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(ABSTRACT)

, Location-allocation problems can be described generically as

follows: Given the location or distribution (perhaps, probabilistic) of

a set of customers and their associated demands for a given product or

service, determine the optimum location of a number of service

facilities and the allocation of products or services from facilities to

customers, so as to minimize total (expected) location and

transportation costs.

This study is concerned with a particular subclass of location-

allocation problems involving capacitated facilities and a continuum

of demand. Specifically, two minisum, network-based location-allocation

problems are analyzed in which facilities having known finite capacities

are to be located so as to optimally supply/serve a known continuum of

demand.

The first problem considered herein, is an absolute p-median

problem in which p > l capacitated facilities are to be located on a

chain graph having both nodal and link demands, the latter of which are

defined by nonnegative, integrable demand functions. In addition, the

problem is balanced, in that it is assumed the total demand equals the

total supply. An exact solution procedure is developed, wherein the

optimality of a certain location-allocation scheme (for any given



ordering of the facilities) is used to effect a branch and bound

approach by which one can identify an optimal solution to the problem.

Results from the chain graph analysis are then used to develop an

algorithm with which one can solve a dynamic, sequeutial location-

allocation problem in which a single facility per period is required to

be located on the chain.

Finally, an exact solution procedure is developed for locating a

capacitated, absolute 2-median on a tree graph having both nodal and

link demands and for which the total demand is again equal to the total

supply. This procedure utilizes an algorithm to construct two subtrees,

each of whose ends constitute a set of candidate optimal locations for
_

one of the two elements of an absolute 2-median. Additional

localization results are used to further reduce the number of candidate

pairs (of ends) that need to be considered, and then a post-localization

analysis provides efficient methods of comparing the relative costs of

the remaining pairs.
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CHAPTER I

INTRODUCTION AND A SELECTED REVIEW OF THE LITERATURE

1.1 Problem Description

A particularly fertile area of research within the field of

Operations Research treats a class of mathematical programming problems

which have collectively come to be called the Location-Allocation

Problem. This problem can be described generically as followsz Given

the location or distribution (perhaps, probabilistic) of a set of

customers and their associated demands for a given product or service,

determine the optimum location of a number of service facilities and the

allocation of products or services from facilities to customers, so as

to minimize total (expected) location and transportation costs.

Location—allocation problems lend themselves readily to the

solution of real-world problems. Examples of such might include the

location of warehouses, distribution centers, service and production

facilities, and emergency service facilities (see Francis and White

[1974], and Handler and Mirchandani [1979]).

The Location—A1location Problem was originally formulated by

Cooper [1963] (see also Cooper [1972]), but as suggested by both Cooper

and by Kuhn [1973], its ancestry may be traced back to the General Fermat

Problem, first formulated in the 17th century. As will be seen in the

next section, the research and consequent literature that has evolved

since Cooper's original paper [1963], varies quite extensively in both

problem formulation and solution methodology. Consequently, there exist

commonly used criteria and/or descriptors with which one can effect as

detailed a partitioning of the set of all location-allocation problems

1
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as one so desires. In particular, any given location-allocation problem

can be identified as belonging to some class/subclass of location-

allocation problems. The particular problems analyzed herein for

example, fall within the generic class of capacitated, network

location-allocation problems, for they involve the location of

capacitated facilities on a network in order to satisfy some known

demand distribution on the network.

In order to formulate this class of problems, let G(N,A) be an

n-vertex undirected (connected) network where the set N denotes the

collection of nodes or vertices vk, k=1, ..., n, and where the set A

denotes the set of arcs or links 2 E (i,j) connecting certain designated

node pairs vi and vj in N. For any two points P and Q on the network,

let d(P,Q) denote the length of the shortest path between P and Q in the

network. With each node vksN, associate a nonnegative demand/weight

hk, k=1, ..., n. Note that by creating additional nodes if necessary,

one may assume that all such discrete demands are confined to the nodes

of G. Furthermore, with each link 2sA, associate a nonnegative,

integrable demand function f£(x) defined for all points x on the link 2.

This function may be thought of as a continuum of demand or as a
u

weighted probability density function, or as a weighted histogram such

that the expected demand on an infinitesimal segment dx of the link 2 at

a point x E dx is given by f2(x)dx. (For applications in which

suchdemanddensities arise, the reader is referred to Handler and

Mirchandani [1979], Chiu [1982], Minieka [1977], and Denardo, et al

[1982].) Let y = {yl, ..., yp} represent the location decision variables,

namely, the points on G at which the p facilities (or supply centers)
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are to be located• Let si denote the supply available at facility i,

i=l, ..., p. Accordingly, define the allocation decision variables as

follows. Let
wik

denote the quantity supplied to node vk from facility

i, i=l, „„„, p, k=l, •••, n and let ¢i£(x),
x€2

denote the nonnegative

function which gives the portion of the demand f£(x), x62 served by

facility i, for i=l, ..., p and 2eA. Then, we formulate the

capacitated (general) absolute p-median (or minisum) network location-

allocation problem as follows:
l

15 ¤ 15
GAMNLAP : minimize E E w d(y ,v ) + E Z fo (x)d(x,y )dx

yanc 1=1k=1 1k 1 1‘
1=1 z6A111 1

w and ¢(•)>O
n

subject to Z wik + E ]¢i£(x)dx < si for each i=l, •„„, p
k=l 2€A 2

P
E wik = hk for each k=l, ••„, n

i=l

P
E ¢ (x) = f (x), for each xe2, 2eA .

12 2i=l

We remark that in describing/classifying Problem GAMNLAP, the

descriptor "capacitated" implies that si< ¤ for some or all i=l, ..., p,

the descriptor "absolute" denotes that yi may lie anywhere on the

network, i=l, •••, p, and the descriptor "(general)" is used to indicate

that in addition, there exists discrete nodal demand as well as a

continuum of link demands• Note that the constraints in che above

formulation represent supply and demand constraints, and that the

objective function attempts to minimize total (expected) costs, where

costs are assumed to be directly proportional to the distance travelled

in the network in order to satisfy a demand• A pertinent comment here

is that the above mathematical formulation is more by way of precisely
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defining the problem as opposed to posing a mathematical program that

needs to be solved directly. For the most part, solution algorithms for

this class of problems rely heavily on the inherent graph theoretic

nature of the problem. Q

In this study, we are primarily concerned with the exact solution

of two important and insightful special cases of Problem GAMNLAP. The

first of these involves the location of capacitated facilities on a

chain graph, whereas the second involves locating two (2) such

facilities on a tree network. Each of these problems assumes the

respective graph/network to have both nodal and link demands.

Abbreviated descriptions of these problems, their solutions and results,

are given below. In addition to the chain graph problem, we provide an

efficient algorithm for solving a period by period sequential location-

allocation problem on the chain. We might add that the optimization

techniques used in this study include linear and nonlinear programming,

the Calculus, branch and bound concepts, and of course, graph theoreticprocedures. l
1.1.1 The Chain Graph Problem .

The chain graph problem, denoted as Problem CP, is a special case

of Problem GAMNLAP in which G(N,A) is a chain having [N] nodes and [A| =

|N|-1 links. However, by assuming that all discrete nodal demands have

been continuously spread over some E-length links as in Cavalier and

Sherali [1983a], one can consider the problem to be that of locating an

absolute p-median, involving p > 1 capacitated (si < ~, i=1, ..., p)

facilities, on a real line segment [0,c] on which there are no points of

positive (demand) mass, and on which the demand is defined by a single
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nonnegative, integrable (demand) function f(·). Specifically, the

problem is to locate p > l facilities (having known finite capacities)

on the interval [0,c], and to determine exactly how each of them will

allocate its supply to the demand on [0,c], so as to minimize the total

(expected) transportation cost as (appropriately) defined by the

objective function of Problem GAMNLAP. Furthermore, it is important to

p c
note that Problem CP assumes that Z s = ff(x)dx. As such, we choose to1=1i 0
describe Problem CP as being a capacitated, balanced, location-

allocation problem on a chain graph with a continuum of link demands.

We begin our analysis of Problem CP by determining optimal

solutions to both an associated location and allocation subproblem. The

first of these requires only the use of the Calculus, whereas the latter

requires that we make use of an approximating transportation problem and

a corresponding optimal solution obtained via the Northwest Corner Rule.

After determining how to solve these two subproblems, we are then able

to solve the chain graph problem for any given permutation/ordering of

the p facilities, and thereby "reduce" Problem CP to that of determining

which of the possible orderings of the facilities results in a least

cost solution.
”

The likelihood of there being a large number of different orderings

(even for relatively small values of p) invoked our use of implicit

enumeration (branch and bound) in trying to determine a least cost

ordering. Specifically, we (algebraically) establish results that

enable the efficient construction of an enumeration tree by which all

orderings are implicitly (rather than explicitly) considered. The
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branching criteria/rules by which we construct such a tree are dictated

by results such as the following: that ordering in which the facilities

appear from left to right (in [0,c]) in nondecreasing order of capacity,

is optimal in the case where the demand on [0,c] is defined by some

nondecreasing function. In order to effect the second aspect of the

branch and bound methodology, i.e. bounding the objective function at

nodes of the tree so as to allow early fathoming, we establish results

which enable us to compute a lower bound for any partial ordering which

is often times tight enough to allow us to fathom the corresponding node

and thereby avoid having to explicitly examine the completions of the

associated partial ordering. We give several examples which illustrate

the use of our branching criteria and bounding capability. To summarize

our description of Problem CP, it can be stated that we obtain closed

form solutions in some cases (i.e. for some f(·)), and obtain reduction

theorems restricting the types of candidate solutions in other cases.

Finally, we present a simple algorithm to solve a dynamic,

sequential location-allocation problem in which a single facility per

period is required to be located. Specifically, the algoriuhm

prescribes a reduced set of candidate optimal solutions from which to

choose the best. We provide an illustrative example of this algorithm.

1.1.2 The Absolute 2-median Tree Problem l
The second special case of Problem GAMNLAP considered herein, is

denoted as Problem CZMTP, and involves the location of a capacitated

absolute 2-median on a tree network. As was the case for the chain

graph problem, our analysis of Problem C2MTP assumes that the problem is

balanced, but unlike the chain graph problem, our analysis of Problem
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CZMTP must (explicitly) contend with both nodal and link demands.

Our approach to solving Problem CZMTP is to develop an algorithm

which can be used to construct two trees contained entirely within

G(N,A) E T(N,A), each of whose ends constitute a set of candidate

optimal locations for one of the two elements of an absolute 2-median.

We provide results which address the geometry of these trees and which

reduce the number of candidate pairs (of ends) that need to be

considered. In addition, efficient methods of comparing the relative

costs of candidate pairs are provided.

We would add, that once the locations of an absolute 2-median are

identified, the results of our chain graph analysis can be used to

determine corresponding optimal allocations for each of the two

capacitated facilities. These allocations are such that no link of

T(N,A) will contain a subset having positive measure over which the

demand is jointly supplied. Rather, our optimal solution is such that

only nodal demands can be jointly supplied.

1.2 Literature Review

In this section, we present the reader with an overview of an area

of analysis called Location Theory, of which the Location—Allocation

Problem is one of two problems of interest. Specifically, Location

Theory involves the analysis of two similar/related types of problems:

the Location—Allocation Problem described above, and the (Pure) Location

Problem. It is this author's opinion, that the literature is often

times inconsistent in ascribing a particular problem formulation to one

of the above types of problems. Consequently, we will consider a

location-allocation problem to be one in which the exact allocation of
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supply to demand is unknown prior to locating the facilities, whereas,

a location problem is one in which the allocations are known prior to

the facility locations.

Note that our criterion for delineating between a location and

location-allocation problem is all inclusive of any problem involving

the location of p > 1 facilities (with respect to some set of points) so

as to optimize some cost function, since any such problem necessarily

has an associated allocation. A case in point, is the General Fermat

Problem in which a single point is to be located on a plane so as to

minimize the sum of the distances to three (3) fixed points on the

plane. This problem has an associated allocation in which all

allocations are unity. With respect to the issue at hand, we would

classify the General Fermat Problem as a location problem, as does the

literature. In general, our criterion and the literature are in

agreement in classifying any single facility problem as a location

problem, since all demand will necessarily be supplied by the single

facility, regardless of its location.

The inconsistency to which we refer, usually does not involve such

explicit (with respect to allocation) problem formulations as those of

Francis and White [1974], in which they formulate a location-allocation

problem to be one in which there are both location and allocation

decision variables, and in which they formulate a location problem so

that the amount of demand provided customer j by facility i, say, is a

given data of the problem. Rather, the inconsistency usually concerns

problems involving the location of uncapacitated facilities for which

the entire demand of any customer is fully supplied by the nearest
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service facility. Some texts (see Handler and Mirchandani [1979]) as

well as some of the literature, refer to such problems as location

problems, whereas others refer to them as location-allocation problems.

With respect to our criterion, such problems are considered to be

location-allocation problems since one does not know which facility will

(fully) supply/serve which customer until such time as the facility

locations are determined.

The intent of the above discussion is not to confuse an issue that

might otherwise have gone unnoticed, but rather we wish only to apply

some rigor to what appears (to us) to be an issue lacking thereof. From

time to time throughout our review of the literature, we will remind the

reader of this issue by specifying the type of problem to which the

literature pertains. Additionally, we would remark once again, that

this study involves the analysis of two (2) special cases of Problem

GAMNLAP, which are location—allocation problems.

We will begin our overview of Location Theory with a brief

discussion of some of the criteria/descriptors commonly used to

classify/categorize both location and location—allocation problems.

This will in turn be followed by a selected review of the literature.

(Note that for the most part, the following discussion applies equally

to both location and location-allocation problems. However, for the

sake of convenience and since this study treats the Location-Allocation

Problem, we will only refer to the Location-Allocation Problem during

the course of this discussion. At such time as necessary/appropriate,

we will specify if in fact we are discussing a (pure) location

problem.)
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1.2.1 Classification of Location-Allocation Problems

One of the first criteria comonly used to classify a location-

allocation problem concerns the solution space of the problem.

Typically, one finds that most of the literature involves the location

of facilities on either a plane (see references 19, 20, 22, 23, 69, 71,

72, 74, 86, 101, 105, 110) or a network (see references 4, 8,
10,

14,

18, 49, 50, 51, 57, 81, 82, 117, 118). This is not to say that one is

discouraged from working on a more exotic topological space, but rather

that practicality appears to mandate the choice of solution space.

Additionally, the solution space can be either discrete (see references

32, 45, 48, 106, 113) or continuous (see references 19, 20, 22, 23, etc.).

Typically, a discrete solution space is one in which the facility

locations are restricted to a finite set of points, or at least to a

countably infinite set (of points) of measure zero; whereas, a

continuous solution space is one in which the facilities are to be

located in a set having non-empty relative interior such as the entire

plane or network, or in some specified regions of the plane or network.

In either case, the solution space can be further defined/restricted by '

side constraints.

Obviously, any location-allocation problem will require that some

measure of distance be used to determine the goodness of its solutions.

As such, the distance measure/metric involved in location-allocation

problems provides us with another basis for classifying these problems.

For network-based location-allocation problems, the distance measure

most often used is that in which the distance between two points on the

network is defined to be the length of the shortest path connecting them
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(this assumes connectivity). For problems involving the location of

facilities on a plane (or on any n-dimensional Euclidean Space), the

most frequently used metrics are the rectilinear (see references 19, 20,

22, 23, 74, 105, 110), Euclidean/squared-Euclidean (see references 19,

20, 22, 23, 69, 71, 72, 86, 101), and the general ßp norm (see references

27, 55, 84). Of course, the particular distance measure used in any

given problem is usually (somewhat) dictated by the qualitative nature

of the problem. For example, if one wished to locate some service

facilities (i.e. fire houses, police stations, etc.) within a large city

in which the street layout was of a "north-south-east—west" configuration,

then the rectilinear metric would be the metric most likely to be used.

We will define each of the above metrics during the course of our

literature review.

A third category of classification concerns the optimality criteria

used to evaluate alternative solutions. The most comonly used are the

minisum and minimax criteria. The first of these usually involves the

minimization of some total cost function, whereas the latter employs a
V

conservative point of view and attempts to minimize the worst case

behavior of the system being modeled. As is the case for the distance

measure, the choice of optimality criterion is often influenced by the

very nature of the problem itself. For example, if one were locating

warehouses from which parts are to be shipped to automobile assembly

plants say, then one would most likely want to minimize total

transportation/shipment costs and would therefore use the minisum

optimality criterion. On the other hand, if one were locating emergency

medical facilities in a large metropolitan area, one may wish to



12

minimize the maximum distance a person must travel to reach the closest

facility and would thus opt for the mimimax criterion. Then too, a more

appropriate choice of optimality criterion may be to utilize both the

minisum and minimax criteria concurrently. For example, it may be best

to minimize the average distance a person must travel to reach the

closest facility as long as the maximum distance is less than a given

threshold. Likewise, another criterion (utilizing both the minisum and

minimax criteria) may be to minimize the maximum travel distance as long

as the average travel distance is less than a specified value. Finally,

we would remark that if one should find oneself tasked with locating

"obnoxious facilities", then a maximin type of optimality criterion may

be best suited for the task at hand. For example, if one were locating

sewage treatment plants within a large suburban area, one may wish to

maximize the minimum distance between any such plant and any township

within the area, say.

Still another significant classification criterion concerns the

distribution of customer/demand locations. A location-allocation

problem is said to have either discrete or continuous demand, depending

on whether its customer locations consist of a discrete set of points or

a continuum of points. In the first case (see references 19, 20, 22,

49, 50, 80), the demand level at each customer location is usually

specified by some positive real number, whereas for a problem having

continuous demand (see references 11, 12, 14, 28, 79, 129, 131, 134),

the demand requirements are usually specified by some nonnegative demand

density function(s). One should be careful here to note the distinction

between the criterion of discrete/continuous demand and that of a
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discrete/continuous solution space- For example, one could have a

location-allocation problem for which there are area (continuous)

demands (see references 12, 28) but a discrete solution space, such as

would be the case if one were locating anti-ballistic missile
l

installations to protect a large metropolitan area, say, from attack by

inter-continental ballistic missiles- A vast majority of the literature

assumes a discrete demand, mainly for mathematical ease- However, the

two problems analyzed in this study assume a continuous demand-

In addition to the above criteria, location-allocation problems can

be further classified according to the following problem characteristics-

First, with regard to the service facilities themselves, problems are

comonly referred to as being single facility or multi-facility .

location-allocation problems, depending on the number of facilities to

be located- Still, some of the literature considers the number of

facilities to be a decision variable rather than a parameter of the

problem- Another variant that one might encounter involves the

consideration of probabilistic behavior, in particular (but not

exclusively), with regard to the demand levels and locations- Finally,

the literature includes the analysis of dynamic (versus static)

location-allocation problems which allow for the relocation and/or

addition of facilities over a multiperiod horizon-

It is important that one realize that the above discussion is

ngt all inclusive of the many (problem) variants one might encounter in

Location Theory- In fact, our review of the literature will touch upon

a few of these variations- Except for the implicit constraint of

practicality, it almost seems as though formulating a location-
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allocation problem is limited only by one's imagination. This may

explain in part, the high level of interest in Location Theory evidenced

by the extensive amount of existing literature.

As a final thought regarding the classification of location-

allocation problems, we would mention that Handler and Mirchandani [1979]

adopt a queuing theory type of classification scheme to facilitate

their presentation of the minimax network location-allocation problem.

Such a scheme could in fact be used to classify all location-allocation

problems. For example, one might choose to use a six-part "coded

string", denoted by (*1/*2/*3/*4/*5/*6), where the components of this

string could be defined as follows:

*1: solution space (medium), i.e. P E plane, N E general network,

N—C E chain network, N-T E tree network, etc.

*2: solution space, i.e. CfE continuous solution space, DfE discrete

solution space.

*3: distance measure, i.e. lp E lp norm, SP E shortest path (on network),

RT E rectilinear, EC(EC2) E Euclidean (Squared Euclidean), etc.

*4: demand distribution, i.e. CCE continuous demand, DCE discrete demand.

*5: optimality criterion, i.e. MS E minisum, MA E minimax, MAM E

maximin, etc.

*6: number of facilities, i.e. p E p facilities.

Thus, any given string will denote a particular class of location-

allocation problems. We would remark however, that unless ones goal is

to harass ones readers (with long coded strings), any such

classification scheme will most likely be such that there (still)

exist variations within any particular class. We might add,
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that the two problems to be examined herein, i.e. the chain graph

problem and the 2—median tree problem, fall within the classes described

by the scrings (N-c/cf/sp/cc/Ms/p) ana (N—T/cf/s1=·/cc/Ms/p),

respectively.

In light of the above remarks concerning the solution space of a

location·allocation problem, we will present our review of the
‘

literature in two parts. Specifically, we begin by first reviewing some

of the literature involving the location of facilities on a plane, with

this to be followed by a review of some network·based research. The

following two sections represent only a selected review of the vast

amount of literature in Location Theory.

1.2.2 Location-Allocation Problems on Planes

Continuous, planar location·allocation problems having discrete

demand (PLAP), address the problem of determining the location of p > 1

supply centers or facilities in a plane to serve n customers with fixed

locations, and to simultaneously determine the allocation of services or

products from the supply centers to the customers in order to minimize

total transportation costs., Mathematically, this problem may be stated

as follows.
p n

(PLAP) minimize Z Z t w _ d(X ,P_)

n
subject to E w _ < s , i=1, ..., p

ij iJ=1

w _ = , j= , ..., ng d ' 1i„1 1J J

0wherethe decision variables are:
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wij
= annual number of units transported from supply center i

to customer j,

Xi = (xi,yi) E location of supply center i on the plane,

i=l, ---, p,

and where the data is symbolized by:

Pj = (aj,bj) E known location of customer j on the plane,

j=l, ---, n,

tij = transportation cost per unit shipped per unit distance from

supply center i to customer j, i=l,
---,

p; j=l,
---,

n,

si = annual capacity of supply center i=l, --., p,

dj = annual demand of customer j=l,
---,

n,

and where d(Xi,Pj) is some appropriate distance measure between the

locations Xi of supply center i and Pj of customer j, i=l, ---, p, j=l,

---,
n-

The above formulation is generally referred to as the capacitated

version of Problem PLAP since each supply center has a capacity

restriction si- In the case when si= ¤ for all i, the problem is

referred to as uncapacitated- It should be noted that in the

uncapacitated case, the total demand of any given customer is entirely

satisfied/supplied by a single facility- The interpretation of si= ¤ is

that the capacity of supply center i is effectively determined by its

l

total allocation in an optimal solution- Furthermore, note that a more

general statement of the problem could consider multiple commodities

along with interactions between new facilities as well- Such a version

has been addressed by Shetty and Sherali [1977]-

Observe also that Probelm PLAP is comprised of two major
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components, namely, a location and an allocation component. When the

location variables Xi are specified, i=l, ..., p, the problem reduces to

the well known transportation problem. On the other hand, when the

allocations
wij

are specified (evidently feasible to (1)), the

problemreducesto a (pure) location problem on the plane (recall our discussion

preceding Section 1.2.1). Accordingly as p=1 or p > 2, this problem is

known as a single facility location problem (SFLOC) or a multifacility

location problem (MFLOC). Of course, if p=1, then SFLOC and PLAP are

equivalent. On the other hand, if p > 2 and if there are no

interactions between supply centers, then on fixing an allocation

w E (wij), Problem PLAP reduces to p SFLOC problems. Further, the

structure of these location problems depends on the distance measure

used. Since this feature lends an important structural attribute to

PLAP, which in turn plays a significant role in the design of a

solution method, we discuss some related literature below.

The (pure) rectilinear distance location problem is one in which

the distance norm is defined by d(X,P) = Ix-a| + |y-b|, where X = (x,y)

and P = (a,b). The objective function in this case is separable and the

determinination of the x and y new facility or supply center coordinates
‘A

can be treated as two separate optimization problems. Francis [1963] is

credited with first solving the rectilinear SFLOC problem. The

rectilinear MFLOC problem was originally proposed by Francis [1963], who

subsequently solved it in the special case of equal weightings (see

Francis [1964]). Cabot, Francis, and Stary [1970] solved the general

rectilinear MFLOC problem by decomposing it into two independent

subproblems, each of which is equivalent to a linear program which is
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the dual of a minimum cost network flow problem. Fulkerson's out—of-

kilter algorithm was then used to obtain an optimal solution.

Wesolowsky and Love [1971b] also solved the general rectilinear MTLOC

problem by using a linear programming formulation. A nonlinear

approximation to the rectilinear MFLOC problem was developed by

Wesolowsky and Love [1972] which was then solved using a gradient search

procedure.

A direct search algorithm for the rectilinear MFLOC problem was

developed by Pritsker and Ghare [1970]. However, as demonstrated by Rao

[1973], this was essentially a primal simplex based linear programming

approach, and the stated optimality conditions were not sufficient in

the preseuce of degeneracy. A complete set of necessary and sufficient

optimality conditions have been derived by Juel and Love [1976].

An alternative, efficient, primal simplex based algorithm for this

problem was developed by Sherali and Shetty [1978]. Perhaps the most

efficient algorithm available for this problem is due to Picard and

Ratliff [1978] who showed that the problem can be solved via at most

(n-1) minimum cut problems on derived networks containing at most (p-2)

vertices. Later, Kolen [1981] showed that the methods of Sherali and

Shetty, and Picard and Ratliff are essentially equivalent, and differ

only in the efficiency of computational implementation.

If d(X,P) = (x—a)2 + (y-b)2, then the resulting problem is called

the squared—Euclidean distance problem, and is again separable in the x

and y variables. In this case, both the SFLOC and MFLOC problems can

be solved using standard calculus techniques. Determining the optimal

solution in the MFLOC problem involves the solution of two systems of n
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linear equations in n variables-

For Euclidean distance problems, the distance norm is defined by

d(X,P) = [(x-a)2 + (y—b)2]l/2- Unlike the squared-Euclidean case there

exist points of nondifferentiability in this problem, and even where the

extremal equations are defined, they are non·linear and an exact

closed-form solution cannot be obtained• However, a fixed-point

iterative scheme was used by Weiszfeld [1937], Cooper [1963], and Kuhn

and Kuenne [1962] to solve the SFLOC problem by finding a solution to

the extremal equations when it exists- The scheme is commonly labeled

the Weiszfeld procedure, and issues concerning its convergence have been

investigated by Katz [1969], Kuhn [1973] and Morris [1981].

An extension of the Weiszfeld procedure used in solving the

Euclidean distance problem was developed by Eyster, White and Wierwille

[1973] for SFLOC and was extended to MTLOC- This procedure is based

on approximating the objective with hyperboloids to eliminate

indeterminancies in the extremal equations- The technique has been

labeled the hyperboloid approximation procedure (HAP). Recently,

Charalambous [1982] has developed a set of optimality conditions for

the problem which lead to a far more efficient algorithm, devoid of the

ill-conditioning of the Hessian matrix which afflicts the HAP method as

the degree of accuracy is increased. Among other contributions for 1

this problem are the convex programming approach of Love [1969], the

necessary optimality conditions due to Francis and Cabot [1972], and the

stopping criterion proposed by Love and Yeong [1981] and by Juel [1984]-

The general lp distance problems, for which d(X,P) = [|x—a|p +

[y—b]p]l/P, with p usually in the interval (1,2], employ procedures
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similar to the Euclidean distance problem and are discussed in Drezner

and Wesolowsky [1978], Morris and Verdini [1979] and Juel and Love

[1981], among others.

Several variants and extensions of these problems have been

considered in the literature. These include the consideration of

minimal new-facility-separation constraints as in Schaefer and Hurter

[1974], the consideration of stochastic demands and/or customer

locations as in Cooper [1974], Katz and Cooper [1974, 1976], Seppala

[1975], Aly and White [1978] and Wesolowsky [1977], the consideration of

dynamically relocating facilities over a multiperiod horizon as in

Wesolowsky [1973a] and Wesolowsky and Truscott [1976], the consideration

of area distributed demands as in Wesolowsky and Love [1971a], Love

[1972], Bennett and Mirakhor [1974], Drezner and Wesolowsky [1980] and

Odoni and Sadiq [1982], and the consideration of special norms as in

Ward and Wendell [1980] which lead to linear programming formulations of

the location problem.

In contrast, there does not exist a significant body of literature

for solving the joint location-allocation problem PLAP. The

uncapacitated case, however, namely when si = ¤ is assumed for each

i=l, ..., p, has been analyzed to a somewhat greater extent, although

the solution methods do not readily extend to the capacitated versions.

The related literature for both capacitated and uncapacitated versions

is discussed below.

In the case of the rectilinear norm, Problem PLAP becomes a

nonconvex bilinear programming problem (see Vaish [1974]). Love and l

Morris [1975] have developed an exact solution procedure for the
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uncapacitated version of this problem. The procedure consists of using

a set reduction algorithm to reduce the possible solution set, and the

problem is shown to be equivalent to the p-median problem on a weighted

connected graph. Subsequently, Sherali and Shetty [1977] developed a

convergent cutting plane algorithm to solve the capacitated version of

PLAP. This algorithm was further improved upon by Shetty and Sherali

[1977] who proposed deeper (negative—edge extension reverse polar)

cutting planes, and provided a more efficient computational

implementation. This procedure was actually developed for a more

general problem which permitted interactions between new facilities and

involved multiple commodities.

The uncapacitated version of problem PLAP with Euclidean distances

was originally formulated by Cooper [1963], who proposed an enumerative

procedure for its solution. However the method proved to be

impractical on problems of any reasonable size. Several heuristic

solution procedures were also proposed by Cooper [1964, 1967].

Subsequently, Eilon, et al [1971] developed a computationally tractable

iterative solution procedure for this problem. An alternative heuristic
A

as well as an exact branch and bound algorithm for this problem was

later developed by Kuenne and Soland [1972]. For the special case when

p=2, Ostresh [1975] provided an improved version of this algorithm. A

variant of the uncapacitated version of PLAP which uses ZP distances has
been considered by Love and Juel [1982]. This problem has been shown to

be equivalent to a concave minimization problem, and several

perturbation type of strategies have been applied to the problem.

The capacitated version of the location-allocation problem was
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first considered by Cooper [1972] who provided an exact enumerative,

combinatorial approach, and also developed two heuristic methods for the

problem. Perhaps the most tractable, though not effective, solution

method which exists for the capacitated Euclidean distance location-

allocation problem is the cutting plane algorithm due to Selim [1979].

As far as a heuristic strategy for this problem is concerned, the method

of Murtagh and Niwattisyawong [1982] which employs the commercial

nonlinear programming package MINOS along with a reasonable starting

solution, appears to be the most promising.

The Squared Euclidean Distance Location-Allocation problem has

surprisingly not received any significant attention in the literature.

The principal reason being that it shares a common structure with the

Euclidean distance problem and the development of algorithms for the

latter problem has evidently been thought of as being a natural

precursor to the consideration of the squared Euclidean location-

allocation problem.

Next, we would remark that there exists a class of location-

allocation problems which require the supply centers to be located

at only certain specified discrete sites. These problems are commonly

known as fixed-charge or plant location problems with side constraints.

One important case considered by Sherali and Adams [1982] seeks the

simultaneous location of facilities on a set of potential sites

in a one-to—one fashion, and the allocation of products to customers

so as to minimize total (discounted) production, location and

transportation costs. Other noteworthy papers in this context include

those of Erlenkotter [1978], Guignard and Speilberg [1979], Geoffrion
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and McBride [1979], Bitran, et al. [1981] and Nagelhout and Thompson

[1981].

Finally, we would mention three papers which treat location-

allocation problems having area demands. Specifically, Leamer [1968]

considers a problem in which the demand is continuously distributed over

either a square, an equilateral triangle or a circle. Marucheck and Aly

[1981] consider a location-allocation problem in which customer demands

are characterized by bivariate uniform probability density functions

over rectangular regions. A recent paper by Cavalier and Sherali

[1983c] considers a problem in which the demand is continuously

distributed over a convex polygon. They provide an algorithm for the

single facility version of their problem which converges to a global

optimal solution. Similarly, a convergent iterative heuristic is

provided for the nonconvex multifacility version.

1.2.3 Location-Allocation Problems on Networks

The analytic treatment of location problems on a network can be

traced back to the nineteenth-century mathematicians Jordan and

Sylvester, and possibly to a seventeenth-century researcher by the name

of Cavalieri. Much of the recent interest in this area has been

stimulated by the seminal work of S. L. Hakimi [1964,1965]. A large

part of this interest, and consequently the literature, concerns two

particular types of problems which have come to be called the p-center

problem and the p—median problem. As will be seen, the first of

these problems employs a minimax optimality criterion, whereas the

latter is concerned with optimizing some average behavior of the system
J,

being modeled and consequently, uses the minisum criterion. An
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excellent tutorial of the p—center and p-median problems is given in the

text by Handler and Mirchandani [1979]. In addition, the text by

Christofides [1975] devotes one chapter to each of theses problems. A

text by Minieka [1978] also devotes a chapter to the discussion of

network—based location problems, with most of its emphasis being

directed towards the 1-center and 1-median problems. Finally, we remark

that an outstanding review of network-based location theory exists in

the form of a recent two-part survey by Tansel, Francis and Lowe

[1983], the first part of which is devoted entirely to the p'c€uC€I and

p-median problems. Our review of the network·based literature will

concern itself with (only) these two types of problems and will begin

with the p—center problem.

1.2.3.1 The (absolute) p—center (minimax) Problem with Nodal Demands

Let G(N,A) denote an n-vertex undirected (connected) network having

node set N = {vl, ..., vn} and for which A denotes the set of arcs or

links connecting certain designated node pairs. Define the distance

between any two points x and y on G, denoted d(x,y), to be the length of

the shortest path connecting them. In addition, to each node vie N,

associate a nonnegative weight/demand hi, i=1, ..., n, and let the

decision variables Xp= (xl, ..., xp) denote the locations (on G) of p

facilities from which the total demand on G is to be served/supplied.

Then, defining d(vi,Xp) = min[d(vi,xl), ..., d(vi,xp)}, i=1, ..., n, a

generic formulation of the absolute p-center problem can be given as

follows:

minimize f(X ) = max h d(v ,X ) .
Xp on G P 1<i<n 1 1 P
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(Note: any X; which solves this problem is referred to as an "absolute

p-center". The problem which would result from restricting Xp to the

nodes of G is known simply as the "p·center problem", and its solutions,

as p—centers. Often times the literature refers to both of these

problems as the p—center problem and then (of course) specifies which

solution space is intended. In our review of the (absolute) p-center

problem, we will take the time to distinguish between the two by use of

the descriptor "absolute". Thus, we could make reference to any of the

following: the p-center problem, the absolute p-center problem, or the

(absolute) p-center problem, where the latter of these would be used to

mean that the associated remark applies equally to both the p-center and

the absolute p-center problem.)

Note also that the above formulation assumes that the facilities

are uncapacitated and that demand can occur only on the nodes of G.

More generally, we could have formulated the (absolute) p-center problem

so as to allow for continuous link demands and/or capacitated

facilities, However, the above formulation is the one used by Hakimi

[1964,1965] and generically describes the problem most often treated in

the literature. In fact, this author is not aware of any research that

involves the location of capacitated facilities on a network and only

very little involving problems having continuous demand. One final

remark before we proceed with our review of the literature concerning

the (absolute) p-center problem, is that the (absolute) p-center problem

given above is a location-allocation problem (for p > 2) since the

actual allocation of supply to demand is not known until such time as

the facility locations have been determined. Of course, at such time as
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this, the demand at each node of G will be fully supplied by the nearest

facility.

‘ Hakimi [1964] was the first to formulate and solve both the

1-center and absolute 1-center problems. His solution to the first of

these simply requires that one compute and examine an n x n distance

matrix, and consequently results in an 0(n3) algorithm. A recent O(n)

algorithm by Hedetniemi, Cockayne, and Hedetniemi [1981] solves the

1—center problem in which all hi= 1, i=1, ..., n, by utilizing an

"efficient data structure for representing a tree called a canonical

recursive representation". Rosenthal, Hersey, Pino, and Coulter [1978]

introduced a generalized algorithm that solves a number of "eccentricity"

problems on tree networks, one of which is the 1-center problem. In _

their algorithm, they define the eccentricity of a vertex to be the

distance from that vertex to a farthest vertex. They prove that any

vertex of minimum eccentricity is a 1-center. Other algorithms for

solving this problem have been developed by Rosenthal [1981] and Slater

[1981].

Hakimi [1964] solves the absolute 1—center problem by solving |A|

"simpler mini-max" problems in order to determine a local center on each

of the |A| arcs of G. The absolute 1-center is then selected as the -

best of these [A] local centers. Additionally, computational

refinements of Hakimi's method have resulted from the work of Hakimi,

Schmeichel and Pierce [1978] as well as that of Kariv and Hakimi [1979].

Frank [1967] and Minieka [1977] proposed solution procedures to the

continuous demand, absolute 1—center problem which are similar to

Hakimi's method. Finally, Minieka [1980] considers "conditional"
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(absolute) l—center problems in which a 1-center is to be located not

only with respect to the nodal demands, but also with respect to

previously located centers.

A commonly exploited type of network is that of a tree, i.e. a

connected network having no cycles. The principal reason for this is

that a (connected) tree satisfies the property that there exists a

unique shortest path joining any two points on the tree. Goldman [1972]

solved the unweighted (i.e. all hi=1) alsolute l—center problem via the

repeated application of a "trichotomy theorem" which either determines

the edge on which the center lies, or reduces the search to the two

subtrees obtained by removing that edge. Handler [1973] also solved the

unweighted problem by using an 0(n) algorithm which determines a longest

path in the tree and then locates the absolute l—center at the midpoint

of this path. Dearing and Francis [1974] were able to determine a lower

bound (for any network) to the optimal objective value of the absolute

1-center problem and to prove that this bound is always attainable for

the case in which G is a tree. In so doing, they identify two

"critical" vertices such that the absolute 1-center is uniquely located

on the unique path joining these vertices. Similarly, lower bounds

were obtained by Dearing [1977] and by Francis [1977] to a nonlinear

version of the absolute 1-center problem in which the weights hi, i=1,

..., n are replaced by strictly increasing functions of the distances

d(vi,Xp), i=l, ..., n. Both authors obtained a lower bound subsuming

the one defined in Dearing and Francis [1974]. The bound is applicable

to all networks and is always attainable for tree networks.

Minieka [1970] considered the unweighted problem on a general
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network for the case p > 2 and suggested a rudimentary algorithm that

relies on solving a finite sequence of set covering problems.

Christofides and Viola [1971] solved the weighted problem by first

solving a sequence of r-cover problems with successively increasing

values of r. Handler [1978] considered the continuous and absolute

p—center problems on a tree network for the case p = 2. Finally,

Chandrasekaran and Daughety [1981] gave a method to solve the continuous

p-center problem on a tree network.

1.2.3.2 The (absolute) p-median (minisum) Problem with Nodal Demands

Let G(N,A), hi, Xp and d(vi,Xp), i=1, ..., n, all be as defined in

Section 1.2.3.1. Then a generic formulation of the absolute p-median

problem can be given as follows:

minimize f(X ) =
g h d(v X ) .

X on G P i=l 1 i p

P
(Note: we could do just as we did for the minimax problem and obtain a

variant of the absolute p-median problem, called the "p-median problem",

by restricting Xp to the nodes of G. However, due to a result by

Hakimi [1964,1965] in which he proves that with only nodal demands,

there exists an absolute p-median consisting entirely of nodes of G,

there is no need to distinguish between the absolute p—median problem

and the p—median problem in this case.)

We would remark that it is this problem rather than the minimax

problem which is of most interest to our study, since Problem GAMNLAP

is an absolute p-median problem. Of course, Problem GAMNLAP is a more

general formulation than that of above in that it allows for link

demands and/or capacitated facilities, whereas the above formulation
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restricts all demand to the nodes of G and assumes the facilities to be

uncapacitated so that each node will be fully supplied/served by the

facility nearest to it. Note however, that according to our criterion,

both the above formulation and (of course) Problem GAMNLAP are location-

allocation problems for any p > 2, and that both are (pure) location

problems for the case p = 1. It is the above formulation that was first

presented and solved by Hakimi [1964,1965], and it is this same

formulation which is most often treated in the literature.

Hakimi [1964] was the first to define an absolute 1—median, and

furthermore, he proved that such a point can always be found amongst the

nodes of G. Consequently, he determines a median on G by summing the

columns of a weighted (by the hi) n x n distance matrix and then

choosing any node which corresponds to a column having minimum sum. _

For the case in which G is a tree network, more efficient

procedures have been developed with which to determine a median

location. In particular, Goldman [1971] developed an O(n) algorithm

which reduces the search to successively smaller subtrees until such

time as a median is found. Specifically, at each iteration of his

algorithm, one chooses an arbitrary end/tip of the current tree and

examines its weight. If the (modified) weight of the chosen end is >

half of the total weight (of the tree), then the end is a median

location. Otherwise, add the weight of this end to that of the adjacent

node and then delete both the end and arc incident to it. Now repeat

this process with the new (reduced) tree. This algorithm is based on a

"localization theorem" proved by Goldman and Witzgall [1970], which

provides sufficient conditions for a subset of G to contain a median.
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Note that Go1dman's algorithm does not require the use of arc lengths,

but uses only the incidence relationships and weights. Another

Goldman-like algorithm for locating a 1-median is that of Kariv and

Hakimi [1979]. Theirs is an 0(n) algorithm which utilizes the concept

of a "centroid" of a tree. They define such as follows. Let Tl, ...,

Tki be the subtrees obtained by removing vi from G. Let W(Tj) be the

· sum of the weights of the vertices in Tj, and define Ü(vi) to be the

maximum of W(Tj) for 1 < j < ki. A vertex vt is called a centroid of G

if and only if it minimizes N(vi) over all vie N. They prove that a

1-median of a tree is identical to a centroid of the tree and then

utilize this fact in a Goldman-like algorithm. In addition, Kariv and

Hakimi [1979] showed that the p-median problem on a general network

is NP-hard. For the case of tree networks, however, they provide a

polynomial algorithm of order O(n2p2) for locating a p-median.

Two generalizations of the 1—median problem can be found in the

papers by Minieka [1984] and Slater [1981]. In the first of these,

Minieka considers various “conditiona1" 1-median problems, much as he

did for the minimax problem. Slater [1981] formulates another

generalization of the 1-median problem in which each "demand' is a

collection of vertices and the problem is to find a vertex such that

the sum of the distances from that vertex to a uéarést element of each

collection is a minimum. He showed that the set of vertices which solve

this problem forms a connected set.

As we mentioned earlier, Hakimi [1965] proved that an absolute

p—median can be found to lie entirely within the set of nodes of G.

Levy [1972] proved that this is also true when the weights hi, i=1,
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..., n, are replaced by concave cost functions of the distance between

vi and its nearest median. Goldman [1969] generalized Hakimi's result

l
to include the case in which a vertex can be designated as either a

source or destination and where the service facilities can be thought to

have a "processing function". This allows for supply to flow from one

vertex to another by first passing through a processing facility.

Goldman proved that one need only consider the nodes of G with respect

to optimally locating the processing facilities, and furthermore,

conjectured that such would be the case for any multi—stage problem.

Hakimi and Maheshwari [1972] proved Hakimi's vertex optimality result

for the case of multiple commodities that go through multiple stages

' with the cost of transport from one stage to the next being given by a

concave nondecreasing function of distance.

Finally, a number of probabilistic versions of the p-median problem

have been considered. For example, Frank [1966,1967] considered a

1-median problem in which the hi were considered to be random variables
and the arc lengths to be deterministic. Conversely, Mirchandani and

Odoni [1979a,b] considered a p-median problem in which the arc lengths

were random and the weights deterministic. Berman and Larson [1982]

extended Hakimi's vertex optimality result to the case where the number

of service facilities is a random variable. Mirchandani and Oudjit

[1980] formulated and solved a 2-median problem on a tree network having

deterministic weights and random arc lengths. Other probabilistic

formulations include those of Berman and Larson [1980], Berman and Odoni

[1982], Mirchandani, Oudjit and Wong [1981] and Chiu [1982].
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1.2.3.3 Network Location-Allocation Problems with a Continuum of Link
Demands

Recall from Section 1.1, that the two special cases of Problem

GAMNLAP to be considered herein, involve the location of capacitated

facilities on a network having both nodal and link demands. A survey of

the literature indicates that no such location·allocation problem has

yet been considered by any other researcher. In particular, very little

of the literature treats network—based problems having both nodal and

link demands. Perhaps this is due in part to the fact that Hakimi's

[1965] vertex optimality result does not hold for such a demand

structure. Furthermore, this author is unaware of any existing

literature which involves capacitated network—based location-allocation

problems.

Handler and Mirchandani [1979] formulate a location—allocation

problem having continuous link demands, and then approximate it by

replacing the demand on each link with a concentrated centroidal demand

point. Alternatively, one may obtain a closer approximation by using

several concentrated demand points to replace the continuous demand on

each link. The first non·discretized approach to solving an absolute

p-median problem having link demands is due to Minieka [1977]. Here,

however, the demand on a link is said to be served by traveling to the

furthest end of the link. Hence, the objective is to locate a facility

which minimizes the sum of distances from the facility to the furthest

point on each link. Such a location is called a general absolute median

of the network.

A similar type of problem has been considered by Slater [1981].
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Here a tree network is specified in which the demand is characterized by

a collection of subtrees. A facility is said to serve a demand subtree

by traveling in the network to the closest point in that subtree. The

objective is therefore to find a set of single facility locations, each

element of which minimizes the total sum of distances from the closest

points in the demand subtrees. Slater calls such a set of points the

branch centroid of the tree.

Perhaps the first contribution in which continuous link demands are 4
actually served pointwise appears in a recent paper by Chiu [1982].

Here, a single facility is considered and the average distance function

to be minimized is characterized as a function of the location of this

facility. This characterization leads to exact as well as heuristic

1-median location algorithms on general networks and on trees. A

different approach has been used by Cavalier and Sherali [1983a] in

order to optimally locate p—medians on a chain graph, 2—medians on a

tree and a l—median on graphs with isolated cycles as defined by Goldman

[1971]. Uniform demand densities were assumed on the links. Batta,

Brandeau and Chiu [1983] have also developed specialized algorithms to

localize the search for 2-medians on a tree graph with continuous link

demands. We also mention that for minimax (or p-center) problems, as

opposed to the minisum problems being considered herein, Tamir and Zemel

[1982] have developed an algorithm for locating facilities on a tree

graph with continuous link demads. Unlike our study, all of the above

papers assume the facilities to be uncapacitated.
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1.3 Research Tasks and Organization

In this study, we examine multifacility location-allocation

problems in which capacitated service facilities are to be located on

undirected networks having both nodal and link demands. Furthermore,

the problems considered herein are balanced in the sense that the total

available capacity/supply is equal to the total demand on the network.

This study is organized as follows.

We begin, in Chapter II, by analyzing the simplest version of this

problem type. Specifically, we consider a location-allocation problem

in which p facilities having known finite capacities are to be located

on a chain graph so as to optimally serve/supply the total demand on the

graph. As such, the demand is specified by a given nonnegative,

integrable (demand) function, and the task is to determine the locations

and allocations of p capacitated facilities, so as to minimize some

total (expected) transportation cost. Additionally, a period by period

sequential location-allocation problem is considered in which a single

facility per period is required to be located on the chain graph so as

to optimally accommodate a known increase in the total demand on the

graph.

In Chapter III, we utilize the results of the chain graph problem

- to analyze a location-allocation problem in which two facilities

having known finite capacities are to be located on a tree network which

has both nodal and link demands, the latter of which are specified by

nonnegative, integrable (real-valued) functions.

Finally, in Chapter IV, we suggest (and briefly discuss) threeq

extensions/variants of the problems analyzed herein, which one might
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want to consider with respect to future research. We would remark also,

that a chronological summary of the theorems, corollaries and lemmas of

Chapters II and III are given in Appendices A and B, respectively. The

reader may find these useful as a means of reviewing the content of this

study or possibly as a means of obtaining an initial (cursory)

understanding of the same.



CHAPTERIIA

CAPACITATED, BALANCED, LOCATION-ALLOCATION PROBLEM
ON A CHAIN GRAPH WITH A CONTINUUM OF LINK DEMANDS

2.1 Introduction

In this chapter, we consider for the first time, a network-based

location-allocation problem in which the facilities to be located

are assumed to have known finite capacities. Specifically, we will

consider a case of Problem GAMNLAP in which a capacitated absolute

p-median is to be located on a chain graph, or equivalently, on a closed

real line segment [0,c], say, in order to satisfy a probabilistic demand

distribution over the interval [0,c]. Let f:[O,c] + R be a nonnegative,

integrable function which characterizes this demand. For the most

part, we will assume that f(•) is a union of the demand distributions

f£(•), for £6L, the set of links of the chain graph. (Discrete

nodal demands, if present, are assumed to be continuously spread over

some 6-length links as in Cavalier and Sherali [1983a].) Additionally,

we will assume that the total supply glei equals the total demand

?f(x)dx. (We will also assume throughout that si) 0, i=l, ..., p.)
O

We remark that two somewhat different but useful interpretations

may be given for the demand function f(·). First, one can consider f(•)

to be a demand density function over [0,c], so that for any

infinitesimal length dx of [0,c], f(x)dx approximates the total demand

on dx, all of which requires service. This interpretation lends itself

to thinking in terms of each point on dx as being a customer who must

travel to some facility for service. The second interpretation is to

consider f(•) to be a weighted probability density function. As such,

f(x) could be a probability density function weighted by the total

36
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demand on [0,c], or it could be a sum of such probability density

functions as in Chiu [1982], or it could simply be some histogram

describing the demand distribution. In any case, f(x)dx would be the

expected demand on an infinitesimal length dx at x, and as such, one can

think in terms of the server leaving its facility location and traveling

to the location of a demand incident in order to provide service to a

customer. Similar interpretations apply to the functions ¢i£(•), £6L.

Then assuming (as we do) that the cost of service is directly

proportional to the demand served times the distance between the serving

facility and the customer, we see that our objective with respect to the

first interpretation of f(•), is to minimize the total cost of service,

whereas for the second interpretation, we seek to minimiae the total

expected cost of service.

This chapter is organized as follows. We begin by formulating the

location-allocation problem of interest, and then characterize the form

of an optimal solution corresponding either to a fixed set of locations,

or to a fixed allocation scheme. Thereafter, we discuss the monotone

demand distribution case which admits a closed form solution, and which

provides useful machinery for computing lower bounds in a partial

enumeration algorithmic framework. Other important cases, namely,

. problems having symmetric or nonsymmetric unimodal demand distributions

are also analyzed. The results of our analysis of these cases are then

used in discussing the case in which the demand function is simply

nonnegative and integrable. Finally, we provide an efficient algorithm

for solving a period by period sequential location-allocation problem.

The analysis of this chapter will be seen to lay the foundation for
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treating more general problems, such as the capacitated 2-median tree

problem of Chapter III.

2.2 Formulation of a p-median Location-Allocation Problem on a Chain

In view of the above discussion, the problem of interest can be

described as a capacitated, absolute p-median (or minisum) location·

allocation problem in which a given number of supply centers/service

facilities having known supplies/capacities, are to be located on

the real line so as to optimally satisfy a continuum of demand over the

interval [O,c[. The problem can be further classified as balanced, in

that the total expected demand over [O,c[ is equal to the total supply.

Mathematically, the problem can be stated as follows:

Given a nonnegative, integrable, demand function f:[O,c[ + R, and

positive capacities sl, ..., sp, of p facilities such that the total

¢ P
demand, [f(x)dx, equals E s , determine y , ..., y 6 R, and

O i=l 1 1 P

integrable functions $1: [0,c[ + R, i=l, ..., p, which solve

p c
CP: minimize E fo (x)[x—y [dx

1=1o1 1
subject to

P
E $i(x) = f(x) for all x6[O,c[ (2.1)

i=1

c
fo (x)dx = s for i=l, ..., p (2.2)
0 i i

$i(x) > 0 for all x€[0,c[, i=l, ..., p (2.3)

0 < yi< c for i=l, ..., p. (2.4)

As explained earlier, Problem CP contains both location decision
l

variables, namely the facility locations yl, ..., y , and allocation
P
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decision "variables", ¢i(•), i=l, ..., p. We will refer to the ¢i(•) as

allocation functions, a terminology quite compatible with their role,

for they tell us where and how each facility expends or allocates its

supply.

In keeping with the usual interpretation of location-allocation

problems, we remark that the objective function of Problem CP represents

either (depending on ones interpretation of f(•) and the ¢i(•), i=l, ..., p)

a total transportation cost or a total expected transportation cost

associated with any feasible set of facility locations {yl, ..., yp}, and

any set of feasible allocation functions, {¢l(•), ..., ¢p(•)}. In

particular, this cost is given by the weighted sum of distances from the

demand points to their respective serving facilities, the weights being
P

the associated allocation functions corresponding to the respective

facilities. Of course, the usual absolute value, Ix-yi|, is used to

measure the shortest distance between points x and yi on the real line.

Recalling that the Riemann integral is defined to be the limit of a

sequence of approximating Riemann sums whose mesh goes to zero, a

reasonable approximation to the cost of that service/supply provided

to an infinitesimal length dx of [0,c] from a facility located at point
A

yi, is ¢i(x)[x-yildx. Hence the objective function of Problem CP.

In an effort to ensure a complete understanding of Problem CP, we

make two additional remarks before proceeding with our treatment of the

problem. First, we would ask the reader to note the requirements placed

on the demand function, f(·). All that is required, is that it be non-

negative and integrable. It need not be continuous, for example. It is

felt that this generality in the demand function is one of the attractive
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features of the problem.

Finally, we remark that the formulation of Problem CP is such that

it allows for the demand over a subset (of [0,c]) having positive measure,

to be met/satisfied/served by more than one facility. However, we

will show that an optimal solution exists, in which the subsets served

by the facilities located at yl, ..., yp have pairwise disjoint

interiors, are all of the form [¤,B], and appear from left to right

in the same order as do the facilities themselves. This is an
‘

exceptionally nice result in that it gives us an optimal solution

having a relatively simple allocation.

We emphasize here that the consideration of a chain graph

network in GAMLAP is an important starting point. The analysis of

this case provides strong insights and lays the foundation for

methodologies for more general network problems, including the case of

locating medians on a tree. Several of the properties developed for

Problem CP are readily seen to contribute to concepts for the more

general cases. Nevertheless, we remark that Problem CP is itself an

interesting nonconvex program which deserves attention in its own right.

We begin by characterizing in the next section, the solutions to

the separate location and allocation subproblems inherent in Problem

CP. ·

2.3 Characterizations of the lndividual Location and Allocation Solution

Given a fixed set of allocation functions feasible to (2.1), (2.2)

and (2.3), Problem CP is transformed into a location problem which

itself separates into p location problems over the respective location
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variables yl, ..., yp. It is well known, and easy to show by differ-

entiating the objective function of Problem CP with respect to each yi,

that the corresponding optimal values of yi, i=l, .•., p, are determined

as median locations with respect to the individual ®i(•), i=l, ..., p

functions. Moreover, the following property holds.

* * * *Lema 2.1. Let yl, ..., yp, ¢l(•), ..., ¢p(•) represent an optimal

solution to Problem CP. Then, there exists a reindexing of facilities

* *such that 0 < y1< ... < yP< c.

* *Proof. Let the facilities be reindexed so that 0 < yl< ... < yp< c.

*Because of the median location property with respect to ®i(•), i=l,

*
x

* *..., p, it follows that y1) 0 and yp< c. Further, if some yi= yj, i ¢ j,

then the objective function value remains the same, and feasibility

is maintained if the functions ¢i(·) and ¢_(•) are redefined such that
J

* *for some 0 < ¤ < c, (2.2) holds with ¢i(x) = ¢i(x) + ¢j(x) for O < x < o

* *and zero otherwise, and ¢j(x) = ¢i(x) + ¢j(x) for a < x < c, and 0

* *otherwise. But then, relocating yi and yj with respect to these newly
_

* *defined allocation functions would result in 0 < yi< o < yj< c with an

improved objective value, contradicting optimality. This completes·the

proof.
El

l
Next, we consider the allocation problem which results when

facility locations yl, ..., y are given and fixed. That is we consider
P

the problem

CP(y ... y ) : Given O < y < ... < y < c19 9 p l P
9

solve Problem CP.
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The decision "variables" of this problem are the allocation func-

tions, ¢i(•), i=l, ..., p. We will show and later state as a theorem,

that an optimal solution to Problem CP(yl, •••, yp) exists, in which the

allocation functions result in the facilities at 0 < yl < ... < yp < c

serving the intervals I1 = [O, al], I2 = [al, az], I3 = [az, ug], ...,

Ip = [op_l, c], respectively, for some 0 < al < az < ... < ap_l < c.

Notice that these intervals have pairwise disjoint interiors, so that

no set having positive measure is served by more than one facility. For

obvious reasons, we descriptively refer to this particular optimal

solution to Problem CP(yl, ..., yp) as the "pack it from the 1eft"

solution. All future reference to this solution will be made via the

abbreviation, PFL. We will not address (nor are we interested in) the

question of the uniqueness of the optimal PFL solution.

In order to establish that the PFL solution is indeed an optimal

solution to Problem CP(yl, ..., yp), we first solve a problem, denoted

by CP(A,yl, ..., yp), which is in fact a special case of Problem

CP(yl, ..., yp) on which an additional restriction has been imposed, and

for which there exists an optimal solution that is "nearly PFL" in

nature. Furthermore, this particular optimal solution to Problem y

CP(A,y1, ..., yp) is obtained by solving a corresponding transportion

problem, denoted by CPT(A,yl, ..., yp). As will be shown, Problems

CP(A,yl, ..., yp) and CPT(A,y1, •.., yp) are used in conjunction with a

limiting type of argument in which a prescribed discretization becomes

finer and finer, in order to obtain the desired PFL solution to Problem

CP(yl, ..., yp).

To be specific, let A equal the mesh of any partitioning of the
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interval [0,c] for which the fixed points yl, ..., yp, with 0 < yl< ...

< yp < c, are coincident with some p elements of the partition. Such a

partition will be referred to as being "legitimate". It is important

(for reasons that will be explained later) that only legitimate partitions

be allowed. Now, given A > O and any legitimate partition having mesh

equal to A, let fA(•) denote a step function whose steps occur at points

coincident with elements of the partition. Note that fA(•) could, for

example, have been obtained from some demand function f(·) by defining

the step heights so as to be equal to f(·) evaluated at the midpoint of

each of the increments• For the sake of completeness, let us define

fA(•) so as to be right continuous at each element of the partition

(similarly at zero) and to be left continuous at the point c. We then

obtain Problem CP(A,yl, •.•, yp) by affecting two changes to Problem

CP(yl, ..•, yp). First, we replace the demand function f(·) by fA(•),

ensuring as always that the positive supplies si, i-1, ..., p, satisfy

¢ P
ffA(•)dx = E si, so that we have a balanced problem. Observe that this
0 i=l

yields only a special case of Problem CP(yl, .••, yp). We remark that

in case fA(•) has been obtained by discretizing f(·) for some problem,

then the supplies si may have to be adjusted to some (positive) values

si(A), i=l, ..., p, in order to ensure a balanced problem. The second

change imposes an additional restriction on Problem CP(A,yl, ..., yp),

namely, that the allocation functions ¢i(·), i=l, •.., p, also be

nonnegative step functions defined so that their steps occur at points

coincident with elements of the partition, and so as to be right

continuous on [0,c) and left continuous at the point c. Everything else
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about Problem CP(A,yl, •.., yp) is just as it is in Problem CP(y1, ... ,

yp). The known facility locations, 0 < yl< ... < yp< c, are the same in

both problems. Also, the form of the objective function and constraints

remain the same. Clearly then, Problem CP(A,yl, ..., yp) can be

considered to be a special case of Problem CP(yl, ..., yp) on which the

additional restriction on the form of the allocation functions has been

imposed.

Before presenting the formulation of Problem CPT(A,yl, ..., yp),

we introduce some notation regarding the partitioning of [O,c].

Specifically, for any legitimate partitioning of [0,c], we will denote

its increments and their corresponding midpoints, by Aj, j=l, ..., J

and.zj, j=1, ..., J, respectively. Note that by our convention, each

increment Aj corresponds to an interval which is closed at the left end

point and open at the right end point, except for AJ which corresponds to

a closed interval. In addition, Aj, j=l, ..., J will denote the lengths

of the increments Aj, j=l, ..., J. Thus, in terms of this notation, the

c
total demand of Problem CP(A,y1, ..., yp) can be written as £fA(x)dx =

J

Corresponding to Problem CP(A,yl, ..., yp), we now construct a

transportation problem, CPT(A,yl, ..., yp), by aggregating portions of

the demand function fA(•). Specifically, the total demand f(zj)Aj on

the
jth

increment is assumed to be lumped at its midpoint zj, for each

j=l, ..., J. Hence, the points zl, ..., zJ are being viewed as

destination points with respective demands f(zl)A1, ..., f(zJ)AJ,

and the facility locations O < y1< ... < yp< c, as origin points with
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respective supplies sl, ..., sp. To complete our description of

Problem CPT(A,y1, ..., yp), we let xij, i=l, ..., p, j=l, ..., J,

represent the number of units of supply shipped from the facility

located at yi to demand point zj. The per unit shipment cost of xij

will be denoted by
dij,

and is equal to the distance between yi and the

point zj. Thus, Problem CPT(A,yl, ..., yp) can be written as the

following linear transportation problem.

CPT(A,y1, ..., yp):
p J

minimize Z E d x V
1=1 j=l ij ij

subject to
J

xij = Si, i=l, ..., p
j-l

P -
iil xij = f(zj)Aj, j=l, ..., J

all xij > O.

The following result establishes a key relationship between Problems

CP(A,yl, ..., yp) and CPT(A,yl, ..., yp).

Theorem 2.2. Problems CP(A,yl, ..., yp) and CPT(A,yl, ..., yp) are

equivalent in the following sense. There exists a one-to—one

correspondence between the sets of feasible solutions to Problems

CP(A,yl, ..., yp) and CPT(A,yl, ..., yp), and more importantly,

corresponding solutions have equal objective function values. It

follows then, that any optimal solution to one problem will correspond

to an optimal solution of the other.

Prggf. In order to show the existence of such a one-to·one correspondence,

we present a relationship which defines a one-to—one mapping from the

set of feasible solutions to Problem CPT(A,yl, ..., yp) gntg_the set of
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feasible solutions to Problem CP(A,yl, „„„, yp).

In particular, let x=(xll, •••, xlJ, •••, xpl, •••, xpJ) be any

feasible solution to Problem CPT(A,yl, •••, yp), and define the functions

Qi(x)=xij/Aj, x€Aj, i=l, •••, p, j=l, •••, J• Note that each Qi(•) is a

nonnegative step function in which the steps occur at points coincident

with elements of the partition• In addition, we have that

[ Qi(x)dx = xij
A.

J
so that

c J
Q (x)dx = E x = s i=1 •.. p.
gi i) I )

Also, for any x6Aj, we can write

P P /_ /_ P
E Q (x) = Z (x , A ) = (1 A ) E x

i i i
i=l i=1 J j j

i=l
j

= 1/K r K =£ . =£( j) (Zj)j (ZJ) A(Zj)

-
fA(x), j=l, •••, J, and so we have

P
E Qi(x) = fA(x) on [0,c].

i=l

Thus, we see that the Qi(•) defined by the relationship Qi(x) =

xij
/Aj, x6Aj, i=l, •.., p, j=l, •••, J, constitute a feasible solution

to Problem CP(A,yl, •••, yp), and as such, we see that this relationship

defines a one-to-one (obviously) mapping from the set of feasible solu-

tions to Problem CPT(A,y1, •••, yp) into the set of feasible solutions

to Problem CP(A,y1, •g•, yp)• It remains to show that this mapping is,

in fact, onto•

Now let Q = (Q1, „„., Qp) be any feasible solution to Problem

CP(A,yl, „••, yp)• As such, each Qi(•) is a step function of the type
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described above, and therefore it must be the case that there exist some

nonegative values, call them xij, j=l, -••, J, such that Qi(x) = xij/Aj

for
x€Aj•

If we can show that these
xij

values, i=l, •••, p, j=l, ..., J,

constitute a feasible solution to Problem CPT(A,yl, •.., yp), then we

will have shown that the above mapping is onto• With this as our goal,

tthtifQ = A th = Q d•Thwe no e a i(x)
xij j

on j, en
xij I.

i(x) x us we can

write _ J
J J c

·ä
xij = •Z I Qi(x)dx = IQi(x)dx = si, i=l, •„•, p

J—l J=l A. O
and J

P P P
E xi_ = E I Qi(x)dx = I E Qi(x)dx

i=l J i=l A A i=l
J J

J“l• •·•» J •
J

Therefore, we see that the xi_ do constitute a feasible solution to
J

Problem CPT(A,yl, •••, yp), and hence we have established that the

relationship Qi(x) = xij/Aj,
x€Aj, i=l, •••, p, j=l, •••, J, defines a

one—to-one correspondence between the sets of feasible solutions to

Problems CP(A,y1, ••„, yp) and CPT(A,yl, ..., yp).
^

Next, we want to show that if x and Q are corresponding solutions

to Problems CPT(A,yl, •••, yp) and CP(A,yl, •••, yp), respectively, then

their objective function values are equal• We use the relationship,

Qi(x) =
xij/Aj,

x6Aj, i=l, •„•, p, j=l, •••, J, to write

P ¤ P J _
E IQ (x)|x—y Idx = Z Z I (x ./A.)|x-y [dx

i=l 0 i 1 i=l j=1 Aj IJ J 1

P J _ ‘
= z ·z (xij/Aj)I |x—yi|dx. (2.5)
i=1 J=l A_

J
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Now, because we have restricted ourselves to only working with

legitimate partitions, we have that no yi lies in the interior of

any Aj, i=l, ..., p, j=l, ..., J. With this in mind, let us examine an

arbitrarily chosen summand from (2.5), i.e. for any i and j, let us

examine (xij/Aj)f |x·yi|dx. Recalling that Aj is an increment/subinterval
A Z]

of [0,c] created by the partitioning of [0,c], let us denote the left

and right end points of Aj as
Ajl

and Ajr respectively. Calling upon

the legitimacy of our partition and without loss of generality, we will

suppose that yi> A_ . (The case yi< Ajz is similarly handled.) We also
jr

note that zj = Ajl+ (Aj/2). With the notation as such, we can write

- - AjrA - = A -(Xij/ j)£ IX yildx (Xij/ j)£ (yi X)dX
J] Jil _

(A. +A.)· 2 Jl 3= /A — /2<Xij j><yiX X >IA
jl 2- - - 2

= /A A +A - A. +A. /2 - A. —A 2(*11 1)[[Y1‘
31 1) ‘

Jl 1) [ [Y1 11 11/ [[
- - ..2 ..

= . A. A.-A 2-A A.(x11/ 1)[y1 1 3/ 31 1)

= xij{yi—(Ajl+Aj/2)}

= d = d .~ "11[ 11) 11"11
p J

Thus we have that (2.5) is equal to Z E d _x _, which establishes
1=1 j=1 1J IJ

the fact x and ¢ have equal objective function values.

Finally, we remark that optimal solutions correspond and that

an obvious proof by contradiction can be used to establish this fact.

This completes the proof of Theorem 2.2.
E]

Regarding the above theorem, we would remark that if some yi was
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to lie within any of the increments served by the facllity located at

yi, then the corresponding x and ¢ need not have equal objective

function values. This is why we allow only legitimate partitions, which

is fine in light of the fact that our analysis will require that A + 0

in any case.

At this point, we direct our efforts towards obtaining an optimal

solution to Problem CPT(A,y1, ..., yp) which is "nearly PFL" in nature. ·

Such a solution is one in which the facility located at yl fully

serves some subset of the demand points {21, ..., 2J}, beginning at

point 21 and moving sequentially to the right, until such time as it

exhausts its supply. The facility located at y2 will then take over and

continue serving from left to right until its supply is exhausted. At

such time, the facility at y3 will begin service, etc. The adverb

"nearly" is used since such a solution may result in joint servicing

of those demand points (switchpoints) at which the current servicing

facility's supply is exhausted and the next facility's service begins.

Depending on the size of A, a switchpoint may require service/supply

from as few as one (degenerate solution) up to as many as p facilities.

The thought may have already occurred to the reader, that such a

solution would result if one were to use the Northwest Corner Rule to

obtain a starting basic feasible solution to Problem CPT(A,yl, ..., yp).

The reader may, however, be surprised to find that this solution is

optimal. With this in mind, we now show that the Northwest Corner Rule

will indeed give us such a solution to Problem CPT(A,yl, ..., yp), and

that it is an optimal solution.
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Theorem 2.3. The Northwest Corner Rule solution x* is optimal to

Problem CPT(A,y1, ..., yp) for any p > 2.

Proof. Let x be any optimal solution to Problem CPT(A,yl, ..., yp), and
„

*
P J „ P J „

suppose that x ¢ x . We will show that E E di xi_ < E E d _x _,
1:1 j:1 J J 1:1 jgl ij ij

and so equality must hold.

^
*Since x ¢ x , there exist r,s S {1, ..., p} and k,£ S {1, ..., J}

with r<s and k<2 such that 6 = min {xr£,x k} > 0. Consider the solution
s

x which is identical to x except that xrk= xrk+ 6, xr£= xrß- 6, xSk= xsk-

6 and xSß= xS£+ 6. Clearly, x is feasible to Problem CPT(A,yl, ..., yp).

P J „ _ P J _
Now suppose we show that Q E Z E d .x — E Z d x . > O.’

1:1 jsl ij ij 1:1 j:1 ij ij

Then we will have proven the theorem because evidently, by proceeding in

^
*this manner, x can be transformed into x without increasing the

objective function value.

Toward this end, note that Q/6 = (d — d ) — (d - d )
sk rk sl rl

and observe that as the point t varies from 0 to c, the function

d t- dr:
is nonincreasing. Consequently, since k<2, Q/6 > O and the

s

proof is complete.
E1

So we now have that the "nearly PFL" solution, obtained via the

Northwest Corner Rule, is an optimal solution to Problem CPT(A,yl, ... ,

y ) for any p > 2. Then, recalling Theorem 2.2 and the relationship

E
* - * *xSAj, i=l, •••, p, j=1, •••, J, wehave*

... , Qp) is an optimal solution to Problem CP(A,yl, ..., yp), and as

*such, each ¢i(•), i=l, ..., p is a step function in which the steps occur

at points coincident with elements of the partition. Specifically,
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¢I(•) = fA(•) on those A, for which x*,= f (x)dx, whereas Q*(•) = 0 onj ij
A

A i

those Aj for which x;j= 0. Finally, on an; increment containing a

switchpoint, we have for some i€{l, ..., p} and 2 > 0, ¢;(~)+ ... +

¢;+2(•) = fA(•), with all allocation functions ¢I(•), ..., ¢§+£(•) being

positive on that increment. Again, we remark that all ¢I(•) are defined

so as to be right continuous. Clearly then, as is the case for x*, it

is fitting that ¢* also be described as "nearly PFL", in that just as

x;+1’j begins service (assuming nondegeneracy) at the
ith

switchpoint

which is the midpoint of some Aj, ®I+l(•) "takes over from" ¢I(•) on

that Aj containing the
ith

switchpoint, and if necessary, "assists" in

supplying the demand on that Aj.

We are now in a position to utilize Theroem 2.2 and the optimal

"nearly PFL" solution to Problem CP(A,yl, ..., yp) obtained via Problem

CPT(A,y1, ..., yp) and the Northwest Corner Rule, to complete our

analysis of Problem CP(y1, .•., yp). We do so by presenting the

following theorem.

* * *Theorem 2.4. There exists an optimal solution ¢ = (¢1, ..., ¢p) to

Problem CP(yl, ..., yp) for which the allocation functions ¢;(•), i=l,

..., p, result in the facilities at 0 < yl < ... < yp < c serving the

intervals Il= [O,a1], I2= [al,a2], ..., Ip= [¤P_l,c], respectively, for

some O < ol < az < ... < ¤p_l < c.

Proof. Let S = (gl, ..., gp) be any optimal solution to Problem

CP(yl, ..., yp).

Construct any sequence of legitimate partitions of the interval

[0,c] where the
kth

partition has mesh
Ak

and such that {Ak} + 0.
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For each
Ak

and the corresponding partition, define the step

functions fAk(·) and Qik(·), i=l, ..., p, to be equal on each inerement

of the partition to that value of f(•) and Qi(•), i=l, ..., p,

respectively, evaluated at the midpoint of the increment. Then set
c

gi(Ak) = gQik(x)dx so that Qkä (Qlk, ...,
Qpk) is a feasible solution to

Problem CP(Ak,y1, ..., yp). (Note: this is easy to show.)

Now using the Northwest Corner Rule, solve Problem CPT(Ak,yl, ...,

yp) and thereby (via Theorem 2.2) obtain the corresponding optimal "nearly

PFL" solution to Problem CP(Ak,yl, ..., yp). Note of course, the

objective function value of Qk must be > that of the "nearly PFL"

solution to Problem CP(Ak,yl, ..., yp). It follows then, that since

this is true for all k, and since the Qik(•) and si(Ak) converge to the

Qi(•) and si (of Problem CP(yl, .•., yp)), we have that the objective

function value of Q must be > to that of the PFL solution Q* to Problem

CP(yl, ..., yp) described in the statement of the theorem, since this is

the solution to which the optimal "nearly PFL" solutions (of the

Problems CP(Ak,yl, .•., yp)) converge. Therefore, the PFL solution must

be optimal to Problem CP(y1, ..., yp). This concludes the proof of

Theorem 2.4.
EI

To insure a complete understanding of the nature of the optimal PFL

solution to Problem CP(yl, ••., yp), we now give a more algebraic

description/definition of Q* than that which is given in the above

analysis and theorem. Specifically, the component (allocation)

* * *functions of Q = (Q1, ..., Qp) satisfy the following:



53

* {
f(x) , X€Ii” [ai_lai), i=l, ..., p, ao; 0, op; C

®i(x) =
O , otherwise

and Q;(c) = f(c),

where si, i=1, ..., p.
0 Ii

(Note that because of Lema 2.1, the statement and proof of Theorem 2.4

assumed the given facility locations to be distinct. lt should be noted

however, that one can easily show that the PFL solution is optimal to

Problem CP(yl, ..., yp) even when the yi are not all distinct.)

At this point, we raise a question that might ought to have been

addressed imediately after stating Problem CP, but was delayed in

anticipation of Theorem 2.4. Specifically, we now take a moment to

consider the question of existence with regard to an optimal solution

to Problem CP. Simply put, one would be justified in asking if Problem

CP has an optimal solution. Clearly its objective function is bounded

below by zero, but boundedness of an objective function does not

guarantee the existence of an optimal solution. We argue for the

existence of an optimal solution as follows. Let A(y,Q) denote the

objective function of Problem CP, where y represents the vector (yl,

..., yp) of facility locations and Q the vector of allocation functions.

Define the function Ä(y) E A(y,Q*), where Q* (i.e. the PFL allocation)

solves Problem CP(y). Let F E ä [0,c] denote the Cartesian product

l

of [0,c] with itself p times, aää suppose that {yk} + y is a convergent

sequence of points lying in F. Clearly then, since the PFL allocations

to the Problems CP(yk) tend to the PFL allocation of Problem CP(y),

it follows that {Ä(yk)} + Ä(y), thereby establishing the continuity of
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A on T. Then by recalling the fact that a continuous function defined

on a compact set attains a minimum on that set, we have established

the existence of an optimal solution to Problem CP, and thus can proceed

with our analysis of this problem by stating the following theorem.

Theorem 2.5. There exists an optimal solution to Problem CP, for

4

which

(a) each facility i serves an interval
[¤i,Bi], with its

location yi6[ai,Bi], and such that

Y1 B1
(1.) { f(x)«1x ={ f(x)dx = si/2 .°‘1 Y1

(Note that such yi are generally referred to as "median" locations.)

* *
Proof. Given any optimal solution (y ,¢ ) to Problem CP, it follows

* ** **that (y ,¢ ) is also optimal to Problem CP, where ¢ is the optimal

PFL solution to Problem CP(y;, ..., y;) obtained via Theorem 2.4. In

addition, it is clear that for such an allocation as that given by

(y*,©**) to be optimal, each facility must be located at a median

location. Ü h
In the event that the last statement of the above proof is not _

imediately clear to the reader, we remark that a rigorous proof of this

statement is given in Theorem 2.18.

Corollary 2.6. Given any ordering of the p facilities, their optimal

locations are known readily, i.e. simply mark off the intervals to be

served (from left to right) according to their capacities, and then

place the facilities at their respective median locations.
E]

A consequence of the above theorems and corollary, is that the task
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of obtaining an optimal solution to Problem CP can be reduced to that of

computing the minimum cost locations (and hence allocations) for each

permutation/ordering of the p facilities, and then choosing an ordering

and its associated (y,¢) having a minimum cost- Ironically, our choice

of the word "reduced" in the above sentence tends to be both correct and

misleading- It is correct, in that rather than having to consider the

uncountably infinite collection of all feasible (y,®), one need only con-

sider p!/nl!n2!---nr! feasible (y,¢), where r is the number of distinct

capacity values amongst sl, ---, sp, and ni is the number of facilities

having the same
ich

capacity value- However, the word can be misleading

if it is interpreted to mean that the task of obtaining an optimal

solution to Problem CP has been rendered simple- To the contrary, a

serious combinatorics problem is encountered as p is allowed to

increase- It is this combinatorics problem on which we will now focus

our attention, and to which we will refer as the "p! problem", a

descriptor which is accurate only when r = p, but one which we will use

(for convenience) in any case-

2-4 A Useful and Insightful Special Case

Knowing that an optimal solution to Problem CP can be found amongst l

the p!/nl!n2!---nr! solutions of the above corollary, one's initial

inclination may be to compute each of these solutions, and then to

choose one having minimum cost- However, the cost prohibitiveness of

explicit enumeration would soon become apparent, and would therefore be

likely to foster the use of implicit enumeration- This being the case,

we begin our investigation of the "p! problem" by first considering the

case in which the demand function of Problem CP is monotone
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nondecreasing on [0,c]. (Without loss of generality, we will assume

that f(x) > O for x > O.) We will show that for such an f, an

optimal ordering of the p facilities is one in which the facilities

are ordered from left to right (in [0,c]) in order of nondecreasing

capacity. In order to establish this result, we will present a lemma

that will enable us to represent the cost of any ordering, in terms

of the continuous (but not necessarily differentiable) function

F(x) = ? f(t)dt, xe[0,c]. Note that in the event f is a probability

densityofunction, F(x) would be a cumulative distribution function.

We also remark that since f > O on (0,c], F(x) is strictly increasing

on [0,c]. Now, for f as considered herein, and for any ordering of

the p facilities, the minimum cost locations/allocations of Corollary

2.6 are such that F(x) might look something like that of Figure 2.1.

Noting the numbered regions in this figure, we now give a lemma which

shows that their total area is equal to the sum of the transportation

costs associated with the facilities located at yl, y2 and yd, and

serving I1= [0,¤l], I2 = [¤l,a2] and I3= [a2,c], respectively.

Lemma 2.7. Consider a facility i having supply si which serves an

interval Ii; [¤i_l,¤i], and suppose that this facility is located at a

median location yi with respect to Ii, i.e. yi satisfies

Y ¤ ·
fif(x)dx = fif(x)dx = si/2. Then, (2.6)
ai—l Y1

{ f(x)|x-yildx = Aid+ Aiu , where (2.7)
1‘ y. F<y ) _

Add; flf(x>(>·i—><)dx = yi<ai/2) —I 1 F l(y>dy and (2·8>(11-1 F(¤i-1)
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F(x)

F(¤3) = s1+s2+s3 ...........................--

VI
F(y )=s +s +s /2 --—-- --------------....- ....3 1 2 3 I

I

I

I I I
I I I
I I I

_ IF(y2)—sI+s2/2 ----———--——-—-
I I I
I I I

I I IF(a1)=sI ————-
I I I

I I I I I
I I I I I

I I I I
:

=
IF<>'I> SI/2 --·—- : I ; : .

I I I I I
I I I I I
I ' I I I

I I I

O V1 °‘1 V2 °‘2 y3 °‘3 = °

Figure 2.1. Geometric Representation
of Transportation Costs
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“1 F(“1) -1A E [ f(x)(x-y )dx = [ F (y)dy · y (s /2). (2.9)iu i F 1 1Yi (Yi)

-1
(Note that F exists since F is strictly increasing under our current

assumptions on f.)

Proof. Defining Aid and Aiu respectively as the first integrals in

(2.8) and (2.9), it is easily seen that (2.7) holds. Hence, consider

Aid. Integrating by parts, we get

A -F(6 )[ -6 ] + [1 F( 616 1-1 y1 1-1 G
X) X

1-1

— [F( )-F(6 )] [ F F ] + [1 F 6 2 10— vi vi i_1 Vi (yi) ¤i_1 (¤i_l) (X) X- ( · )
a1-1

••
= 2. -•

=But F(yi) F(¤i_l) si/2 from ( 6) and [yiF(yi) ¤i_1F(ai_1)]

vi F(yi) _1
[ F(x)dx + [ F (y)dy, since F is strictly increasing. Substi-
a F(¤ )
1-1 1-1

tuting this into (2.10), we get (2.8). Similarly, (2.9) holds and

the proof is complete.
E]

Clearly, direct application of Lemma 2.7 to the situation

depicted in Figure 2.1 shows that the total area of the regions
I

numbered 1 through 6 is equal to the sum of the transportation costs

incurred by the facilities shown. Thus, we now know how to obtain a

geometric representation of the transportation cost of any ordering.

This representation is used to establish the main result of this

section, which we present via the following theorem.

Theorem 2.8. Given that the demand function f is nonnegative, integra-

ble and nondecreasing, that ordering in which the p facilities appear

from left to right (in [0,c]) in nondecreasing order of capacity, is
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optimal to Problem CP. That is, the associated (y,¢) of Corollary 2.6

is an optimal solution to Problem CP.

(Note: our proof of Th. 2.8 requires the convexity of F(x), and hence

the following lemma.)

Lemma 2.9. Given that f is a nonnegative, integrable, nondecreasing
· x

function defined on [0,c], the continuous function F(x) = f f(t)dt,
0

xs[0,c], is a convex function.

Proof. Let
xl,x2

be any two points in [0,c], and Ae[O,l]. Setting

x E Axl + (l-A)x2, we have

AF(x1) + (l—A)F(x2) - F(x) = (l-A)[F(x2)- F(x)] - A[F(x)- F(xl)]

X2 ;
= (1-A)f f(t)dt - A [ r(«;)a:

· E x
l

> (1-A)f(§>(x2- §)

X]

= O
Ü

Proof of Theorem 2.8. This theorem need only be proved for the case

p = 2, since if we were given the locations of p > 2 facilities, we

could apply the theorem to any pair of adjacent facilities and thus

by a bubble-sort type of argument, arrive at the desired ordering.

Letting p = 2 and assuming that the facilities are numbered

1The following string of six-tuples is a schematic showing the
application of a bubble-sort on a given ordering of facilities
having capacities, sl= 2, s2= 4, s3= 5, s4= 7, s5= 8, s6= 9, say.
As can be seen, nine applications of this theorem (for p = 2) were
required to obtain the desired ordering.

(7.28.4.9.2) + ($.7.8.4.9.2) + ($.7.4.8.9.2) + ($.4.7.8.9.2) +
(4.5.7.8.9.Z) + (4.5.7.8.2.%*) + (4.5.7.2.83) + @.5.2.7.8.9) +
(4!2)5)7)8)9) + (294!5$7I8!9)°
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so that sl< s2, we direct the readers' attention to Figure 2.2,

in which are depicted the two possible orderings of the facilities.

Notice that F(x) is convex and strictly increasing on [0,c], and that

Figure 2.2a depicts the ordering proclaimed optimal by this theorem.

Recalling the geometric representation of the transportation cost,

our objective is to show that Al< A2.
(Note that Figure 2.2 implies that f(x) ) O on (0,c). We consider this

to be a reasonable assumption in light of the monotonicity assumption

on f.)

Since F(x) is convex and strictly increasing, the function G =
F—l

is well defined, concave and strictly increasing. Thus it is easy to

see that A can be written as,
1 (S1/2) sl

A = [(s /2)G(s /2) - 1 G(y)dy] + [ 1 G(y)dy - (s /2)G(s /2)]1 1 1 1 1O (Sl/2)
(sl+s2/2) (sl+s2)

+ [(S /2)c(S + S /2) -1 G(y)dy] +[ 1 G(y)dy - (S /2)c(S + S /2)],2 1 2 S (S +S /2) 2 1 2
1 1 2

where each of the four summands is equal to one of the four regions in

Figure 2.2a. Cancelling like terms, gives us

(sl/2) sl (s1+s2/2) (s1+s2)
A, = -1 Gmdy +1 G<y>dy · 1 Gmdy + 1 G<y>d>· -0 (sl/2) sl (s1+s2/2)

Similarly,

(sz/2) sz (s2+sl/2) (sl+s2)
A2 = -1 G(y)dy +1 G(y)dy · 1 G(y)dy + 1 G(y)dy ·0 (sz/2) sz (s2+s1/2)

Recalling that s1< sz, we consider two cases; Case (i), sl< sz/2

and Case (ii), sl) sz/2. Figure 2.3 provides a pictoral representation

of each of these cases. In particular, note the relationships on
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F(x)

61+62

_ A1= Area (1+2+3+4)
62 61+62/2

slS1
S1/2 ‘‘°‘‘‘‘I

O yl al y2 c2=c

Figure 2,2a. (See Theorem 2.8)

F(x)

61+62

A2= Area (1'+2'+3'+4')
' 61 62+61/2 — ————— — ——---·--—··- —

ÄV 52
62/2 ‘‘‘'‘‘‘*‘|

O yl al y2 ¤2=c

Figure 2.2b. (See Theorem 2.8)
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c T2

T1(61/2)sl (62/2) (61+62/2) 62 (62+61/2)

Case(i), s1<(62/2)

6 T2

Tl(61/2)(62/2) 61 62 (61+62/2)~ (61+62)

(62+61/2)

Case(ii), s1>(s2/2)

Figure 2.3. (See Theorem 2.8)
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the horizontal axis between the various sums involving sl and 62. The

intent of the (+) and (-) signs will be understood very shortly.

Under Case (i), noting Figure 2.3, A1 and A2 can be written as,

(6 /2) 6 (6 /2) (6 +6 /2) 6 (6 +6 /2) (6 +6 )1 1 2 1 2 2 2 1 1 2Al = -£ + I/2
—

I
_

(
I/2 + +f

/2
+ I +

+£ /2<S.> S. S2 > <S.S2> S2 62 1)
and

2 2 2(61/ ) sl (62/ ) (61+62/ ) 62 (62+61/2) (61+62)
A2--1)-12-1+1/2+12-1+1.(61/ ) 61 (62 ) (61+62/ ) 62 (62+61/2)

where the integrand of each of these integrals is G(y)dy. It follows

6 (6 +6 /2) (6 +6 /2)1 1 2 2 1um <A,—A1>/2-- 16<y>¤y + 1 6<y>dy— 1 6<y>dy .
(6 /2) (6 /2) S1 2 2

and hence the (+) and (-) signs in Figure 2.3.

Recall that we want to show A2 > Al, i.e. (A2—Al) > O. We do so by

showing that the above expression for (A2-A1)/2 is nonnegative.

Due to the concavity of G, the area under G on both [sl/2,61] and

[62,62+61/2] can be overestimated by the area under the support

functionals T1 and T2 shown in Figure 2.3. Doing so, we get that

6
(sl/4)[2G(61)-(61/2)G+(s1)] > ]1G(y)dy and

(61/2)

(6+6/2)
(61/4)[2G(s2)+(61/2)G+(62)] >

2] lG(y)dy , where G+

S2
denotes the right hand derivative of G. (Recall that F is continuous

but it need not be differentiable.) _

Therefore we can write,(61+62/2) +(A ·A )/2 > 1 G(Y)dY'{(6 /4)[2G(6 )·(6 /2)G (6 )]2 1 1 1 1 1(62/2)

+ /4 [26 + /2 6+ ]}
” ‘(61 ) (62) (61 ) (62)
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(S +6 /2) °
= 1 ]2@(y)dy — (S1/2)]@(Sl)+@(S2)]+(si/8)]@+(sl)—@+(s2)]-

(S2/2)

Now, G concave implies that G+(62) < G+(6l) and so [G+(s1)—G+(62)] > O.

Thus we have,
($1+62/2)

(A •A )/2 > ] G(y)dy — (s /2)[G(6 )+G(6 )] .2 1 . 1 1 2(S2/2)

Next, we observe that

(61+62/2)

I G(y)dy > (sl/2)[@(62/2) + @(61+62/2)] „
(S2/2)

where the right hand side is equal to the area of that polygon under

G formed by the secant line drawn through the points (62/2,G(s2/2)) and

(61+62/2, G(61+62/2))• Using this underestimation, we have that

(A2-A1)/2 > (Sl/2)[c(S2/2)+c(S1+S2/2)] — (Sl/2)[0(S1)+<:(S2)] .

Noting that 6l< 62/2 < (61+62/2) < 62, and that (62/2) - 61 =

62 — (61+62/2), we can choose A6(O,l) so that (62/2) = Xsl+ (1—A)62,

and thus (61+62/2) = (l·Ä)6l+ A62 also• Then by the concavity of G,

G(62/2) = G(X61+(1—X)62) > AG(6l) + (1—k)G(s2) and

G(s1+62/2) = G((1—A)6l+A62) > (1+A)G(sl) + AG(62) .

Adding the above two inequalities gives us,

G(62/2) + G(6l+62/2) > G(sl) + G(s2) .

Therefore, we have

(A2-Al)/2 > (Sl/2)[c(Sl)+c(S2)] - (Sl/2)[c(Sl)+6(S2)] = 0 ,

and thus have shown that A2 > A1. This proves the theorem for p=2
and under Case (i).

(Note: the proof for Case (ii) is identical to that of Case (i), and is

included only for the sake of completeness„)
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Under Case (ii), Al and A2 can be written as,

(61/2) (62/2) 61 62 (61+62/2) (62+61/2) (61+62)A1--I+I+I-I—I + I + I
O (61/2) (62/2) 61 62 (61+62/2) (82+81/2)

and
(sl/2) (62/2) sl sz (61+62/2) (62+61/2) (61+62)

5--1)-I2+I+I—I-I +I·
(61/ ) (62/2) 61 62 (61+62/2) (82+81/2)

Therefore,
(62/2) 62 (62+61/2)

<A,-A1>/2 = — I<=<y>¤>·+I <=<y>dy · I¤<y>dy -(61/2) 61 (61+62/2)

Again, due to the concavity of G, the area under G on both [sl/2,62/2]

and [61+62/2,62+61/2] can be overestimated by the area under the support

functionals T1 and T2 as shown in Figure 2„3• Doing so, and again

denoting the right hand derivative of G by G+,
we get that

+ 2 (62/2)
-(1/2)G (6 /2)(6 /2-6 /2) · G(6 /2)(S /2-6 /2) > I G(Y)dY2 1 2 2 1 2

and

+ 2
f G(y)dy•

(61+62/2)
Therefore we can write,

S2

1
2

+ (1/2)(6l/2-62/2) [G+(62/2) - G+(6l+62/2)] •

+ +
Now, G concave implies that [G (62/2)-G (61+62/2)] > O, and so

S

(A2-Al)/2 > f2G(y)dy - (62/2-61/2)[G(6l+62/2) + G(s2/2)] •

S1
By underestimating the area under G on [81,82] by the area under

the secant through the points (61,G(s1)), (s2,G(s2)), we get that
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s
f2G(y)dy > (1/2)(s2-sl)[G(s1)+G(s2)] , giving us
S1

(A2—Al)/2 > (1/2)(s2—sl)[G(sl)+G(s2)] - (sz/2—sl/2)[G(sl+s2/2)+G(s2/2)].

Since sz/2 < sl < sz < (s1+s2/2) and (sl-s2/2) = (s1+s2/2) - sz,

we can choose ke(0,l) such that sl= A(s2/2) + (1-A)(s1+s2/2) and

sz = (1-l)(s2/2) + A(sl+s2/2). Then by the concavity of G,

G(s1) > AG(s2/2) + (1—Ä)G(sl+s2/2)

G(s2) > (1-X)G(s2/2) + AG(sl+s2/2) .

Adding these gives us,

G(sl) + G(s2) > G(s2/2) + G(sl+s2/2), from which

it follows, that (A2-Al)/2 > O, i.e. A2 > Al. This completes

the proof of Theorem 2.8.
I]

Of course if follows from Theorem 2.8 that if f is nonnegative,

integrable and nonincreasing on [0,c], then ordering the facilities

from left to right according to nonincreasing capacity, would result

in an optimal solution to Problem CP. This can be seen by defining

g(x) = f(c—x) and then applying Theorem 2.8 to g(x).

Theorem 2.8 provides us with a (soon to be seen) useful sufficiency

condition for optimality, and allows for the following generalization.

Corollary 2.10. Let f be any nonnegative, integrable, demand function

for Problem CP. Then in determining an optimal solution to Problem CP,

it is sufficient to restrict ones' attention to those orderings/

permutations of the p facilities which give solutions (per Corollary

2.6) satisfying the following condition: sets of facilities which use

their entire supply to serve a connected subset of [0,c] over which f
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is monotone nondecreasing (nonincreasing), must be arranged from left

W to right in nondecreasing (nonincreasing) order of capacity.

ggggä. Follows directly from Theorem 2.8. E]

Corollary 2.10 will be used later to construct an enumeration tree

for which bounds will then be developed so as to enable early fathoming.

2.5 Analysis of the Symetric, Unimodal Demand Distribution Case

Continuing in our effort to "chip away" at the "p! problem", we

next consider the case in which f is nonnegative, integrable, unimodal

and symmetric. (We will call f:[O,c] + R unimodal if there exists an

G€[Ü,C] such that f is nondecreasing on [0,a] and nonincreasing on
l

[a,c].) As before, and without loss of generality, we will assume that

f > 0 on (0,c), for otherwise we could redefine the domain of f. We

also remark that a need not be uniquely determined for such an f as

considered herein. This can be seen in Figure 2.4 which depicts a

symmetric, unimodal, demand function for which a could be chosen to be

any point in the interval [15,20].

The term straddle is used to describe the situation in which some

facility i serves an interval Ii = [ai_l,¤i] over which f is not monotone.

In such a case, the facility is·said to straddle, or will be called a

straddling facility. Figure 2.4 depicts a problem having a total demand

of two hundred (200), and for which two different orderings of six (6)

facilities having capacities sl= 10, s2= 15, s3= 25, s4= 30, s5= 45,

s6= 75, say, are shown. The ordering shown in Figure 2.4a results in

straddling, whereas that of Figure 2.4b does not. It should be noted

however, that both orderings satisfy the condition of Corollary 2.10.



68

f(x)

f(x)=2x/3
10 ——————-————

I I
I I
I I
I I
I I
I I
I I
I I
I I

:s6=75:
I I II
I I

2 I I
X

0 15 20 35

Figure 2.4a. (Straddling)

f(x)

f(X)=2x/310I
I
I

I
s6=75:

I .—

IX
0 15 20 35

Figure 2.4b. (Non—Straddling)

Figure 2.4. Straddling vs. Non-Straddling
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The following theorem presents another condition that will

eventually be used in conjunction with Theorem 2.8/Corollary 2.10 to

construct an enumeration tree for the "p! problem" in which f is

symmetric and unimodal. Before proceeding with the theorem however, we

would remark that the figures and examples used to illustrate the

concepts and results of this section have been deliberately chosen with

ease of construction and computation in mind. Specifically, we take f

to be a function like that of Figure 2.5, and do so while understanding

that with respect to the analysis presented herein, f need not be so

convenient, but rather need only be nonnegative, integrable, unimodal

and symmetric. Note for example, that the function in Figure 2.5 is

such that a is unique and equal to c/2, but realize that this need not

be so, as is clearly shown in Figure 2.4.

Theorem 2.11. Suppose that the demand function f for Problem CP is

nonnegative, integrable, unimodal and symmetric on [0,c]. Then, in

determining an optimal solution to Problem CP, it is sufficient to

restrict attention to those orderings/permutations of the p facilities

which give solutions (per Corollary 2.6) satisfying the following

condition in addition to that of Corollary 2.10: if a facility M

straddles, then it has maximum capacity.

Pfggf. Let sM denote the capacity of the straddling facility, and

sL, sR the capacities of those facilities to its immediate left and

right respectively. By Theorem 2.8, we have that the facilities

to the left (right) of the straddling facility are ordered according

to nondecreasing (nonincreasing) capacity. Hence, if sM > max{sL,sR},
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f(x)

£(¤<) - - - - - - - -........

f(x)=(f(¤)/¤¤)x j(x)=-(f(¤)/é) (x—c)

x
0 c1=c/2 c

‘ Figure 2.5. A Symmetric, Unimodal, Demand Function
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then sM is the maximum capacity and we are done. Thus without loss of

generality, let us assume that sM < sR.

Figures 2.6 and 2.7 are provided to help clarify the statement

and proof of this theorem. In particular, Figures 2.6 and 2.7a depict

the situation described above, whereas Figure 2.7b depicts the situa-

-tion after the straddling facility and the facility to its immediate

right are interchanged. Note that F(x) is convex on ]0,u=c/2] and

concave on ]¤,c]. This follows from Lemma 2.9 and the form of f(x) on

]O,¤] and ]a,c].

The proof of this theorem is similiar to that of Theorem 2.8, in

that the geometric representation of the transportation costs associated

with the service provided by the facilities of interest, is the basis

for the proof. However, the proof is a bit more difficult than that of

Theorem 2.8, due to F(x) switching from being convex to concave at the

"cc-point", a = c/2. Under the assumption that sM < sR, the objective

of this proof is to establish that A1 > A2, where A1 and A2 are as

shown in Figure 2.7. From this figure, we get that
W

(11+sM/2) (H+sM)
A = [(S /2)G(H+S /2) '· I G(y)dy] + [ I G(y)dy — (6 /2)G(H+s /2)]1 M M M MH (H+sM/2)

(H+s +s /2) (H+s +s )
+ ](sR/2)G(H+sM+sR/2) — M] RG(y)dy] + [ M] Mc(y)dy-(SR/2)c(n+SM+sR/2)] ,

(H+s ) (H+s +s /2)M M R

where G =
F-1

and where each of the four summands is equal to the area

of one of the four regions comprising Al. Simplifying, we get

(H+sM/2) (H+sM) (H+sM+sR/2) (H+sM+sR)
A1 = ·I G(>')d>' + I G(y)dy · I G<>·)d>· i I /2 G(y)dy·

HSimiliarly,
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I
I
I

I .
I

S I
<——M-I——%

I
I

SL-)
I

<—————SR————>

I
I
I .
I
I
I
I
I
I
I
I

-1 „X -1 -1F (11*) F (1:+sM) F (1r+sM+SR)

Figure 2.6. (See Theorem 2.,11)
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· F(x)
I

Al=SR

TI+sM+SR/ 2 ————— — —S—R————·————

H+sM
2 :Fa!) ——·———---—-—V I

SM 11+SM/2 —--——SM————-
II I I

H I
I

I
I

I
I

I
I
I

I

I
/ I I0 VM <¤ VR

Figure 2.7a. (See Theorem 2.11)
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F(x) —

A2=sM

H+sR+sM/2sR

H+sR/2 ''‘‘‘S1;‘‘‘‘'‘

F(cx) '°“"°"°'“°‘’'

H

O J \yR im

Figgre 2.7b. (See Theorem 2.11)
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(H+sR/2) (11+sR) (H+sR+sM/2) (H+sR+sM)
A2 = - fG(y)dy + fG(y)dy - [ G(y)dy + [ G(y)dy.

11 (H+sR/2) (H+sR) (H+sR+sM/2)

Recalling our assumption that sM < sR, we consider two cases;

Case (1), sM < sR/2 and Case (11), sM > sR/2.

Case (1), sM < sR/2. Because F(x)(G(y)) has a cc—po1nt at

x = a = c/2 (y-F(a)), we need to consider two subcases; Case (ia),

H < F(a) < H + sM/2 and Case (ib), H + sM/2 < F(a) < H + sM. Figure

2.8 provides a pictorial representation of these subcases. The reader

should note that Figure 2.8 assumes sM < sR/2, as does the following

mathematics used in establishing that Al > A2. However, the very same

mathematics will also handle the case where sM = sR/2. We remark that

Figure 2.6, and hence Figure 2.7a, just so happen to depict Case (ib).

This should not bother the reader, since our current expressions for

Al and A2 are independent of whether sM < sR/2 or sM > sR/2. Only

now do we incorporate the relationship between sM and sR into the

expressions for Al and A2.

Under Case (ia), i.e. sM < sR/2 and H < F(a) < H + sM/2, Al and A2

can be written as

F(¤) (H+s /2) (H+s ) (n+s /2) (H+s +s /2) (H+s ) (H+s +s /2)
M M R M R R R M‘ [ * I; uf ‘„H2*„J+ ,1 „£H F<¤) (H+SM/) (+SM) ( SR/) < SM SR ) ( SR)

(H+s +s )
+ IM R

(11+s +s /2)
R M

and
F(¤) (H+s /2) (H+s ) (H+s /2) (H+s +s /2) (H+s ) (H+s +s /2)A2=_f_ IM_ IM_ fR+ MfR+ fR_ RIM

H F(a) (H+sM/2) (H+sM) (H+sR/2) (H+sM+sR/2) (H+sR)
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(H+sM+sR) A
+ I ,

(11+2-2R+sM/2)

where the integrand of each of these integrals is G(y)dy„ It follows

that
(H+sM) (H+sM+sR/2) (H+sR+sM/2)

(A1·A2)/2 = I G(y)dy ·· I G(y)dy + I G(y)dy •
(H+sM/2) (H+sR/2) (H+sR)

We will show that A1> A2 by showing that (A1-A2)/2 > O, and this

will be accomplished by using underestimates of the two positive

signed integrals and an overestimate of the negative integral„

Notice that since F(a) < H + each of the three integrals
L

in the above expression for (A1-A2)/2 is evaluated over an interval

on which G(y) is convex• Therefore, we can underestimate the first

and third integrals by the areas of the polygons formed using support

functionals to G(y) at (H+sM,G(H+sM)) and (H+sR,G(H+sR)), respectively,

as depicted in Figures 2.9a and 2.9b. Doing so, we get that

UH-SM)
2 +

I G(y)dy > — (sM/8)G (H+sM) + (sM/2)G(H+sM)
(H+SM/2)

and ~‘“+SR*SM’”
2 +

I G(y)dy > (sM/8)G (H+sR) + (sM/2)G(H+sR) •
(MSR)

Similiarly, we obtain an overestimate to the second integral by

constructing a secant line through the points (H+sR/2,G(H+sR/2)) and

(H+sM+sR/2,G(H+sM+sR/2)), and then computing the area of the resulting

polygon• This gives us that

(H+s +s /2)
— MI RG<y>dy > ·<SM/2>G<H+sM+sR/2) — (SM/2)G(H+sR/2) ·(H+sR/2)

Using these lower bounds, we can write
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G

(+)

11+sM/2 rr+sM

c F1gure 2.9a.

2
' <+>

11+sR H+sM/2
Figure 2.9b. G

11+sR/ 2 H+sM+sR/ 2
Figure 2.9c.

Figure 2.9. (see Theorem 2.11)



79

2 +(Al-A2)/2 > (sM/8)[G (H+sR) G (H+sM)]

+ (sM/2)[G(H+sR) - G(H+sM+sR/2) + G(H+sM) — G(H+sR/2)] .

+ +
Now G convex implies that G (H+sR) > G (H+sM), i.e. the term

2
(sM/8)[G+(H+sR) - G+(H+sM)] > 0 .

Concentrating on the second summand of the above expression, we

note that because of the convexity of G, the slope of the secant line

through the points (H+sM,G(H+sM)) and (H+sR/2,G(H+sR/2)) is less than

or equal to the slope of the secant line through the points

(H+sM+sR/2,G(H+sM+sR/2)) and (H+sR,G(H+sR)), i.e.

2 2- -But since sM < sR/ , (sR/ SM) > 0 and so G(H+sR/2) G(H+sM)

< G(H+sR) — G(H+sM+sR/2) .

Therefore,·0 < G(H+sR) - G(H+sM+sR/2) + G(H+sM) - G(H+sR/2) and

thus we have that (Al-A2)/2 > O, thereby establishing that A1 > A2.

This proves Theorem 2.11 for Case (ia).

Under Case (ib), i.e. sM < sR/2 and H + sM/2 < F(¤) < H + sM, Al and
C

A2 can be written as

(H+s /2) F(¤) (H+s)(11+s /2) (11+s+s/2) (H+s) (11+s+s/2)
M M R M R R R M‘M ‘„ U2

‘“„ H; M+s +s + +s +s(M)(¤) M(SR)(MR)+SR
(H+s +s )

+ IMR
H 2(+sR+sM/)

and
(H+s /2) F(a) (H+s ) (H+s /2) (H+s +s /2) (H+s ) (H+s +s /2)

M M R M R R R MA2-—/—I-I—f+/+I-/
H (H+sM) (H+sR/2) (H+sM+sR/2) (H+sR)

(H+s +s )
M R+ f .

(H+sR+sM/2)
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Therefore,
F(¤) (II+sM) (H+sM+sR/2) (lT+sR+sM/2)

IG<>·>dy · I G(>')dY + I G(>')d>' ·(H+s /2) F(a) (H+s /2) H+sM R R

Unlike Case (ia), G is not convex on each of the intervals of

integration of the above four integrals• In particular, G is

concave on [H+sM/2,F(¤)I, and convex on the other three intervals of

integration• Thus we consider two cases under Case (ib):

F(¤)6[H+(3/4)s ,H+s ) and F(¤)e(H+s /2,H+(3/4)s ).
M M M M

Suppose F(a)e[H+(3/4)sM,H+sM).

-1
Because of the symmetry of f, the function G = F possesses a sort

of negative symmetry of its own• Specifically, G(F(a)+6) — G(F(a)) ¤

G(F(a)) - G(F(a)-0) for all 6e[0,F(a)]. .

Because of F(a)'s assumed location and the symmetry of G, the

area under the secant line through the points (H+sM/2,G(H+sM/2)) and

(H+SM>
(H+s ,G(H+s )) is an underestimate of I G(y)dy• Thus we can write

M M (H+SM/2)

(H+sM) F(¤) (H+sM)

I G<>')d>' =I G(y)dy + I G(y)dY > (SM/‘•>G(H+SM/2) + (SM/‘+)G(H+sM)·
(H+sM/2) (H+sM/2) F(a)

Now since G is convex on [H+sR/2,H+sM+sR/2] and [H+sR,H+sR+sM/2],

(H+sM+sR/2)
we can use the same overestimate and underestimate of I G(y)dy

(H+s 2)
(H+sR+sM/2) R

and I G(y)dy, respectively, that was used in Case (ia)• Doing so,
H+sR

we have that

A-A 2> 4GII+s 2+ l+GII+s +— 2GH+s+s2<1 Zw [<SM/>< M/><sM/>< M>] [<sM/>< M R/>
— (sM/2)G(H+sR/2)] + [(6;/8)G+(H+sR)+(sM/2)G(H+sR)] .

Now since
G+

is non—decreasing to the right of y = F(a), and
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because of the symmetry of G about y = F(a), we have

+6 (11+sR) > [G(H+sM) — G(H+sM/2)]/(sM/2) .

Therefore, (sä/8)G+(H+sR) + (SM/4)G(H+sM/2) > (sM/4)G(H+sM), and

thus, (A1-A2)/2 > (aM/2)G(H+sM) + (sM/2)G(H+sR) + [-(SM/2)G(H+sM+sR/2)

— 2 G H 2 .<SM/ > < +sR/ >]
By the convexity of G to the right of y = F(a),

G(H+sR) - G(H+sM+sR/2) > G(H+sR/2) — G(H+sM) > O ,

and so

G(H+sR) - G(H+sM+sR/2) — G(H+sR/2) + G(H+sM) > O .

Therefore,
(A1-A2)/2 > O and so Al> A2 „

Next, suppose F(¤)e(H+sM/2,H+(3/4)sM).

Because of the location of y = F(u) and the symmetry of G, the area of

the polygon formed by the support functional to G at (H+sM,G(H+sM)) can

(H+SM)
be used as an underestimate of I G(y)dy• That is,

(H+S /2)
M

(H+sM) F(¤) (H+sM)
2 +I G<y>dy =I G<y)dy + I G<>'>dy > (SM/2)G<H+sM> — (SM/8>G (H+sM)-

(H+sM/2) (H+sM/2) F(a)

Again, because G is convex on [H+sR/2,H+sM+sR/2] and [H+sR,H+sR+
(H+sM+sR/2)

sM/2], we can use the same overestimate and underestimate of I G(y)dy

(H+sR+sM/2) (MSR/2)
and I G(y)dy , respectively, that was used in Case (ia)-

H+s
R

Doing so, we have that

2 +(Al-A2)/2 > [(SM/2)c(n+SM) — (sM/8)G (u+SM)] + [-(sM/2)

c(H+SM+sR/2)—(sM/2)c(H+-SR/2)] + [(5;/8)c+(n~•-SR) + (sM/2)G(H+sR)] .

But
G+

nondecreasing gives us that

2 + 2 +
(sM/8)G (H+sR) - (sM/8)G (H+sM) > 0 , and also that



82

[G(H+sR) - G(H+sM+sR/2)]/(sR/2-sM) > [G(H+sR/2)—G(H+sM)]/(SR/2-sM).

From these it follows that (Al—A2)/2 > 0 and so A1 > A2, thereby

proving the theorem for Case (ib).

This proves Theorem 2.11 for Case (i).

Because the proof of Case (ii) is very similar to that of

Case (i) in both approach and scope, it will not be given here and we

declare Theorem 2.11, proven.
E]

We remark that the condition/property established in the above

theorem does not hold for non-symmetric f. The following example shows

this.

X , xt-:[O,l0]
Example I: Let f(x) =

-0.0001x + 10.001 , xe[10,20].

and p = 3 with capacities sl=10, s2=50 and s3=89.995. Note that

20
Total Demand = f(x)dx = s +s +s .

0 1 2 3

Figure 2.10 shows the locations and allocations (per Corollary

2.6) of two different orderings of the facilities, each of which

satisfies Corollary 2.10. In addition, straddling occurs in both

orderings, with Figure 2.10a showing the straddling facility to be

the one having maximum capacity, and Figure 2.10b showing otherwise.

Contrary to Theorem 2.11, the ordering of Figure 2.10b is the least

costly (and is the unique optimum), having a total cost of 288.91000,

whereas that of Figure 2.10a costs 290.20633.

The conditions/properties of Theorem 2.8/Corollary 2.10 and Theorem

2.11 lead us to investigate the question of whether an optimal ordering

for a problem whose demand function satisfies the requirements of

Theorem 2.11 (i.e. symmetric, unimodal, etc.), would be obtained if the
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(10,10)
f(x)

I
I (20,9.999)
I

I
I
I
I

I
I

s3=89.995 _
I

. I
II s2 50
I
I
I

O I /20 10 I 14.99962 I c=2O

Figure 2.10a.

f(x)

s3=89.995

0 I E I 10 11.00001 I c=20
yl=/Ü5 y2=/70 y3=15.4999

4 · Figure 2.10b.

Figure 2.10. (See Example I)
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facilities were located (according to Corollary 2.6) in an alteruating

manner left and right of a = c/2, say, in order of increasing capacity,

and so as to satisfy Corollary 2.10. Figure 2.11 is provided to further

explain what is meant. lt depicts a problem having a total demand of

one-hundred (100), and having six facilities whose capacities have been

numbered so that sl=S < s2=10 < s3=15 < s4=20 < s5=24 < s6=26. Notice

that in both Figure 2.11a and 2.11b, the orderings satisfy Corollary 2.10

and straddling occurs. As an aside, we remark that since the ordering

of Figure 2.11b does not satisfy Theorem 2.11, we would not bother to

consider such an ordering. With respect to the issue at hand, we note

that the ordering of Figure 2.11a is an alternating ordering, whereas

that of Figure 2.1lb is not.

The outcome of our investigation of the alternating facility

question can best be summarized by the following theorem.

Theorem 2.12. Given a demand function f satisfying the requirements of

Theorem 2.11, and p = 3 facilities having capacities sl< s2< s3, the

alternating ordering is optimal. For p = 4, such an ordering need not

‘be optimal. _

Eteet. A complete proof of the p = 3 part of this theorem is quite

lengthy since it requires arguments exactly like those used in the proof

of Theorems 2.8 and 2.11. Therefore, we simply outline what must be done

to prove this part of the theorem. The p = 4 portion is established

by an example showing that the alternating ordering is non—optimal.

_ Let p = 3 and s1< s2< s3. A complete treatment of the problem

would have to consider each of the cases; (1) s1= s2= s3, (2) sl< s2< S3,
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f (X) (10,10)

1

I
I
1
1
1
1
1

I
1
s =26

: 6
1

I
I

X

0 10 20

Figure 2.11a. (Alternating)

f(X) (10,10) .
1
1
1
1
I
I
1
1
1

I
s$=24

I
I
I
I
I

X

O 10 20

Figure 2.11b. (Non—Alt:ernating)

Figure 2.11. Alternating/Non—Alternating Orderings
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(3) s1= s2< s3, and (4) sl< s2= s3. Clearly, the theorem holds

vacuously for Case (1) and thus only the remaining three cases would

need to be examined.

(Note: a schematic is used to show the different orderings within each

case. The letter D stands for the total demand.)

We demonstrate the approach taken and work required in examining

Case (2).

Case (2) i.e. s1< s2< s3.

(2a) sl+s2< D/2 + sl< D/2, s2< D/2, $3) D/2

CompareA

A S3 nä
2al 2a2 233

(Alternating)

Remarks: 1) discard ordering 2a3 via Corollary 2.10.
11) need to compare 2al and 2a2 to determine if 2al is

less costly.

(zb) sl+s2= D/2 + sl< D/z, s2< D/2, s3= D/2

ÄAA A ä
2b1 2b2 2b3

(Alternating)
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Remarks: i) discard ordering 2b3 via Corollary 2.10.
ii) need to compare 2bl and 2b2 to determine if 2b1 is

less costly.

(2c) 51+ sz) D/2 + s3< D/2 + sl< D/2, s2< D/2

2cl 2c2 2c3

(Alternating)

' Remarks: i) discard both 2c2 and 2c3 via Theorem 2.11, i.e. max-
capacity straddles.

ii) thus under case (2c), the alternating is optimal
and the theorem holds.

Now, to complete Case (2), one needs to determine the least costly order-

ing of each of the pairs (2a1,2a2) and (2bl,2b2). To do so requires an

argument like that used to prove Theorem 2.8, and hence the reader can

appreciate why we only outline the proof of this part of the theorem.

The writer has, however, drudged through the necessary arguments, and

thus can state that the alternating ordering is optimal for each of the

cases 2a, 2b and 2c. The same approach was used to establish the

theorem for cases (3) and (4).

The following example shows that for p = 4, the alternating

ordering need not be optimal.

10 , x€[O,3]U[4,7]
Example II: Let f(x) = 180x - 530 , xs[3,3.S]

-180x + 730 , xs[3.S,4]
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and p = 4 with capacities sl=10, s2=20, s3=30, and s4=55.

Figure 2.12 shows the locations and allocations (per Corollary 2.6)

of two different orderings of the facilities, each of which satisfies

Corollary 2.10 and Theorem 2.11. Note that the ordering of Figure 2.12a

is alternating, whereas that of 2.12b is not. The costs of the

orderings depicted in Figures 2.12a and 2.12b are 34.92939 and 32.50000,

respectively, thus establishing the p = 4 part of this theorem.
E]

As was mentioned earlier, our purpose in presenting results such

as those of Theorem 2.8/Corollary 2.10 and Theorem 2.11, is to enable

the efficient construction of an enumeration tree that can be used in

tackling the "p! problem". This being the case, we are now in a

position to demonstrate how these results can be used to reduce the

number of orderings that need to be considered in searching for an

optimal solution to Problem CP, where f satisfies the requirements

of Theorem 2.11.

Given such an f as that of Theorem 2.11, and p facilities having

known distinct capacities, we remark that there are p! different

orderings of the facilities, but only p!/2 of them need to be consid-

ered, due to the symmetry of f. We begin construction of an enumeration

tree by numbering/labeling the facilities so that sl< s2< ... < sp.

Then by employing a "1eft·right" branching criterion, where "left"

refers to {0,aEc/2] and "right" to [a,c], we arbitrarily (due to

symmetry of f) branch at node 9 (Level O) according to placement of the

facilitiy having capacity sl, to the left of a, and per Corollary 2.10,

so as to serve the interval Il= [O,al]. The resulting node constitutes

Level 1 of the tree. Level 2 is obtained by branching at the single
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(3.5,100) 1 A

f(x) = l80x—53Of(x) =·l80x+73O -
10
s1=10 s2=20

0 1 1 2 1 3 14 s 6 7
0.5 2.5 3.61111

3.28238
Figure 2.12a.

10
sl=10 s2=20 s3=30

0 1 1 2 3 1 a s 1 6 7
0.5 3.5 5.5

Figure 2.12b.

Figure 2.12. (See Example II)
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node of Level 1 according to whether the facility having capacity sz

is to be located to the left or right of a, and so as to satisfy

Corollary 2.10. At each of the two nodes in Level 2, branching is

initiated with respect to s3, etc. Construction of the tree continues
as such along each branch of the tree until such time as a node is

reached at which branching with respect to some si, i < p, would result

in straddling, thereby violating Theorem 2.11. Such a node would

not be branched, for its completion is unique and readily known. Of

course, if at some intermediate stage/level of the tree one were to

encounter a node for which the remaining unserved demand was symmetric,

then he/she would only need to branch to the left or the right (but not

both) as was the case at node 6. Additionally, if at such a node there

remained only three facilities still to be located, then the completion

of that node is known immediately from Theorem 2.12.

The following example illustrates how Corollary 2.10 and Theorems

2.11 and 2.12 are used to construct an enumeration tree.

{X , X6[0,12]
Example (Alpha): Let f(x) =

za- X , x€[l2,24] x

and p = 6 with capacities sl=10, s2=12, s3=22, sh=24, s5=28 and s6=48.

Note that f satisfies the requirements of Theorem 2.11 and that Total

— Demand = ?af(x)dx = si = 144.
l

0 i=1 a
Keeping in mind that a = c/2 = 12 and that ff(x)dx = 72, Corollary

2.10 and Theorem 2.11 are used via the "1eft—riggt" branching criterion,

to obtain the tree shown in Figure 2.13. Notice that only nine (9) of

the 6! = 720 different orderings need to be considered. In particular,

note that further branching at node E is not necessary due to Theorem
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2.12, and similarly at node L, since the remaining unserved demand

1s symmetric and three or less facilities remain to be located.

Corollary 2.10, Theorem 2.11 and Theorem 2.12 assure us that an optimal

solution to Problem CP can be found amongst the orderings/permutations

corresponding to nodes E, H, J, L, M, N, 0, P, AND Q.

Obviously, Theorem 2.11 contributes towards lessening the size of

the enumeration tree (as does Corollary 2.10). However, without Theorem

2.11, such orderings as (s2,s3,s5,s4,s6,s1) would have to be represented
in the tree, since this ordering satisfies Corollary 2.10. It is Theorem

2.11 which validates the procedure of branching from Level (1-1) to Level

1 according to left-right placement of the facility having capacity si.

2.6 Analysis of the Non-Symmetrie, Unimodal Demand Distribution Case

Recalling that Theorem 2.11 need not hold for non-symmetric f

(see Figure 2.10), one might conclude that the method presented in

section 2.5 for constructing an enumeration tree is useless/invalid

for problems involving non-symmetric demand functions. In fact, the

method remains valid with the exception that the straddling facility is

only required to have maximum capacity with respect to the facilities to

the left 2£_right of itself. The following theorem validates our

branching criterion for the case in which f is non-symmetric.

Theorem 2.13. Consider Problem CP and suppose that the demand function

f is nonnegative, integrable and unimodal on [0,c]. (Recall that being

unimodal means f is nondecreasing on [0,a] and nonincreasing on [a,c],

for some ae[0,c].) Then in determining an optimal solution to Problem

CP, it is sufficient to restrict attention to those orderings/
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permutations of the p facilities which give solutions (per Corollary

2.6) satisfying the following condition in addition to that of

Corollary 2.10: if facility M straddles, then sM must be a maximum

with respect to the capacities of those facilities located on at least

one side of it.

ggggä. If f is symmetric, then this theorem follows immediately from

Theorem 2.11. Suppose f is not symmetric. To facilitate understanding

of this proof, we make use of Figure 2.14 which depicts a demand

function satisfying all of the properties required by this theorem.

Without loss of generality, let us suppose that the straddling facility

(having capacity sM) is lgcated at a point yM< u and that it serves the

interval [Y,B]. Let A = ff(x)dx and let sL denote the capacity of the

facility to the immediatealeft of the straddling facility (if no such

facility exists the theorem holds vacuously).

Now, if sM> sL the theorem follows from Corollary 2.10. Thus, let
us suppose that sM< sL. After interchanging the facilities currently

located at points yL< yM< o, the new facility locations, denoted

yi, yé, are such that y'L< yM, since all locations are median locations.

Let 6 = yM- yi. We have that the cost of supplying/serving

the demand over [a,B] from yi is given by '

. B B
[f(x)[x·y£|dx = ff(x)(x—y£)dx
a a

B
= ff(x)(x-yM+9)dx

a

B B
= ff<x)(x·yM)dx + 9If(x)dx

a a
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f(x)

I
I
I

I
I

I

SMI
I
I
I

I
}eA

I

I

Ä X
/ y/ I \\y IL yL yM Q B

(¤+A/f(¤¤))

Figure 2.14. (See Theorem 2.13)



95

B
= f6(x)|x—yM|ax + GA .

o

Thus we see that the difference in costs between serving the

demand over [a,ß] from the points yi and yM is simply a multiple

of A, the area under f and over [¤,B]. The cost differential

is independent of the geometry/shape of this area, and so we could

"square off" this area by redefining f to equal f(o) on [a,d+A/f(o)]

and 0 on (a+A/f(a),B). However, in doing so we would then have a

non-decreasing demand function on [0,a+A/f(o)], and thus by Corollary

2.10, it follows that sM> sL. E]
Figure 2.15 shows the enumeration tree obtained using Corollary 2.10

and Theorem 2.13 for the following example problem.
5

x , xe[0,10]
Example (Bravo): Let f(x) =

-2x + 30 , x6[10,lS]

and p = 5 with capacities s -5, s -10, s =15, s -20 and s =25. Note
1 2 3 4 S

15 5
that a = 10 and Total Demand = ff(x)dx = 75 = E s .

0 i=1
-

As shown in Figure 2.15, Corollary 2.10 and Theorem 2.13 have

reduced the number of orderings that need to be considered from S! = 120

down to fourteen (14). Notice that node Q, for instance, satisfies

Corollary 2.10 and has a straddling facility of maximum capacity, whereas

node z satisfies Corollary 2.10 and Theorem 2.13. Also note that

straddling does not even occur at nodes 0,J, and V.

Given that we now have an acceptable branching criterion by which

we are able to construct enumeration trees for problems having demand

functions such as those of Theorems 2.11 and 2.13, we now direct our
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efforts towards obtaining lower bounds on partial completions/orderings

so as to avail ourselves to the time and effort saving value of

fathoming.

2.7 Using Lower Bounds to Fathom Partial Orderings

g In an effort to further reduce the number of orderings for which

actual costs must be computed, methods of computing lower bounds on the

costs of partial orderings were sought. The intent of bounding is to

enable one to fathom a partial ordering, and therefore forgo the need

to determine the costs of its completions.

Methods of computing lower bounds on the cost associated with the

locations/allocations (per Corollary 2.6) of an ordering of p facilities,

almost seem to be limited only by ones' imagination. However, for a

lower bound to be useful in fathoming, it must exceed the cost of the

incumbent ordering/solution. Of the bounds investigated in our analysis,

most failed to result in fathoming. The question remains as to whether

the fault lies in the method (of bounding) itself, or in the fact that

such methods were applied to small problems like those of Examples Alpha

and Bravo•‘ Regardless, a useful method of bounding was obtained which

has as its basis, the following theorem.

Theorem 2.14. Let f be a nonnegative, integrable demand function

defined on [0,c], and let [¤,B]§.[O,c] be the service interval of

some facility located at a median y*6 (a,ß) and having capacity/supply,

s = ?f(x)dx.
a
If g is a nonnegative, integrable function such that for some

a', B' satisfying a < u'< y*< ß' < B, we have
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*y ß'
i) [ g(x)dx = [*g(x)dx = s/2,

a' y

* *Y Y
*ii) [ g(x)dx > [ f(x)dx, for all a' < y < y ,

Y Y

Y Y
*and iii) [*g(x)dx > [*f(x)dx , for all y < y < B',

Y Y

then the transportation cost with respect to g of the service/supply

*provided to [a',B'[ by the facility located at y , is less than or equal

to the cost with respect to f of the service/supply provided to [¤,8[,

i•€•

B' B
* *[g(x)[x—y [dx < [f(x)[x-y [dx • (2.11)

a' a

(Note: the following schematic is given to help clarify the statement

and proof of this theorem.)

gI

l

I
•

*¤ ¤' y B'B



99

Proof. In order to prove this theorem, it is sufficient to show that

* * 'Y
*

Y
*

B
*

B
*I g(x)(y ·x)dx < I f(x)(y ·x)dx and that f*g(x)(x-y )dx < f*f(x)(x—y )dx .

G' G u
y y

Let us prove the second of these inequalities; a similar argument holds

x
for the first inequality. Toward this end, define F*(x) = f*f(z)dz

X Y
and G*(x) = f*g(z)dz and note from (i) and (iii), that by defining

, Y
g(x) E 0 on (B',B], we have

*s/2 > G*(x) > F*(x) for all x€[y ,8]. (2.12)

Hence, using (i) and integrating by parts, we get upon using (2.12) in

the final step, that

B
*

B'
*

B B'
f,,f<>¤)(x—>' )dx · I,„s<x)<x·v )dx = I,„¤<f(¤<)dx · I,„xg(x)dx
Y Y Y Y

B B'
=

_ _
I IßF*(B) f*F*(x)dx B G*(8 ) + f*G*(x)dx

Y Y

B' B
= (s/2)(B-B') + f*[G*(x)-F*(x)]dx - f F*(x)dx

Y B'
B

> (s/2)(B—B') —
f F*(x)dx > O.
BI

This completes the proof.
Ü

The following corollary is presented in the spirit of the intended

use of Theorem 2.14. U

Corollary 2.15. Let f be a nonnegative, integrable, unimodal demand

function defined on [0,c], and having a maximum at some ae[0,c]. Let

Al and A2 denote the total demands to the left and right of a,

d c
respectively, i.e. A1 = ff(x)dx and A2= ff(x)dx. Pictorially, we might

0 a
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have something like that in Figure 2.16a.

"Squaring off" the demand over [0,a], we define
f(u), on [a — Al/f(a),a]

l g s
{T f , on [a,c] .

Pictorially, we would have Figure 2.16b.

"Squaring off" the demand over [a,c], we define
{”f

, on [0,a]
h „

f(a), on [¤,a + A2/f(¤)] .

Pictorally, we would have Figure 2.16c.

A lower bound on the optimal cost of serving/supplying the demand

Al+ A2 with respect to f, is the larger of the optimal costs of doing

the same, with respect to g and h.

grggf: Suppose that we know/have an optimal solution with respect to f.

In particular, let us assume that it is of the type described in

Theorem 2.5.

Consider the modified solution in g, in which those facility

locations currently in [a,c] remain fixed, whereas those in [0,a] are

optimally relocated with respect to g. Then by Theorem 2.14, the cost

of the resulting solution in g is less than or equal to the cost of the

- optimal solution in f. Thus, the optimal solution with respect to g,

must be less than or equal to the cost of the optimal soluton in f.
w

Similarly for h, and hence Corollary 2.15 is proven.
E]

To illustrate how one might use Theorem 2.14/Corollary 2.15 to

fathom partial orderings of an enumeration tree for the "p! problem",

we direct the reader's attention to Example (Bravo) and in particular,

to its enumeration tree shown in Figure 2.15.
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0 a c I
I1 I g
I

Figure 2.16a. 1

1
I

A1 { A2
I
I

1
I

I
I

I

I

0 a c
h (a—A1/f(¤))

Figure 2.16b. _

O a c
(u+A2/f(u))

Figure 2.16c.

Figure 2.16. (See Corollary 2.15)
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Again, noting that there are fourteen (14) orderings that

need to be considered, i.e. their costs need to be computed, we will

show how Theorem 2.14/Corollary 2.15 can be used to fathom nodes C,L

and F. In doing so, we will "say" that the "equivalent" of three (3)

cost computations are required. Noting that nodes C,L and F result in

nine (9) completions/orderings, we remark that the fathoming of these

nodes has saved us the equivalent of six (6) cost computations.

The basis for being able to fathom a node/partial ordering, is that

a known lower bound on the costs of the completions of that node is

greater than or equal to the cost of some incumbent solution/ordering.

This being the case, suppose that for an incumbent solution, one selects

the intuitively appealing ordering/permutation corresponding to node T.

This ordering is such that the facilities have been located in an

alternating fashion to the left and right of a = 10, and has an

associated cost of 51.79526. Subject to Theorem 2.13, one may attempt

to improve upon this solution by interchanging the straddling facility

(4) with one of its immediate neighbors. The interchange of facilities

4 and 2 violates Theorem 2.13, while the interchange of 4 and 5

satisfies the theorem and results in the ordering which corresponds to

node S. This ordering has an associated cost of 51.09342 which is less

than that of node T. Thus, let us use the ordering of node S as our

incumbent solution. (Incidentally, this is an optimal solution.)

One final remark before fathoming nodes C, L and F, is that non-

judicious attempts at fathoming can quickly "eat up" any savings in

computation that may eventually result from successful fathoming. This

is especially so for problems having a small number of facilities. lf
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one attempts to fathom (via Theorem 2.14/Corollary 2.15) too high up in

the tree, it is likely that Corollary 2.15 will square off too much

demand and thus result in a lower bound that is not strong (large)

enough to result in fathoming. With these thoughts in mind, let us

proceed with the fathoming of nodes C, L and F.

First, node C. 1

At node C, we see that the assignments s1L and s2L have been made,

and that they constitute fifteen (15) of the fifty (50) units of demand

lying to the left of a = 10.

"Squaring off" the remaining thirty—five (35) units of demand to

the left of a via the function

{
10, ou [6.6,10]

s , ou [10,16] ,

and noting that g is non—increasing on [6.5,15], we employ Theorem 2.8

and Corollary 2.6 to obtain an optimal solution to the problem of

serving/supplying the demand with respect to g over the interval

[6.5,15]. Per Corollary 2.15, the cost of this solution is a lower bound

to the cost of serving/supplying the demand with respect to f over the

interval [¤l=/30,15]. Figure 2.17 depicts the methodology involved in

obtaining this lower bound. The cost of this bound is equal to 51.13777

(this includes the costs of sl and sz also) which is greater than that

of our incumbent (i.e. 51.09342), and hence we can fathom node C.

Node L.

From Figure 2.15, we see that the assignments slR, s2L and s3R

have been made.
l

"Squaring off" the remaining five (5) units of demand to the right
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NX) (10,10)

1
I

Z
I

f(x) = x I
f(x) = -2x+30

1
1

Z
1SATZO
1
I
I
1
I

I
7

0 I/E I/E 6.6I 9 I I12.26139 151/E 1/E 7.75 10 11.12702

Figure 2.17. Fathoming Node C
of Example Bravo
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of a = 10 via the function
l

]' f , ou [0,10]
h s

10, on [10,10.5] ,
and noting the monotonicity of h on [0,10.5], we employ Theorem 2.8 and

Corollary 2.6 to obtain an optimal solution to the problem of serving/

supplying the demand with respect to h over the interval [0,10.5].

Per Corollary 2.15, the cost of this solution is a lower bound to the V
costs of the completions of the partial ordering at node L. The cost of

this bound is equal to 52.21267 which is greater than that of our

incumbent, and hence we can fathom node L. For further clarification,

see Figure 2.18.

Node F.

The reasoning is identical to that of nodes C and L. See Figure

2.19 for further detail. °

This completes our analysis of the "p! problem" for the special

case in which f satisfies either the conditions of Section 2.5 (i.e.

nonnegative, integrable, symmetric, unimodal) or those of Section 2.6

(i.e. nonnegative, integrable, non-symmetric, unimodal). We conclude

our analysis of Problem CP by offering some insight as to how one might

"tackle" the "p! problem" for the case in which the demand function is

simply nonnegative and integrable.

2.8 Treatment of Problem CP, When f is Simply Nonnegative and Integrable

In this section, we offer some suggestions/remarks as to how one

might deal with the "p! problem", when the demand function of Problem CP

is not as well behaved as in Sections 2.5 and 2.6. In particular, we

present a theorem which may prove useful in fathoming the enumeration
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f(x)
(10,10)

·11
1I 1
I

f(x) = x
I

f(x)

s5=25 : .
1
1
I
1
1

I
I
1
1
1
I

0 I /§> 1 /00 I 10 \ 15
/10 /63 /1G 13.41886

10.5
10.52786 12.76393

11.46447

Figure 2.18. Fathoming Node L
of Example Bravo



107

HX) (,10,10)

0 1 1 /70 110/ 1 \ 15/E /§0 /%-11 \ 13.61686

11.83772

1
Figure 2.19. Fathoming Node F

of Example Bravo
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tree of the "p! problem" for the case in which f is simply nonnegative

and integrable. Unlike the branching criteria used in Sections 2.5

and 2.6, construction of an enumeration tree for a problem having a

more general demand function would require a more flexible branching

policy, in that the nature of f and the nature of the fathoming

criteria would be likely to dictate ones branching decisions. For

instance, suppose that at some node of the enumeration tree, we find

that f is monotone over a significant connected subset of the unserved

portion of [0,c]. Then in view of Corollary 2.10, it would be

advantageous to continue branching (if possible) so as to finally obtain

a partial ordering having f monotone over the unserved portion of [0,c],

for then an optimal completion is known.

Corollary 2.10 clearly states that f need only be nonegative and

integrable. It is therefore fitting that it receive due mention in this

section. The utility of this corollary in reducing the number of

orderings/permutations to be considered, follows by noting that we need

not consider (i.e. we may fathom) those orderings in which Corollary 2.10

is violated over some monotone section of some general f. Similarly,

one need not consider any ordering which violates any of Theorems 2.11,

2.12, or 2.13 on some connected subset of [0,c], over which f satisfies

the requirements of the respective theorem. Thus, we see the usefulness

of the results obtained for the special cases of Sections 2.5 and 2.6,

in dealing with any Problem CP having a more general demand function.

Admittedly, the procedure being described for the more general problem

is presently less algorithmic than that described for the special cases.

Also it is obvious that the effectiveness of such procedures are very
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much dependent on the nature of the demand function itself, and to some

extent, on the ability of the problem solver.

Continuing along the same line, we remark that the lower bounding

result of Theorem 2.14 can be used to (easily) obtain an underestimate

of the cost of a given solution to Problem CP. The value of this lies

in the fact that if the underestimate exceeds some imcnmbent value, then

one may avoid the (more difficult) computation of the actual cost of the

solution. Specifically, suppose we have a solution to Problem CP, and

instead of evaluating the objective function value, we do the following.

For each interval [a,B]§§ [0,c] served by some facility located at the

median y* as in Theorem 2.14, we construct a function g(•) and determine

a' and B' such that (1) holds and that g(x) = HIE sup {f(x): o < x < y*}

on [¤',y*] and that g(x) = H2 E sup {f(x): y*< x < B} on (y*,B']. Then

the conditions of Theorem 2.14 are satisfied, and so (2.11) holds. More

importantly, the evaluation of the left·hand—side of (2.11) for each

such service subinterval [a,B] is an easy task. In fact, it equals

(1/2)[H1(y*-¤')2 + H2(B'—y*)2]. Hence, suming such quantities over all

p subintervals of [0,c}, we obtain an underestimate of the actual cost

of the ordering, which we would then compare to some incumbent value in

the hope of avoiding the actual computation of the cost of the ordering.

We conclude our analysis of Problem CP by presenting a

generalization of Corollary 2.15 which can be used to obtain a lower

bound to the optimal value of Problem CP. Consider Problem CP with some

nonnegative, integrable, demand function f:[O,c] + R, and construct an

associated nonnegative, integrable, demand function f(•) defined on some

[O,c'], c' < c, as follows. Note that since only the accumulated area
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under f(•) is of concern to us, we can assume without loss of generality

chat f(•) is lower semicontinuous. First, construct a nondecreasing

envelope f(•) for f(•). That is, let f(•) be a nondecreasing function

which is the pointwise infimum of all nondecreasing, continuous

functions which exceed f(•)
everywhere. (A similar result holds for a

(

nonincreasing envelope construction.) Note that over all subsets of

[0,c] of positive measure where f(•) exceeds f(·), the function f(•)

is a constant• Over each subinterval where f(•) is a constant, shrink

the length of this subinterval so that the area under f(•) over the

shrunken subinterval equals the area under f(•) over this original

subinterval. Upon shrinking the lengths of such subintervals

individually, leaving the length and function definitions in other

subintervals unaltered, the function f(•) transforms into the desired

nondecreasing, nonnegative, function f(•) defined on some resulting

interval [0,c'], say, where c' < c. Note that the total area under f(•)

on [0,c'] equals the total area under f(•) on [0,c]. We provide Figure

2.20 to aid in explaining the construction of f(•) and also refer the

reader to Figure 2.16, where flä h and fz? g are respectively obtained

by "squaring off" the regions to the right and left of u. We now
.~

present the main result of this section.

Theorem 2.16. Given f:[O,c] + R of Problem CP, let f:[0,c'] + R be

constructed as above. Then the PFL solution of Theorem 2.8 which

solves Problem CP with f replaced by f, gives an objective function

value with respect to f which is a lower bound for the optimal value to

Problem CP with respect to f(•)•



111

f(x)
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I
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2sir1x+3,0<x<211
f(x)= x+3-2I1,211< x< 311

-((3+11)/11)x + 12 + 411 , 311 < x< 411

?(x)

5 —---_—_-—---_·_——__—___
I I
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3 I I I |

I I I I
I I I I
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I I I I
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T X
0 11/2 211 (2H+2)311 411=C

2sinx+3 ,0<x<11/2

E(x) = 5 , 11/2 < x< 211+2
x + 3-211 , 211+2 < x < 311
3+11 ,311<x< 1+11

Figure 2.20. Bounding Partial Orderings
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E(x)

1 1

5 I I
I I 1 1
I I 1 1
I I 1 1
I I I 1

3 I 1 1 1
I I 1 1
I I 1 1
I I 1 11 1 1 1
I I 1 1
I I 1 1

· x
0 H/2 H (2+7H/5) / (2911/10) ‘*H’C

(12H/5)

2sinx+3
5 , H/2 < x < 2 + 7H/5
x -(7H/5) + 3, 2 + 7H/5 < x< 12H/5
H + 3 , 12H/5 < x < 29H/10

Figure 2.20. (continued)
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Proof. Consider an optimal solution to Problem CP with respect to the

demand function f(·), and let vl = iälvli be the optimal objective

function value, where vli is the contribution to vl due to facility
1-1, ..., p, and let o be the corresponding optimal permutation of

facilities. For this same 0, let Y*(¤) be the facility locations for

Problem CP with respect to the demand function f(•) and denote

vz E v[Y*(o)] E iälvzi, where vzi is the contribution to vz due to

facility 1. In order to prove the result, it is sufficient to show that

vzi < vli for each i=1, ..., p.
Hence, consider any i€{1, ••., p} and let [a,B] gg [0,c] be the

interval that facility i serves from a median location y*s(a,B), at the

stated cost vll. Now, let f(•) be defined from f(•) as above, and

consider f(•) on the interval [a,B]. Again, as before, on either side

of y*, shrink the lengths of each subinterval of [a,B] of positive

measure on which f(•) is a constant, so that the area under f(•) over

the shrunk subinterval is the same as the area under f(•)
over the

original subinterval. Packing the resulting function about y* gives a .

function g(•) defined on an interval [a1,B'] which clearly satisfies
‘

the conditions of Theorem 2.14, and hence, the cost vli' associated with

serving g(•) on [a',B'] from y*, satisfies vli'< vll. But by

construction, g(•) on [¤',B'] is precisely the segment of f(•) served

from the same median location by facility 1 in the solution Y*(¤).

Hence, v2i= vli', and the proof is complete. E]

It is felt that Theorem 2.16, Corollary 2.10 and the results of

Sections 2.5 and 2.6 provide one with a fair amount of ammunition with
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which to attack Problem CP in the case of general f. The objective of

all of these results is to lessen the severity of the "p! problem", that

is, to reduce the number of solutions for which one needs to evaluate

the objective function of Problem CP. As is usually the case with

combinatoral problems such as the "p! problem", further research is

warranted for this general f case.

2.9 A Sequential One Facility Per Period Location—Allocation Problem

As a final case of analysis in this chapter, we consider a dynamic,

sequential location—allocation problem, as in Scott [1971], Minieka

[1980], and Cavalier and Sherali [1983b]. Here, a certain planning

horizon with T periods is specified, and a single facility per period is

required to be located. The individual period durations are assumed to

be long enough so as to justify the location of a facility based on only

the current period's information, in view of the unavailability or the

unreliability of any future period data. Hence, a typical period's

problem is as follows. Some (p-1) facilities having positive supplies

sl, ..., sp_l are known to be located at points yl, ..., yp_1 respec-

tively, where QOE 0 < yl= ;1< y2= ;2< ... < yP_l= ;p_l< c E tp, say.
Additionally, for the period under question, an estimated demand

distribution function f(•) is specified such that A E ?f(x)dx
-p;ls

> 0.

th 0 1=1 i
The problem is to locate a p facility having supply sp= A at some point

yp in [0,c] so as to minimize the
pth

period's total cost, i.e., so as

to solve Problem CP with the variables yl, ..., yp_l fixed at the

specified values tl, .•., ;p_l respectively. In light of Theorem 2.4,

the problem can be restated as that of determining yp€[0,c] so that the
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PFL solution to Problem CP(Cl, •.•, §p_l,yp) is a least cost/optimal
c

solution to the problem of supplying/serving the demand f f(x)dx .
0 .

Call this Problem CP(p).

We begin our analysis of Problem CP(p) by presenting a lemma which

establishes the fact that one would not want to locate the additional

facility so as to be coincident with one of the (p-1) existingfacilities.
* ch

Lemma 2.17. Let yp be the location of the p facility of any optimal

*solution to Problem CP(p). Then yp¢{;l, ...,
;p_l}

.

*Proof. On the contrary, assume that y = ti for some ie{l, ..., p-1}."“"' P
Thus, from Theorem 2.4 we have that the PFL solution to Problem

CP(§1, ..., ;p_1,y;) solves Problem CP(p). However, we will show that

there exists a point yp ¢ ri in the interval [0,c}, for which the

objective value of the PFL solution to Problem CP(;1, ..., ;p_l,yp),

*is strictly less than that of Problem CP(;1, ..., ;p_l,yp), thus contra-

* h
dicting that yp= ti is the location of the

pt
facility for some optimal

solution to Problem CP(p).

*The PFL solution to Problem CP(;1, ..., ;p_l,yp) is such that

facilities i and p behave as a single facility having capacity (si+s )
P

and jointly serve some interval }a,B}, say.

Define GL and GR in (a,B) according to

y B
G = max{y: [ f(x)dx = s /2}, G = min{y: I f(x)dx = s /2} (2.13)
L a p R y p

and note that 8 < G since s > 0. Now suppose that L > G . Then, let· L R i i L
facility p serve the subinterval }¤,Y} and facility i serve the

subinterval [Y,B} where Y is determined subject to their respective
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capacities. But this means that with the allocations fixed as such, a

strict improvement in objective value results by moving yp leftwards

to point yP= BL which is the rightmost median location with respect to

the demand on [a,Y], thereby contradicting the optimality of y;. Hence,

we must have ;i< 6L< BR. However, in this case, again a strict
improvement in objective value results by letting yp= GR, and this

completes the proof.
E]

(Note that the min and max operations in (2.13) and in (2.14) and (2.15)

below, serve to accommodate the possibility that f(·) may be zero over

some subintervals of positive measure.)

In light of Lemma 2.17, the problem of interest is one of

determining in which of the (open) intervals (0,;l), (;l,;2), ...,

(;p_2,§p_l),(§p_l,c), to locate the
pth

facility. Thus, there are p

permutations ol, ..., op that need to be considered, where permutation

oj corresponds to facility p being located in the
jth

position, i.e.

yps (;j_l,;j), and where Theorem 2.4 is used to obtain an optimal PFL

allocation solution independent of the actual value of yp. Thus, for a

given permutation oj, the interval [aj,Bj] served by facility p is

known, and so it remains to determine an optimal value of yp in the

interval (;j_1,;j). However,-as we will now show, an optimal value of

yp may not exist within (;j_l,§j), in which case we would discard

permutation oj in our search for a solution to Problem CP(p). Thus, for

the moment, let us ignore the result of Lemma 2.17 and solve the

problems

CP(p,0j): minimize
;j_l < yp < qj} for each

J



117

j = 1, ..., p, where
j—1

a_= min {y > 0: f(x)dx = E si} ,
J 0 i=1

c p-1
B_= max {y < c: [ f(x)dx = E si} , (2.14)J >· 1-1
and where undefined sums are zeroes.

Theorem 2.18. For each j = 1, ..., p, let Pj= }6j,A_} be the median°°°”°°”"'”_' J

interval (in (¤j,Bj)) defined by

ö_= min {y > a_: f(x)dx = s /2}
J J G P

and J
BJ

A_= max {y < 6,:f f(x)dx = S /2} , (2.15)J J y P
where ¤_, B_, j=1, ..., p are given by (2.14). If (a) Aj< ;_

1
or if

J J J'
6 > ;_ then y = ;_ or y = ; are respectivel uni e o ti l1

1’
p 1-1 p 1 Y 11 P ma

solutions to CP(p,¤j). Otherwise, (b) any of the points in

P r\};_ ; } solve CP(p 0 ).1
1—l’

1
’

1
Proof. Note that if B_< aj

1
or if a_> ;_, then clearly condition (a)

J
‘

J J

holds. Otherwise,
(¤j,ßj)r)};j_1,;j}

¢ E, and since we must clearly have

yps (aj,Bj)r\};j_1,;j} in this case, we can write CP(p,¤j) as

y B.
minimize } fp f(x)(y -x)dx + [J f(x)(x-y )dx: ;_ < y < ;_}. (2.16)„_ p y p 1-1 p 1

J P
Noting that the Karush—Kuhn—Tucker (KKT) conditions are both necessary

and sufficient for (2.16), (see Appendix A, Lemma 2.18*, for convexity

of the objective function of (2.16)), we get Il- I2- ul+ u2= 0, where

y B.
Il= [P f(x)dx, I2= [J f(x)dx, and where uland u2 are nonnegative,

G1 yp

complementary slack Lagrange multipliers associated with the lower and
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upper bounding constraints for yp respectively. lf a KKT solution has

yp = Qj_l,
then we must have ll> I2. Similarly, if yp= Qj, then we must

I I f = = .have l< 2, and i
Qj_l<

yp< Qj, then we must have Il I2 sp/2 Now

if Aj<
Qj_l,

then we must have Il) I2 whenever yp>
Qj_l, in which case

y = Q must hold at optimality. Similarly 6 > Q, implie = Q,.p J-1 _
’J

J Syp
1

Otherwise, any point in
Pjf\[Qj_l,Qj]

satisfies the KKT conditions with

I1= I2= sp/2, and u1= u2= 0 and this completes the proof. E]

Thus we see from Theorem 2.18, an optimal location for a facility

constrained to the interval [Qj_l,Qj] and serving some [¤j,8j] is at a

median location of [aj,Bj], if such lies within [Qj_l,Qj]. Otherwise,

it will be at whichever endpoint of
[Qj_1,Qj]

lies nearest to a median

location.

Now combining the result of Theorem 2.18 with that of Lemma 2.17,

we obtain the following theorem which prescribes a reduced set of

candidate optimal solutions to Problem CP(p).

Theorem 2.19. For each j=l, ..., p, define Sj = {y} for some yeP E'—
J

[öj,Aj] in case Qj_l< öj< Aj< Qj, and Sj= ¢ otherwise. Then, an optimal
P

solution to CP(p) lies in the set S E U S_.J=1J
Proof. For each j=l, ..., p, let

ypj
be an optimal solution to CP(p,oj).

Then, clearly the best of the solutions y 1, ..., y solves CP(p). Now,
P PP

consider some j€{l, •.., p}. If the case (a) of Theorem 2.18 holds,

then by Lemma 2.17, ypj may be disregarded since it is strictly

suboptimal. If case (b) of Theorem 2.18 holds, and if either Q_ ls Pj

or if Q_s P, then we may ick y _ to be Q, or Q respectively andJ
1’ P pa J-1 J

’

this would again be strictly suboptimal for CP(p). Hence, we need only
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consider an optimal solution for CP(p) when
Qj_l < dj < A j< Qj, and

this completes the proof.
Ü

An algorithm to solve the sequential
pth

period problem is now

evident.

Algorithm for CP(p). Compute aj and Bj (recursively) from (2.14) and

hence determine öj and Aj as in (2.15). Find the set S of Theorem 2.19

and note from the proof of this theorem that S ¢ ¢. Select the best

solution from S as an optimal solution to CP(p).

I

lllustrative Example. Consider a situation in which p = 4, with three

facilities already located on {0,c} E {0,15] at locations yl= Ql= 3,

y2= Q2= 8, and y3= Q3= 13, and with respective capacities sl= 8, s2= 4

and s3= 6. Furthermore, assume that the demand distribution function
f(•) has been estimated as a step function given by f(x) = 2 for 0 < x

< S, f(x) = 1 for 5 < x < 10 and f(x) = 3 for 10 < x < 15. Note that ~

total (expected) demand is 30 units, and so, spä s4= 30 — 18 = 12 units.

From (2.14), we recursively compute al= O, a2= 4, a3= 7 and a4= 11, and

we compute B4= 15, B3= 13, B2= 35/3 and Bl= 7. Consequently, from (2.15),

we obtain, öl= Al= 3, ö2= A2= 9, 63= A3= ll and 6a= A4= 13. Note that
when f(•) is positive (except on a set of measure zero), öj= Aj for each

j=1, ..., p and we only need to compute either the aj or the Bj values.

Finally, from Theorem 2.19, we determine that Sl= ¢, S2= ¢, S3= {11},

and S4¥ ¢ so that S = {ll} is a singleton, and hence in this case, we

can conclude that y4= ll solves CP(4). Note that in the worst case, if

3 < Q1 < 9, 9 < Q2 < ll, and 11 < Q3 < 13, then we would have obtained
S ä {3,9,11,13}, and we would have had to evaluate the objective

function of—CP(p,dj) for each of the p = 4 locations in S.



- CHAPTER III

A CAPACITATED, BALANCED, LOCATION-ALLOCATION PROBLEM
ON A TREE GRAPH HAVING BOTH NODAL AND LINK DEMANDS

3.1 Introduction

In this chapter, we consider another special case of Problem

GAMNLAP. Specifically, we examine the problem of locating an absolute

2—median on an undirected tree network having both nodal and link

demands, and for which the facilities have known finite capacities whose

sum is equal to the total demand on the tree. Hence, the descriptors,

"capacitated" and "b6lanced”, used in the title of this chapter. We

will refer to the problem considered herein, as the capacitated 2-median

tree problem, where it is to be understood that the problem is balanced

and that the tree is as described above.

Recall that Hakimi's [1964,1965] vertex optimality result rendered

insignificant any effort to distinguish between the absolute p-median

and the p—medi6n problems. Such is not the case however, for minisum

problems involving networks having link demands, and thus to be exact,

all reference to the problem considered herein, as well as to the

research of Chiu [1982], Cavalier and Sherali [19836], and Batta,

Brandeau, and Chiu [1983], should make use of the descriptor "absolute".

However, for the sake of convenience, we have chosen not to use it in

discussing the capacitated 2-median tree problem or in referencing any

of the above papers, but wish to make it quite clear that the facilities

are ngt restricted to the nodes of the tree in any of this work/research.

As was mentioned briefly in Chapter I, the papers by Chiu [1982]

and Cavalier and Sherali [19836], examine the 1-median problem involving

120
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the location of an uncapacitated facility on a tree network having both

nodal and link demands. Both of these papers present the same Goldman-

like [1971] algorithm for locating an uncapacitated 1-median on such a

tree, and (both) do so, by using the following optimality criteria:

"It is easy to show that a point (on the tree) is optimal if and

only if it is an optimal (constrained) location on all links containing

that point. In other words, if an interior point on a link has exactly
‘

half the total demand weight on either side of it, then it is an optimal

location on T, and if a node in T is such that if the subtrees obtained

by disconnecting this node have demand weights no more than half the

total demand, then this node is an optimal location in T." - Cavalier

and Sherali [1983a].

Of course, the uncapacitated and capacitated 1-median tree problems

are actually one and the same problem, and thus in a spirit of

completeness, we can state that the capacitated 1-median tree problem

has been solved (by the above authors).

In addition to the above papers, Batta, Brandeau, and Chiu [1983],

and once again, Cavalier and Sherali [1983a], consider the uncapacitated

2-median tree problem, for such a tree as ours. Cavalier and Sherali's

approach to solving this problem involves the solution of constrained

problems which result from requiring the two facilities to lie on the

unique path joining each pair of end nodes. They provide reduction type

theorems to reduce the number of such pairs that need to be considered,

thus making their approach more practical. Batta, Brandeau and Chiu's

approach to the same problem, is to develop a locate-allocate type of
A

algorithm. That is, "rather than trying to simultaneously find both
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the correct locations and allocations", their algorithm "works by

sequential steps of location and allocation”. Our approach to the

capacitated 2-median tree problem differs from those above, in that we

identify a finite set of points (on the tree) in which a 2—median is

known to exist. The following paragraph outlines our approach.

This chapter proceeds as follows. We begin our analysis by

extending an observation made by Cavalier and Sherali [1983a] which

allows us to use the results of our chain graph analysis (of Chapter II)

to solve a (path) constrained version of the capacitated 2-median tree

problem. This capability is then exploited in order to develop

necessary optimality criteria (Theorem 3.3) for the problem of interest.

The optimality criteria are in turn, used to develop an algorithm which

has as its purpose, the identification of a reduced (finite) set of

candidate optimal solution pairs (on the tree) on which to locate the

two facilities. Thereafter, the remaining analysis is directed towards

reducing the cardinality of this set of pairs of points, and efficiently

comparing their relative costs in order to determine an optimal pair.

3.2 Formulation of the Capacitated 2—median Tree Problem

In keeping with the mathematical notation and statement of Problem

GAMLAP presented in Chapter I, the capacitated 2-median tree problem

can be formally stated as follows: A

Given an n-vertex, undirected tree, T E T(N,A), whose vertices vl,

..., vue N have associated nonnegative (expected) demands/weights hl, ..

., hn, and on whose arcs/links £eA are defined nonnegative, integrable

demand functions f2(•), and given two (2) facilities having known finite

capacities/supplies s1,s2 such that sl+s2 equals the total demand on T,
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determine points yl,y2s T, nodal allocations wik, i=l,2, k-1, ..., n,

and nonnegative, integrable allocation functions R, 1-1,2,

lsA, which solve

2 n 2
CZMTP : minimize ( E E wikd(yi,vk) + E E [$1 (x)d(x,y )dx ) (3.1)

yl,y2s T i-1 k=l 1-1 lsA l ß 1

w,$(•)>0

n
subject to E

wik+
E [$i£(x)dx

-
si for each 1-1,2 (3.2)

k=l lsA l

2
E

wik
= hk for each k=l, ..., n (3.3)

i-1

2
Z $ (x)

-
f (x) for each xsl, and lsA . (3.4)

il l1-1

The reader is referred to Chapter I for a review of the parameters,

decision variables, etc., of Problem CZMTP. We would mention however,

that the orientation (with respect to integration) on any lsA, is

determined by that of f2(•) in that the $i2(•) are defined so as to have

the same orientation as fß(•), for all i=l,2 and all lsA.

Recalling the PFL solution to the chain problem of Chapter II, it

should come as no surprise to the reader, that our analysis of the

capacitated 2-median tree problem will result in an optimal solution

for which no link contains a subset having positive measure over which

the demand is jointly supplied. Rather, our optimal solution will be

such that only nodal demands can be jointly supplied. (Recall that we

are assuming without loss of generality, that all discrete demands are

confined to the nodes of T.)

We begin our analysis, by establishing optimality criteria for the
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capacitated 2-median tree problem, which will be seen to be very similar

to the 1-median optimality criteria used by Chiu, Cavalier and Sherali

in their l-median Goldman—like algorithms.

3.3 The 2-median Optimality Criteria

In anticipation of the analysis to follow, we remind the reader

that Corollary 2.6 is as equally/readily applicable to a chain graph

having discrete nodal demands, as to a chain graph like that of Chapter

II, where it was assumed that all discrete nodal demands had been

continuously spread over some 6-length links. Thus, for example, if one

were tasked to locate two facilities having capacities sl-30, s2=25 on a

chain graph having nodal and (cumulative) link demands as shown below in

Figure 3.1, and such that yl is to the left of y2 say, then in

accordance with Corollary 2.6, yl would be located so as to coincide

with node vz and the corresponding facility would serve/supply all of

the demand from left to right, up to and including six (6) units of the

demand at node v3. Similarly, yz would be that point which is located

2 1/2 demand units to the left of node va, and the corresponding

facility would supply the remainder of the demand on the graph.

hl=10 h2=5 h3=18 h4=l0

5 V3 Va

Figure 3.1. Chain Graph With Nodal and Link Demands

Before proceeding, we present some useful notation and definitions,

the latter of which are those of Cavalier and Sherali [1983a]. Regarding

the paths of T, and letting r,ssT, we let P[r,s] denote the unique path

joining r and s, including points r and s; whereas, P(r,s] say, denotes
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the path joining r and s, but does not include point r. (Similar

interpretations apply to P[r,s) and P(r,s)). Cavalier and Sherali

[1983a] provide us with the following two definitions. Let r,s be two

points in T, and for some t6P[r,s], let Tt be a subtree (if one

exists) which results when T is disconnected at t and which is such that

it shares no links with P[r,s]. Then Tt will be said to be rooted (at

t) on P|r,s|. Secondly, suppose Tt is a subtree of T which is rooted at

t on P[r,s]. Then the operation of deleting Tt and adding the total

demand/weight associated with Tt to the demand at point t, will be

referred to as collapsing T into t. We note from the last sentence,

that Tt does not include the root node t. Rather, it is to be

.understood that an artificial node having an associated demand/weight

of zero is added to Tt in place of t. Figure 3.2 illustrates the first

of these definitions, by depicting six subtrees rooted on P[r,s].

Notice that all but T6 are rooted at nodes of T, whereas the root node of

T6 is point r, an interior point of some link of T. (Note: According

to the textbook definition of a subtree, T6 is not really a subtree of
T since its root node is not an actual node of T. However, we feel that

the intent of our presentation is clear, and will continue to refer to

such subsets as (rooted) subtrees.)

The following development and resulting lemma, extend a similar

result found in Cavalier and Sherali [1983a], which this author ‘

V
considers to be the very basis of their 1 and 2-median tree algorithms.

In particular, we will see that we need not concern ourselves as to how

two capacitated facilities located on P[r,s] say, would serve any

subtree T' rooted on P[r,s], but rather we only need to know the amounts _
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of supply provided T' by each facility, and the distance from each

facility to the root node of T'. Thus, with respect to the problem of

optimally locating two capacitated facities on P[r,s] to serve/supply

the entire demand on T, we would not need to know the cost of serving T'

per se, and could collapse T' into its root node and aggregate the total

demand of T' with that of the root node. Referring once again to Figure

3.2, if one were interested in locating two capacitated facilities on

P[r,s] so as to optimally serve/supply the demand on T, we will see that

one could collapse all six subtrees into P[r,s], with each of their

total demands being aggregated with that of their respective root node,

and thus have a capacitated 2-median chain problem, for which one knows

how to obtain an optimal solution via the analysis of Chapter II.

(Note: we will refer to the problem in which the 2-median is to be

located on some path P[r,s] onto which all of T has been collapsed, as

the "2-median (location—allocation) problem collapsed onto the path

P[r,s]", or as "Problem CZMTP collapsed onto the path P[r,s]").

More formally, let T' E T'(N'A') be any tree gotten by taking some

connected proper subset of T and adding end nodes having associated

demands of zero wherever necessary. Let p be any point in T-T', and

let q be the unique point in T' which is closest to p (or any point on

the path between p and that unique closest point). Then the cost of

any feasible service/supply provided T' from a facility located at p,

can be written as

C(p.T') = Z <».(p)d(p.v.) + Z f¢ 2(x)d(p.x)dx . (3-5)
vj6N' J J 26A* 2 P

where wj(p) is the amount of supply provided to node vj in T' (wj(p)<hj)

by the facility at p, and where
¢p£

is a nonnegative, integrable
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allocation function which describes the service/supply provided link

2sA' from the facility at p.
l

Then applying the triangle inequality property as it applies to a

tree, equation (3.5) can be continued so that we have,

C(1>.T') = E '<¤j(p)(d(1>.q)+d(q„vj)) + Z
'

I¢p£(x)(d(p.q)+d(q„x))dx
vjsN 2sA 2

= ( Z
Evj6N2sA Z

=· C(q,T') + d(p„<1)W(1>) „ (3-6)

where C(q,T') is the cost of providing T' with the same (as that which

the facility at p is to provide) service/supply but from point q

instead, and W(p) is the total amount of supply to be provided T' by

the facility at p.

The following lemma and its proof are immediately obvious

consequences of the above remarks/analysis, and hence the latter has

been omitted.

Lemma 3.1, Let T' be a subtree of T obtained by disconnecting T at some

point qsT, and let the total demand on T' be jointly supplied by two

facilities located at y1,y2& T-T'. Then the cost of supplying the total

demand on T' is given by

C(yl.y2.T') = C(q,T') + d(>*l„q)Wl + d(y2.q)W2 „ (3-7)

where C(q,T') is the cost of supplying the total demand on T' from q,

and where W1,W2 are the amounts of supply provided T' from each of

the facilities at yl,y2, respectively. (Note: Wl+ W2 = Total Demand

on T'.)
Ü

Of course, in the event that q is an actual node of T and has an

associated positive demand, we could easily modify equation (3.7) so as
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to include the cost of supplying/serving the demand at q. This would

only require that W1 and W2 be adjusted to account for any such demand,

since the cost of serving any demand at q from q is zero. However, given

the way we have chosen to define T', we have that q ¢ T', and so the

cost of serving any positive demand at q is not presently reflected in

equation (3.7).

As a result of Lemma 3.1, if one were to consider the problem of

optimally locating two capacitated facilities on some P[r,s] from which

the entire demand on T is to be supplied, then for any subtree T' rooted

at q 6P[r,s], we can collapse T' into q, and equivalently solve the

resulting problem. (That is, we can equivalently solve the 2—median

location-allocation problem collapsed onto the path P[r,s]). This is

easily seen, by noting that for any yl,y2&P[r,s], equation (3.7) will

always contain the value C(q,T'), and hence only the second and third

terms of equation (3.7) need be considered in optimally locating y1,y2e

P[r,s]. Thus, as was mentioned earlier, with respect to optimally

locating yl,y26P[r,s], we need not concern ourselves with how the

facilities serve T' (or even with the value of C(q,T')), but only with

their distances from q and the amounts of supply Wl,W2, provided T' by

each facility. .

Lemma 3.1 is analagous to a result used by Cavalier and Sherali (in

their 2—median tree algorithm) to solve constrained problems involving

the location of two uncapacitated facilities on paths of the type

P[ei,ej] where ei,ej are end nodes of T. Since their facilities
are uncapacitated, the total demand of any subtree rooted on
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P[ei,ej] gets served/supplied by whichever facility is closest to the

root node. As such, they are able to collapse the subtree into P[ei,ej]

via an equation like (3.7), but for which exactly one of Wl,W2 is zero.

In light of Lemma 3.1, it seems likely that we could approach/solve the

capacitated 2-median tree problem in much the same way as Cavalier and

Sherali solve the uncapacitated 2-median tree problem. In fact, we will

see later that a result by Mirchandani and Oudjit [1980] concerning the

relationship between a 1 and 2—median, and used by Cavalier and Sherali

to lessen the computational burden of their algorithm, is still valid

(and useful) for the capacitated 2-median tree problem. However, the

reduction theorems used by Cavalier and Sherali are not valid for

Problem CZMTP and thus we can not pursue a Cavalier—Sherali-like

solution to this problem, but rather we will continue towards our

objective (for this section) of establishing necessary optimality

criteria for a 2-median of T, which will then be used (in a later

section) to prescribe a reduced set of candidate optimal solution

pairs (of points) in T.

The following lemma will be used in conjunction with Lemma 3.1, to

assist us in obtaining the main result of this section.

Lemma 3.2. Suppose that yI,y;€T are the locations of an optimal

solution to the capacitated 2-median tree problem (i.e. to Problem

CZMTP). Then these same locations are optimal to the 2-median problem

collapsed onto any path P[r,s];; P[y;,y;], where r,s 6 T. Furthermore,

any alternative optimal solution to this additionally constrained

problem solves Problem CZMTP.
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Proof. The proof is immediate, since constraining the facilities to lie

on any subset of T cannot result in a lesser cost of serving the

demand on T, and since any solution to the constrained problem is

feasible to Problem CZMTP. E]
Regarding Lemmas 3.1 and 3.2, two remarks seem quite appropriate at

this time. First, we would remark that Lemma 3.2 is equivalent to the

very thinking of Cavalier and Sherali, when in their 2-median tree

algorithm, they solve constrained (path) problems and then choose the

one giving the least cost. Secondly, we note that solving constrained

problems such as those of Lemma 3.2, is made easier thanks to Lemma 3.1

and the analysis of Chapter II.

We are now in a position to present the main result of this section

and do so via the following theorem.

Theorem 3.3. Suppose that y;,y;6T are the locations of an optimal

solution to the capacitated 2-median tree problem, and that y;¢ y; .

(Note that if y:= y;, then the two facilities and their supplies

constitute a 1—median, and thus the theorem follows from the 1-median

optimality conditions/criteria of Chiu [1982] and Cavalier and Sherali

[1983a].) Disconnect T at y: and let T1, ..., Tm be the resulting

subtrees, with y;6Tm, say. In keeping with our earlier development,

let us assume that Ti does not include yI, but rather that an artificial

node having an associated demand of zero has been added in its place,

for i=l, ..., m. Then letting w(•) denote a total weight function, we

have that

w(Ti) < sl/2 for each i=l, ..., m—1 , (3.8)

and (more importantly)
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m—l
*iälw(Ti) + w(y1) > sl/2 . (3.9)

(A symmetric statement holds with respect to y;.)

Proof. Given any subtree T' of T, define E[T'] to be the set of

ends of T'.

* *If m=l, let el E yl and e26 E[T] such that y26 P[el,e2]. If
m>l, pick any i 6 {1, ..., m—l} and let el6 E[T]rxTi and e26 E[T]rxTm

such that P[e1,e2]£2P[y:,y;]. (In either case, ez may be y;.) Consider

the 2—median location-allocation problem collapsed onto the path

P[el,e2]. By Lemma 3.2, yI,y; remain optimal. But w(Ti) equals the

total weight on the collapsed path P[el,y:), i.e. not including the

collapsed weight at yä, and (m2lw(Ti) + w(;1)) equals the total weight
i=l

on the collapsed path P[e1,yI], i.e. including the collapsed weight at

y:. Hence, from the optimality conditions for the chain graph (see

Chapter II), we obtain 3.8 and 3.9 and this completes the proof.
E]

As promised, Theorem 3.3 provides us with necessary optimality

criteria/conditions for a solution to the capacitated 2-median tree

problem, i.e. to Problem CZMTP. This theorem will prove itself to be

quite useful in our approach to solving this problem.

3.4 Subproblems Inherent to Problem CZMTP and a Useful Reduction Theorem

As somewhat of an aside to the current direction of our analysis,

but still pertinent (and informative) to the problem of interest, we

take a moment to discuss the location and allocation subproblems inherent

to Problem CZMTP. We will begin with the location subproblem, which can

be described as follows.
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Suppose that we are given nonnegative values wij, i=1,2, j=l, ...,

n, and nonnegative, integrable functions ¢i£:£ + R, i=1,2, 26A, which
satisfy conditions (3.2), (3.3), and (3.4) of Problem CZMTP. Such values

and functions are said to constitute a feasible allocation to Problem

CZMTP. The corresponding location subproblem becomes that of deter-

mining points yI,y;€ T which minimize the objective function given in

(3.1). It is clear that for a given and fixed (feasible) allocation, the

objective function can be separated into two functions, one in each of

yl and y2, whose minima (each) occur at points which are 1-medians with

respect to their associated allocations. Thus, if one were given an allo-

cation feasible to (3.2), (3.3), and (3.4) for each of two capacitated

facilities, and one were asked to locate the facilities on T so as to

minimize the objective function in (3.1), one would need to solve two

independent 1-median tree problems, for which one would use the 1-median

Goldman-like algorithms of Chiu, Cavalier and Sherali. We remark that

this is so, regardless (assuming feasibility) of how a facility's

supply is allocated. Even if entire nodes and/or links receive no

° supply from a facility, that facility's location is determined by

applying the l-median algorithm to the tree, where the allocation

of the other facility is simply ignored while doing so. So we see

that solving the location subproblem is a relatively simple task, thanks

to the work of researchers such as Goldman, Chiu, Cavalier and Sherali.

Turning now to the allocation subproblem, and letting y1,y26 T be

given and fixed locations of two capacitated facilities having

corresponding supplies s1,s2 (where sl+s2 = total demand on T), the

problem of interest is to determine values for the allocation variables
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wij, and the allocation functions ¢i£, 1-1,2, j-1, ..., n and 26A, so
that y-(y1,y2), the wij, and the

¢i£
satisfy (3.2), (3.3), (3.4), and

minimize the objective function in (3.1). We do so quite easily, by

collapsing T into P[yl,y2] and then determining the optimal PFL alloca-

tion for the resulting chain graph. We remind the reader however, that

the actual allocation on any subtree which gets collapsed into P[yl,y2]

has been (up to now) unknown, unimportant (1.e. with respect to the value

of the objective function), and is clearly not unique. That 1s, 1f some

subtree T' rooted on P[yl,y2] has a total weight/demand of w(T'), and

the facilities at yl,y2 supply W1,W2, respectively, of the demand on T'

such that w(T') = Wl+ W2, it simply does not matter (due to Lemma 3.1)

how these facilities allocate their respective supply to T'. Thus,

there is (or could be) a certain amount of flexibility in choosing the

elements of the optimal PFL allocation solution to the allocation

subproblem.

So we see that the location and allocation subproblems are easily

solved, a fact that we will soon appreciate, when confronted by a

reduced set of candidate optimal solution points from which to choose y:

*and y2. ·

Before concluding this section, we present a theorem which extends a

result by Mirchandani and Oudjit [1980] describing a useful relationship

between the 1 and 2—med1ans of a graph. We would remark however, that

their line of proof is not valid in the current situation.

Theorem 3.4. Suppose that T = (N,A), sl,s2 and w(·) are as defined

above. Let
y€T

be the location of a 1-median, and y;,y;€T, the locations

of a 2—median (1.e. of an optimal solution to the capacitated 2-median
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tree problem). Then we have that y E P[y;,y;] .

Proof: If either of y;,y; coincides with y, then the theorem is
U

trivially true. Hence, assume that this is not the case. Now,

disconnect T at y. If y: and y; lie in different resulting subtrees,

then again the theorem holds. Hence, assume that y; and y; both belong

to the same subtree Tm, say, and note that w(Tm) < (61+62)/2 by the

definition of y. (Recall that y ¢ Tm, but rather that y has been

replaced by an artifical node of weight zero. Consequently, w(Tm) does

not include w(y)). Now consider two cases.

First, suppose that
y;€

P[y;,y]. (It may be that y; and y;

coincide.) Select
el,e2

E E[T] such that with ela Tm,

and consider the 2-median location—allocation problem collapsed onto the

path P[el,e2]. Accordingly, T—Tm gets collapsed onto P[y,e2]·E P[el,e2],

and by Lema 3.2, y;,y; are optimal to Problem CZMTP collapsed onto

P[el,e2]. However, w(T—Tm) > (sl+s2)/2 and so the PFL solution results

in the facility at y; serving strictly more than sz/2 on one side of

itself, a contradiction. Similarly, a contradiction results if yäs

* -P[>·2„yl·
* * * *Hence, suppose finally that yl¢ y2, yl,y2s Tm, neither coincide

with y and that the paths P[y;,y] and P[y;,y] have some q 6 Tm as the

first intersection point, where q does not coincide with any of y:,y; or

y. Now, select el,e26 E[T]nTm such that P[el,e2] 2P[yI,y;] and

consider the 2-median location-allocation problem collapsed onto the

path P[el,e2]. By Theorem 3.3, the total weight on the collapsed path

P[e1,yI], i.e. including the collapsed weight at yä, is > sl/2.
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Similarly, the total weight collapsed onto P[e2,y;] is > sz/2. If

either of these inequalities was to hold as a strict inequality, we would

have that w(Tm) > (sl+s2)/2, a contradiction to the fact that w(Tm) <

(sl+s2)/2. Hence, both mst hold as equalities. Furthermore, the

remainder of the total demand on T, i.e. (sl+s2)/2, must be concentrated

at q in the collapsed problem, or else we would again have w(Tm) >

(sl+s2)/2. But this means that the pair (yI,q) is an alternative

optimal solution to the collapsed 2-median problem on P[el,e2], and

hence by Lemma 3.2, is optimal to Problem CZMTP as well. Now, applying

the first case, since q E P[y;,y], we obtain a contradiction and the

proof is complete.
Ü

Note that this theorem says that for any 1-median y, and any

2-median y;,y;, the relationship y 6 P[yI,y;] must hold.

Note also (from the second paragraph of the above proof), that if

* * * *there exists a 2-median (yl,y2) such that yl= yz, then its location must

coincide with that of the unique 1-median of T.

We will of course use the above theorem for the same purpose as do

Mirchandani and Oudjit [1980], that being to reduce the set of candidate

optimal solution points/pairs.

3.5 Obtaining a Reduced Set of Candidate Optimal Solutions

In this section, we present an algorithm/procedure which utilizes

the optimality criteria of Theorem 3.3 (in particular (3.8)) to

construct two trees, denoted by T(sl/2) and T(s2/2), which are contained

entirely within T and whose ends constitute candidate optimal solution

points for y; and y;, respectively. More generally, the algorithm
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defines a mapping of [0,(sl+s2)/2] into the set of all connected

subsets of T, but it is T(sl/2) and T(s2/2) that are of most interest to

us. We would remark that the mapping need not be one—to—one. (Note:

most likely, T(sl/2) and T(s2/2) will not be actual subtrees of T, for

their ends are not all likely to be ends of T but rather artificial ends

created by collapsing portions of T into interior points of T.)

To facilitate our presentation of this algorithm, we introduce the

following notation involving the total weight function w(·).

Specifically, for any link 1 = (r,s)eA, w(r,s] will denote the sum of

the weight/demand on 1 and at s, i.e. (ff£(x)dx + hs). Similarly, we

would define the weights, w[r,s), w[r,s§, and w(r,s), where the latter

is equal to ff (x)dx.
2 1

Algorithm T(9). Consider the capacitated 2-median tree problem, and

without loss of generality, assume that sl < s2. Then for any constant

O < 9 < (sl+s2)/2, we construct a tree, T(9)€E T, as follows:

Initialization Let T be the tree of Problem CZMTP and having no nodes

flagged.

Step 1 Pick an end e of the current tree which is not flagged. If all

ends are flagged, stop; the current tree is T(9). Otherwise, proceed to

Step 2.

Step 2 Let (v,e) be the link incident at e. If w(v,e] < 9, collapse

(v,e) into v, add w(v,e] to the weight of v, and return to Step l.

Otherwise, i.e. w(v,e]>9, go to Step 3.

Step 3 If it exists, let v 6 int(v,e) be the point closest to v such

that w[v,e] = 9. In this case, collapse (v,e) into v, denote v as being
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a node (of the resulting tree) whose weight is equal to w[v,e], flag v,

and go to Step 1. If no such point exists, then flag e and go to Step 1.

Remarks Concerning Algoritm T(9)

R1) Without loss of generality, we assume that the tree T of Problem

. CZMTP is such that there does ngt exist an end e for which w[v,e] = O

for some v 6 int(v,e), where (v,e) is the link incident at e. As a

result, we have that T = T(O).

R2) Algorithm T(9) is such that every end of T(9) has either a total -

weight > 9 or has a total weight = 9 and has a continuum of demand in

some immediately adjacent neighborhood of itself. That is, in the case

of the latter, if e is an end of T(9) with w(e) = 9, and if (v,e) is

the link (ln T(9)) incident at e, then there exists some v 6 int(v,e)

for which the demand function is positive on (v,e).

R3) In light of the second remark, T((sl+s2)/2) is a single point, and

is in fact, a l—median of T.

R4) If O < 9l< 92< (s1+s2)/2, then T(92)can be determined via the above

algorithm by first determining T(91) and then initializing the algorithm

with this tree, whence, the resulting T(92) would be a subset of the

T(9l) obtained above.

Recall that we mentioned in the beginning of this section that

Algorithm T(9) defines a mapping of [O,(sl+s2)/2] into the set of all

connected subsets of T. To be totally correct, we would remark that the

mapping is a point—to—set mapping in that T((sl+s2)/2) need not always

be uniquely determined. However, the following theorem proves that T(9)

is uniquely determined for any 9 6 [O,(s1+s2)/2).
l ‘
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Theorem 3.5 Let 0 < 9 < (s1+S2)/2, and let T(9) be obtained via the

foregoing algorithm. Then, T(6) is uniquely determined by this

algorithm and contains all of the 1-medians of T. In particular, if

T(6) is a single node, then it is the unique l-median of T.

gppgä. We consider two cases.

Case (i) Suppose that T(9) has at least two ends, and let e be any such

end. Note.that T(9) has a link (v,e) incident at e. Disconnect T at e

and let Tl, ..., Tm be the subtrees (in T) so obtained, with v 6 Tm,
say. (Note that m=l is possible.) Observe that it must be the case

m-1
that w(Ti) < 9 for each i=1, ..., m—l, and iilw(Ti) + w(e) > 6, with

remark R2 above holding in addition. Consequently, e must be an end of

any T(9) resulting from the algorithm, and since e was arbitrarily

selected, T(6) must be unique in this case. Furthermore, since w(Ti)

< 9 < (sl+s2)/2 for each i=l, ..., m-1, no 1-median of T could lie in

any such Ti- {e}. Since this is true for each end of T(6), we can

conclude that all 1-medians of T must lie in T(9).

Case (ii) Next, suppose that T(9) is a single node, which is some point

v 6 T, say. Disconnect T at v and let T1, ..., Tm be the resulting

subtrees. It must be the case that w(Ti) < 6 < (sl+s2)/2 for each i=1,

..., m, and so v is a 1-median of T. By this same inequality and the

median property, no 1-median of T could possibly lie in Ti- {V} for any

i=l, ..., m, and so V must be the unique 1-median of T. This completes

the proof. Ü l
A Numerical Example

As an illustration of Algorithm T(6), consider the tree T shown in
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Figure 3.3a whose nodes have been labeled A through I. The numbers

appearing in parentheses denote nodal demands/weights, while those

adjacent to the links, denote the cumulative demands/weights on the

corresponding links. We will assume that all link demand functions are

lpositive on their respective links.

Letting 9 = 42, say, application of Algorithm T(42) begins with the

initialization step in which T is as shown in Figure 3.3a, and none of

the six ends are flagged.

Proceeding to Step 1 and arbitrarily choosing node A say, we then

proceed to Step 2 and collapse (H,A) into H, augment the demand at

H by 15, and return to Step 1. The same procedure is performed for

each of nodes B,C, ..., F, at which point in time, we find ourselves

at Step 1 with the current tree being that of Figure 3.3b.

Noting that the weights of G,H and I have changed but that neither

G or H is flagged, we arbitrarily choose end H and then proceed to Step

2. The "otherwise" of Step 2 applies, and we therefore move imediately

to Step 3 where we flag H (via an asterisk) and return to Step 1.

At this point, we are at Step 1 with end G being the only end which

°is not flagged. Thus, we select G and proceed to Step 2, at which time

we are immediately sent to Step 3, where we determine and flag v E G',

and then return to Step 1 with the current tree being that of Figure

3.3c. Noting that both G' and H are flagged, we stop with T(42) being

uniquely determined (recall Theorem 3.5) as the tree in Figure 3.3c.

The usefulness of the above algorithm can best be seen in the

following theorem, which can be accurately described as the main result

of this sectlon.
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Figure 3.3. Example of Algorithm T(6)
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Theorem 3.6. Let T, T(9), sl< sz, y; and y; all be as defined above

(and note that T(s2/2) E T(S1/2))• Then, there exists an optimal

* * * *2-median (yl,y2) such that y1,y2 are ends of T(sl/2), T($2/2),

respectively. Similarly, let yl be located at some end of T(6l/2).

Then there exists an optimal location for y2 (with yl fixed) among the

ends of T(s2/2), and vice versa.

Proof. Consider an optimal solution (y:,y;) to Problem CZMTP.

If y:= yä, then by Theorem 3.4, they must coincide with the unique

1-median location y on T. Now, let T1, ..., Tm be the subtrees of T

obtained by disconnecting T at y. Then, w(Ti) < $1/2 for each i=1, ...,

m, since if not, say, w(T1) > sl/2, then by picking an end els E[T]rxT1

and considering the 2—median problem collapsed onto the path P[el,y],

the solution y:= y;= y is suboptimal, and so by Lema 3.2, leads to a

contradiction. Similarly, w(Ti) < sz/2 and w(Ti) < ($1+62)/2 for each

i=1, ..., m. Therefore, y;= y;= y E T($l/2) E T(s2/2) E T(($1+62)/2),

and the theorem holds.

Now suppose that yI¢ y;, and consider Problem C2MTP collapsed onto

path P[y;,y;]. Then for this collapsed problem, we have from (3.9) of

Theorem 3.3 that w(y:) > sl/2 and w(y;) > sz/2. If w(yI) > sl/2, let

v1= y;, and if w(yt) = 61/2, define vls P[y;,y;] to be the point
4

closest to y; for which w(P[y;,v1]) = $1/2. Similarly, if w(y;) > $2/2,

let v2= y;, and if w(y;) = $2/2, let vz be the point closest to y: for

which w(P[v2,y;]) = $2/2. Clearly, vzs P[vl,y;]. Moreover, (vl,v2) is

an alternative optimal solution to the collapsed path problem, and so by

Lemma 3.2, to Problem CZMTP also. If vl= vz, then the case is as the
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preceeding one. Otherwise, by Theorem 3.3 and Theorem 3.5, vl and v2

are respectively ends of T(s1/2) and T(s2/2) by construction, and the

first part of the proof is complete.

In order to prove the "similarly" part of the theorem, we proceed

in much the same way as we did for the first part of the theorem.

Specifically, let yl be fixed at some end of T(sl/2). Let us denote

Problem CZMTP so constrained, as Problem C2MTP(yl), and let y; be any

optimal solution to Problem C2MTP(yl). Clearly, a result like that of

Lemma 3.2 can be shown to hold for Problem C2MTP(yl). Specifically,

y; remains optimal to Problem C2MTP(yl) collapsed onto any path

containing yland y;, and any alternative optimal solution to this

collapsed problem would also solve Problem C2MTP(y1). It is this result

that is used in the remainder of this proof.

If yl- yä, and Tl, ..., Tm are the subtrees obtained by

disconnecting T at y;, then w(Ti) < sz/2 for each i=l, ..., m, since

otherwise, if w(Ti) > sz/2, then by picking e 6 E[T]n Ti and examining

Problem C2MTP(yl) collapsed onto the path P[y;,e], an improved solution

would result. But w(Ti) < sz/2 for all i=1, ..., m, implies that

y;E T(s2/2) and the result holds.

Hence, suppose that yl¢ y; and consider Problem C2MTP(y1) collapsed

onto P[y1,y;]. Clearly, we must have that w(y;) > sz/2 or else y; would

not be optimal to Problem C2MTP(yl). Then, by letting v = y; if w(y;) >

sz/2, and otherwise defining it to be that point closest to yl for which

w(P[v,y;]) = sz/2, we see that v is an alternative optimal solution to

l
Problem C2MTP(yl) collapsed onto P[yl,y;], and hence to Problem

C2MTP(yl). Clearly then, v is an end of T(s2/2) by construction, and
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the proof is complete.
E]

Corollary 3.7. y;= y; is an optimal (2·median) solution to Problem

C2MTP iff T(s1/2) ¤ T(s2/2) = T((sl+s2)/2).

Prggf. The necessary part of the theorem follows from the proof of

Theorem 3.6. The sufficiency part follows from Remark R3 and

Theorem 3.6. Ü
Note: We caution the reader to be careful so as not to think that all

2-medians must necessarily lie within the ends of T(sl/2), T(s2/2).

Recall that Algorithm T(9) would collapse (v,e) into v, should e be an

end of T having a weight of 6 and should w(v,e) = 0. Thus, if 9 = sl/2

* * * *and yl= v, say, where yl is an element of some 2-median (y1,y2), then V

any point in the interior of (v,e) could be used in place of y;.

Algorithm T(sl/2) would pass by/ignore such points.

The above theorem goes a long way towards reducing the number of

candidate optimal solution points/pairs that need to be considered.

However, depending on the number of ends of the two trees involved,

-the problem that remains may still be quite difficult. It is this very

problem to which we will devote the remainder of this chapter.
l

3.6 Methods of Determining Optimal Locations for
yl,y2

Amongst the Ends

of T(sl/2) and T(s2/2), Respectively

Before proceeding with this section, we would remark that just as

we did in Theorem 3.6, we will assume that sl< sz throughout the
remainder of this chapter.

Now letting E[T(sl/2)] and E[T(s2/2)] denote the set of ends of

each of the respective trees, and noting that the elements of these sets
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must have weights greater than or equal to sl/2 and 62/2 respectively,

we can determine a least upper bound for IE[T(s2/2)]], where the bars

are used to denote cardnality. We do so , via the following lema.

Lema 3.8. In accordance with the above definitions, theorems, lemmas,

and algorithm, it follows that [E[T(62/2)]| < 3.

Ergo;. Suppose that |E[T(s2/2)]| > 4. Then letting ND denote the total

demand on the nodes of T(s2/2), and letting D denote the total demand on

—

T, we have
D

= D if s = s . (3.10a)
ND > 4(sz/2) = 262

{i
1 2

) D if sl < 62 . (3.10b)

Clearly (3.10b) is impossible, and (3.10a) would imply that ND =

D = 262, so that T(s2/2) has 4 ends with each end having a weight of

sz/2, whereas the remainder of the tree has no demand upon it. Such

can not be the case however, for Algorithm T(s2/2) would not produce

such a tree, but rather would continue to collapse such a tree into a

single point. Therefore, we have that |E[T(s2/2)]| < 3 and the proof

is complete. Ü
Now, defining a tripod to be any tree having exactly three (3)

ends, we present the following useful corollary to the above lemma.

Corollary 3.9. If T(s2/2) is a tripod, then T(sl/2)E2 T(s2/2) is also

a tripod. .

Biggi. If sl= 62, the proof follows immediately, since T(sl/2) = T(s2/2)

from Theorem 3.5. Thus, let us suppose that sl< 62 and that T(s2/2) is

a proper subset of T(6l/2), so that F = T(sl/2) — T(s2/2) ¢ Ü. (Note:

6l< 62 does not imply that T(s2/Z) is a proper subset of T(s1/2). It is
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possible to have sl< $2 and T(s1/2) = T(s2/2)). Recall that the point-

to-set mapping defined by Algorithm T(9) need not be 1-1.)

Now suppose that e is an end of T(sl/2) which is also an end of

some tree (in F) rooted at an interior point of T(s2/2). (Figure 3.4a

depicts such a situation where T(s2/2) is the tripod connecting the ends

labelled a,b,c, and where the tree rooted at a lies in F.) Then the

combined sum of the weights/demands at e and the three (3) ends of

T(s2/2) is > 3(s2/2) + (sl/2) = $2+ $2/2 + sl/2 > $2+ sl = D, since
s1< $2. Clearly this is impossible, and so we now know that all of F

must be rooted on the ends of T(s2/2). Thus, it follows that each and

every end of T($l/2) must either be coincident with an end of T(s2/2),

or it must be an end of some tree (in F) rooted at an end of T(s2/2).

Finally, suppose that el, ..., em are all of the ends of all of the

trees (in F) rooted at some end e of T(s2/2). (See Figure 3.4b.) Then

the combined sum of the weights at el, ..., em and at the two ends of

T(s2/2) different from e is > m(s1/2) + 2(s2/2) = m(s1/2) + sz. Clearly

then, m < 2. Note however, that m=2 would imply that there is no demand

on the links of T(s2/2), and that the ends of T(s2/2) other than e have

weights equal to sz/2. This contradicts Algorithm T(s2/2). Thus, it

must be the case that m=1, and since this is true for any of the three

ends of T(s2/2), we can conclude that T(sl/2) has exactly three ends and

is therefore a tripod. This completes the proof.
E]

A result such as that of Corollary 3.9 is very nice indeed.

Unfortunately, such a result does not apply to the case where

|E[T($2/2)]I = 1 or 2, as is shown by the following examples. ‘
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Figure 3.4a. (See Corollary 3.9)

e1

E2

a
e=b
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C E5

eöäem

Figure 3.4b. (See Corollary 3.9)
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Example 3.1. (A case where |E[T(s2/2)]| = Z and |E[T(sl/2)]] = n+l,

for any n = 1,2, ... ) _

Let T be the following tree, where the numbers appearing on the

links denote the total cumulative weights on the links and are due to

uniform density functions say, and where D, sl and sz are as given:

1

ll 1 D = 4n + 2 = Total Demand
Zn 1 1

_ n such S S 2
: links 1

a b ii 1 : sz = 4n

1

Then according to Algorithm T(6), T(sl/Z)
-

T and T(s2/2) is the

subtree,
2n 1 2n+l

a b

Note: Admittedly, this is not a very interesting example, in that the

decision as to where to locate the facilities is relatively simple due

to the n links having identical demand distributions (and assuming all

link lengths are equal). However, the example does illustrate the issue

at hand.

Example 3.2. (A case where |E[T(s2/Z)]| = 1 and |E[T(sl/2)]] = n,

for any n = 1,2, ... ) .

Let T be a tree having n links all of which are incident at a

comon node having a weight of four (4), and such that each link

contains an end of T. Such a tree would look like the following, with

D, sl and sz as given:
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1 //1 l\‘ 1
D = 4 + Zn = Total Demand’ ‘

n such
{ 1 1 } 11nks S1 “ 2

Then according to Algorithm T(8), T(s1/2) = T and T(s2/2) is the

single point "a", having a weight of D. This concludes the example.

Continuing in our effort to determine yäe E[T(s1/2)] and

y;6 E[T(s2/2)] (thanks to Theorem 3.6), we next present a "catch—all"

type of lemma which consists of properties involving T(sl/2), T(s2/2),

and y, any 1-median of T.

Lemma 3.10.

(a) y 6 T(s2/2) §&T(sl/2) for any 1-median y.

(b) If y 6 E[T(s1/2)], then y 6 E[T(s2/2)].

(e) If 17 E E[T(S2/2)]. then lE[T(S2/2)]] < 2•

(d) If |E[T(s2/2)]] = 3, then T has a unique 1-median y, and it is

located at the first point of intersection of the paths from any two (2)

ends to the third end of T(s2/2). We denote this point as q.

. ggg.

(a) By Theorem 3.5, we know that T(sl/2) and T(s2/2) are uniquely

determined and that both contain all 1·medians of T. Also, since sl< s2,

we have that T(s2/2)§;'T(s1/2) by construction. Thus, we have that

; 6 T(s2/2); T(sl/2) for any 1-median y.

(b) This follows directly from (a).

(C) We know from Lemma 3.8 that lE[T(s2/2)]l < 3· Suppose fer the
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moment, that T(s2/2) has three (3) ends, and that some 1-median y is

coincident with one of them. Then, letting ND denote the total demand

on the nodes of T(s2/2), we have

> D if s1< s2 . (3.11a)
ND > 2(s2/2) + (sl+s2)/2 Ä}

D if= sl= sz . (3.1lb)

Since (3.1la) is physically impossible, and since (3.11b) implies

that the links of T(s2/2) have no demand upon them (which is also

impossible due to Algorithm T(s2/2)), we must conclude that

|E[T(s2/2)]] < 2.

(d) If §E[T(s2/2)]] = 3, then T(s2/2) is a tripod, whose ends we will

label as A, B and C. Let y be any 1-median of T. By parts (a) and (c),

we know that y lies in the interior of T(s2/2), i.e. y 6 T(s2/2) -

E[T(s2/2)]. Now, without loss of generality, let us assume that

y 6 int(A,q), say. Then, collapse both (q,B) and (q,C) into point q,

and consider the l—median problem on (A,q). Due to the fact that the

demand/weight at each of B and C is > 52/2, and also due to remark R2,

we have that the collapsed weight at point q is strictly greater than

(51+ 52)/2.. Clearly then, y 6 int(A,q) does not satisfy the necessary

conditions of a 1-median, and hence it must be the case that y is

uniquely located at point q. This completes the proof of Lemma 3.10.
E]

(Note: all future reference to the above lemma will be according to

Lemma 3.10x, where x 6 {a,b,c,d}.)

The utility of the above lemma is best seen and most appreciated,

when the lemma is used in conjunction with a property/result like that

of Theorem 3.4, in which a physical relationship between the 1 and

2-medians of a tree is established. Given what we now know regarding
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the locations of yä, y; (i.e. Theorem 3.6), the value/worth of results

such as Theorem 3.4 and Lema 3.10 becomes quite apparent.

Finally, we present a theorem which brings together many of the

above results and which hints of an algorithm to be used in determining

y;€·E[T(sl/2)],
y;€

E[T(s2/2)]. We feel that this theorem allows for a

timely, necessary and expeditious transition from our current "ivory—

towered" type of analysis of Problem CZMTP, to one in which we are

forced to "get our hands dirty" so to speak; that is, one in which

l

we actually examine specific cases of Problem CZMTP in the hope of

discovering (computationally) efficient methods of determining yä, y;

for such cases.

Theorem 3.11. Let y be any (fixed) 1-median of T. (Note that if

|E[T(s2/2)]| = 1 or 3, then y is in fact the unique 1-median of T.)

Choose any end of T(sl/2) and denote it by e*, say. Then suppose that

y: is located (fixed) at e*, and determine the set A(e*) E {e6E[T(s2/2)]:

- * -y6P[e ,e], y ¢ e}.

Regarding the choice of yäe E[T(s2/2)] (recall Theorem 3.6), the

following holds:

If A(e*) = Ä, then y;= y is optimal.

If A(e*) ¢ ß, then one of the ends in A(e*) is the best

location for y;.

Additionally, |A(e*)| < 2, and so if [A(e*)| = 1, the location-

of yä is known immediately.

Proof. That |A(e*)| < 2 follows immediately by first noting that

A(e*)Ei E[T(s2/2)] and then calling upon Lemma 3.8, Corollary 3.9 and
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Lemma 3.10d, in that order.

Now, A(e*) = Z implies that [E[T(s2/2)]] = 1 or 2, and if it is 1,

then T(s2/2) is a single point and is in fact equal to the unique

1-median of T (see Theorem 3.5). Thus, y = T(s2/2) and so by Theorem

3.6, we have that y;= y and the theorem holds. In the case where

|E[T(s2/2)]] = 2, T(s2/2) is a chain graph, and so A(e*) = Z implies

that y 6 T(s2/2) is one of the two ends of the chain. More importantly,

y; must be located coincident to y since locating it at the other end of

T(s2/2) would not satisfy Theorem 3.4 (since A(e*) = Z). This completes

the "A(e*) = Z" part of the theorem.

If A(e*) ¢ Z, then two cases arise.

(i) First, suppose that e*= y:= y. Then by Lemma 3.10 b and c and our

assumptlon that A(e*) ¢ Z, we have that |E[T(s2/2)]] = 2, so that

T(s2/2) is a chain graph of which y is one of the two ends, and point v

say, is the other (end). More importantly, v is both the optimal

location of y; (otherwise, more than sz/2 units of demand would lie to

one side of y;) and the sole element of A(e*).

(ii) Now suppose that e*= y:¢ y. If y ¢ E[T(s2/2)], the theorem
‘

follows from Theorems 3.4 and 3.6.

If y E E[T(s2/2)], then for any e 6 A(e*) ¢ Z, we have a path

P[e,y:] in T(sl/2) which can be decomposed into P[e,y]U P[y,y:], where

P[e,y] g T(s2/2) and P(y,yI] is contained in T(s1/2) - T(s2/2). Now

clearly y; could not be located at y, for then the (collapsed) demand on

[e,y) would exceed sz/2 in violation of Theorem 3.3. (Recall our second

remark concerning Algorithm T(8).) Thus, it follows that y; will be

located coincident to some element of A(e*). This completes the proof.
E]
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Having reduced Problem CZMTP to that of using Theorem 3.11 to

_ assist us in determining yä, y; in E[T(s1/2)] and E[T(s2/2)],

respectively, we are now in need of computationally efficient methods of

determining the cost of any given pair of locations, yle E[T(sl/2)],

yze E[T(s272)]. As such, the following section constitutes what might

be descriptively referred to as 6 "post—loca1ization" analysis of

Problem CZMTP.

3.7 Comparing the Relative Costs of Candidate Solutions

In organizing this section, we have decided to follow the lead of

Lemma 3.8 and to partition the section into three cases, according to

the cardinality of E[T(s2/2)]. We begin with the case in which T(s2/2)

has exactly three ends.

Case 1: |E[T(s2/2)|| = 3

Recall that from Corollary 3.9 and Lemma 3.10d, we have that

T(sl/2)E2T(s2/2) is also a tripod, i.e. |E[T(s1/2)]| = 3, and that T has

a unique 1-median, y 6 T(s2/2), which is located at the first point of

intersection of the paths from any two ends of T(s2/2) to the third end

of T(s2/2). Consequently, the situation of Case 1 can be pictorally

represented as shown in Figure 3.5a, where {z1,z2,z3} E E[T(s2/2)] and

{e1,e2,e3} E E[T(sl/2)]. Note of course, that unlike the situation

depicted in Figure 3.56, it is possible for any of the pairs (ei,zi),

i=1,2,3, to be such that ei= zi. Similarly, T(sl/2) and T(s2/2) could

have many more discrete points of positive demand than as shown in the

above figure. However, since the following analysis (of Case 1) applies

in any case, one can without loss of generality, assume the situation to

be that of Figure 3.56.
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Now we know from Theorem 3.4, that (y:,y;) = (ei,zj), i,je{1,2,3},

must be such that i ¢ j. Therefore, an exhaustive determination of

yäe E[T(s1/2)], y;6 E[T(s2/2)] would require one to compute and compare

the relative costs of only six (6) candidate solution pairs, (yl,y2) =

(ei,zj), i¢j, i,je{1,2,3}. Even so, it would be to ones advantage to

have a computationally efficient method of determining such costs. As

such, consider the following two remarks.

Remark 1: If yI= ei for some i€{1,2,3}, then the corresponding facility

must serve more than P[ei,y], since w(z;) + w(z;) > sz for j,k¢i,

j,k6{1,2,3} and where w(z;) E w(zj) plus the weight/demand on some

€—segment of the link incident at zj in T(s2/2) (recall remark R2 in

section 3.5). Similarly, if y;= zj for some je{l,2,3}, then the

corresponding facility must serve more than P[ej,y].

We would ask the reader to note, that in making Remark 1, we have

utilized Lemma 3.1 so as to be able to restrict our attention (with

respect to cost computation) to T(s1/2), since the costs of serving any

subtrees (of T) rooted on T(sl/2) remain the same regardless of where we

finally locate
yl€ E[T(s1/2)], y2€

E[T(s2/2)]. Note also, that Remark 1

makes use of the fact (from Chapter Il) that if (y;,y;) = (ei,zj) for

some i¢j, then the PFL allocation is optimal to the chain graph problem

obtained by collapsing T(s1/2) onto P[ei,ej]. Thus , what Remark 1 is

telling us, is that if (yI,y§) = (ei,zj), i#j, then the facility located

at ei serves all of P[ei,y), the facility located at zj serves all of

P[ej,y), and that P[y,ek], k#i,j, is jointly supplied/served by the

facilities at ei and zj.

The following general remark, used in conjunction with Remark 1,
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will enable us to efficiently compute the cost of any candidate solution

pair, (yl,y2)-= (ei,zj), i¢j, i,je{1,2,3}.

Remark 2: Consider any path P[r,s] in T and let Cr,Cé be the costs of

serving/supplying the entire demand on P[r,s] from the points r and s,

respectively• Then, letting Z E d(r,s) and W E w(P[r,s]), we have that

C + C = ZW.r s
With respect to the issue at hand, the value of Remark 2 lies in

the fact that if one of Cr,CS has been computed, then the other is

easily obtained. Note that Remark 2 follows easily from the observation

that the cost of serving a demand A on an incremental segment a distance

x from r is xA if served from r and (Z·x)A if served from s, whichtotals ZA. f
The remainder of our analysis of Case 1 defines various partial

costs that are to be used in computing the costs of candidate solutions,

(yl,y2)
-

(ei,zj), i¢j, i,j6{l,2,3}. lt is to be assumed throughout

our analysis of this case, that Remark 2 is used to facilitate the

computation of these partial costs. Specifically, for each of j = 1,2,3,

let 1 _ _
öj = cost of serving P(zj,y) from zj, and

6% E cost of serving P(z ,e ) from z. .
~

J 1 2 J J J
- Then by using 6_,6_, j=1,2,3, and only appropriate weights and distances

(i.e. no furtheg iitegrations are required), one can compute the

following:

aiä [cost of serving P[ei,y) from ei] + d(ei,y)[sl—w(P[ei,y))], i=l,2,3

Bjä [cost of serving P[ej,;) from Zj] + d(Zj,;)[S2‘w(P[@j•;))]• j=l•2,3

Ykä cost of serving P(y,ek] from y, k=1,2,3
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Clearly then, for any candidate solution (yl,y2) ¤ (ei,zj), i¢j,

the total cost relevant for comparative purposes is given by

Cij= ¤i+ 6j+ Yk , where k¢i,j, and i,j,k6{1,2,3} . L

To see this, we would again refer the reader to Lemma 3•l and remark
A

that P(y,ek] is a subtree (in T(sl/2)) rooted on P[ei,ej] at point y.

Finally, we note that since {Cij: i¢j, i,je{l,2,3}} has so few

elements, one could simply compute all
Cij

and then pick the smallest,

thereby obtaining an optimal solution (i•e• a 2—median) to Problem

C2MTP• On the other hand, a more elegant solution procedure would be

to construct the 3x3 matrix

°1 B1 Y1
H E az B2 Y2 , and then solve the following

jaa Ba Bj

assignment problem:

minimize z(x) nijxij
i=1 j=1

3
subject to Z x = 1 for i=l,2,3

1=1 ij
3

iilxij= 1 for j=1,2,3

all xij> 0 .

Any basic feasible solution to this linear system will necessarily have

xij= 0 or 1 for all i,j, and so there will exist only one allocation

from each row and column• Therefore, the
nij

corresponding to the

nonzero variables of any optimal solution to the above assignment

. problem will determine the minimum
Cij

value and thus identify the

location of yäs E[T(s1/2)], y;s E[T(s2/2)].
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This concludes our analysis of Case 1.

Case 2: |E|T(s2/2)| = 1

In this case, T(s2/2) is a single point and is therefore equal to

the unique 1-median of T (see Theorem 3.5). Thus we have that y;= y,

and so if T(sl/2) is a single node, we are done. It is unfortunate

however, that unlike the situation in Case 1, T(sl/2) can now have any

number of ends (see Example 3.2), and so as one might expect, the task

of determining y;6 E[T(sl/2)] will (usually) require a greater effort

for this case than it did for Case 1. Nevertheless, we will present a

very simple iterative procedure by which one can determine y;6 E[T(sl/2)],

but first, we must consider a problem for which an efficient solution

methodology is crucial to our procedure for determining y;.
U

Reduction Algorithm R(r,z,s)

Let r,z,s 6 T be such that z 6 P(r,s). Consider the chain

problem, denoted by R(r,z,s), which results from collapsing all of T

onto P[r,s], fixing y2 at point z, and then having to determine which

U of points r and s is the better location for yl.

We know from Chapter II, that the PFL allocation is optimal to

Problem R(r,z,s) for each of (yl,y2) = (r,z) and (yl,y2) = (s,z), and so
U

we can compute the cost corresponding to each of these solutions and

then simply choose the one having least cost. Obviously, the dominant

factor with respect to the efficiency of any such cost computation is

the number of integrations required to determine the cost of a solution.

In particular, it would seem that those integrals involving a distance

component are the keys to the success or failure (with respect to

computational efficiency) of any method of cost computation, and so we
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will proceed under the assumption that only such integrations are of any

importance with respect to the issue of efficiency, and that distance

and weight computations are negligible with respect to the same.

Consequently, and without loss of generality, we will assume that

Problem R(r,z,s) is such that all discrete nodal demands have been

continuously spread across 6-length links so that P[r,s] contains no

discrete points of positive demand. This assumption will serve to

expedite our discussion of Problem R(r,z,s).
I

Any method of computing the costs of (yl,y2) = (r,z) and (yl,y2) =

(s,z) will necessarily require that one first determine the service

intervals defined by the corresponding PFL allocations. As such, one

must determine the breakpoints a,B 6 P[r,s] such that [w(P[r,d]) > sl

and w(P[a,s]) > sz] and [w(P[r,B]) > sz and w(P[B,s]) > sl]. Note that

a will always be less than or equal to B since sl< sz, but that the

relationship between z,¤ and B can vary from problem to problem. For

the sake of discussion/illustration, let us assume that we are dealing

with a situation in which r < a < z < B < s.

Now, direct computation of the costs corresponding to the solutions

(yl,y2) = (r,z) and (yl,y2) = (s,z) requires the evaluation of six (6)

integrals, and is given by

a z s
C(r,z) E ff(x)d(x,r)dx + ff(x)d(x,z)dx + ff(x)d(x,z)dx

E e E 2A C(s,z) E ff(x)d(x,z)dx + ff(x)d(x,z)dx + ff(x)d(x,s)dx ,
r z B

where f(•) is the demand function defined on P[r,s].

We propose a procedure, denoted by Algorithm R(r,z,s), whereby one

can compare the values of C(r,z)_and C(s,z) by using only two (2)
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integrals. Specifically, we utilize Remark 2 (see Case 1), the

integrals HIE ?f(x)d(x,r)dx, H2? ?f(x)d(x,ß)dx, and some appropriate
r B

weights and distances to compute the difference, C(r,z) — C(s,z). We

proceed as follows (recall that we are assuming r < o < z < B < s and

that P[r,s] has no discrete points of positive demand):

a z B s
C(r,z) E ff(x)d(x,r)dx + ff(x)d(x,z)dx + ff(x)d(x,z)dx + ff(x)d(x,z)dx

r a z B

G Z B s
C(s,z) E ff(x)d(x,z)dx + ff(x)d(x,z)dx + ff(x)d(x,z)dx + [f(x)d(x,s)dx

r G z B

a s a
.K C(r,z)—C(s,z) = ff(x)d(x,r)dx + ff(x)d(x,z)dx — ff(x)d(x,z)dx

r B r
s

— ff(x)d(x,s)dx (3.12)
B

Now,
s s
ff(x)d(x.=)dx = ]f(x)[d(z.ß)+<1(x.ß)]dx = d<Z.8)<¤(P[ß„S])
B B

s
+ ff(x)d(x,B)dx = d(z,B)w(P[B,s]) + H2 , (3.13)

B

a ¤ a
ff(x)d(x,z)dx = ff(x)[d(x,a)+d(¤,z)]dx_= ff(x)d(x,a)dx+d(a,z)w(P[r,¤])
r 4 r r

.

=· d(r„¤>w(P[r„¤1) — ff<x)d(x.r)dx + d<¤„=)<»<P[r;¤1)
r

= d(r,z)w(P[r,¤]) - Hl , (3.14)
l

s s
ff(x)d(x,s)dx = d(B,s)w(P[B,s]) — ff(x)d(x,B)dx
B B

= d(B,s)m(P[B,s]) — H2. (3.15)

Then, substituting (3.13),(3.14) and (3.15) into (3.12) gives us,

C(r,z)-C(s,z) = 2(Hl+H2) - w(P[r,a])d(r,z)

+ w(P[B,s])[d(z,B)-d(B,s)]. (3.16)
I
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Now, the very essence of Algorithm R(r,z,s) is embodied in equation

(3.16), wherein one must simply c0mputc the values of its "ingredients"

and thereby determine the relationship between C(r,z) and C(s,z). Such

a task would lend itself readily to computer implementation, and hence

our decision to refer to such as an algorithm.

Finally, we would remark that an equation like that of (3.16) could

be derived for any given relationship involving r,z,$,a,B and for any

demand distribution on P[r,s]. Consequently, we will assume that

Algorithm R(r,z,s) is such that it can solve any Problem R(r,z,$). This

concludes our discussion of Problem R(r,z,s) and so we now return to the

original task of determining yie E[T(sl/2)] for Case 2.

Our procedure for determining y:€ E[T(sl/2)] simply compares two

ends (of T(s1/2)) at a time, and then eliminates the one having a

greater associated cost. This process is continued until y;s E[T($l/2)]

is determined. Specifically, let Tl, ..., Tm be the subtrees of T(sl/2)

obtained by disconnecting T at y;= y, and for the moment, let us assume

that m > 1 so that y;= y is an interior point of T(sl/2). The situation

could then be something like that of Figure 3.5b, in which m = 3 and

|E[T(sl/2)]] = 8. We would mention that in general, |E[T($l/2)]] <

2(l+$2/$1). To see this, let p = [E[T(sl/2)]|, ND E the total weight

of the ends of T(sl/2), and note that p(sl/2) < ND < $1+ sz, where the

first inequality follows from Theorem 3.3 and the second, from the

construction methodology of Algorithm T(sl/2).

Now, proceed as follows. Choose any ends (of T(sl/2)) ei,ej such

that they belong to different elements of {Tl, ..., Tm}. Apply

Algorithm R(ei,y;,ej) to Problem R(ei,y;,ej) and thereby eliminate one
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of ei,ej from further consideration. In so doing, one would then

collapse the eliminated end and a portion of P[ei,ej] into its

respective subtree (Ti or Tj) so as to obtain a reduced subtree having

one less end. For example, suppose that one selects the ends denoted

by "a" and "b" in Figure 3.5b, and that the solution to Problem

R(a,y;,b) is such that end "a" gets eliminated. One would then collapse

P[a,c] into point "c" and repeat the process by considering Problem

R(d,y;,b), say. Continuing as such, one will arrive at a point in which

only one subtree rooted at y; remains, such as is depicted in Figure

3.Sc, say. (Note that the remainder of our discussion handles the m = l

case.) Note that fewer than (l+s2/sl) ends of T(s1/2) will survive this

process since any subtree of T(s1/2) rooted at y; must have a total

demand < (s1+ sz)/2. Now, for comparative purposes among survivors, one

can collapse P[p,q] into point q and continue the process just described

by solving Problem (el,y; at q, ez or e3), etc.. Thus, by collapsing

and using Algorithm R(·,•,•)
in this manner, one will eventually obtain

y;. This concludes our analysis of Case 2.

Case 3: |ElT(s /2)]| = 2

In this case, T(s2/2) is a chain graph having ends 21,22, say. We

consider two subcases.

Subcase 3a Suppose that one of the ends of T(s2/2) is a 1-median of T.

Clearly, 21 and 22 can not both be l—median locations of T, and so

without loss of generality, let us suppose that z1= y.

Now, T(sl/2) can not have any subtrees rooted on P(zl,z2), and so

T(sl/2) might look something like that of Figure 3.6a. To show that

this is true, one can argue by contradiction that if there was a subtree
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rooted on P(zl,z2), then zl= y would imply that w(22) = 22/2 and

m(P(zl,z2)) ¤ O, in which case, Algorithm T(s2/2) would result in

T(s2/2) E 21, thereby contradicting that |E[T(s2/2)]] = 2.

It follows from Theorem 3.4 that the current situation (as depicted

in Figure 3.6a) can be decomposed into considering the two situations

shown in Figure 3.6b. Note that with respect to Theorem 3.4, y; could

have been located at either end of T(s2/2) in Figure 3.6bl, but that the

optimality of the PFL allocation requires that y;= 22. One can now

determine an optimal location for y; for each of Figures 3.6bl and 2 via

the m = 1 procedure of Case 2, and thereby obtain the two candidate

solutions (y;,y;) = (e2,z2) and (y:,y;) ¤ (el,zl), as depicted in Figure

3.6c.

The task that remains is to compare the above two solutions, and as

such, one could proceed in much the same way as was done for Case 2.

Specifically, one would first determine the breakpoint corresponding to

the PFL allocation of each solution, and then use these two points in

conjunction with
e2,z1,z2,el

to decompose P[e2,e1] into segments. Next,

one would determine the cost of serving each such segment from its left

endpoint say, and then use these costs/expressions to derive an

expression/formulae for the difference in costs between the two

solutions. As indicated in Case 2, such a formulae could easily be

incorporated into a computer algorithm to be used as often as necessary.

Subcase 3b Suppose that neither end of T(s2/2) is a 1-median of T, but

recall (from Theorem 3.5) that T(s2/2) contains all 1-median locations

of T. Now, unlike Subcase 3a in which all subtrees (of T(sl/2)) rooted
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on P[21,z2] must be rooted at zlor 22, Subcase 3b is such that there can

also exist exactly one subtree having exactly one end which is rooted

at some 1-median y 6 P(zl,22). As such, T(sl/2) might look something

like that of Figure 3.7a. A simple proof by contradiction can be used

to establish the above remark concerning the geometry of T(s1/2).

In the event that T(s1/2) has no subtree rooted on P(z1,z2), one is

again dealing with Subcase 3a, and so let us assume that the present

situation is that of Figure 3.7a. As such, one can utilize Theorem 3.4

to decompose the present situation into those of Figures 3.7b and c, in

which y; is fixed at the points 22 and zl, respectively.

Now by utilizing the m = 1 procedure of Case 2, one can obtain a
_

* * * *pair of candidate solutions, (y1,y2)
-

(e1,z1), (y1,y2) = (e2,22) which

are themselves located according to one of Figures 3.8a,b,c, and d. The

task that remains is to choose the least costly of these solutions. As

such, one would proceed as in Subcase 3a, should the candidate solutions

be located as in Figure 3.8a. On the other hand, if Figure 3.8b

describes their locations, one would simply collapse P[p,q] into q,

locate y: at q = y, and then solve Problem R(zl,yI= y,z2) via Algorithm

R(zl,yI= y,z2).
W

*
w

* *Finally, should (yl,y2) = (el,zl), (yl,y2) = (e2,22) be located

according to Figure 3.8c (or Figure 3.8d), one could proceed in much

the same way as in Subcase 3a. Specifically, one would determine the _

breakpoint corresponding to the PFL allocation of each solution, and

then partition Figure 3.8c accordingly. Then utilizing the costs of

serving the resulting segments of the figure, one could derive a
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formula/expression for the difference in costs between the two candidate

solutions• This concludes our analysis of Case 3 and also our analysis

of Problem CZMTP.



CHAPTER IV

CONCLUSIONS AND FUTURE RESEARCH

4.1 Conclusions _
An exact solution procedure has been developed for an absolute

p—median problem in which p > 1 capacitated facilities are to be located

on a chain graph having both nodal and link demands. This procedure

enables one to determine a global optimum to this nonconvex problem by

exploiting the optimality of a particular type of location—allocation

scheme for any given ordering (from left to right, on the chain) of the

facilities. Specifically, the methodology of branch and bound was used

to implicitly evaluate the minimum cost of every possible ordering ofthe p facilities. ”
The results of the chain graph problem were then used to develop an

algorithm to solve a dynamic, sequential location—allocation problem in

which a single facility per period is required to be located.

Specifically, the algorithm prescribes a reduced set of candidate

optimal solutions from which to choose the best.

Finally, an exact solution procedure was developed for an absolute

2-median problem, in which two capacitated facilities are to be located

on a tree graph having both nodal and link demands. This procedure

utilizes the results of our chain graph analysis, as well as a tree-

reduction type of result, to develop an algorithm with which one can

identify two subtrees, each of whose ends constitute a set of candidate

optimal locations for one of the two elements of an absolute 2-median.

Further localization results were provided to assist in reducing the

number of candidate pairs (of ends) that need to be considered. In

169
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addition, a post—localization analysis was effected, wherefrom efficient

methods of comparing the relative costs of candidate pairs resulted.

4.2 Future Research

As was mentioned previously, the formulation of location-allocation

problems seems to be limited only by one's imagination, and consequently,

it seems relatively easy to identify interesting problems/areas of

future research. With respect to the problems analyzed herein, this

author can think of three (3) immediate extensions/variants which appear

to be both interesting and useful. A brief discussion of each of these

problems is given below. Before proceeding however, we would remark

that the intent of this section is not to provide the reader with

rigorously formulated (future) research problems, nor is it to provide

detailed (or even semi—detailed) solution procedures for any such

problem. Rather, the purpose of this section is to simply suggest

possible problems/areas of future research and to briefly discuss these

problems with respect to possible solution methodologies and/or

difficulties one might encounter in analyzing them. With this in mind,

let us proceed.

Unbalanced Versions of Problems CP and CZMTP

Recall that it was important in both Problem CP and Problem C2MTP,

that the total demand (ED) equal the total supply (ES). The condition

S > D was necessary in order that the transportation approximation used

to establish the optimality (to Problem CP(y)) of the PFL allocation be

feasible (i.e. to have feasible solutions). The standard transportation

problem is considered infeasible when D > S. Furthermore, if S > D, it

is usually suggested that one amend the problem via a dumy destination



171

having demand equal to the excess supply and such that the per unit

transportation cost from each origin to the “dummy" be zero. In neither

case, does the above conclusion/suggestion seem appropriate to Problem

CP say, for one can certainly imagine a real-world situation in which

D > S, and furthermore, how one might amend a dummy destination to

Problem CP (in the case where D < S) is not at all apparent to this

author.

For the case in which D > S, and addressing the chain graph problem

in particular, one would most likely want to incorporate some sort of

penalty into one's objective function, whereby one is penalized according

to the distribution of that demand left unserved. As such, the problem

would become one of determining locations and allocations which minimize

the sum of the costs due to service and to the penalty. The PFL

solution, for example, would result in all of the unserved demand lying

in some interval [¤,c]g;(0,c], contrary to this author's intuition that

it would be better to have a more uniform distribution of unserved

demand. Metaphorically speaking, it may be better to "spread the

dissatisfaction across all customers rather than to lay it on the

shoulders of a few." Obviously, both the solution and solution

procedure would be very much dependent on how one chose to define such

a penalty. Finally, we would simply remark that a benchmark/starting

point for any solution procedure to any such problem may exist in the

solution obtained by replacing the demand function f(•) with (f(•) -

(D—S)/c), solving the resulting balanced problem, and thus obtaining a

uniform distribution of the unserved demand from which to compute the

penalty cost.
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For the case in which S > D, and again addressing the chain graph

problem in particular, the difficulty that one is likely to encounter,

should one attempt to effect a PFL type of allocation/solution, is best

illustrated by noting the behavior of such an allocation in the case of

uncapacitated facilities. Specifically, for such a case, a PFL type of

allocation would be such that the facility located at yl, where

0 < y1< • . . < yp< c, would serve/supply all demand on the interval

[0,(y1+ y2)/2]. Similarly, the facility at y2 would serve/supply the

interval [(y1+ y2)/2, (y2+ y3)/2], etc.. Obviously, with S > D and

having capacitated facilities, a PFL allocation is likely to require

that one decide whether to allow the allocation of a particular facility

at yi, say, to serve past the point (yi+ yi+l)/2, or whether to

terminate its service at this point and allow the remaining capacity (of

the
ich

facility) to go unused.

It is the above kind of complications/peculiarities which one is

certain to encounter while analyzing unbalanced versions of Problems

CP and CZMTP. Notwithstanding such complications, it is this author's

opinion that exact solution procedures are possible for these problems.

Locating an Additional Facility on a Tree

As a counterpart to the "Sequential One Facility Per Period

Location—Allocation Problem" on the chain graph, one might be interested

in determining howto optimally locatel a third facility on a tree such

as that of Problem CZMTP. Unlike the chain graph problem, in which it

was assumed that the locations of p-1 facilities were given and fixed

for any p > 1, the "additional facility on a tree" problem that is being

suggested here, involves locating only a Enina facility on a tree for
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which an absolute 2-median is given and fixed. Such is the case, since

it is presently unknown how one would determine an absolute p-median on

such a tree as ours for any p > 3. This in itself is a problem which

awaits future research/solution, but is much too difficult to consider

as a next step in extending the current analysis of this study, and
V

would be more than likely to result in a heuristic rather than an exact

solution procedure.

This author feels quite certain that an exact solution procedure

can be developed for solving the "additional facility on a tree"

problem. In particular, an approach like that of the following seems

worthy of further/future investigation.

a) Given the locations y;,y;€ T of an absolute 2-median (and

assuming that y;¢ yä), first determine an optimal location y3 for a

third facility on the path P[y;,y;]. This can be done easily by

collapsing all of T onto P[y:,y;] and then determining the PFL

allocation in accordance with the capacities of the three facilities.

Now let e be any end of T, and note that it must be the case that

e is an end of some subtree Te rooted on P[y;,y;]. -(Note: it may be

that Teä e = y: or y;.) We must consider two cases.
V.

b) Suppose that Te is rooted at an end of P[yI,y§], and without

loss of generality, suppose that it is rooted at y;. Then collapse all

of T onto P[y:,e] and determine an optimal location for yae P[y;,e] via

the PFL allocation.

c) Suppose that Te is rooted at some point a E P(y:,y;). Then

collapsing all of T onto the tripod formed by {yI,y;,e}, it is again

a simple matter to determine an optimal y3e P[e,a].
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Having performed a), and b) or c) for every end of T, it seems

plausible that any y3 having minimum cost would in fact be y;. Of

course, further effort is warranted to reduce the work required by such

a brute-force approach. Regardless, it does apear that such an approach

lends itself to an exact solution procedure of this problem. We would

add that if y:= yä, an argument similar to that above can be made by

disconnecting T at y = y;= y; and then considering each end e of each

subtree so obtained, with respect to locating
y3€

P[y,e].

Locating an Absolute 2-median on a General Network With a Continuum of
Demand

A natural, but certainly not immediate, extension of Problem CZMTP

is that of locating a capacitated absolute 2-median on a general network

having both nodal and link demands, and for which it is again assumed

that the total demand is equal to the total supply.

Exact, but not necessarily efficient, solution procedures exist for

locating an absolute p-median (p > l) on a general network having only

nodal demands (see Hakimi [1965]). With respect to networks having both

nodal and link demands, Chiu [1982] has provided us with both exact and

heuristic solution procedures for locating an absolute 1-median on a

general network. In this same paper, he develops an efficient (exact)

algorithm for locating an absolute 1-median on a tree. Cavalier and

Sherali [1983a] also provide an exact solution procedure for the

absolute 1-median on a tree problem in which the tree has both nodal and

link demands. In addition, the papers by Batta, Brandeau, and Chiu

[1983], and again, Cavalier and Sherali [1983a], solve the uncapacitated

absolute 2-median problem on such a tree. It remains for someone to
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solve the uncapacitated absolute Z-median problem on a general network

having a continuum of demand. In fact, there remains a need for

researchers to develop more efficient algorithms for solving some of the

above "already solved" problems.

Returning now to capacitated, minisum, network-based location-

allocation problems having a continuum of demand, this study represents

the first of any such analysis (known by this author). In particular,

we have developed an exact solution procedure for Problem CZMTP. In the

next (and last) section of this study, we present a brief discussion of

a possible heuristic for locating a capacitated absolute 2-median on a

general network having both nodal and link demands, and for which the

total demand is equal to the total supply. We make no remarks regarding

the goodness of this heuristic, but rather present it in order to

demonstrate one type of approach that one may wish to pursue in

analyzing this problem.

4.3 Locating a Capacitated Absolute 2-median on a General Network
Having a Continuum of Demand

The following constitutes a non-rigorous discussion/description of

a "locate·allocate" type of heuristic for determining a capacitated

absolute 2-median on a general network G having both nodal and link

demands. The location phase of this heuristic simply requires that one_

solve two absolute 1-median problems on a general network having a

continuum of demand (see Chiu [1982]). The allocation phase requires

that one formulate and solve a transportation approximation to the

original problem for given and fixed locations of the two facilities.

Before actually presenting an algorithmic (step by step) description of
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this heuristic, we will briefly describe its allocation phase so that we

can simply reference this phase at the proper point in time.

Allocation Phase

Suppose that one is given the locations yl,y2€ G of two capacitated

facilities from which one wishes to optimally serve/supply the demand

on G. One can formulate/construct an approximating transportation

problem by first discretizing/partitioning all of G, and then by

aggregating the partitioned demand so as to have a finite number of

"destination" points distributed throughout G. In keeping with the

usual terminology used in describing a transportation problem, points yl

and y2 would represent the "sources" of our problem, the decision

variables would be the number of units of supply provided to the

destination points from each of yl and y2, and finally, the cost of

supplying a single unit of demand from a facility (ylor y2) to any

destination point is simply the distance (on G) between the two points.

Now, assuming that we have ordered/numbered the destination/demand

points, let dll and dzi denote the shortest path distances between the
ich

destination/demand point and the facilities at yl and y2,

respectively. Such distances are easily obtained as follows. To

determine the dli distances, first construct the shortest path

(spanning) tree from yl to all nodes of G. For every destination point

i which lies on this tree, the value of dli is easily obtained. For any

link of G which is not a part of the shortest path tree, one can

utilize the known distances from yl to the two ends of the link to
determine a "shortest distance breakpoint" on the link, and thereby

know the shortest path (and hence distance) between any point on the
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link and yl. Similarly, one can obtain the dzi values.

Now, for each destination/demand point i, define A15 dll- dzi, and

without loss of generality, reindex the Ai values so that they are

ordered according to increasing value. As such, the first elements (Ai)

of this finite ordering correspond to destinations which are closer to

yl than y2 (assuming the existence of such a demand distribution on G),

whereas the latter elements correspond to those destinations closer to

y2 than to yl.

If one were to now allocate the supplies sl,s2 (corresponding to the

facilities at yl,y2, respectively) to the destination/demand points in

accordance with the increasing Ai sequence and beginning with sl, the

resulting allocation would be the same basic feasible solution that one

would obtain by applying the Northwest Corner Rule to the transportation

problem. More importantly, it is an optimal basic feasible solution,

1.e. it is an optimal allocation. To see this, suppose there are n

destination points and that the facility at yl exhausts its supply sl

while serving the
kth

(i.e. corresponding to Ak) destination/demand _

point. (Note, that in the event of non-degeneracy, x2k> O.) Now,

letting ul,u2 and vl, ..., vn denote the dual variables corresponding

to the the sources (at yl,y2) and to the destinations (corresponding to

(A1, ..., An), respectively, one finds that they are of the following

form: ul = dlk- d2k+ dzu

u2=d2n

vj = dlj- dlk+ d2k— dzn for j=l, ..., k-1

vj = dzj- dzn for j=k, ..., n-l

v=O.n
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As such, the reduced costs corresponding to the nonbasic variables

(arcs) are of the form,

zlj- clj E z1j— dlj = Ak- Aj for j=k+l, ..., n
zzj- czj E zzj- dzj = Aj- Ak for j=l, ..., k—l.

Thus, by recalling the ordering that was imposed upon the Aj's, one can

see immediately that dual feasibility exists, and hence the Northwest

Corner Rule solution is optimal.

Now, in keeping with the (announced) non-rigorous format of this

section, we would only remark that in the limit, as the mesh of the

partitioning of G goes to zero, one would obtain an optimal allocation

to the original allocation problem. This concludes our discussion of

the allocation phase, and we are now prepared to present the following

heuristic for locating a capacitated absolute 2-median on a general

network having a continuum of demand.

Algorithm CZMGNP

STEP 1: locate an absolute 1-median y on G. (see Chiu [1982]).

STEP 2: determine a shortest path (spanning) tree TSSG from y to all

the nodes of G. Determine the "shortest distance breakpoints“

for all links not in T, and then "break" these links at these

points to obtain a tree T'.

STEP 3: use the procedure contained herein (for solving Problem CZMTP)

to locate a capacitated absolute 2-median (yl,y2) on T'.

STEP 4: execute the Allocation Phase in order to determine optimal

allocations on G for the facilities at yl,y2.

STEP 5: with respect to each of the allocations determined in the

preceding step, locate absolute 1-medians yl and y2 on G, for
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each facility.

STEP 6: lf yl and y2 are not themselves absolute 1-median locations
corresponding to their assigned allocations, replace (yl,y2)

by (yl,y2) and return to Step 4. Otherwise, stop.

Note that an improved solution results upon each loop through Steps

4-6. Although this heuristic is intuitively appealing, as was mentioned

previously, we make no claims as to its goodness, but hope that it

serves to stimulate the reader's interest.

This concludes our study of balanced, capacitated, location-

allocation problems involving networks having a continuum of demand.
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APPENDIX A

THEOREMS, COROLLARIES AND LEMAS OF CHAPTER II

2.2 Formulation of a p-median Location—Allocation Problem on a Chain

p c
CP: minimize Z [¢ (x)|x—y Idx1=1o1 1 _
subject to

P
E ¢ (x) = f(x) for all x6[O,c]

ii=l

c
£¢i(x)dx = si for i=l, ..., p

¢i(x) > O for all xs[0,c], i=l, ..., p

0 < yi< c for i=l, ..., p. (See page 38)

2.3 Characterizations of the Individual Location and Allocation Solution

* * * *Lemma 2.1. Let yl, ..., yp, ¢l(•), ..., ¢p(•) represent an optimal

solution to Problem CP. Then, there exists a reindexing of facilities

* *such that O < yl< ... < yp< c. (See page 41)

Theorem 2.2. Problems CP(A,y1, ..., yp) and CPT(A,yl, ..., yp) are

equivalent in the following sense. There exists a one-to-one

correspondence between the sets of feasible solutions to Problems

CP(A,yl, ..., yp) and CPT(A,y1, ..., yp), and more importantly,

corresponding solutions have equal objective function values. It

follows then, that any optimal solution to one problem will correspond

to an optimal solution of the other. (See page 45)

*Theorem 2.3. The Northwest Corner Rule solution x is optimal to

Problem CPT(A,yl, ..., y ) for any p > 2. (See page S0)
P
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* * 1
Theorem 2.4. There exists an optimal solution ¢ = (ol, ..., ¢p) to

Problem CP(yl, •.•, yp) for which the allocation functions ©;(•), i=l,

..., p, result in the facilities at O < yl < ... < yp < c serving the

intervals I1= [O,¤1], 12- [¤1,¤2], ..., 1p= [ap—1,c], respectively, for

some O < al < az < ... < ¤p_1 < c. (See page 51)

Theorem 2.5. There exists an optimal solution to Problem CP, for which

(a) each facility i serves an interval [ai,Bi[, with its

location yi€[¤i,Bi], and such that

Y1 _ B1
(b) [ f(x)dx — [ f(x)dx = si/2 . (See page 54)

ai yi

(Note that such yi are generally referred to as "median" locations.)

Corollary 2.6. Given any ordering of the p facilities, their optimal

locations are known readily, i.e. simply mark off the intervals to be

served (from left to right) according to their capacities, and then

place the facilities at their respective median locations. (See p. 54)

2.4 A Useful and Insightful Special Case

Lemma 2.7. Consider a facility i having supply si which serves an

interval 115 [ai_l,¤i[, and suppose that this facility is located at a

median location yi with respect to Ii, i.e. yi satisfies

y1 °1[ f(x)dx = [ f(x)dx = si/2. Then,°‘1-1 V1

[ f(x)|x—yi[dx = Aid+ Alu , where
1
i

vi V F(yi) _1
A 5 [ f(x)(y -x)dx = y (s /2) - [ F (y)dy and
id i i iai-1 F(°‘1-1)
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a F(a ) _1 ·
Alu; fif(x)<x·yi>dx = I 1 F <}'>dy · yi(si/Z)-

yi F(>'i> „

(Note that
F·l

exists since F is strictly increasing under our current

assumptions on f.) (See page 56)
h

Theorem 2.8. Given that the demand function f is nonnegative, integra-

ble and nondecreasing, that ordering in which the p facilities appear

from left to right (in [0,c]) in nondecreasing order of capacity, is

optimal to Problem CP. That is, the associated (y,¢) of Corollary 2.6

is an optimal solution to Problem CP.

(Note: our proof of Th. 2.8 requires the convexity of F(x), and hence

the following lemma.) (See page 58)

Lemma 2.9. Given that f is a nonnegative, integrable, nondecreasing

function defined on [0,c], the continuous function F(x) = f(t)dt,

x6[O,c], is a convex function. (See page 59)
0

Corollary 2.10. Let f be any nonnegative, integrable, demand function

for Problem CP. Then in determining an optimal solution to Problem CP,

it is sufficient to restrict one's attention to those orderings/

permutations of the p facilities which give solutions (per Corollary ,

2.6) satisfying the following condition: sets of facilities which use

their entire supply to serve a connected subset of [0,c] over which f

is monotone nondecreasing (nonincreasing), must be arranged from left

to right in nondecreasing (nonincreasing) order of capacity. (See p. 66)

2.5 Analysis of the Symetric, Unimodal Demand Distribution Case

Theorem 2.11. Suppose that the demand function f for Problem CP is

nonnegative, integrable, unimodal and symmetric on [0,c]. Then, in
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determining an optimal solution to Problem CP, it is sufficient to

restrict attention to those orderings/permutations of the p facilities

which give solutions (per Corollary 2.6) satisfying the following

condition in addition to that of Corollary 2.10: if a facility M

straddles, then it has maximum capacity. (See page 69)

Theorem 2.12. Given a demand function f satisfying the requirements of

Theorem 2.11, and p = 3 facilities having capacities sl< s2< s3, the

alternating ordering is optimal. For p = 4, such an ordering need not

be optimal. (See page 84)

2.6. Analysis of the Non-Symmetric, Unimodal Demand Distribution Case

Theorem 2.13. Consider Problem CP and suppose that the demand function

f is nonnegative, integrable and unimodal on [0,c]. (Recall that being

unimodal means f is nondecreasing on [0,a] and nonincreasing on [¤,c],

for some a6[0,c].) Then in determining an optimal solution to Problem

CP, it is sufficient to restrict attention to those orderings/

permutations of the p facilities which give solutions (per Corollary

2.6) satisfying the following condition in addition to that of

Corollary 2.10: if facility M straddles, then sM must be a maximum

with respect to the capacities of those facilities located on at least
4

one side of it. (See page 92)

2.7. Using Lower Bounds to Fathom Partial Orderings

Theorem 2.14. Let f be a nonnegative, integrable demand function

defined on [0,c], and let [¤,ß] [0,c] be the service interval of

some facility located at a median y*s (a,B) and having capacity/supply,
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B
s = ff(x)dx.

a

If g is a nonnegative, integrable function such that for some

*a', B' satisfying a < a'< y < ß' < B, we have

*y ß'
i) f g(x)dx = f*g(x)dx = S/2,

a' y

* *Y Y
*ii) [ g(x)dx > [ f(x)dx, for all a' < y < y ,

Y Y

Y Y
*and iii) f*g(x)dx > [*f(x)dx , for all y < y < B',

Y Y

then the transportation cost with respect to g of the service/supply

*provided to [a',B'[ by the facility located at y , is less than or equal

to the cost with respect to f of the service/supply provided to [a,B[,

1.e. B,

*
B a

[g(x)[x—y [dx < [f(x)[x-y [dx .
a' a

(Note: the following schematic is given to help clarify the statement

and proof of this theorem.) (See page 97)

Corollary 2.15. Let f be a nonnegative, integrable, unimodal demand

function defined on [0,c[, and having a maximum at some ¤6[0,c[. Let

Al and A2 denote the total demands to the left and right of a,
a c ·

respectively, i.e• Al = [f(x)dx and A2= [f(x)dx• Pictorially, we might
O u

have something like that in Figure 2.16a.

"Squaring off" the demand over [0,a[, we define

f(a), on [a - A1/f(a),¤[
g =

f , on [a,c[ .

Pictorially, we would have Figure 2.16b.
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"Squaring off" the demand over [a,c}, we define

f , on [0,a}
hs

f(¤), on [a,a + A2/f(a)} .

Pictorally, we would have Figure 2.16c.

A lower bound on the optimal cost of serving/supplying the demand

Al+ A2 with respect to f, is the larger of the optimal costs of doing

the same, with respect to g and h. (See page 99)

2.8 Treatment of Problem CP, When f is Simply Nonnegative and Integrable

Theorem 2.16. Given f:}0,c} + R of Problem CP, let f:}0,c'} + R be

constructed as above. Then the PFL solution of Theorem 2.8 which

solves Problem CP with f replaced by f, gives an objective function

value with-respect to f which is a lower bound for the optimal value to

Problem CP with respect to f(•). (See page 110)

2.9 A Sequential One Facility Per Period Location—Allocation Problem

* th
Lema 2.17. Let yp be the location of the p facility of any optimal

*solution to Problem CP(p). Then yp6{;1, ..., ;P_l} . (See page 115)

Theorem 2.18. For each j = 1, ..., p, let Pj= }6j,Aj[ be the median

interval (in (aj,Bj)) defined by
Yö_= min {y > ¤_: [ f(x)dx = s /2}

_ J J a_ P
and J

ß.
A.= max {y < B.: [J f(x)dx = s /2} ,J J y P

where a_, B_, j=1, ..., p are given by (2.1h). If (a) A_< ;_
1

or if
J J J

J‘

6_> ;_ then y = ;_ or y = ;_ are res ectivel uni ue o timal
1

1’
P J‘1 P 1 P y q P

solutions to CP(p,¤j). Otherwise, (b) any of the points in

P };_ ,;_} solve CP(p,0 ). (See page 117)
1 1-1 1 1
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Lemma 2.18*. Let f be an integrable, nonnegative function defined on
B

[a,B] [0,c] . The function F(xO) = ff(x)|x-xoldx is convex on
01

[0,c]. (See page 117) (See end of Appendix for proof.)

Theorem 2.19. For each j=1, ..., p, define Sj = {y} for some YEP. E
J

[6 ,A_] in case ;_
< ö_< A_< ; , and S_= ¢ otherwise. Then, an optimalJ J J·1 J J J J

P
solution to CP(p) lies in the set S E U S_. (See page 118)

J=1 J

Algorithm for CP(p). Compute aj and Bj (recursively) from (2.14) and

hence determine öj and Aj as in (2.15). Find the set S of Theorem 2.19

and note from the proof of this theorem that S ¢ ¢. Select the best

solution from S as an optimal solution to CP(p). (See page 119)

Proof of Lemma 2.18*: Let xl,x2 be any two points in [0,c] and A 6 (0,1).

Let ; = Axl+ (1-A)x2.

Then AP(xl) + (1-A)F(x2) - F(;)

= (l‘)—)(l"(X2)'V(;¤)) ' >—(T'(;)'T‘(X]_))

B B _
= (1-Ä)[ff(x)|x·x2]dx — ff(x)|x—x|dx] '

a 01
B _ B

— A{ff(x)]x—x|dx — ff(x)|x-xlldx]
0; a

B B B _
= xjs(x)|x-x1|ax + (1—).)ff(x)]x·x2[dx - f£(x)|x—x|dx

a 0 01
B B _

= [£(x)(>„|x-x1| + (1—A)|x—x2|)dx - fr(x)|x—x|dx
G. (1

B B _
= ff(x)]Ä|x—xl| + (l-Ä)|x—x2]]dx — ff(x)|x—x|dx

0 cz

since (>.|x-xl| + (1-x)|x—x2|) > 0 ,
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B B _

01, cz

since f > O and |A|x—xl[+(1—)„)|x—x2|| > |)„(x-xl) + (A-l)(x2—x)|,

B B _
x|dx — ff(x>|x-x|dx

a a
‘ B _ B _

= ff(x)|—x+x|dx · ff(x)|x·x]dx = 0 •
0. a Ü



APPENDIX B

THEOREMS, COROLLARIES AND LEMAS OF CHAPTER III

3.2 Formulation of the Capacitated 2-median Tree Problem
2 n 2

CZMTP : minimize ( 2 E wikd(yi,vk) + E Z f¢i£(x)d(x,yi)dx )
yl,y26 T i=l k=1 i=l

2€A
2

w.¢(·>>0 .
n

subject to Z wik+ E f¢i£(x)dx = si for each i=1,2
k=1 2sA 2

2

E
wik = hk for each k=1, ..., n

i-1

2
Z ¢ (x) = f (x) for each x€2, and 26A .

i=l
ig 2 (See page 123)

3.3 The 2-median Optimality Criteria

Lemma 3.1. Let T' be a subtree of T obtained by disconnecting T at some

point qsT, and let the total demand on T' be jointly supplied by two

facilities located at
yl,y2€

T-T'. Then the cost of supplying the total

demand on T' is given by

C(y1.y2.T'> = C(q,T') + d(y1.q)W1 + d(y2.q)W2 .

where C(q,T') is the cost of supplying the total demand on T' from q,

and where W1,W2 are the amounts of supply provided T' from each of

the facilities at yl,y2, respectively. (Note: W1+ W2 = Total Demand

on T'.) (See page 128)

* *Lemma 3.2. Suppose that y1,y2€T are the locations of an optimal

solution to the capacitated 2-median tree problem (i.e. to Problem

CZMTP). Then these same locations are optimal to the 2-median problem

* *collapsed onto any path P[r,s] P[yl,y2], where r,s 6 T. Furthermore,

ZOO
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any alternative optimal solution to this additionally constrained

problem solves Problem CZMTP. (See page 130)

* *Theorem 3.3. Suppose that yl,y2€T are the locations of an optimal
·

* *solution to the capacitated 2-median tree problem, and that y1¢ y2 .

*
a

(Note that if y1= y2, then the two facilities and their supplies

constitute a 1-median, and thus the theorem follows from the 1—median

optimality conditions/criteria of Chiu [1982] and Cavalier and Sherali

*[l983a].) Disconnect T at yl and let T1, ..., Tm be the resulting

*subtrees, with y26Tm, say. In keeping with our earlier development,

*let us assume that Ti does not include yl, but rather that an artificial

node having an associated demand of zero has been added in its place,

for i=1, ..., m. Then letting w(•) denote a total weight function, we

have that
w(Ti) < sl/2 for each i=1, ..., mel ,

and (more importantly)

m-1
*E T + 2 .w( 1) w(y1> > $1/

i=l
·

*(A symmetric statement holds with respect to y2.) (See page 131)

3.4 Subproblems Inherent to Problem CZMTP and a Useful Reduction Theorem

Theorem 3.4. Suppose that T = (N,A), sl,s2 and w(•) are as defined

- * *above. Let
y€T

be the location of a 1-median, and yl,y2€T, the locations

of a Zemedian (i.e. of an optimal solution to the capacitated 2—median

- * *tree problem). Then we have that y E P[yl,y2] . (See page 134)

3.5 Obtaining a Reduced Set of Candidate Optimal Solutions

Algorithm T(B). Consider the capacitated 2-median tree problem, and

without loss of generality, assume that sl < sz. Then for any constant
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0 < 9 < (sl+s2)/2, we construct a tree, T(9) T, as follows:

Initialization Let T be the tree of Problem CZMTP and having no nodes

flagged.

Step 1 Pick an end e of the current tree which is not flagged. If all

ends are flagged, stop; the current tree is T(9). Otherwise, proceed to

Step 2.

Step 2 Let (v,e) be the link incident at e. If w(v,e] < 9, collapse

(v,e) into v, add w(v,e] to the weight of v, and return to Step 1.

Otherwise, i.e. w(v,e]>9, go to Step 3.

Step 3 Let v 6 int(v,e) be the point closest to v such that w[v,e] = 9.

In this case, collapse (v,e) into v, denote v as being a node (of the

resulting tree) whose weight is equal to w[v,e], flag v, and go to

Step 1. If no such point exists, then flag e and go to Step 1. (See p. 137)

Theorem 3.5 Let O < 9 < (sl+s2)/2, and let T(9) be obtained via the

foregoing algorithm. Then, T(9) is uniquely determined by this

algorithm and contains all of the 1—medians of T. In particular, if

T(9) is a single node, then it is the unique 1—median of T. (See p. 139)

Theorem 3.6. Let T, T(9), sl< sz, y: and y; all be as defined above

(and note that T(s2/2) T(s1/2)). Then, there exists an optimal

* * * *2·median (yl,y2) such that yl,y2 are ends of T(s1/2), T(s2/2),

respectively. Similarly, let yl be located at some end of T(sl/2).

Then there exists an optimal location for y2 (with yl fixed) among the

ends of T(s2/2), and vice versa. (See page 142)
‘
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* *Corollary 3.7. yl= y2 is an optimal (2—median) solution to Problem

' C2MTP iff T(sl/2) = T(s2/2) = T((sl+s2)/2). (See page 144)

3.6 Methods of Determining Optimal Locations for yliyz Amongst the Ends

of T(s1/2) and T(s2/2), Respectively

Lemma 3.8. In accordance with the above definitions, theorems, lemmas,

and algorithm, it follows that |E[T(s2/2)]| < 3. (See page 145)

Corollary 3.9. If T(s2/2) is a tripod, then T(sl/2) T(s2/2) is also

a tripod. (See page 145)

Lemma 3.10.

(a) y E T(s2/2) T(s1/2) for any 1-median y.

(b) If y E E[T(sl/2)], then y E E[T(s2/2)].

(c) If y 6 E[T(S2/2)], then |E[T(s2/2)]| < 2.

(d) If |E[T(s2/2)]] = 3, then T has a unique l—median y, and it is

located at the first point of intersection of the paths from any two (2)

ends to the third end of T(s2/2). We denote this point as q. (See p. 149)

Theorem 3.11. Let y be any (fixed) l—median of T. (Note that if

|E[T(s2/2)][ = 1 or 3, then y is in fact the unique l·median of T.)

*Choose any end of T(sl/2) and denote it by e , say. Then suppose that ‘

* * *yl is located (fixed) at e , and determine the set A(e ) E {e€E[T(s2/2)]:

- * -
y€P[e ae]: y $ €}°

*Regarding the choice of yzs E[T(s2/2)] (recall Theorem 3.6), the

following holds:

* * -If A(e ) = O, then y2= y is optimal.

* *If A(e ) ¢ O, then one of the ends in A(e ) is the best
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*location for y2.

* *Additionally, |A(e )[ < 2, and so if |A(e )| = l, the location

of y; is known immediately. (See page 151)




