

### VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

The Charles E. Via, Jr. Department of Civil and Environmental Engineering Blacksburg, VA 24061

## **Structural Engineering and Materials**

## **YIELD LINE PATTERNS FOR END-PLATE MOMENT CONNECTIONS**

by

Matthew R. Eatherton, S.E., Ph.D. Associate Professor

Trai N. Nguyen Graduate Research Assistant

Thomas M. Murray, P.E., Ph.D. Emeritus Professor

Report No. CE/VPI-ST-21/05

December 2021

### **EXECUTIVE SUMMARY**

The purpose of this report is to summarize the yield line patterns and associated yield line parameters for end-plate moment connections. Both the end-plate yield line patterns and the column side yield line patterns are provided. For each yield line parameter, either the derivation is given or details about how the yield line parameter was obtained from one of the other derived yield line parameters is described.

## **TABLE OF CONTENTS**

| E | XECU | TIVE SUMMARY                                                   | i    |
|---|------|----------------------------------------------------------------|------|
| T | ABLE | OF CONTENTS                                                    | ii   |
| 1 | INT  | RODUCTION                                                      | 6    |
| 2 | ENI  | D-PLATE YIELD LINE SOLUTIONS                                   | 9    |
|   | 2.1  | Summary of End-Plate Yield Line Parameters                     | 9    |
|   | 2.2  | Two-Bolt Flush Unstiffened End-Plate                           | . 12 |
|   | 2.3  | Four-Bolt Unstiffened Flush End-Plate                          | . 15 |
|   | 2.4  | Four-Bolt Flush End-Plate Stiffened Between the Bolt Lines     | . 18 |
|   | 2.5  | Four-Bolt Flush End-Plate Stiffened Below the Bolt Lines       | . 21 |
|   | 2.6  | Six-Bolt Flush End-Plate                                       | . 24 |
|   | 2.7  | Six-Bolt Flush Four Wide / Two Wide Unstiffened End-Plate      | . 27 |
|   | 2.8  | Four-Bolt Extended Unstiffened End-Plate                       | . 30 |
|   | 2.9  | Four-Bolt Extended Stiffened End-Plate                         | . 33 |
|   | 2.10 | Multiple Row Extended 1/2 Unstiffened End-Plate                | . 46 |
|   | 2.11 | Multiple Row Extended 1/3 Unstiffened End-Plate                | . 49 |
|   | 2.12 | Multiple Row Extended 1/3 Stiffened End-Plate                  | . 52 |
|   | 2.13 | Eight Bolt Extended Four Wide Unstiffened End-Plate            | . 60 |
|   | 2.14 | Eight Bolt Extended Stiffened End-Plate                        | . 63 |
|   | 2.15 | Twelve Bolt MRE 1/3 Four-Wide / Two-Wide Unstiffened End-Plate | . 71 |
|   | 2.16 | Twelve Bolt Extended Stiffened End-Plate                       | . 74 |
| 3 | COI  | UMN SIDE YIELD LINE SOLUTIONS                                  | . 78 |
|   | 3.1  | Two-Bolt Configurations                                        | . 78 |
|   | 3.2  | Four-Bolt Configurations                                       | . 82 |
|   | 3.3  | Six-Bolt 4W/2W Configurations                                  | . 88 |
|   | 3.4  | Six-Bolt, 3 Rows Configurations                                | . 90 |

| 3.5  | Eight-Bolt, 4 Rows Configurations     |     |
|------|---------------------------------------|-----|
| 3.6  | Eight-Bolt Four-Wide Configurations   | 105 |
| 3.7  | Twelve Bolt 4Wx2/2Wx2 Configurations  | 108 |
| 3.8  | Twelve Bolt 2W/4Wx2/2W Configurations | 111 |
| REFE | RENCES                                | 114 |

#### **1 INTRODUCTION**

Yield line analysis is a method for determining the plastic collapse capacity of ductile steel plates or reinforced concrete slabs. In the yield line method, a plastic collapse mechanism is assumed consisting of rigid facets of the plate connected by lines where the plate undergoes plastic hinging, usually called yield lines. Figure 1-1a demonstrates the concept of facets and yield lines for an end-plate moment connection while Figure 1-1b shows the three-dimensional deformed shape associated with this yield line pattern. It is noted that yield lines at supports are generally shown with a slight offset (e.g., the yield lines adjacent to the flanges in Figure 1-1a are slightly offset from the face of the flange) to make them visible in sketches, but located at the support in all calculations. A yield line mechanism is considered admissible if every facet is planar and there are no displacement discontinuities (i.e. breaks in the plate) at the edges of the facets.



Figure 1-1 Yield Line Pattern Representing End-Plate Yielding Failure Mode

Yield line analysis is typically conducted using virtual work and thus results in an upper bound solution for the collapse load. That means that the theoretically correct collapse load for a plate will be less than the collapse load calculated using virtual work. The most appropriate choice for the yield line pattern is therefore the one which produces the smallest yield line parameter and associated collapse load. In most configurations described in this document, the yield line pattern presented produces the smallest yield line parameter and associated moment strength. In some cases, however, a yield line pattern that does not produce the smallest yield line parameter was used in prior research and found to accurately predict the strength of an end-plate connection experiencing end-plate yielding. For those cases, the experimentally validated yield line parameter is presented first, and then the alternate yield line pattern is presented which predicts a smaller strength. In all cases, yield line parameters that have been experimentally validated are recommended for use in design.

The process of calculating an end-plate's moment strength for the limit state of end-plate yielding using yield line analysis consists of several steps: 1) assume an arbitrary amount of beam rotation,  $\theta$ , 2) determine the rotation at each yield line associated with the beam rotation, 3) calculate the internal work associated with plastic hinging along the yield lines, 4) calculate external work associated with the moment and axial force acting through a rotation and translation, respectively, 5) set internal work equal to external work and simplify the resulting equation, and 6) extract the yield line parameter, Y.

The internal work is calculated as the plastic moment strength of the end plate per unit length multiplied by the rotation of each yield line:

$$W_I = m_p \sum_i \left( \theta_x + \theta_y \right)_i \tag{1-1}$$

Where:

 $W_I$  is the total internal work

 $m_p$  is plastic moment capacity per unit length which is calculated in Eq. (1-2);

 $\theta_x$  and  $\theta_y$  are the plastic rotation angles with respect to x and y axes, respectively.

$$m_p = \frac{1}{4} F_{yp} t_p^2$$
 (1-2)

Where:

 $F_{yp}$  = yield stress of the end-plate

 $t_p$  = thickness of the end-plate

The external work,  $W_{E}$ , is defined as the summation of external work associated with moment and axial force acting through a rotation and translation, respectively, as given by Eq (1-

3). However, the contribution of axial force to the external work is relatively small compared to the contribution of the moment so the external work is often approximated as shown in Eq (1-4).

$$W_E = M_{pl}\theta + T_{pl}\theta \frac{d}{2} \tag{1-3}$$

$$W_E \cong M_{pl} \theta \tag{1-4}$$

Where:

 $M_{pl}$  = moment strength of the end-plate associated with the yield-line mechanism

 $T_{pl}$  = axial strength of the end-plate associated with the yield-line mechanism

 $\theta$  = rotation angle of the end-plate relative to the support

d =depth of the beam

Internal work and external work are set equal as given in Eq. (1-5) and the equation is simplified. The resulting equation is put in the form shown in Eq. (1-6) where the yield line parameter, Y is a function of the geometry of the end-plate connection and has units of length. Eq. (1-6) is a generic form of the equation for end-plate moment strength and is applicable to all configurations, whereas the resulting equation for the yield line parameter, Y, is unique to the specific configuration.

$$W_I = W_E \tag{1-5}$$

$$M_{pl} = F_{yp} t_p^2 Y \tag{1-6}$$

Where:

Y = yield line parameter for the specific configuration of bolts

Moment strength associated with end-plate yielding  $M_{pl}$  is used to design the end-plate thickness of moment connection and the design procedure is presented in AISC Design Guide 4+16 (Eatherton and Murray 2021). Yield line parameters derived in this report are identical to those used in Design Guide 4+16 and this report is intended to be a companion to the Design Guide which gives the background for how the yield line parameters were obtained.

#### **2** END-PLATE YIELD LINE SOLUTIONS

#### 2.1 Summary of End-Plate Yield Line Parameters

There are a total of 14 end-plate configurations considered herein. All of these configurations have been studied previously, although the yield line derivation may not have been included in the original published literature. Table 2-1 provides a summary of the yield line parameter with variables defined in the respective sections. The following sections show the derivation of each yield line parameter.

The original work conducted on these end-plate moment connection configurations is summarized in Table 2-2. In most of these references, the yield line pattern and yield line parameter were presented and then validated against full-scale moment connection test results.

| Configuration                                            | Yield Line Parameter                                                                                                                                                                                                                          | Notes |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Two-Bolt Flush<br>Unstiffened                            | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + s \right) \right]$                                                                                               |       |
| Four-Bolt Flush<br>Unstiffened                           | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( s + \frac{1}{4} p_b \right) \right] + \frac{g}{2}$       |       |
| Four-Bolt Flush<br>Stiffened<br><u>Between</u> the Bolts | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} + \frac{1}{p_{so}} \right) + h_2 \left( \frac{1}{p_{si}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + p_{so} \right) + h_2 \left( p_{si} + s \right) \right]$ |       |
| Four-Bolt Flush<br>Stiffened<br><u>Below</u> the Bolts   | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{p_s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( p_s + \frac{1}{4} p_b \right) \right] + \frac{g}{2}$   |       |
| Six-Bolt Flush<br>Four Wide / Two Wide<br>Unstiffened    | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( s + \frac{1}{4} p_b \right) \right] + \frac{g}{2}$       |       |

 Table 2-1a Summary of Yield Line Parameters for Flush End-Plate Configurations

| Configuration                                | Yield Line Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Notes                       |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Four-bolt Extended<br>Unstiffened            | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + s \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |  |
|                                              | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{2d_e} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + s \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Experimentally<br>Validated |  |
| Four-bolt Extended<br>Stiffened              | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + s \right) \right] + \frac{g}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alternate 1                 |  |
|                                              | $Y = \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{s} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + s \right) + h_2 \left( p_{fi} + s \right) \right] \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternate 2                 |  |
| MRE 1/2 Unstiffened                          | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_3 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{4} \right) + h_3 \left( \frac{p_b}{4} + s \right) \right] + \frac{g}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |  |
| MRE 1/3 Unstiffened                          | stiffened $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |  |
|                                              | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{2d_e} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) \right] + \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Experimentally              |  |
| MDE 1/2 6/196                                | $\frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + \frac{3}{2} p_b \right) + h_4 \left( \frac{1}{2} p_b + s \right) \right] + \frac{g}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Validated                   |  |
| MRE 1/3 Suffened                             | $Y = \begin{cases} \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + \frac{3}{2} p_b \right) + h_4 \left( \frac{1}{2} p_b + s \right) \right] + \frac{3g}{4} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alternate                   |  |
| Eight-Bolt Extended<br>Four Wide Unstiffened | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + s \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |  |
| Eight-Bolt Extended                          | $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{2d_e} \right) + h_2 \left( \frac{1}{p_{fo}} \right) + h_3 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( \frac{3p_b}{4} + d_e \right) + h_2 \left( \frac{p_b}{4} + p_{fo} \right) + h_3 \left( \frac{3p_b}{4} + p_{fi} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right] + g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Experimentally<br>Validated |  |
| Stiffened                                    | $Y = \frac{b_p}{2} \left[ h_2 \left( \frac{1}{p_{fo}} \right) + h_3 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alternate                   |  |
|                                              | $\frac{2}{g} \left[ h_1 \left( \frac{3p_b}{4} + d_e \right) + h_2 \left( \frac{p_b}{4} + p_{fo} \right) + h_3 \left( \frac{3p_b}{4} + p_{fi} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right] + \frac{5g}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Thermale                    |  |
| Twelve-Bolt MRE 1/3<br>Unstiffened           | Welve-Bolt MRE 1/3<br>Unstiffened $Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right] + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right] + h_4 \left( \frac{p_b}{2} + \frac{p_b}{2} + \frac{p_b}{2} \right] \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{p_b}{2} \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{p_b}{2} \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{p_b}{2} \right] \right] + \frac{g}{2} \left[ h_2 \left( p_{fi} + \frac{p_b}{2} \right] \right]$ |                             |  |
| Twelve-Bolt Extended<br>Stiffened            | $Y = \frac{b_p}{2} \left[ h_2 \left( \frac{1}{p_{fo}} \right) + h_3 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots$ $\frac{2}{g} \left[ h_1 \left( \frac{3p_b}{4} + d_e \right) + h_2 \left( \frac{p_b}{4} + p_{fo} \right) + h_3 \left( \frac{3p_b}{4} + p_{fi} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right] + \frac{5g}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |  |

Table 2-1b Summary of Yield Line Parameters for Extended End-Plate Configurations

| Configuration       | References                                                                |  |  |
|---------------------|---------------------------------------------------------------------------|--|--|
| Two-Bolt Flush      | Boorse and Murray 1999, Jenner et al 1985, Kline et al 1995, Kukreti      |  |  |
| Unstiffened         | et al 1987, Srouji et al. 1983, Thompson and Murray 1975                  |  |  |
| Four-Bolt Flush     | Italiano and Murray 2001, Jenner et al 1985, Kline et al 1995, Srouji     |  |  |
| Unstiffened         | et al. 1983, Sumner et al. 1995                                           |  |  |
| Four-Bolt Flush     |                                                                           |  |  |
| Stiffened Between   | Hendrick et al 1984                                                       |  |  |
| the Bolts           |                                                                           |  |  |
| Four-Bolt Flush     |                                                                           |  |  |
| Stiffened Below the | Hendrick et al 1984                                                       |  |  |
| Bolts               |                                                                           |  |  |
| Six-Bolt Flush Four |                                                                           |  |  |
| Wide / Two Wide     | Jain et al. 2015                                                          |  |  |
| Unstiffened         |                                                                           |  |  |
|                     | Abel and Murray 1994, Blumenbaum and Murray 2004, Blumenbaum              |  |  |
| Four bolt Extended  | and Murray 2003, Borgsmiller et al. 1995, Curtis and Murray 1989,         |  |  |
| I Justiffened       | Eatherton et al. 2013, Eatherton et al. 2017, Jenner et al 1985, Kline et |  |  |
| Unstitucied         | al 1995, Meng 1996, Murray 1989, Ryan and Murray 1999, Sumner             |  |  |
|                     | and Murray 2002, Young and Murray 1997                                    |  |  |
| Four-bolt Extended  | Blumenbaum and Murray 2004, Kline et al 1995, Meng 1996,                  |  |  |
| Stiffened           | Morrison et al 1985, Ryan and Murray 1999, Thompson and Murray            |  |  |
| Stillened           | 1975                                                                      |  |  |
|                     | Abel and Murray 1992, Blumenbaum and Murray 2004, Borgsmiller             |  |  |
| MRE 1/2 Unstiffened | et al. 1995, Jenner et al 1985, Sumner and Murray 2001a, Sumner et        |  |  |
|                     | al. 1995                                                                  |  |  |
|                     | Blumenbaum and Murray 2004, Borgsmiller et al. 1995, Kline et al          |  |  |
| MRE 1/3 Unstiffened | 1995, Morrison et al 1986, Rodkey and Murray 1993b, Ryan and              |  |  |
|                     | Murray 1999, Structural Engineers Inc 1984, Sumner et al. 1995            |  |  |
| MRE 1/3 Stiffened   | Blumenbaum and Murray 2004, Structural Engineers Inc 1984                 |  |  |
| Eight-Bolt Extended | Mana 1006 Murray and Sumnar 1000 Sumnar at al 2000a Sumnar                |  |  |
| Four Wide           | Meng 1996, Murray and Sumner 1999, Sumner et al 2000a, Sumner             |  |  |
| Unstiffened         |                                                                           |  |  |
| Fight Polt Extended | Curtis and Murray 1989, Eatherton et al. 2013, Jain et al. 2015,          |  |  |
| Stiffened           | Ghassemieh et al 1983, Kukreti et al 1990, Seek and Murray 2008,          |  |  |
| Stillened           | Sumner and Murray 2002                                                    |  |  |
| Twelve-Bolt MRE     | Jain et al. 2015                                                          |  |  |
| 1/3 Unstiffened     |                                                                           |  |  |
| Twelve-Bolt         | Szabo et al. 2017                                                         |  |  |
| Extended Stiffened  | S2000 Ct al. 2017                                                         |  |  |

Table 2-2 References for the Original Work on Each End-Plate Configuration

#### 2.2 Two-Bolt Flush Unstiffened End-Plate

The yield line pattern is shown in Figure 2-1. The rotation of each facet (facets are labeled in Figure 2-1) is given in Table 2-3 and the internal work associated with rotation along each yield line is given in Table 2-4. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-1. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.



Figure 2-1 Yield Line Pattern for the Two Bolt Flush Unstiffened End Plate

| Facet | $\theta_x$                           | $	heta_y$       |
|-------|--------------------------------------|-----------------|
| 1     | θ                                    | 0               |
| 2     | $(\delta_a + p_{fi}\theta) / p_{fi}$ | 0               |
| 3     | θ                                    | $2\delta_a / g$ |
| 4     | $-(\delta_a - s\theta)/s$            | 0               |

Table 2-3 Rotation for Each Facet in theTwo Bolt Flush Unstiffened End Plate

| Table 2-4 Internal Work Associated with Each Yield Line in |
|------------------------------------------------------------|
| the Two Bolt Flush Unstiffened End Plate                   |

| Yield | Internal Work                                                                                                                                   | Simplified Internal                                                                                         | Number   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                                 | WOIK                                                                                                        | of Lines |
| 1/2   | $m_p \left(\frac{b_p}{2}\right) \left(\frac{\delta_a + p_{fi}\theta}{p_{fi}} - \theta\right)$                                                   | $m_p\left(rac{b_p}{2} ight)\left(rac{\delta_a}{p_{fi}} ight)$                                             | 2        |
| 2/3   | $m_p\left[\left(\frac{g}{2}\right)\left(\frac{\delta_a + p_{fi}\theta}{p_{fi}} - \theta\right) + p_{fi}\left(\frac{2\delta_a}{g}\right)\right]$ | $m_p\left[\left(\frac{g}{2}\right)\frac{\delta_a}{p_{fi}} + \left(\frac{2}{g}\right)\delta_a p_{fi}\right]$ | 2        |
| 3/4   | $m_p\left[\left(\frac{g}{2}\right)\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                | $m_p\left[\left(\frac{g}{2}\right)\frac{\delta_a}{s} + \left(\frac{2}{g}\right)\delta_a s\right]$           | 2        |
| 2/4   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a+p_{fi}\theta}{p_{fi}}+\frac{\delta_a-s\theta}{s}\right)\right]$                      | $m_p\left(\frac{b_p-g}{2}\right)\delta_a\left(\frac{1}{p_{fi}}+\frac{1}{s}\right)$                          | 2        |
| 1/3   | $m_p\left[\left(p_{fi}+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                         | $m_p\left(\frac{2}{g}\right)\delta_a\left(p_{fi}+s\right)$                                                  | 2        |
| 1/4   | $m_p\left[\left(\frac{b_p}{2}\right)\left(\theta + \frac{\delta_a - s\theta}{s}\right)\right]$                                                  | $m_p\left(rac{b_p}{2} ight)\!\left(rac{\delta_a}{s} ight)$                                                | 2        |

Summing up the internal work given in Table 2-4 and substituting  $\delta_a = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{l}\left(\frac{1}{p_{fi}} + \frac{1}{s}\right)\right] + \frac{2}{g}\left[h_{l}\left(p_{fi} + s\right)\right]\right\}$$
(2-1)

The external work,  $W_{E}$ , is given by Eq. (2-2). Setting the internal work and external work equal results in Eq. (2-3).

$$W_E = M_{pl} \theta \tag{2-2}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_l \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_l \left( p_{fi} + s \right) \right] \right\}$$
(2-3)

This equation is further simplified into the form given in Eq. (2-4) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-5).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-4}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + s \right) \right]$$
(2-5)

Note: Use  $p_{fi} = s$  if  $p_{fi} > s$ 

To obtain an equation for the dimension s, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-4), taken with respect to the variable s, is set equal to zero and solved for the variable s. The result is Eq. (2-6).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-6}$$

#### 2.3 Four-Bolt Unstiffened Flush End-Plate

The yield line pattern is shown in Figure 2-2. The rotation of each facet (facets are labeled in Figure 2-2) is given in Table 2-5 and the internal work associated with rotation along each yield line is given in Table 2-6. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-2. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is also noted that hatched areas represent facets that are not rotating.



Figure 2-2 Yield Line Pattern for the Four-Bolt Unstiffened Flush End-Plate

| Facet | $\theta_x$                           | $	heta_y$                   |  |
|-------|--------------------------------------|-----------------------------|--|
| 1     | θ                                    | 0                           |  |
| 2     | $(\delta_b + p_{fi}\theta) / p_{fi}$ | 0                           |  |
| 3     | θ                                    | $2\delta_b / g$             |  |
| 4     | 0                                    | $(\delta_b + \delta_a) / g$ |  |
| 5     | 0                                    | 0                           |  |
| 6     | θ                                    | $2\delta_a / g$             |  |
| 7     | $-(\delta_a - s\theta) / s$          | 0                           |  |

 Table 2-5 Rotation for Each Facet in the

 Four-Bolt Unstiffened Flush End-Plate

| Table 2-6 Internal Work Associated with Each Yield Line in the |
|----------------------------------------------------------------|
| Four-Bolt Unstiffened Flush End-Plate                          |

| Yield | Internal Work                                                                                                                                   | Simplified Internal Work                                                                                                                          | Number   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                                 |                                                                                                                                                   | of Lines |
| 1/2   | $m_p\left(\frac{b_p}{2}\right)\left(\frac{\delta_b + p_{fi}\theta}{p_{fi}} - \theta\right)$                                                     | $m_p \left(rac{b_p}{2} ight) \left(rac{\delta_b}{p_{fi}} ight)$                                                                                 | 2        |
| 2/3   | $m_p\left[\left(\frac{g}{2}\right)\left(\frac{\delta_b + p_{fi}\theta}{p_{fi}} - \theta\right) + p_{fi}\left(\frac{2\delta_b}{g}\right)\right]$ | $m_p\left[\left(\frac{g}{2}\right)\frac{\delta_b}{p_{fi}} + \left(\frac{2}{g}\right)\delta_b p_{fi}\right]$                                       | 2        |
| 3/4   | $m_p\left[\left(\frac{g}{2}\right)\theta + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_b + \delta_a}{g}\right)\right]$                | $m_p\left\{\left(\frac{g}{2}\right)\theta + \left(\frac{2}{g}\right)\left[p_b\left(\frac{\delta_b}{4} - \frac{\delta_a}{4}\right)\right]\right\}$ | 2        |
| 4/5   | $m_p \Bigg[ p_b \Bigg( rac{\delta_b + \delta_a}{g} \Bigg) \Bigg]$                                                                              | $m_p\left(\frac{2}{g}\right)\left[p_b\left(\frac{\delta_b+\delta_a}{2}\right)\right]$                                                             | 2        |
| 4/6   | $m_p\left[\left(\frac{g}{2}\right)\theta + \frac{p_b}{2}\left(\frac{\delta_b + \delta_a}{g} - \frac{2\delta_a}{g}\right)\right]$                | $m_p\left\{\left(\frac{g}{2}\right)\theta + \left(\frac{2}{g}\right)\left[p_b\left(\frac{\delta_b}{4} - \frac{\delta_a}{4}\right)\right]\right\}$ | 2        |
| 6/7   | $m_p\left[\left(\frac{g}{2}\right)\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                  | 2        |
| 7/1   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                                                         | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} \right) \right]$                                                                              | 2        |
| 6/1   | $m_p\left[\left(s+\frac{p_b}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                  | $m_p\left[\frac{2}{g}\left(\delta_a s + \frac{\delta_a p_b}{2}\right)\right]$                                                                     | 2        |
| 3/1   | $m_p\left[\left(p_f + \frac{p_b}{2}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                              | $m_p \left[ \frac{2}{g} \left( \delta_b p_f + \frac{\delta_b p_b}{2} \right) \right]$                                                             | 2        |
| 2/5   | $m_p \left[ \left( \frac{b_p - g}{2} \right) \left( \frac{\delta_b + p_f \theta}{p_f} \right) \right]$                                          | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_f} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_f} + \theta \right) \right]$        | 2        |
| 5/7   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a-s\theta}{s}\right)\right]$                                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$            | 2        |

Summing up the internal work given in Table 2-6 and substituting  $\delta_a = h_2 \theta$  and  $\delta_b = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{1}\left(\frac{1}{p_{fi}}\right) + h_{2}\left(\frac{1}{s}\right)\right] + \frac{2}{g}\left[h_{1}\left(p_{fi} + \frac{3}{4}p_{b}\right) + h_{2}\left(s + \frac{1}{4}p_{b}\right)\right] + \frac{g}{2}\right\}$$
(2-7)

The external work,  $W_E$ , is given by Eq. (2-8). Setting the internal work and external work equal results in Eq. (2-9).

$$W_E = M_{pl} \theta \tag{2-8}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( s + \frac{1}{4} p_b \right) \right] + \frac{g}{2} \right\}$$
(2-9)

This equation is further simplified into the form given in Eq. (2-10) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-11).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-10}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( s + \frac{1}{4} p_b \right) \right] + \frac{g}{2}$$
(2-11)

Note: Use  $p_{fi} = s$  if  $p_{fi} > s$ 

To obtain an equation for the dimension s, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-10), taken with respect to the variable s, is set equal to zero and solved for the variable s. The result is Eq. (2-12).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-12}$$

#### 2.4 Four-Bolt Flush End-Plate Stiffened Between the Bolt Lines

The yield line pattern is shown in Figure 2-3. The rotation of each facet (facets are labeled in Figure 2-3) is given in Table 2-7 and the internal work associated with rotation along each yield line is given in Table 2-8. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-3. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.



Figure 2-3 Yield Line Pattern for the Four-Bolt Flush End-Plate Stiffened Between the Bolt Lines

| Facet | $\theta_x$                            | $	heta_y$       |
|-------|---------------------------------------|-----------------|
| 1     | θ                                     | 0               |
| 2     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0               |
| 3     | θ                                     | $2\delta_b / g$ |
| 4     | $-(\delta_b - p_{so}\theta) / p_{so}$ | 0               |
| 5     | $(\delta_a + p_{si}\theta) / p_{si}$  | 0               |
| 6     | θ                                     | $2\delta_a / g$ |
| 7     | $-(\delta_a - s\theta) / s$           | 0               |

Table 2-7 Rotation for Each Facet in theFour-Bolt Flush End-Plate Stiffened Between theBolt Lines

# Table 2-8 Internal Work Associated with Each Yield Line in the Four-Bolt Flush End-Plate Stiffened Between the Bolt Lines

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                   | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                            | of Lines |
| 1/2   | $m_p\left(rac{b_p}{2} ight)\left(rac{\delta_b+p_{fi}	heta}{p_{fi}}-	heta ight)$                                                            | $m_p \left(rac{b_p}{2} ight) \left(rac{\delta_b}{p_{fi}} ight)$                                          | 2        |
| 2/3   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$ | 2        |
| 3/4   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b - p_{so} \theta}{p_{so}} + \theta \right) + p_{so} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{so}}\right) + \frac{2}{g}\left(p_{so}\delta_b\right)\right]$ | 2        |
| 2/4   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b + p_{fi}\theta}{p_{fi}} + \frac{\delta_b - p_{so}\theta}{p_{so}} \right) \right]$        | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b}{p_{fi}} + \frac{\delta_b}{p_{so}} \right) \right]$    | 2        |
| 1/3   | $m_p\left[\left(p_{fi}+p_{so}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                                 | $m_p\left[\frac{2}{g}\left(\delta_b p_{fi} + \delta_b p_{so}\right)\right]$                                | 2        |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b - p_{so} \theta}{p_{so}} + \theta \right) \right]$                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_{so}} \right) \right]$                                  | 2        |
| 1/5   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a + p_{si}\theta}{p_{si}} - \theta \right) \right]$                                            | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{p_{si}}\right)\right]$                                        | 2        |
| 5/6   | $m_p\left[\frac{g}{2}\left(\frac{\delta_a + p_{si}\theta}{p_{si}} - \theta\right) + p_{si}\left(\frac{2\delta_a}{g}\right)\right]$           | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{p_{si}}\right) + \frac{2}{g}\left(p_{si}\delta_a\right)\right]$ | 2        |
| 6/7   | $m_p\left[\frac{g}{2}\left(\frac{\delta_a - s\theta}{s} + \theta\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$           | 2        |
| 1/6   | $m_p\left[\left(p_{si}+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                      | $m_p\left[\frac{2}{g}\left(\delta_a p_{si} + \delta_a s\right)\right]$                                     | 2        |
| 5/7   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_a + p_{si}\theta}{p_{si}} + \frac{\delta_a - s\theta}{s} \right) \right]$                  | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_a}{p_{si}} + \frac{\delta_a}{s} \right) \right]$         | 2        |
| 1/7   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a - s\theta}{s} + \theta \right) \right]$                                                      | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} \right) \right]$                                       | 2        |

Summing up the internal work given in Table 2-8 and substituting  $\delta_a = h_2 \theta$  and  $\delta_b = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{l}\left(\frac{1}{p_{fi}} + \frac{1}{p_{so}}\right) + h_{2}\left(\frac{1}{p_{si}} + \frac{1}{s}\right)\right] + \frac{2}{g}\left[h_{l}\left(p_{fi} + p_{so}\right) + h_{2}\left(p_{si} + s\right)\right]\right\}$$
(2-13)

The external work,  $W_E$ , is given by Eq. (2-14). Setting the internal work and external work equal results in Eq. (2-15).

$$W_E = M_{pl} \theta \tag{2-14}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} + \frac{1}{p_{so}} \right) + h_2 \left( \frac{1}{p_{si}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + p_{so} \right) + h_2 \left( p_{si} + s \right) \right] \right\}$$
(2-15)

This equation is further simplified into the form given in Eq. (2-16) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-17).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-16}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} + \frac{1}{p_{so}} \right) + h_2 \left( \frac{1}{p_{si}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + p_{so} \right) + h_2 \left( p_{si} + s \right) \right]$$
(2-17)

Note: Use 
$$p_{fi}=s$$
 if  $p_{fi} > s$  Use  $p_{so}=s$  if  $p_{so} > s$  Use  $p_{si}=s$  if  $p_{si} > s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-16), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-18).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-18}$$

#### 2.5 Four-Bolt Flush End-Plate Stiffened Below the Bolt Lines

The yield line pattern is shown in Figure 2-4. The rotation of each facet (facets are labeled in Figure 2-4) is given in Table 2-9 and the internal work associated with rotation along each yield line is given in Table 2-10. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-4. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-4 Yield Line Pattern for the Four-Bolt Flush End-Plate Stiffened Below the Bolt Lines

| Facet | $\theta_x$                           | $	heta_y$                   |
|-------|--------------------------------------|-----------------------------|
| 1     | θ                                    | 0                           |
| 2     | $(\delta_b + p_{fi}\theta) / p_{fi}$ | 0                           |
| 3     | 0                                    | 0                           |
| 4     | $-(\delta_a - p_s \theta) / s$       | 0                           |
| 5     | θ                                    | $2\delta_a / g$             |
| 6     | 0                                    | $(\delta_b + \delta_a) / g$ |
| 7     | θ                                    | $2\delta_b / g$             |

 Table 2-9 Rotation for Each Facet in the

 Four-Bolt Flush End-Plate Stiffened Below the Bolt Lines

# Table 2-10 Internal Work Associated with Each Yield Line in the Four-Bolt Flush End-Plate Stiffened Below the Bolt Lines

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                         | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                                                                  | of Lines |
| 1/2   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ rac{b_p}{2} \left( rac{\delta_b}{p_{fi}}  ight)  ight]$                                                                            | 2        |
| 2/7   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$                                       | 2        |
| 1/7   | $m_p\left[\left(p_{fi}+\frac{p_b}{2}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                          | $m_p \left[ \frac{2}{g} \left( \delta_b  p_{fi} + \frac{\delta_b  p_b}{2} \right) \right]$                                                       | 2        |
| 7/6   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_b + \delta_a}{g}\right)\right]$                        | $m_p\left\{rac{g}{2}(	heta)+rac{2}{g}\left[rac{p_b\left(\delta_b-\delta_a ight)}{4} ight] ight\}$                                             | 2        |
| 2/3   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) \right]$                                                | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) \right]$ | 2        |
| 6/3   | $m_p \left[ p_b \left( \frac{\delta_b + \delta_a}{g} \right) \right]$                                                                        | $m_p \left\{ \frac{2}{g} \left[ \frac{p_b \left( \delta_b + \delta_a \right)}{2} \right] \right\}$                                               | 2        |
| 6/5   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_b + \delta_a}{g} - \frac{2\delta_a}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_b-\delta_a\right)}{4}\right]\right\}$                                      | 2        |
| 1/5   | $m_p\left[\left(p_s + \frac{p_b}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                           | $m_p \left[ \frac{2}{g} \left( \delta_a p_s + \frac{\delta_a p_b}{2} \right) \right]$                                                            | 2        |
| 4/5   | $m_p\left[\frac{g}{2}\left(\frac{\delta_a - p_s\theta}{p_s} + \theta\right) + p_s\left(\frac{2\delta_a}{g}\right)\right]$                    | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{p_s}\right) + \frac{2}{g}\left(p_s\delta_a\right)\right]$                                             | 2        |
| 3/4   | $m_p\left[\frac{b_p-g}{2}\left(\frac{\delta_a-p_s\theta}{p_s}\right)\right]$                                                                 | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{p_s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{p_s} - \theta \right) \right]$       | 2        |
| 4/1   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a - p_s \theta}{p_s} + \theta \right) \right]$                                                 | $m_p \left[ rac{b_p}{2} \left( rac{\delta_a}{p_s}  ight)  ight]$                                                                               | 2        |

Summing up the internal work given in Table 2-10 and substituting  $\delta_a = h_2 \theta$  and  $\delta_b = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \left\{ \frac{b_{p}}{2} \left[ h_{1} \left( \frac{1}{p_{fi}} \right) + h_{2} \left( \frac{1}{p_{s}} \right) \right] + \frac{2}{g} \left[ h_{1} \left( p_{fi} + \frac{3}{4} p_{b} \right) + h_{2} \left( p_{s} + \frac{1}{4} p_{b} \right) \right] + \frac{g}{2} \right\}$$
(2-19)

The external work,  $W_{E}$ , is given by Eq. (2-20). Setting the internal work and external work equal results in Eq. (2-21).

$$W_E = M_{pl} \Theta \tag{2-20}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{p_s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( p_s + \frac{1}{4} p_b \right) \right] + \frac{g}{2} \right\}$$
(2-21)

This equation is further simplified into the form given in Eq. (2-22) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-23).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-22}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{p_s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( p_s + \frac{1}{4} p_b \right) \right] + \frac{g}{2}$$
(2-23)

Note: Use  $p_{fi}=s$  if  $p_{fi} > s$  Use  $p_s=s$  if  $p_s > s$ 

#### 2.6 Six-Bolt Flush End-Plate

The yield line pattern is shown in Figure 2-5. The rotation of each facet (facets are labeled in Figure 2-5) is given in Table 2-11 and the internal work associated with rotation along each yield line is given in Table 2-12. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-5. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.



Figure 2-5 Yield Line Pattern for the Multiple Row Extended 1/3 Unstiffened End-Plate

| Facet | $\theta_x$                           | $	heta_y$                   |
|-------|--------------------------------------|-----------------------------|
| 1     | θ                                    | 0                           |
| 2     | $(\delta_b + p_{fi}\theta) / p_{fi}$ | 0                           |
| 3     | θ                                    | $2\delta_b / g$             |
| 4     | 0                                    | $(\delta_b + \delta_a) / g$ |
| 5     | 0                                    | 0                           |
| 6     | θ                                    | $2\delta_a$ / $g$           |
| 7     | $-(\delta_a - s\theta) / s$          | 0                           |

Table 2-11 Rotation for Each Facet in theMultiple Row Extended 1/3 Unstiffened End-Plate

| Table 2-12 Internal Work Associated with Each Yield Line in the text of text o | he |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Multiple Row Extended 1/3 Unstiffened End-Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                       | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              | r                                                                                                                                                              | of Lines |
| 1/2   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ rac{b_p}{2} \left( rac{\delta_b}{p_{fi}}  ight)  ight]$                                                                                          | 2        |
| 2/3   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b}{p_{fi}} \right) + \frac{2}{g} \left( p_{fi} \delta_b \right) \right]$                                           | 2        |
| 3/4   | $m_p\left[\frac{g}{2}(\theta) + p_b\left(\frac{2\delta_b}{g} - \frac{\delta_b + \delta_a}{g}\right)\right]$                                  | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_b}{2} - \frac{p_b\delta_a}{2}\right)\right]$                                                  | 2        |
| 4/6   | $m_p \left[ \frac{g}{2} (\theta) + p_b \left( \frac{\delta_b + \delta_a}{g} - \frac{2\delta_a}{g} \right) \right]$                           | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_b}{2} - \frac{p_b\delta_a}{2}\right)\right]$                                                  | 2        |
| 6/7   | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                               | 2        |
| 1/3   | $m_p\left[\left(p_{fi}+p_b\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                                    | $m_p\left[\frac{2}{g}\left(\delta_b p_{fi} + \delta_b p_b\right)\right]$                                                                                       | 2        |
| 1/6   | $m_p\left[\left(s+p_b\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                         | $m_p\left[\frac{2}{g}\left(\delta_a s + \delta_a p_b\right)\right]$                                                                                            | 2        |
| 2/5   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_b+p_{fi}\theta}{p_{fi}}\right)\right]$                                              | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) - \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) \right]$ | 2        |
| 4/5   | $m_p \left[ 2 p_b \left( \frac{\delta_b + \delta_a}{g} \right) \right]$                                                                      | $m_p\left[\frac{2}{g}\left(p_b\delta_b+p_b\delta_a\right)\right]$                                                                                              | 2        |
| 5/7   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a-s\theta}{s}\right)\right]$                                                        | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a - s\theta}{s} \right) - \frac{g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                       | 2        |
| 1/7   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                                                      | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                                                 | 2        |

Summing up the internal work given in Table 2-12 and substituting  $\delta_a = h_3 \theta$  and  $\delta_b = h_1 \theta$ , results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{1}\left(\frac{1}{p_{fi}}\right) + h_{3}\left(\frac{1}{s}\right)\right] + \frac{2}{g}\left[h_{1}\left(p_{fi} + \frac{3p_{b}}{2}\right) + h_{3}\left(\frac{p_{b}}{2} + s\right)\right] + \frac{g}{2}\right\}$$
(2-24)

The external work,  $W_{E}$ , is given by Eq. (2-25). Setting the internal work and external work equal results in Eq. (2-26).

$$W_E = M_{pl} \theta \tag{2-25}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_3 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3p_b}{2} \right) + h_3 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \right\}$$
(2-26)

This equation is further simplified into the form given in Eq. (2-27) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-28).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-27}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_3 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3p_b}{2} \right) + h_3 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2}$$
(2-28)

Note: Use  $p_{fi} = s$  if  $p_{fi} > s$ 

To obtain an equation for the dimension s, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-28), taken with respect to the variable s, is set equal to zero and solved for the variable s. The result is Eq. (2-29).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-29}$$

#### 2.7 Six-Bolt Flush Four Wide / Two Wide Unstiffened End-Plate

The yield line pattern is shown in Figure 2-6. The rotation of each facet (facets are labeled in Figure 2-6) is given in Table 2-13 and the internal work associated with rotation along each yield line is given in Table 2-14. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-6. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-6 Yield Line Pattern for the Six Bolt Flush Four Wide / Two Wide Unstiffened End-Plate

| Facet | $\theta_x$                           | $	heta_y$                   |
|-------|--------------------------------------|-----------------------------|
| 1     | θ                                    | 0                           |
| 2     | $(\delta_b + p_{fi}\theta) / p_{fi}$ | 0                           |
| 3     | 0                                    | 0                           |
| 4     | $-(\delta_a - s\theta) / s$          | 0                           |
| 5     | θ                                    | $2\delta_a$ / $g$           |
| 6     | 0                                    | $(\delta_b + \delta_a) / g$ |
| 7     | θ                                    | $2\delta_b$ / $g$           |

 Table 2-13 Rotation for Each Facet in the

 Six Bolt Flush Four Wide / Two Wide Unstiffened End-Plate

| Table 2-14 Internal Work Associated with Each Yield Line in the |
|-----------------------------------------------------------------|
| Six Bolt Flush Four Wide / Two Wide Unstiffened End-Plate       |

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                         | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                                                                  | of Lines |
| 1/2   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ rac{b_p}{2} \left( rac{\delta_b}{p_{fi}}  ight)  ight]$                                                                            | 2        |
| 2/7   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$                                       | 2        |
| 1/7   | $m_p\left[\left(p_{fi}+\frac{p_b}{2}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                          | $m_p \left[ \frac{2}{g} \left( \delta_b p_{fi} + \frac{\delta_b p_b}{2} \right) \right]$                                                         | 2        |
| 7/6   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_b + \delta_a}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_b-\delta_a\right)}{4}\right]\right\}$                                      | 2        |
| 2/3   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) \right]$                                                | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) \right]$ | 2        |
| 6/3   | $m_p \left[ p_b \left( rac{\delta_b + \delta_a}{g}  ight)  ight]$                                                                           | $m_p \left\{ \frac{2}{g} \left[ \frac{p_b \left( \delta_b + \delta_a \right)}{2} \right] \right\}$                                               | 2        |
| 6/5   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_b + \delta_a}{g} - \frac{2\delta_a}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_b-\delta_a\right)}{4}\right]\right\}$                                      | 2        |
| 1/5   | $m_p\left[\left(s+\frac{p_b}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                               | $m_p \left[ \frac{2}{g} \left( \delta_a s + \frac{\delta_a p_b}{2} \right) \right]$                                                              | 2        |
| 4/5   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_a - s\theta}{s} + \theta \right) + s \left( \frac{2\delta_a}{g} \right) \right]$                 | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                 | 2        |
| 3/4   | $m_p\left[\frac{b_p-g}{2}\left(\frac{\delta_a-s\theta}{s}\right)\right]$                                                                     | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$           | 2        |
| 4/1   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a - s\theta}{s} + \theta \right) \right]$                                                      | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                                   | 2        |

Summing up the internal work given in Table 2-14 and substituting  $\delta_a = h_2\theta$  and  $\delta_b = h_l\theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{1}\left(\frac{1}{p_{fi}}\right) + h_{2}\left(\frac{1}{s}\right)\right] + \frac{2}{g}\left[h_{1}\left(p_{fi} + \frac{3}{4}p_{b}\right) + h_{2}\left(s + \frac{1}{4}p_{b}\right)\right] + \frac{g}{2}\right\}$$
(2-30)

The external work,  $W_{E}$ , is given by Eq. (2-31). Setting the internal work and external work equal results in Eq. (2-32).

$$W_E = M_{pl} \theta \tag{2-31}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( s + \frac{1}{4} p_b \right) \right] + \frac{g}{2} \right\}$$
(2-32)

This equation is further simplified into the form given in Eq. (2-33) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-34).

$$M_{pl} = F_{yp} t_p^{2} Y$$
(2-33)

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fi}} \right) + h_2 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fi} + \frac{3}{4} p_b \right) + h_2 \left( s + \frac{1}{4} p_b \right) \right] + \frac{g}{2}$$
(2-34)

Note: Use  $p_{fi} = s$  if  $p_{fi} > s$ 

To obtain an equation for the dimension s, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-33), taken with respect to the variable s, is set equal to zero and solved for the variable s. The result is Eq. (2-35).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-35}$$

#### 2.8 Four-Bolt Extended Unstiffened End-Plate

The yield line pattern is shown in Figure 2-7. The rotation of each facet (facets are labeled in Figure 2-7) is given in Table 2-15 and the internal work associated with rotation along each yield line is given in Table 2-16. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-7. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-7 Yield Line Pattern for the Four-Bolt Extended Unstiffened End-Plate

| Facet | $\theta_x$                                       | $	heta_y$     |
|-------|--------------------------------------------------|---------------|
| 1     | θ                                                | 0             |
| 2     | $\left(\delta_a + p_{fi}\theta\right) / p_{fi}$  | 0             |
| 3     | θ                                                | $2\delta_a/g$ |
| 4     | $-(\delta_a - s\theta)/s$                        | 0             |
| 5     | 0                                                | 0             |
| 6     | $-\left(\delta_b - p_{fo}\theta\right) / p_{fo}$ | 0             |

 Table 2-15 Rotation for Each Facet in the

 Four-Bolt Extended Unstiffened End-Plate

| <b>Table 2-16</b> | Internal Work Associated with Each Yield Line in the |
|-------------------|------------------------------------------------------|
|                   | Four-Bolt Extended Unstiffened End-Plate             |

| Yield | Internal Work                                                                                                                                      | Simplified Internal Work                                                                                    | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                                    |                                                                                                             | of Lines |
| 1/2   | $m_p \left(\frac{b_p}{2}\right) \left(\frac{\delta_a + p_{fi}\theta}{p_{fi}} - \theta\right)$                                                      | $m_p\left[\left(\frac{b_p}{2}\right)\frac{\delta_a}{p_{fi}}\right]$                                         | 2        |
| 2/3   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \frac{2\delta_a}{g} \right]$                      | $m_p\left[\left(\frac{g}{2}\right)\frac{\delta_a}{p_{fi}} + \left(\frac{2}{g}\right)\delta_a p_{fi}\right]$ | 2        |
| 3/4   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_a - s\theta}{s} + \theta \right) + s \frac{2\delta_a}{g} \right]$                                      | $m_p\left[\left(\frac{g}{2}\right)\frac{\delta_a}{s} + \left(\frac{2}{g}\right)\delta_a s\right]$           | 2        |
| 2/4   | $m_p\left(\frac{b_p - g}{2}\right) \left[ \left(\frac{\delta_a + p_{fi}\theta}{p_{fi}}\right) + \left(\frac{\delta_a - s\theta}{s}\right) \right]$ | $m_p\left(\frac{b_p}{2} - \frac{g}{2}\right)\left(\frac{\delta_a}{p_{fi}} + \frac{\delta_a}{s}\right)$      | 2        |
| 4/1   | $m_p\left(\frac{b_p}{2}\right)\left(\frac{\delta_a-s\theta}{s}+\theta\right)$                                                                      | $m_p\left(rac{b_p}{2} ight)\left(rac{\delta_a}{s} ight)$                                                  | 2        |
| 1/6   | $m_p \left( b_p \right) \left( rac{\delta_b - p_{fo} \theta}{p_{fo}} + \theta  ight)$                                                             | $m_p \left(rac{b_p}{2} ight) \left(rac{2\delta_b}{p_{fo}} ight)$                                          | 1        |
| 6/5   | $m_p \left( b_p  ight) \! \left( rac{ \delta_b - p_{fo} 	heta }{ p_{fo} }  ight)$                                                                 | $m_p\left(\frac{b_p}{2}\right)\left(\frac{2\delta_b}{p_{fo}}-2\theta\right)$                                | 1        |
| 1/3   | $m_p \left( p_{fi} + s \right) \left( \frac{2\delta_a}{g} \right)$                                                                                 | $m_p\left(\frac{2}{g}\right)\left(\delta_a p_{fi} + \delta_a s\right)$                                      | 2        |

Summing up the internal work given in Table 2-16 and substituting  $\delta_a = h_2 \theta$  and  $\delta_b = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{1}\left(\frac{1}{p_{fo}}\right) + h_{2}\left(\frac{1}{p_{fi}} + \frac{1}{s}\right) - \frac{1}{2}\right] + \frac{2}{g}\left[h_{2}\left(p_{fi} + s\right)\right]\right\}$$
(2-36)

The external work,  $W_{E}$ , is given by Eq. (2-37). Setting the internal work and external work equal results in Eq. (2-38).

$$W_E = M_{pl} \theta \tag{2-37}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + s \right) \right] \right\}$$
(2-38)

This equation is further simplified into the form given in Eq. (2-39) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-40).

$$M_{pl} = F_{yp} t_p^2 Y \tag{2-39}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + s \right) \right]$$
(2-40)

Note: Use  $p_{fi} = s$  if  $p_{fi} > s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-39), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-41).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-41}$$

#### 2.9 Four-Bolt Extended Stiffened End-Plate

The yield line pattern is shown in Figure 2-8. The rotation of each facet (facets are labeled in Figure 2-8) is given in Table 2-17 and the internal work associated with rotation along each yield line is given in Table 2-18. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-8. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.



Figure 2-8 Yield Line Pattern for the Four-Bolt Extended Stiffened End-Plate

| Facet | $\theta_x$                            | $	heta_y$       |
|-------|---------------------------------------|-----------------|
| 1     | θ                                     | 0               |
| 2     | θ                                     | $2\delta_b / g$ |
| 3     | $(\delta_b + d_e \theta) / d_e$       | 0               |
| 4     | $-(\delta_b - p_{fo}\theta) / p_{fo}$ | 0               |
| 5     | $(\delta_a + p_{fi}\theta) / p_{fi}$  | 0               |
| 6     | θ                                     | $2\delta_a / g$ |
| 7     | $-(\delta_s - s\theta) / s$           | 0               |

Table 2-17 Rotation for Each Facet in theFour-Bolt Extended Stiffened End-Plate

| <b>Table 2-18</b> | Internal | Work Associ  | iated with | Each | Yield | Line in | the |
|-------------------|----------|--------------|------------|------|-------|---------|-----|
|                   | Four-B   | olt Extended | Stiffened  | End- | Plate |         |     |

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                                                       | Number |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Line  |                                                                                                                                              |                                                                                                                                                                                                | of     |
|       |                                                                                                                                              |                                                                                                                                                                                                | Lines  |
| 1/2   | $m_p\left[\left(d_e + p_{fo}\right)\left(\frac{2\delta_b}{g}\right) ight]$                                                                   | $m_p\left\{\frac{2}{g}\left[\delta_b\left(d_e+p_{fo}\right)\right]\right\}$                                                                                                                    | 2      |
| 2/3   | $m_p\left[\frac{g}{2}\left(\frac{\delta_b + d_e\theta}{d_e} - \theta\right) + d_e\left(\frac{2\delta_b}{g}\right)\right]$                    | $m_p\left[\frac{g}{2}(\frac{\delta_b}{d_e}) + \frac{2}{g}(d_e\delta_b)\right]$                                                                                                                 | 2      |
| 2/4   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) + p_{fo} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fo}}\right) + \frac{2}{g}\left(p_{fo}\delta_b\right)\right]$                                                                                     | 2      |
| 3/4   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b + d_e \theta}{d_e} + \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) \right]$            | $m_p \left\{ \frac{b_p}{2} \left[ \delta_b \left( \frac{1}{d_e} + \frac{1}{p_{fo}} \right) \right] - \frac{g}{2} \left[ \delta_b \frac{1}{d_e} + \frac{1}{p_{fo}} \right] \right\}$            | 2      |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) \right]$                                           | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_b}{p_{fo}} \Bigg) \Bigg]$                                                                                                                          | 2      |
| 1/5   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{p_{fi}} \right) \right]$                                                                                                                      | 2      |
| 5/6   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_a}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_a\right)\right]$                                                                                     | 2      |
| 1/6   | $m_p\left[\left(p_{fi}+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                      | $m_p\left\{\frac{2}{g}\left[\delta_a\left(p_{fi}+s\right)\right]\right\}$                                                                                                                      | 2      |
| 6/7   | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(\delta_a s\right)\right]$                                                                                              | 2      |
| 5/7   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a+p_{fi}\theta}{p_{fi}}+\frac{\delta_a-s\theta}{s}\right)\right]$                   | $m_p \left\{ \frac{b_p}{2} \left[ \delta_a \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] - \frac{g}{2} \left[ \delta_a \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] \right\}$ | 2      |
| 1/7   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                                                      | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} \right) \right]$                                                                                                                           | 2      |

Summing up the internal work given in Table 2-18 and substituting  $\delta_a = h_2 \theta$  and  $\delta_b = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{1}\left(\frac{1}{p_{fo}} + \frac{1}{2d_{e}}\right) + h_{2}\left(\frac{1}{p_{fi}} + \frac{1}{s}\right)\right] + \frac{2}{g}\left[h_{1}\left(p_{fo} + d_{e}\right) + h_{2}\left(p_{fi} + s\right)\right]\right\}$$
(2-42)

The external work,  $W_E$ , is given by Eq. (2-43). Setting the internal work and external work equal results in Eq. (2-44).

$$W_E = M_{pl} \theta \tag{2-43}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{2d_e} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + s \right) \right] \right\}$$
(2-44)

This equation is further simplified into the form given in Eq. (2-45) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-46).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-45}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{2d_e} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + s \right) \right]$$
(2-46)

Note: Use 
$$p_{fi}=s$$
 if  $p_{fi} > s$  Use  $p_{fo}=s$  if  $p_{fo}>s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-45), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-47).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-47}$$

The equation for the yield line parameter given by Eq. (2-46) has been validated against experiments and is therefore used in design.

#### 2.9.1 Alternate Yield Line Pattern 1

An alternate yield line pattern which produces a smaller yield line parameter for the fourbolt extended stiffened end-plate is shown in Figure 2-9. The rotation of each facet (facets are labeled in Figure 2-9) is given in Table 2-19 and the internal work associated with rotation along each yield line is given in Table 2-20. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-9. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-9 Alternative Yield Line Pattern 1 for the Four-Bolt Extended Stiffened End-Plate

| Facet | $\theta_x$                                      | $	heta_y$       |
|-------|-------------------------------------------------|-----------------|
| 1     | θ                                               | 0               |
| 2     | θ                                               | $2\delta_b / g$ |
| 3     | 0                                               | 0               |
| 4     | $-(\delta_b - p_{fo}\theta) / p_{fo}$           | 0               |
| 5     | $\left(\delta_a + p_{fi}\theta\right) / p_{fi}$ | 0               |
| 6     | θ                                               | $2\delta_a / g$ |
| 7     | $-(\delta_a - s\theta) / s$                     | 0               |

Table 2-19 Rotation for Each Facet in theFour-Bolt Extended Stiffened End-Plate

| <b>Table 2-20</b> | Internal | Work .  | Associated  | with | Each | Yield | Line in | the |
|-------------------|----------|---------|-------------|------|------|-------|---------|-----|
|                   | Four-B   | olt Ext | ended Stiff | ened | End- | Plate |         |     |

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                                                       | Number |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Line  |                                                                                                                                              |                                                                                                                                                                                                | of     |
|       |                                                                                                                                              |                                                                                                                                                                                                | Lines  |
| 1/2   | $m_p\left[\left(d_e + p_{fo}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                                  | $m_p \left\{ \frac{2}{g} \left[ \delta_b \left( d_e + p_{fo} \right) \right] \right\}$                                                                                                         | 2      |
| 2/3   | $m_p \left[ d_e \left( \frac{2 \delta_b}{g} \right)  ight]$                                                                                  | $m_p \left[ rac{2}{s} (\delta_b d_e)  ight]$                                                                                                                                                  | 2      |
| 2/4   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) + p_{fo} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b}{p_{fo}} \right) + \frac{2}{g} \left( p_{fo} \delta_b \right) \right]$                                                                           | 2      |
| 3/4   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) \right]$                                                | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_{fo}} - \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{fo}} - \theta \right) \right]$                                               | 2      |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) \right]$                                           | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_b}{p_{fo}} \Bigg) \Bigg]$                                                                                                                          | 2      |
| 1/5   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{P_{fi}} \right) \right]$                                                                                                                      | 2      |
| 5/6   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_a}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_a\right)\right]$                                                                                     | 2      |
| 1/6   | $m_p\left[\left(p_{fi}+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                      | $m_p\left\{\frac{2}{g}\left[\delta_a\left(p_{fi}+s\right)\right]\right\}$                                                                                                                      | 2      |
| 6/7   | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(\delta_a s\right)\right]$                                                                                              | 2      |
| 5/7   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a+p_{fi}\theta}{p_{fi}}+\frac{\delta_a-s\theta}{s}\right)\right]$                   | $m_p \left\{ \frac{b_p}{2} \left[ \delta_a \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] - \frac{g}{2} \left[ \delta_a \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] \right\}$ | 2      |
| 1/7   | $m_p\left[\frac{b_p}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right)\right]$                                                            | $m_p\left[rac{b_p}{2}\left(rac{\delta_a}{s} ight) ight]$                                                                                                                                     | 2      |
Summing up the internal work given in Table 2-20 and substituting  $\delta_a = h_2\theta$  and  $\delta_b = h_1\theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{l}\left(\frac{1}{p_{fo}}\right) + h_{2}\left(\frac{1}{p_{fi}} + \frac{1}{s}\right) - \frac{1}{2}\right] + \frac{2}{g}\left[h_{l}\left(p_{fo} + d_{e}\right) + h_{2}\left(p_{fi} + s\right)\right] + \frac{g}{4}\right\}$$
(2-48)

The external work,  $W_{E}$ , is given by Eq. (2-49). Setting the internal work and external work equal results in Eq. (2-50).

$$W_E = M_{pl} \theta \tag{2-49}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + s \right) \right] + \frac{g}{4} \right\}$$
(2-50)

This equation is further simplified into the form given in Eq. (2-51) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-52).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-51}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + s \right) \right] + \frac{g}{4}$$
(2-52)

Note: Use 
$$p_{fi}=s$$
 if  $p_{fi} > s$  Use  $p_{fo}=s$  if  $p_{fo}>s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-52), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-53).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-53}$$

#### 2.9.2 Alternate Yield Line Pattern 2

An alternate yield line pattern 2 associated with the case  $d_e > s$  for the four-bolt extended stiffened end-plate is shown in Figure 2-10. The rotation of each facet (facets are labeled in Figure 2-10) is given in Table 2-21 and the internal work associated with rotation along each yield line is given in Table 2-22. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-10. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.





| Facet | $\theta_x$                            | $	heta_y$       |
|-------|---------------------------------------|-----------------|
| 1     | θ                                     | 0               |
| 2     | θ                                     | $2\delta_b / g$ |
| 3     | $(\delta_b + s\theta) / s$            | 0               |
| 4     | $-(\delta_b - p_{fo}\theta) / p_{fo}$ | 0               |
| 5     | $(\delta_a + p_{fi}\theta) / p_{fi}$  | 0               |
| 6     | θ                                     | $2\delta_a / g$ |
| 7     | $-(\delta_s - s\theta) / s$           | 0               |

Table 2-21 Rotation for Each Facet in theFour-Bolt Extended Stiffened End-Plate

| <b>Table 2-22</b> | Internal | Work Associated    | with Each | Yield Line | in the |
|-------------------|----------|--------------------|-----------|------------|--------|
|                   | Four-B   | olt Extended Stiff | ened End- | Plate      |        |

| Yield Line | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                                                       | Number<br>of Lines |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1/2        | $m_p\left[\left(s+p_{fo}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                                      | $m_p \left\{ \frac{2}{g} \left[ \delta_b \left( s + p_{fo} \right) \right] \right\}$                                                                                                           | 2                  |
| 1/3        | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + s\theta}{s} - \theta \right) \right]$                                                      | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_b}{s}\right)\right]$                                                                                                                                 | 2                  |
| 2/3        | $m_p\left[\frac{g}{2}\left(\frac{\delta_b+s\theta}{s}-\theta\right)+s\left(\frac{2\delta_b}{g}\right)\right]$                                | $m_p\left[\frac{g}{2}(\frac{\delta_b}{s}) + \frac{2}{g}(s\delta_b)\right]$                                                                                                                     | 2                  |
| 2/4        | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) + p_{fo} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b}{p_{fo}} \right) + \frac{2}{g} \left( p_{fo} \delta_b \right) \right]$                                                                           | 2                  |
| 3/4        | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b + s\theta}{s} + \frac{\delta_b - p_{fo}\theta}{p_{fo}} \right) \right]$                  | $m_p \left\{ \frac{b_p}{2} \left[ \delta_b \left( \frac{1}{s} + \frac{1}{p_{fo}} \right) \right] - \frac{g}{2} \left[ \delta_b \frac{1}{s} + \frac{1}{p_{fo}} \right] \right\}$                | 2                  |
| 1/4        | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) \right]$                                           | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_b}{p_{fo}} \Bigg) \Bigg]$                                                                                                                          | 2                  |
| 1/5        | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{p_{fi}}\right)\right]$                                                                                                                            | 2                  |
| 5/6        | $m_p \left[ \frac{g}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_a}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_a\right)\right]$                                                                                     | 2                  |
| 1/6        | $m_p\left[\left(p_{fi}+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                      | $m_p \left\{ \frac{2}{g} \left[ \delta_a \left( p_{fi} + s \right) \right] \right\}$                                                                                                           | 2                  |
| 6/7        | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) + s \left( \frac{2\delta_a}{g} \right) \right]$                 | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(\delta_a s\right)\right]$                                                                                              | 2                  |
| 5/7        | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a+p_{fi}\theta}{p_{fi}}+\frac{\delta_a-s\theta}{s}\right)\right]$                   | $m_p \left\{ \frac{b_p}{2} \left[ \delta_a \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] - \frac{g}{2} \left[ \delta_a \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] \right\}$ | 2                  |
| 1/7        | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                                                      | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                                                                                 | 2                  |

Summing up the internal work given in Table 2-22 and substituting  $\delta_a = h_2 \theta$  and  $\delta_b = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \left\{ \frac{b_{p}}{2} \left[ h_{1} \left( \frac{1}{p_{fo}} + \frac{1}{s} \right) + h_{2} \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_{1} \left( p_{fo} + s \right) + h_{2} \left( p_{fi} + s \right) \right] \right\}$$
(2-54)

The external work,  $W_{E}$ , is given by Eq. (2-55). Setting the internal work and external work equal results in Eq. (2-56).

$$W_E = M_{pl} \Theta \tag{2-55}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{s} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + s \right) + h_2 \left( p_{fi} + s \right) \right] \right\}$$
(2-56)

This equation is further simplified into the form given in Eq. (2-57) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-58).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-57}$$

$$Y = \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{s} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{fo} + s \right) + h_2 \left( p_{fi} + s \right) \right] \right\}$$
(2-58)

Note: Use  $p_{fi}=s$  if  $p_{fi} > s$  Use  $p_{fo}=s$  if  $p_{fo} > s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-57), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-59).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-59}$$

#### 2.9.3 Comparison for an Example Connection

The effect of end-plate extensions,  $d_e$ , on Yield Line Parameter is further investigated in this section using an example connection. Example 5.3-2 in AISC Design Guide 4+16 is selected to compare yield line parameter, *Y*, values associated with three yield line patterns discussed above. Figure 2-11 shows the geometry and details for this example connection and dimensions are summarized in Table 2-23. Table 2-24 summarizes the yield line parameters associated with the three patterns discussed in this section. Figure 2-12 shows how the yield line parameters vary with the end-plate extension past the outermost bolt,  $d_e$ .



Figure 2-11 Four-Bolt Extended Stiffened End Plate (from example 5.3-2 Design Guide 4+16)

| Width of the plate                                         | $b_p = 9$ in.                                   |
|------------------------------------------------------------|-------------------------------------------------|
| Extension of End Plate Above Flange                        | $p_{ext} = 4.5 in.$                             |
| End Plate Above Top Bolt Line                              | $d_e = 1.75 in.$                                |
| End Plate Thickness                                        | $t_p = 1 in.$                                   |
| Gage                                                       | g = 5.75 in.                                    |
| Exterior Distance to Bolt Row                              | $p_{fo} = 2.75$ in.                             |
| Interior Distance to Bolt Row                              | $p_{fi} = 2 in.$                                |
| Depth of Beam at End Plate                                 | d = 24.1  in.                                   |
| Beam Flange Width                                          | $b_{bf} = 9.02 in.$                             |
| Beam Flange Thickness                                      | $t_{bf} = 0.77 \ in.$                           |
| Beam Web Thickness                                         | $t_{bw} = 0.47 in.$                             |
| Distance from centroid of compression flange to first row  | $h_2 = 20.9 in.$                                |
| Distance from centroid of compression flange to second row | $h_1 = 26.5 in.$                                |
| Distance to Yield Line                                     | $s = \frac{1}{2}\sqrt{b_p g} = 3.6 \text{ in.}$ |

### Table 2-23. Summary of Dimensions

Table 2-24 Summary of Yield Line Parameters for Four-Bolt Extended Stiffened End Plate

|   | Pattern                             | Yield Line Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α | Equation derived at beginning of    | $\begin{bmatrix} b_p \begin{bmatrix} b \\ b \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} + b \begin{bmatrix} 1 & 1 \end{bmatrix} + b \begin{bmatrix} 1 & 1 \end{bmatrix} = 2 \begin{bmatrix} b \\ b \end{bmatrix} + b \begin{bmatrix} p & -1 & d \end{bmatrix} + b \begin{bmatrix} p & -1 & d \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Section 2.8. Also, AISC 358-18      | $I = \frac{1}{2} \left[ n_1 \left( \frac{p_{fo}}{p_{fo}} + \frac{1}{2d_e} \right) + n_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{1}{g} \left[ n_1 \left( p_{fo} + d_e \right) + n_2 \left( p_{fi} + s \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Table 6.3 Case 1 for $d_e \leq s$ . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| В | Equation derived in Section         | $ \sum_{\mathbf{V}_{n}} b_{p} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 2.8.1.                              | $I = \frac{1}{2} \left[ n_1 \left( \frac{p_{fo}}{p_{fo}} \right)^+ n_2 \left( \frac{p_{fi}}{p_{fi}} + \frac{1}{s} \right)^- \frac{1}{2} \right]^+ \frac{1}{g} \left[ n_1 \left( p_{fo} + a_e \right)^+ n_2 \left( p_{fi} + s \right) \right]^+ \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| С | Equation derived in Section         | $ = \begin{bmatrix} b_p \begin{bmatrix} 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1$ |
|   | 2.8.3. Also, AISC 358-18 Table      | $Y = \{\frac{1}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{s} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) \right] + \frac{1}{g} \left[ h_1 \left( p_{fo} + s \right) + h_2 \left( p_{fi} + s \right) \right] \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | 6.3 Case 2 for $d_e > s$ .          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



Figure 2-12. The effect of End-Plate Extension on Yield Line Parameter

AISC 358 specifies that Pattern A shall be used for  $d_e \le s$  and Pattern C shall be used for  $d_e \ge s$ . However, Figure 2-12, shows that for this example where s=3.6 in., the yield line parameter, Y, associated with Pattern A is smaller than the value for Pattern C until the end-plate dimension exceeds  $d_e \ge 6.3$  in. This is because Pattern C includes additional yield lines along the top of the yield line pattern (see Figure 2-10) which will only control when the end-plate extension past the outermost bolt,  $d_e$ , is especially large. For typical end-plate connection geometries, Pattern C will not control.

Figure 2-12 also demonstrates the difference between Pattern A which has been validated against experiments and Pattern B which produces a small yield line pattern. For the value of  $d_e$ =1.75 in. corresponding to the end-plate geometry in the example shown in Figure 2-12, the yield line parameter for Pattern B is 85% of the yield line parameter for Pattern A. Regardless of this difference, Pattern A has been shown to produce end-plate moment strength,  $M_{pl}$ , that matches experimental results reasonably well (Abel and Murray 1994, Blumenbaum and Murray 2004, Blumenbaum and Murray 2003, Borgsmiller et al. 1995, Curtis and Murray 1989, Eatherton et al. 2013, Eatherton et al. 2017, Jenner et al 1985, Kline et al 1995, Meng 1996, Murray 1989, Ryan and Murray 1999, Sumner and Murray 2002, Young and Murray 1997). For that reason, Pattern A is recommended for use in design over Pattern B.

It is noted that these same issues associated with different yield line parameters exists for all stiffened extended configurations including the multiple row extended 1/3 stiffened, eight-bolt extended stiffened, and twelve-bolt extended stiffened configurations. These yield line parameter comparisons are only conducted for the four-bolt extended stiffened, but the observations made here are expected to be similar for the other extended stiffened end-plate configurations.

#### 2.10 Multiple Row Extended 1/2 Unstiffened End-Plate

The yield line pattern is shown in Figure 2-13. The rotation of each facet (facets are labeled in Figure 2-13) is given in Table 2-25 and the internal work associated with rotation along each yield line is given in Table 2-26. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-13. Variables associated with the virtual rotations, displacement, and endplate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-13 Yield Line Pattern for the Multiple Row Extended 1/2 Unstiffened End-Plate

| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | θ                                     | 0                           |
| 2     | 0                                     | 0                           |
| 3     | $-(\delta_c - p_{fo}\theta) / p_{fo}$ | 0                           |
| 4     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0                           |
| 5     | θ                                     | $2\delta_b / g$             |
| 6     | 0                                     | $(\delta_b + \delta_a) / g$ |
| 7     | 0                                     | 0                           |
| 8     | θ                                     | $2\delta_a$ / $g$           |
| 9     | $-(\delta_a - s\theta) / s$           | 0                           |

 Table 2-25 Rotation for Each Facet in the

 Multiple Row Extended 1/2 Unstiffened End-Plate

# Table 2-26 Internal Work Associated with Each Yield Line in the Multiple Row Extended1/2 Unstiffened End-Plate (Part 1 of 2)

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                     | Number |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Line  |                                                                                                                                              |                                                                                                                                                              | of     |
|       |                                                                                                                                              |                                                                                                                                                              | Lines  |
| 2/3   | $m_p \Bigg[ b_p \Bigg( rac{\delta_c - p_{fo} 	heta}{p_{fo}} \Bigg) \Bigg]$                                                                  | $m_p \left[ \frac{b_p}{2} \left( \frac{2\delta_c}{p_{fo}} - 2\theta \right) \right]$                                                                         | 1      |
| 1/3   | $m_p \left[ b_p \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                                     | $m_p\left[rac{b_p}{2}\left(rac{2\delta_c}{p_{fo}} ight) ight]$                                                                                             | 1      |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ rac{b_p}{2} \left( rac{\delta_b}{p_{fi}}  ight)  ight]$                                                                                        | 2      |
| 4/5   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$                                                   | 2      |
| 5/6   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_b + \delta_a}{g}\right)\right]$                        | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_b}{4} - \frac{p_b\delta_a}{4}\right)\right]$                                                | 2      |
| 6/8   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_b + \delta_a}{g} - \frac{2\delta_a}{g}\right)\right]$                        | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_b}{4} - \frac{p_b\delta_a}{4}\right)\right]$                                                | 2      |
| 8/9   | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                             | 2      |
| 1/5   | $m_p\left[\left(p_{fi}+\frac{p_b}{2}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                          | $m_p \left[ \frac{2}{g} \left( \delta_b p_{fi} + \frac{\delta_b p_b}{2} \right) \right]$                                                                     | 2      |
| 1/8   | $\overline{m_p\left[\left(s+\frac{p_b}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]}$                                                    | $m_p \left[ \frac{2}{g} \left( \delta_a s + \frac{\delta_a p_b}{2} \right) \right]$                                                                          | 2      |
| 4/7   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_b+p_{fi}\theta}{p_{fi}}\right)\right]$                                              | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi}\theta}{p_{fi}} \right) - \frac{g}{2} \left( \frac{\delta_b + p_{fi}\theta}{p_{fi}} \right) \right]$ | 2      |

Table 2-26 Internal Work Associated with Each Yield Line in the Multiple Row Extended1/2 Unstiffened End-Plate (Part 2 of 2)

| 6/7 | $m_p \left[ p_b \left( \frac{\delta_b + \delta_a}{g} \right) \right]$                   | $m_p \left[ \frac{2}{g} \left( \frac{p_b \delta_b + p_b \delta_a}{2} \right) \right]$                                                    | 2 |
|-----|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---|
| 7/9 | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a-s\theta}{s}\right)\right]$   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a - s\theta}{s} \right) - \frac{g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$ | 2 |
| 1/9 | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$ | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                           | 2 |

Summing up the internal work given in Table 2-26 and substituting  $\delta_a = h_3 \theta$ ,  $\delta_b = h_2 \theta$ , and  $\delta_c = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{1}\left(\frac{1}{p_{fo}}\right) + h_{2}\left(\frac{1}{p_{fi}}\right) + h_{3}\left(\frac{1}{s}\right) - \frac{1}{2}\right] + \frac{2}{g}\left[h_{2}\left(p_{fi} + \frac{3p_{b}}{4}\right) + h_{3}\left(\frac{p_{b}}{4} + s\right)\right] + \frac{g}{2}\right\}$$
(2-60)

The external work,  $W_{E}$ , is given by Eq. (2-61). Setting the internal work and external work equal results in Eq. (2-62).

$$W_E = M_{pl} \theta \tag{2-61}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_3 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{4} \right) + h_3 \left( \frac{p_b}{4} + s \right) \right] + \frac{g}{2} \right\}$$
(2-62)

This equation is further simplified into the form given in Eq. (2-63) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-64).

$$M_{pl} = F_{yp} t_p^2 Y \tag{2-63}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_3 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{4} \right) + h_3 \left( \frac{p_b}{4} + s \right) \right] + \frac{g}{2}$$
(2-64)

Note: Use  $p_{fi}=s$  if  $p_{fi} > s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-63), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-65).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-65}$$

#### 2.11 Multiple Row Extended 1/3 Unstiffened End-Plate

The yield line pattern is shown in Figure 2-14. The rotation of each facet (facets are labeled in Figure 2-14) is given in Table 2-27 and the internal work associated with rotation along each yield line is given in Table 2-28. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-14. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-14 Yield Line Pattern for the Multiple Row Extended 1/3 Unstiffened End-Plate

| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | θ                                     | 0                           |
| 2     | 0                                     | 0                           |
| 3     | $-(\delta_c - p_{fo}\theta) / p_{fo}$ | 0                           |
| 4     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0                           |
| 5     | θ                                     | $2\delta_b$ / $g$           |
| 6     | 0                                     | $(\delta_b + \delta_a) / g$ |
| 7     | 0                                     | 0                           |
| 8     | θ                                     | $2\delta_a / g$             |
| 9     | $-(\delta_a - s\theta) / s$           | 0                           |

Table 2-27 Rotation for Each Facet in theMultiple Row Extended 1/3 Unstiffened End-Plate

Table 2-28 Internal Work Associated with Each Yield Line in the Multiple Row Extended 1/3 Unstiffened End-Plate (Part 1 of 2)

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                       | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                                                                                | of Lines |
| 2/3   | $m_p \left[ b_p \left( \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                                              | $m_p \left[ \frac{b_p}{2} \left( \frac{2\delta_c - 2p_{fo}\theta}{p_{fo}} \right) \right]$                                                                     | 1        |
| 1/3   | $m_p \left[ b_p \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                                     | $m_p \left[ \frac{b_p}{2} \left( \frac{2\delta_c}{p_{fo}} \right) \right]$                                                                                     | 1        |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_b}{p_{fi}} \Bigg) \Bigg]$                                                                                          | 2        |
| 4/5   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$                                                     | 2        |
| 5/6   | $m_p\left[\frac{g}{2}(\theta) + p_b\left(\frac{2\delta_b}{g} - \frac{\delta_b}{g} + \delta_a\right)\right]$                                  | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_b}{2} - \frac{p_b\delta_a}{2}\right)\right]$                                                  | 2        |
| 6/8   | $m_p \left[ \frac{g}{2} (\theta) + p_b \left( \frac{\delta_b + \delta_a}{g} - \frac{2\delta_a}{g} \right) \right]$                           | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_b}{2} - \frac{p_b\delta_a}{2}\right)\right]$                                                  | 2        |
| 8/9   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) + s \left( \frac{2\delta_a}{g} \right) \right]$                 | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                               | 2        |
| 1/5   | $m_p \left[ \left( p_{fi} + p_b \right) \left( \frac{2\delta_b}{g} \right) \right]$                                                          | $m_p \left[ \frac{2}{g} \left( \delta_b  p_{fi} + \delta_b  p_b \right) \right]$                                                                               | 2        |
| 1/8   | $m_p\left[\left(s+p_b\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                         | $m_p\left[\frac{2}{g}\left(\delta_a s + \delta_a p_b\right)\right]$                                                                                            | 2        |
| 4/7   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_b+p_{fi}\theta}{p_{fi}}\right)\right]$                                              | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) - \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) \right]$ | 2        |

| 6/7 | $m_p \left[ 2 p_b \left( \frac{\delta_b + \delta_a}{g} \right) \right]$                 | $m_p\left[\frac{2}{g}\left(p_b\delta_b+p_b\delta_a\right)\right]$                                                                        | 2 |
|-----|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---|
| 7/9 | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a-s\theta}{s}\right)\right]$   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a - s\theta}{s} \right) - \frac{g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$ | 2 |
| 1/9 | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$ | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                           | 2 |

Table 2-28 Internal Work Associated with Each Yield Line in the Multiple RowExtended 1/3 Unstiffened End-Plate (Part 2 of 2)

Summing up the internal work given in Table 2-28 and substituting  $\delta_a = h_4\theta$ ,  $\delta_b = h_2\theta$ , and  $\delta_c = h_1\theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{1}\left(\frac{1}{p_{fo}}\right) + h_{2}\left(\frac{1}{p_{fi}}\right) + h_{4}\left(\frac{1}{s}\right) - \frac{1}{2}\right] + \frac{2}{g}\left[h_{2}\left(p_{fi} + \frac{3p_{b}}{2}\right) + h_{4}\left(\frac{p_{b}}{2} + s\right)\right] + \frac{g}{2}\right\}$$
(2-66)

The external work,  $W_{E}$ , is given by Eq. (2-67). Setting the internal work and external work equal results in Eq. (2-68).

$$W_E = M_{pl} \theta \tag{2-67}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \right\}$$
(2-68)

This equation is further simplified into the form given in Eq. (2-69) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-70).

$$M_{pl} = F_{yp} t_p^{2} Y$$
(2-69)

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2}$$
(2-70)

Note: Use  $p_{fi} = s$  if  $p_{fi} > s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-69), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-71).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-71}$$

#### 2.12 Multiple Row Extended 1/3 Stiffened End-Plate

The yield line pattern is shown in Figure 2-15. The rotation of each facet (facets are labeled in Figure 2-15) is given in Table 2-29 and the internal work associated with rotation along each yield line is given in Table 2-30. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-15. Variables associated with the virtual rotations, displacement, and endplate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-15 Yield Line Pattern for the Multiple Row Extended 1/3 Stiffened End-Plate

| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | θ                                     | 0                           |
| 2     | $(\delta_c + d_e \theta) / d_e$       | 0                           |
| 3     | θ                                     | $2\delta_c / g$             |
| 4     | $-(\delta_c - p_{fo}\theta) / p_{fo}$ | 0                           |
| 5     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0                           |
| 6     | θ                                     | $2\delta_b / g$             |
| 7     | 0                                     | 0                           |
| 8     | 0                                     | $(\delta_a + \delta_b) / g$ |
| 9     | θ                                     | $2\delta_a / g$             |
| 10    | $-(\delta_a - s\theta) / s$           | 0                           |

 Table 2-29 Rotation for Each Facet in the

 Multiple Row Extended 1/3 Stiffened End-Plate

| Table 2-30 Internal Work Associated with Each Yield Line in | the |
|-------------------------------------------------------------|-----|
| Multiple Row Extended 1/3 Stiffened End-Plate (Part 1 of 2  | )   |

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                           | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                                                                                    | of Lines |
| 1/3   | $m_p\left[\left(d_e + p_{fo}\right)\left(\frac{2\delta_c}{g}\right)\right]$                                                                  | $m_p\left[\frac{2}{g}\left(\delta_c d_e + \delta_c P_{fo}\right)\right]$                                                                                           | 2        |
| 2/3   | $m_p\left[\frac{g}{2}\left(\frac{\delta_c + d_e\theta}{d_e} - \theta\right) + d_e\left(\frac{2\delta_c}{g}\right)\right]$                    | $m_p\left[\frac{g}{2}\left(\frac{\delta_c}{d_e}\right) + \frac{2}{g}\left(\delta_c d_e\right)\right]$                                                              | 2        |
| 2/4   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_c + d_e \theta}{d_e} + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$            | $m_p \left[ \frac{b_p}{2} \delta_c \left( \frac{1}{d_e} + \frac{1}{p_{fo}} \right) - \frac{g}{2} \delta_c \left( \frac{1}{d_e} + \frac{1}{p_{fo}} \right) \right]$ | 2        |
| 3/4   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) + p_{fo} \left( \frac{2\delta_c}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_c}{p_{fo}}\right) + \frac{2}{g}\left(\delta_c p_{fo}\right)\right]$                                                        | 2        |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                           | $m_p \left[ rac{b_p}{2} \left( rac{\delta_c}{p_{fo}}  ight)  ight]$                                                                                              | 2        |
| 1/5   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ rac{b_p}{2} \left( rac{\delta_b}{p_{fi}}  ight)  ight]$                                                                                              | 2        |
| 1/6   | $m_p \left[ \left( p_b + p_{fi} \right) \left( \frac{2\delta_b}{g} \right) \right]$                                                          | $m_p\left[\frac{2}{g}\left(\delta_b p_b + \delta_b p_{fi}\right)\right]$                                                                                           | 2        |
| 5/6   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b}{p_{fi}} \right) + \frac{2}{g} \left( \delta_b  p_{fi} \right) \right]$                                              | 2        |
| 5/7   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) \right]$                                                | $m_p\left[\frac{\overline{b_p}}{2}\left(\frac{\delta_b}{p_{fi}}+\theta\right)-\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}+\theta\right)\right]$                       | 2        |
| 6/8   | $m_p\left[\frac{g}{2}(\theta) + p_b\left(\frac{2\delta_b}{g} - \frac{\delta_a + \delta_b}{g}\right)\right]$                                  | $m_p\left\{\frac{g}{2}(\theta) + \frac{2}{g}\left[p_b\left(\frac{\delta_b - \delta_a}{2}\right)\right]\right\}$                                                    | 2        |

|      | Multiple Row Extended 1/5 Sentened End Thate (Tart 2 of 2)                                                                   |                                                                                                                                        |   |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| 7/8  | $m_p \left[ 2 p_b \left( \frac{\delta_a + \delta_b}{g} \right) \right]$                                                      | $m_p\left\{\frac{2}{g}\left[p_b\left(\delta_a+\delta_b\right)\right]\right\}$                                                          | 2 |  |  |  |
| 8/9  | $m_p \left[ \frac{g}{2} (\theta) + p_b \left( \frac{\delta_a + \delta_b}{g} - \frac{2\delta_a}{g} \right) \right]$           | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[p_b\left(\frac{\delta_b-\delta_a}{2}\right)\right]\right\}$                            | 2 |  |  |  |
| 7/10 | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$ | 2 |  |  |  |
| 1/9  | $m_p\left[\left(p_b+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                         | $m_p\left[\frac{2}{g}\left(\delta_a p_b + \delta_a s\right)\right]$                                                                    | 2 |  |  |  |
| 9/10 | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) + s \left( \frac{2\delta_a}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(\delta_a s\right)\right]$                                      | 2 |  |  |  |
| 1/10 | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                                      | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                         | 2 |  |  |  |

Table 2-30 Internal Work Associated with Each Yield Line in theMultiple Row Extended 1/3 Stiffened End-Plate (Part 2 of 2)

Summing up the internal work given in Table 2-30 and substituting  $\delta_a = h_4 \theta$ ,  $\delta_b = h_2 \theta$ , and  $\delta_c = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \begin{cases} \frac{b_{p}}{2} \left[ h_{l} \left( \frac{1}{p_{fo}} + \frac{1}{2d_{e}} \right) + h_{2} \left( \frac{1}{p_{fi}} \right) + h_{4} \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_{l} \left( p_{fo} + d_{e} \right) + h_{2} \left( p_{fi} + \frac{3}{2} p_{b} \right) + h_{4} \left( s + \frac{1}{2} p_{b} \right) \right] + \frac{g}{2} \end{cases}$$
(2-72)

The external work,  $W_E$ , is given by Eq. (2-73). Setting the internal work and external work equal results in Eq. (2-74).

$$W_E = M_{pl} \Theta \tag{2-73}$$

$$M_{pl} = 4m_p \begin{cases} \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{2d_e} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + \frac{3}{2} p_b \right) + h_4 \left( s + \frac{1}{2} p_b \right) \right] + \frac{g}{2} \end{cases}$$
(2-74)

This equation is further simplified into the form given in Eq. (2-75) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-76).

$$M_{pl} = F_{yp} t_p^{-2} Y \tag{2-75}$$

$$Y = \begin{cases} \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} + \frac{1}{2d_e} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + \frac{3}{2} p_b \right) + h_4 \left( \frac{1}{2} p_b + s \right) \right] + \frac{g}{2} \end{cases}$$
(2-76)

Note: Use  $p_{fi}=s$  if  $p_{fi} > s$  Use  $p_{fo}=s$  if  $p_{fo}>s$ 

To obtain an equation for the dimension s, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-75), taken with respect to the variable s, is set equal to zero and solved for the variable s. The result is Eq. (2-77).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-77}$$

#### 2.12.1 Alternate Yield Line Pattern

The yield line pattern is shown in Figure 2-16. The rotation of each facet (facets are labeled in Figure 2-16) is given in Table 2-31 and the internal work associated with rotation along each yield line is given in Table 2-32. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-16. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.





| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | θ                                     | 0                           |
| 2     | 0                                     | 0                           |
| 3     | θ                                     | $2\delta_c / g$             |
| 4     | $-(\delta_c - p_{fo}\theta) / p_{fo}$ | 0                           |
| 5     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0                           |
| 6     | θ                                     | $2\delta_b / g$             |
| 7     | 0                                     | 0                           |
| 8     | 0                                     | $(\delta_a + \delta_b) / g$ |
| 9     | θ                                     | $2\delta_a / g$             |
| 10    | $-(\delta_a - s\theta) / s$           | 0                           |

 Table 2-31 Rotation for Each Facet in the

 Multiple Row Extended 1/3 Stiffened End-Plate

Table 2-32 Internal Work Associated with Each Yield Line in the Multiple Row Extended 1/3 Stiffened End-Plate (Part 1 of 2)

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                         | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                                                                  | of Lines |
| 1/3   | $m_p\left[\left(d_e + p_{fo}\right)\left(\frac{2\delta_c}{g}\right)\right]$                                                                  | $m_p\left[\frac{2}{g}\left(\delta_c d_e + \delta_c p_{fo}\right)\right]$                                                                         | 2        |
| 2/3   | $m_p \left[ d_e \left( \frac{2 \delta_c}{g} \right)  ight]$                                                                                  | $m_p\left[rac{2}{g}(\delta_c d_e) ight]$                                                                                                        | 2        |
| 2/4   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                                | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_c}{p_{fo}} - \theta \right) - \frac{g}{2} \left( \frac{\delta_c}{p_{fo}} - \theta \right) \right]$ | 2        |
| 3/4   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) + p_{fo} \left( \frac{2\delta_c}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_c}{p_{fo}}\right) + \frac{2}{g}\left(\delta_c p_{fo}\right)\right]$                                      | 2        |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                           | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_c}{p_{fo}} \Bigg) \Bigg]$                                                                            | 2        |
| 1/5   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi}\theta}{p_{fi}} - \theta \right) \right]$                                            | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_b}{p_{fi}} \Bigg) \Bigg]$                                                                            | 2        |
| 1/6   | $m_p\left[\left(p_b + p_{fi}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                                  | $m_p \left[ \frac{2}{g} \left( \delta_b  p_b + \delta_b  p_{fi} \right) \right]$                                                                 | 2        |
| 5/6   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(\delta_b p_{fi}\right)\right]$                                      | 2        |
| 5/7   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) \right]$                                                | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) \right]$ | 2        |

|      |                                                                                                                     |                                                                                                                                        | _, |
|------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----|
| 6/8  | $m_p\left[\frac{g}{2}(\theta) + p_b\left(\frac{2\delta_b}{g} - \frac{\delta_a + \delta_b}{g}\right)\right]$         | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[p_b\left(\frac{\delta_b-\delta_a}{2}\right)\right]\right\}$                            | 2  |
| 7/8  | $m_p \left[ 2 p_b \left( \frac{\delta_a + \delta_b}{g} \right) \right]$                                             | $m_p\left\{\frac{2}{g}\left[p_b\left(\delta_a+\delta_b\right)\right]\right\}$                                                          | 2  |
| 8/9  | $m_p\left[\frac{g}{2}(\theta) + p_b\left(\frac{\delta_a + \delta_b}{g} - \frac{2\delta_a}{g}\right)\right]$         | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[p_b\left(\frac{\delta_b-\delta_a}{2}\right)\right]\right\}$                            | 2  |
| 7/10 | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                                  | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$ | 2  |
| 1/9  | $m_p\left[\left(p_b+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                | $m_p\left[\frac{2}{g}\left(\delta_a p_b + \delta_a s\right)\right]$                                                                    | 2  |
| 9/10 | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$ | $m_p \left[ \frac{g}{2} \left( \frac{\delta_a}{s} \right) + \frac{2}{g} \left( \delta_a s \right) \right]$                             | 2  |
| 1/10 | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                             | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                         | 2  |

Table 2-32 Internal Work Associated with Each Yield Line in the Multiple Row Extended 1/3 Stiffened End-Plate (Part 2 of 2)

Summing up the internal work given in Table 2-32 and substituting  $\delta_a = h_4 \theta$ ,  $\delta_b = h_2 \theta$ , and  $\delta_c = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\Theta \begin{cases} \frac{b_{p}}{2} \left[ h_{1}\left(\frac{1}{p_{fo}}\right) + h_{2}\left(\frac{1}{p_{fi}}\right) + h_{4}\left(\frac{1}{s}\right) - \frac{1}{2} \right] + ... \\ \frac{2}{g} \left[ h_{1}\left(p_{fo} + d_{e}\right) + h_{2}\left(p_{fi} + \frac{3}{2}p_{b}\right) + h_{4}\left(\frac{1}{2}p_{b} + s\right) \right] + \frac{3g}{4} \end{cases}$$
(2-78)

The external work,  $W_{E}$ , is given by Eq. (2-79). Setting the internal work and external work equal results in Eq. (2-80).

$$W_E = M_{pl} \Theta \tag{2-79}$$

$$M_{pl} = 4m_{p} \begin{cases} \frac{b_{p}}{2} \left[ h_{1} \left( \frac{1}{p_{fo}} \right) + h_{2} \left( \frac{1}{p_{fi}} \right) + h_{4} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( p_{fo} + d_{e} \right) + h_{2} \left( p_{fi} + \frac{3}{2} p_{b} \right) + h_{4} \left( \frac{1}{2} p_{b} + s \right) \right] + \frac{3g}{4} \end{cases}$$
(2-80)

This equation is further simplified into the form given in Eq. (2-81) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-82).

$$M_{pl} = F_{yp} t_p^2 Y \tag{2-81}$$

$$Y = \begin{cases} \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( p_{fo} + d_e \right) + h_2 \left( p_{fi} + \frac{3}{2} p_b \right) + h_4 \left( \frac{1}{2} p_b + s \right) \right] + \frac{3g}{4} \end{cases}$$
(2-82)

To obtain an equation for the dimension s, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-81), taken with respect to the variable s, is set equal to zero and solved for the variable s. The result is Eq. (2-83).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-83}$$

#### 2.13 Eight Bolt Extended Four Wide Unstiffened End-Plate

The yield line pattern is shown in Figure 2-17. The rotation of each facet (facets are labeled in Figure 2-17) is given in Table 2-33 and the internal work associated with rotation along each yield line is given in Table 2-34. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-17. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-17 Yield Line Pattern for the Eight Bolt Extended Four Wide Unstiffened End-Plate

| Facet | $\theta_x$                            | $	heta_y$       |
|-------|---------------------------------------|-----------------|
| 1     | θ                                     | 0               |
| 2     | 0                                     | 0               |
| 3     | $-(\delta_b - p_{fo}\theta) / p_{fo}$ | 0               |
| 4     | $(\delta_a + p_{fi}\theta) / p_{fi}$  | 0               |
| 5     | θ                                     | $2\delta_a / g$ |
| 6     | $-(\delta_a - s\theta) / s$           | 0               |

Table 2-33 Rotation for Each Facet in theEight Bolt Extended Four Wide Unstiffened End-Plate

| Tabl | e 2-34 | Interna   | l Work  | Assoc | ciated | with | Each   | Yield | Line in | ı the |
|------|--------|-----------|---------|-------|--------|------|--------|-------|---------|-------|
|      | Eight  | t Bolt Ex | xtended | Four  | Wide   | Unst | iffene | d End | -Plate  |       |

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                                 | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                                                                                          | of Lines |
| 2/3   | $m_p \Bigg[ b_p \Bigg( rac{\delta_b - p_{fo} 	heta}{p_{fo}} \Bigg) \Bigg]$                                                                  | $m_p \left[ \frac{b_p}{2} \left( \frac{2\delta_b}{p_{fo}} - 2\theta \right) \right]$                                                                                     | 1        |
| 1/3   | $m_p \left[ b_p \left( \theta + \frac{\delta_b - p_{fo} \theta}{p_{fo}} \right) \right]$                                                     | $m_p \left[ \frac{b_p}{2} \left( \frac{2\delta_b}{p_{fo}} \right) \right]$                                                                                               | 1        |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{p_{fi}} \right) \right]$                                                                                                | 2        |
| 4/5   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_a + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_a}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_a\right)\right]$                                                               | 2        |
| 5/6   | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                                         | 2        |
| 1/5   | $m_p\left[\left(p_{fi}+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                      | $m_p \left[ \frac{2}{g} \left( \delta_a  p_{fi} + \delta_a s \right) \right]$                                                                                            | 2        |
| 4/6   | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_a + p_{fi}\theta}{p_{fi}} + \frac{\delta_a - s\theta}{s} \right) \right]$                  | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{p_{fi}} + \frac{\delta_a}{s} \right) - \frac{g}{2} \left( \frac{\delta_a}{p_{fi}} + \frac{\delta_a}{s} \right) \right]$ | 2        |
| 1/6   | $m_p\left[\frac{b_p}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right)\right]$                                                            | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                                                           | 2        |

Summing up the internal work given in Table 2-34 and substituting  $\delta_a = h_2 \theta$  and  $\delta_b = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{p}}{2}\left[h_{1}\left(\frac{1}{p_{fo}}\right) + h_{2}\left(\frac{1}{p_{fi}} + \frac{1}{s}\right) - \frac{1}{2}\right] + \frac{2}{g}\left[h_{2}\left(p_{fi} + s\right)\right]\right\}$$
(2-84)

The external work,  $W_{E}$ , is given by Eq. (2-85). Setting the internal work and external work equal results in Eq. (2-86).

$$W_E = M_{pl} \theta \tag{2-85}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + s \right) \right] \right\}$$
(2-86)

This equation is further simplified into the form given in Eq. (2-87) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-88).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-87}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + s \right) \right]$$
(2-88)

Note: Use  $p_{fi} = s$  if  $p_{fi} > s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-87), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-89).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-89}$$

#### 2.14 Eight Bolt Extended Stiffened End-Plate

The yield line pattern is shown in Figure 2-18. The rotation of each facet (facets are labeled in Figure 2-18) is given in Table 2-35 and the internal work associated with rotation along each yield line is given in Table 2-36. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-18. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-18 Yield Line Pattern for the Eight Bolt Extended Stiffened End-Plate

| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | heta                                  | 0                           |
| 2     | $(\delta_d + d_e \theta) / d_e$       | 0                           |
| 3     | θ                                     | 2δ <sub>d</sub> / g         |
| 4     | 0                                     | $(\delta_c + \delta_d) / g$ |
| 5     | 0                                     | 0                           |
| 6     | 0                                     | $2\delta_c / g$             |
| 7     | $-(\delta_c - p_{fo}\theta) / p_{fo}$ | 0                           |
| 8     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0                           |
| 9     | θ                                     | $2\delta_b / g$             |
| 10    | 0                                     | $(\delta_a + \delta_b) / g$ |
| 11    | 0                                     | 0                           |
| 12    | θ                                     | $2\delta_a / g$             |
| 13    | $-(\delta_a - s\theta) / s$           | 0                           |

Table 2-35 Rotation for Each Facet in theEight Bolt Extended Stiffened End-Plate

Table 2-36 Internal Work Associated with Each Yield Line in the Eight Bolt Extended Stiffened End-Plate (Part 1 of 2)

| Yield<br>Line | Internal Work                                                                                                         | Simplified Internal Work                                                                                                              | Number<br>of Lines |
|---------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 2/3           | $m_p \left[ \frac{g}{2} \left( \frac{\delta_d + d_e \theta}{d_e} - \theta \right) + d_e \frac{2\delta_d}{g} \right]$  | $m_p[\frac{g}{2}(\frac{\delta_d}{d_e}) + \frac{2}{g}(\delta_d d_e)]$                                                                  | 2                  |
| 2/5           | $m_p[\frac{b_p-g}{2}(\frac{\delta_d+d_e\theta}{d_e})]$                                                                | $m_p[\frac{b_p}{2}(\frac{\delta_d}{d_e}+\theta)-\frac{g}{2}(\frac{\delta_d}{d_e}+\theta)]$                                            | 2                  |
| 1/3           | $m_p[(d_e + \frac{p_b}{2})\frac{2\delta_d}{g}]$                                                                       | $m_p[\frac{2}{g}\delta_d(d_e+\frac{p_b}{2})]$                                                                                         | 2                  |
| 3/4           | $m_p \left[\frac{g}{2}\theta + \frac{p_b}{2}\left(\frac{2\delta_d}{g} - \frac{\delta_c + \delta_d}{g}\right)\right]$  | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_d-\delta_c\right)}{4}\right]\right\}$                           | 2                  |
| 4/5           | $m_p \left[ p_b \left( \frac{\delta_c + \delta_d}{g} \right) \right]$                                                 | $m_p \left[ \frac{2}{g} \left( \frac{p_b \delta_c + p_b \delta_d}{2} \right) \right]$                                                 | 2                  |
| 4/6           | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_c + \delta_d}{g} - \frac{2\delta_c}{g}\right)\right]$ | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\left(\delta_c + \delta_d\right)}{4} - \frac{p_b\delta_c}{2}\right)\right]$ | 2                  |

| Yield<br>Line | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                         | Number<br>of Lines |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1/6           | $m_p\left[\left(p_{fo} + \frac{p_b}{2}\right)\left(\frac{2\delta_c}{g}\right)\right]$                                                        | $m_p \left[ \frac{2}{g} \left( \delta_c p_{fo} + \frac{\delta_c p_b}{2} \right) \right]$                                                         | 2                  |
| 6/7           | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) + p_{fo} \left( \frac{2\delta_c}{g} \right) \right]$ | $m_p \left[ \frac{g}{2} \left( \frac{\delta_c}{p_{fo}} \right) + \frac{2}{g} \left( \delta_c  p_{fo} \right) \right]$                            | 2                  |
| 5/7           | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                                | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_c}{p_{fo}} - \theta \right) - \frac{g}{2} \left( \frac{\delta_c}{p_{fo}} - \theta \right) \right]$ | 2                  |
| 1/7           | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_c}{p_{fo}} \right) \right]$                                                                        | 2                  |
| 1/8           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ rac{b_p}{2} \left( rac{\delta_b}{p_{fi}}  ight)  ight]$                                                                            | 2                  |
| 8/9           | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$                                       | 2                  |
| 8/11          | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} \right) \right]$                                                | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) \right]$ | 2                  |
| 1/9           | $m_p\left[\left(p_{fi}+\frac{p_b}{2}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                          | $m_p \left[ \frac{2}{g} \left( \delta_b  p_{fi} + \frac{\delta_b  p_b}{2} \right) \right]$                                                       | 2                  |
| 9/10          | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_a + \delta_b}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_b-\delta_a\right)}{4}\right]\right\}$                                      | 2                  |
| 10/11         | $m_p \left[ p_b \left( \frac{\delta_a + \delta_b}{g} \right) \right]$                                                                        | $m_p\left\{\frac{2}{g}\left[\frac{p_b\left(\delta_a+\delta_b\right)}{2}\right]\right\}$                                                          | 2                  |
| 10/12         | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_a + \delta_b}{g} - \frac{2\delta_a}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_b-\delta_a\right)}{4}\right]\right\}$                                      | 2                  |
| 11/13         | $m_p\left[\frac{b_p-g}{2}\left(\frac{\delta_a-s\theta}{s}\right)\right]$                                                                     | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$           | 2                  |
| 12/13         | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                 | 2                  |
| 1/12          | $m_p\left[\left(s+\frac{p_b}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                               | $m_p \left[ \frac{2}{g} \left( \delta_a \overline{s + \frac{\delta_a p_b}{2}} \right) \right]$                                                   | 2                  |
| 1/13          | $m_p\left[\frac{b_p}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right)\right]$                                                            | $m_p\left[\frac{b_p}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                                   | 2                  |

Table 2-36 Internal Work Associated with Each Yield Line in the Eight Bolt Extended Stiffened End-Plate (Part 2 of 2)

Summing up the internal work given in Table 2-36 and substituting  $\delta_a = h_4 \theta$ ,  $\delta_b = h_3 \theta$ ,  $\delta_c = h_2 \theta$ , and  $\delta_d = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \begin{cases} \frac{b_{p}}{2} \left[ h_{1} \left( \frac{1}{2d_{e}} \right) + h_{2} \left( \frac{1}{p_{fo}} \right) + h_{3} \left( \frac{1}{p_{fi}} \right) + h_{4} \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( \frac{3p_{b}}{4} + d_{e} \right) + h_{2} \left( \frac{p_{b}}{4} + p_{fo} \right) + h_{3} \left( \frac{3p_{b}}{4} + p_{fi} \right) + h_{4} \left( \frac{p_{b}}{4} + s \right) \right] + g \end{cases}$$
(2-90)

The external work,  $W_E$ , is given by Eq. (2-91). Setting the internal work and external work equal results in Eq. (2-92).

$$W_E = M_{pl} \theta \tag{2-91}$$

$$M_{pl} = 4m_{p} \begin{cases} \frac{b_{p}}{2} \left[ h_{1} \left( \frac{1}{2d_{e}} \right) + h_{2} \left( \frac{1}{p_{fo}} \right) + h_{3} \left( \frac{1}{p_{fi}} \right) + h_{4} \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( \frac{3p_{b}}{4} + d_{e} \right) + h_{2} \left( \frac{p_{b}}{4} + p_{fo} \right) + h_{3} \left( \frac{3p_{b}}{4} + p_{fi} \right) + h_{4} \left( \frac{p_{b}}{4} + s \right) \right] + g \end{cases}$$
(2-92)

This equation is further simplified into the form given in Eq. (2-93) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-94).

$$M_{pl} = F_{yp} t_p^{-2} Y \tag{2-93}$$

$$Y = \begin{cases} \frac{b_p}{2} \left[ h_1 \left( \frac{1}{2d_e} \right) + h_2 \left( \frac{1}{p_{fo}} \right) + h_3 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( \frac{3p_b}{4} + d_e \right) + h_2 \left( \frac{p_b}{4} + p_{fo} \right) + h_3 \left( \frac{3p_b}{4} + p_{fi} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right] + g \end{cases}$$
(2-94)
Note: Use  $p_6 = s$  if  $p_6 > s$ .

Note: Use  $p_{fi}=s$  if  $p_{fi} > s$  Use  $p_{fo}=s$  if  $p_{fo} > s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-93), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-95).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-95}$$

Equation (2-88) is the yield line pattern used in **AISC Design Guide 4** (Murray and Sumner 2004) and **AISC 358-18**. It has been validated against experiments in past research and therefore is used in design.

#### 2.14.1 Alternate Yield Line Pattern

An alternate yield line pattern which produces a smaller yield line parameter for the Eight-Bolt Extended Stiffened End-Plate is shown in Figure 2-19. The rotation of each facet (facets are labeled in Figure 2-19) is given in Table 2-37 and the internal work associated with rotation along each yield line is given in Table 2-38. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2 Variables associated with the geometry of the connection are shown in Figure 2-19. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1). It is noted that hatched areas represent facets that are not rotating.





| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | θ                                     | 0                           |
| 2     | 0                                     | 0                           |
| 3     | θ                                     | $2\delta_d$ / $g$           |
| 4     | 0                                     | $(\delta_c + \delta_d) / g$ |
| 5     | θ                                     | $2\delta_c / g$             |
| 6     | $-(\delta_c - p_{fo}\theta) / p_{fo}$ | 0                           |
| 7     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0                           |
| 8     | 0                                     | 0                           |
| 9     | θ                                     | $2\delta_b$ / $g$           |
| 10    | 0                                     | $(\delta_a + \delta_b) / g$ |
| 11    | θ                                     | $2\delta_a / g$             |
| 12    | $-(\delta_a - s\theta) / s$           | 0                           |

Table 2-37 Rotation for Each Facet in theEight Bolt Extended Stiffened End-Plate

Table 2-38 Internal Work Associated with Each Yield Line in the Eight Bolt Extended Stiffened End-Plate (Part 1 of 2)

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                   | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              | Simplified Internal Work                                                                                                   | of Lines |
| 1/3   | $m_p\left[\left(d_e + \frac{p_b}{2}\right)\left(\frac{2\delta_d}{g}\right)\right]$                                                           | $m_p \left[ \frac{2}{g} \left( \delta_d d_e + \frac{\delta_d p_b}{2} \right) \right]$                                      | 2        |
| 1/5   | $m_p\left[\left(P_{fo} + \frac{p_b}{2}\right)\left(\frac{2\delta_c}{g}\right)\right]$                                                        | $m_p \left[ \frac{2}{g} \left( \delta_c  p_{fo} + \frac{\delta_c  p_b}{2} \right) \right]$                                 | 2        |
| 2/3   | $m_p\left[d_e\left(rac{2\delta_d}{g} ight) ight]$                                                                                           | $m_p\left[rac{2}{g}(d_e\delta_d) ight]$                                                                                   | 2        |
| 3/4   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_d}{g} - \frac{\delta_c + \delta_d}{g}\right)\right]$                        | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_d}{2} - \frac{p_b(\delta_c + \delta_d)}{4}\right)\right]$ | 2        |
| 4/5   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_c + \delta_d}{g} - \frac{2\delta_c}{g}\right)\right]$                        | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b(\delta_c + \delta_d)}{4} - \frac{p_b\delta_c}{2}\right)\right]$ | 2        |
| 5/6   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) + p_{fo} \left( \frac{2\delta_c}{g} \right) \right]$ | $m_p \left[ \frac{g}{2} \left( \frac{\delta_c}{p_{fo}} \right) + \frac{2}{g} \left( \delta_c p_{fo} \right) \right]$       | 2        |

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                         | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                                                                  | of Lines |
| 4/2   | $m_p \left[ p_b \left( rac{\delta_c + \delta_d}{g}  ight)  ight]$                                                                           | $m_p \left[ \frac{2}{g} \left( \frac{p_b \delta_c + p_b \delta_d}{2} \right) \right]$                                                            | 2        |
| 2/6   | $m_p \Bigg[ \dfrac{b_p - g}{2} \Bigg( \dfrac{\delta_c - p_{fo} 	heta}{p_{fo}} \Bigg) \Bigg]$                                                 | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_c}{p_{fo}} - \theta \right) - \frac{g}{2} \left( \frac{\delta_c}{p_{fo}} - \theta \right) \right]$ | 2        |
| 1/6   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                           | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_c}{p_{fo}} \Bigg) \Bigg]$                                                                            | 2        |
| 1/7   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_b}{p_{fi}} \Bigg) \Bigg]$                                                                            | 2        |
| 7/9   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$                                       | 2        |
| 1/9   | $m_p \left[ \left( p_{fi} + \frac{p_b}{2} \right) \left( \frac{2\delta_b}{g} \right) \right]$                                                | $m_p \left[ \frac{2}{g} \left( \delta_b  p_{fi} + \frac{\delta_b  p_b}{2} \right) \right]$                                                       | 2        |
| 1/11  | $m_p\left[\left(s+\frac{p_b}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                               | $m_p \left[ \frac{2}{g} \left( \delta_a s + \frac{\delta_a p_b}{2} \right) \right]$                                                              | 2        |
| 9/10  | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_a + \delta_b}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta) + \frac{2}{g}\left[\frac{p_b\left(\delta_b - \delta_a\right)}{4}\right]\right\}$                                  | 2        |
| 10/11 | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_a + \delta_b}{g} - \frac{2\delta_a}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta) + \frac{2}{g}\left[\frac{p_b\left(\delta_b - \delta_a\right)}{4}\right]\right\}$                                  | 2        |
| 11/12 | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                 | 2        |
| 10/8  | $m_p \left[ p_b \left( rac{\delta_a + \delta_b}{g}  ight)  ight]$                                                                           | $m_p\left\{\frac{2}{g}\left[\frac{p_b\left(\delta_a+\delta_b\right)}{2}\right]\right\}$                                                          | 2        |
| 7/8   | $m_p\left[\frac{b_p - g}{2}\left(\frac{\delta_b + p_{fi}\theta}{p_{fi}}\right)\right]$                                                       | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) \right]$ | 2        |
| 8/12  | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$           | 2        |
| 1/12  | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                                                      | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} \right) \right]$                                                                             | 2        |

Table 2-38 Internal Work Associated with Each Yield Line in theEight Bolt Extended Stiffened End-Plate (Part 2 of 2)

Summing up the internal work given in Table 2-38 and substituting  $\delta_a = h_4\theta$ ,  $\delta_b = h_3\theta$ ,  $\delta_c = h_2\theta$ , and  $\delta_d = h_1\theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \begin{cases} \frac{b_{p}}{2} \left[ h_{2} \left( \frac{1}{p_{fo}} \right) + h_{3} \left( \frac{1}{p_{fi}} \right) + h_{4} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( \frac{3p_{b}}{4} + d_{e} \right) + h_{2} \left( \frac{p_{b}}{4} + p_{fo} \right) + h_{3} \left( \frac{3p_{b}}{4} + p_{fi} \right) + h_{4} \left( \frac{p_{b}}{4} + s \right) \right] + \frac{5g}{4} \end{cases}$$
(2-96)

The external work,  $W_{E}$ , is given by Eq. (2-97). Setting the internal work and external work equal results in Eq. (2-98).

$$W_E = M_{pl} \Theta \tag{2-97}$$

$$M_{pl} = 4m_p \begin{cases} \frac{b_p}{2} \left[ h_2 \left( \frac{1}{p_{fi}} \right) + h_3 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( \frac{3p_b}{4} + d_e \right) + h_2 \left( \frac{p_b}{4} + p_{fo} \right) + h_3 \left( \frac{3p_b}{4} + p_{fi} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right] + \frac{5g}{4} \end{cases}$$
(2-98)

This equation is further simplified into the form given in Eq. (2-99) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-100).

$$M_{pl} = F_{yp} t_p^{-2} Y$$
(2-99)
$$Y = \begin{cases} \frac{b_p}{2} \left[ h_2 \left( \frac{1}{p_{fo}} \right) + h_3 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( \frac{3p_b}{4} + d_e \right) + h_2 \left( \frac{p_b}{4} + p_{fo} \right) + h_3 \left( \frac{3p_b}{4} + p_{fi} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right] + \frac{5g}{4} \end{cases}$$
(2-100)
Note: Use  $p_{fi}$ =s if  $p_{fi} > s$  Use  $p_{fo}$ =s if  $p_{fo} > s$ 

To obtain an equation for the dimension s, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-99), taken with respect to the variable s, is set equal to zero and solved for the variable s. The result is Eq. (2-101).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-101}$$

#### 2.15 Twelve Bolt Multiple Row Extended 1/3 Four-Wide / Two-Wide Unstiffened End-Plate

The yield line pattern is shown in Figure 2-20. The rotation of each facet (facets are labeled in Figure 2-20) is given in Table 2-39 and the internal work associated with rotation along each yield line is given in Table 2-40. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-20. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-20 Yield Line Pattern for the Twelve Bolt MRE 1/3 Four-Wide / Two-Wide Unstiffened End-Plate

| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | θ                                     | 0                           |
| 2     | 0                                     | 0                           |
| 3     | $-(\delta_c - p_{fo}\theta) / p_{fo}$ | 0                           |
| 4     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0                           |
| 5     | θ                                     | $2\delta_b$ / $g$           |
| 6     | 0                                     | $(\delta_b + \delta_a) / g$ |
| 7     | 0                                     | 0                           |
| 8     | θ                                     | $2\delta_a / g$             |
| 9     | $-(\delta_a - s\theta) / s$           | 0                           |

Table 2-39 Rotation for Each Facet in theTwelve Bolt MRE 1/3 Four-Wide / Two-Wide Unstiffened End-Plate

Table 2-40 Internal Work Associated with Each Yield Line in the Twelve Bolt MRE 1/3 Four-Wide / Two-Wide Unstiffened End-Plate (Part 1 of 2)

| Viald | Laternal Work                                                                                                                                | Cinculified Laternal Works                                                                                                                                   | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| rield | Internal work                                                                                                                                | Simplified Internal work                                                                                                                                     | Number   |
| Line  |                                                                                                                                              |                                                                                                                                                              | of Lines |
| 2/3   | $m_p \Bigg[ b_p \Bigg( rac{\delta_c - p_{fo} 	heta}{p_{fo}} \Bigg) \Bigg]$                                                                  | $m_p \left[ \frac{b_p}{2} \left( \frac{2\delta_c - 2p_{fo}\theta}{p_{fo}} \right) \right]$                                                                   | 1        |
| 1/3   | $m_p \left[ b_p \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                                     | $m_p\left[\frac{b_p}{2}\left(\frac{2\delta_c}{p_{fo}}\right)\right]$                                                                                         | 1        |
| 1/4   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \Bigg[ rac{b_p}{2} \Bigg( rac{\delta_b}{p_{fi}} \Bigg) \Bigg]$                                                                                        | 2        |
| 4/5   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$                                                   | 2        |
| 5/6   | $m_p\left[\frac{g}{2}(\theta) + p_b\left(\frac{2\delta_b}{g} - \frac{\delta_b + \delta_a}{g}\right)\right]$                                  | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_b}{2} - \frac{p_b\delta_a}{2}\right)\right]$                                                | 2        |
| 6/8   | $m_p \left[ \frac{g}{2} (\theta) + p_b \left( \frac{\delta_b + \delta_a}{g} - \frac{2\delta_a}{g} \right) \right]$                           | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_b}{2} - \frac{p_b\delta_a}{2}\right)\right]$                                                | 2        |
| 8/9   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) + s \left( \frac{2\delta_a}{g} \right) \right]$                 | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                             | 2        |
| 1/5   | $m_p \left[ \left( p_{fi} + p_b \right) \left( \frac{2\delta_b}{g} \right) \right]$                                                          | $m_p\left[\frac{2}{g}\left(\delta_b p_{fi}+\delta_b p_b\right)\right]$                                                                                       | 2        |
| 1/8   | $m_p\left[\left(s+p_b\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                         | $m_p\left[\frac{2}{g}\left(\delta_a s + \delta_a p_b\right)\right]$                                                                                          | 2        |
| 4/7   | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_b+p_{fi}\theta}{p_{fi}}\right)\right]$                                              | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi}\theta}{p_{fi}} \right) - \frac{g}{2} \left( \frac{\delta_b + p_{fi}\theta}{p_{fi}} \right) \right]$ | 2        |
| 6/7   | $m_p \left[ 2 p_b \left( \frac{\delta_b + \delta_a}{g} \right) \right]$                                                                      | $m_p\left[\frac{2}{g}\left(p_b\delta_b+p_b\delta_a\right)\right]$                                                                                            | 2        |

## Table 2-40 Internal Work Associated with Each Yield Line in theTwelve Bolt MRE 1/3 Four-Wide / Two-Wide Unstiffened End-Plate (Part 2 of 2)

| 7/9 | $m_p\left[\left(\frac{b_p-g}{2}\right)\left(\frac{\delta_a-s\theta}{s}\right)\right]$   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a - s\theta}{s} \right) - \frac{g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$ | 2 |
|-----|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1/9 | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$ | $m_p\left[rac{b_p}{2}\left(rac{\delta_a}{s} ight) ight]$                                                                               | 2 |

Summing up the internal work given in Table 2-40 and substituting  $\delta_a = h_4 \theta$ ,  $\delta_b = h_2 \theta$ , and  $\delta_c = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \left\{ \frac{b_{p}}{2} \left[ h_{1} \left( \frac{1}{p_{fo}} \right) + h_{2} \left( \frac{1}{p_{fi}} \right) + h_{4} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_{2} \left( p_{fi} + \frac{3p_{b}}{2} \right) + h_{4} \left( \frac{p_{b}}{2} + s \right) \right] + \frac{g}{2} \right\}$$
(2-102)

The external work,  $W_{E}$ , is given by Eq. (2-103). Setting the internal work and external work equal results in Eq. (2-104).

$$W_E = M_{pl} \theta \tag{2-103}$$

$$M_{pl} = 4m_p \left\{ \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2} \right\}$$
(2-104)

This equation is further simplified into the form given in Eq. (2-105) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-106).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-105}$$

$$Y = \frac{b_p}{2} \left[ h_1 \left( \frac{1}{p_{fo}} \right) + h_2 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_2 \left( p_{fi} + \frac{3p_b}{2} \right) + h_4 \left( \frac{p_b}{2} + s \right) \right] + \frac{g}{2}$$
(2-106)

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-105), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-107).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-107}$$

Note: Use  $p_{fi} = s$  if  $p_{fi} > s$
#### 2.16 Twelve Bolt Extended Stiffened End-Plate

The yield line pattern is shown in Figure 2-21. The rotation of each facet (facets are labeled in Figure 2-21) is given in Table 2-41 and the internal work associated with rotation along each yield line is given in Table 2-42. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 2-21. Variables associated with the virtual rotations, displacement, and endplate moment strength per unit length are described in Chapter 1. It is noted that hatched areas represent facets that are not rotating.



Figure 2-21 Yield Line Pattern for the Twelve Bolt Extended Stiffened End-Plate

| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | θ                                     | 0                           |
| 2     | 0                                     | 0                           |
| 3     | θ                                     | $2\delta_d$ / $g$           |
| 4     | 0                                     | $(\delta_c + \delta_d) / g$ |
| 5     | θ                                     | $2\delta_c / g$             |
| 6     | $-(\delta_c - p_{fo}\theta) / p_{fo}$ | 0                           |
| 7     | $(\delta_b + p_{fi}\theta) / p_{fi}$  | 0                           |
| 8     | 0                                     | 0                           |
| 9     | θ                                     | $2\delta_b$ / $g$           |
| 10    | 0                                     | $(\delta_a + \delta_b) / g$ |
| 11    | θ                                     | $2\delta_a / g$             |
| 12    | $-(\delta_a - s\theta) / s$           | 0                           |

Table 2-41 Rotation for Each Facet in theTwelve Bolt Extended Stiffened End-Plate

Table 2-42 Internal Work Associated with Each Yield Line in the Twelve Bolt Extended Stiffened End-Plate (Part 1 of 2)

| Yield | Internal Work                                                                                                                               | Simplified Internal Work                                                                                                              | Number   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                             | -                                                                                                                                     | of Lines |
| 1/3   | $m_p\left[\left(d_e + \frac{p_b}{2}\right)\left(\frac{2\delta_d}{g}\right)\right]$                                                          | $m_p \left[ \frac{2}{g} \left( \delta_d d_e + \frac{\delta_d p_b}{2} \right) \right]$                                                 | 2        |
| 1/5   | $m_p\left[\left(P_{fo} + \frac{p_b}{2}\right)\left(\frac{2\delta_c}{g}\right)\right]$                                                       | $m_p \left[ \frac{2}{g} \left( \delta_c  p_{fo} + \frac{\delta_c  p_b}{2} \right) \right]$                                            | 2        |
| 2/3   | $m_p \left[ d_e \left( \frac{2 \delta_d}{g} \right) \right]$                                                                                | $m_p\left[rac{2}{g}(d_e\delta_d) ight]$                                                                                              | 2        |
| 3/4   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_d}{g} - \frac{\delta_c + \delta_d}{g}\right)\right]$                       | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\delta_d}{2} - \frac{p_b(\delta_c + \delta_d)}{4}\right)\right]$            | 2        |
| 4/5   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_c + \delta_d}{g} - \frac{2\delta_c}{g}\right)\right]$                       | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\left(\delta_c + \delta_d\right)}{4} - \frac{p_b\delta_c}{2}\right)\right]$ | 2        |
| 5/6   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_c - p_{fo}\theta}{p_{fo}} \right) + p_{fo} \left( \frac{2\delta_c}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_c}{p_{fo}}\right) + \frac{2}{g}\left(\delta_c p_{fo}\right)\right]$                           | 2        |

| Yield | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                         | Number   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                              |                                                                                                                                                  | of Lines |
| 4/2   | $m_p \left[ p_b \left( \frac{\delta_c + \delta_d}{g} \right) \right]$                                                                        | $m_p \left[ \frac{2}{g} \left( \frac{p_b \delta_c + p_b \delta_d}{2} \right) \right]$                                                            | 2        |
| 2/6   | $m_p \Bigg[ rac{b_p - g}{2} \Bigg( rac{\delta_c - p_{fo} 	heta}{p_{fo}} \Bigg) \Bigg]$                                                     | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_c}{p_{fo}} - \theta \right) - \frac{g}{2} \left( \frac{\delta_c}{p_{fo}} - \theta \right) \right]$ | 2        |
| 1/6   | $m_p \left[ \frac{b_p}{2} \left( \theta + \frac{\delta_c - p_{fo} \theta}{p_{fo}} \right) \right]$                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_c}{p_{fo}} \right) \right]$                                                                        | 2        |
| 1/7   | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) \right]$                                           | $m_p \left[ rac{b_p}{2} \left( rac{\delta_b}{p_{fi}}  ight)  ight]$                                                                            | 2        |
| 7/9   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{fi} \theta}{p_{fi}} - \theta \right) + p_{fi} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(p_{fi}\delta_b\right)\right]$                                       | 2        |
| 1/9   | $m_p \left[ \left( p_{fi} + \frac{p_b}{2} \right) \left( \frac{2\delta_b}{g} \right) \right]$                                                | $m_p \left[ \frac{2}{g} \left( \delta_b  p_{fi} + \frac{\delta_b  p_b}{2} \right) \right]$                                                       | 2        |
| 1/11  | $m_p\left[\left(s+\frac{p_b}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                               | $m_p \left[ \frac{2}{g} \left( \delta_a s + \frac{\delta_a p_b}{2} \right) \right]$                                                              | 2        |
| 9/10  | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_a + \delta_b}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta) + \frac{2}{g}\left[\frac{p_b\left(\delta_b - \delta_a\right)}{4}\right]\right\}$                                  | 2        |
| 10/11 | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_a + \delta_b}{g} - \frac{2\delta_a}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta) + \frac{2}{g}\left[\frac{p_b\left(\delta_b - \delta_a\right)}{4}\right]\right\}$                                  | 2        |
| 11/12 | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                 | 2        |
| 10/8  | $m_p \Bigg[ p_b \Bigg( rac{\delta_a + \delta_b}{g} \Bigg) \Bigg]$                                                                           | $m_p\left\{\frac{2}{g}\left[\frac{p_b\left(\delta_a+\delta_b\right)}{2}\right]\right\}$                                                          | 2        |
| 7/8   | $m_p\left[\frac{b_p - g}{2}\left(\frac{\delta_b + p_{fi}\theta}{p_{fi}}\right)\right]$                                                       | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{fi}} + \theta \right) \right]$ | 2        |
| 8/12  | $m_p \left[ \frac{b_p - g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                                                           | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$           | 2        |
| 1/12  | $m_p\left[\frac{b_p}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right)\right]$                                                            | $m_p \left[ \frac{b_p}{2} \left( \frac{\delta_a}{s} \right) \right]$                                                                             | 2        |

Table 2-42 Internal Work Associated with Each Yield Line in the Twelve Bolt Extended Stiffened End-Plate (Part 2 of 2)

Summing up the internal work given in Table 2-42 and substituting  $\delta_a = h_4\theta$ ,  $\delta_b = h_3\theta$ ,  $\delta_c = h_2\theta$ , and  $\delta_d = h_1\theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \begin{cases} \frac{b_{p}}{2} \left[ h_{2} \left( \frac{1}{p_{fo}} \right) + h_{3} \left( \frac{1}{p_{fi}} \right) + h_{4} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( \frac{3p_{b}}{4} + d_{e} \right) + h_{2} \left( \frac{p_{b}}{4} + p_{fo} \right) + h_{3} \left( \frac{3p_{b}}{4} + p_{fi} \right) + h_{4} \left( \frac{p_{b}}{4} + s \right) \right] + \frac{5g}{4} \end{cases}$$
(2-108)

The external work,  $W_{E}$ , is given by Eq. (2-109). Setting the internal work and external work equal results in Eq. (2-110).

$$W_E = M_{pl} \theta \tag{2-109}$$

$$M_{pl} = 4m_p \begin{cases} \frac{b_p}{2} \left[ h_2 \left( \frac{1}{p_{fi}} \right) + h_3 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( \frac{3p_b}{4} + d_e \right) + h_2 \left( \frac{p_b}{4} + p_{fo} \right) + h_3 \left( \frac{3p_b}{4} + p_{fi} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right] + \frac{5g}{4} \end{cases}$$
(2-110)

This equation is further simplified into the form given in Eq. (2-111) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (2-112).

$$M_{pl} = F_{yp} t_p^{2} Y \tag{2-111}$$

$$Y = \begin{cases} \frac{b_p}{2} \left[ h_2 \left( \frac{1}{p_{fo}} \right) + h_3 \left( \frac{1}{p_{fi}} \right) + h_4 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( \frac{3p_b}{4} + d_e \right) + h_2 \left( \frac{p_b}{4} + p_{fo} \right) + h_3 \left( \frac{3p_b}{4} + p_{fi} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right] + \frac{5g}{4} \end{cases}$$
(2-112)

Note: Use  $p_{fi}=s$  if  $p_{fi} > s$  Use  $p_{fo}=s$  if  $p_{fo}>s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-111), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-113).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-113}$$

## **3** COLUMN SIDE YIELD LINE SOLUTIONS

#### 3.1 Two-Bolt Configurations

The configuration of two bolts on the column is associated with the two-bolt unstiffened flush end-plate connection. Figure 3-1 shows the different configurations with varied stiffening and proximity to the top of the column. The dimension,  $h_1$ , is the distance from the center of the beam compression flange to the tension bolt line.



Figure 3-1 Yield Line Pattern for Two-Bolt Configurations

The following describes how the equation for each yield line parameter was obtained. Table 3-1 summarizes the resulting yield line parameters.

- a) Continuous column that is unstiffened (Fig. 3-1(a)). The yield line parameter derivation is the same as two-bolt unstiffened flush end plate with the following substitutions:  $p_{fi} = s$  and  $b_p = b_{cf}$ .
- b) Continuous column that is stiffened (Fig. 3-1(b)). The derivation is the same as the two-bolt unstiffened flush end plate with the following substitutions:  $p_{fi} = p_{si}$  and  $b_p = b_{cf}$ .
- c) Top of column that is unstiffened (Fig. 3-1(c)). The derivation is provided later in this section.

d) Top of column with cap plate (Fig. 3-1(d)). The derivation is the same as the twobolt unstiffened flush end-plate with the following substitutions:  $p_{fi} = p_{cp}$  and  $b_p = b_{cf}$ .

| Table 3-1 Summary of Column Side Yield Line Parameters for |  |
|------------------------------------------------------------|--|
| <b>Two-Bolt Configurations</b>                             |  |

| Configuration               | Yield Line Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuous Unstiffened      | $Y_c = \frac{b_{cf} h_l}{h_l} + \frac{4h_l s}{h_l}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Column [Fig. 3-1(a)]        | s g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Continuous Stiffened Column | $Y = \frac{b_{cf}}{h} \left[ \frac{1}{h} \left( \frac{1}{h} + \frac{1}{h} \right) \right] + \frac{2}{h} \left[ h \left( \frac{1}{h} + s \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [Fig. 3-1(b)]               | $2\left[\frac{n_1}{p_{si}} + s\right] = g\left[\frac{n_1}{p_{si}} + s\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | Note: Use $p_{si} = s$ if $p_{si} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Top of Column, Unstiffened  | $Y_{c} = \left\{ \frac{b_{cf}}{h_{l}} \left[ h_{l} \left( \frac{1}{L} \right) - \frac{1}{L} \right] + \frac{2}{L} \left[ h_{l} \left( s + d_{e} \right) \right] + \frac{g}{L} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [Fig. 3-1(c)]               | $\begin{bmatrix} 2 \begin{bmatrix} 1 \\ s \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 \\ s \end{bmatrix} \begin{bmatrix} 1 $ |
| Top of Column with Cap      | $Y = \frac{b_{cf}}{h} \left[ h \left( \frac{1}{1} + \frac{1}{2} \right) \right] + \frac{2}{h} \left[ h \left( p + s \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Plate [Fig. 3-1(d)]         | $2\left[ \left( p_{cp} - s \right) \right] \left[ g \left[ \left( p_{cp} + s \right) \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | Note: Use $p_{cp}=s$ if $p_{cp} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## Derivation for the Unstiffened Top of a Column

The yield line pattern is shown in Figure 3-2. The rotation of each facet (facets are labeled in Figure 3-2) is given in Table 3-2 and the internal work associated with rotation along each yield line is given in Table 3-3. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 3-2. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.



Figure 3-2 Yield Line Pattern for the Unstiffened Top of the Column

|       | menea rop or m              | Coranni         |
|-------|-----------------------------|-----------------|
| Facet | $\theta_x$                  | $	heta_y$       |
| 1     | θ                           | 0               |
| 2     | θ                           | $2\delta_a / g$ |
| 3     | 0                           | 0               |
| 4     | $-(\delta_a - s\theta) / s$ | 0               |

| Table 3-2 Rotation | for Each Facet in the |
|--------------------|-----------------------|
| Unstiffened To     | on of the Column      |

| Yield | Internal Work                                                                                                       | Simplified Internal Work                                                                                                                  | Number   |
|-------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                     |                                                                                                                                           | of Lines |
| 2/3   | $m_p[d_e(\frac{2\delta_a}{g})]$                                                                                     | $m_p[\frac{2}{g}(\delta_a d_e)]$                                                                                                          | 2        |
| 2/4   | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                          | 2        |
| 3/4   | $m_p \left[ \frac{b_{cf} - g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                               | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$ | 2        |
| 1/2   | $m_p\left[\left(d_e+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                | $m_p\left\{\frac{2}{g}\left[\delta_a\left(d_e+s\right)\right]\right\}$                                                                    | 2        |
| 1/4   | $m_p \left[ \frac{b_{cf}}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                          | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_a}{s} \right) \right]$                                                                   | 2        |

Table 3-3 Internal Work Associated with Each Yield Line in the<br/>Unstiffened Top of the Column

Summing up the internal work given in Table 3-3 and substituting  $\delta_a = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{cf}}{2}\left[h_{l}\left(\frac{1}{s}\right) - \frac{1}{2}\right] + \frac{2}{g}\left[h_{l}\left(s + d_{e}\right)\right] + \frac{g}{4}\right\}$$
(3-1)

The external work,  $W_{E}$ , is given by Eq. (3-2). Setting the internal work and external work equal results in Eq. (3-3).

$$W_E = M_{pl} \theta \tag{3-2}$$

$$M_{pl} = 4m_p \left\{ \frac{b_{cf}}{2} \left[ h_l \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_l \left( s + d_e \right) \right] + \frac{g}{4} \right\}$$
(3-3)

This equation is further simplified into the form given in Eq. (3-4) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (3-5).

$$M_{pl} = F_{yp} t_p^2 Y_c \tag{3-4}$$

$$Y_c = \left\{ \frac{b_{cf}}{2} \left[ h_1 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_1 \left( s + d_e \right) \right] + \frac{g}{4} \right\}$$
(3-5)

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (3-4), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (3-6).

$$s = \frac{1}{2}\sqrt{b_{cf}g} \tag{3-6}$$

#### 3.2 Four-Bolt Configurations

The configuration of four bolts on the column is associated with the following end-plate connections: four-bolt unstiffened flush, four-bolt flush stiffened between the tension bolts, four-bolt flush stiffened below the tension bolts or four-bolt extended stiffened. Figure 3-3 shows the different configurations with varied stiffening and proximity to the top of the column. The dimensions,  $h_1$ , and  $h_2$ , are the distance from the center of the beam compression flange to the tension bolt lines.



**Figure 3-3 Yield Line Pattern for Four-Bolt Configurations** 

The following describes how the equation for each yield line parameter was obtained. Table 3-4 summarizes the resulting yield line parameters.

- a) Continuous column that is unstiffened (Fig. 3-3(a)). The derivation for the yield line parameter is the same as the four-bolt unstiffened flush end-plate with the following substitutions:  $p_{fi} = s$ ,  $b_p = b_{cf}$  and  $p_b = c$ .
- b) Continuous column that is stiffened (Fig. 3-3(b)). The derivation is the same as the four-bolt unstiffened flush end-plate with the following substitutions:  $p_{fi} = p_{si}$ ,  $b_p = b_{cf}$  and  $p_b = c$ .
- c) Continuous column that is stiffened between the bolt lines (Fig. 3-3(c)). The derivation is the same as the four-bolt flush end-plate stiffened between the bolt lines with the following substitutions:  $p_{fi} = s$  and  $b_p = b_{cf.}$
- d) Top of column that is unstiffened (Fig. 3-3(d)). The derivation is provided later in this section.
- e) Top of column with cap plate (Fig. 3-3(e)). The derivation is the same as the fourbolt unstiffened flush end-plate with the following substitutions:  $p_{fi} = p_{cp}$ ,  $b_p = b_{cf}$ and  $p_b = c$ .
- f) Top of column stiffened between the bolt lines (Fig. 3-3(f)). The derivation is the same as the four-bolt extended stiffened end-plate with the following substitutions:  $p_{fo} = p_{so}, p_{fi} = p_{si}$ , and  $b_p = b_{cf}$ .

| Configuration                                                | Yield Line Parameter                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuous Unstiffened<br>Column [Fig. 3-3(a)]               | $Y_c = \frac{b_{cf}}{2} \left[ h_1 \left( \frac{1}{s} \right) + h_2 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( s + \frac{3}{4}c \right) + h_2 \left( s + \frac{1}{4}c \right) \right] + \frac{g}{2}$                                                 |
| Continuous Column Stiffened<br>Above the Bolts [Fig. 3-3(b)] | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{si}} \right) + h_{2} \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_{1} \left( p_{si} + \frac{3}{4}c \right) + h_{2} \left( s + \frac{1}{4}c \right) \right] + \frac{g}{2}$                             |
|                                                              | Note: Use $p_{si} = s$ if $p_{si} > s$                                                                                                                                                                                                                                       |
| Continuous Column Stiffened<br>Between the Bolts [Fig. 3-    | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{s} + \frac{1}{p_{so}} \right) + h_{2} \left( \frac{1}{p_{si}} + \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_{1} \left( s + p_{so} \right) + h_{2} \left( p_{si} + s \right) \right]$                           |
| 3(c)]                                                        | Note: Use $p_{si}=s$ if $p_{si} > s$ Use $p_{so}=s$ if $p_{so} > s$                                                                                                                                                                                                          |
| Top of Column, Unstiffened<br>[Fig. 3-3(d)]                  | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{2} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_{1} \left( d_{e} + \frac{3}{4}c \right) + h_{2} \left( s + \frac{1}{4}c \right) \right] + \frac{3g}{4}$                                                       |
| Top of Column with Cap<br>Plate [Fig. 3-3(e)]                | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{l} \left( \frac{1}{p_{cp}} \right) + h_{2} \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_{l} \left( p_{cp} + \frac{3}{4}c \right) + h_{2} \left( s + \frac{1}{4}c \right) \right] + \frac{g}{2} \right]$                     |
|                                                              | Note: Use $p_{cp}=s$ if $p_{cp} > s$                                                                                                                                                                                                                                         |
| Top of Column Stiffened                                      | $Y_{c} = \frac{b_{cf}}{h_{1}} \left[ \frac{1}{h_{2}} + \frac{1}{h_{2}} \left[ \frac{1}{h_{2}} + \frac{1}{h_{2}} \right] - \frac{1}{h_{1}} + \frac{2}{h_{2}} \left[ h_{1} \left( d_{cg} + p_{sg} \right) + h_{2} \left( s + p_{si} \right) \right] + \frac{g}{h_{2}} \right]$ |
| Between the Bolts [Fig. 3-                                   | $2 \begin{bmatrix} 1 \\ p_{so} \end{bmatrix} = 2 \begin{bmatrix} p_{si} & s \end{bmatrix} = 2 \begin{bmatrix} 1 \\ g \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ c \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ c \end{bmatrix} = 4$                                          |
| 3(f)]                                                        | Note: Use $p_{si}=s$ if $p_{si} > s$ Use $p_{so}=s$ if $p_{so} > s$                                                                                                                                                                                                          |

# Table 3-4 Summary of Column Side Yield Line Parameters forFour-Bolt Configurations

#### Derivation for the Unstiffened Top of a Column

The yield line pattern is shown in Figure 3-4. The rotation of each facet (facets are labeled in Figure 3-4, hatching represents non-rotating facet) is given in Table 3-5 and the internal work associated with rotation along each yield line is given in Table 3-6. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 3-4. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1. Dimensions,  $h_1$ , and  $h_2$ , are the distance from the center of the beam compression flange to the tension bolt lines.





| <b>Table 3-5 Rotation for Each Facet in t</b> | he |
|-----------------------------------------------|----|
| Unstiffened Top of a Column                   |    |

| Clistification of a Column |                             |                             |  |
|----------------------------|-----------------------------|-----------------------------|--|
| Facet                      | $\theta_x$                  | $	heta_y$                   |  |
| 1                          | θ                           | 0                           |  |
| 2                          | 0                           | 0                           |  |
| 3                          | θ                           | $2\delta_b / g$             |  |
| 4                          | 0                           | $(\delta_a + \delta_b) / g$ |  |
| 5                          | θ                           | $2\delta_a / g$             |  |
| 6                          | $-(\delta_a - s\theta) / s$ | 0                           |  |

| Yield | Internal Work                                                                                                       | Simplified Internal Work                                                                                                                  | Number   |
|-------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                     |                                                                                                                                           | of Lines |
| 1/3   | $m_p\left[\left(d_e + \frac{c}{2}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                    | $m_p\left[\frac{2}{g}\delta_b\left(d_e+\frac{c}{2}\right)\right]$                                                                         | 2        |
| 1/5   | $m_p\left[\left(s+\frac{c}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                        | $m_p\left[\frac{2}{g}\delta_a\left(s+\frac{c}{2}\right)\right]$                                                                           | 2        |
| 1/6   | $m_p \left[ \frac{b_{cf}}{2} \left( \theta + \frac{\delta_a - s\theta}{s} \right) \right]$                          | $m_p \left[ rac{b_{cf}}{2} \left( rac{\delta_a}{s}  ight)  ight]$                                                                       | 2        |
| 3/4   | $m_p\left[\frac{g}{2}(\theta) + \frac{c}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_a + \delta_b}{g}\right)\right]$ | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}c\left(\frac{\delta_b - \delta_a}{4}\right)\right]$                                            | 2        |
| 4/5   | $m_p\left[\frac{g}{2}(\theta) + \frac{c}{2}\left(\frac{\delta_a + \delta_b}{g} - \frac{2\delta_a}{g}\right)\right]$ | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}c\left(\frac{\delta_b - \delta_a}{4}\right)\right]$                                            | 2        |
| 2/6   | $m_p \left[ \frac{b_{cf} - g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                               | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$ | 2        |
| 2/3   | $m_p \Bigg[ d_e \Bigg( rac{2\delta_b}{g} \Bigg) \Bigg]$                                                            | $m_p \left[ rac{2}{g} (d_e \delta_b)  ight]$                                                                                             | 2        |
| 2/4   | $m_p \left[ c \left( \frac{\delta_a + \delta_b}{g} \right) \right]$                                                 | $m_p\left[\frac{2}{g}c\left(\frac{\delta_a+\delta_b}{2}\right)\right]$                                                                    | 2        |
| 5/6   | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                          | 2        |

Table 3-6 Internal Work Associated with Each Yield Line in the<br/>Unstiffened Top of a Column

Summing up the internal work given in Table 3-6 and substituting  $\delta_a = h_2 \theta$  and  $\delta_b = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{cf}}{2}\left[h_{2}\left(\frac{1}{s}\right) - \frac{1}{2}\right] + \frac{2}{g}\left[h_{1}\left(d_{e} + \frac{3}{4}c\right) + h_{2}\left(s + \frac{1}{4}c\right)\right] + \frac{3g}{4}\right\}$$
(3-7)

The external work,  $W_{E}$ , is given by Eq. (3-8). Setting the internal work and external work equal results in Eq. (3-9).

$$W_E = M_{pl} \theta \tag{3-8}$$

$$M_{pl} = 4m_p \left\{ \frac{b_{cf}}{2} \left[ h_2 \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_1 \left( d_e + \frac{3}{4}c \right) + h_2 \left( s + \frac{1}{4}c \right) \right] + \frac{3g}{4} \right\}$$
(3-9)

This equation is further simplified into the form given in Eq. (3-10) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (3-11).

$$M_{pl} = F_{yp} t_p^{-2} Y_c \tag{3-10}$$

$$Y_{c} = \frac{b_{cf}}{2} \left[ h_{2} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_{1} \left( d_{e} + \frac{3}{4}c \right) + h_{2} \left( s + \frac{1}{4}c \right) \right] + \frac{3g}{4}$$
(3-11)

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$  is minimized. The derivative of Eq. (3-10), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (3-12).

$$s = \frac{1}{2}\sqrt{b_{cf}g} \tag{3-12}$$

#### 3.3 Six-Bolt 4W/2W Configurations

The four wide / two wide configuration of six bolts on the column is associated with the Six-Bolt Flush Four-Wide Flush End-Plate. Figure 3-5 shows the different configurations with varied stiffening and proximity to the top of the column. The dimensions,  $h_1$ , and  $h_2$ , are the distance from the center of the beam compression flange to the tension bolt lines.



Figure 3-5 Yield Line Pattern for Six-Bolt 4W/2W Configurations

The following describes how the equation for each yield line parameter was obtained. Table 3-7 summarizes the resulting yield line parameters.

- 1. Continuous column that is unstiffened (Fig. 3-5(a)). The derivation for the yield line parameter is the same as the four-bolt unstiffened flush end-plate with the following substitutions:  $p_{fi} = s$ ,  $b_p = b_{cf}$  and  $p_b = c$
- 2. Continuous column that is stiffened above the bolts (Fig. 3-5(b)). The derivation is same as the six-bolt flush four-wide unstiffened end-plate with the following substitutions:  $p_{fi} = p_{si}$ ,  $b_p = b_{cf}$  and  $p_b = c$
- 3. Top of column that is unstiffened (Fig. 3-5(c)). The derivation is the same as the column-side yield line parameter for the four-bolt configuration at the top of the column.

4. Top of column with cap plate (Fig. 3-5(d)). The derivation is the same as the sixbolt flush four wide flush end-plate with the following substitutions:  $p_{fi} = p_{cp}$ ,  $b_p = b_{cf}$  and  $p_b = c$ .

| Six-Bolt 4W/2W Configurations |                                                                                                                                                                                                                                           |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Configuration                 | Yield Line Parameter                                                                                                                                                                                                                      |  |
| Continuous Unstiffened        | $Y_{c} = \frac{b_{cf}}{b_{l}} \left[ h_{l} \left( \frac{1}{c} \right) + h_{2} \left( \frac{1}{c} \right) \right] + \frac{2}{c} \left[ h_{l} \left( s + \frac{3}{c} \right) + h_{2} \left( s + \frac{1}{c} \right) \right] + \frac{g}{c}$  |  |
| Column [Fig. 3-5(a)]          | $2 \left[ (s) (s) \right] g \left[ (4) (4) \right] 2$                                                                                                                                                                                     |  |
| Continuous Column Stiffened   | $Y_{c} = \frac{b_{cf}}{h} \left[ h_{1} \left( \frac{1}{1} \right) + h_{2} \left( \frac{1}{1} \right) \right] + \frac{2}{c} \left[ h_{1} \left( p_{si} + \frac{3}{c} \right) + h_{2} \left( s + \frac{1}{c} \right) \right] + \frac{g}{c}$ |  |
| Above the Bolts [Fig. 3-5(b)] | $2 \begin{bmatrix} 1 \\ p_{si} \end{bmatrix} \begin{bmatrix} 2 \\ s \end{bmatrix} g \begin{bmatrix} 1 \\ 1 \\ s \end{bmatrix} 4 \end{bmatrix} 2 \begin{bmatrix} 4 \\ 4 \end{bmatrix} 2$                                                   |  |
|                               | Note: Use $p_{si} = s$ if $p_{si} > s$                                                                                                                                                                                                    |  |
| Top of Column, Unstiffened    | $Y_{c} = \frac{b_{cf}}{h_{2}} \left[ h_{2} \left( \frac{1}{c} \right) - \frac{1}{c} \right] + \frac{2}{c} \left[ h_{1} \left( d_{e} + \frac{3}{c} \right) + h_{2} \left( s + \frac{1}{c} \right) \right] + \frac{3g}{c}$                  |  |
| [Fig. 3-5(c)]                 | $2 \begin{bmatrix} 2 \\ s \end{bmatrix} 2 \end{bmatrix} g \begin{bmatrix} 4 \\ -4 \end{bmatrix} 4 = 4 \end{bmatrix} 4$                                                                                                                    |  |
| Top of Column with Cap Plate  | $Y = \frac{b_{cf}}{b_{cf}} \left[ h\left(\frac{1}{b_{cf}}\right) + h_{2}\left(\frac{1}{b_{cf}}\right) \right] + \frac{2}{c} \left[ h\left(n_{c} + \frac{3}{c}\right) + h_{2}\left(s + \frac{1}{c}\right) \right] + \frac{g}{c} \right]$   |  |
| [Fig. 3-5(d)]                 | $I_c = 2 \left[ \frac{n_1}{p_{cp}} \right] + \frac{n_2}{s} \left[ s \right] + g \left[ \frac{n_1}{p_{cp}} + \frac{1}{4} \right] + \frac{n_2}{s} \left[ s + \frac{1}{4} \right] + 2 \left[ s + \frac{1}{4} \right] \right] + 2$            |  |
|                               | Note: Use $p_{cp}=s$ if $p_{cp} > s$                                                                                                                                                                                                      |  |

Table 3-7 Summary of Column Side Yield Line Parameters for Six-Bolt 4W/2W Configurations

#### **3.4** Six-Bolt, 3 Rows Configurations

This configuration of six bolts on the column is associated with the MRE Extended 1/2Unstiffened End-Plate. Figure 3-6 shows the different configurations with varied stiffening and proximity to the top of the column. The dimensions,  $h_1$ ,  $h_2$ , and  $h_3$ , are the distance from the center of the beam compression flange to the tension bolt lines.



Figure 3-6 Yield Line Pattern for Six-Bolt, 3 Rows Configurations

The following describes how the equation for each yield line parameter was obtained. Table 3-8 summarizes the resulting yield line parameters.

- a) Continuous column that is unstiffened (Fig. 3-6(a)). The derivation for the yield line parameter is the same as the four-bolt unstiffened flush end-plate with the following substitutions:  $p_b = c + p_b$ ,  $h_2 = h_3$ ,  $p_{fi} = s$  and  $b_p = b_{cf}$ .
- b) Continuous column that is stiffened between the bolts (Fig. 3-6(b)). The derivation is provided later in this section.
- c) Top of a column that is unstiffened (Fig. 3-6(c)). The derivation is the same as the column-side yield line parameter for the four-bolt configuration at the top of the column and *c* was replaced by  $c+p_b$ .

- d) Top of column with cap plate (Fig. 3-6(d)). The derivation is the same as the fourbolt flush unstiffened end-plate with the following substitutions:  $p_{fi} = p_{cp}$ ,  $b_p = b_{cf}$ ,  $h_2 = h_3$ , and  $p_b = c + p_b$ .
- e) Top of column stiffened between bolts (Fig. 3-6(d)). The derivation is the same as the MRE Extended 1/3 Stiffened End-Plate (alternative pattern) with the following substitutions:  $p_{fo} = p_{so}$ ,  $p_{fi} = p_{si}$ ,  $b_p = b_{cf}$  and  $p_b = p_b/2$ .

| Configuration                                                     | Yield Line Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuous Unstiffened<br>Column [Fig. 3-6(a)]                    | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{1}\left(\frac{1}{s}\right) + h_{3}\left(\frac{1}{s}\right) \right] + \frac{2}{g} \left[ h_{1}\left(s + \frac{3}{4}p_{b} + \frac{3}{4}c\right) + h_{3}\left(s + \frac{1}{4}p_{b} + \frac{1}{4}c\right) \right] + \frac{g}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Continuous Column<br>Stiffened Between the<br>Bolts [Fig. 3-6(b)] | $Y_{c} = \begin{cases} \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{so}} + \frac{1}{s} \right) + h_{2} \left( \frac{1}{p_{si}} \right) + h_{3} \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( p_{so} + s \right) + h_{2} \left( p_{si} + \frac{3}{4} p_{b} \right) + h_{3} \left( s + \frac{1}{4} p_{b} \right) \right] + \frac{g}{2} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                   | Note: Use $p_{si}=s$ if $p_{si} > s$ Use $p_{so}=s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Top of Column,<br>Unstiffened [Fig. 3-6(c)]                       | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{3} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_{1} \left( d_{e} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{3g}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Top of Column with Cap<br>Plate [Fig. 3-6(d)]                     | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{l} \left( \frac{1}{p_{cp}} \right) + h_{3} \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{3}{4} c \right) + h_{3} \left( s + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{3}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{b} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{c} + \frac{1}{4} c \right) \right] + \frac{g}{2} \left[ h_{l} \left( p_{cp} + \frac{1}{4} p_{c$ |
|                                                                   | Note: Use $p_{cp}=s$ if $p_{cp} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Top of Column Stiffened<br>Between Bolts [Fig. 3-<br>6(e)]        | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{so}} \right) + h_{2} \left( \frac{1}{p_{si}} \right) + h_{3} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_{1} \left( p_{so} + d_{e} \right) + h_{2} \left( p_{si} + \frac{3}{4} p_{b} \right) + h_{3} \left( \frac{1}{4} p_{b} + s \right) \right] + \frac{3g}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                   | Note: Use $p_{si}=s$ if $p_{si} > s$ Use $p_{so}=s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 3-8 Summary of Column Side Yield Line Parameters for Six-Bolt, 3 Rows Configurations

### Derivation for the Continuous Column Stiffened Between the Bolts

The yield line pattern is shown in Figure 3-7. The rotation of each facet (facets are labeled in Figure 3-7, hatching represents non-rotating facet) is given in Table 3-9 and the internal work associated with rotation along each yield line is given in Table 3-10. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 3-7. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.



Figure 3-7 Yield Line Pattern for the Unstiffened Top of a Column

| Table 3-   | 9 Rotation for Eac      | ch Facet i | n the     |
|------------|-------------------------|------------|-----------|
| Continuous | <b>Column Stiffened</b> | Between    | the Bolts |
|            |                         |            |           |

| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | θ                                     | 0                           |
| 2     | $(\delta_c + s\theta) / s$            | 0                           |
| 3     | θ                                     | $2\delta_c / g$             |
| 4     | $-(\delta_c - p_{so}\theta) / p_{so}$ | 0                           |
| 5     | $(\delta_b + p_{si}\theta) / p_{si}$  | 0                           |
| 6     | θ                                     | $2\delta_b$ / $g$           |
| 7     | 0                                     | 0                           |
| 8     | 0                                     | $(\delta_a + \delta_b) / g$ |
| 9     | θ                                     | $2\delta_a / g$             |
| 10    | $-(\delta_a - s\theta) / s$           | 0                           |

| Yield<br>Line | Internal Work                                                                                                                                | Simplified Internal Work                                                                                                                                          | Number<br>of Lines |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1/2           | $m_p\left[\left(\frac{b_{cf}}{2}\right)\left(\frac{\delta_c + s\theta}{s} - \theta\right)\right]$                                            | $m_p\left[\left(rac{b_{cf}}{2} ight)\left(rac{\delta_c}{s} ight) ight]$                                                                                         | 2                  |
| 1/3           | $m_p\left[\left(s+p_{so}\right)\left(\frac{2\delta_c}{g}\right)\right]$                                                                      | $m_p\left[\frac{2}{g}\left(s\delta_c+\delta_cp_{so}\right)\right]$                                                                                                | 2                  |
| 2/3           | $m_p\left[\frac{g}{2}\left(\frac{\delta_c + s\theta}{s} - \theta\right) + s\left(\frac{2\delta_c}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}(\frac{\delta_c}{s}) + \frac{2}{g}(\delta_c s)\right]$                                                                                       | 2                  |
| 2/4           | $m_p\left[\frac{b_{cf}-g}{2}\left(\frac{\delta_c+s\theta}{s}+\frac{\delta_c-p_{so}\theta}{p_{so}}\right)\right]$                             | $m_p \left[ \frac{b_{cf}}{2} \delta_c \left( \frac{1}{s} + \frac{1}{p_{so}} \right) - \frac{g}{2} \delta_c \left( \frac{1}{s} + \frac{1}{p_{so}} \right) \right]$ | 2                  |
| 3/4           | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_c - p_{so}\theta}{p_{so}}\right) + p_{so}\left(\frac{2\delta_c}{g}\right)\right]$           | $m_p\left[\frac{g}{2}\left(\frac{\delta_c}{p_{fo}}\right) + \frac{2}{g}\left(\delta_c p_{fo}\right)\right]$                                                       | 2                  |
| 1/4           | $m_p \left[ \frac{b_{cf}}{2} \left( \theta + \frac{\delta_c - p_{so}\theta}{p_{so}} \right) \right]$                                         | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_c}{p_{so}} \right) \right]$                                                                                      | 2                  |
| 1/5           | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_b + p_{si}\theta}{p_{si}} - \theta \right) \right]$                                         | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_b}{p_{si}} \right) \right]$                                                                                      | 2                  |
| 1/6           | $m_p\left[\left(\frac{p_{cf}}{2}+p_{si}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                       | $m_p \left[ \frac{2}{g} \left( \delta_b  \frac{p_b}{2} + \delta_b  p_{si} \right) \right]$                                                                        | 2                  |
| 5/6           | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{si} \theta}{p_{si}} - \theta \right) + p_{si} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{fi}}\right) + \frac{2}{g}\left(\delta_b p_{fi}\right)\right]$                                                       | 2                  |
| 5/7           | $m_p\left[\frac{b_{cf}-g}{2}\left(\frac{\delta_b+p_{si}\theta}{p_{si}}\right)\right]$                                                        | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_b}{p_{si}} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{si}} + \theta \right) \right]$               | 2                  |
| 6/8           | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_a + \delta_b}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta) + \frac{2}{g}\left[\frac{p_b}{2}\left(\frac{\delta_b - \delta_a}{2}\right)\right]\right\}$                                         | 2                  |
| 7/8           | $m_p \left[ 2 \frac{p_b}{2} \left( \frac{\delta_a + \delta_b}{g} \right) \right]$                                                            | $m_p \left\{ \frac{2}{g} \left[ \frac{p_b}{2} (\delta_a + \delta_b) \right] \right\}$                                                                             | 2                  |
| 8/9           | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_a + \delta_b}{g} - \frac{2\delta_a}{g}\right)\right]$                        | $m_p\left\{\frac{g}{2}(\theta) + \frac{2}{g}\left[\frac{p_b}{2}\left(\frac{\delta_b - \delta_a}{2}\right)\right]\right\}$                                         | 2                  |
| 7/10          | $m_p \left[ \frac{b_{cf} - g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                                                        | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$                         | 2                  |
| 1/9           | $m_p\left[\left(\frac{p_b}{2}+s\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                               | $m_p\left[\frac{2}{g}\left(\delta_a \frac{p_b}{2} + \delta_a s\right)\right]$                                                                                     | 2                  |
| 9/10          | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                          | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(\delta_a s\right)\right]$                                                                 | 2                  |
| 1/10          | $m_p\left[rac{b_{cf}}{2}\left(	heta+rac{\delta_a-s	heta}{s} ight) ight]$                                                                   | $m_p \left[ rac{b_{cf}}{2} \left( rac{\delta_a}{s}  ight)  ight]$                                                                                               | 2                  |

 

 Table 3-10 Internal Work Associated with Each Yield Line in the Continuous Column Stiffened Between the Bolts

Summing up the internal work given in Table 3-10 and substituting  $\delta_a = h_3 \theta$ ,  $\delta_b = h_2 \theta$ , and  $\delta_c = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \begin{cases} \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{so}} + \frac{1}{s} \right) + h_{2} \left( \frac{1}{p_{si}} \right) + h_{3} \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( p_{so} + s \right) + h_{2} \left( p_{si} + \frac{3}{4} p_{b} \right) + h_{3} \left( s + \frac{1}{4} p_{b} \right) \right] + \frac{g}{2} \end{cases}$$
(2-13)

The external work,  $W_E$ , is given by Eq. (2-14). Setting the internal work and external work equal results in Eq. (2-15).

$$W_E = M_{pl} \theta \tag{2-14}$$

$$M_{pl} = 4m_p \begin{cases} \frac{b_{cf}}{2} \left[ h_1 \left( \frac{1}{p_{so}} + \frac{1}{s} \right) + h_2 \left( \frac{1}{p_{si}} \right) + h_3 \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_1 \left( p_{so} + s \right) + h_2 \left( p_{si} + \frac{3}{4} p_b \right) + h_3 \left( s + \frac{1}{4} p_b \right) \right] + \frac{g}{2} \end{cases}$$
(2-15)

This equation is further simplified into the form given in Eq. (2-16) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter,  $Y_c$ , as given in Eq. (2-17).

$$M_{pl} = F_{yp} t_p^{2} Y_c \tag{2-16}$$

$$Y_{c} = \begin{cases} \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{so}} + \frac{1}{s} \right) + h_{2} \left( \frac{1}{p_{si}} \right) + h_{3} \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( p_{so} + s \right) + h_{2} \left( p_{si} + \frac{3}{4} p_{b} \right) + h_{3} \left( s + \frac{1}{4} p_{b} \right) \right] + \frac{g}{2} \end{cases}$$
(2-17)

Note: Use  $p_{fi}=s$  if  $p_{fi} > s$  Use  $p_{fo}=s$  if  $p_{fo} > s$ 

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (2-16), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (2-18).

$$s = \frac{1}{2}\sqrt{b_p g} \tag{2-18}$$

### 3.5 Eight-Bolt, 4 Rows Configurations

This configuration of eight bolts on the column is associated with the MRE 1/3 Unstiffened End-Plate, MRE 1/3 Stiffened End-Plate, and Eight-Bolt Extended Stiffened End-Plate. Figure 3-8 shows the different configurations with varied stiffening and proximity to the top of the column. The dimensions,  $h_1$ ,  $h_2$ ,  $h_3$ , and  $h_4$ , are the distance from the center of the beam compression flange to the tension bolt lines.



Figure 3-8 Yield Line Pattern for Eight-Bolt, 4 Rows Configurations

The following describes how the equation for each yield line parameter was obtained. Table 3-11 summarizes the resulting yield line parameters.

- a) Continuous column that is unstiffened (Fig. 3-8(a)). The derivation is provided later in this section.
- b) Continuous column that is stiffened below the first bolt line (Fig. 3-8(b)). The derivation is same as the Continuous Column Stiffened Between the Bolts of 6-bolt Configuration (Figure 3.6b), *pb* is replaced by 2*pb* and h<sub>3</sub> is replaced by h<sub>4</sub>.
- c) Continuous column that is stiffened below the second bolt line (Fig. 3-8(c)). The derivation is provided later in this section.
- d) Top of a column that is unstiffened (Fig. 3-8(d)). The derivation is the same as the column-side yield line parameter for the four-bolt configuration at the top of the column.
- e) Top of column with cap plate (Fig. 3-8(e)). The derivation is the same as the fourbolt flush unstiffened end-plate with the following substitutions:  $p_{fi} = p_{cp}$ ,  $p_b = 2p_b+c$ ,  $h_2 = h_4$  and  $b_p = b_{cf}$ .
- f) Top of the column stiffened below the first bolt line (Fig. 3-8(f)). The derivation is the same as the MRE Extended 1/3 Stiffened End-Plate (Alternate Pattern) with the following substitutions:  $p_{fi} = p_{si}$ ,  $p_{fo} = p_{so}$  and  $b_p = b_{cf}$ .
- g) Top of the column stiffened below the second bolt line (Fig. 3-8(g)). The derivation is the same as the Eight Bolt Extended Stiffened End-Plate (Alternate Pattern) with the following substitutions:  $p_{fi} = p_{si}$ ,  $p_{fo} = p_{so}$ , and  $b_p = b_{cf}$ .

|                                                                               | Eight-Bolt, 4 Kows Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configuration                                                                 | Yield Line Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Continuous Unstiffened<br>Column [Fig. 3-8(a)]                                | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{1}\left(\frac{1}{s}\right) + h_{4}\left(\frac{1}{s}\right) \right] + \frac{2}{g} \left[ h_{1}\left(p_{b} + \frac{c}{2} + s\right) + h_{2}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{3}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right) \right] + \frac{g}{2} \left[ h_{1}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(\frac$ |
| Continuous Column<br>Stiffened Below the First<br>Bolt Line<br>[Fig. 3-8(b)]  | $Y_{c} = \begin{cases} \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{so}} + \frac{1}{s} \right) + h_{2} \left( \frac{1}{p_{si}} \right) + h_{4} \left( \frac{1}{s} \right) \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( p_{so} + s \right) + h_{2} \left( p_{si} + \frac{3}{2} p_{b} \right) + h_{4} \left( s + \frac{1}{2} p_{b} \right) \right] + \frac{g}{2} \end{cases}$<br>Note: Use $p_{si} = s$ if $p_{si} > s$ Use $p_{so} = s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Continuous Column<br>Stiffened Below the Second<br>Bolt Line<br>[Fig. 3-8(c)] | $Y_{c} = \begin{cases} \frac{b_{cf}}{2} \left[ h_{1}\left(\frac{1}{s}\right) + h_{2}\left(\frac{1}{p_{so}}\right) + h_{3}\left(\frac{1}{p_{si}}\right) + h_{4}\left(\frac{1}{s}\right) \right] + \dots \\ \frac{2}{g} \left[ h_{1}\left(\frac{3p_{b}}{4} + s\right) + h_{2}\left(\frac{p_{b}}{4} + p_{so}\right) + h_{3}\left(\frac{3p_{b}}{4} + p_{si}\right) + h_{4}\left(s + \frac{p_{b}}{4}\right) \right] + g \end{cases}$<br>Note: Use $p_{si}$ =s if $p_{si}$ > s Use $p_{so}$ =s if $p_{so}$ > s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Top of Column Unstiffened<br>[Fig. 3-8(d)]                                    | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{4} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{g} \left[ h_{1} \left( d_{e} + \frac{3}{4} (2p_{b} + c) \right) + h_{4} \left( s + \frac{1}{4} (2p_{b} + c) \right) \right] + \frac{3g}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Top of Column with Cap<br>Plate [Fig. 3-8(e)]                                 | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{cp}} \right) + h_{4} \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_{1} \left( p_{cp} + \frac{3}{4} (2p_{b} + c) \right) + h_{4} \left( s + \frac{1}{4} (2p_{b} + c) \right) \right] + \frac{g}{2}$<br>Note: Use $p_{cp} = s$ if $p_{cp} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Top of Column Stiffened<br>Below the First Bolt Line<br>[Fig. 3-8(f)]         | $Y_{c} = \begin{cases} \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{so}} \right) + h_{2} \left( \frac{1}{p_{si}} \right) + h_{4} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( p_{so} + d_{e} \right) + h_{2} \left( p_{si} + \frac{3}{2} p_{b} \right) + h_{4} \left( \frac{1}{2} p_{b} + s \right) \right] + \frac{3g}{4} \end{cases}$<br>Note: Use $p_{si} = s$ if $p_{si} > s$ Use $p_{so} = s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Top of Column Stiffened<br>Below the Second Bolt Line<br>[Fig. 3-8(g)]        | $Y_{c} = \begin{cases} \frac{b_{cf}}{2} \left[ h_{2} \left( \frac{1}{p_{so}} \right) + h_{3} \left( \frac{1}{p_{si}} \right) + h_{4} \left( \frac{1}{s} \right) - \frac{1}{2} \right] + \dots \\ \frac{2}{g} \left[ h_{1} \left( \frac{3p_{b}}{4} + d_{e} \right) + h_{2} \left( \frac{p_{b}}{4} + p_{so} \right) + h_{3} \left( \frac{3p_{b}}{4} + p_{si} \right) + h_{4} \left( s + \frac{p_{b}}{4} \right) \right] + \frac{5g}{4} \end{cases}$ Note: Use $p_{si} = s$ if $p_{si} > s$ Use $p_{so} = s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# Table 3-11 Summary of Column Side Yield Line Parameters for Eight-Bolt, 4 Rows Configurations

#### Derivation for the Continuous Unstiffened Column

The yield line pattern is shown in Figure 3-9. The rotation of each facet (facets are labeled in Figure 3-9) is given in Table 3-12 and the internal work associated with rotation along each yield line is given in Table 3-13. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 3-9. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.



Figure 3-9 Yield Line Pattern for the Continuous Unstiffened Column

| Facet | $\theta_x$                  | $	heta_y$                                               |
|-------|-----------------------------|---------------------------------------------------------|
| 1     | θ                           | 0                                                       |
| 2     | $(\delta_d + s\theta) / s$  | 0                                                       |
| 3     | θ                           | $2\delta_d / g$                                         |
| 4     | 0                           | $(\delta_a + \delta_d) / g = (\delta_b + \delta_c) / g$ |
| 5     | 0                           | 0                                                       |
| 6     | θ                           | $2\delta_a / g$                                         |
| 7     | $-(\delta_a - s\theta) / s$ | 0                                                       |

# Table 3-12 Rotation for Each Facet in the Continuous Unstiffened Column

## Table 3-13 Internal Work Associated with Each Yield Line in the Continuous Unstiffened Column

| Yield<br>Line | Internal Work                                                                                                                                     | Simplified Internal Work                                                                                                                                                     | Number<br>of Lines |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1/2           | $m_p\left(\frac{b_{cf}}{2}\right)\left(\frac{\delta_d + s\theta}{s} - \theta\right)$                                                              | $m_p \left(rac{b_{cf}}{2} ight) \left(rac{\delta_d}{s} ight)$                                                                                                              | 2                  |
| 2/3           | $m_p\left[\left(\frac{g}{2}\right)\left(\frac{\delta_d + s\theta}{s} - \theta\right) + s\left(\frac{2\delta_d}{g}\right)\right]$                  | $m_p\left[\left(\frac{g}{2}\right)\frac{\delta_d}{s} + \left(\frac{2}{g}\right)s\delta_d\right]$                                                                             | 2                  |
| 3/4           | $m_p\left[\left(\frac{g}{2}\right)\theta + \left(\frac{c}{2} + p_b\right)\left(\frac{2\delta_d}{g} - \frac{\delta_a + \delta_d}{g}\right)\right]$ | $m_p\left\{\left(\frac{g}{2}\right)\theta + \left(\frac{2}{g}\right)\left[\left(\frac{c}{2} + p_b\right)\left(\frac{\delta_d}{2} - \frac{\delta_a}{2}\right)\right]\right\}$ | 2                  |
| 4/5           | $m_p\left[(2p_b+c)\left(\frac{\delta_b+\delta_c}{g}\right)\right]$                                                                                | $m_p\left(\frac{2}{g}\right)\left[(2p_b+c)\left(\frac{\delta_b+\delta_c}{2}\right)\right]$                                                                                   | 2                  |
| 4/6           | $m_p\left[\left(\frac{g}{2}\right)\theta + \left(\frac{c}{2} + p_b\right)\left(\frac{\delta_d + \delta_a}{g} - \frac{2\delta_a}{g}\right)\right]$ | $m_p\left\{\left(\frac{g}{2}\right)\theta + \left(\frac{2}{g}\right)\left[\left(\frac{c}{2} + p_b\right)\left(\frac{\delta_d}{2} - \frac{\delta_a}{2}\right)\right]\right\}$ | 2                  |
| 6/7           | $m_p\left[\left(\frac{g}{2}\right)\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                  | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                                             | 2                  |
| 7/1           | $m_p\left[\frac{b_{cf}}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right)\right]$                                                              | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_a}{s} \right) \right]$                                                                                                      | 2                  |
| 6/1           | $m_p\left[\left(s+p_b+\frac{c}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                                  | $m_p\left(\frac{2}{g}\right)\left[\left(s+p_b+\frac{c}{2}\right)\delta_a\right]$                                                                                             | 2                  |
| 3/1           | $m_p\left[\left(s+p_b+\frac{c}{2}\right)\left(\frac{2\delta_d}{g}\right)\right]$                                                                  | $m_p\left(\frac{2}{g}\right)\left[\left(s+p_b+\frac{c}{2}\right)\delta_d\right]$                                                                                             | 2                  |
| 2/5           | $m_p\left[\left(\frac{b_{cf}-g}{2}\right)\left(\frac{\delta_d+s\theta}{s}\right)\right]$                                                          | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_d}{s} + \theta \right) - \frac{g}{2} \left( \frac{\delta_d}{s} + \theta \right) \right]$                                    | 2                  |
| 5/7           | $m_p\left[\left(\frac{b_{cf}-g}{2}\right)\left(\frac{\delta_a-s\theta}{s}\right)\right]$                                                          | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$                                    | 2                  |

Summing up the internal work given in Table 3-13 and substituting  $\delta_a = h_4 \theta$ ,  $\delta_b = h_3 \theta$ ,  $\delta_c = h_2 \theta$ , and  $\delta_d = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta\left\{\frac{b_{cf}}{2}\left[h_{1}\left(\frac{1}{s}\right) + h_{4}\left(\frac{1}{s}\right)\right] + \frac{2}{g}\left[h_{1}\left(p_{b} + \frac{c}{2} + s\right) + h_{2}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{3}\left(\frac{p_{b}}{2} + \frac{c}{4}\right) + h_{4}\left(s\right)\right] + \frac{g}{2}\right\}$$
(3-19)

The external work,  $W_E$ , is given by Eq. (3-20). Setting the internal work and external work equal results in Eq. (3-21).

$$W_E = M_{pl} \theta \tag{3-20}$$

$$M_{pl} = 4m_p \left\{ \frac{b_{cf}}{2} \left[ h_1 \left( \frac{1}{s} \right) + h_4 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_b + \frac{c}{2} + s \right) + h_2 \left( \frac{p_b}{2} + \frac{c}{4} \right) + h_3 \left( \frac{p_b}{2} + \frac{c}{4} \right) + h_4 \left( s \right) \right] + \frac{g}{2} \right\} (3-21)$$

This equation is further simplified into the form given in Eq. (3-22) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (3-23).

$$M_{pl} = F_{yp} t_p^{2} Y_c \tag{3-22}$$

$$Y_{c} = \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{s} \right) + h_{4} \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_{1} \left( p_{b} + \frac{c}{2} + s \right) + h_{2} \left( \frac{p_{b}}{2} + \frac{c}{4} \right) + h_{3} \left( \frac{p_{b}}{2} + \frac{c}{4} \right) + h_{4} \left( s \right) \right] + \frac{g}{2}$$
(3-23)

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (3-22), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (3-24).

$$s = \frac{1}{2}\sqrt{b_{cf}g} \tag{3-24}$$

### Derivation for the Continuous Column Stiffened Below the Second Bolt Line

The yield line pattern is shown in Figure 3-10. The rotation of each facet (facets are labeled in Figure 3-10) is given in Table 3-14 and the internal work associated with rotation along each yield line is given in Table 3-15. The yield lines are identified by the adjacent facet numbers (e.g., yield line 1/2 separates facets 1 and 2). Variables associated with the geometry of the connection are shown in Figure 3-10. Variables associated with the virtual rotations, displacement, and end-plate moment strength per unit length are described in Chapter 1.



Figure 3-10 Yield Line Pattern for the Continuous Column Stiffened Below the Second Bolt Line

| Facet | $\theta_x$                            | $	heta_y$                   |
|-------|---------------------------------------|-----------------------------|
| 1     | heta                                  | 0                           |
| 2     | $(\delta_d + s\theta) / s$            | 0                           |
| 3     | θ                                     | 2δ <sub>d</sub> / g         |
| 4     | 0                                     | $(\delta_c + \delta_d) / g$ |
| 5     | 0                                     | 0                           |
| 6     | 0                                     | $2\delta_c / g$             |
| 7     | $-(\delta_c - p_{so}\theta) / p_{so}$ | 0                           |
| 8     | $(\delta_b + p_{si}\theta) / p_{si}$  | 0                           |
| 9     | θ                                     | 2δ <sub>b</sub> / g         |
| 10    | 0                                     | $(\delta_a + \delta_b) / g$ |
| 11    | 0                                     | 0                           |
| 12    | heta                                  | $2\delta_a / g$             |
| 13    | $-(\delta_a - s\theta) / s$           | 0                           |

 Table 3-14 Rotation for Each Facet in the

 Continuous Column Stiffened Below the Second Bolt Line

 Table 3-15 Internal Work Associated with Each Yield Line in the

 Continuous Column Stiffened Below the Second Bolt Line (Part 1 of 2)

| Yield | Internal Work                                                                                 | Simplified Internal Work                                                                                    | Number   |
|-------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                               |                                                                                                             | of Lines |
| 1/2   | $m_p[rac{b_{cf}}{2}(rac{\delta_d+s\theta}{s}-	heta)]$                                       | $m_p[rac{b_{cf}}{2}(rac{\delta_d}{s})]$                                                                   | 2        |
| 2/3   | $m_p[\frac{g}{2}(\frac{\delta_d + s\theta}{s} - \theta) + s\frac{2\delta_d}{g}]$              | $m_p[\frac{g}{2}(\frac{\delta_d}{s}) + \frac{2}{g}(s\delta_d)]$                                             | 2        |
| 2/5   | $m_p[\frac{b_{cf}-g}{2}(\frac{\delta_d+s\theta}{s})]$                                         | $m_p[\frac{b_{cf}}{2}(\frac{\delta_d}{s}+\theta)-\frac{g}{2}(\frac{\delta_d}{s}+\theta)]$                   | 2        |
| 1/3   | $m_p[(s+\frac{p_b}{2})\frac{2\delta_d}{g}]$                                                   | $m_p[\frac{2}{g}\delta_d(s+\frac{p_b}{2})]$                                                                 | 2        |
| 3/4   | $m_p[\frac{g}{2}\theta + \frac{p_b}{2}(\frac{2\delta_d}{g} - \frac{\delta_c + \delta_d}{g})]$ | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_d-\delta_c\right)}{4}\right]\right\}$ | 2        |
| 4/5   | $m_p \left[ p_b \left( \frac{\delta_c + \delta_d}{g} \right) \right]$                         | $m_p \left[ \frac{2}{g} \left( \frac{p_b \delta_c + p_b \delta_d}{2} \right) \right]$                       | 2        |

| Yield | Internal Work                                                                                                                               | Simplified Internal Work                                                                                                                            | Number   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Line  |                                                                                                                                             |                                                                                                                                                     | of Lines |
| 4/6   | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_c + \delta_d}{g} - \frac{2\delta_c}{g}\right)\right]$                       | $m_p\left[\frac{g}{2}(\theta) + \frac{2}{g}\left(\frac{p_b\left(\delta_c + \delta_d\right)}{4} - \frac{p_b\delta_c}{2}\right)\right]$               | 2        |
| 1/6   | $m_p\left[\left(p_{so} + \frac{p_b}{2}\right)\left(\frac{2\delta_c}{g}\right)\right]$                                                       | $m_p \left[ \frac{2}{g} \left( \delta_c  p_{so} + \frac{\delta_c  p_b}{2} \right) \right]$                                                          | 2        |
| 6/7   | $m_p \left[ \frac{g}{2} \left( \theta + \frac{\delta_c - p_{so}\theta}{p_{so}} \right) + p_{fo} \left( \frac{2\delta_c}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_c}{p_{so}}\right) + \frac{2}{g}\left(\delta_c p_{so}\right)\right]$                                         | 2        |
| 5/7   | $m_p\left[\frac{b_{cf}-g}{2}\left(\frac{\delta_c-p_{so}\theta}{p_{so}}\right)\right]$                                                       | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_c}{p_{so}} - \theta \right) - \frac{g}{2} \left( \frac{\delta_c}{p_{so}} - \theta \right) \right]$ | 2        |
| 1/7   | $m_p\left[\frac{b_{cf}}{2}\left(\theta+\frac{\delta_c-p_{so}\theta}{p_{so}}\right)\right]$                                                  | $m_p \Bigg[ rac{b_{cf}}{2} \Bigg( rac{\delta_c}{p_{so}} \Bigg) \Bigg]$                                                                            | 2        |
| 1/8   | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_b + p_{si}\theta}{p_{si}} - \theta \right) \right]$                                        | $m_p\left[\frac{b_{cf}}{2}\left(\frac{\delta_b}{p_{si}}\right)\right]$                                                                              | 2        |
| 8/9   | $m_p \left[ \frac{g}{2} \left( \frac{\delta_b + p_{si}\theta}{p_{si}} - \theta \right) + p_{si} \left( \frac{2\delta_b}{g} \right) \right]$ | $m_p\left[\frac{g}{2}\left(\frac{\delta_b}{p_{si}}\right) + \frac{2}{g}\left(p_{si}\delta_b\right)\right]$                                          | 2        |
| 8/11  | $m_p\left[\frac{b_{cf}-g}{2}\left(\frac{\delta_b+p_{si}\theta}{p_{si}}\right)\right]$                                                       | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_b}{p_{si}} + \theta \right) - \frac{g}{2} \left( \frac{\delta_b}{p_{si}} + \theta \right) \right]$ | 2        |
| 1/9   | $m_p\left[\left(p_{si}+\frac{p_b}{2}\right)\left(\frac{2\delta_b}{g}\right)\right]$                                                         | $m_p \left[ \frac{2}{g} \left( \delta_b p_{si} + \frac{\delta_b p_b}{2} \right) \right]$                                                            | 2        |
| 9/10  | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{2\delta_b}{g} - \frac{\delta_a + \delta_b}{g}\right)\right]$                       | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_b-\delta_a\right)}{4}\right]\right\}$                                         | 2        |
| 10/11 | $m_p \left[ p_b \left( rac{\delta_a + \delta_b}{g}  ight)  ight]$                                                                          | $m_p\left\{\frac{2}{g}\left[\frac{p_b\left(\delta_a+\delta_b\right)}{2}\right]\right\}$                                                             | 2        |
| 10/12 | $m_p\left[\frac{g}{2}(\theta) + \frac{p_b}{2}\left(\frac{\delta_a + \delta_b}{g} - \frac{2\delta_a}{g}\right)\right]$                       | $m_p\left\{\frac{g}{2}(\theta)+\frac{2}{g}\left[\frac{p_b\left(\delta_b-\delta_a\right)}{4}\right]\right\}$                                         | 2        |
| 11/13 | $m_p \left[ \frac{b_{cf} - g}{2} \left( \frac{\delta_a - s\theta}{s} \right) \right]$                                                       | $m_p \left[ \frac{b_{cf}}{2} \left( \frac{\delta_a}{s} - \theta \right) - \frac{g}{2} \left( \frac{\delta_a}{s} - \theta \right) \right]$           | 2        |
| 12/13 | $m_p\left[\frac{g}{2}\left(\theta + \frac{\delta_a - s\theta}{s}\right) + s\left(\frac{2\delta_a}{g}\right)\right]$                         | $m_p\left[\frac{g}{2}\left(\frac{\delta_a}{s}\right) + \frac{2}{g}\left(s\delta_a\right)\right]$                                                    | 2        |
| 1/12  | $m_p\left[\left(s+\frac{p_b}{2}\right)\left(\frac{2\delta_a}{g}\right)\right]$                                                              | $m_p \left[ \frac{2}{g} \left( \delta_a \overline{s + \frac{\delta_a p_b}{2}} \right) \right]$                                                      | 2        |
| 1/13  | $m_p \left[ \frac{b_{cf}}{2} \left( \theta - \frac{-\delta_a + s\theta}{s} \right) \right]$                                                 | $m_p\left[\frac{b_{cf}}{2}\left(\frac{\delta_a}{s}\right)\right]$                                                                                   | 2        |

 Table 3-15 Internal Work Associated with Each Yield Line in the

 Continuous Column Stiffened Below the Second Bolt Line (Part 2 of 2)

Summing up the internal work given in Table 3-15 and substituting  $\delta_a = h_4 \theta$ ,  $\delta_b = h_3 \theta$ ,  $\delta_c = h_2 \theta$ , and  $\delta_d = h_1 \theta$  results in the following equation for internal work:

$$W_{I} = 4m_{p}\theta \begin{cases} \frac{b_{cf}}{2} \left[ h_{1}\left(\frac{1}{s}\right) + h_{2}\left(\frac{1}{p_{so}}\right) + h_{3}\left(\frac{1}{p_{si}}\right) + h_{4}\left(\frac{1}{s}\right) \right] + \dots \\ \frac{2}{g} \left[ h_{1}\left(\frac{3p_{b}}{4} + s\right) + h_{2}\left(\frac{p_{b}}{4} + P_{so}\right) + h_{3}\left(\frac{3p_{b}}{4} + p_{si}\right) + h_{4}\left(s + \frac{p_{b}}{4}\right) \right] + g \end{cases}$$
(3-25)

The external work,  $W_E$ , is given by Eq. (3-26). Setting the internal work and external work equal results in Eq. (3-27).

$$W_E = M_{pl} \theta \tag{3-26}$$

$$M_{pl} = 4m_{p} \begin{cases} \frac{b_{cf}}{2} \left[ h_{1}\left(\frac{1}{s}\right) + h_{2}\left(\frac{1}{p_{so}}\right) + h_{3}\left(\frac{1}{p_{si}}\right) + h_{4}\left(\frac{1}{s}\right) \right] + \dots \\ \frac{2}{g} \left[ h_{1}\left(\frac{3p_{b}}{4} + s\right) + h_{2}\left(\frac{p_{b}}{4} + P_{so}\right) + h_{3}\left(\frac{3p_{b}}{4} + P_{si}\right) + h_{4}\left(s + \frac{p_{b}}{4}\right) \right] + g \end{cases}$$
(3-27)

This equation is further simplified into the form given in Eq. (3-28) by substituting the moment capacity per unit length,  $m_p$ , from Chapter 1, and defining the yield line parameter, *Y*, as given in Eq. (3-29).

$$M_{pl} = F_{yp} t_p^{-2} Y_c \tag{3-28}$$

$$Y_{c} = \begin{cases} \frac{b_{cf}}{2} \left[ h_{1}\left(\frac{1}{s}\right) + h_{2}\left(\frac{1}{p_{so}}\right) + h_{3}\left(\frac{1}{p_{si}}\right) + h_{4}\left(\frac{1}{s}\right) \right] + \dots \\ \frac{2}{g} \left[ h_{1}\left(\frac{3p_{b}}{4} + s\right) + h_{2}\left(\frac{p_{b}}{4} + p_{so}\right) + h_{3}\left(\frac{3p_{b}}{4} + p_{si}\right) + h_{4}\left(s + \frac{p_{b}}{4}\right) \right] + g \end{cases}$$
(3-29)

To obtain an equation for the dimension *s*, the equation for moment strength,  $M_{pl}$ , is minimized. The derivative of Eq. (3-28), taken with respect to the variable *s*, is set equal to zero and solved for the variable s. The result is Eq. (3-30).

$$s = \frac{1}{2}\sqrt{b_{cf}g} \tag{3-30}$$

## **3.6 Eight-Bolt Four-Wide Configurations**

This configuration of eight bolts on the column is associated with Eight-Bolt Extended Four-Wide Unstiffened End-Plate. Figure 3-11 shows the different configurations with varied stiffening and proximity to the top of the column. The dimensions,  $h_1$ , and  $h_2$ , are the distance from the center of the beam compression flange to the tension bolt lines.



Figure 3-11 Yield Line Pattern for Eight-Bolt Four-Wide Configurations

The following describes how the equation for each yield line parameter was obtained. Table 3-16 summarizes the resulting yield line parameters.

- a) Continuous column that is unstiffened (Fig. 3-11(a)). The derivation for the yield line parameter is the same as the four-bolt unstiffened flush end-plate with the following substitutions:  $p_{fi} = s$ ,  $p_b = c$  and  $b_p = b_{cf}$ .
- b) Continuous column that is stiffened below the first bolt line (Fig. 3-11(b)). The derivation is same as the column-side yield line parameter for the four-bolt configuration stiffened between the bolts.
- c) Top of a column that is unstiffened (Fig. 3-11(c)). The derivation is the same as the column-side yield line parameter for the four-bolt configuration at the top of the column.
- d) Top of column with cap plate (Fig. 3-11(d)). The derivation is the same as the fourbolt unstiffened flush end-plate with the following substitutions:  $p_{fi} = p_{cp}$ ,  $p_b = c$ and  $b_p = b_{cf}$ .
- e) Top of the column stiffened below the first bolt line (Fig. 3-11(e)). The derivation is the same as the four-bolt extended stiffened end-plate (Alternate Pattern) with the following substitutions:  $p_{fi} = p_{si}$ ,  $p_{fo} = p_{so}$ , and  $b_p = b_{cf}$ .

| Light-Dolt Four-wide Configurations |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Configuration                       | Yield Line Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Continuous Unstiffened              | $Y_{c} = \frac{b_{cf}}{h_{1}} \left[ \frac{1}{h_{1}} + h_{2} \left( \frac{1}{h_{1}} \right) \right] + \frac{2}{h_{1}} \left[ h_{1} \left( s + \frac{3}{c} \right) + h_{2} \left( s + \frac{1}{c} \right) \right] + \frac{g}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Column [Fig. 3-11(a)]               | $2 \begin{bmatrix} 1 \\ s \end{bmatrix} = \begin{bmatrix} s \\ s \end{bmatrix} = \begin{bmatrix} 1 \\ s \end{bmatrix} = \begin{bmatrix} 1 \\ s \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} $ |  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Continuous Column Stiffened         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Between the Bolts                   | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{l} \left( \frac{1}{2} + \frac{1}{2} \right) + h_{2} \left( \frac{1}{2} + \frac{1}{2} \right) \right] + \frac{2}{2} \left[ h_{l} \left( s + p_{so} \right) + h_{2} \left( p_{si} + s \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| [Fig. 3-11(b)]                      | $2 \left[ (s \ p_{so}) \ (p_{si} \ s) \right] g^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                     | Note: Use $p_{si}=s$ if $p_{si} > s$ Use $p_{so}=s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Top of Column Unstiffened           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| [Fig. 3-11(c)]                      | $Y_{c} = \frac{b_{cf}}{h_{2}} \left[ h_{2} \left( \frac{1}{c} \right) - \frac{1}{c} \right] + \frac{2}{c} \left[ h_{1} \left( d_{c} + \frac{3}{c} c \right) + h_{2} \left( s + \frac{1}{c} c \right) \right] + \frac{3g}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                     | $2 \begin{bmatrix} n_2 \\ s \end{bmatrix} 2 \begin{bmatrix} s \\ g \end{bmatrix} g \begin{bmatrix} n_4 \\ a \\ d \end{bmatrix} (n_2 + 4^2) + n_2 \begin{bmatrix} s \\ d \\ d \end{bmatrix} 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Top of Column with Cap              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Plate [Fig. 3-11(d)]                | $Y_c = \frac{b_{cf}}{2} \left[ h_1 \left( \frac{1}{p_{cp}} \right) + h_2 \left( \frac{1}{s} \right) \right] + \frac{2}{g} \left[ h_1 \left( p_{cp} + \frac{3}{4}c \right) + h_2 \left( s + \frac{1}{4}c \right) \right] + \frac{g}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                     | Note: Use $p_{cp}=s$ if $p_{cp} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Top of Column Stiffened             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Between Bolts                       | $Y_{c} = \frac{b_{cf}}{2} \left[ h_{1} \left( \frac{1}{p_{o}} \right) + h_{2} \left( \frac{1}{p_{o}} + \frac{1}{s} \right) - \frac{1}{2} \right] + \frac{2}{a} \left[ h_{1} \left( p_{so} + d_{e} \right) + h_{2} \left( p_{si} + s \right) \right] + \frac{g}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| [Fig. 3-11(e)]                      | $2 \left[ \left( P_{so} \right) \left( P_{si}  s \right)  2 \right] g \qquad 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                     | Note: Use $p_{si}=s$ if $p_{si}>s$ Use $p_{so}=s$ if $p_{so}>s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

# Table 3-16 Summary of Column Side Yield Line Parameters for the Eight-Bolt Four-Wide Configurations

# 3.7 Twelve Bolt 4Wx2/2Wx2 Configurations

This configuration of twelve bolts on the column is associated with Twelve-Bolt MRE 1/3 Unstiffened End-Plate. Figure 3-12 shows the different configurations with varied stiffening and proximity to the top of the column. The dimensions,  $h_1$ ,  $h_2$ ,  $h_3$ , and  $h_4$ , are the distance from the center of the beam compression flange to the tension bolt lines.



Figure 3-12 Yield Line Pattern for Twelve Bolt 4Wx2/2Wx2 Configurations

The following describes how the equation for each yield line parameter was obtained. Table 3-17 summarizes the resulting yield line parameters.

a) Continuous column that is unstiffened (Fig. 3-12(a)). The derivation for the yield line parameter is the same as the four-bolt unstiffened flush end-plate with the following substitutions:  $p_b = 2p_b + c$ ,  $h_2 = h_4$ ,  $p_{fi} = s$  and  $b_p = b_{cf}$ .

Continuous column that is stiffened below the first bolt line (Fig. 3-12(b)). The derivation is the same as the Continuous Column Stiffened Below First Bolt Line of 8-bolt Configuration (Figure 3.8b).

- b) Top of a column that is unstiffened (Fig. 3-12(c)). The derivation is the same as the column-side yield line parameter for the four-bolt configuration at the top of the column with the following substitutions:  $p_b = 2p_b + c$  and  $h_2 = h_4$ .
- c) Top of column with cap plate (Fig. 3-12(d)). The derivation is the same as the fourbolt unstiffened flush with the following substitutions:  $p_b = 2p_b + c$ ,  $h_2 = h_4$ ,  $p_{fi} = p_{cp}$ and  $b_p = b_{cf}$ .
- d) Top of the column stiffened below the first bolt line (Fig. 3-12(e)). The derivation is the same as the MRE 1/3 Stiffened End-Plate (Alternate Pattern) configuration with the following substitutions:  $p_{fi} = p_{si}$ ,  $p_{fo} = p_{so}$ ,  $h_3 = h_4$ , and  $b_p = b_{cf}$ .
|                           | I werve bolt 4 w x2/2 w x2 Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configuration             | Yield Line Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Continuous Unstiffened    | $Y_{c} = \frac{b_{cf}}{h_{1}} \left[ \frac{1}{h_{1}} + h_{4} \left( \frac{1}{h_{1}} \right) \right] + \frac{2}{h_{1}} \left[ h_{1} \left( s + \frac{3}{h_{p}} + \frac{3}{h_{c}} \right) + h_{4} \left( s + \frac{1}{h_{p}} + \frac{1}{h_{c}} \right) \right] + \frac{g}{h_{1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Column [Fig. 3-12(a)]     | $2 \begin{bmatrix} 1 \\ s \end{bmatrix} (s) \begin{bmatrix} 1 \\ s \end{bmatrix} (s) \begin{bmatrix} 1 \\ s \end{bmatrix} (s) \begin{bmatrix} 1 \\ 2 \end{bmatrix} (s$ |
| Continuous Column         | $\left[\frac{b_{cf}}{h}\left(\frac{1}{1}+\frac{1}{h}\right)+h_2\left(\frac{1}{1}\right)+h_4\left(\frac{1}{1}\right)\right]+\dots\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Stiffened Below the First | $Y_c = \begin{cases} 2 \left[ \frac{N_1}{p_{so}} + s \right] + \frac{N_2}{p_{si}} \left[ p_{si} \right] + \frac{N_4}{s} \left[ s \right] \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bolt Line                 | $\left \frac{2}{g}\right  h_1\left(p_{so}+s\right) + h_2\left(p_{si}+\frac{3}{2}p_b\right) + h_4\left(s+\frac{1}{2}p_b\right)\right  + \frac{g}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [Fig. 3-12(b)]            | Note: Use $n_{si} = s$ if $n_{si} > s$ . Use $n_{so} = s$ if $n_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Top of Column             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Unstiffened [Fig. 3-      | $V = \frac{b_{cf} \left[ h \left( 1 \right) + 1 \right] + 2 \left[ h \left( d + 3 \right) h \left( 3 \right) + h \left( s + 1 \right) h \left( s + 1 \right) \right] + 3g}{2g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12(c)]                    | $I_{c} = \frac{1}{2} \left[ n_{4} \left( \frac{1}{s} \right)^{-} \frac{1}{2} \right]^{+} \frac{1}{g} \left[ n_{1} \left( \frac{a_{e}}{2} + \frac{1}{2} p_{b} + \frac{1}{4} c \right)^{+} n_{4} \left( s + \frac{1}{2} p_{b} + \frac{1}{4} c \right) \right]^{+} \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Top of Column with Cap    | $\mathbf{v} = \frac{b_{cf} \left[ \left[ \left( \begin{array}{c} 1 \end{array} \right) + h \left( \begin{array}{c} 1 \end{array} \right) \right] + 2 \left[ \left[ \left( \begin{array}{c} 1 \end{array} \right) + \left( \begin{array}{c} 3 \end{array} \right) + \left[ \left( \begin{array}{c} 1 \end{array} \right) + \left[ \left( \begin{array}{c} 1 \end{array} \right) + \left[ \begin{array}{c} 1 \end{array} \right) \right] + g \right] \right] + g \left[ \left[ \left( \begin{array}{c} 1 \end{array} \right) + \left[ \left( \begin{array}{c} 1 \end{array} + \left( \begin{array}{c} 1 \end{array}+ \left( \end{array}+ \left( \begin{array}{c} 1 \end{array}+ \left( \end{array}+ \left( \begin{array}{c} 1 \end{array}+ \left( \end{array}+ \left( \end{array}+ \left( \end{array}+ \left( \end{array}$                                                                                                                                                                                                                                                                                         |
| Plate [Fig. 3-12(d)]      | $\begin{bmatrix} I_{c} - \frac{1}{2} \begin{bmatrix} n_{1} \\ p_{cp} \end{bmatrix} + \frac{n_{4}}{s} \end{bmatrix} + \frac{1}{g} \begin{bmatrix} n_{1} \\ p_{cp} + \frac{1}{2} p_{b} + \frac{1}{4} \end{bmatrix} + \frac{1}{4} \begin{bmatrix} s + \frac{1}{2} p_{b} + \frac{1}{4} \end{bmatrix} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | Note: Use $p_{cp}=s$ if $p_{cp} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Top of Column Stiffened   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Below the First Bolt Line | $\left[\frac{b_{cf}}{h_1}\left(\frac{1}{h_2}\right) + h_2\left(\frac{1}{h_2}\right) + h_4\left(\frac{1}{h_2}\right) - \frac{1}{h_2}\right] + \dots\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [Fig. 3-12(e)]            | $Y_{c} = \begin{cases} 2 \left[ (p_{so}) (p_{si}) (s) 2 \right] \\ 2 \left[ (p_{so}) (p_{si}) (s) 2 \right] \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | $\left\lfloor \frac{2}{g} \right\lfloor h_1 \left( p_{so} + d_e \right) + h_2 \left( p_{si} + \frac{3}{2} p_b \right) + h_4 \left( s + \frac{1}{2} p_b \right) \right\rfloor + \frac{3g}{4} \right\rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           | Note: Use $p_{si}=s$ if $p_{si} > s$ Use $p_{so}=s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Table 3-17 Summary of Column Side Yield Line Parameters forTwelve Bolt 4Wx2/2Wx2 Configurations

## 3.8 Twelve Bolt 2W/4Wx2/2W Configurations

This configuration of twelve bolts on the column is associated with Twelve-Bolt Extended Stiffened End-Plate configuration. Figure 3-13 shows the different configurations with varied stiffening and proximity to the top of the column. The dimensions,  $h_1$ ,  $h_2$ ,  $h_3$ , and  $h_4$ , are the distance from the center of the beam compression flange to the tension bolt lines.



Figure 3-13 Yield Line Pattern for Twelve Bolt 2W/4Wx2/2W Configurations

The following describes how the equation for each yield line parameter was obtained. Table 3-18 summarizes the resulting yield line parameters.

- a) For a continuous column that is unstiffened (Fig. 3-13(a)), the derivation for the yield line parameter is the same as the four-bolt flush unstiffened end-plate with the following substitutions:  $p_b = 2p_b + c$ ,  $h_2 = h_4$ ,  $p_{fi} = s$  and  $b_p = b_{cf}$ .
- b) For a continuous column that is stiffened below the second bolt line (Fig. 3-13(b)), the derivation is the same as the column-side pattern for the Eight-Bolt 4 Rows configuration. (Figure 3-7c).
- c) For the top of a column that is unstiffened (Fig. 3-13(c)), the derivation is the same as the column-side yield line parameter for the four-bolt configuration at the top of the column with the following substitutions:  $h_2 = h_4$ ,  $c = 2p_b + c$ .
- d) For the top of column with cap plate (Fig. 3-13(d)), the derivation is the same as the four-bolt flush unstiffened end-plate with the following substitutions: h<sub>2</sub> = h<sub>4</sub>, p<sub>fi</sub> = p<sub>cp</sub>, p<sub>b</sub> = 2p<sub>b</sub>+c and b<sub>p</sub> = b<sub>cf</sub>.
- e) For the top of the column stiffened below the second bolt line (Fig. 3-13(e)), the derivation is the same as the Eight-Bolt Extended Stiffened End-Plate (alternate pattern) configuration with the following substitutions:  $p_{fi} = p_{si}$ ,  $p_{fo} = p_{so}$ , and  $b_p = b_{cf}$ .

| I weive Bolt 2w/4wx2/2w Configurations |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Configuration                          | Yield Line Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Continuous                             | $Y_{c} = \frac{b_{cf}}{h_{1}} \left[ \frac{1}{h_{1}} + h_{4} \left( \frac{1}{h_{1}} \right) \right] + \frac{2}{h_{1}} \left[ \frac{s+3}{s+2} + \frac{3}{h_{2}} + \frac{3}{h_{2}} \right] + h_{4} \left[ \frac{s+1}{s+2} + \frac{1}{h_{2}} + \frac{1}{h_{2}} \right] + \frac{g}{h_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Unstiffened Column                     | $2 \begin{bmatrix} 1 \\ s \end{bmatrix} = \begin{bmatrix} 1 \\ s \end{bmatrix} = \begin{bmatrix} 1 \\ s \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} $ |  |
| [Fig. 3-13(a)]                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Continuous Column                      | $\left[\frac{b_{cf}}{h_{1}}\left[\frac{1}{h_{2}}\right] + h_{2}\left(\frac{1}{h_{2}}\right) + h_{2}\left(\frac{1}{h_{2}}\right) + h_{4}\left(\frac{1}{h_{2}}\right)\right] + \dots\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Stiffened Below the                    | $Y_c = \begin{cases} 2 \left[ \frac{Y_1(s)}{s} + \frac{Y_2(p_{so})}{s} + \frac{Y_3(p_{si})}{s} + \frac{Y_2(s)}{s} \right] + \frac{Y_2(s)}{s} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Second Bolt Line                       | $\left\lfloor \frac{2}{g} \left\lfloor h_1 \left( \frac{3p_b}{4} + s \right) + h_2 \left( \frac{p_b}{4} + p_{so} \right) + h_3 \left( \frac{3p_b}{4} + p_{si} \right) + h_4 \left( \frac{p_b}{4} + s \right) \right\rfloor + g \right\rfloor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| [Fig. 3-13(b)]                         | Note: Use $p_{si}=s$ if $p_{si} > s$ Use $p_{so}=s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Top of Column                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Unstiffened [Fig. 3-                   | $Y_{t} = \frac{b_{cf}}{b_{t}} \left[ h_{t} \left( \frac{1}{2} \right) - \frac{1}{2} \right] + \frac{2}{b_{t}} \left[ h_{t} \left( \frac{1}{2} + \frac{3}{2} n_{t} + \frac{3}{2} c \right) + h_{t} \left( s + \frac{1}{2} n_{t} + \frac{1}{2} c \right) \right] + \frac{3g}{b_{cf}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 13(c)]                                 | $2\left\lfloor \frac{n_4}{s}, 2 \right\rfloor + g\left\lfloor \frac{n_4}{s}, 2 \right\rfloor + g\left\lfloor \frac{n_4}{s}, 2 \right\rfloor + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Top of Column with                     | $ = \begin{bmatrix} b_{cf} \\ L \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} L \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} $              |  |
| Cap Plate [Fig. 3-                     | $I_{c} = \left\{ \frac{1}{2} \left[ n_{1} \left( \frac{p_{cp}}{p_{cp}} \right)^{+} n_{4} \left( \frac{s}{s} \right) \right]^{+} \frac{1}{g} \left[ n_{1} \left( \frac{p_{cp}}{p_{cp}} + \frac{1}{2} \frac{p_{b}}{q_{cp}} + \frac{1}{4} \right)^{+} n_{4} \left( \frac{s + \frac{1}{2} p_{b}}{q_{cp}} + \frac{1}{4} \right) \right]^{+} \frac{1}{2} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 13(d)]                                 | Note: Use $p_{cp}=s$ if $p_{cp} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Top of Column                          | $\left[\frac{b_{cf}}{h_2}\left(\frac{1}{h_2}\right) + h_2\left(\frac{1}{h_2}\right) + h_4\left(\frac{1}{h_2}\right) - \frac{1}{h_2}\right] + \dots\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Stiffened Below the                    | $Y = \begin{cases} 2 \begin{bmatrix} n^2 \\ p_{so} \end{bmatrix}^{n+1} \begin{bmatrix} p_{si} \end{bmatrix}^{n+1} \begin{bmatrix} s \\ s \end{bmatrix}^2 \end{bmatrix}^{n+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Second Bolt Line                       | $\left \frac{2}{g}\right  h_1\left(\frac{3p_b}{4} + d_e\right) + h_2\left(\frac{p_b}{4} + p_{so}\right) + h_3\left(\frac{3p_b}{4} + p_{si}\right) + h_4\left(s + \frac{p_b}{4}\right) + \frac{5g}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| [Fig. 3-13(e)]                         | Note: Use $p_{si}=s$ if $p_{si} > s$ Use $p_{so}=s$ if $p_{so} > s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

Table 3-18 Summary of Column Side Yield Line Parameters forTwelve Bolt 2W/4Wx2/2W Configurations

## REFERENCES

- Abel, M.S.M., and Murray, T.M., (1992), *Multiple Row, Extended Unstiffened End-Plate Connection Tests*, Virginia Tech Structural Engineering Report No. CE/VPI-ST-02/04, Blacksburg, VA.
- Abel, M.S.M., and Murray, T.M. (1994), Analytical and Experimental Investigation of the Extended Unstiffened Moment End-Plate Connection with Four Bolts at the Beam Tension Flange, Virginia Tech Structural Engineering Report No. CE/VPI-ST-93/08, Blacksburg, VA.
- Blumenbaum, S. and Murray, T. M. (2003), Strength Evaluation of Four Extended Moment End-Plate Connections, Virginia Tech Structural Engineering and Materials Report No. CEE/VPI-ST-04/02, Blacksburg, VA.
- Blumenbaum, S. and Murray, T. M. (2004), Response of Cyclically Loaded Extended End-Plate Moment Connections when used with Welded Built-up Sections, Virginia Tech Structural Engineering and Materials Report No. CEE/VPI-ST-04/02, Blacksburg, VA.
- Borgsmiller, J.T. (1995), *Simplified Method for Design of Moment End-Plate Connections*, M.S. Thesis, Virginia Tech, Blacksburg, VA.
- Borgsmiller, J. T. Sumner, E. A. and Murray, T. M. (1995), *Extended Unstiffened Moment End-Plate Connection Tests*, Virginia Tech Structural Engineering Report No. CE/VPI-95/13, Blacksburg, VA.
- Borgsmiller, J.T. (1995), *Simplified Method for Design of Moment End-Plate Connections*, M.S. Thesis, Virginia Tech, Blacksburg, VA.
- Boorse, M. R. and Murray, T. M. (1999), Evaluation of the Inelastic Rotation Capability of Flush End-Plate Moment Connections, Virginia Tech Structural Engineering Report No. CE/VPI-ST 99/09, Blacksburg, VA.
- Curtis, L.E., and Murray, T.M. (1989), "Column Flange Strength at Moment End-Plate Connections", *Engineering Journal*, Vol 26, No. 2, pp. 41-50.
- Eatherton, M.R., Toellner, B.W., Watkins, C.E., and Abbas, E. (2013), *The Effect of Powder* Actuated Fasteners on the Seismic Performance of Protected Zones in Steel Moment Frames, Virginia Tech Structural Engineering and Materials Report No. CE/VPI-ST-13/05.

- Eatherton, M.R., Chen, Y., Laknejadi, K., and Murray, T.M. (2017), "Using Longitudinal Stiffeners to Mitigate Buckling of Noncompact and Slender Beam Webs in Ductile Moment Frame Connections", *Annual Stability Conference Structural Stability Research Council*, San Antonio, TX.
- Eatherton, M.R., Murray, T.M. (2021) Flush and Extended End-Plate Moment Connections, AISC Design Guide 4+16, Published by the American Institute of Steel Construction, Chicago, II.
- Ghassemieh, M., Kukreti, A. and Murray, T. M. (1983), *Inelastic Finite Element Analysis of Stiffened End-Plate Moment Connections*, FEARS Structural Engineering Laboratory Report No. FSEL/AISC 83-02, Norman OK.
- Hendrick, D., Kukreti, A.R., and Murray, T. M. (1984), Analytical and Experimental Investigation of Stiffened Flush End-Plate Connections with Four Bolts at the Tension Flange, FEARS Structural Engineering Laboratory Report No. FSEL/MBMA 84-02, Norman, OK.
- Italiano, V.M., and Murray, T.M., (2001), Behavior of Diagonal Knee Moment-End Plate Connections, Virginia Tech Structural Engineering Report No. CE/VPI-ST 01/01, Blacksburg, VA.
- Jenner, R., Densford, T., Astaneh-Asl, A. and Murray, T. M. (1985), *Experimental Investigation of Rigid Frames Including Knee Connection Studies Frame Assembly Tests*, FEARS Structural Engineering Laboratory Report No. FSEL/MESCO 85-01, Norman, OK.
- Jenner, R., Densford, T., Astaneh-Asl, A. and Murray, T. M. (1985a), *Experimental Investigation of Rigid Frames Including Knee Connection Studies Frame Assembly Tests*, FEARS Structural Engineering Laboratory Report No. FSEL/MESCO 85-0l, Norman, OK.
- Jenner, R., Densford, T., Astaneh-Asl, A. and Murray, T. M. (1985b), *Experimental Investigation of Rigid Frames Including Knee Connection Studies Frame FR1 Tests*, FEARS Structural Engineering Laboratory Report No. FSEL/MESCO 85-02, Norman, OK.
- Jenner, R., Densford, T., Astaneh-Asl, A. and Murray, T. M. (1985c), *Experimental Investigation* of Rigid Frames Including Knee Connection Studies – Frame FR2 Tests, FEARS Structural Engineering Laboratory Report No. FSEL/MESCO 85-03, Norman, OK.

- Jain, N., Eatherton, M.R., and Murray, T.M. (2015), Developing and Validating New Bolted End-Plate Moment Connection Configurations, Virginia Tech Structural Engineering and Materials Report No. CE/VPI-ST-15/08, Blacksburg, VA.
- Kline, D., Rojiani, K., and Murray, T. M. (1995), *Performance of Snug-Tight Bolts in Moment End-Plate Connections*, Virginia Tech Structural Engineering Report No. CE/VPI-ST-89/04, Blacksburg, VA.
- Kukreti, A.R., Murray, T.M., and Abolmaali, A. (1987), "End-Plate Connection Moment-Rotation Relationship", *Journal of Constructional Steel Research*, Vol. 8, pp. 137-157.
- Meng, R.L. (1996), Design of Moment End-Plate Connections for Seismic Loading, Ph.D. Dissertation, Virginia Tech, Blacksburg, VA.
- Meng, R. L., and Murray, T. M. (1996), Moment End-Plate Connections for Seismic Loading, Virginia Tech Structural Engineering Report No. CE/VPI-ST-96/04, Blacksburg, VA.
- Morrison, S. J., Astaneh-Asl, A. and Murray, T.M. (1985), Analytical and Experimental Investigation of the Extended Stiffened Moment End-Plate Connection with Four Bolts at the Tension Flange, FEARS Structural Engineering Laboratory Report No. FSEL/MBMA 85-05, Norman OK.
- Morrison, S. J., Astaneh-Asl, A. and Murray, T.M. (1986), Analytical and Experimental Investigation of the Multiple Row Extended Moment End-Plate Connection with Eight Bolts at the Beam Tension Flange, FEARS Structural Engineering Laboratory Report No. FSEL/MBMA 86-01, Norman, OK.
- Murray, T.M. (1989), *Tests to Determine the Adequacy of A490 Bolts in Moment End-Plate Connections*, Structural Engineers Inc. Report, Radford, VA.
- Murray, T.M., and Sumner, E.A. (1999), Brief Report of Steel Moment Connection Test SAC Subtask 7.10, Testing and Analysis of Bolted End-Plate Connections, Virginia Tech Report, Blacksburg, VA.
- Srouji, R., Kukreti, A.R., and Murray, T. M. (1983), Strength of Two Tension Bolt Flush End-Plate Connections, FEARS Structural Engineering Laboratory Report No. FSEL/MBMA 83-03, Norman, OK.

- Structural Engineers Inc. (1984), *Multiple Row, Extended End Plate Connection Tests*, Report, Norman, OK.
- Sumner, E.A., and Murray, T.M. (1995), *Experimental Investigation of Rigid Knee Joints-Addendum*, Virginia Tech Structural Research Report No. CE/VPI-95/10, Blacksburg, VA.
- Sumner, E.A., Mays, T.W., and Murray, T.M. (2000a), Cyclic Testing of Bolted Moment End-Plate Connections, SAC Report No. SAC/BD-00/21, Virginia Tech Structural Engineering Report No. CE/VPI-ST 00/03, Blacksburg, VA.
- Sumner, E.A., and Murray, T.M. (2001a), *Experimental Investigation of the Multiple Row Extended 1/2 End-Plate Moment Connection*, Virginia Tech Structural Engineering Report No. CE/VPI-ST-01/14, Blacksburg, VA.
- Sumner, E.A., and Murray, T.M. (2001b), *Experimental Investigation of Four Bolts Wide Extended End-Plate Moment Connections*, Virginia Tech Structural Engineering and Materials Report No. CE/VPI-ST 01/15, Blacksburg, VA.
- Sumner, E.A., and Murray, T.M. (2002), "Behavior of Extended End-Plate Moment Connections Subjected to Cyclic Loading", *Journal of Structural Engineering*, Vol. 128, No. 4, pp. 501-508.
- Szabo, T., Eatherton, M.R., He, X., and Murray, T.M. (2017), Study of a Twelve Bolt Extended Stiffened End-Plate Moment Connection, Virginia Tech Structural Engineering and Materials Report No. CE/VPI-ST-17/02.
- Thompson, B.G., and Murray, T.M. (1975), *End-Plate Connection Tests and Analysis*, University of Oklahoma, School of Civil Engineering and Environmental Science Report, Norman OK.
- Rodkey, R. W. and Murray, T. M. (1993b), *Eight-Bolt Extended Unstiffened End-Plate Connection Test*, Virginia Tech Structural Engineering Report No. CE/VPI-STG 93/10, Blacksburg, VA.
- Ryan, J. C. Jr., and Murray, T. M. (1999), Evaluation of the Inelastic Rotation Capability of Extended End-Plate Moment Connections, Virginia Tech Structural Engineering and Materials Report No. CE/VPI-ST 99/13, Blacksburg, VA.

Young, J. and T. M. Murray, (1997), *Experimental Investigation of Positive Bending Moment* Strength of Rigid Knee Connections, Virginia Tech Structural Engineering Research Report