloscope. This waveform signal was then put into the
spectrum analyzer. The magnitudes of the input current spectrum were then recorded from

the spectrum analyzer and are shown in Table 4.1.

The parameters (f,, 5, To1, €tc.) used to calculate the theoretical spectrum were obtained di-
rectly from oscillograms. These values were then used to calculate the input current spec-

trum. Only the first twenty harmonics are shown in Table 4.1.

An overplot of the two sets of data is shown in Fig. 4.8. Notice that the two sets correspond
to each other well at lower harmonics, but because of parasitic oscillation, they differ at higher

harmonics.

Examining the oscillogram shown in Fig. 4.7 closely shows that the input current has an os-

cillation imposed on it. The frequency of this oscillation is approximately 11.5 MHz.

Transforming the high-frequency sine wave in the time domain to the frequency domain yields
a bell-shaped function centered about the frequency of the sine train; therefore, it would be
expected that any difference between the experimental data and the theoretical data would

be centered about harmonic number:
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f(high frequency sine wave) 11.5 MHz
f (switching) ~ 1.06 MHz

=1 . (4.70)

The effect of this high frequency sine wave should be seen around harmonic number 11 in any

of the experimental data. Chapter 5 offers a more detailed explanation.

A plot of the theoretical data subtracted from the experimental data is shown in Fig. 4.9. itis
evident that the only significant difference between the experimental data and the theoretical

data does occur around the predicted harmonic number, number 11.

Also, there is a slight discrepancy at harmonics around harmonic 19. At these frequencies,
the magnitude of that harmonic is already 60dB below {or 1000 times lower) the fundamental,
so that the spectrum analyzer is measuring the effects of parasitics that are hard to see in the

oscillogram.

Although not shown in this chapter (but shown in Chapter 5) the parasitic oscillations do show
at harmonics of the ringing frequency (most visible at the second harmonic of the ringing fre-

quency). This also can contribute to the discrepancy around harmonic 19.

Therefore, the analytical results derived here in Chapter 4 do provide an accurate description

of the input current spectrum for the flyback ZVS-QRC.
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Table 4.1.

Experimental and theoretical ZVS-QRC spectral data

m Theoretical Experimental
(dB) (dB)
[ 1] 9.6 9.7
2 4.6 5.4
3 -3.1 -1.9
4 -5.0 -4.9
5 -8.9 -7.8
6 -15.1 -15.9
7 -16.7 -16.0
8 -26.1 -21.8
9 -34.5 -26.3
10 -374 212
11 -29.7 -15.1
12 -35.6 -20.8
13 -34.7 -31.1
14 -339 -33.0
15 -44.7 -46.4
16 -45.4 -37.3
17 -40.3 -40.4
18 -37.8 -45.1
19 -55.6 -43.7
20 -41.5 -41.8
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Figure 4.6. Schematic of the experimental flyback ZVS-QRC circuit

Zero-Voitage-Switched Quasi-Resonant-Converter (ZVS-QRC)

97



2B88ns/div

Top trace: Vg
Middle trace: lfn
Bottom trace:Vpg

Figure 4.7. Waveforms of the experimental flyback ZVS-QRC waveforms
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4.7 A Theoretical Example

To examine the change in the spectrum as a function of line and load conditions, a numerical

example will be presented. For this example, assume the following operating conditions:
e V,=21Vto32vVv

® Vinoming = 24V

e V,=5V

e |,=1Ato5A

®  fim = 1MHz

® n = 3turns

The values of the resonant tank elements were calculated using the procedure described in

[2]. The component values of the resonant tank are:

L f, = 1.47 MHz

e Z,=107Q

Also, assume that the converter operates in half-wave mode.

Six specific cases are of interest; low-line light-load, low-line full-load, nominal-line light-load,
nominal-line full-load, high-line light-load, high-line full-load. The spectral data of these six

cases were computed and graphed in Figs. 4.10 (a-f).
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4.8 Compariéons

481 ZVS-QRC to PWM

Comparing the spectrum of the example for the ZVS-QRC to the spectrum of the same ex-
ample for the PWM converter, several points need to be made. First, both sets of plots seem
to be sensitive to load conditions. That is, for a given input voltage, a change in load will
adversely effect the input current spectrum. One reason for this is that both sets of analytical

equations are directly proportional to the inductor (hence, load) current.

Also, although the fundamental (m = 1) is greater in value in the ZVS-QRC case for all con-
ditions, the magnitudes of the spectrum at higher harmonics decrease faster than for PWM.
As an example of this steep slope, consider the full-load cases of both converters. For the
ZVS-QRC, the spectrum has dropped off by at least 50 db by harmonic 11; while for the PWM
converter, only a maximum of a 40 db drop is seen in the entire spectrum shown of twenty
harmonics. This will help when building an input filter, because although the fundamental is
stronger, it can be attenuated the proper amount, whereas the higher harmonics (higher fre-
quencies) are not as easy to attenuate. In other words, it is much easier to build an input filter
to attenuate the first few harmonics than to build a filter to attenuate a wide range of har-

monics.
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4.8.2 2ZVS-QRC to ZCS-QRC

When the spectrum of the ZVS-QRC is compared to the spectrum of the ZCS-QRC, several
points can be made. The first concerns how spread-out the spectrum of the ZCS-QRC is
compared to the spectrum of the ZVS-QRC. It appears that for the ZVS-QRC spectrum, the
attenuation of the envelope is relatively constant at all the line/load conditions; conversely, the
attenuation of the envelope of the ZCS-QRC spectrum lowers as conditions change. In gen-
eral, the slope of the ZCS-QRC spectrum envelope will widen as the operating frequency is
decreased. The ZVS-QRC spectrum drops off 40 db in the first few harmonics for every con-
dition shown, while the ZCS-QRC spectrum may not even drop off 40 db for the entire twenty

harmonics shown.

Not only is the attenuation of the envelope important, but also the computed values. For most
cases of the ZCS-QRC spectrum, the entire spectrum contains many harmonics of significant
fevels, but for all the cases of the ZVS-QRC, the significant values of the s'pectrum are all at

very low harmonics.

The ZVS-QRC spectrum wouid be more desirable than the ZCS-QRC spectrum because in all
cases only the lower harmonics would need significant attenuation, while in the ZCS-QRC,

more harmonics would need attenuation.
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4.9 Extension to Other Converters

Because of the way that the equations of the previous sections have been defined and derived,
they can be extended to other families of converters such as the buck ZVS-QRC and the boost

ZVS-QRC.

In [1] it is shown that the general shape of the input current for the buck ZVS-QRC and the
boost ZVS-QRC are similar to the flyback ZVS-QRC presented in this chapter. in fact, only

changes in the definitions of the variables of (4.63) to (4.66) are needed.
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410 Summary

In this chapter, the flyback ZVS-QRC was considered. For this converter, the input current
spectrum was derived in terms of circuit parameters. The final analytical equations were
displayed so that the inductor current term can be considered a specific term, in contrast to

the rest of the equation which can be considered a normalized term.

An experimental test circuit was constructed. The input current spectrum was determined by
a spectrum analyzer. These experimental results were compared against results from the
derived equations. The experimental results were shown to be accurate when the effect of the
secondary side ringing was taken into account. The FFT results compared very well against

the results acquired from the analytical equations.

Also, the same theoretical example used in the last two chapters was used in this chapter.
Six plots for the same set of line/load conditions were shown, and a comparison to PWM and
ZCS-QRC was made. It was determined that the spectral characteristics for the flyback
ZVS-QRC were more sensitive to changes in load conditions {although there are some

changes with a change in the line condition).
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Chapter 5

Experimental Results and Comparisons

5.1 Measurement Procedure

To preform all of the experiments in this chapter, a printed circuit board with the ability to
operate using either PWM, ZCS-QRC, ZVS-QRC, or ZVS-MRC was used. Figure 5.1 shows the
schematic for the board. Not all of the parts were used for each experiment; for instance, the
resonant components were absent during the PWM experiment. On the schematic, all of the
components with open circles on either side represent components that are socketed into the
board. Therefore, either the component could be used or it could be omitted. Each section

in this chapter describes more on the specific circuit components used.

For all of the experiments, the unsocketed components were kept the same. These compo-

nents are: C;,, Ty, D,, R, and the output filter.
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Each of the converters was designed to operate between an input line voltage of 15 V to 25 V
and an output load current between 3 A and 5 A at an output voltage of 5 V. All of the
waveforms in this chapter are with respect to a hominal operating condition of a 20 V input

voltage and a 5 A output current.

All of the converters were run closed loop using the Signetics NE5580 control chip. The
NE5580 has the ability to run either using a constant on-time control or a constant off-time
control, depending on how the chip is set up. Figure 5.2 shows the schematic of the control

circuitry.

The spectral measurements were made using the HP8568B spectrum analyzer. The current
!I':» was sensed using a Pearson Model 411 current transformer terminated into the spectrum
analyzer. The current transformer, when terminated into 50 2, has a sensitivity of 2A/100mV.

This will need to be considered when converting the measured values from dBm to dB.

The spectrum analyzer provides reading in dBm. That is, all readings are referred to the
power through the 50Q input impedance referenced to 1mW. Therefore, if Vrys is the RMS
voltage across the input to the spectrum analyzer and dBm is the reading in dBm, then the

following relationship holds:

V2eus
dBm = 10log (m ) (5.1)
which reduces to:
oBm = 20log | —BMS_ (5.2)
= <109 | 02236 ) - ‘

Likewise, a reading in dBm can be converted to a reading in RMS voltage by:

Vams = 0.2236 « 1075M/20 (5.3)
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But this assumes that a voltage is of interest. Since the current is of interest in this particular
case, the sensitivity factor of the Pearson current probe needs to be accounted for. Also, the
relationship between RMS values and peak values needs to be considered. Since the spec-
trum of a waveform is the amplitudes of different frequency sine waves, the relationship be-
tween RMS values and peak values is simply: RMSV@— = peak. Because peak values are
easier to draw relationships to, all of the measurements will be referenced to the following
standard: 1A...« — 0dB. Therefore, considering the sensitivity factor and the RMS to peak

relationship:

2A
Ipeak = N2 577 VRms - (5.4)
Substituting (5.3) into (5.4):
Bm/20
Ipeak = 6.324 1078720 (5.5)

Taking the logarithm and multiplying by 20 will given a reference of 1 A - 0dB.

lgg = 20l0g 6.32 + dBm |, (5.6)

Therefore, to convert the measurements made by the spectrum analyzer from dBm to dB, a
factor of 16.0 needs to be added to all dBm measurements. All of spectral plots in this chapter
were scaled by this factor so that 1A — 0dB. With this standard, values of -20 dB, -40 dB,

and -60 dB translate into current amplitudes of 0.1 A, 0.01 A, and 0.001 A, respectively.

The plots were recorded in two parts: from 100 kHz to 30 MHz and from 30 MHz to 60 MHz.
Each plot was saved on a diskette and converted from the HPGL format to the TIFF format
using the program Hidaak. The two pictures then could be imported into FreeLance and

combined to form one picture.
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In order for the spectrum analyzer to achieve an accurate reading, the resolution bandwidth
(Res BW) must be set less than or equal to the frequency span of one screen (30 MHz) divided
by the actual number of data points recorded by the spectrum analyzer (1000 points). To
satisfy this condition, the resolution bandwidth was selected to be 30 kHz. Also, for accurate
plots, the video bandwidth (VBW) was chosen to be 100 Hz and the sweep time (SWP) was

chosen to be 30 seconds.

To improve the accuracy further, all of the oscilloscope probes were removed from the circuit
when the spectrum analyzer was in use. This helps in eliminating any spurious ground noise
that may be coupled to the spectrum analyzer. Also, to reduce ground noise further, the
coaxial wire connecting the Pearson current probe to the spectrum analyzer was wound se-
veral times around a high-frequency high permeability ferrite core to create a common-mode

choke.
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Figure 5.1. Schematic of the power stage showing all of the parts used for the different exper-
iments
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5.2 Experimental Results

A detailed description of the design procedure used for each of the converters can be found
in [14]. The PWM and ZCS-QRC experiments were run using a constant on-time control
scheme, and the ZVS-QRC and ZVS-MRC experiments were run using a constant off-time
control. Figure 5.3{a) shows how to connect the chip for constant on-time operation, and Fig.

5.3(b) shows how to connect the chip for constant off-time operation.
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521 PWM

5.2.1.1 Discussion of Ideal PWM Input Current Spectrum

For a flyback PWM converter, an ideal input current waveform is composed of two parts: a
square wave and a triangular ramp. The spectrum of the entire ideal waveform can be found

by adding together each of the two sets of frequency spectrum.

For an example, consider the square wave shown in Fig. 5.4(a). This waveform is similar to
an ideal PWM input current waveform with zero ripple current (¢ = 0). To examine the
changes in the spectrum for the following five different duty cycles (D = T,, / Ts): D=0.45,
0.47, 0.50, 0.52, 0.55. The first 100 harmonics were evaluated using {2.25) with £ = 0, and are
plotted for each of the square waves. Figures 5.4 and 5.5 show the calculated spectrum for a
200 kHz square wave with a duty cycle of 0.45, 0.47, 0.50, 0.52, and 0.55. (For this discussion,

only the general shape is of interest, so the magnitudes were omitted.)

Figure 5.4 {b) shows the spectrum for the square wave of Fig. 5.4 (a) with a duty cycle of 0.45.
The spectrum can be seen as being comprised of two sets of sinc functions: one made up of
the odd number harmonics and one made up of the even number harmonics. Considering
only the odd harmonics, the first valley occurs at 2 MHz. Considering only the even harmon-

ics, the first valley occurs at 4 MHz.

Figure 5.4 (c) shows the spectrum of a square wave with a duty cycle of 0.47. In this spectrum,
the odd harmonics have their first valley at 3.4 MHz, and the even harmonics have their first

valley at 6.8 MHz. Notice that both of the first valleys have increased in frequency. In fact,
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as D approaches 0.5, the first valleys of both the even and the odd sets of harmonics move

toward infinity.

Also, note the trend of the amplitude of the even harmonics. As D approaches 0.5, the mag-
nitude of the first even harmonic (and therefore subsequent even harmonics) decreases until
D = 0.5. When D = 0.5, Fig. 5.5 (a), it can be seen that the magnitudes of ali of the even

harmonics have decreased to zero and that there are no valleys in the total spectrum shown.

As the duty cycle increases past 0.5, the reverse effects occur. As D increases, the valleys
(and peaks) move from infinity toward the origin, and the magnitude of the first even har-
monics increases. For an example, consider Fig. 5.5 (b) which shows the spectrum of the
square wave with a duty cycle of 0.52. The first valley of the odd harmonics occurs at 3.0 MHz,
and the first valley of the even harmonics occurs at 5.0 MHz. When the duty cycle is further
increased to 0.55, shown in Fig. 5.5 {c), the first valley of the odd harmonics is now at 1.8 MHz,
and the first valley of the even harmonics is now at 4.0 MHz. Also, notice that the magnitude

of the first even harmonic is higher for the case of D = 0.55 than for the case of D = 0.52.

Now consider the second component of the ideal PWM input current waveform: the triangular
ramp. Figure 5.6 {(a) shows the triangular ramp and Fig. 5.6 (b) shows its spectrum. This
shape of the spectrum will stay very much the same for different ramps. The amplitude of the
spectrum will change with a change in amplitude of the ramp. Again, since only the general

shape of the spectrum is of interest, the magnitudes have been omitted.

Also, ringing is sometimes present in PWM converters that operate without snubbers. This
ringing takes the form of a pulsed exponentially damped sine wave. Figure 5.7 (a) shows this
waveform and Fig. 5.7 (b) shows its associated spectrum. If another waveform has this ex-
ponentially damped sine wave imposed on it, the spectrum of that waveform will have the
spectrum of the exponentially damped sine wave added to it. In the frequency domain, the

effect will be seen at the frequency of the sine wave.
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This is a brief background of some of the waveforms that will be considered in this section.
In general, by adding together in the frequency domain the different components of a
waveform, its complete spectrum can be obtained. For example, a square wave, similar in
shape to Fig. 5.4 (a), with an exponentially damped sine wave imposed on the part of the
waveform greater than zero, will have have a spectral envelope similar to the one of a square
wave, except that a bell-shaped disturbance will be seen on the spectrum around harmonics

of the sine wave’s frequency.
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Figure 5.6. Generalized triangular ramp: (a) time domain plot, and (b) its associated spectrum
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5.2.1.2 Experimental Testing

Figure 5.8 shows the schematic of the PWM circuit used. Since the leakage of the transformer
has been minimized for operation at a frequency of 200 kHz, the frequency of operation at the
nominal line/load conditions was chosen to be 200 kHz. Two sets of PWM experiments were
run: one with the snubbers in place and one with the snubbers omitted. The results for each

test will be presented and discussed.

Two snubbers were designed using the procedure in [14]. Their values are on the schematic
in Fig. 5.8. One snubber is in parallel with the FET {to dampen the turn-off ringing of the FET),

and the other is in parallel with the output diode (to dampen the turn-off ringing of the diode).

Figure 5.9 shows the waveforms of the PWM converter operating at the nominal line/load

conditions. The input current waveform is the second from the top.

The spectrum of the PWM input current waveform for the snubbered converter is shown in Fig.
5.10. Considering the discussion presented in section 5.2.1.1, the experimental spectrum is
similar to what would be expected. The peaks and valleys are accounted for by the square
wave part of the input current, while the vertical offset at lower frequencies is accounted for

by the triangular part of the input current.

Also, there are two spikes seen in the input current waveform. The spike on the leading edge
of the input current waveform is caused by the turn-off of the output diode, while the spike on
the trailing edge of the input current waveform is caused by turn-off of the FET. Because the
amplitudes and the durations of these two spikes are very small when compared to the entire

waveform, they have very little effect on the spectrum.

Figure 5.11 shows the waveforms of the PWM converter with the snubbers omitted. On the

input current waveform, there are two distinctly different ringing frequencies. A ringing fre-
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quency of approximately 10 MHz is seen when the FET is turned off (this ringing is from the
leakage inductance of the primary side resonating with the drain to source capacitance of the
FET), and a ringing frequency of approximately 20 MHZ is seen when the output diode is re-
verse biased (this ringing is from the leakage inductance of the secondary side resonating
with the junction capacitance of the output diode). Since these two sets of oscillations com-
prise a relatively large part of the entire waveform, there should be a strong effect on the

spectrum.

Figure 5.12 shows the spectrum of the input current waveform for the snubberless PWM con-
verter operating at the nominal line/load conditions. It appears to be much different than the
spectrum of the snubbered PWM converter (Fig. 5.10). Considering the discussion in section
5.2.1.1 of the exponentially damped sine wave, the difference can be explained. Since the
ringing frequencies are approximately 10 MHZ and 20 MHz, a distortion similar to Fig. 5.7 (b)
occurs at harmonics of these two ringing frequencies. Three places on the spectral plot are
peculiar: around 10 MHz, around 20 MHz, and around 30 MHz. The first disturbance (at ap-
proximately 10 MHz) is caused by the ringing on the FET at turn-off. The second disturbance
(at 20 MHz) has two components: the ringing caused by the output diode turn-off, and the
second harmonic of the ringing caused by the FET turn-off. Finally, the third disturbance (at

40 MHz) is caused by the second harmonic of the ringing on the output diode.
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Figure 5.9. Waveforms of the snubbered PWM circuit: converter operating at the nominal
line/load conditions
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Figure 5.11. Waveforms of the snubberless PWM circuit: converter operating at the nominal
line/load conditions
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5.2.2 ZCS-QRC

A schematic of the ZCS-QRC circuit that was used is shown in Fig. 5.13. It was designed as
described in [14] for a maximum switching frequency of 1 MHz. At the nominal line/load op-

erating condition, the switching frequency was 922 kHz.

Figure 5.14 shows the waveforms of the ZCS-QRC converter when operated at the nominal
line/load conditions. Figure 5.15 shows the spectrum of the input current. At the lower fre-
quencies, the spectrum looks similar to what would be expected for an ideal input current
waveform (based on examples presented in Chapter 2). However, at the higher frequencies,
the spectrum does not decrease to zero very fast; in fact, the values of the higher frequency
harmonics are relatively constant. The spread out spectrum is a characteristic of wide band

frequency modulation [15-18].

Figure 5.16 shows a close-up of the waveforms. In this figure, two definite éhanges in the FET
off-time ringing on the input current waveform can be seen. One change is that the ringing
seems to be damped in an exponential fashion. The second change in the ringing can be at-
tributed to the fact that as the drain to source capacitance of the FET is being charged up
{toward twice the input voltage), the actual value of this capacitance is changing. Since this
drain to source capacitance forms a resonant circuit with parasitic inductances, then as the

capacitance changes, the ringing frequency also changes.

Also, there is another oscillation on the input current to consider. Examining Fig. 5.16 a
high-frequency osciilation on the input current during the on-time of the FET can be seen. At
the end of the linear charging stage (Chapter 2), the output diode is reverse biased and begins
to block the secondary voltage. The junction capacitance of the output diode sets up a reso-
nant circuit with the parasitic inductances of the secondary side, causing this high frequency

oscillation; however, as the voltage on the diode continues to change, so does its junction
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capacitance and so does the frequency of oscillation. This oscillation is reflected back to the

primary side and affects the input current.

Considering these two sets of changing frequencies, it is important to investigate frequency
modulation a bit further. To show how modulation can effect the frequency spectrum of a
waveform, an example will be presented. It is known that a single frequency sine wave is
represented in the frequency domain by a single harmonic at the sine wave’s frequency. |f
this sine wave were now frequency modulated and exponentially damped, how would the
spectrum change? Consider the following equation that represents a frequency modulated

signal with an exponential decay:

(1 13,2
ft) = —e(_s'mt)osinl:2rr-0.5-107t+—5—'u]

; (5.8)

Figure 5.17 (a) shows a plot of this equation in the time domain, while Fig. 5.17 {b) shows the
spectrum of this signal. Since only the shape is of interest, the magnitudes on each plot have
been omitted. Looking at the shape of the envelope, it is apparent that the spectrum of the
frequency modulated exponentially damped sine wave is spread out over a large frequency

range (the frequency range of modulation) [15].

The ringing frequency during the FET off-time ranges from approximately 9 MHz to approxi-
mately 16MHz; the oscillation during the on-time, however, is of a much higher frequency
range-- from approximately 32 MHz to 45 MHz. Since both sets of oscillations are damped, the
example illustrated above of the exponentially damped-frequency modulated sine wave is
applicable. Considering the two sets of ringing frequencies, it would be expected (and is
shown in Fig. 5.15) that the experimental spectrum would extend to approximately 45 MHz and
then fall off rapidly. Also, it would be expected that the magnitudes of the harmonics between

9 MHz and 16 MHz also be raised.
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Figure 5.14. Waveforms of the ZCS-QRC circuit: converter operating at the nominal line/load
conditions
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Figure 5.16. Close-up of the waveforms for the ZCS-QRC test circuit: converter operating at the
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5.23 2ZVS-QRC

Figure 5.18 shows thé schematic of the ZVS-QRC circuit that was used for the results in this
subsection. Similar to the PWM experiments, two sets of measurements were taken: one with
the snubber in place and one with the snubber omitted. The resonant tank was designed for
a minimum switching frequency of 800 kHz using the design procedures found in {14]. The

same resonant tank is used for both sets of measurements.

Figure 5.19 shows the experimental waveforms of the snubbered ZVS-QRC operating at the

nominal line/load conditions.

The snubber shown in Fig. 5.18 was designed according to the same procedure as the PWM
snubbers [14]. Because the input current waveform is virtually free of any ringing, it would
be expected that the spectrum would be very close to an ideal spectrum (seen in Chapter 3).
There is, however, a ringing frequency of approximately 2 MHz caused by the junction
capacitance of the output diode resonating with the parasitic inductance on the secondary
side. Since the amplitude of this ringing is very small and relatively low in frequency, the

spectrum of the input current would not be expected to be altered very much.

Figure 5.20 shows the spectrum of the input current waveform of the snubbered ZVS-QRC.
The envelope of the spectrum shows no strong peaks from circuit oscillations and is similar

to what would be expected (based on Chapter 3 examples).

With the snubber omitted, the circuit was run at the nominal line/load conditions. Figure 5.21
shows the waveforms of the ZVS-QRC. Because the resonant tank shapes the drain-to-source

voltage across the FET, there is no ringing on the device at turn-off. However, when the output
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diode turns off, an oscillation between the junction capacitance of the output diode and the
parasitic inductance of the secondary side occurs. This ringing is reflected back to the pri-
mary side and is evident in the input current waveform. Considering the discussion in section
5.2.1.1 about an exponentially damped sine wave, it would be expected that this ringing will
cause a distortion in the input current spectrum around harmonics of the 8 MHz ringing fre-

quency.

Figure 5.22 shows the input current spectrum for the snubberless ZVS-QRC operating at
nominal line/load conditions. Examining the spectrum, peaks can be found in the envelope
of the spectrum around 9 MHz and 18 MHz. These sets of peaks can be attributed to har-

monics of the ringing frequency of 9 MHz as seen in the circuit waveforms.
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Figure 5.18. Schematic of the entire ZVS.QRC test circuit used
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Figure 5.18. Waveforms of the snubbered ZVS-QRC circuit: converter operating at the nominal
line/load conditions
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Figure 5.21. Waveforms of the snubberless ZVS-QRC circuit: converter operating at the nominal
line/load conditions

Experimental Resuits and Comparisons 141



dB

20
10
0
-10
-20
-30
-40
-50
-60 }
ULV TTHHAEN 1T
-70
10 20 30 40 50 60
RES BW 30 kHz
VBW 100 Hz F (MHz)
SWP 30 sec (Fs = 0.85MHz)
Figure §.22. Input current spectrum of the snubberless ZVS-QRC circuit
Experimental Results and Comparisons 142



5.24 2ZVS-MRC

Figure 5.23 shows the schematic of the circuit used for the ZVS-MRC experiment. A complete
description of the multi-resonant conversion technique can be found in [18]. The circuit was
designed according to the guidelines presented in [14] for a minimum switching frequency of

1 MHz. The ZVS-MRC circuit works by shaping both the primary and secondary waveforms.

Figure 5.24 shows the waveforms of the ZVS-MRC operating at the nominal line/load condi-
tions. The input current waveform is very smooth and rounded. The envelope of the spectrum

for this waveform should not show any large peaks.

Figure 5.25 shows the input current spectrum of the ZVS-MRC operating at the nominal
line/load conditions. The harmonics decay rather steadily, and there are no strong oscil-

lations represented in the current spectrum.
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Figure 5.24. Waveforms of the ZVS-MRC circuit: converter operating at the nominal line/load
conditions
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5.3 Comparisons

Figures 5.26 and 5.27 show all of the spectral plots from each of the experiments described in
section 5.2. All of the plots have the same x and y scales and were made with the same re-
solution bandwidth {30 kHz), video bandwidth (100 Hz) and sweep time (30 sec) set on the

spectrum analyzer.

The effect of the snubbers on the PWM converter can be seen by comparing the top two plots
of Fig. 5.25. By using the snubbers, the lower harmonics now decay more naturally when
compared to the plot of the PWM converter without the snubbers. Without the snubbers, the
ringing on the FET and output diode caused harmonics of the spectrum around 10 MHz, 20
MHz, and 40 Mhz to be offset vertically. Although there appears to be two envelopes associ-
ated with the snubbered PWM converter, the envelope is still smoother and more regular than

the spectrum of the PWM converter without the snubbers.

It was determined that the peaks and valleys of the PWM spectral plots are a strong function
of the squareness of the current waveform. Since all of the other current waveforms were very

rounded in shape, their spectral plots were absent of these regular peaks and valleys.

The ZCS-QRC spectrum for the most part has higher spectral peaks for a given frequency
when compared to all of the other converters tested. Some of these peaks could be reduced
or eliminated by completely eliminating the oscillation shown on the drain-to-source voltage
waveform. If the ringing frequency were completely eliminated, or at least was not being

modulated, most of the high frequency harmonics would not be present.
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The two ZVS-QRC spectral plots extend to a much lower frequency (40 MHz) than the PWM
and the ZCS-QRCs; however, in the snubberless ZVS-QRC, there are peaks in the envelope
of the spectrum at lower frequencies. These peaks could cause a problem in filtering because
although the filtering requirement may be met at for example 8 MHz, it may not guarantee that
the requirement will be met at 3 MHz. The spectrum of the snubbered ZVS-QRC does not
have any irregular peaks, and it would be easier to meet the filtering requirements for this

converter than for the PWM (both), ZCS-QRCs or ZVS-QRCs {snubberless).

The spectral plot of the ZVS-MRC is the most desirable of all of the plots. The harmonics
steadily decay which would lead to easier filtering (since there are no sudden peaks). Aiso,
the ZVS-MRC’s ability to run at higher frequencies contributes to easier filtering because even

low harmonics are still at a much higher frequency (higher frequencies are easier to fiiter).
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Chapter 6

Summary and Conclusions

In Chapters 2 through 4, a brief review of the operation of the flyback PWM, ZCS-QRC, and
ZVS-QRC converters was offered. This review also included equations that describe the input
current for each of the converters. The input current spectrum was derived for each of the
three converters by way of a Fourier analysis of the input current waveform description. The
final forms of these equations were written so that the inductor current term was factored out.
This sets up a basis for normalized characteristics of the converter; that is, the equations can

be plotted independent of the inductor current.

Also, for each of these converters, a common converter specification was used to determine
the theoretical input current spectral components in each chapter. Six cases were plotted:
low-line and light-load; low-line and full-load; nominal-line and Iight-ldad; nominal-line and
full-load; high-line and light-load; and high-line and full-load. A qualitative comparison was
offered. In the comparison, it was determined that the attenuation of the spectrum is more
sensitive to load conditions than to line conditions. This can be seen in the analytical
equations because each set of equations is directly proportional to the inductor (hence load)

current.
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Also, in Chapters 2-4, the derived analytical equations were tested against experimental re-
sults. For this comparison to be fair, parameters needed in the equations were determined
from the oscillogram. After ascertaining the desired parameters, the values of the spectrum
were calculated and compared to experimental resuits. Each experiment showed that the
derived equations do represent an accurate description of the input current spectrum. Al-
though the equations could be used to calculate any number of harmonics, only the first
twenty harmonics were calculated. Taking parasitic ringing frequencies into account, these

results compared well to experimental results. Chapter 5 expanded in more detail.

In Chapter 3, an equation was developed that will give the ratio of input current spectrum for
the flyback ZCS-QRC to the input current spectrum for the flyback PWM converter for a given
Mmax = 1 and harmonic number n. This ratio was piotted and showed that there are only two
cases when the magnitude of the ZCS-QRC is larger than the magnitude for a PWM converter:
1) for m=1, and 2) m = 2. For all of the other cases, the magnitude of the PWM spectrum is
larger than the magnitude of the ZCS-QRC spectrum. Also, this equation of the ratio was
simplified using an approximation of the input current waveform as a raised sine wave. A final

equation was offered that greatly simplifies the computation of the original equation.

Chapter 5 was used to describe in more details, the effects of the parasitics in the circuit. It
was determined that any parasitic oscillation on any of the waveforms always affected the

input current spectrum.

An experimental PWM circuit was tested with and without snubbers in Chapter 5, and both
sets of spectral plots were shown. The effect of the snubbers on the input current spectrum
was very evident in both the spectral plots and the circuit waveforms. Also, as expected, the
guasi-square shape of the input current waveform contributes to significant number of higher
order harmonics. This broad range of significant harmonics is the main reason why input fil-
ters are more difficult to construct. A filter to attenuate a broad range of harmonics is much

harder to build than a filter to attenuate only a narrow range {as in quasi-sine waves).

Summary and Conclusions 152



Also in Chapter 5, a flyback ZCS-QRC experimental circuit was constructed, and its input
current spectrum was shown. The parasitics, namely the drain to source capacitance of the
FET, become very important. Because this capacitance varies during the off-time, the fre-
quency of oscillation caused by this capacitance (and the leakage inductance) also changes.
The effect of this frequency modulation is described and is the main cause of significant higher

order harmonics in the spectral plot of the input current.

A flyback ZVS-QRC was also tested with and without snubbers. The effects of the parasitic
oscillations on the spectrum of the circuit without a snubber was very evident when compared
to the spectrum of the circuit with the snubber. Finally, in Chapter 5 a flyback ZVS-MRC was
constructed and tested. The input current spectrum was also shown. Because the MRC
technology utilizes most of the parasitics, the stray effects of the parasitics were minimal. The
range of the significant harmonics was less than the other converters. Also, a steady atten-
uation of the spectrum could be seen. This shows that if after a certain harmonic number, say
n, needs to be attenuated, harmonic number n 4+ 1 will not be greater than n as might be the

case in all of the other converters. This is one more advantage of the MRC technology.
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Appendix A
Derivation of the Fourier Coefficients for the Flyback

ZCS-QRC

Section 3.4 showed the input current of the flyback ZCS-QRC (Fig. 3.1) to be:

yt To<t<T,
i) = ol he+usin(glt —Top)  Ty<t<T, |, (A1)
0 To<t<T,

where all the variables were defined in that section.

The coefficients a, and b, can be found from the following relations [10]:

TS
a, = J. fltycos x,,t dt m=01.2,.. (A.2)

TS
b, = J f(t) sin Xt dt m=012, ... (A.3)
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where

Xm = 2mnfg . (A.4)
This allows a function f(t) to be expressed as a series of sine and cosine terms:

o0
) = ) amcosxut + bpsinxt . (A.5)

m=20

Equations (A.2) and (A.3) represent the Fourier coefficients of the input current if f{(t) = /'(f).
Substituting the equation of the input current ({A.1)) into (A.2) and (A.3) and integrating over

one switching period (0 to T;) will give:

2
am = 7 (a1 + gaz + Ga3) . (A.5)
S
2
bym = 7 (b1 + b2+ 9pa) (A7)
$
where,
Ty
ga = | ytcosx,t dt , (A.8)
0
TA
Oa0 = f Iy cos x,t dt | (A.9)
Tor
Ta
Gas = | [usinawy(t—Toy) cosxpt] dt (A.10)
Tor
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Ty

gp1 = | ytsinxyt dt , (A1)
0
Ta
G2 = f Iysinx,t dt | (A.12)
Tor
TA
Opz = J Lusin wy(t — Toq) sinx,t] dt (A.13)
Toq
where
Tp=Tun+T1o . (A.14)
To help in the integration, rewrite:
Iy + usin oyt — Tgy) (A.15)
as
Iy + u(sin wyt cos w, Ty — €Os wyt sin wyTyy) - (A.16)

Solving for g

y cos Xpt ) Ty
= —— | —5—+tsinx,t ]
Gan Xm ( Xm m) 0

;T g (A7)
= Tm—[—x,—n- (cos X, Tgqy — 1) + Tgq SiN mem]

Solving for ga:
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e . Ta
Gap = ——xfn sin Xt ]T
o (A.18)

/
= ﬁ (sin xT4 —sin Xy, Toq)

Solving for gas:
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U €os wqyTg cos(wy — Xt COS(wqy + Xp,)t
Gaz = 2 - -

(w5 — Xpm) (w5 + Xpm)
usinw, Ty | sin(w, — X))t sin(wy + xp)t ]TA
2 (wo —Xm) (wo + Xp) Tor
U Ccos w T01
= —2—02—— [ = (@ + Xm) cOs(@wy — Xp)t — (0o — Xpp) COS(w4 + Xm)t]
2(w° - Xm)
usinw T01 . . 7-A
- 2(2—"2- Llwg + xp) sin(wy — Xt + (0o — X)) SiN(@q + Xt ] ]
Wy — Xm) Tor
U €os wqyTgy
=— 2—02 [(wo + Xm)( cos(wy — X)) T4 — COS(@g — X)) To1)
Q(wo — xm)

+ (0o — Xm)( COS(wg + X)) T4 — COS(wg + Xp) Tge) ]

usinwgyTy

2

2( 2 ) [(we + xm)( sin(wy — Xp) T4 — sin(wy — Xm) T1)
Do~ Xm

+ (W — Xm)( sin(wg + X)) T4 — sin(wy + Xy To) ]

ucos wyTgy

- 7oy L(@o + Xm)(€OS w,T4 €08 XpT 4+ 8iN o4 SiN Xk T4
Z(wo —Xm)

— €0S @, Ty €OS Xy T — Sin @ Ty SiN X, Toq)
+ (g — Xp)( €08 w T4 €OS X, T4 — SiN @ T4 SIN X, T4

- COSs CDOT01 cos meo1 + sin CDOT01 sin me01)]

usinw Ty

2( 3 2) [(wg + Xp)(Sin w,T 4 €OS X, T4 — COS T 4 SiN Xy T 4
Wo = Xm

— 8in w,Tgq €OS Xy Tgq + €OS Ty SIN X, Tgq)
+ (wo — Xp)(Sin @ T4 €08 Xy T4 + COS @, T4 SiN X, T4

— sin w,Tgy €OS X, Ty — €OS w,Tgy SiN X, Toy) ]
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U cos wyTgy
T )

wo— Xpm

[wy cos woT4€OS Xy Tg + X SiN @, T4 SiN X, T4

— w4y COS Wy T €OS X To1 — Xpm SIN @ Toq SIN Xy Ty ]

usin w,T,
Tozﬁ [, Sin T4 €OS Xy T4 — Xy COS T 4 SIN Xy T 4
(w5 —x5)
— @q SiN woTgy €OS Xy Ty + Xy €OS @, Toq SIN Xy Toq ]
- U
= 57 { €08 @, Tos[wo( €Os @, T4 COS X T4 — COS @, Ty COS X Ty)

(w5 —xm)

+ X( Sin 0o T 4 SN Xy T4 — SiN @ Toyq SiN X Toq) ]
+ sin wyTo1[w( sin @ T4 €OS Xy T4 — Sin @, Toq €COS Xy Toq)

+ X( cos Ty Sin X Tg1 — COS w,T 4 SiN meA)]}

—u , .
= —5— 5 190008 X T4 €OS @ Ty COS T4 + 8N woToy SN wyT4]
(06— xm)
— w, €08 Xy To1[ €OS @, Tpq COS w,Toq + Sin @, Tpq Sin wToy]
+ X SiN Xy T4l €08 04Ty SiN @, T4 — 8iN @, Toy €OS 0o T41}
- U
= 71 {@ol €08 XyT4 €08 wo(Tgy — Tg) — €OS X Tgq]

+ Xpp SIn X T4 8iN 0o(T4 — Toq)}

—-u
= — 5 {wo[ cos X, T4 €OS @, Tyy — €OS X Tgq]
Do~ xm)
+ Xy SiN X, T4 SiN @, Te0}
—u Do

= -—2—— { H [ cos meA Ccos (DOT12 — COSs me01]

Do

7 1 Xm
Xm + sin X, T4 Sin %712}

(A.19)

Solving for ges:
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y sin x,t Tor
p1 = ———( X —tcosxmt) ]0

Xm
= %, | T Xm To1 €OS X T4
Solving for g
! Ta
Gy = — x_:.,' COS Xt ]r
o (A.21)

!
ﬁ (oS X, Tg1 — €OS X T4)

Solving for gss:
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U cos w, Ty [ sin(w, — Xt sin(wy + Xyt ]

b3 = 2 (0o —Xm) (@0 +Xp)
usinwyTgy | cos(wy—Xp)t  COS(wqy + X))t ]TA
2 (wo - xm) (wo + Xm) To
U Ccos wyTgy ) _
= —202— [(wy + X)) sin(wgy = X))t — (wo — Xp) sin(wq + Xt ]
Z(a)o - Xm)
usin w,To Ta
- 2—02' Lo + X) cOS(wg — Xt — (o — Xpy) COS(@ 4 + Xp)t] ]T
2(600 - Xm) 01
U cos wqyTpy . )
= —202— [(wo + Xp)( sin(@wg — X)) T4 — Sin(wg — Xm) To1)
Q(wo - Xm)
—(wo = Xp)(sin(wg + X)) T4 — sin(wy + Xp) Toq) ]
usinwyTy,
———2((02 - x2) [{wo + xp)( cos(wy — Xp) T4 — cOS(wy — Xm) To1)
0 m
— (wo = Xm)( cOS(@g + X)) T4 — €OS(@g + Xm) To1)]
ucos w,T
= ———2—020—1 [(wo + X ) sin @,T4 COS X, T4 — COS @ T4 SIN Xy T 4
2(0)0 - Xm)
— sin w,Tyy COS X, Ty + €OS wyTgy Sin Xy Toq)
— (0o = Xm)(sin wyT 4 €OS X, T 4 + COS w74 SIN X7 T4
— sin wyTyq COS Xy Toq — €OS W, Toq SN XpToq)]
usin w,T,
— 2 [(@o + Xm)( €OS @,T 4 COS X T4 + SiN @, T4 SiN X T4
2((»0 - Xm)

- COS CI)OT()’ COos meO1 — sin CDOT01 sin meO1)
— (o — Xm)(€0s @ T4 €OS Xy T4 — SiN woT 4 SiN X, T4

— €08 w,Tyy €OS X, Toq + Sin Ty SiN XpTo1) ]
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ucos w7y

Op3 = (—2—2)— [Xm sin @ T4 €08 X, Tg — o COS woT 4 SIN X, T4

Wo — Xm

— X SiN woToq €OS Xy Toq + @, €OS @, Toq SIN Xy Ty ]

usinwyTyy ) .
— 55 [Xm €OS T4 €OS X T4 + @4 SiN @, T4 8in X T4
(w6 = xm)
— Xy, €OS @4 T4 COS Xy Ty — @4 SiN @, Tgy SIN Xy T4 ]
u , ,
= ——5 5 {008 0 Tor[Xp( Sin @, T4 €OS Xy Ty = SiN @, Ty COS Xy Tos)
(“’o - Xm)
+ wo( €S w,Tgq SiN Xy Ty — COS WoT 4 SIN X T4)]
— sin @y Tg1{Xm( cOs w, T4 €OS X, T4 — €COS w,yTgq COS X, To1)
+ @ol SiN @, T4 8iN Xy T4 — SiN W Toq SiN Xy To1)1}
u . ,
= 55 {Xm 008 Xy T 4L cOS @, Ty 8in @, T4 — sin w,Tgy €OS woT4]
(@6~ xm)
+ w, 8in Xy Toe[ €OS wyTgq €OS w,Toy + Sin w, Ty Sin wToy]
— @ SiN X, Tl €08 w Ty €OS W T4 + Sin w,Toy SiN w,T4l}
u . .
= 5 (Xm COS X T4 Sin w(T4 — Toq) + wg SIN Xy T
(“’o - Xm)
— w4 SIN Xy T4 €OS @o(Tgy — Ta)}
u . ,
= PR {@ol 8in X Tor — SiN X, T4 €OS @, Tq5]
(@06 = xm)
+ Xy €COS X, T4 SIN w4 Ty0}
w
= _—QU_ { _XT:— [ sin x,,Toq — SiN X, T4 €OS @ Tqs]
w
% 1Yo
Xm + €os X, T4 sin on12}

(A.22)
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Therefore, the Fourier coefficients a,, and b, can be represented in a general equation as:

1
am = wa'm . (A.23)
and
1.,
by = 7 bm . (A.24)
where
mra'y, = y[ ﬁ (cos x,Tgy — 1) + Tpq sin meo1]
+ I [ sin X, T4 — sin X, 79 ]
(A.25)
—-Uu Nl T
5 X [ cos X, T4 €OS @,T4p — COS XpyToq ]
Lo
—2 1
( x,z,., ) + sin x,T 4 sin on12} .
and
, 8in X, oy
mnb'y, = y[ X, To1 €08 Xy Ty
+ I (€08 XnToq — COS Xy T 4)
(A.26)
u Do : .
> {K [ sin X, To1 — sin X, T4 €OS @, 7451
Do
—= 1
( xfn ) + COS X, T 4 sin wOT12} .

Notice that each term in the above two equations has either a y, /, or a u in it. Recall from

sections 3.2 and 3.3 that the following relations were established:

_ MY M)
Q n_ z,

(A.27)

Ix
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V=" "z~ “o
_ Vg +m)
=z

Rewriting y and v in terms of /, yields:

Q
V= ko

Q
u= T/I-IX.

Using these relations, equations (A.23) - (A.26) can be rewritten as:

LI
am == _ri—a m
IX
b, = Fb'm :
where
Q% i
mna’y, = ﬁ —x—m— { cos XmTor — 1)+ onO‘] sin Xy Toq
+ [ sin X, T4 — sin Xy, Toq]
43}
- 7%71",_ { X [ €08 XinT4 €08 woT15 = COS XppTor ]
+ sin X, T4 siN on12} ,
and
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(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)
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Q Wq
’ — —— —— i —
mnb'p, = v | X sin XmTor — woTgq €OS X, Ty

+ (€08 X, Ty — €OS X Ty)

0 ® (A.35)
ﬁ—;;— { ng- [ sin X, Toq — Sin X T4 €0S wyTyy]
+ €cOs X, T4 sin on12}
Also, note that the following substitution was made:

2
Do

dy = —2—1 . (A.38)
xm
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Appendix B
Calculation of the Fourier Coefficients for the Raised

Sine Wave Approximation

Figure 3.11 shows the raised sine wave that will be used to approximate the input current for

a ZCS-QRC operating at M= 1 and Qmin/Mmax1. The equation of that raised sine wave is:
fit)y = e+ lesinogt  —ty<t<t, , (B.1)

where the time from —f, to {; is one period of the resonant cycle. The relationship between
the resonant period and the switching period for a ZCS-QRC operating at Qumin/Mmaxx1 can be

approximated as:

£~ Mimax (8.2)
fo 7 Mpax+1 '

As noted in section 3.8.2., only M..x = 1 is considered.

The variables & and ¢, can be found by solving the following equations:
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f—t) =0,

oy = 1, ,

fity) =0 .

The best solution for this system of equations is:

T
—woly = T
— gty = 3
Solving for t, and ¢;:
Mmasz

to = ot
O MMk + 1)

3Mmasz

ty = ——B S 3p

4Mmax + 1)

The Fourier coefficients can be found by:
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(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)
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21, 4
ay = Ts—-f (1 + sin wt) cos x,,t dt

21, [ Sin Xt +( — wqy COS Wl COS Xt — X,y SIN w ot SiN Xyt )]

Wy —Xm

2l [ sin Xty + sin Xty + Xm( Sin Xty + sin Xtg) :| ]H

X
m a)02 — X,,.,2 -1

2! Sin 3Xulo + Sin Xyt
=—2—| sin3xpyty + Sin Xty + ( e mfo) (B.10)
Tsxm (Do

-1
Xm

]

. . 3
! 48in X, tn — 4 sin" Xt
—X[:4 sin xmt0—4sin3xmto+ ( mo mfo) :l

mn 2
Lo
2 -1
xm
4/
=— |:(1 —2—1—>( sin Xty — sin3xmt0):|
had)
2 -1
Xm
2
4y (Mmax + 1)

N .3
= n > 2 > (sm Xmto — sin xmto) )
(Mmax +1)°=m Mrnax

and
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2, [ , _
f t0(1 + sin w,t) sin Xt dt

o
3
]

X

21, |: — COS Xt + ( — X SiN wf COS Xt — w, COS Wt Sin Xyt ):] ]ﬁ

21, I: COS Xpfy — COS Xty + Xm( COS Xptq — COS Xpts) :’ ]ti

X

21,
TXm

(B.11)

COS Xmly — COS 33Xt
l:cos Xmbo — COS Xty + ( m°2 mfo) j]

Do

2-—1
Xm

I 3
e [4 €OS Xpplg — 4 COS Xty +

(4 cos xplg— 4 cosaxmto) ]

mn ® 2
O2 -1
Xm
4/
= m:r |:(1 + + )( COS Xplo — cosaxmto):l
)
7 — 1
xm
2

4, (Mpax+ 1)

3
= 2 2 2 ( COS Xty — cos xmto)
(Mmax + 1) — M "Mpax

Finally, the magnitude of the m* harmonic can be found by squaring a, and b, and then taking

the square root of the sum:
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4/,

/am2 + bm2

2
(Mmax + 1)

mr

(

4,

(Mrax + 1)?

7 )\[cos2xmt0 - cos4xmt0

2
—-m Mmax

A1 —cos dxpty

2
(Mrmax + 1)

mn

(

2 2
(Mpax + 1)° — m"Mpax

(B.12)

)

22

2
— \/2—/x (Mmax + 1) \/1 — cos? ——max™ 2m'Mmax""
e (Mrmax + 1) —-m Mmax Mrmax +1
_ | 2 (Mopax + 1)° Sin MM gy
mr (Mrax + 1% — m2Mmax Mmax + 1

Note that the above relations

cn need to be modified to:

and
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are valid only for w, # X.; otherwise, if w, = x,, then an, by, and

4
——X—J. (1 + sin w,t) cos w,t  dt
—%

( ) 1

-b

sianot
@o

sin wyt
Do

2/,

(B.13)
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2,

b, = T (1+ sin wyt) sinw,t  dt
S -4
2, [ coswyt ¢ sin2w,t ]h
=T\ T w 2T 4, 4
(B.14)
2 i+t
T 2
= Mpmax
= x_—_’
Mmax+1
Therefore,cy, is:
Mmax
Cm = lxm (B.15)

The final form of the Fourier coefficients for the raised sine wave represented by f(f) in

equation (B.1) can be written as:

2ly (Mmax + 1)2 in( MaMpax ) m Mmax + 1
mm (Mmax + 1)2 - mQMmax2 Mmax + 1 Mmax
Cp = ,
I M nax m = Minax + 1
Mmax + 1 Mmax

(B.16)
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Appendix C
Derivation of the Fourier Coefficients for the Flyback

ZVS-QRC

Section 4.4 showed the input current of the flyback converter {Fig. 4.1) to be:

0 To1<t<0
1 -l + 1, cos wyt 0<t<Tyy
Fin() =4 , (C.1)
L(cosa—=1)+y(t—T,) Tio<t<Typ+ Ty
0 T12+T23<t<Ts+To1
where
To1 <0 . (C.2)

The Fourier coefficients, a, and b,, are defined so that a function f(t) can be written as a col-

lection of sine and cosine terms. Mathematically this can be expressed as [10]:
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o0
f(t) = Z 8 COS Xt + by SN Xt (C.3)

m=0

It can be shown [10], that for this equation to be valid, a, and b,, must be defined as:

TS
a, = —TQ: J ft) cos(x,f)dt m=0,1,2,.. (C.4)

TS
by, = T% J ft) sin(xt)dt m=0,1,2, .. (C.5)

In the above equations, the following relation holds:
Xm = 2mnf; . (C.6)
Equations (C.4) and (C.5) yield the Fourier coefficients of the input current if f{t) = I',4(t).

Substituting the representation of /';, ({(C.1)) for f(f) in (C.4) and (C.5) and integrating over one

switching period (7o to 7 + To1) will give:

2

am = 7‘(931 +922) . (€.7)
S
2

b, = -?-(gm + G9p) (c.8)
N

where
Ty
Gy = f (= I+ 1, cos w,t) cos Xt dt (C9)
0
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Ta

G0 = [/(cosa —1)+y(t—Tyy)]costdt |

Tha

Ti2
Fb1 =f (=1 + 1, cos wyt) sinx,tdt
0

Ta

Op2 = [x(cos a — 1)+ y(t — Typ)]sinxptdt .

Tia

Also, T, is defined as:

Ta=Tip+ Ty .

Solving for ga.:
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(C.10)

(€.11)

(C.12)

(€.13)
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/ / sin(w, — X, )t sin(w, + X))t T1z
Gag = ———Sin Xt + = (0 = Xm (o + Xm) ]
Xm 2 (wo— Xm) (0o + Xp) 0
Iy . Iy | sin(lwy—Xm)T1o  sin(wg + X)) T2
= —-X—S|nme,2+—2— (@, —
m Wy = Xm) (wo + Xm)

Ik .
= — —xTn- sin XmT12

/ . ' .
+ =5 x 2 [{wo + Xm) sin(wo = Xp) Tyo + (@0 = X)) Sin{wg + Xp,) Tyo ]
Q(wo - xm)
,X .
= — _X_m sin me12
,X . .
+—5 [(wo + Xm)( sin wyT1, €OS Xy T4y — €OS woT4p SIN X T40) ]
Q(wo — xm)
!
+ '_2)(—2 [((Do - Xm)( sin CDOT12 COS XmT12 -+ COS (DOT12 sin XmT12)]
2(0)0 - Xm)

,X .
==, sin XmT12
+ 21—"2 [wy 8in wyTqo COS X T1o — Xy COS w4 T45 SN Xy Tho]
(w6 = xm)
,X .
= ———5sin X, T4,

Xm

w
—2 sin w, T4y COS X T4p — COS woTyy SiN me12:|

———[5
Xm 2 -
Xm

(C.14)

Solving for g,.:
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I(cosa—1)—yTqyy | . COS Xt tsinx,t Ta
Gan = [ X sin(x,,t) +y 2 T X, ]T
Xm 12

]

Xm

l,(cosa—1)—yT
["( * 1) = VT J(sinmeA—sinme12)

+ T4 8in X, T4 — Typ Sin me12]

Xm

y [ €osx,T4—cosX,Tqs
Xm

I {cos a —1) _ .
il I — (sin Xy, T4 — sin x,,;T42)

¥Tas .
+ x:f Sin X, T4 + _yT (cos X, T4 —€cOS Xy Tys) .

Xm

(C.15)

Solving for g
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gp1 = cos Xt +
o1 m 2 (Xp — o) (wy + Xpm) 0

Xm
/ ! cos — X)) T4n — 1 cos(w, + Xp) T4y —1
= -)-(TXn—(cosme12—1)+-2i[ (0 = Xm)T12 (90 & Xm)T1z ]

I I [ COS(Xp — W)t COS(wy + Xyt ] ]Tu

(wo — Xm) (wo + Xpm)
IX
=X (cos xpTyp— 1)

Iy
2(wg - X,Qn)

—{(wy — Xp)(cos(wgy + X)) T1a —1)]

[(wo + xm)( coS(wg — Xm) Ty —1)

’X
X, (cos Xy Typ — 1)

/

+ ﬁ [(wg + Xm)(€OS w T4 COS X T1p + SiN @ Tyo SIN Xy T1o —1)]
(w0 = xm)
/

X
2 (4:0(2J - x,zn)

IX
—zn—( €oS Xy Tqp —1)

[(wo = Xm)(€Os w,Tyy €OS Xy Typ — SiN W Tyo SiN Xy T1o —1)]

+ % [X;, cOS wTqn €OS Xy To + @4 SN @oTys SIN X, T1o — Xm ]
(w0 —xm)
IX
=X, (cos X, Ty —1)
Ix Do . .
+ [cos @oT12 COS Xy Typ +7;sm @oTy5 8IN X Tya —-1]

(C.16)

Solving for g.:
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t cos xpt

I(cosa—1)—yTy, sin Xt
Op2 = “|: . X cos(Xmi) +y -

Xm

It

[ I(cosa—1)—yTy,

X ]( COS X,, T4 — €OS X, T15)

S

_ _[ I,(cos a —1)

y [ sinx,T4—sinXx,Tq,
Xm
X ]( COS Xy T4 — €OS Xy T45)

YToa
Xm

COS X, T + XLQ (sin X, T4 —sinx,Tyo) .
m

Each term of (C.14)-(C.17) contains either an /, or a y. Recall that:

oM Vg 1+ M)
X = Q n Zo ’
and,
y Vg (1+M)
=
n Z, o
Rewriting y in terms of I, yields:
Q
y = ﬁ’xwo .

Xm

— TAC0S X, T4+ TypcOS me12]

]

Ta

Tya

(€.17)

(C.18)

(C.19)

(C.20)

Using this relation in (C.15) and {(C.17) (the only equations that contain y), gives new ex-

pressions for g.. and g2
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I(cos a —1) . .
Oa = X, (sinxpT4 —sinXxp,Tyo)

A Q Tousi T K Q T T
+x—m"—n7,"wo 23SINXplg+ 2 Tw_wo(cosxm A= COS XmTyp)
m

(C.21)
and
I {cos a —1)
Opp = — S (cos x,, T4 — cos X, T45)
/ l
- ﬁﬁ Wo COS X T o + X—Z% wol( Sin Xy T4 = sin Xy Tq0)
m
(C.22)
Finally, the Fourier coefficients take the form:
I
am = = a'py (C.23)
and
,X
by = 4 b 'y (C.24)
where
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mrapy’ = —sin x,T,

1 Wo

Im

+ (cos a — 1)( sin x,, T4 — sin x,,T4,)

+ g CDOT23 sin meA + i

M M
and
mnby,' = (cos XpT1 — 1)
1 WDo . .
+ -d: COS w,T1o COS X T4o + X, SinwoTyp SiN Xy Ty — 1
- —'3— @ To3 COS Xy T4
— (cos a — 1)( cos x,, T4 — €OS X/, T45)
w
+ %—é (sinxpT4 —sin x,Tq,)

Also, note that the following substitution was made:
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+— [ ﬁ Sin QJOT12 Ccos me12 - COS (.DOT12 Sin XmT12]

w
[«]
X, (cos Xy T4 — €OS XnT4p)

(C.25)

(C.26)

(€.27)
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