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Electrical Engineering
(ABSTRACT)

One of the major problems in computer vision involves dealing with uncer-
tain information. Occlusion, dissimilar views, insufficient illumination, insufficient
resolution, and degradation give rise to imprecise data. At the same time, incom-
plete or local knowledge of the scene gives rise to imprecise interpretation rules.
Uncertainty arises at different processing levels of computer vision either because
of the imprecise data or because of the imprecise interpretation rules. It is natu-
ral to build computer vision systems that incorporate uncertainty reasoning. The
Dempster-Shafer (D-S) theory of evidence is appealing for coping with uncertainty
hierarchically. However, very little work has been done to apply D-S theory to

practical vision systems because some important problems are yet to be resolved.

In this dissertation, a computational framework is presented to show how
Dempster-Shafer evidence theory can be applied to a hierarchically structured hy-
pothesis space in a computer vision application. Based upon a priori knowledge,
uncertain visual information is transformed from one level to another through stages
of evidence collection and mapping, hypothesis generation, evidence interaction, and
hypothesis verification. The system reasons about significant perceptual features
through both top-down and bottom-up active processes. It is shown how to make

use of partial and locally ambiguous information at different levels of abstraction



to achieve reliable interpretation. It is also shown how the reasoning process can
make use of spatial relationships among pieces of visual evidence to strengthen the
reasoning results. Some theoretical problems, which arise from the adoption of the
Dempster-Shafer model as the paradigm for a computer vision system, have been
resolved. Methods for implementing this algorithm are presented for applications
in object recognition and image understanding. Experiments on some applications

are given to demonstrate the merit of the framework.
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Chapter I
INTRODUCTION

The task of computer vision researchers is to endow computer with human-like
visual capabilities. This task involves understanding complex visual processes and
building intelligent computer vision systems. Object recognition is a critical part
of this task. Rosenfeld (1986) claims that the goal of a computer vision system is

to detect and locate objects of a given type (either 2-D or 3-D) in images.

The scientific problems posed by computer vision are very important since vi-
sion is the most powerful sensory modality for any intelligent system which interacts
with the outside physical world. Much research work has been done throughout the
past thirty years for industrial, military, office, laboratory, and social applications.
These problems are still extremely challenging, although almost no one realized
that computer vision was so difficult in early 1960’s. This misunderstanding arises
because we humans are ourselves so good at vision (Marr, 1982). As a branch of

science, computer vision is young and immature (Haralick, 1985).

Since one of the earliest papers explored a solution to the task of recogniz-
ing 3-D objects (Roberts, 1965), many computer systems have been proposed to
solve this task. They can be classified into two main categories: object recogni-
tion from intensity imageé and object recognition from depth maps. The former
can be further divided into two groups: the viewpoint-dependent system which
aimed at the reconstruction of depth information from the 2-D image first, and the
viewpoint-independent system which performs its vision task without bottom-up

depth reconstruction under the assumption that viewpoints are invariant over wide
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ranges. The successes of expert systems (rule-based systems, knowledge-based sys-
tems), which are characterized by the use of significant amounts of non-procedural
knowledge to assist in data interpretation in some domain, have motivated com-
puter researchers to develop interesting vision systems in that domain. In some
systems, a static collection of rules and a dynamic database of facts are maintained,
and the inference engine utilizes a set of production rules. Researchers are trying
to improve this traditional basic paradigm by organizing rules into a hierarchy and
generating the inference engine in various ways. However, the approaches often
used are to “think up something which might work and try it out” (Besl and Jain,
1984). Although some of them have achieved limited success, we are far away from
achieving success in general computer vision. We feel that much further research

work needs to be done in this field, especially in the “intelligence” aspects.

The reason for emphasizing the intelligence aspects of computer vision is based
upon the following facts: the eye is just a sensor; the visual cortex of human brain
is our primary organ of vision. It turns out that perception is not the simple result
of analyzing a set of stimulus patterns, but rather a best interpretation of sensory
data based upon prior knowledge. By using knowledge, humans may infer many
properties of a visual scene that may not be directly supported by the visual data.
The senses play only a role that provides evidence for checking hypotheses about the
nature of our surrounding environment. Thus, vision involves mobilizing knowledge
and expectations about the environment and the objects in it. There are many
micro-decision making processes at the different levels in perception. That relates
research in computer vision to some research areas of AI in which large amounts
of problem-specific knowledge are used to obtain constrained solutions. We may

say that increasing “intelligence” of a computer vision system is one of the hopeful
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directions in computer vision research field. The goal may be achieved both by the

use of knowledge and by reasoning with uncertainty.

One of the major differences between a computer vision systerh and an ordi-
nary Al system is that the former must analyze raw image data. It is a formidable
challenge to apply Al and its logical, symbolic world to computer vision and to
force it to confront a noisy, uncertain, real world. Because of missing data, occlu-
sion, and many forms of image degradation, the amount of available information
in the raw data may be limited. The viewpoints may be unknown. The knowl-
edge about the raw image may be incomplete. Uncertainty is caused either by the
imprecise data or by the imprecise interpretation rules (which is a set of ordered
and organized knowledge). Due to distortion and dissimilar views, some objects do
not always present look the same. Since none of the currently existing low-level
image processing operators is perfect, some important features are not extracted
and erroneous features are detected. As a result, evidence from the observed data
are often incomplete or may conflict, and the rules used in the vision system are
often just intuitively accepted. In addition, uncertainty also arises from statistical
information available from an inadequate training set. There are two cases. One is
that the feature distribution in such a training set may only coarsely characterize
feature space. The other is that the a priori probability of seeing a particular object
at random in the training set is a highly unreliable estimate of seeing that object
in the real world (Lehrer, Reynolds, and Griffith, 1987). The lack of capability to
deal with the uncertainty and vagaries may be the main problem which limits the

capability of computer vision systems.

Researchers believe that one of important abilities of human vision is handling

uncertain information through a process of perceptual grouping, evidence gathering
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and reasoning based upon prior knowledge. It can make use of partial and locally
ambiguous information to achieve reliable identifications. This is done by allowing
interpolations through data gaps and extrapolations to be made to new situations
for which data are not available. Based upon this observation, perceptions can
be treated as hypotheses, specifically, as “perceptual hypotheses” (Gregory, 1980).
According to Gregory, hypotheses are effective in having powers to predict future
events, unsensed characteristics, and further hypotheses (the structure of the per-
ceptual hypotheses can be hierarchical). They can be generated by observation
and induction and can be confirmed or disconfirmed, though not with logical or

probabilistic certainty.

It seems that the evidence and hypotheses in a visual process are hier-
archical in nature. There are two possible paths from the lowest level to
the highest level in the hierarchy. One path is significant points ... signifi-
cant lines...shapes...objects...scene. Another path is significant points...significant
patches. .. regions (or surfaces)...objects...scene. The perceptual grouping process
in this hierarchy is so fast for humans that we are not aware of its complexity. The
hypotheses generated at each level are supported by the evidence gathered from
that level and from the levels below. The hypotheses verified at the lower levels
can be the new evidence for the hypothesis at the higher level. In computer vision,
evidence begins with the raw image from which ambiguous features are extracted.
The multiple hypotheses about a visual event in turn accumulate partial evidence
from the raw data up to the final decision level and support different interpretations
of the scene. According to Marr’s Principle of Least Commitment (Marr, 1982),
evidence from different sources at different abstract levels should be accumulated

to sufficient degree before making binding decisions.
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Also, contextual information from one processing level can be treated as evi-
dence for hypotheses formed at the same level. Context plays an important role in
general vision. Since most scenes contain some easily identified components, these
then provide a great deal of information that can greatly ease the recognition of
more difficult components of the scene. The use of contextual information means
the use of multiple evidence for a specific hypothesis. Evidential reasoning provides
an opportunity to incorporate the most helpful contextual information to speed up

the recognition process.

The evidence theory proposed by Dempster and Shafer (D-S model) (Shafer,
1976) suggests how evidence concerning hierarchically-related hypotheses might be
combined consistently to allow uncertain reasoning at any level of abstraction. It
provides a way for handling the aggregation of evidence gathered at varying levels
of detail or specificity. Because the D-S approach allows one to attribute belief to
subsets, as well as to individual elements of the hypothesis set, it may be similar
to the perceptual grouping and aggregation process at varying levels of abstraction
in human vision. Although the probability judgments made in the D-S model
can usually be adapted to a Bayesian argument, such argument models both the
hypothesis and the evidence for that hypothesis by requiring prior probabilities for
the hypothesis and conditional probabilities for the evidence given the hypothesis.
The problem is that such information is not usually available. Shafer argues that
the D-S model is just a generalization of the Bayesian model (Shafer, 1986). The
advantage of using the D-S model over the Bayesian model is the ability to use less
complete probabilistic models. Almost all real applications of uncertainty reasoning
are implemented either by modifying the pure theory or by restricting application
cases. Certainly, a new method for adapting the D-S model to the reasoning process

in a hierarchical evidence space for computer vision is needed.

Introduction 5



Therefore, instead of using deterministic methods such as those that have been
used in many proposed vision systems, a reasoning system that can handle uncertain
information and represent and manipulate incomplete and imperfect knowledge,
should be built into a computer vision system. That will allow systems to behavein a
more “intelligent” manner. Although applications of uncertainty reasoning in expert
systems have became popular, the uses of uncertainty reasoning are just beginning
(Wesley, 1986; Andress and Kak, 1988.) In most cases, uncertainty reasoning is used
only as an aid at a particular processing level. There has been no significant success

in using it as a unified method throughout the entire computer vision system.

We believe that if a unified framework for uncertainty reasoning algorithms
could be developed for hierarchical visual recognition at multiple levels of abstrac-
tion, it would provide bidirectional active vision through both bottom-up and top-
down processes. If such a framework were adopted, then low level processing would
be more intelligent and more reliable, and high level processing would be more pow-
erful and more flexible. Consequently, many improvements and new methods could
be developed at each processing level. In this dissertation, such a framework for

uncertainty reasoning in computer vision systems is proposed.

The second chapter of this dissertation briefly reviews some typical vision sys-
tems which are relevant to this research work and comparatively examines the
mathematical tools of uncertainty reasoning. Other researchers’ efforts to incor-
porate uncertainty reasoning into computer vision systems are evaluated in that
chapter. Chapter III details the ways of efficient implementation of D-S model in
a hierarchical evidence space. Some controversial issues about the D-S model are
discussed and corresponding solutions in the context of computer vision are given

here.

Introduction 6



As a base of the reasoning system, Chapter IV defines a hierarchical visual event
space for the uncertain reasoning framework. Associated with the visual event space,
a hierarchical visual evidence space and a hierarchical hypothesis space is also in-
troduced. The relationships between these spaces are defined. The correspondences

between these spaces and the D-S model are developed.

A reasoning system to adapt the D-S model to computer vision is proposed
in Chapter V. We direct the particular attention to reasoning in the hierarchical
visual evidence space while keeping the computational complexity under control.
It begins with methods of visual evidence collection, evidence mapping, and initial
bpa assignment. Then, the interactions of hierarchical visual evidence are described
according to the D-S model. Finally, an algorithm using the D-S model for handling
spatial relations is presented. These three processes are all based on the visual
event hierarchy, the visual evidence hierarchy, the visual hypothesis hierarchy, and

the reasoning tree defined in Chapter IV.

The system implementation is presented in Chapter VI. A paradigm, which
consists hypothesis generation and selection, filling in missing information (or
information-gap filling), and hypothesis verification, is given. The database, the
knowledge base, and the focus of attention for the hierarchical uncertainty reason-
ing are described. Finally, some applications of this uncertainty reasoning system
for computer vision are presented in Chapter VII. These experimental results show

the merits and promises of this framework.
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Chapter II
LITERATURE REVIEW

This chapter will review some of the literature in the areas of computer vision
systems, uncertainty reasoning theories, and uncertainty reasoning in computer
vision. This review will focus only on those topics that are relevant to this proposed
research. It will provide some insights into the following questions: where we are,

what kind of challenges we have to meet, and the scope of this work.

2.1 Vision Systems Related to This Research

This section is not intended as an overview of all general purpose computer
vision systems, but rather a view of a selection of those relevant to this research

work. A survey of 3-D object recognition using gray level images can be found in
(Haralick, 1985; Rosenfeld, 1984; Brady, 1982; and Barrow and Tenenbaum, 1981).
A survey of model-based gray level image analysis systems can be found in (Binford,
1982). A survey of vision systems, which emphasizes the recognition from depth
maps or range images, is found in (Besl and Jain, 1984). There has been a great
deal of activity in this area in recent years. A survey of vision systems in which Al
played an important role can be found in (Shapiro, 1985). A review of more recent
developments in computer vision systems can be found in (Brady, 1987; Grimson,
1987). In this section we will briefly review several vision systems that involve issues

related to this research work.
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Roberts (1965) explored a solution to problem of recognizing polyhedral objects
by solving exactly for viewpoint and object parameters and by matching topologi-
cally equivalent points. Despite its lack of robustness, this early algorithm has been

considered as fundamental work in the field.

Since 1974, Hanson and Riseman et al. have been designing a complex com-
puter vision system, VISIONS (Visual Integrating by Semantic Interpretation of
Natural Scenes) (Riseman and Hanson 1978, 1984, 1989) that is an ongoing long-
term project. The system operates on multi-spectral images of outdoor scenes and
interprets the scenes based upon low-level segmentations. The most attractive as-
pect of this system is the use of hierarchical structures in the model building process.

This process consists of four main components:

1. the process that construct the multi-level knowledge structure in forms of Short

Term Memory (STM) for the model and Long Term Memory (LTM) for the

world,

2. the processes that transform image data between different levels of representa-

tion,
3. the hierarchical control strategies, and

4. the tree search mechanism that deals with the hierarchical structures of knowl-

edge and data.

Nagao et al. proposed a system to analyze complex aerial photographs (Nagao
et al., 1980). This is basically a “segment-extract-decide” system. In this system,
an aerial photograph is first segmented into regions by several low-level processes.

Using dominant features of each extracted region, procedures to recognize that
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region are applied based upon the extraction of specialized features. One of the
main features of this system is the way in which contextual information is used
to resolve the ambiguities in some regions according to specific structural relations
which are preorganized as rules in the system. The structural relations applied
by the system, however, are fixed. As a result, the interpretations depend upon

assumptions that are image-oriented and are not broadly useful.

The use of symbolic reasoning to aid in analyzing scenes is the main feature of
the ACRONYM system (Brooks, 1981). ACRONYM was the first computer vision
system to employ a general symbolic constraint manipulation system to determine
if a set of constraints is inconsistent. The basic paradigm in this system is top-down

and model-driven. For reasoning efficiency, the system constructs five graphs.

1. Object Graph. All object models are stored as nodes in this graph. Each node

is a frame that contains the object description.

2. Prediction Graph. This graph is produced by the knowledge from the object
models and the feedback from the low-level processes. The nodes of this graph

represent the predictions of specific image features.

3. Restriction Graph. The nodes of this graph are attached to the nodes and
arcs of Prediction Graph. Each node in this graph contains the constraint

parameters which are provided by the measurements on the image features.

4. Observation Graph. This graph is constructed under the direction of Prediction
Graph. All observables (ribbons and ellipses) and their relationships are stored

in this graph.
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5. Interpretation Graph. This graph is for matching the Prediction Graph against

the Object Graph based upon the Observation Graph and Restriction Graph.

Invoking these graphs, ACRONYM performs symbolic reasoning in a top-down
manner. The final version of the Interpretation Graph represents a match of a
maximal subgraph of the Prediction Graph and gives the global interpretation of

the image.

The top-down paradigm is only one part of the ACRONYM system, and since
the top-down paradigm is inadequate for complex scenes, it limits ACRONYM’s
utility as a general vision system. In fact, interpretations are limited in this system.
It has been tried only on a single viewpoint and with only a few objects such as
Boeing-747 aircraft. However, the significance of ACRONYM is that it provides a
general methodology for intelligent use of models, constraints, and feedback in a

computer vision system.

Few vision systems whose expertise is used to reason about shape completion
and network connection from an edge map and its corresponding intensity image
have been published. However, some systems whose functions are partially related
to this task have been proposed in recent years. Nazif and Levine (1984) proposed
an expert system which uses rules to segment an image into uniform regions and
connected lines using general knowledge about low-level properties of processes.

This system can both split and merge regions and either add, delete, or join lines.

Their algorithm is to segment an intensity image rather than to reason about an
edge or a line map. Line analysis is combined with region analysis, since they depend
upon each other. Therefore, the system does not take care of shape completion

which is mostly based upon an edge map under object oriented guidance. As a
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result, the linking criteria for line analysis are independent of the class of scene
under analysis. Usually there are not enough rules to handle all data configurations.

In the system, rules have the following format:
Condition 1 AND Condition 2 AND ... AND Condition N, ACTIONS.

If one of these conditions fails, then the rule fails. This format makes it difficult
to handle the partial failure condition and the conflict condition which often occur

in real images.

In contrast to Nazif’s system, McKeown and Pane (1984) proposed a system
named ALIGN to align fragmented linear features (region like) to a connected com-

posite region using domain specific knowledge.

ALIGN does not reason about edges and lines. The criteria in ALIGN are used
only for aligning roads or road-like region segments. ALIGN is difficult to adapt
to other domains, and as the authors point out, several problems have not been
solved. One is that neither intersections nor forks are considered in that system.
Consequently, it can not reason about complex object contours or complex networks.
There are no alternatives which may satisfy the criteria at the same time. It has

only a weak ability to cope with the multicriterion optimization problem.

There are many other vision systems, including Shirai’s system (Shirai, 1978)
which uses obvious edges as cues for interpreting the entire scene; Ballard’s system
(Ballard et al., 1978) which uses an image model and geometric constraints for
locating ships at docks and in locating ribs in chest x-rays; the SIGMA system
(Davis and Hwang, 1985) which attempts to integrate both bottom-up and top-down

processes into a single flexible reasoning process; Faugeras’ system (Faugeras and
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Hebert, 1986) which uses a hierarchical representation of visual features to recognize
objects while locating them; Ben-Arie’s system (Ben-Arie and Meiri, 1987) which
applies the optimal matching search of a multinary relations graph to recognize 3-D
aircraft from a 2-D image; and Lowe’s system (Lowe, 1987) which can recognize

3-D objects from unknown viewpoints in single gray-tone images.

In spite of the use of different algorithms and different applications, the com-
mon problem in the systems referenced above is that none of them has the ability
to cope with uncertainty information and none of them does uncertainty reasoning.
This may be a main deficiency that limits their use and applicability. In fact, most
of these systems only use a few models and only “know” a few objects. They were

successful in their restricted scene domains with few object classes.

2.2 Uncertainty Reasoning

Uncertainty reasoning is a collection of inference techniques for reasoning with
uncertain information. It involves basically three primary aspects: the represen-
tation of uncertainty information, the combination of uncertain evidence, and the
propagation of uncertainty through the reasoning process. This is a problem of
broad interest and considerable difficulty. To cope with real world problems, one

must deal with uncertainty which appears in the following forms:
1. the information is partial
2. the information is not fully reliable
3. the representation is imprecise

4. the information from different sources conflicts.
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Recently some theories of uncertainty reasoning have been proposed. Among
them, the Bayesian update theory (Duda, Hart, and Nilsson, 1976; Pearl, 1986),
Dempster-Shafer evidence theory (Shafer, 1976, 1986; Gordon and Shortliffe, 1985),
Shortliffe’s Certainty Factor (Shortliffe and Buchanan, 1975; Shortliffe, 1976;
Buchanan and Shortliffe, 1984), and Zadeh’s fuzzy logic theory (Zadeh, 1965, 1975,
1986) are four of the most prominent theories. A survey paper on this topic can
be found in (Bhatnagov and Kanal, 1986; Henkind and Harrison, 1988; Dubois and

Prade, 1985, 1988). We will review these issues briefly and compare them.

2.2.1 The Bayesian Update Model

The traditional numerical approach to uncertainty reasoning is the Bayesian
probability model (Duda et al., 1976, 1979; Pednault, 1981; Charniak, 1983; and
Pearl, 1986). Historically, many interpretations of probability have existed, includ-

ing
1. probability as relative frequency in the long run

2. probability as a measure of subjective belief. Different applications require
different definitions of the probability (Carnap, 1950). In the probability theory
for reasoning under uncertainty, the probability is usually defined as the degree

of confirmation or the measure of subjective belief.

Let H={h;, hy,..} be a set of hypotheses known to be mutually exclusive and
exhaustive. Let E={e;,e,,...} be a set of evidence. For a given hypothesis h;, the

prior probability P(k;) is defined as
P(h;) — [0,1] Vhi€ H
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Zh;g‘l P(h") =1

The conditional probability P(kle) is the probability of hypothesis A supported
by evidence e. Duda, Hart, and Nilsson (1976) consider the problem of updating
the probability of a hypothesis h with a prior probability P(h;) when new evidence
e; is obtained for which the conditional probabilities P(e;|h;) and P(e;|h;) are known.

By the conditional independence assumptions

P(el,ez,...em|h;) = HP(CJVI.) (21(!)
ji=1

P(ey, e, ..emlhi) = [ ] Plejlhs), (2.1.b)
Jj=1

they use the odds-likelihood form of Bayes’s theorem and give an updating formula

for the odds on h; in terms of a product of likelihood ratios

P({lilel)CZ)"')em) = P({l') M P(eJl_h')
P(h;lel,eg,...,em) P(h,‘) j=1 P(ejlh,').

(2.2)

Charniak (1983) proposed another approximation method to estimate the hy-

pothesis h;. For given a set of evidence E = {e,, ez, ...}, the conditional probabilities

P(h,-|el, €92, ..y €n)

can be calculated by Bayes Theorem

Literature Review 15



P(hl')P(elle27-"yen|hi)
P(ey,ez,....€5)
_ __P(hi)Ple1, ez, .., enlhi) (2.3)
Ef.:l P(hl')P(elieZv '~-7enlhi)

P(hilel,e21 sey en) =

To use this formula, two independence assumptions must be made. The inde-
pendence assumptions allow us to break the joint probabilities into combinations of

individual terms. That is

P(h;)P(e1|h;)...P(eq ki)
P(e1)P(e2)...P(en)

_ P(hi)P(e1]hi) P(es|hi) P(enlhs)

T P(er) P(e2) = Pen)

P(hileh €2, ..y e,,) =
(2.4)

This formula tells us that with initial probability estimate P(k;) for a hypoth-
esis, we can calculate the degree of belief for the hypothesis with the support from

new evidence e; by multiplying this estimate by

Plejlhi)
P(ej).

However, the assumption that P(e;,e;) = P(e;)P(e;) is very restrictive and is hard
to satisfy in the real applications. It often occurs that two pieces of evidence tend
to arise together for a single hypothesis. Charniak analyzed this and determined
that violations of this assumption would affect all evidence probability estimates by
a same factor since it is used only to determine the denominator of the combination
formula. It turns out that the estimated value becomes greater than 1 and gives

only relative rankings.
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Pear] (1986) shows how uncertainty reasoning can be conducted in a hierar-
chical hypothesis space using a Bayesian model. Suppose H = {hy, hs,...,h,} is 2
set of hypotheses which are mutually exclusive and exhaustive. Each subset of H
which has semantic interest forms a new hypothesis. Pearl’s algorithm begins with

an initial probability assignment for each singleton hypothesis h;, such that

znjp(h,-) =1 (2.5)
i=1

where P(h;) denotes the probability that h; is true given previous evidence. If S is
an event that is a conjunction of some other hypotheses, then the probability of

this event is the sum of probabilities of its constituents:

P(S) = Z P(h;). (2.6)

h1€S

Pear] uses the likelihood ratio A, to represent the degree to which new evidence e

confirms or disconfirms S. That is,

_ P(elS)
* T P(e|S)’

(2.7)

Confirmation is expressed by A, > 1; disconfirmation by A, < 1. A 3-step belief

update process is given by his algorithm (see Figure 1).

Pearl’s algorithm provides a convenient framework for updating belief values in
a hierarchical hypothesis space. However, it has been pointed out (Lee, 1988) that

his algorithm still can not distinguish between uncertainty or lack of evidence and
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Figure 1. An illustraction of Pearl’s algorithm.
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equal certainty. Also, in Pearl’s formulation there is no way to express ignorance

about a hypothesis.

Because of the restrictions of the Bayesian model, there are several problems in
applying this model to uncertainty reasoning. First, the assumptions of conditional
independence are usually difficult to satisfy in real applications. As a result, bias
is introduced into the system. Second, the Bayesian model fails to distinguish
between uncertainty, or lack of knowledge, and equal certainty. It usually treats
two unknown events by assuming equal prior probabilities even though there may
be no basis for doing so. Third, the Bayesian model assumes that belief in H is
equivalent to P(H) so that the belief in A i1s 1 — P(H). In fact, belief functions are
not additive in general. Evidence partially in favor of H does not necessarily give
information about its negation. Finally, the subjective probability assignments in

uncertainty reasoning cannot maintain consistency in the Bayesian model.

2.2.2 Certainty Factor

Shortliffe proposed the certainty factor in MYCIN’s intuitive model of uncer-

tainty reasoning (Shortliffe, 1976). MY CIN used Belief MB and Disbelief M D as the

units of measurement. They are defined as

1 if P(h) =1,
MB(h,e) = P(hle),P(h))=P(h : 2.8.a
(he) { mas(PUOPUN-P()  otherwise (28.0)

1 if P(h)=0
MD(h,e) = in(P(hle),P(h))—P(h . 2.8.b
(k) { min(PLLPANP()  otherwise (2.8)
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where P(h|e) is the conditional probability of k given e and P(h) is the a prior: belief

in h. The ideas behind these formulations is that for a piece of new evidence e

Belief decreased if P(hle) < P(h)

{Belief increased if P(hle) > P(h)
Belief not ef fected if P(hle) = P(h)

The certainty factor CF combines MB and MD into a single number. That is

CF(h,e) = MB(h,e) — MD(h,e) (2.9)

Generally speaking, suppose we want to accumulate two partial supports cor-
responding to evidence e; and e in the presence of other evidence e,. Let CF(h,e,e,)
be a certainty factor that represents the hypothesis A given the current evidence e

and previous evidence ¢,. Let f be a combination scheme. Then

CF(h,ejez,ep) = f(CF(h,e1,e,)CF(h,ez,€e16p)). (2.10.a)

For the case of more than two pieces of evidence, CF can be iteratively extended

in the same way:

CF(h,(e1e2)es, ep) = f(CF(h,e1e3,€p), CF(h,e3,e1€2€p))
(2.10.0)
= f(f(CF(h,ey,e,),CF(h,e3,e16p)),(CF(h, e3,eze16,)))

and so on until e, (Cheng et al., 1986).

There are four schemes in MYCIN to combine multiple evidence. Here only

a typical one is described. Let {e;,es,...en} be a set of evidence. Let E; = ey, let
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E, = eje; be the presence of e» given the previous evidence E;, let E3 = ejeses = Ejes

be the presence of e; given the previous evidence E,, and so on. Finally, we have

En =ejes...ey=En_1en. (2.11)

Thus, the combination scheme for MB and MD based upon the set of evidence

{816263 e CN} is

MB(h, El) = MB(h, 6162)

= MB(h, 61) + MB(h, 62) X (1 - MB(h, 61))
MB(h,E;) = MB(h, Ee3)
= MB(h,E1) + MB(h,es) x (1= MB(h, E1))

and so on, until finally we have

MB(h, EN) = MB(h, EN-leN)
(2.12)

= MB(h,EN_l) + MB(h,eN) X (1 - MB(h,EN..l)).

Thus, all evidence is evaluated, and so are the MD. The total certainty factor,

which represents the degree to which all evidence E; supports the hypothesis &, is

CF(h, E;) = MB(h, E;) — MD(h, Ey) (2.13)

where 0 < MB <1, 0 < MD <1, and -1 < CF < 1. A positive CF denotes that

the hypothesis h is confirmed to a certain degree. A negative CF denotes that the
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hypothesis h is disconfirmed to a certain degree. A zero valued CF suggests that

the hypothesis h is independent of the evidence.

The certainty factor is simple and easy to use in uncertainty reasoning. It was
successful in diagnosing diseases in MY CIN. The basic weak points in the CF model

are
1. it is an ad hoc technique and therefore lacks mathematical foundation.

2. it is good only for a singleton hypothesis space. It is incapable of consistent

management of evidence bearing upon hierarchical hypotheses.

2.2.3 Dempster-Shafer Theory of Evidence

Based upon Dempster’s upper and lower probabilities (Dempster, 1967), Shafer
proposed a mathematical theory of evidence (the D-S model) (Shafer, 1976). The
theory suggests a coherent approach for the representation and manipulation of in-
complete and imperfect knowledge in a hierarchically structured hypothesis space.
As a developing theory, the D-S model has attracted much interest and has sparked
considerable debate among statisticians and knowledge engineers (Hummel and
Landy, 1988). Recently, attempts have been made to apply D-S model to expert
systems (Garvey, 1987). Before examining the D-S model, some relevant notation

and definitions should be reviewed first.

Definition 2.1 Frame of Discernment : A frame of discernment © in the
D-S model is defined as the set of all different possibilities, which are

mutually exclusive and exhaustive, under consideration.
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Each such possibility is an element of ©. The set of all subsets of © is denoted by
2¢. Each subset of © corresponds to a hypothesis. For example, if © = {q,b,c}, then
{a,b} is the hypothesis that either event a or event b has occurred. The evidence is
represented as a basic probability assignment (bpa) over the hypotheses discerned

by the frame ©.

Definition 2.2 Basic Probability Assignment : A basic probability assign-
ment, denoted bpa, is a generalization of a probability mass distribution
(or m-function) which represents the impact of each distinct piece of

evidence on the subsets of a frame ©.
A bpa is denoted by m and must satisfy the following conditions:
(1)0 < m(A) < 1 forall A CO
(2)m(¢)=0
() Lacem(A) =1

For a subset A of the frame of discernment ©, we can calculate the belief func-
tion, the plausibility function, uncertainty, and the combination of belief functions.

These quantitatively characterize the hypothesis A.

Definition 2.3 Belief Function : A belief function for 4, denoted Bel(4), is the

sum of the beliefs committed exactly to every subset of A by m.

That is

Bel(4) = Z m(B), (2.14)
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where A is any subset of © and Bel(4) measures the degree of belief in A.

Definition 2.4 Focal element : A subset A of the frame © is called a focal

element of a belief function Bel over © if m(A) > 0.

Definition 2.5 Simple Support Function : A belief function is called a simple
support function if it has at most one focal element not equal to the

entire frame ©.

Definition 2.6 Plausibility Function : A plausibility function, denoted Pi, is

the maximum extent to which one may believe hypothesis A.

That is

Pl(A)=1-Bel(A)= > m(B), (2.15)

BRA#¢

where Bel(A) is the support for negation of 4 or the doubt on A. Note that 1— Bel(4)
is not the same as Bel(4) since evidence partially in favor of a event A does not
necessarily mean that the evidence is partially in favor of its negation. In the
Dempster-Shafer model, Bel(4) < 1 — Bel(A). This avoids the Bayesian restriction

that requires P(4) =1 - P(A).

Definition 2.7 Commonality Function : A commonality function, denoted

Q(A4), is defined as

QA= > m(B). (2.16)

BC6,ACB
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The relationship between the commonality function and plausibility function

is as follows:

Q(4) = S{(-1)/PH1PIB)|¢ # B C 4) (217a)

Pi(A) =Y {(-1)/PH*Q(B)|¢ # B C A} (2.17b)

where |B| denotes the number of elements in the set B. Note that by definition,

Q(¢) = 1 and PI(¢) = 0 for any belief function.

One of the advantages of Dempster-Shafer model is that it allows the repre-
sentation of uncertainty as well as the representation of ignorance. The amount of
uncertainty with respect to a hypothesis A given the evidence can be represented as
the interval of the Bel(A) and PI(A), ie, [Bel(A),1— Bel(A)]. The degree of ignorance

about a hypothesis 4 is the difference Pi(A4) — Bel(A).

Dempster’s rule provides a way to combine the support for a hypothesis 4 based
on multiple bodies of evidence. Let Bel,, Bel,, m;, and m, be two belief functions
and their corresponding bpas, respectively. Then the bpa m of the new belief function

Bel can be calculated as the orthogonal sum of m;, and m,.

Definition 2.8 Orthogonal Sum : The orthogonal sum of m, and m, is defined

as

0 ifa=¢

() = { K Y xay=ami(X)ma(Y) i A#¢ (2.18a)

where K-! is the normalization factor
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K'=1- )" my(X)my(Y) (2.18b)
XnY=¢

and X and Y are individually varied over all subsets of ©.

The orthogonal sum and normalization factor can be also obtained from the

commonality functions

K1 =) "{(-1)BH1Qu(B)Q2(B)|4 # B C 6} (2.18¢)

and

PI(A) = K3 {(-1)P*1Q1(B)Q:(B)I¢ # B C A} (2.184d)

where Q; and Q, are the commonality functions for Bel; and Bel,, respectively.

Among others, the computational complexity is a main problem in applying
the D-S model. It is necessary to find a method that permits the application of
the D-S model in a hierarchical hypothesis space while avoiding exponential time

requirements. We will discuss this issue in Chapter III.

The advantages of the D-S model over previous approaches include the follow-

ing:

1. It provides a coherent approach to the management of uncertainty among hi-

erarchically related hypotheses.

2. It does not require the use of an a prior: probability distribution, which is
usually extremely difficult to determine and is forced to artificial precision by

the mathematical requirements of traditional probabilistic approaches.
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3. It is good for combining evidence from multiple sources. The combination

order does not effect the result.

However, there are some problems in the D-S model that are yet to be solved.

The main problems are:

1. There exist different interpretations of the D-S theory which can lead to dif-
ferent results. The organization of the hierarchical evidence space also affects

the reasoning results.

2. In the case of a long chain of inferences which are required by handling un-
certainty in a hierarchically organized network, the computational complexity
is considerably increased due to iteratively using the Dempster’s combination
rule. It is necessary to find a method which allows the possibility of applying
the D-S model in a hjerarchicai hypothesis space while avoiding the exponential

time requirements.

2.2.4 Zadeh’s Fuzzy Set Theory

Begun in 1920’s, some multi-valued logic systems including model logic (Car-
nap, 1960), intuitionistic logic (Heyting, 1971) and temporal logic (Rescher et al.,
1969) were developed because of the apparent inability of classical logic to model
degrees of truth and uncertainty (Rescher four et al., 1969,1971). However, the com-
prehensive models of a set based upon multi-valued logic were not established until
Zadeh'’s fuzzy set theory (Zadeh, 1965) was proposed in 1965. Zadeh'’s fuzzy set the-
ory is a generalization of the ordinary mathematical concept of set. It is well suited

for representing the imprecision of vague linguistic predicates like “young,” “old,”
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“medium,” etc., and the imprecise quantification related to linguistic concepts like

” o« ?

“more,” “some,” “few,” and “majority” etc.

Let F be a fuzzy subset of a universe of discourse U and X be a variable taking
values in U. Then a membership function ur(X) expresses the degree of membership
of each element X in the fuzzy subset F and up(X) — [0,1]. The larger the value
of ur(X), the higher the possibility that X € F. The definition of the membership

function is usually subjective and context sensitive.

Fuzzy reasoning can be implemented under the set operations on fuzzy set of
their membership functions (Zadeh, 1975). Among others, three most fundamental

operations are
o Set complement: pp(X)=1- ur(X).
e Set intersection:  upng(X) = min(up(X), pc(X)).
e Set union:  pryc(X) = maz(ur(X), pe(X)).
o Cartesian product of F and A:  ppxa(X,Y) = min(up(X), pa(Y)).

where F and G are fuzzy subsets of universe U and X € U; A is a fuzzy subset of
universe V, and Y € V. A typical example for logical reasoning using a fuzzy set

might be

IF A THEN B ELSE C = (AxB)U(AxC)

The design of the membership function plays an important role in fuzzy set
theory. The membership function, however, is context sensitive, and a generic mem-

bership function for all situations is impossible. Therefore, different membership
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functions will result in different computational complexity and different reasoning
performance. Furthermore, fuzzy set theory allows us to formalize the vague con-
cept “tall,” but it is not useful for representing the approximate height of a person.
Thus the theory seems more appropriate for representing roughly defined concepts

rather than uncertainty information about the world.

2.3 Uncertainty Reasoning in Vision Systems

In recent years, the application of artificial intelligence in computer vision
forced Al to confront a noisy, uncertain, real world. Uncertainty reasoning has been
used as a promising tool for solving these difficulties in computer vision systems.
Unfortunately there has been no significant success in using it as a unified method

throughout the entire system.

Lowe has tried the Bayesian model in his SCERPO (an acronym for Spatial
Correspondence, Evidence Reasoning, and Perceptual Organization) (Lowe, 1985).
Lowe realized that the attractive feature of using evidential reasoning for computer
vision is that it allows us to combine information of varying reliability from many
sources. The evidential reasoning was to be used to reduce the search space and
to match the object model. Unfortunately, the evidential reasoning component of
SCERPO was less developed than other parts of the system. The system was tested
by only a single object under consideration. No details of the reasoning component

have been reported.

Wesley (Wesley, 1986) found that there were various features of the DS theory
that were not readily available in pure Bayesian-based approaches. He discussed

some work on integrating the DS theory into a knowledge-based high-level computer
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vision system through a set of outdoor image interpretations. The results suggested
that the performance of a knowledge-based system was improved by using DS the-
ory. Difficulties were raised from the theory for generating mass functions and from
the independence requirement of Dempster’s rule. The DS theory that was used in

the reasoning system involved single level reasoning.

Li and Uhr use the evidential reasoning mechanism based on the D-S model to
reason about components in an outdoor scene (Li and Uhr, 1987). After the initial
labeling for each extracted region, contextual geometrical relations were used as
evidence to improve the labeling results. It was reported that building windows were
recognized based on belief functions in the D-S model. Apparently the reasoning

processes in this system are only for singleton hypotheses.

Lehrer and Reynolds proposed a method for initial hypothesis formation in
image understanding (Lehrer, Reynolds, and Griffith, 1987). An alternative com-
putational approach to the D-S model is used for the evidence combination. The
hypotheses formed by this method are intended to provide an initial focus of atten-
tion which is used in an image understanding system to interpret outdoor scenes.
This method, as the authors claim, is capable of automatically generating a knowl-
edge base for the formation of initial object hypotheses using statistical information
provided from a set of training objects. This is a successful application of uncer-
tainty reasoning in a particular part of a vision system. However, they do not show

how to use uncertainty reasoning throughout the entire recognition process.

An evidence-based 3-D vision system for range images was proposed by Hoff-
man and Jain (Hoffman and Jain, 1987). Different surface patches are extracted by

range image segmentation. As evidence features, these patches are associated with
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the object models in the database. A measure of similarity between the observed
features and a set of salient features for a given object in the database is used
to interpret the unknowns in the image. Instead of the conventional uncertainty
methods we reviewed above, this system uses an evidence matrix and a similarity
function to combine evidence and to make decisions. The evidence similarity mea-
sure has a value between —1 and 1. A value of this measure close to 1 indicates
a good match between the observed evidence features and the positive evidence
features corresponding to a specific object in the system knowledge base, whereas
a value of —1 indicates the opposite. Object recognition is based upon detecting a
large value of the similarity measure. This idea behind the method is somewhat

similar to that of ACRONYM (Brooks, 1981).

A description of work-in-progress on PSEIKI (a Production System Environ-
ment for Integrating Knowledge with Images) was presented by Andress and Kak
(1987). The proposed system uses domain-independent information and performs
inexact reasoning based upon the Dempster-Shafer formalism in a hierarchical space.
There is no detailed description of how the inexact reasoning is applied or how the
D-S model is used. The basic idea from the description is parallel to our work on
the DNESYS system (Qian, Ehrich, and Campbell, 1990). A paper recently pub-
lished by Andress and Kak (Andress and Kak, 1988) discusses in detail the evidence
accumulation mechanisms and the control structure in PSEIKI. Although only a
set of simple-looking images, such as a sidewalk scene with a few edges, were tested,

their research work represents a new effort in the right direction.

From the above review, we see that although applications of uncertainty rea-
soning in expert systems have become popular, the uses of uncertainty reasoning in

computer vision systems are in their infancy. Uncertainty reasoning in the systems
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described above is used only as an aid at a particular processing level. It is not
used as a consistent method throughout all processing levels in the visual evidence
hierarchy. Fortunately, more and more people tend to agree that uncertainty rea-
soning is a necessary component of a computer vision system. It is likely that some
vision systems in which uncertainty reasoning plays an important role will appear

in the next few years.
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Chapter III

THE ADOPTING THE D-S MODEL
FOR COMPUTER VISION SYSTEMS

The adoption of the uncertainty reasoning theory of the D-S model as the
paradigm of our vision system model gives rise to numerous problems. Among
them, two are crucial. One is how to represent uncertain information based on
hierarchical visual evidence. The other is how to reason about visual events in a
hierarchical visual evidence space while keeping the computation complexity under
control. We will discuss these two problems theoretically in this chapter and will give
our detailed solutions in Chapter V. In addition, there is a problem with Dempster’s
rule when some information is conflicting. This is discussed and a new algorithm

to solve this problem is proposed in this chapter.

3.1 Uncertain Information Representations in Computer Vision

Systems

3.1.1 Uncertainty in Visual Knowledge

The reasoning process in the proposed computer vision system requires the
description of various levels of visual information and the use of knowledge to trans-
form visual information from one level to another. The performance of a computer
vision system depends upon the efficiency of use of visual knowledge. There is no
efficient way to use real world knowledge without proper representations. There-
fore, knowledge representation in a computer vision system is the same key issue as

in a purely symbolic Al system.
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According to Binford (1982), there are three levels of knowledge in computer
vision: physical knowledge, perceptual knowledge, and semantic knowledge. What
he did not explain is that associated with each level of knowledge there are different

uncertainty sources.

1. Physical knowledge. This is the knowledge about the physical world where
images are taken. Since images of concern to us are taken in the 3-D physical
world, the physical laws dominating the process can be used as part of the
knowledge source. Uncertainty in this type of knowledge source is caused by
uneven or insufficient illumination, occlusion, distortion or dissimilar views,

unknown camera parameters, and noise, etc.

2. Perceptual knowledge. This is the knowledge that is used to group primitive
pictorial entities into more global ones. Properties of an image such as prox-
imity, similarity, continuity, smoothness, symmetry, and so on, belong to this
level of knowledge. Uncertainty in this type of knowledge source is caused by
imperfect low-level processing operators such as over- or under segmentation,

imprecise grouping rules, or inadequate training sets.

3. Semantic knowledge. This knowledge concerns the properties of and relations
among real-world objects. It is especially important for recognizing member-
ship in abstract object classes. Uncertainty in this type of knowledge is caused
by inflexible relational models, imprecise interpretation rules, and mismatch-
ing because of missing data or information gaps produced by the raw data
or by lower-level processing. Recognition at high levels is performed in terms
of generic objects, while measurement (observation) is in terms of a specific

object instance. As a result, there is a large information gap between abstract
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concepts and an observed image. Therefore, we have to fill in the gap through
computation and reasoning so that a correspondence is established between

concepts and image data.

Human visual knowledge accumulation is usually from specific to general or
from concrete to abstract. There is no doubt that the abstraction process is a
bottom-up process. We can not see an “abstract dog” in the real world. After seeing
lots of individual dogs such as big dog, small dog, white dog, and yellow dog, then
we may build up an “abstract dog” concept with the common features of different
individual dogs in mind. Afterward, we have the second step. When we are told
that “X is a dog”, and then a semantic link from the “abstract dog” concept is made
to X. Consequently, we know that X is an animal with all properties or features of
the “dog” concept. Also, perception is a process that involves the use of reasoning
to reduce uncertainty about visual events. However, when knowledge is transferred
inappropriately upward, the distorted knowledge will cause misinterpretion of visual

events. This causes further uncertainty.

Therefore, ambiguity or uncertainty is an important aspect of visual knowl-
edge. Then the problem is how to express uncertainty in computer vision. Rather
than “all-or-none”, there are always other terms such as “sometimes”, “somehow”,
“maybe”, ‘probably’, etc. for describing uncertain knowledge in vision. For exam-
ple, “sometimes” is used to describe objects whose appearances change as a function
of time: most trees appear green in the summer but dark gray in the winter. The
recognition of a house requires the knowledge about abstract “house”. There are
many type of “house” with different appearances. The use of belief (uncertainty)

values for expressing this kind of diversity is necessary for the visual knowledge
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representation. Belief value propagation, which will be described later, can be used

for several purposes in computer vision:

(1) It provides a way to express the uncertainty facts, concepts, and ambiguity

knowledge quantitatively.
(2) It may guide the reasoning or searching process.

(3) Instead of giving a list of possible instances, it can be used to make an optimal

choice between competing instances.
(4) It may handle exceptions when visual events include some unexpected features.

There are many ways to represent visual knowledge. Among them, the seman-
tic network (Quillian, 1968) and frames (or schemata) (Minsky, 1975) are the most

popular methods.

A semantic net represents information as a set of nodes linked by labeled arcs
that represent relationships among the nodes. In computer vision, most relational
models are represented by using semantic networks. However, relations (or links)
between nodes in a semantic network are essentially YES-NO or IS-A relations.
An IS-A relation is a common representation method for organizing the domain
knowledge. However, when a concept can be translated in different ways, a problem
arises with using a simple “IS-A” relation. An example of this is determining
the front vertex in a NECKER CUBE VIEW. A semantic network does not give
us a criterion to make an optimal choice between the competing instances. This
is because the semantic network has not any attached belief value for its links.
Furthermore, a semantic network is unable to handle exceptions without any belief

value propagation. This is especially crucial in computer vision because objects do
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not look the same due to occlusion, dissimilar views, and distortion. For example,
a semantic network can be used to describe a table with a smooth face and four
legs. But if only two legs can be seen in a picture, it is difficult to drive a match

with that semantic network.

On the other hand, a frame is a data structure for hierarchical structured
information in which the top levels represent things that are always true and the
lower levels have slots to be filled by specific instances or attributes of events. In
computer vision, frames can be used to handle visual information hierarchically and
can hold attributes needed to generate hypothesis about visual events. It also may
be used to describe one visual event from different viewpoints. Without belief value
propagation, however, the same problem may occur as in the semantic network, and

uncertainty reasoning can not be carried out.

To represent visual knowledge with uncertainty information, a belief value
propagation is used by attaching belief values to frames which is embedded in
a semantic network (Figure 2). First, a visual event hierarchy is constructed in
our reasoning system. More general and more abstract events are put into the
higher level. The most specific entities are treated as individual nodes which at
the bottom. All the hierarchical nodes are connected by relational links such as
IS-A and PART-OF and by geometric links such as NEXT-TO, ABOVE, RIGHT-
OF, SURROUNDED-BY etc. which describe the geometric relations among visual
events. All of these functional links are associated with belief values. These belief
values represent uncertainty such as “sometimes”, “somehow”, “maybe”, “proba-

bly”, etc. In the reasoning and matching process, the belief value attached to each

Adopting the D-S Model for Computer Vision Systems 37



functional link provides good guidance. It makes the system choose the most con-
fident alternative from the set of uncertain choices. An example of this might be

selecting among multiple viewpoints for a 3-D scene viewed in a simple 2-D images.

In the above representation, each node in the semantic network corresponds
to a visual event which is defined and described by a frame. The links in the
semantic network represent interrelationships between these frames. A belief value
is attached to each link, which represents the uncertainty in their interrelationship.

Each frame contains the following information:
Visual Event Identification
Detailed Description About the Event
Prior Belief Value
Updated Belief Value
Property Measurements
Belief Mapping Function
Links to Higher Level Nodes
Subsemantic Network ID in the Next Lower Level.

Some information in this frame is fixed while other information must be filled in
by the reasoning process. Note that the belief values attached to each frame are
used to characterize the uncertainty about that visual event itself. The belief values
for describing the relationships between this event and other events are attached

to the functional links of the semantic network in which the frame embedded. The
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Figure 2. Frames embedded in semantic networks.

Adopting the D-S Model for Computer Vision Systems

39



subsemantic network ID in Figure 2 gives links for accessing the related visual events
in the next lower level which have the same representation forms as in the current
level. We will give further discussion on this issue in the following sections and will

present a solution in later chapters.

3.1.2 On Belief Functions

Generally speaking, the uncertainty in a piece of information can be represented
by means of belief functions. A belief function, denoted Bel, conveys the degree of
uncertainty about a logical proposition. Propositions can be represented as a subsets
of a given set. Then, the logical notations of conjunction, disjunction, implication,
and negation can be translated into set-theoretic notions of intersection, union,

inclusion, and complements:

If

A C © & Hy(proposition)

B C © & Hj(proposition)

Then
AN B ¢ conjunction of H; and Hs.
AU B & disjunction of H; and H,.
A C B & H, implies H,.
A = B¢ H, is the negation of H,.
{¢} & a proposition that is known to be false

{©} & a proposition that is known to be true
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A state of belief (or mass distribution) m is defined as

m: P(©) — [0,1]

m(¢) =0

and a belief function Bel is defined as

m(X), if X = singleton;
Bel(X)={ 1 if X = o; -
Zycxm(Y) otherwise,

where © is the set of all plausible subsets describing a valid configuration, and P(©)
is a probability distribution over the power set of ©. The term m(¢) = 0 expresses

the fact that no confidence is committed to ¢.

Definition 3.1 Committed : A belief value is said to be committed to a subset
if that value gives the confidence that some hypotheses in the subset is

true.

Definition 3.2 Beli(4) : The belief value for A under the consideration of all

evidence for A in the subset of A and A itself.

Definition 3.3 Bel’ : The belief value for A under the consideration of all evidence

for A in the subset of A except 4 itself.
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Definition 3.4 Bels(A) : The belief value that is exactly committed to 4 not to

the subset of A.

A portion of belief committed to one subset is also committed to any subset
containing it. This corresponds to the case in which a portion of the belief commit-
ted to a proposition 4, denoted Bel}(A), is also committed to any other proposition
it implies, denoted Bel (4). A portion of belief that is committed exactly to a given
subset A (not to the subsets of A), denoted Bels(A), is the quantity m(A) which is
called a basic probability assignment (bpa). Therefore, to obtain the measure of
total belief committed to 4, the m(B) for all proper subsets B of 4 should be added

to m(A). That is

Bel(A) = Bel(A) = Bela(A) ® Bely(A) =m(A)+ > m(B)= > _ m(B). (3.2)
BCA BCA
B#A =

In the case of the presence of imprecise evidence, the probability of a propo-
sition A is only imprecisely known. In this situation, the amount of uncertainty
with respect to 4 and the degree of ignorance about A can be modeled by the in-
terval [Bel(4), Pi(4)]. The lower bound Bel(A) represents the degree of certainty
of A, the upper bound PI(A4) represents the extent to which A cannot be denied,
and PI(A) — Bel(A) represents the ignorance. From the Equation 2.15, we have the

following observations:

(1) Bel(A) =1 — Bel(A) =0 and PI(A) = 0. This represents the proposition that A is

certainly true.

(2) Bel(A)=1— Bel(A)=0 and PI(A) = 0. This represents the proposition that A is

certainly false.
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(3) PI(A)=1 — Bel(A) = Bel(A) = 0. This represents total ignorance about A.

Example 3.1

Let © = {a,b,c}. Then 2° = {4,0,{a,b},{a,c}, {b,c}, {a},{b},{c}} is the power set of
©. If an event A = {a,b}, then {a,b},{a}, {b} are A’s subsets. Suppose the initial bpa

over the © are

m(¢) =0
m(©) =0.2
m({a,b}) = 0.3

m({a,c}) = 0.05
m({b,c}) = 0.05
m({a}) = 0.15
m({b}) = 0.15

m({c}) = 0.1

where m(X) measures the belief that one commits exactly to X, not the total belief

that one commits to X. Thus,

> mXx)=1;

Xce

Bel(A) = ) _ m(B) = m({a,b}) + m({a}) + m({b}) = 0.3+ 0.15 + 0.15 = 0.6.
BCA

The PI(A) can be obtained in three different ways.

By Equation 2.15 we have
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PI(A) =1 - Bel(A)

=1- Y m(B)

BCA
=1-m({c})=1-0.1=0.9.

By Equation 2.15 we also have

Pi(A)=1- Bel(A)= Y _ m(B)
BnA#¢

= m({a,b,c}) + m({a,b}) + m({a, c}) + m({b, c}) + m({a}) + m({d})

=0.2+0.34+0.05+ 0.05+ 0.15+0.15 = 0.9.

By Equation 2.17b

Pi(A) = {(-1))P*'Q(B) | ¢ # B C A}
= (-1)’Q({a}) + (-1)*Q({4}) + (1-)°Q({a, b})
=) mB)+ > mB)- Y mB)

B2{a} B2{} B2{a,b}
=07+07-05=09

where Q(X) is the commonality function which is defined by Equation 2.16.
This computation leads to the following conclusions:

(1) The degree of one’s belief in the proposition A4 is 0.6.

(2) The degree to which one cannot believe the proposition that 4 is false is 0.9.

(3) The degree of ignorance for A is 0.9 — 0.6 = 0.3.

(4) The degree to which one believes that 4 is false is 0.1.
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In computer vision, we often need to make decision about a certain visual event
at different processing levels based upon incomplete information or imprecise data.
For each hypothesis corresponding to a visual event, the belief function and the
interval [Bel, Pl] can be used to represent the uncertainty in the reasoning process.
[1,1] is used to completely confirm the hypothesis; [0,0] is used to completely deny
the hypothesis; [0,1] is used to totally ignore the hypothesis. If 0 < Bel < 1, then
[Bel,1] is used to represent the degree of support for the hypothesis. If 0 < Pl < 1,
then [0, PI] is used to represent the degree of rejection of the hypothesis. If 0 < Bel
and PI < 1, then [Bel, Pl] is used to represent the degree of belief in the hypothesis

with the amount of uncertainty Pl - Bel.

3.1.3 Uncertainty Transfer and Evidence Discount

In computer vision, one confirmed hypothesis may be treated as a piece of evi-
dence for other hypotheses at a higher level. In other words, the asserted proposition
is available for making further inferences at the next processing level. However, if
the confirmed hypothesis has a considerable amount of uncertainty (i.e. the interval

[Bel, Pl] is quite large), then the evidence itself is unreliable.

Definition 3.5 Information Gap : The information gap is the difference be-

tween the completely true evidence and the unreliable evidence.

There are two possible ways to treat unreliable evidence when the evidence
i1s mapped to the evidence strength for supporting hypotheses at the higher level.
One is that as soon as a hypothesis is confirmed, it is treated as completely true
evidence. The information gaps are filled immediately by prior knowledge associated

with that hypothesis. The uncertainty is cut at the current reasoning level. The
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other is that the degree of uncertainty is transferred to the next higher inference
level by means of evidence discounting. The information gaps are not filled until
the final decision making level. The first method is simple and fast, but when the
number of pieces of unreliable evidence is large and the amount of uncertainty in
each piece of unreliable evidence at the current reasoning level is significant, this
method may mislead subsequent interpretation at the higher level. The second
method allows the higher level reasoning to take the influence of the lower level

uncertainty into account. We will discuss the second method in more detail.

The original idea of “discounting beliefs” was proposed by Shafer (Shafer, 1976)
to deal with unreliable sources of information. It was not intended to solve the
uncertainty transfer problem in an evidence hierarchy like in computer vision. Let
Bel(A) be a belief function and o be the probability that the source is unreliable.
To express doubts on the unreliable source, m(4) is reduced and m(©) is increased

by the discount rate . That is

m'(A4) = (1 - a)m(A) (3.3.0)

m'(0) = e+ (1 — a)m(0). (3.3.0)

Note that the quantity m(©) corresponds to the amount of ignorance. Discounting

beliefs in one piece of evidence corresponds to increasing the amount of ignorance.

The problem now is how to determine the discount rate o for our task. Suppose
for a confirmed hypothesis B that Bel(B) is 0.5, Pi(B) is 0.8, and Bel(B) is 0.2. The
doubt on B is expressed in Bel(B) and PI(B) — Bel(B). Bel(B) expresses the disbelief

in B and PL(B) — Bel(B) expresses the amount of ignorance for B. To transfer
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uncertainty between levels of hierarchy, these two factors have to be considered

together. The discount rate should be a function of both. That is

a = f(Bel(B), PL(B) — Bel(B)) = W Bel(B) + Wa(BI(B) — Bel(B)) (3.4)

where W; and W, are the weights, W; > W,, and W, + W>,=1. The reason for setting
W, > W, is that the disbelief weighs more than the ignorance does for the unrelia-
bility of evidence. Since the mapping function, which maps the body of evidence
to evidence strength m(X) for hypotheses at the higher level, treats the B as a piece
of completely true evidence, the discounting rate o makes the uncertainty transfer

possible. For above example, if W, = 0.66 and W, = 0.34, then the discount rate is

a=0.66x0.2+0.34 x0.3=0.234.

3.1.4 Dependent Measurements

To adopt the D-S model for our computer vision system, the evidence from
different sources at each level of hierarchy is supposed to be independent (Dempster,

1967). This assumption is not always valid in real applications.

The definition of statistical independence can be described in the following

way:

Let A;,Ay,....A, be nevents, 1<k <n,and 1<i; <iy<...<i <n. The events

A1, As,..., A, are called mutually independent events if and only if
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P(4i,, Ai,, - .- Ain) = P(Ai,)P(Ai,) ... P(Ai).

where P(X) is the probability of event X.

The concept of independence in D-S model is slightly different from that in
probabilistic model since these models treat chance in different ways (Wesley, 1986).
Dempster (1967) pointed out that different measurements by different observers
on different equipment would often be regarded as independent. The concept of
independence of evidence sources used in our system is in the sense that evidence
sources are not influenced by each other. To recognize an object, for example, the
visual measurements obtained from three different viewpoints may regarded as three

independent sources.

The visual evidence in a computer vision system is basically derived from differ-
ent measurements which are outputs of different processing modules. Some of these
measurements are clearly independent, and some may be not. At the region level,
for example, some texture measurements are independent of the mean greytone
measurement at the region level. The length of a region boundary is independent
of the mean greytone measurement of that region. The geometric measurements of
a region, such as circularity, area, mean radius, and orientation of the region, are
independent of the greytone level measurements within that region. Also measure-
ments of spatial relations between regions are independent of all measurements of
each region itself. The pieces of evidence used at a particular level may be made

independent by carefully choosing the types of measurements made at that level.

Dependent measurements in computer vision often take forms in which one

measurement can be expressed as a function of other measurements. As pieces of
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evidence, if the both measurements enhance the belief for a hypothesis in the same
direction, then they can be used by the D-S model with certain inaccuracy. Because
inaccuracy of measurements are allowed in uncertainty reasoning and the measure-
ments chosen in computer vision usually support the belief in the same direction,
this kind of measurement dependency should not be forbidden when applying the

combination rule.

In this sense, different measurements by different selected processing modules
at each level of hierarchy may be considered as relatively independent evidence

sources in a computer vision system.
3.2 The Reduction of Computational Complexity

Computational complexity is a main problem in adapting the D-S model to
computer vision systems. Reasoning about the visual events in a hierarchical vi-
sual evidence space usually requires a long chain of inferences in a hierarchically
organized network. In general, the amount of computational complexity for exact
implementation of Dempster’s combination rule increases exponentially with the
number of subsets in a frame of discernment. It is necessary to find a method
that permits the application of the D-S model in a hierarchical hypothesis space
while avoiding exponential time requirements. Shafer and Logan (Shafer and Logan,
1987) proposed an algorithm which applied Barnett’s technique (Barnett, 1981) to
a partitioned frame of discernment © for the above problem. We will exaﬁine this

algorithm and adapt it for computer vision systems.
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3.2.1 Partitions of a Frame of Discernment

Decomposing a complex problem into several simpler parts is a standard sci-
entific problem solving methodology. Partitioning a large hypothesis space for ap-

plying the D-S model is such a strategy.

Definition 3.6 Partition : A partition of a frame of discernment © is a set of

disjoint non-empty subsets of © whose union equals ©.

Such a partition P can itself be regarded as a frame. Then P has fewer elements
than ©. The evidence from each partitioning is combined to constrain the final

decision.

Definition 3.7 Refinement : A partition P; of © is called a refinement of another
partition P, of © if for every element P; in P, there is an element P, in

P, such that P, C P,.

Suppose there is a frame of discernment © which contains a set of exhaustive

and mutually exclusive visual events {a,b,c,d,e}. Let a partition of ©

P ={P,, P, P3}

and another partition of ©

Py = {Pa, Pa2}
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be such that P, = {a,b}, P; = {C, d}, P = {e}, P g P21, Py g Pz'_), and P3 g D22 (See

Figure 3). The partition P is called a refinement of P,.

Let P* denote the set consisting of all unions of elements of P. That is

P = {{RURUR}L{PUR}{PUF}{P:UR}, (P}, {P:}, {Fs}, ¢}
(3.5)

= {{a,6,c,d,e},{a,b,¢,d}, {a,b,¢},{c, d, e}, {a,b}, {c,d}, {e}, ¢}
which is a field of subsets of ©.

Definition 3.8 Carried : A belief function Bel over © is carried by P if the
random subset S corresponding to Bel satisfies
Pr[SeP =1

Given a subset 4 = {a,b,¢,d} of © and given a partition P of ©, there are several

useful properties of the partition.

(1.) If Bel is carried by P, then

Bel(A) = Bel(Ap) = maz{Bel(B) | BC A, B € P*} (3.6.a)

where Ap is the largest element of P* contained in A:

Ap=U{P|PeP,PC A} (3.6.b)
(2.) If Bel is carried by P, then
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Figure 3. The partition 1 of ©.
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PI(A) = PI(A”) = min{Bel(B) | BD A,B € P*} (3.7.a)

where A” is the smallest element of P* containing A:

AP =U{P|PeP,PNA%#¢}. (3.7.5)

Here the example in Figure 3 is used to illustrate the above properties. Since

A = {a,b,¢,d}, P, = {a,b}, and P, = {c,d}, it is evident that P, e P , P, C A, P, € P, and

P, C A. Then,
A’p =U{P | PEP,P_C_A} = {P1 UP2}.
Similarly,
Ap=U{P|PEP,PNA+#¢}={PUP,}.
Thus,

Bel(A) = Bel(Ap) = maz{Bel(B) | BC A, B € P}
= maz{{BeI(Pl) | PLC A P €P},
{Bel(P,) | Py C A, P, € P*},{Bel(PLUP,) | {PLUP;} CA,{PLUP} € ’P*}

= BCI(.P1 U Pg) = Bel({a, b,C, d})
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PI(A) = PI(A?) = min{PI(B) | B2 A,B € P*}
= min{{Pl(P1 UP,UPs) | {P,UP,UPs} D A {P,UP,UPs} € P},
{PI(PLUP) [{PLUP;) 2 A, {PLUP} € P"}}

= PI(Pl U Pz) = Pl({a,b, c, d})

From the above properties, if Bel;, Bel,,..., Bely are carried by a partition P,
then the Equation 2.18d now can be replaced by the following formulas that involve

only elements of P* in the partitioned space P.

Pi(A) =K Z{(—n'ﬂ'”“Ql(B)Qz(B) ...QN|B€eP* B#¢,BC A} (3.8.)

where |B|” denotes the number of elements of P contained in B, and

K== 3 {(-1)B"HQy(B)Qx(B)...Qn(B) | BEP",B#4,BCO}  (38)

Qi(A) = Z{(_l)lBl”Hu — Bely(B)) |BEP*",B#¢,BC A}. (3.8.¢)

Again, we use the same example to illustrate this formula. Here A = {a,b,¢,d},
the elements in P* are {P,},{P.}, and {P, UP;}. Suppose that Bel, and Bel, are both

carried by P, then

PI(4) =K{(-1)°Q1(P)Qx(P)) | L € P",PL # 6, P, C A},
{(-1)?Qu(P2)Qa(Py) | P, € P, P, # ¢, P> C A}, (3.9)

{(=1°Qi(PLUP,) | LUP, € P*,PLUP, # ¢,PLUP, C A}}.
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Now, the question is whether the partition P discerns the interaction among
these beliefs that is relevant to itself. That is, whether the following equation is

valid:

(Bell @ BelyP & ...® Bely) = (Bely @ Bely ® ... @ Bely)”. (3.10)

Shafer (1987) gave the following condition: P discerns the interaction among

Bely, Bels, ..., Bely that is relevant to itself iff

SPNSPn..nSP=(51nS.n...nSxy)P (3.11.a)

which is equivalent to

SiNP#6& S NSN...NSNNP#¢ (3.11.b)

where P € P and S; is a focal element of Bel;.

Given a partition P = {P;, P;, P;} on © (Figure 4), suppose in ©
Bel, focuses on A = {a,c}

Bel, focuses on B = {a,b}.

But in partition P

P1 = {a}
P2 = {b,c,d}
P3 = {6}

That means
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Figure 4. The partition 2 of the ©.
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B¢ P Bg P,
AQPl AQPQ

AnB:{a}gpla

AP =¢ B =¢

(A ﬂB)P = Pl.

Thus,

AP N BP # (AN B)".

Therefore, P = {P;, P,, P;} can not discern Bel; and Bel, to itself. However, if we
choose the partition as P = {P, U P,, P3}, then this partition can discern Bel; and
Bel,:
BC{PUP}
AC{PUP}
ANB={a} C{PUP}

AP N B? = (AN B)”.

Appropriately partitioning the visual event hypothesis space or a hypothesis
space for spatial relationships among visual events is necessary for computer vision
since these hypothesis spaces are large and hierarchically structured. The partition,
however, should be carefully chosen such that the partition discerns the interac-
tion among belief functions for these hypotheses that is relevant to itself. Then

Dempster’s combination rule can be used with lower computational complexity.
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3.2.2 Applying Barnett’s Technique in a Partitioned Space

Barnett (1981) has developed a technique by which the computational com-
plexity for implementing Dempster’s combination rule can be linear in the number
of elements in © if the belief functions being combined are all simple functions
focused on singletons or their complements. Shafer’s partition ideas enable Bar-
nett’s technique extend to the case where belief functions focus on elements of some

coarser partition P.

Suppose a frame of discernment

© = {a,b,c}
then
a={bc}
b= {a,c}
¢ = {a,b}

and there are three sets of belief functions
Bel,(a) Bel,(a) Bel,(©)
Bely(b) Bely(b) Bely(©)

Bel.(c) Bel(?) Ble.(9)

Now, we try to combine these three belief functions by Dempster’s combination

rule by computing Bel,®Bel,®Bel. and the normalization factor K. First, we compute
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Bel, ® Bel,. The orthogonal sum of these two belief functions is shown in Figure 5.

There are five different result subsets depending upon the original focal element

Seo.

(1.) Exactly one S is a singleton. It is marked by .

(2.) Two or more S are singletons. In this case NS = ¢. It is marked by **

(3.) No S is a singleton. In this case S € {{X},0}. It is marked by «* *.

(4.) All S are {X}. It is marked by * * *+.

(5.) Combinations of case 3 and case 4.

A much more complex situation for the orthogonal sum of these tree belief
functions is shown in Figure 6. The same marks as in Figure 5 are used to represent

four different cases.

By Equation 2.18b the normalization factor

K'=1- Y m(A)mx(B)= Y my(A)my(B).

AnB=¢ ANB#¢

By examining Figure 6 we have that the normalization factor for this example

1S
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220 N =@ m (2) @)
m: (b) #) " (b} (b)*
m, (b) {a} * {c} {6}
m, (6) {a}" (3) (o)™

Figure 5. The orthogonal sum of two functions.

Adopting the D-S Model for Computer Vision Systems



m. ®m,®m,

n,0 m, {c} {c) {e}
{a} n{b}=le} {o}* {o} ™ o)~
{aln{b}={b} {o} * {b}* {b}*
{e)a{b}={b) {0} ™ {b}° {b}*
{aln({b}la) ~ o) {a}* ta}’
{a}n {el={a} {0} {a}* {a}*
{z) 8= {3} {c})* fby e (a;
{B)niel={b) {c}* {aj = (b}’
{a)nibl={c) BE (@)esee e
{e} N{e}= (e} {c}* & (o] ™"

Figure 6. The orthogonal sum of three functions.
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5 § 5

3
K'=)"X;+) Yi+) 2+ Tj+R
j ji=1 j=1 j=1

ji=1
4 4 2 3
=X+ %+3 %)+ (Xs+ s+ Zs+ R+ W+ 1) - W
j=1 j=1 j=1 j=1
= 3 II Beis(sy+ >, ][ Bels(Si) - > I1 Beis(s:)
ezactly one S5i€© Si€{{5},©} Si€® all §;={5} Si€®
Si is singleton such that NS;=¢

(3.12)

where the X; are the m functions whose focal element S; = {4} with the mark * for
j = 1,2,3,4 and with the mark **x for j = 5; Y; are the m functions whose focal
element S; = {a} with the mark * for j = 1,2,3,4 and with the mark  «* for j = 5;
Z; are the m functions whose focal element S; = {¢} with the mark * for j = 1,2,3,4
and with the mark **+ for j = 5; T is the m function whose focal element S; = {a};
T, is the m function whose focal element S; = {b}; T3 is the m function whose focal
element S; = {¢}; R = m({#}), and W is one of those m functions whose focal element

is ¢ and is counted both in case 3 and in case 4.

This equation can be generalized by

K= > II Beis(sy+ > I Bels(Si) - > 1 Beis(S:)

ezactly one S.€© 5.€{{5},©}) 5:€® all §;={5} S5i€®
Si is singleton such thatnS;=¢
= Y Belp(D) [] (Bels({3:}) + Bels(©))
De®© Si#D
+ TI (Bels({5:}) + Bels(0)) - ] Bels({S:})
Si€© 5:€©

(3.13)

If Bels({.g,'}) =+ Bels(@) -',é 0 fOI‘ 8.11 i, then
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K=t = T (Bels({5:}) + Bels(©))

S5,€0
(1 + Z Belp(D) _ BEIS({gi}) (3.14)
bee [Is.=p(Bels({S:}) + Bels(©)) sico (Bels({5:}) + Bels(0))
Note that
Belp(D) = Bels(S;)
Bels({S:}) + Bels(©) = 1 — Bels(S;)
Bels({g}) = Bels(S';)
then K-! can be rewritten as
-1 _ Belg(S) _ Bels(S') a
K _SI;[S(l BeIs(S))(1+g; = el 1L l—BeIS(S))' (3.15.0)

By eliminating [Jgee(1 — Bels(S)) which is the common factor when applying it

to compute Bel or Pl, we have

Bels(S) 11 M), (3.15.b)

r—1 __ -
K== (14 1— Bels(S) 1= Bels(S)

5€® S€©

Thus, we get the same result as that of Barnett (1981) and Shafer four et al.(1987)

by a different approach.
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From above discussion, it is not difficult to see that a partition can be taken
such that the belief functions are dichotomous with dichotomy {4, A}; this means
that the belief function has no focal elements other than 4, 4, and 6. The algorithm
begins with simple support functions for and against elements of partition P. Let
PI(A) be the plausibility function for the belief function of the orthogonal sum of
{Belp|P € P}, where Belp is dichotomous with dichotomy {P,P}. Let P* denote

Belp(P) and P~ denote Belp(P). Then

pt p-
Pl(A) = K(l + z =P+~ T—_P‘*') (3.16.a)
PCA,PeP PCAPeP
where
Pt P~
-1 _ _
K _1+21_P+ plgol—f’* (3.16.b)

PeP

Thus, a computational complexity which is linear in the number of subsets of

a frame can be achieved (Shafer and Logan, 1987).

3.3 Problems with Dempster’s Rule Under Conflicting Information

The original version of Dempster’s rule is given by Equation 2.18. The idea of

using the normalization factor in this formula can be described as follows:

Given a subset A of ©, the probability mass which commits to 4 is m;(X)my(Y)
such that XNY = A. Since there may be more than one terms whose focal element

is A, the total probability mass committed to 4 will be
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Z my(X)ma(Y).

XNnY=A

However, it may occur that m;(X)mz(Y) # 0 such that X nY = ¢. This contradicts

the definition of bpa (m function) by which

m1 & m2({¢}) =0

> mB)=1

BC®
B#¢

To be consistent with the definition, the probability mass computed by the orthog-

onal sum should be normalized. The total probability mass for X NY # ¢ is

1- 7 my(X)ma(Y).

XNnY=¢

Thus,

2 xny=a M (X)ma(Y)
A) = .
m(4) 1- me'=¢ m1(X)ma(Y)
However, the normalization factor gives rise to problems with Dempster’s rule
under extremely conflicting information. In this case, Zadeh (1984) challenged

Dempster’s rule with the following example.

Let © = {a,b,c} and
my(a) =0, my(b) = k, mi(e)=1-k

mg(a) =1- k, mg(b) = k, mz(c) =0
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where k is a small number. The bpa from two different sources are conflict strongly.
m; suggests that a is absolutely impossible and ¢ is almost completely confirmed,
while m, suggests that a is almost completely confirmed and ¢ is absolutely impossi-
ble. Both m; and m, suggest that b is unbelievable. The orthogonal sum of m; and
m, given by Dempster’s rule is

m(a) = 0, m(b) =1, m(c) = 0.

This result suggests that b is completely confirmed and either « or b is absolutely
impossible, which is certainly not true. This is caused by the normalization factor.
Without the normalization, all the values for a, b, or ¢ are very small. To resolve
this problem, Yager ( 1987 ) slightly modified Dempster’s rule by adding the weight

of conflict term Y y.y mi1(X)m2(Y) to the ignorance m(©). That is,

m(4) = m1(X)ma(Y) (3.17.0)
XNnY=A
A#0¢
and
m(©) = mi(O)ma(0) + Y my(X)ma(Y) (3.17.5).
XNnY=¢

The combination result for the above example of this rule shows that « and ¢ are
impossible and b 1s not reliable since m(b) is small and m(©) is almost 1. Note that
for more than two pieces of evidence the second step (applying Equation 3.17b)
should not be used until all pieces of evidence have been combined by Equation

(3.17a).
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However, Yager’s modified Dempster’s rule can only be used under the condi-
tion that the conflicting information sources are equally reliable. In above example,
if only one of sources is reliable, then Yager’s rule will yields the same misleading

results.

In our system, partially redundant information from multiple sources is used
to reduce the chance that several information sources will report results extremely
conflict as in Zadeh’s example. The above extreme case may not occur, and usually
the number of pieces of evidence is larger to insure that most evidence will enhance
each other. Since we are not sure whether all evidence sources are equally reliable
or not in the reasoning process, Yager’s modified rule can not be used in the whole

evidence combination process. Our solution for this problem is to

(1) Apply Dempster’s rule to combine one piece of evidence at a time, and start

with the piece of evidence which has a small m(©).
(2) Calculate the conflicting term ¥y -, m1(X)ma(Y)
(3) If the conflicting term is quite large then push this evidence into a stack.

(4) Repeat Step 1 to Step 3 until all pieces of evidence are processed. Then the

first orthogonal sum is obtained.

(5) Pop the pieces of evidence from that stack one by one and combine them by

Dempster’s rule into the next orthogonal sum according to Steps 1-3.

(6) Continue until there is no piece of evidence in the stacks.

(7) Combine all orthogonal sums obtained so far by repeating Step 1-7.
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(8) Finally the number of pieces of evidence is reduced to two. Calculate the
conflicting term; if this term is small then Dempster’s rule is applied, and

otherwise Yager’s modified rule is applied.

This algorithm divides the body of evidence into several groups of evidence
which that in each group evidence is not extremely conflicting. Then Dempster’s
rule is applied to each group of evidence. The orthogonal sums obtained from these
groups are combined by the same procedure. Recursively applying this procedure,
the number of orthogonal sums is finally reduced to two. Since these final orthogonal
sums are obtained from several information sources these two can be assumed to be
equally reliable. Then Yager’s modified rule can be applied correctly. However, if
one of the final two terms is only from a single evidence source and it still completely
conflicts with the other, then this evidence can be discarded by majority voting. In
this algorithm, Step 1-3 insure that all pieces of evidence combined by Dempster’s
rule are not completely conflicting. The conflicting term evaluation in the Step 2
plays a crucial role in this algorithm. If there are sufficient evidence sources this

algorithm is also able to exclude a few unreliable evidence sources.

Adopting the D-S Model for Computer Vision Systems 68



Chapter IV
HIERARCHICAL VISUAL EVENT SPACE

It has been widely believed that a hierarchical computational framework for
reasoning from the raw image to a high-level symbolic description is a proper way
to achieve the goal of computer vision. Typical examples in the domain of early
vision are the 2-1 D sketch (Marr, 1976, 1982) and intrinsic images (Barrow and
Tenenbaum, 1981). Our view is that an active process of uncertainty reasoning
about a hierarchical visual evidence space is a most important aspect of computer
vision. Based upon this point of view, a succession of levels of representation for
visual information is necessary for a computer vision system. The number of levels
in the hierarchy depends upon the computational method. Too many levels of
representation would considerably increase the computational complexity while too
few would make it difficult to make a reasonable model of a structured world.
Usually the initial levels are constrained by the essential primitives that must be
computed directly from an image. The intermediate levels are constrained by what
is available from preceding levels and what is required by succeeding levels. The
top levels are directly constrained by the final processing goal. Regardless of how
many levels are chosen, the visual event space should be hierarchically represented
from the level of image primitives to a high-level interpretation. Multiple levels of
representation and stages of processing are essential. Uncertainty reasoning plays
an important role which purposely conducts information exchange between different
processing levels and communication between the processing elements within each

level. First, two definitions will be helpful for the following discussion.
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Definition 4.1 Visual Event : A visual event is a physical occurrence in
the visual field or, at a higher level, an interpretation of a physical

occurrence.

Definition 4.2 Visual Evidence : Visual evidence is the quantitative support

for a hypothesis that explains the visual event.

A hypothesis that explains a visual event may also be supported or refuted by
evidence from other visual events or by other confirmed hypotheses. A confirmed
hypothesis at some level of abstraction is a visual event that provides evidence for
reasoning about hypotheses at a higher level of abstraction. Any visual event at a
particular level of abstraction should provide as complete a description as possible
of the visual events at preceding levels. It should provide as strong a support as

possible for the next higher level representation.

There are many visual features, such as edges, textures, graytones, colors,
etc., that are frequently used in computer vision systems. There are also many
algorithms that are used to extract these features. The problem is that it is not
easy to judge which features are efficient and which are not. Each feature provides
a piece of information, but none is particularly reliable by itself. For example, the
intensity of a line or the gradient amplitude of an edge do not necessarily correlate
with the perceptual significance of the line or edge. Sometimes low contrast edges
may correspond to true boundaries of objects (Figure 7). This causes problems for
edge operators which label the edges from a graytone image only on the basis of
gradient amplitude thresholding. Furthermore, some perceptually significant lines,
such as subjective contours and illusory contours, may not be physically present in

the image (Figure 8). Therefore, it is necessary to use multiple features at different
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representation levels and to integrate multiple visual evidence to deduce the most

plausible events which explain the visual image.

Knowing what features are used by the human visual system may be helpful
for determining an implementation of a computer vision system. Some researchers
(Lowe, 1985; Walters, 1987; Malik, 1987; Nalwa, 1988) argue that line drawings
convey much visual information. This is based upon the fact that we can so readily
recognize objects from line drawings which lack color, motion, stereoptic depth
cues, shading, and natural textures, etc. Therefore, for effective image primitives,
we can often use linedrawing-like features, including edges, segments, lines, curves,
contours, etc., as basic features and use regional features such as textures, graytone,

and colors as auxiliary features.
The visual event hierarchy in our system has the following levels:
1. Significant points
2. Significant lines
3. Significant contours
4. Significant shapes
5. Primary components of objects
6. Objects
7. The scene
8. The world.
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Figure 7. Edges may not correspond to true boundaries of objects. (a) Original

image; (b) the edge image.
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Figure 8. Illusory contours may not be physically present in an image (IXanizsa's

triangle).
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These visual events range from local to global, and regional events may spatially
overlap local features at a lower level of abstraction. For example, levels 4 to 5 may

be overlapped by regional properties such as texture, graytone, and colors etc..

In general, suppose there are I levels in the visual event hierarchy. Let £ =
U/Z1&; be a hierarchical visual event space. & = {&1,&2,...& ~.} is a finite set of
possible visual events at level i, i = 1,2,...,I — 1. Usually the evidence for events at
level i come from confirmed events at level i — 1 in a bottom-up process, although
in principle, the evidence could come from confirmed events at any level, either
higher levels or lower levels, including the raw data. The ability to have all levels
of visual processing influence the current level visual interpretations would turns
out to be very important. Let G; C & be the set of all mutually exclusive elements
of &. Gi = {Gi1,Gi2, - Gig,} where G; < N;. Let E = uj;}E,- be a hierarchical visual
evidence space. E; is a subset of E, and E; = {ei1,€i2,...,eim} is the finite set of
evidence at level i, i = 1,2,...,I — 1 which is used to evaluate the events in &;. The
visual evidence space is associated with the visual event space and is the mapping
results of the visual event space. A visual event can provide visual evidence for

confirming or disconfirming hypotheses about other visual events. However, a piece

of visual evidence may not necessarily be a valid visual event defined in the visual
event hierarchy. Visual evidence is the information required for asserting other
visual events. For example, a spatial relationship between two visual events may
provide visual evidence although it is not a visual event defined in the hierarchy.
Uncertainty reasoning will provide a method for combining multiple visual evidence
into a consistent overall interpretation at each level and for filling in information in

areas where no information is locally available.

Besides the visual event hierarchy, there is a hypothesis hierarchy. Let H =

Ul_,H; be a hierarchical hypothesis space. H; is a subset of H, where i # I (i.e. level
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i is not the top level), and H; = {hi1,hi2, .., i} is a finite set of hypotheses. &, ;
denotes the hypotheses about the jth visual event G;; at level i. For 1 <i< I, if
there are G; hypotheses at level i, and if each hypothesis describes a possible visual

event at level i, then ©; discerns these visual events at level i.

The finite set of hypotheses H; at the level i can be decomposed into groups
of mutually exclusive subsets, and each group can be considered to be a separate
frame of discernment. Each such separate frame of discernment corresponds to a
class of possible labels for valid visual events at a particular level of the visual event
hierarchy. In the reasoning process at level i, we want to determine which visual
event is believed to be true among a set of possibilities at that level. The frame
of discernment for this case is ©; = {h;1,hi2,...,hig,}. A reasoning tree then can be
constructed to represent this frame of discernment. In the tree, all the terminal
nodes correspond to the elements ‘of ©;. Higher nodes correspond to a cluster of
visual events. Each corresponds to the union of the terminal nodes below it. Notice
that only those subsets of ©; which are of semantic interest are represented in the
tree. For example, to recognize a lake, a river, shadow of a man-made object,
shadow of natural object, and other objects on a SAR radar image, the frame of

discernment would be:
©; = {River, Lake, Sea, Shadow-m, Shadow-n, Others}.

All these six labels are elements of the frame of discernment. They are mutually
exclusive and exhaustive at the object level. Each label represents a hypothesis
corresponding to a visual event at the object level. Only one label can be true for
a particular region at any one time. A tree can be constructed to represent this

frame of discernment hierarchically as in Figure 9.
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O=( River, Loke, Sea,
Shadow-m, Shadow-n, Others ?}

{Black Region} {Other Region}

{Water Region) {Shadow Region?

{River) {Lake) {Sea) {Shadow=m}  {Shadow-n)

Figure 9. The hypothesis hierarchy at the object level for the water-shadow prob-

lem.
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There are three levels of hierarchy in this tree. The {Black Region} is a subset
of ©;. The {Water Region} and the { Shadow Region } are subsets of {Black Region}.
{Lake} and {River} are subsets of {Water Region}. {Shadow-m} and {Shadow-n} are
subsets of {Shadow}. All these nodes below ©; are the subsets of ©;. Other subsets
of ©; which are not semantically significant to this problem are not represented in

this tree. Note that this hierarchy is not a structural hierarchy but rather a “logical”

hypothesis hierarchy.

One of the advantages of D-S model is that it is possible to assign belief to
a subset. Even though some evidence does not specifically support a particular
hypothesis, it still can support the superset of that particular hypothesis. For
example, one piece of evidence suggests the {Water Region} to degree 0.7, although
it suggests the {Lake Region} to degree 0.0. The uncertainty and conflict among
them can be resolved when we compute the interactions among these beliefs in the

tree.

The relationships between the hypothesis hierarchy and the visual event hi-
erarchy are illustrated in Figure 10. Each reasoning tree represents an element of
a partitioned hypothesis hierarchy at that level. The union of all reasoning trees
at that level is the frame of discernment ©. The reasoning results from these rea-
soning trees are asserted visual events at that level. These asserted visual events
can be used as visual evidence for the next level visual event reasoning. Through a
visual evidence collection, quantitative measurement, and visual evidence mapping
process these pieces of visual evidence can mapped into evidence strengths for the

hypothesis hierarchy at the next processing level.
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Chapter V
THE REASONING ALGORITHM

In this chapter we propose a reasoning system to adapt the D-S model to
computer vision. We direct particular attention to reasoning in a hierarchical visual
evidence space while keeping the computational complexity under control. First,
visual evidence collection and initial bpa assignment methods are introduced. Then,
the interactions of hierarchical visual evidence are described. Finally, an algorithm
for handling spatial relations is presented. These three processes are all based on
the visual event hierarchy, the visual hypothesis hierarchy, and the reasoning tree

defined in Chapter IV.

5.1 Evidence Collection and Initial bpa Assignment

After the construction of the reasoning tree described in Chapter IV, it is nec-
essary to address the question of how to propagate the initial beliefs to each node
of the tree, based upon measurements of features from image data or based upon
measurements of visual events in a previous level of a visual event hierarchy. In this
section, we describe a process which collects and combines a body of visual evidence
to form an initial bpa for a hypothesis about a visual event. First, we define a set of
visual evidence measurements Q; at level i. w;; € Q; denotes the measurement pro-
vided by the kth processing module or provided by the kth image feature at level i.
Through a mapping function, these visual evidence measurements or image feature
measurements are mapped into visual evidence strengths for relevant hypotheses,

which range from 0 to 1. Next, the evidence is combined by Barnet’s technique
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into two separate belief functions. One is the evidence strength for a particular
hypothesis. The other is the evidence strength against the hypothesis. Finally, by
Dempster’s rule, these two beliefs are combined into a single belief function with its
dichotomy as the initial probability assignment for that hypothesis for the further

reasoning.

Suppose there are N; hypotheses h; 1, ki3, ..., hin, at level i of the visual event
hierarchy. At level i there are also M; pieces of evidence e; 1, €; o, ..., &; ar, Which support
or contradict each of these hypotheses. Each e;; may based on visual evidence
measurements w; ; € §;, which come from different processing modules at level ¢ or
from confirmatory hypotheses at level i—1. A mapping V;; is a function which maps
the visual measurement into the strengths of the visual evidence for and against the

jth hypothesis in 6;.

Let fi:,; be the strength of e;; supporting the hypothesis h;; and a;;; be the
strength of e;; against the hypothesis h;;. For a given w;;, we have N; fi,; and N;

Qi k,j for j=1,2,..., N;:

Vit (wix) — (firjsaik,;) (5.1.a)
that is
I/i,l Wi 1 (fi,l,l,a;'_l’l) (f;,l'z,a;71,2) .. (fi,l,Niaai,l,N;)
V'.’Z . wi,2 (fi1211’a‘.72v1) (fi,2,21ai,2,2) .. (fi’21N‘»,a;'2’Ni)
Vi,N.‘ Wi M, (fl',M.,lial',M,,l) (fi,M,-,2,ai,M.-'2) e (fi,h-fi,Nnai',M,,N,)
and
N; N;
Vie: (wik) — (fi,k,a =1~ Zfs‘,k,mai,k,a =1- Za;,k,n) (5.1.b)
n=1 n=1
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Zfi,k,n =1 (516)
daikn=1 (5.1.d)

fikn +aikn <1 (5.1.e)

Several mapping methods which map the measurements w;; into subjective
probability assignments are now proposed. In the following mapping function, these
initial bpas can be obtained either from the training data, from the expertise of the
expert, or from the accumulation of experience in a long run of experiments by the

user. These probabilities are typically very subjective.
5.1.1 Threshold Operation Mapping

Given a threshold T;; and a visual measurement w; x, we have

=41 e >T 5.2
ek {0 otherwise G20

where k£ =1,2,..M;.

Then, for each b;,, C H;,

. - P(hi,nlei,k) if €k = 1,

ﬁ*"—{O if ;0 =0 (5.2.b)
 _ [ P(hinleir) Her=1,

fokn = {0 if er =0, (526)

where n =1,2,..N;, and k = 1,2,..M; for the ith hierarchy level.

The Reasoning Algorithm 81



For each piece of evidence with ¢; x = 1, fi x,n is the strength of the evidence for
supporting the hypothesis h;,, and a; i, is the strength of the evidence against hy-
pothesis h; ,, (see Figure 11(a)). If there are M; pieces of evidence and N; hypotheses

at level i, then there will be M;N; f;xn and M;N; a;, at that level.

5.1.2 Linear Mapping

The linear mapping function is shown in Figure 11(b). Let wn, be a lower
bound for accepting a visual event, let wn,, be an upper bound for that visual

event, and let w, be the measurement value. Then

vrene fwmin <wr <wmes
fikn = P(hinleir) =< 1 if wi > Wmas (5.3.a)
0 if Wi < Wnin
_ { gt i wmin <wk <Wmas
Gikn = P(hinleir) =11 if wy < Wmas (5.3.0)
0 if W > wmin

5.1.3 Optimal Mapping

For this mapping function, there is a maximum initial bpa value which cor-
responds to a certain visual evidence measurement value. It will monotonically
decrease as the value of w diverges from that measurement value in either direction.

This mapping function is illustrated in Figure 11(c).
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5.1.4 Discrete Table-look-up mapping

This mapping function may be a multiple threshold mapping function for a
continue quantitative measurement. It may also be discrete mapping function for a

set of logical relationships. An example is shown in Figure 11(d).

The above four mapping functions are actually part of the system knowledge
base. They specify the initial degree of impact of each visual evidence measurement
on the visual events. In fact, they are subjective weights for different uncertain

information sources.

Since there are M; visual evidence measurements, we have to combine all f;; .
for £k =1,2,..., M; into fin and all Gikn into Gin. That is

M;

fin=mi(hin)=1=T](1 = fikn) (5.4.a)
- M;

tin =ma(hin) =1- [J(1 - airn) (5.4.b)
k=1

for each hypothesis h;, at level i, where n=1,2,..., N;. f; . is the total weight of the

evidence in support of h;,, and a;, is the total weight of the evidence against h; .

According to the D-S model, we also have

mi(hin) = ma(hin) =0 (5.5.a)
m1(0,~) =1- f,'_n (5517)
mg(ﬂ,-) =1- ain (5.5.6’)
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Now, the orthogonal sum of m; and m;
m = my(z;) ® ma(y:)

where

z; € {hin, hin, 6}
Yi € {hin, hin,b:}

is computed according to Figure 12.

Thus,

K= Z ml(zi)mz(y;) =1- Z ml(x;)mz(y.') =1- ml(hi,n)m2(;‘i,n)

zNy;#0 zNy;=0

m(hin) = Kmy(hin)(1 - mg(ﬁ;,,,))
m(fz,-,,,) = sz(il,‘vn)(l - ml(h,',,,))

m(8;) = K(1 — mi(hin))(1 — m2(hin))

(5.6)

(5.7.0)

(5.7.5)
(5.7.¢)

(5.7.d)

where K-! is the normalization factor, m(h;,) is the measure of support for h;,,

m(h;,) is the measure of evidence against k;,, and m(6;) is called the uncommitted

belief. From the D-S model,

m(hg,,.) + m(il,',n) + m(6;) = 1.

(5.7.€)

By this technique, we can compute the initial beliefs, which are exactly committed

to each node on the hierarchy, bearing all visual evidence under consideration.
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m, (h; ) 0 o
m, (&) {hj n} 0 {8,}

Figure 12. The orthogonal sum of m, and ma.
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To illustrate the algorithm, a simple example of discriminating water regions
from shadow regions on an SAR radar image (Qian, 1985) is given. Suppose
that the processing level i corresponds to the region level. The visual evidence
measurement set ; = {w;;,w; 2 w;3} = {greytone measurement, texture measure-
ment, spatial relation measurement between regions}. The frame of discernment
is ©; = {Water region, Shadow region, Others}. The hypothesis set H; ¢ ©, and
H; = {hi1,hi2, hi3,h; s} = {Black region, Others, Water region, Shadow region}. Note
that only the interesting subsets are chosen here. A corresponding reasoning tree
for this hypothesis hierarchy is shown in Figure 13. For the given Q;, the evidence
strength for each hypothesis is mapped by the mapping functions to obtain the

initial bpa attached to each node in the tree.

Based upon the greytone measurement w;;, we have the following initial bpa’s:

fii1=04 a;11=03

fin2=0.1 a;12 =02
f,’|1’3 =04 a;13 = 0.3
fir,a=01 a;14=0.2

Based upon the textural measurement w; », we have another set of initial bpa’s:

fiz1 =03 ai21 =03
fiz2=01 ai22=03
fi23=103 a3 =02
fi2a=02 a;i24=0.2

The third measurement w; 3 suggests the following set of initial bpa’s:
fi,3,1 = 03 0;7371 = 01

fg,3,2 =0.1 a3z = 0.3
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©=( Water Region,
Shadow region, DOthers )

{Black Region} {Other Region}

{Water Region} {Shadow Region?}

Figure 13. The hypothesis hierarchy in the example.
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fi,3,3 =04 a; 33 = 0.2

fiza=01 a;34 =03

By combining three pieces of evidence, the mass functions which support the

hypotheses h;;, j=1,2,3,4 are

my(hi1) = 0.71 ma(h; 1) = 0.56
mi(hi2) =027 ma(h; 2) = 0.61
my(hi3) = 0.75 ma(hi3) = 0.55
m(hi4) = 0.35 ma(h; 4) = 0.55

Now, the orthogonal sum of m; and m, is computed from Equations 4.1.4a-d

as follows.
m(h; 1) = 0.51 m(h; 1) = 0.27 m(6;) = 0.22
m(h; 2) = 0.13 m(hi2) = 0.53 m(6;) = 0.34
m(h; 3) = 0.57 m(h; 3) = 0.24 m(6;) = 0.19
m(h; 4) = 0.20 m(h; 4) = 0.44 m(6;) = 0.34

These dichotomies are attached to each node k;; in the tree as the initial beliefs

which are committed exactly to each node of the tree for further computation.

5.2 The Interaction of Hierarchical Evidence

The interaction of hierarchical evidence is considered in this section. For a
computer vision system, this kind of interaction should be taken into account to
resolve the conflicts and ambiguity based upon incomplete and uncertain informa-
tion from multiple visual measurements. It often occurs that one visual event itself

may have weaker supporting evidence or even may not be directed supported by
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the visual evidence. However, its superset or its subsets may have stronger support-
ing evidence. The interaction of hierarchical evidence can provide a way to deduce
the visual event indirectly from other relevant hypotheses. In this section, first
some concepts and notation are introduced. Then, a more detailed description and
derivation of Shafer’s algorithm is given. Finally, an example is given to illustrate

the theory.

Let A be any node in the reasoning tree which corresponds to a conceptual
hierarchy of relevant visual events at level i of the visual event hierarchy, as described
in Chapter IV. After the initial bpa assignment computation in the previous section,
all dichotomous belief functions Bel, with dichotomy {A,A} are attached to each
node A of the tree. Note that the Bel, is the belief that exactly commits to the
node A, not to a subset of A. That is, Bels is expressed as Bels(A) and Bels(A).
Now we need to compute the interaction of hierarchical evidence to resolve the
conflicts and uncertainty which result from the initial bpa assignment computation.
This requires the calculation of the belief function for a particularly interesting
hypothesis considering all the evidence in the frame of discernment. In other words,
it is necessary to calculate the value of Beli(P) for P in the tree, where P is a node

corresponding to a particularly interesting hypothesis.

For simplicity, the following notation due to Shafer is used (Shafer and Logan,
1987):

Beli: The orthogonal sum of Belp for all nodes B that are strictly below A.

Bel$: The orthogonal sum of Belp for all nodes B that are neither below 4 nor

equal to A.
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Bely: A single dichotomous belief function with the dichotomy {4, A} for some

node 4 in the tree.

A} = Bels(A): The initial bpa for A attached to node A. It is the belief that

exactly commits to A.

Ay = Bels(A): The initial bpa for A attached to node A. It is the belief that

exactly commits to A.

At = BelY (A): The belief value for 4 under the consideration of all evidence for

A below the node A in the tree.

A7 = Bel},(A): The belief value for A under the consideration of all evidence for

A below the node 4 in the tree.

At = (Belq ® Bel!)(A): The orthogonal sum of the belief value that exactly
commits to A and the belief value for A under the consideration of all evidence for

A in the nodes below A in the tree.

A~ = (Bely @ Bel})(4): The orthogonal sum of the belief value that exactly
commits to A and the belief value for 4 under the consideration of all evidence for

A in the nodes below the node 4 in the tree.

A} = (Bels ® Bel§(A): The orthogonal sum of the belief value that exactly
commits to A and the belief value for 4 under the consideration of all evidence for

A in the nodes neither below A nor equal to A in the tree.

Ay = (Bels ® Bel§(4): The orthogonal sum of the belief value that exactly
comimits to A and the belief value for 4 under the consideration of all evidence for

A in the nodes neither below 4 nor equal to 4 in the tree.
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A} = Bel}(A): The belief value for A under the consideration of all evidence for

A in the nodes below 6.

Ay = Belj(A): The belief value for A under the consideration of all evidence for

A in the nodes below 6.

For each node B other than © and its daughters, we have the following defini-

tions:
Bf = BelY,(B)
B3 = Bel}(B)
BY = Bel,(BU A)

The next goal is to compute Belj(P) for all hypotheses P of interest. There are
two cases when Bel}(P) is computed. If the node P is a particular daughter of ©,
then only one bottom-up pass is needed. If the node P is other than the daughter of
©, then an additional top-down computation is needed after the bottom-up process.
As the node P moved from the daughters of © to the terminal nodes of the tree, the
hypothesis set is narrowed down into smaller and smaller subsets until it reaches

the singleton hypothesis. We will analyze these two cases next.

5.2.1 The bottom-up process:

Let ¢4 denote all daughters of A in the tree. Beginning with the terminal nodes

of the tree, Af and AT are calculated from B+ and B- for B in ¢, as in Figure 14.
From Equation 3.15.b we have
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O=(B,, B, Bis Bz, Bz Y )

B Bi2 B3

Ba, Bae

Figure 14. The bottom-up process 1.
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Bt
-1 _ + — —
k=1 Z1—B+ 1-B-’
Bepa Bewa

Since B is a daughter of A and B is not a daughter of A4, the last term on the

right side of the above equation equals zero. Thus

Bt
K-1l=1 + E ﬁ (58)
Beypa
AT = Bell(A)
— Lo
=1- Pl(4) (5.9.0)

Bt B~
=1-K{1+ -
( Begg41_3+ BE}:LZA 1_B+)

Note that the last two terms in the right side of the above equation are zero. Thus

Af=1-K (5.9.5)
AT = Bel}(4)
=1-Ply(4) (5.10.a)
Bt -
=1-k(1+ ¥ =%~ [l —%%)
Beya Bepa

Substituting Equation 4.8 into the above equation, we have

A =r ] = (5.10.5)
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Now the orthogonal sum of the belief for A at the node A and the belief for A
below the node 4 will be computed. That is the calculation of At and 4~ from Af,

Ay, Af, and A] as in Figure 15.

First, the normalization factor in this case is

K™'=1- )" mi(S)=1-AYA] — AF AT (5.11)
ns;=¢

where Af focuses on A, A7 focuses on A, and Af A} focuses on ANA = ¢. For the

same reason, A; A} focuses on ANA=¢.

At = (Bels ® Bel')(4)
=1-(Ply & PI{)(4)

=1- K{Qa(X)Q4(X)|X c 4}

(5.12.a)
=1- KPly(A)PL(A)
=1— K(1 — Bels(A))(1 — Bell(4A))
=1-K(1- A1 - A])
In the same way, we have
A" =1-K(1- A7)(1- 47) (5.12.b)

The above two steps are repeatedly applied all the way up the tree until the
daughters 4 of © are reached. Then we can calculate A} and A; from A* and A-

for A in the set of daughters of ©.
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Figure 15. The bottom-up process 2.
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Bt B~
E =1+ Y ——— — (5.13)
BGZW (1-B) B“]:—E-[(p. (1-B+)

A} = Bel}(A)
— Loz
=1- PI}(A) (5.14)

B* B~
=1-K|1+ — [
( Be:;za# (1-B%) Bew];_:L#A a- B+))

A; = Bel}(A)

=1-— Pli(A)
4+ 4- (5.15)
=1-K(+ o - 1= 17)
1— A-
=R

That completes the bottom-up computation. For the case that P is a daughter
of © Bel}(P) has been calculated considering the interactions of all other evidence
in the frame of discernment. In most cases, however, P is a node other than the

daughter of ©. Then the top-down process is needed for the calculation of Bel}(P).
5.2.2 The top-down process:
Beginning with the nodes which are granddaughters of ©, the B, B, and B}

are computed from C* and C- for C € ¢4 as in Figure 16.

Following the derivation of Equation 4.8, the normalization factor in this case

1s

ct
-1 —
K*=1+4 E T—c+ (5.16)

Cepa

The Reasoning Algorithm 97



Figure
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16. The top-down process 1.



The belief value for B below A is

B} = Bel!(B)

=1-Pli(B) (5.17.a)
ct C-
=1-K(1+ Z — H — ).
( Cepacsn 1T ct CewaC#B 1 T C+)

Since C and B both are daughters of A and NC; # ¢ for all i, the last term on the

right side of the above equation does not exist. Thus

By=1-kK(1+ 3 %) (5.17.)

C€pa,C#£B

The belief value for B below A4 is

B; = Bel\(B)

=1- Pl (B)

5 B ) (5.18)

i 1o
B+—B‘)
1—B+

1-B-

=B+

=1—K(
=1—K(1+

=1-K

By using the partition shown in Figure 17 we have,

B = Bel,(BU A)
=1- Plﬁ(B OA)

_1_pi) (5.19)

c+ c-
=1-K(1+ . —
( cw;:;es 1-C% Cetpl;[ua 1- C+)
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Figure 17. The partition of {B, A — B, A} in the top-down process 2.
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Before the calculation of B}, A} and Ay should be computed from A}, 47, A},

and AT Note that

A} = (Bely ® Bel§(A)) (5.20.a)

Bel$ = ®Belp (5.20.b)

where B is neither below A nor equal to A.

From the D-S model, the commonality function Q(X) has the following values:

for X = {4} and |X| =1

Q§(X) =1-Belj(A)=1- 47, (5.21.0)

Q4(X) =1- Bely(A) = 1 - A7; (5.21.b)
for X = {4} and |X|=1

Qi(X) = 1= Belj(A) =1- Af, (5.22.0)

Q4(X)=1-Bel(4)=1- 4}; (5.22.8)

for {A} e X and |X|>1
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Qi(X)=1- Beli(A) — Bell(A) =1- A} — 45,

Q4(X)=1- Bel{(A) - Bely(A) =1- A} - A].

Let

Then

Similarly,

It is obvious that

The Reasoning Algorithm

Pl = (Ply @ PIS)(A)

Pl = (Ply & PIS)(A)

Pls = KQS

= KQa(A)Q3(A)
- 0o 1) @a(d)
= KQA(A)QA(A)QMA)
Qi(4)
Q4(4)

1- Af
=K1z A%'

=K

Pl = KQ}

=K1—Ao_.
1-A7

_1-4f

(5.23.a)

(5.23.)

(5.24.a)

(5.24.b)

(5.25)

(5.26)

(5.27.a)
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Now Pl is computed

That is

From the equation

Pig)=1=)Y {(-D*HKT]Q(X)l¢ # X C 6},

+_1-4
¢ 1- A7

Pl = (Ply ® PIS)(6)

= KQa(0)Q4(6)

QL (6)
= KQa(0)Q%()=4—=
Qa(0)Q4( )Qﬁ(o)
_ 1 Qi0)
QL(9)
1-AY - A7

=K -,
I-AT_AL

%_1—A3—A;
=t
1— AT - 4]

the normalization factor for this case is obtained
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K71 =) {(-)FH T Qe(X)I¢ # X C 6}

= Q5(A) + Q4(4) — Q%(9) (5.29.0)
_1-A7 1-A7 1-A7 - A7

= ¥ p + -
l—Al l—Al 1—Al—Al

together with the belief functions

A =1-Pl3=1 K-lléz (5.29.5)
=TT e T T l—Al" ey

1- A7

A;=1-Plt=1-K
¢ L4 I—Al—

(5.29.c)

Finally, the belief function Bf, B; can be computed from A, A3, A}, A7, Bf,

By and Bj, since B is a daughter of A:

K =1- 5 m(X)my(Y)=1- A} A5 — AT A (5.30)
XnY=¢

Note that A} and A} focus on 4, A5 and A focus on 4, A} A3 and A} A} focus

on ANA=¢.

Bf =K Y mi(X)my(Y)=K(A§(By — A7)+ (1- A} — A3)BY) (5.31)
XnYCB

Note that A} focuses on A, (B3 —A]) focuses on (BUA - A), A§(By - A7) focuses
on AN(BUA-A) = B, (1- A} — Ay) focuses on 6, Bf focuses on B, and (1- A} - A3)B},

focuses on 6N B = B. This is shown in Figure 17.
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By =1- Ply(B)
= 1- KQ§(A)Q4(B) (5.32)

=1-K(1-A"0)(1-By)

In the following, the example used in previous sections is continued to illustrate
the above computations. At the end of Section 5.1, all dichotomous belief functions
Belp with dichotomy {P, P} are attached to each node P of the tree (Figure 13).
Suppose we want to know whether the region is a water region or a shadow region
considering the interactions of all the visual evidence. This will require computing
belief values for B;, B, B,, and B,, considering all evidence for these nodes below
©. That is, we want to compute Bel}(B,), Bel}(B3), Bely(B:1), and Bel}(B,). Since the
nodes B, and B, are their terminal nodes in the tree, to compute the above belief

value requires both the bottom-up and the top-down processes.

In the bottom-up process, first the belief value for the black region considering
all evidence for the black region below the node 4; (Black region) is computed. The

same is done for the node 4, (Other regions).

By Equations 4.2.1a-c,

K-1=039 (A))F =061 (A1)} =0.12

Since the node A, is a terminal node, it is not necessary to compute the belief
value below that node. The orthogonal sum of the beliefs is the same as the initial
bpa that attached to the node A, previously. Now the orthogonal sum of the belief
for the Black region at the node A; and the belief for the black region below the
node A4; will be computed by Equations 4.2.2a-c.

K-1=129 At =075 AT =017
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Note that nodes 4; and A, are daughters of © in this example. Then we can
promptly calculate A7 and A; from A+ and A~ for 4 in the set of daughters of ©.
Otherwise, it is necessary to repeat above two steps all the way up to the daughters

of ©.

By Equations 4.2.3a-c,

K~ =0.26 (A1)F =086 (A1) =0.11

Because Belj(4;)=0.86 and because it is impossible that two disjoint sets both
have degree of belief greater than 0.5, it is not necessary to compute Bel}(4;). That
completes the bottom-up process. The Black region has a dominating belief value.
However, the goal is to discriminate water regions the shadow regions. That is, P
is a node other than the daughter of ©. Then the top-down process is needed for

the calculation of Bell(P).

Beginning with granddaughters of ©, the B},B; and B} are computed from C+
and C- for C € p4. Where A= A,, C = B, for B = B,, and C = B; for B= B, in this
example. The normalization factor is given by Equations 4.2.4a is K-! = 0.39. The
belief values for B below 4 is given by Equations 4.2.4b-d. For the water region,
B = B; and C = B,, we have

(B1)f =051 (B1)z =031 (B1)% =0.73

For the shadow region, B = B, and C = B;, we have

(B2)% =0.10 (B2)3 = 0.73 (B2)3 =0.31

Before the calculation of B}, A} and Aj should be computed from Af, 47, A},

and A7, where 4 = 4, in this example.
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The normalization factor for this case from Equation 4.2.5a is K~! = 0.80. Belief
functions are obtained from Equations 4.2.5b-c:

+ _ - =
A =011 Ag =020

Finally, the belief function B}, B; for B = B; and B = B, are computed by

Equations 4.2.6a-c, respectively. Here K-! = 1.26.

For the water region, B = B;, we have

(B1) =0.60 (B1)s =0.31

For the shadow region, B = B,, we have

(B2)f =0.18 (B2); =0.73

5.3 Spatial Relationship Handling

It is important to emphasize that spatial relationships among visual events
are important visual evidence for asserting visual events at the next representation
level. In the visual event hierarchy, each visual event at level i + 1 consists of
structural descriptions of a set of relevant visual events at the level i and their
interrelationships. A hypothesis for a visual event might be verified by an exact
match between a stored model and observed data in an ideal world without noise and
uncertainty. In the real world, however, it often occurs in a matching process that
some components and some relationships are missing due to uncertain information
from lower level processing. To handle this problem, it is necessary to have a
measure for such uncertainty and inexactness for the imperfect matching. Inexact
matching has been addressed by Shapiro and Haralick (Shapiro and Haralick, 1981).

In this section, we develop an algorithm to measure structural matching and to
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handle spatial relationships by using the D-S formalism. First the whole structural
description of the visual event at level i+1 is decomposed into K pairs of visual events
at level i. A method for determining the spatial relationship between each pair of
visual events are given. Then each valid spatial relationship is treated as separate
visual evidence for or against a hypothesis for that event at level i + 1. Each such
spatial relationship contributes a partial belief to the hypothesized visual event.
These beliefs are combined into a single belief function, which reflects the degree
of belief in the hypothesis in terms of spatial relation aspect, through Dempster’s
rule. This belief, in fact, is a confidence measure in the inexact match. Finally,
the belief will be combined with other visual evidence measurements for that event
at the level i + 1. Thus numerous subsidiary reasoning problems involving spatial

relationships may be solved at each level of the event hierarchy.

Suppose there are K basic components of the jth visual event &4,; in a pre-
defined visual event hierarchy. These components correspond to K visual events
at level i. There will be (¥) pairs of interrelationships among these K events, de-
noted by {R;x : (&j,&x)lj # k,j = 1,...,K,k = 1,...,K}. Suppose S visual events
have been asserted at level i in the previous uncertainty reasoning, where S < K.
There will be () pairs of interrelationships among these S events, denoted by
{Rix : (& &x)li # ki =1,...,5k =1,...,5}. Not every visual event in the pre-
defined visual hierarchy has a corresponding event in the reasoning data since some
of the events might be missing in previous processing. The same is true of the
interrelationships. Also, not all components and their interrelationships have the
same impact on the hypothesis about a visual event at the next level. Some compo-
nents are more important than others, and some relationships are more important
than others. Therefore, different evidence strengths can be assigned to different

confirmed spatial relationships.
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To collect the spatial relationship evidence for a hypothesis about a visual event
at the next level, a two-step method is presented. The first step is to determine
the spatial relationship between a pair of visual events. The second step is to
determine if there is a corresponding spatial relationship in the predefined visual
event hierarchy. If there is one, then that spatial relationship evidence is true and
an initial bpa is assigned to that evidence. Otherwise, the evidence is false, and no

bpa is assigned for that relationship.

An example of the frames of discernment for interrelationships between each
pair of visual events at a certain level is shown in Figure 18. There are five levels
in the interrelationship hierarchy. At the first level, the frame of discernment is
O, = {spatial relations between two lines, spatial relations between two regions}.
At the second level, ©, = {one line parallels the other, one line does not parallel
the other, one region surrounds the other, one region is adjacent to the other}. At
the third level, ©, = {two lines far apart are parallel, two closer lines are parallel,
two lines are not parallel and are separate, two lines are not parallel and intersect,
region A surrounds region B, region A is surrounded by region B, region A is above
region B, region A is below region B, region A is left to region B, region A is right
to region B, region A is above-right to region B, region A is above-left to region
B, region A is below-right to region B, region A is below-left to region B}. In the
same way, in Figure 18 we can see the frame of discernment at the fourth and fifth
levels. If we eliminate all the descendant nodes below the level we consider, then
the nodes at that level become terminal nodes. That level is called the terminal
level. All terminal nodes at that level in the hierarchy may be considered to be the
elements of the frame of discernment. They are mutually exclusive and exhaustive.
A subtree which is rooted by a nonterminal node above that level may be considered

to be a separate frame of discernment which discerns a group of spatial relationships
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denoted by the terminal nodes of that subtree. Considering the fifth level as the
terminal level, for example, the node {two line intersection} at the third level is
the nonterminal node. The subtree rooted by this node can be considered to be a
separate frame of discernment which discerns different intersection relationships of
two lines at the terminal level. All three corner types and four fork types and their
rotations at the fifth level are exclusive and exhaustive. Only one of them will be

true at any one time for a pair of visual events.

Comparing the tree (or its any subtree) in Figure 18 with the hypothesis tree

described in Chapter IV, we find that they are the same in the following respects.
a. All the terminal nodes correspond to elements of a frame of discernment.

b. Higher nodes correspond to a class of their descendant nodes. Each of them

corresponds to the union of the terminal nodes below it.

c. Only these subsets of the frame of the discernment which are of semantic

interest are represented in the tree.

The only difference between these two trees is that the spatial relationships
are used here instead of the visual events. With this image in mind, we can apply
the algorithms presented in Sections 5.1-5.2 of this chapter to determine the spatial

relationship between a pair of visual events.

There are many possible spatial relations between a pair of visual events. These
relations include parallelism or intersection of two lines or two planes, and adjacency
or surroundedness between two regions. Due to distortion, different view points or
different projections, the appearance of a spatial relation between two visual events

in an image may differ from that in the real world. Therefore, the nonquantitative

The Reasoning Algorithm 110



FD of
Geonetric
Relations

Figure 18. The frames of discernment for spatial relations between a pair of visual

events.
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definition of these spatial relations does not take near-misses into account and may
cause ambiguity and uncertainty in such relations. For handling uncertainty in such
spatial relations, it is necessary to have the quantitative definition and quantitative
measures for these spatial relations. Quantitative definitions and measures of these
spatial relations for computer vision can be found in (Rosenfeld and Klette, 1985;
Mulgaonkar, 1984). The task in here is to map these measures into evidence strength

for hypothesized spatial relations.

Suppose there are N hypothesis k,,h,, ..., hx representing N possible spatial re-
lations. There are also M pieces of evidence ey, ez, ...,epr Which support or contradict
each of these hypotheses. Each e; may be based upon spatial relation measurements
w;j € ,, which may come from different view points, from different projections, or
from different parameter calculations. Each measurement provides evidence for the
degree of spatial relations, such as the degree of adjacency or surroundedness and

the degree of parallelism or intersection, for a pair of visual events.

A mapping function V maps the spatial relation measures into the strengths
of the spatial evidence for and against a particular jth hypothesis in ©,. Let f;; be
the strength of e; supporting the hypothesis h; and a; ; be the strength of e; against
the hypothesis h;. For a given w:, we have N f;; and N a;; for j = 1,2,.., N, given

by Equation 5.1:

Vi t(we) — (fr,j,ax,;)

For M pieces of spatial relationship measurements, the mapping results are
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Vi wy (f1,1,a1,1) (fi,2,a12) ...  (fin,a1N)
Va| [ we (f2,1,a2,1) (f2,2,a22) ... (faN,a2,N)

‘;N "-';w (fM,l;aM,l) (fM,2,.aM,2) (fM,N;aM,N)

and the uncommitted bpa’s are

N N
Vo i (wi) — (fro=1- Efk,n,dk,e =1- Eak,n)~
n=1 n=1

They satisfy the following relations:

ka,z =1

Zak,z =1

To compute the impacts of all M spatial evidence measurements on each hy-
pothesized spatial relation, we have to combine fi , for k=1,2,..., M into f, and ax

into a,. That is given by Equations 5.4.a-b:

M
fa=mi(hn)=1=T[(1 = fin)

k=1

M

an = ma(hn)=1- [J(1 - arn)
k=1

for each hypothesis h, € ©, , where n=1,2,...,N. That is
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(fi1,a11) (fiz,a12) ... (fin,a1N)

(fz"’f'“) (fra,a22) oo (BMesaN) | Gy fman) e (weaw)

(fM,l;aM,l) (fM,2:aM,2) (fM,N;aM,N)

So far, we have considered the evidence for a hypothesis and against a hypothe-
sis separately. Now, we need to combine these two bodies of evidence by Dempster’s

rule. The orthogonal sum of m; and m, is computed by Equations 5.7.a-d:

K~' =1—my(ha)ma(hs)

m(ha) = Kmi(ha)(1 — ma(ha))
m(h,) = Kma(hn)(1 = my(hy))

m(6,) = K(1 — my(ha))(1 — ma(ha))

where m(h,,) is the belief supporting h;,, m(h,) is the belief supporting %,, and m(8,)
is the uncommitted belief. They are the initial dichotomy beliefs, which are exactly
committed to each hypothesized spatial relation, based upon the spatial relationship

measurements.

To consider the interaction of spatial evidence for all hypotheses in a frame
of discernment of spatial relations, the algorithms provided by Section 5.2 can be
applied to it. The computational complexity will be significantly reduced if the
frame of discernment is constructed more precisely. For example, if a pair of visual

events are two lines, then the branch of region relations can be completely ignored.
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Furthermore, if the uncertainty is only imbedded in a subset of these spatial rela-
tions, then only the subtree corresponding to that subset is considered as a frame
of discernment. The bottom-up and top-down processes can be carried out only
within that subtree. Based upon the results of the computations, a particular spa-
tial relation among others for a pair of visual events can be determined by its belief
value, its plausibility value, or it belief interval. The first step is completed if the

spatial relations for all pairs of visual events are determined.

Let Q = (3) be the number of spatial relationships for () pair of visual events,
where S is the number of visual events asserted at the current level i. At this level,
a set of interrelationships is denoted by R. = {rc1,rc2,..,re0}. Let P = (¥) be the
number of interrelationships for (%) pair of components of the predefined model at
level i + 1, where K is the number of components in that model. A set of interrela-
tionships for this case is denoted by R; = {ri,1,712,...,7:,p}. Associated with each r,,
there is a pair of belief values (f;,,a:,) to indicate how strong that interrelationship
supports or contracts this model. Suppose there are N hypotheses representing N
possible models at level i + 1. For the nth model, the set of interrelationships is
R:n. These Q pairs of visual events and their interrelationships at level i provide
evidence to support or to contradict these hypotheses at level i+ 1 as shown in Fig-
ure 19. The task of this step is to map these confirmatory visual events and their
interrelationships into evidence strengths and to combine this body of evidence for
hypotheses about visual events to be asserted at next higher level. In this step, the

mapping process is a table-lookup process.

For given evidence r.; € R., where k = 1,2,...,Q, the strengths of this evidence

supporting and contradicting the hypothesis &,, denoted by f. ;. and a. ., are

fc,k,n = {Oft,i,ﬂ if Tek € Ri'ﬂ;

Otherwise
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a; ; if rep € Rin;
Qe = { t,J,n ¢,k t,n)

0 Otherwise

where n = 1,2,..N;, 1< j < P, and f;;n and a,;, are predefined evidence strengths

associated with the interrelationships r; ;. € Rin. fij» and a.; . satisfy the relations:

th,j,z =1
Za,_j,, =1

with the uncommitted bpa’s

N
fc,j,6 =1- ch,j,n

n=1

N
acjp=1- 2 G i
n=1

For @ interrelationships, the mapping results are

Wi Te, (fc,l,l:ac,l,l) (fc,1,2y C"c,1,2)
Va T2 (fe2,158c21)  (fe2,2,8c,2,2)
. : -_— .

VN Te,Q (fe@1,8c0,1)  (f6,,2,8¢,Q,2)

(fc,l,N 3 GC,I,N)
(fc,2,N7 ac,Z,N)

(fe,@,N,8c,Q,N)

By using Equations 5.4.a-b, we combine Q f.;. into f.,. and combine Q a.;

into a., for each hypothesis. That is
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(feor,158e1,1) oo (fe1,N,8e1,N)
(fe2,1,8e,21) - (fe2,n,Gc2,N)

— ((fc,l,ac,l) (fc,2; ac,2) (fc,N;ac,N))

(fe.1:a6,01) oo (fe,@,Ns8c,Q,N)

In the same way as before, the orthogonal sum of f., and a., can be computed
by Equations 5.7.a-d. The result is the dichotomies {m(h,),m(h,)} and the uncom-
mitted beliefs m(6) for each hypothesis. These belief values can be attached to the
corresponding nodes of the reasoning tree as described in Chapter IV. The interac-
tions among these nodes then can be computed by the algorithms in Section 5.2 to
resolve the conflicts and ambiguities. Finally, a decision can be made to assert one
of the hypotheses as a valid visual event at the next higher level based upon belief
values, plausibility values, or the belief intervals.
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Chapter VI
SYSTEM IMPLEMENTATION

The uncertainty reasoning algorithms for hierarchical visual recognition at mul-
tiple levels of abstraction provide bidirectional active vision through both bottom-up
and top-down processes. Generally speaking, vision is passive in the sense that the
sensors do not have to radiate energy for measuring scene irradiances. However,
vision is also active in the sense that eyes act less like cameras, but rather more
like a set of goal-oriented detectors. Recently some researchers (Aloimonos, Weiss,
and Bandyopuahyay, 1987; Bajcsy, 1985) have used the term active vision to denote
a passive sensor employed in an active fashion, purposefully changing the sensor’s
state parameters according to sensing strategies. In this paper, however, active
viston is viewed as a process of actively searching and reasoning about uncertain
information, driven by organized knowledge and sensed data, in a hierarchical vi-
sual evidence space. It is a dynamic process of hypothesis generation, hypothesis

selection, and hypothesis verification.

6.1 The Reasoning Paradigm

The paradigm to be used in this system is shown in Figure 20. It consists,
essentially, of three steps:

1. Hypothesis generation and selection.

This is basically a bottom-up process in which primary evidence is used to form

a set of alternative hypotheses at each level. Primary evidence is partial information
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which is the minimum amount of information necessary for the hypothesis formation
process. The hypothesis formation process can be applied at any level of abstraction
in the visual event hierarchy. A belief function for a set of hypotheses at a particular
level is calculated based upon available evidence from lower levels. A hypothesis
is selected if and only if it has the maximum belief value that is above a specified
threshold. This is analogous to the process of “take a glance” and “guess what it

is” in human vision.
2. Filling in missing information

This is basically a top-down process. Associated with each hypothesis there is
a detailed description of the hypothesized visual event. As soon as a hypothesis is
selected, all properties and spatial relations about that visual event in the associated
description are inherited by the hypothesis. This step is like that of connecting
a more general concept to an incomplete instance in the human vision system.
Since the information obtained from the lower level is usually partial and uncertain,
information gaps (missing information from lower level processing) then can be filled
by the associated detailed description. The process of “information-gap filling”
approximately corresponds to the “it should have particular appearances” after
an “educated guess” in human vision. Filling in a gap changes the descriptions

associated with events at lower levels.
3. Hypothesis verification.

This i1s a process of “looking for more evidence” based upon the detailed de-
scription inherited by a hypothesis. It is actually a goal-oriented or higher-level

knowledge-based identification of a lower-level event analogous to the process of
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looking for expected information in human vision. Evidence at one level causes se-
lection of a hypothesis at a higher level, which due to its inherited description, initi-
ates verification processes back at the lower levels. Sometimes, it may be necessary
to reextract some local features from the original image under the direction of high-
level interpretation. The correct interpretation of the visual events at a low-level
can depend upon the high-level interpretation. This process provides an opportu-
nity for correcting interpretations of the lower-level events. On the other hand, if
low-level events can be interpreted correctly under the constraint of high-level in-
terpretation, these interpretations will further verify the high-level interpretation.

This is a check for consistency of interpretations made at the lower levels.

If a hypothesis can not be verified at this stage, then another hypothesis is
selected, and the above processes is repeated. Since the current reasoning level is
not necessarily the decision making level for the final interpretation, this process is
still consistent with Marr’s notion of “least commitment”. During uncertainty rea-
soning, oscillations between hierarchy levels should be avoided when no hypotheses

are verified in a given cycle. By setting appropriate threshold values for the cor-
responding belief functions associated with hypotheses, the degree of the system’s

sensitivity can be adjusted and the system stability can be maintained.

Several typical perceptual phenomena can be handled within the above

paradigm. Among these phenomena are the following:

A) Ambiguity Figures: Sometimes, equal evidence is presented for two dif-
ferent hypothesis, such as the Necker cube (Figure 21) and the wife/mother-in-
law. Although there is no evidence favouring either of two different hypotheses,

the evidence mapping functions which are usually subjectively determined and
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which depend upon stored knowledge might change the perceptual bias in this
ambiguous example. Remember that in Chapter 3, the belief values imbedded
in a multi-viewpoint object model can be set unequally according to experi-
ence. As soon as one of the hypotheses is selected at step 1, the system will fill
in the detailed information for that hypothesis at step 2. Then, one face (or
cube) is ‘seen’ and this perception is enhanced by step 3, since this hypothesis
can be verified at the lower level. The first perception is kept as the dominating
perception until the system knowledge base changes the belief value (or change
the evidence mapping function) such that another hypothesis is selected. Then

step 1 to step 3 is repeated, and the perception is switched to another object.

B) Paradox: When people hold incompatible perceptual and conceptual hy-
potheses, they see a paradox. The most famous example of a paradox is the
impossible triangle (Figure 22). Paradoxes can be caused by conflicting visual
evidence or caused by hypotheses from false assumptions. This can be simu-
lated within the above paradigm. When a hypothesis selected at the step 1 is
incompatibly linked to a similar concept which holds the detailed description
about that hypothesized visual event at step 2, the system ‘sees’ a paradox.
A paradox may be detected at step 3 by utilizing high level knowledge. How-
ever, when t>he system goes back to step 1, the incompatible hypothesis may
be selected again and the system may oscillate in this case. If an appropriate
threshold is use to accept the reasoning result at step 3 and thereby main-
tain system stability, then the system outputs a paradox. This paradox would.
not be changed unless a critical piece of new evidence arises (for example, the

change of view point).

C) Perceptual fiction: Perceptual fictions are often presented as illusory

contours which are caused by surprising gaps in a picture (Figure 23). If we
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Figure 21. The Necker cube.
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Figure 22. The impossible triangle (after Frisby, 1980).

System Implementation

ot



accept the these gaps as visual evidence in step 1, then with the help of step 2
an illusion can be ‘seen’ by the system. An illusory contour might be verified at
step 3 by examining large discontinuities in low level events under the guidance

of high level knowledge.

6.2 The Database and the Knowledge Base

The database and the knowledge base in this reasoning system are all organized
hierarchically. For each level of the database there is a corresponding level of the
knowledge base. The collected visual evidence and the asserted visual events are
stored in their appropriate database level. Visual event models, evidence extractors,
evidence mapping functions, and threshold tables for hypotheses are stored in their
appropriate knowledge base level. Uncertainty reasoning procedures are applied
to the relevant level of the hierarchy through the focus of attention and control

mechanisms.

Since the database is accessed so frequently, the performance of the reasoning
system is critically dependent upon its data structures and its control mechanisms.
Special efforts are required to make symbolic data structures work efficiently with
multiband 2-D data arrays. The immediate difficulty is that of locating the spatially
related visual events which need to participate in each deduction at each level of
abstraction. The data structure must be so designed that the time spent making

deductions about spatially unrelated evidence is minimized.

In the database, all data are treated as PROLOG fact rules asserted at their

appropriate level of hierarchy. This database consists the following components:

1. an invertible index
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2. the visual event data
3. the intermediate data generated by the reasoning process.

To access all relevant events efficiently, an inverted indexing method is used for
the spatial information. A hierarchical partitioning method similar to quad trees or
N trees is used to partition the coordinate space into blocks. Each level represents a
different degree of zoom for the focus of attention mechanism. All visual events are
indexed according to their locations in the data structure. For example, for linear
visual events such as lines, edges, or linearly aligned features, an endpoint index is
constructed for each level of the hierarchy that stores the names of the blocks that
contain the endpoints. In addition to the endpoint index, a space spanning index is
used to indicate which blocks are spanned by each event. This method of indexing
makes it possible to locate spatially related segments quickly and reject unrelated

events at an early stage.

The index table is a linear list of elements. Each element has the following

form:

((LEVEL-ID VISUAL-EVENT-ID
*VISUAL-EVENT-TYPE
*INDEX-TYPE
*SEARCH-FLAG
*REASONING-STATUS
*HORIZONTAL-INDEX
*VERTICAL-INDEX
*PRIOR-BELIEF
*UPDATED-BELIEF
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*RELATED-EVENT-AT-HIGHER-LEVEL
*RELATED-EVENT-AT-LOWER-LEVEL))

There are several flags in each element to indicate visual event types and rea-
soning status. For example, each open endpoint of a segment has one index element
with ¥*INDEX-TYPE=0. However, each indexing element with *INDEX-TYPE=1
corresponds to one block which the segment spanned. If a segment spans S blocks,
then there will be S index elements for that segment. By using the PROLOG match-
ing mechanism, it is easy to locate the indices of interesting events given both the
visual event number and the level number. On the other hand, it is easy to locate
all spatially related visual event numbers at a particular level by specifying vertical
and horizontal index numbers, and the level number. It is efficient because the
whole search and matching process involves only indices and not the visual event

data (see Figure 24).

A typical data structure for visual events might include four parts: a unique
visual event label, a visual event parameter list, a list of data samples at each
linear segment end or on each region boundary, and an extended chain code. This
database contains all the information required to reconstruct a raster image after
reasoning has been completed. This permits the visualization of lower level events

based upon the higher level interpretations.

Each level of the knowledge base consists of a set of evidence extractors, a
set of evidence mapping functions, a threshold table for hypotheses, a set of visual
event models, and a set of local inference procedures. The evidence extractor does
the evidence measuring and evidence collection from lower levels. The evidence

mapping functions map the collected evidence into strengths of evidence for the
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generated hypotheses. The threshold table is used for selecting hypotheses and
for adjusting the stability of the reasoning system. The visual event model is a
relational graph, with propagated belief values on branches, for describing that
visual event. A group of mutually exclusive models forms a frame of discernment.
These models are organized into the tree as described in Chapter IV. These trees
or their subtrees are used to generate hypotheses and to calculate the interaction of
hierarchical visual evidence (see Figure 25). Finally, the local inference procedures

are used to implement the evidential reasoning using the D-S model.

6.3 The Focus of Attention

A focus of attention mechanism plays an important role in the uncertainty
reasoning system. It is driven by the process of selecting spatially relevant visual
events and their appropriate levels of abstraction. In other words, attention has
to be focused both on geometric space and on visual evidence space when the
reasoning is carried out. Given a visual event, the focus of attention mechanism
returns a spatial search distance and a range of abstraction levels that describes the
sphere of influence of that event. Let D* be the spatial search distance and D' be
the level search distance. The spatial search distance provides an upper limit to the
spatial neighborhood involved when the algorithm focuses attention on a particular
visual event. This distance specifies how many neighboring blocks at the next lower
level should be searched to generate hypotheses. The value of D* is determined
according to the size of that visual event. The value of D' depends upon the level
of abstraction i where the visual event is defined and relevant levels where visual
evidence for the visual event is available. Suppose the size of jth visual event at

level i is Z; ;. Then
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D’ = CZ,'J

where C is a constant, usually 1 < C < 2.

The level search distance D' usually spans two reasoning levels adjacent on
either side of the current level. In the case that the evidence at next lower level is

not available, however, the focus of attention should extend further down.

The focus of attention function F(D*,D') selects relevant visual events within
the spatial search distance at the next lower level. As soon as F(D?*, D) selects an
element in the index table, the search flag in its index element is set to 1. This
indicates that visual event has been examined and may be subsequently skipped in
the top-down selection process. Thus, the visual event number, level number, visual
event type, and spatial indices of the event in horizontal and vertical directions are
obtained from the index element simultaneously. Then, a module called a finder
calculates all possible search indices which fall within a search radius specified in
the knowledge base. As a result, a search index list is generated which contains all
N index pairs. Then, N pairs of features, which are spatially related to the selected

visual event, can be accessed according to these N index pairs.

For all N pairs returned by the search, the hypothesis generator uses the search
index list to generate hypotheses one by one. The algorithms for spatial relation-
ship handling described in Section 5.3 of Chapter V can then be implemented. The
data for each pair of visual events participating in the hypothesis are brought to
the blackboard by decomposing the hierarchical data list from the database. The
visual evidence extractor computes visual evidence measurements. By using evi-

dence mapping functions, this evidence is mapped into evidence strengths which
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are propagated into the built-in inference network. For each hypothesis, a belief
function which accumulates all the evidence can be computed following the infer-
ence network for the D-S model. Finally, N belief functions are calculated for N
hypotheses generated according to the N pairs of indices. The decision maker or the
hypothesis selector examines the result to find the maximum belief function value
and compares it to a threshold specified in the knowledge base. A hypothesis is
accepted if and only if its belief function is above the threshold and if its value is
maximal among the alternatives. The other hypotheses are rejected. The selected
hypothesis may invoke a hypothesis verification process. The focus of attention
function can pick up visual evidence for this process at a chosen level by searching
the inverted index table. Through the focus of attention function, the uncertainty
reasoning can be carried out at any desired level and can go either top-down or

bottom-up.

An example is given to illustrate the above process. Suppose that the task
here 1s to recognize and to locate electronic parts on a printed circuit board (PCB)
which contains an array of resistors. Suppose that we have already completed the
uncertainty reasoning at the lowest levels, which determines the beliefs in significant
lines and regions from the significant points and other visual events. Examples of
reasoning at the line-level can be found in (Qian, Ehrich, and Campbell, 1990).
Now we are at the level of reasoning about the primary components of objects based
upon region-level evidence. The visual events about which reasoning takes place at
this level are components of resistors. A frame of discernment for components of
resistors is constructed, which corresponds to a single reasoning tree. There may
be more reasoning trees at this level if there are other object types besides resistors

to be recognized in the image.
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Let i denote the current reasoning level. Given a visual event at level i, the
focus of attention function returns the names of the levels to be analyzed: level i
(the level of components of objects), level i — 1 (the region level), and level 1 (the
raw data level). The focus of attention function also returns the search distance: 1.5
times the maximum component size. Then, the focus of attention function selects
an index element of a visual event from the invertible index table at the level i —1
(the region level). According to the spatial search distance, the finder searches
for all index elements of the table which fall within the search radius. A search
index list is generated which contains all N index pairs. Then, N pairs of regions,
which are spatially related to the selected region, can be accessed by the hypothesis

generator according to these N index pairs.

In this example, visual evidence at level i — 1 is available for supporting visual
events at the component level. Some evidence can be calculated from the level i —1.
Some, such as the mean gray level and the variance gray level, should be reextracted
from the original raw data under the guidance of the events at the region level. The
visual evidence extractor computes these visual evidence measurements. Evidence
mapping functions map these measurements into evidence strengths. Following the
procedures in Section 5.1 of Chapter V that are stored as sequential procedures in
the knowledge base, the initial beliefs which are exactly committed to each hypoth-
esis are computed. These initial beliefs are propagated into the built-in reasoning
tree. Then, the interactions among pieces of hierarchical evidence can be deter-
mined to deduce the type of component. For this step, the algorithm is described in
Section 5.2 of Chapter V, and the implementation is given in the next subsection.
This implementation is also stored as a part of the knowledge base. After the com-
pletion of the reasoning process at level i, all asserted components of resistors and

the spatial relations among them are mapped into evidence strengths at level i + 1
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(object level) for deducing electronic parts at that level. The same reasoning steps
as at level i may be applied at this level. As soon as a visual event is determined to
be a resistor, the detailed description of that resistor will be propagated downward
to level i by the focus of attention mechanism where it is used to check the con-
sistency of related visual events at level i. Meanwhile, missing information which
results from low-level processing alone is filled in. This completes the verification
process for the hypothesis about a resistor at level i+ 1. The detailed experimental

results for this example will be presented in Chapter VII.

6.4 The control of FEvidence Interactions

To implement the reasoning algorithms of Sections 5.1-5.3 of Chapter V, we
must generate a tree which denotes a hypothesis hierarchy as described in Chapter
IV. The relationship between this hypothesis hierarchy and the visual event hierar-
chy is shown in Figure 25. For convenience, each tree is restructured as a binary
tree as shown in Figure 26. Let the general tree be arranged such that the leftmost
branch from the root to the leaf has the deepest levels. The binary tree is so formed
that all siblings of a node of the general tree are connected and all links from a
node of the general tree to its children, except for the link to its leftmost child, are
deleted. Each node in this binary tree consists of groups of fields for the initial bpa’s
and the different orthogonal sums of beliefs required in Sections 5.2-5.3 of Chapter
V. In order to generate such a tree automatically, an ordered list of hypotheses in
that tree is required. The reasoning system reads in the ordered list and the initial

dichotomous beliefs. A reasoning tree is then generated for the computation of
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evidence interactions. The procedures for the evidence interactions in the tree are

described next.

First, the tree pointer is initialized to the root node. Then it moves down
the tree along the leftmost path. A level counter is used to count the number of
levels and addresses of the nodes along the leftmost path as they are pushed into a
pointer stack. As soon as the bottom of the tree is reached, the bottom-up process
1 begins. The normalization factor and belief values for this process are computed
from the current node and its siblings. Since the binary tree representation of the
general tree is used, all the siblings are linked together. This is not a difficult
process. Then the level counter decreases by one and the pointer stack pops the
next higher level address. The process moves one level up. At this step, the first
task is to check whether any sibling at this level has children nodes that have not
completed the above process. The process should be completed for all nodes below
the current level before the higher level computation begins. All the belief values
obtained from the bottom-up process are stored in their corresponding nodes for

further computations.

The above process is repeated all the way up to the daughters of the root node.
Then the top-down process begins. When this process moves down one level, the
pointer is reset to its leftmost node. A branch with maximum belief value is found
by comparing the belief values of all siblings at that level. The computation is done
only along that branch. This process repeats until the belief value of a desired node
is computed. Again, because of the structure of the binary tree representation of
the general tree, the computation at each level is carried only within a short linked

list.
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Chapter VII
APPLICATIONS

The research work for this dissertation consists of the theoretical development
of a framework for an active vision system with uncertainty reasoning, coupled with
experimental work on some constrained applications that demonstrate its merit.
Some of this research work has been published or has been submitted for publication
(Qian and Ehrich, 1989, 1990). Several results in support of these applications have
already been obtained and are described in this chapter. These include both low-

level and high-level processing.

At the preprocessing level, our uncertainty reasoning algorithm has been ap-
plied to a Multi-Threshold Adaptive Filtering (MTAF) application for preserving

texture while removing noise.

At the low level, an edge labeling procedure has been developed which gen-
erates single pixel width edges without thinning. Methods have been designed for
extracting spatial relationships from regions and lines, and a method for convert-
ing 2-D data into a symbolic database have been completed. Then the uncertainty

reasoning algorithm may be extended to the shape completion problem.

At the high level, an uncertainty reasoning system using D-S theory for auto-
matically extract the drainage networks has been constructed along with the control
mechanism and data structure. Also, this framework has been applied to the recog-
nition of electronic parts on a printed circuit board. The experimental results shown

promises on this framework.
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7.1 Texture Preservation and Noise Removal

In computer vision, sometimes we need to discriminate among objects whose
differences appear only as subtle differences in tone and weak texture. A typical
example of such a task is the discrimination of water regions from shadow regions on
SAR imagery (Qian and Haralick, 1990). Because both water and shadow regions in
a radar image are not rich in texture, the noise will tend to mask whatever texture
there is and make the recognition task more difficult. Preprocessing is needed to

remove the noise while preserving the weak texture and other subtle details.

There is, of course, a compromise between noise removal and texture preser-
vation. Usually, a filter which has a powerful noise-cleaning capability may remove
or spatially distort edge, line, and texture information. In contrast, a filter which
preserves subtle detail will tend to have low noise-cleaning capability. Generally
speaking, a real world image consists of many regions in which local activity varies
from region to region. It is difficult to be satisfied with the image using only one
simple filter. Based on this consideration, a way in which several simple filters can
be combined to form a more efficient and more flexible context dependent filter is
desired so that the advantages of simple filters can be preserved, their drawbacks

avoided and, at the same time, an optimal effect can be obtained.

A Multiple Threshold Adaptive Filtering (MTAF) has been proposed to achieve
this goal. It uses a generalized gradient function and a local variance function, which
measures the local contextual information, as evidence to determine the nature of

the filtering for each local neighborhood.
First, the generalized gradient function for every pixel is computed.
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Let Z;; be the pixel gray tone value to be filtered and let G;; be the correspond-
ing local generalized gradient function within a 7 x 7 window. In order to avoid the
effects of random noise in computing G;;, we use the local gray tone submean M;,
instead of an individual pixel value. If it is assumed that the size of any random
noise cluster is three or fewer pixels, then the above process is sufficient for avoiding

the effects of random noise in computing G; ;.

Let (s,r) be a set of pixels neighboring (i, j) having gray tone intensity Z,.. The

gray tone submeans are computed by the overlapped 3 x 3 subwindows. That is

; 9
Myi=Y>" 2 (7.1)

s=qr=p

where

¢=1+4+2(k-1)

f=q+2
p=1+2(1-1)
g=p+2

and k,1 =1, 2, 3.

Then for the four directions, the local gradient G,’s are

G? = |(My1 + Myz + Miz) — (Msy + Msz + Mss)| (7.2.0)
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X
G = (M1 + Mz + M3, ) — (Mzz + M3z + Ma3)| (7.2.6)

GE = I(Mn + Mo + Mal) - (M13 + Moz + M33)| (726)

G;“ = |(Mi12 + Mi3 + Ma3) — (M31 + Maz + M2)| (7.2.d)

and the final generalized gradient is proportional to the sum of the directional

gradients

3
Gi; = CZ G (73)

n=0
where C is the scaling factor.
The resulting G;; is a good measure of local texture contraét.
(2) Second, the local variance is computed over a N x N moving window.

Let Z;; be the local mean, V;; be the local variance and p= (N —1)/2. Then, we

have
_ 1 itp  J+p
Zij =33 Z E Zsr (7.4.0)
s=i—pr=j—p
and
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i+tp  j+p

Vij = % E Z (Z:r - _ij)z (74b)

s=i—pr=j-p

It is well known that the local variance near an edge is greater than the vari-

ance in either side of the edge. It is also a good measure characterizing the edge

information.

More other functions may be chosen as evidence of local activities and dif-
ferent determining methods may be applied for different filtering tasks. A more
detailed description on the MTAF can be found in (Qian, Yu, Haralick, 1986; Qian,
1985). Here we describe only briefly this filtering algorithm with a knowledge-based

presegmentation procedure using Dempster-Shafer evidence theory.
The algorithm is the following:

A frame of discernment © for presegmenting the noisy image consists of the

following exhaustive and exclusive subsets:

1. Regions which are homogeneous. They will be filtered by a moving average
filter.

2. Regions which have relative weak edges or intermediate ramp edges. They will

be filtered by the sigma filter (Lee, 1983).

3. Regions which have sharp edges that are parallel to the direction of the moving
window. They will be filtered by the eight edge direction weighted filter (Lee,
1981).

4. Regions which have sharp edges that are not parallel to the window motion
direction. They will be filtered by a median filter (Yang and Huang, 1980).
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Each subset of © corresponds to a hypothesis. The frame of discernment, ©,
delimits a sample space which contains all possible segmentation situations, only
one of which is true at any one time. Let the set of hypotheses be {H,, H,,H., H,»},
respectively. Then, the frame of discernment consists of {H,,H,,H., Hn} which cor-

responds to the above four situations, respectively.

The evidence provided by each measurement w; is mapped to basic probability
assignments (bpa) over the hypotheses discerned by a frame ©. The bpa represents
the impact of each distinct piece of evidence on the subsets of a frame ©. According
to the values of the measurements, a set of thresholds can be used to extract the local
evidence. Let {e4r, es,€5x emx} De a set of local evidence representing “no edges,”
“ramp edges,” “sharp edges,” etc., respectively. Let Ti, be the set of thresholds
for the kth measurement, k = 1,2,..N the number of measurements, s = 1,2,..S the
number of thresholds. Only one of them is true at location (ij). For example, for

the generalized gradient function, w;, we have

€41 = true if wi(ij) < T115

es1 = true if T]_,] < wl(ij) < lez; (7.5)
eg1 = true if w1(1]) > Tl,S) AND (Ldl(z]) = GD); ’
em1 = true  if (w1(i5) > T13) AND (wi(i5) # GD).

where GD is the generalized gradient value in the direction of the window motion
(Qian, Yu, and Haralick, 1986). These thresholds give the processor a flexible choice
for different image types and different processing purposes. Each piece of extracted
evidence will be mapped into a bpa over the set of hypotheses. Applying the Demp-
ster’s rule rule, the procedure pools the multiple bodies of evidence obtained from
the different measurements to get new belief functions. Finally, a single hypothesis
among others is verified, if and only if the belief function has a maximum value.

An presegmentation image is shown in Figure 27.
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In our experiments, the filtered pixel value W;; is given by

4Ai; if H, is verified;

g S;; if H, is verified;
Wij = E; if H, is verified; (7.6)

M;; if H,, is verified.

where W;; is the filtered pixel value, A;; is the output of the 5 x 5 averaging filter, S;;
is the output of the 7 x 7 sigma filter, E;; is the output of the eight edge direction

weighted filter, and M;; is the output of the 3 x 3 median filter.

As a result, the averaging filter is applied only to the very homogeneous re-
gions, which avoids blurring the weak texture. The median filter is applied only
to those regions which have sharp edges, and these sharp edges are not parallel to
the median filter moving direction, which avoids eliminating the lines and small
objects and avoids creating artifacts in other regions. The sigma filter is applied
only to these regions where preserving the weak texture is more important than
just noise smoothing. Thus, a balanced texture preserving and noise removal effect
can be simultaneously achieved. To see how the MTAF filter improves the low-level
labeling result more obviously, we added Gaussian normal noise N(0,0?) with dif-
ferent o values to the SAR images. Then the same statistical labeling procedure
was applied to the noisy one, the filtered one, and the original one, respectively.
The relative labeling accuracy is measured by comparing them with that of original
image labeling. Our experiments shown that the relative accuracy can be improved
from 61.9 percent to 92.2 percent (with noise o= 10), even form 65.5 percent to 96.5

percent (with noise ¢=5).

Applications 145



Figure 27. The presegmentation image.
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7.2 One-pixel Width Edge Detection Without Thinning

Applications of the uncertainty reasoning system at the lowest processing level
have two specific characteristics. One is that frames of discernment are relatively
simple and the number of levels of hypotheses is relatively small. The other is that
hypotheses about a low level visual event may be combined with the event locations.
That is, the reasoning process not only has to determine if there is a event, but also
has to determine where the event is. Some applications are given in the following
sections to show how this reasoning system can be implemented in processes from

pixel to edge and from edge to contour.

Edge detection plays a crucial part in any vision system. It is also the first
necessary step in the shape completion. As described before, line-drawing-like fea-
tures will be the primary features used in the proposed vision system. Therefore,
the extraction of one-pixel width line features is an important part of the vision
system. The following algorithm provides a way to extract line features from a

graytone image.

In many edge detection schemes, the image I(z,y) is first filtered and then a
second differential cperator D? is applied to the filtered image I(z,y). The main goal
of filtering and differentiation is to produce a representation of second derivative
zero crossings and extrema (Marr and Hildreth, 1980). Edges are then identified in
correspondence to tae zero-crossings of D?I(z,y) which provides a compact represen-
tation of intensity changes. The geometrical properties of the locus of zero-crossings

is defined by

sz(z,y) =0 (7.7)
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where I(z,y) is the filtered image and D? can be either an RID (Rotational Invariant

Derivative) or a DD (Directional Derivative).

One of the important properties of zero-crossings which are produced by the
RID is that zero-crossing contours are closed curves or curves that terminate at
the boundary of the image. In contrast, both the gradient and template edge
operators generally produce disconnected and irregular edges which require some
type of postprocessing such as relaxation, thinning, or line fitting to connect edge

segments into closed regions.

Since an edge represents an intensity change between two tonal regions, ideally
the edge should be located between two pixels. In order to locate the edge as
accurately as possible, the edge width should not exceed one pixel, the labeled zero-
crossing contours should preserve the size and shape of the regions of opposite sign
which they bound, and the labeled zero-crossing contours should prevent anomalies,
such as the creation of extraneous edges along oblique edge segments. There are

two problems:

1. How to label the zero-crossing contour such that it locates the edge more

precisely.
2. How to make adequate use of the information provided by D2i(z,y).

Haralick (1981) uses 8-connected neighboring pixels to check the zero-crossings

for every pixel. If D?I(zo,y) < —a and one of its eight neighbors

sz(z;,yj) >a (7.8)
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then the central pixel is labeled as an edge pixel, where o is a preset threshold.

This technique turns out to have two disadvantages. One is that it handles
zeros of D?] improperly and results in some holes along the edge (Figure 28). The
other is that the labeled edge is quite thick, which requires that a thinning algorithm

be used to reduce the edge to one pixel.

Huertas and Medioni (1985) use a predicate-based algorithm for locating zero-
crossings. 11 predicates and almost 50 masks are required by this algorithm. Also
there is no evidence that this method will guarantee that the edge width is not
wider than one pixel. They still use Nevatia’s algorithm (Nevatia and Babu, 1980),

which uses thinning first and a linking and tracking post-processing stage.

Instead of above algorithms, an algorithm has been developed which is able to
locate zero-crossing contours to the nearest pixel with a more precise position. This
algorithm is based upon the fusion of multiple evidence sources through D-S model.
This is a low level application of the uncertainty reasoning. Here, the visual events
are edges at different locations. The visual evidence is some intensity discontinuity

measurements from raw data. These measurements include (but not limited to)

(1) local intensity maz(I(z,y)) or min(I(z,y)) which corresponds to the possible dark

lines or light lines;

(2) local gradient values maz|VI(z,y)|> which corresponds to the possible edge pix-

els;
(3) zero crossing of D?I(z,y);
(4) the neighboring edge pixels.
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Figure 28. The edge image with holes within edges.
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For each location (z,y), the frame of discernment © is simple. That is, there
is an edge pixel or a no-edge pixel. However, if we move an N x N window along a
possible edge zone, then © will consist of N? hypothesized edge locations within the
window plus the no-edge-in-window hypothesis. Each measurement is mapped into
a belief value which provides its support to this frame of discernment. These belief
values are combined by the procedures described in Chapter III Section 3.3. An
N x N window moves along the hypothesized edge such that the hypothesized edge
pixel is always in the center of the window. A distance Dg between the initially
hypothesized edge pixel and the possible edge location suggested by a piece of
evidence is computed within that window. Dg is mapped into belief values for
the hypothesis. These pieces of evidence will confirm or disconfirm this hypothesis
as their belief values are combined. Since zero crossings convey much more edge
information, they can be used as an initial hypothesis about edge pixels. This will
simplify the procedure further. Here, we only described our new method for the

zero crossing measurement.

Two narrow masks which are 90 degree rotations each other (Figure 29) are
used. The central pixel is marked as possible edge pixel if any of the following

conditions is met.

(1) D?I(z0,y0) = 0 and any one of the following sign tests is true.
(a) D*I(zo,y-1) and D?I(z¢,y,) are of opposite sign.
(b) D*i(z_1,y) and D*I(z;,yo) are of opposite sign.

(2) D?I(zo,y0) and any one of its four-neighbors are of opposite sign, and 'the fol-

lowing ratio test is true.
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Figure 29. The masks for locating zero-crossings.
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(a) If the neighbor is D*I(zo,u1), then the ratio test is

|D2j(xo,yo)| < |D2j($o,y1)|

. ) < — I (7.9)
|D2I(z0, 1)l + |D2I(z0,y-1)| = |D2I(z0,y2)| + |D2I(z0, o)l
(b) If the neighbor is D?i(zo,y-1), then the ratio test is
_ IDzj(z01y0?| _ lsz(any—l)J (710)
|D2I(zo,y1)| + |D2I(z0,y-1)| = |D?I(20,y-2)| + |D?I(z0, yo)|
(c) If the neighbor is D?I(z1,y), then the ratio test is
|D2i($o,y0)l < lsz(xl’ yO)I (711)
|D2I(z1,y0)| + |D?I(z-1,3)| = |D2I(z2, yo)| + |D?1(z0, yo)l
(d) If the neighbor is D2i(z_1,y0), then the ratio test is
IDzi(Ig,yQ)I < lsz(x—lny)l (7.12)

|D2i(z1,y0)| + |D2I(2-1,%)| = |D?I(z—2,0)| + | D2I(z0, o)l

This algorithm only produces one pixel-width edges from the D?i(z,y). If there
are three adjacent pixels, the middle of which is zero-valued and the other two are of
opposite sign in either horizontal direction or vertical direction, then the zero-valued
pixel is labeled as an possible edge pixel. If there are two adjacent pixels which are
of opposite sign in either horizontal direction or vertical direction, only one of these
two pixels are chosen as an edge pixel by the ratio tests. The ratio tests compare the
relative magnitudes of D?I(z,y) and provide information for deciding which pixel is
the nearest one to the zero-crossing. In this process, only the horizontal direction X

and the vertical direction ¥ are considered. Since in R? space the derivative in any
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arbitrary direction can be expressed in terms of &% and %, rotationally invariant
differential operators or a large set of directional derivatives requires only the use of
two narrow directional derivatives. Accordingly, the zero-crossing can be located by
using two narrow masks in the X and ¥ directions, respectively. Edges have been
successfully labeled by this algorithm for several type of images (Figure 30 — 36).

This algorithm produces a line-drawing like feature image for further processing.

7.3 The Spatial Evidence Extraction from Intermediate Level
Visual Event

7.3.1 Extracting Structural Information from Line-drawing-like Visual Events

Based upon the extracted line-drawing-like visual events, an algorithm which
extracts spatial relationships from these events and then converts them into a sym-
bolic database has been developed. The output of the procedure in previous section
is taken as the input of this procedure. The following algorithm is specific to the
case where line segments link to form trees. It can be generalized to more general

line-drawing-like data in which all lines have a single pixel width.

A special tracing algorithm is used to measure the set of spatial properties of
each segment generated by the edge detector. Each segment has two endpoints;
an endpoint is called open if it is not shared by other segments, and it is called
a fork point if it is. Fork points are points where segments merge to form trees.
For implementation efficiency, a doubly linked chain of pixels is generated for each

segment according to the twenty predefined linking patterns shown in Figure 37.
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Figure 30. The test image 1: the printed circuit board. Size: 512 x 512.
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Figure 31. The edge image labeled by the algorithm for Figure 30.
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Figure 32. The test image 2: the hand-drawing-line picture. Size: 512 x 512.
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Figure 33. The edge image labeled by the algorithm for Figure 32.
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Figure 34. The test image 3: the house image in an outdoor scene.
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Figure 35. The result 1 of Figure 34.
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Figure 36. The result 2 of Figure 34.
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Figure 37. The link patterns.
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In the same pass, all fork points in trees are detected (see Figure 38), and all
open endpoints of tree branches are marked. These three tasks are done in one
pass. A bidirectional linked chain is a sequence of pixels along a segment in which
each pixel between its endpoints has pointers to its two neighbors. Bidirectional
linked chains facilitate the network tracing process since the tracing sequence for the
pixels in different segments may be different. The bidirectional linked chains, the
fork points, and the open endpoints provide a clear guide for tracing and measuring

all spatial information for segments simultaneously.
The network tracing process illustrated in Figure 39 is the following:
1. Scan the image from top to bottom, line by line.

2. If an open endpoint is encountered, the scanning process is interrupted, and a

tracing and measuring process is initiated to follow the bidirectional link codes.

3. Record the segment length, positions, elevations, and tangent directions for
all segment pixels and compute the elevation slopes, mean curvatures, end
directions, and mean elevations for both ends of each segment. Assign the
segment label and tree label for the traced segment. This process terminates
when a fork point or an open endpoint is reached. All pixels which have been

traced are set to zero.

4. If a fork point is found, push the fork position onto a fork stack. Search the

next untracked branch leaving the fork point in clockwise order.

5. If an open endpoint is encountered, then check the fork stack. If it is not empty,

pop the stack and start tracing a new segment from the popped position by
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repeating Step 3 to Step 5. If the fork stack is empty, then the whole tree in

the network has been completely traced. Continue scanning with Step 1.

After the whole image has been scanned, the output file contains all the spatial
information for each segment. All segments have their own unique labels. The
output of this procedure is a property file which can be converted to a database
written in PROLOG.

7.3.2 The Method for Extracting Spatial Regional Relationships

Uncertainty reasoning in a hierarchical visual space also requires spatial infor-
mation about regions. This information provides contextual cues for higher level
reasoning. A procedure for extracting this type of information among regions has

been developed.

A reference direction, which is defined as a direction parallel to an image plane,
is chosen to determine spatial relationships of regions in the image. Several struc-
tural measurements are selected for the regions. They are: the size of the region;
the relative position of different adjacent regions along certain look directions; the
maximum length of the region along each look direction, the region state, and the
number of region boundary pixels. The most important thing is how to measure

these spatial relations among regions. The algorithm for this is as follows.

1. First, for the convenience of spatial reasoning, each region in the symbolic
image is identified by a unique region identifier. Therefore, the algorithm
defines new region indices sequentially for the different categories of objects

which are obtained from low-level labeling. For example, for a three digit
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index, the first digit may represent the original low level labeling. The lower
two digits may represent the sequences of regions within each category. Thus,
we still can recognize the initial assigned label from the new sequential index

for each region.

2. Second, a linear geometric transformation is used to rotate the symbolic image
to a position in which the horizontal scan line just is parallel to the reference

direction.

3. Third, the region symbolic image is scanned line by line in the reference direc-
tion. If the scan line meets a new region label, the scanning process will be
interrupted and a tracing process which traces the region external boundary
will start. The following is a one-pass, depth first boundary tracing proce-
dure using a left first, clockwise directed four connected neighborhood search

technique for tracing a region’s boundary:

(1) Record the coordinates of starting point of the region, keep the region always
to the right side of tracing direction, and trace the boundary in a clockwise

direction.

(2) For each successor, detect the next tracing direction by searching the same
label from four connected neighbors in the order starting from the left side of
previous direction of motion, then the front, the right, finally the back (Figure
40).

(3) Record the left side adjacent region label, its starting position, and its ending

position in the tracing process.

(4) Count the number of pixels of the region boundary in the tracing process.
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(5) Mark the region’s state, (0 indicates a closed region which lies completely within

the image. 1 indicates that the region touches the image boundary.)

(7) If next point=starting point, then stop tracing, go to Step 7, else go to Step 2.

(8) Continue the scanning process from the break point, compute the maximum

region length along the reference direction, and compute the region size,

(9) Check every label that the scan line met within a hash table. If the region has

been traced, go to Step 7, else go to Step 1 until the last line.

The test result for a test image (Figure 41) by this method can be found in

Figure 42.

High level image analysis techniques require rapid access to region informa-
tion and to the relations between regions. For every region, therefore, the region

attributes and the relations of adjacent regions are stored in a large list. A hash

function is used for fast searching and accessing of structural information. After
that, a property file which contains a list of property values for the above mea-
surements can be created. Since it is the same as the property file produced by
the procedure of extraction of line-drawing features, this property file can be also
converted into a symbolic database written by PROLOG. Then the spatial reason-
ing process can be carried out. This procedure has been successfully applied to
discriminating water regions from shadow regions in SAR radar images (Qian and

Haralick, 1990).
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Figure 41. A symbolic image tested by the tracing procedure.
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Region Region Maximum Adjacency State Region Boundary
Number | Index Length R R Mark | Size Length
1 100 319 300 | 204 1 89684 2325
2 101 21 300 | 215 1 148 63
3 200 21 300 | 100 0 1088 440
4 201 27 100 300 0 1375 541
5 202 18 300 0 0 129 57
6 203 15 300 0 0 107 52
7 204 35 100 300 1 3070 927
8 205 24 300 0 0 203 69
9 206 23 300 0 0 640 227
10 207 14 300 0 0 180 99
11 208 24 300 0 0 1220 339
12 209 16 300 0 0 104 56
13 210 22 300 0 1 1012 377
14 211 34 300 0 0 1777 338
15 212 21 300 0 0 592 201
16 213 31 300 0 0 2235 438
17 214 17 300 0 0 131 66
18 215 32 101 300 1 1946 406
19 216 22 300 0 0 382 89
20 217 16 300 1 296 82
21 300 448 200 100 1 154802 2962

Figure 42. The property list of the tracing results for Figure 41.
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7.4 DNESYS-a System Level Uncertainty Reasoning Application

DNESYS is a Drainage Network Extraction System (see Figure 43) for auto-
matically extracting drainage networks from digital elevation data (Qian, Ehrich,
and Campbell, 1990). The main purpose of DNESYS is to deduce a complete vi-
sual event (drainage networks) at a high level by applying uncertainty reasoning
to broken segments, misconnected segments, missing segments, and other defects
which usually result from the low level operators. The principles, algorithms, and
data structures used in the DNESYS system may be extended to other line rea-
soning systems and shape completion systems, which are important components of

computer vision systems.

7.4.1 The Overview of DNESYS

The determination of drainage networks and drainage basins is one of the more
tedious yet important uses of topographic maps, and geographic information sys-
tems are now used extensively as a manual aid to facilitate that task. However,
the wide availability of digital elevation maps has stimulated attempts to automate
the process even further. Significant problems are associated with the use of local
point operators for extracting drainage systems from DEM data. Performance can
be dramatically improved by making use of spatial reasoning. The DNESYS system
described here is capable of performing this task at a high level based on organized
expert knowledge. A stream representation called a parameterized directed graph
(PDG) is constructed to model a drainage system. The construction of a model
begins with an initial pixel labeling procedure. Then a network tracing and prop-

erty measurement procedure converts the 2-D low-level labeling information into a
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symbolic database for high-level processing. By applying uncertainty reasoning sys-
tem developed in previous chapters, evidence collection and uncertain reasoning are
performed against the DNESYS knowledge-base that contains the drainage system
model and the organized expert knowledge. By discarding erroneous information
and supplying missing information, DNESYS produces a complete PDG which can
be converted into the final drainage system. The experimental results show that

this expert system performs extremely well. Some additional useful features of the

DNESYS system are:
1. it is trainable and the knowledge base is easy to modify;

2. it has the flexibility for the user to choose the desired reasoning object—the
specific segment, the specific tree, the specific subarea, or the entire database

after it has been constructed from the low-level processing results;

3. it can be used as a system for direct acquisition of drainage systems from
DEM maps for use in a geographic information system. The results from the
DNESYS system are both in 2-D map format and in database format with all

required attributes and distinct labels;

4. results register to the original elevation data and will have the same resolution
as the original data. Therefore the results can be superimposed on the original

elevation data.

The problem of delineating drainage basins may be approached by first solving
the problem of determining the drainage network. Then the drainage network and
the ridge lines may be used to determine the corresponding basins. The usual

method for deriving the drainage network is to trace or digitize streams as recorded
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on topographic maps. This is not always practical, especially if detailed data are
required for a large region, due to the problems in handling and matching data
from large numbers of large-scale maps. In addition, conventional cartographic
representations of the drainage network are not always satisfactory in the context of
a GIS. Drainage information derived from the stream network on topographic maps
may be incomplete due to arbitrary definitions of streams, omission of the smallest
branches of the drainage network, inconsistencies in interpretation by cartographers,

and effects of cartographic generalization.

As a result there may be good reasons to abandon traditional cartographic
representations of drainage networks in favor of interpretations of digital elevation
data. Once stream channels have been identified within the digital data, many of
their most important characteristics, including size, channel length, gradient, and
sinuosity, can be calculated. The major problem is to derive the drainage network
from the topographic information accurately and efficiently. In principle, the task
is straightforward — water drains from high elevation to low along channels that
are connected to one another according to well-defined rules. Exceptions are so

rare or so easily recognized that they do not influence the usefulness of a successful

technique.

The problem is not quite so easy in practice. The sampling of topography by
the digital elevation data generates ambiguities, including artificial pits and ridges.
Additional errors may be artifacts of the digitization process used to derive the
digital elevations from the source maps or photogrammetric models. Due to noise
and quantization errors, true valley points may be obscured completely. Streams
that flow through narrow gorges may appear to cross ridgelines. In smooth terrain

or when a stream passes through a body of water, local features lose their coherence
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and cannot be traced easily. A practical method of identifying stream channels must

be capable of recognizing and resolving such problems.

Most previous efforts to derive drainage information from digital elevation data
have used a moving window to derive information concerning the configuration of
the land surface within a local neighborhood. For example, the notable techniques
proposed by O’Callaghan and Mark (1984) and Jenson (1984) are based on low level
pixel labeling by using a local operator and subsequent pixel grouping according to
local criteria. Using a local operator, O’Callaghan and Mark first label the drainage
direction for each pixel. Then they carry out an iterative computation of drainage
accumulation values. In each iteration, each pixel is relabeled with a weighted sum
of the drainage accumulation values of neighboring pixels that drain into that pixel.
Then the drainage channels are labeled according to the accumulation values which
are greater than the user-specified threshold. Jenson uses a 3 x 3 pixel window to
label so-called drainage pizels by searching for local minima between two of its
non-adjacent neighbors. Minima are located in any of 12 configurations within the
3 x 3 window. Then, based on local criteria, a drainage basin linkage is established

from the resulting drainage label map given user-specified distance and elevation

thresholds.

Although such approaches produce a satisfactory approximation of portions of
a drainage system, we have found that they do not yield a reasonable representation
of drainage systems considered as a whole. The deficiencies in these techniques are

the following:

e The extracted drainage networks are broken into disconnected segments be-
cause the gaps between them may be quite large. It would exceed the ability

of these algorithms to establish linkages between spatially separated segments.
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e Some stream segments may erroneously be merged with others, even when
separated by a ridge line or a saddle point. Local techniques may not be able

to reject these kinds of mislabelings.

¢ A single extracted segment may have two opposing elevation slopes within the
segment. This means that the segment has two conflicting flow directions along

its length.

e Stream segments may be so thick that the exact stream locations cannot be

determined.

DNESYS uses both local operators and global reasoning to extract the drainage
networks and ridge lines from the DEMs by merging lower level structures into glob-
ally consistent networks. Unlike other techniques, the DNESYS system organizes
the initial labels directly into more global abstractions called segments without a
pixel-by-pixel grouping process. The system views these as the drainage primitives
which are more reliable than individual pixels for the grouping and reasoning process
later on. An attribute vector containing all factors that participate in the reasoning
process is assigned to each segment. After that, a hypothesis generator proposes
links between pairs of spatially related segments. For each pair of segments, N,
predicates are evaluated to produce an N,-ary evidence vector for asserting a new
segment or rejecting it. Finally, all segments with monotonically decreasing ele-
vations are connected to their stream tree, which is a hierarchical data structure
used to represent a portion of the stream network. The roots of all the stream
trees correspond with segments that intersect the edge of the DEM and carry water
out of the map area. Since there are many segments and many trees, all segments
are uniquely labeled by their segment numbers and tree numbers. DNESYS also

extracts topographic ridge lines as part of the reasoning process.
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The DNESYS system consists of three separate parts: low-level primitive label-
ing and attribute vector measurement, high-level spatial reasoning, and an interface
between these two parts. This interface includes a set of special procedures to con-
struct the PROLOG database and to convert the PROLOG database back into a
2-dimensional image. These low-level procedures are written in RATFOR and are
implemented as GIPSY (the General Image Processing System) commands. The
high-level expert is written in PROLOG to carry out the uncertainty reasoning. The
interface is designed to construct a PROLOG data base automatically with an inter-
mediate representation of all useful spatial information about drainage primitives,

which the high-level expert can access efficiently to determine relevant events.

7.4.2 The Model of Drainage Networks

To reason about an event at a high level, it is important to have knowledge
about the event at that level. The knowledge and model of drainage networks
described in this section will be organized as part of the knowledge base in the

other sections.

The principal topographical features upon which drainage networks are based
are called valley segments. A valley segment is a connected chain of pixels which are
local minima in the direction normal to the segment. Hydrographically, a drainage
network consists of all valley segments on which runoff is sufficiently concentrated
and through which the flow is downhill. These are called stream segments. Valley
segments and stream segments differ in that valley segments are measured features
whereas stream segments are components of an actual drainage network. Due to
soil porosity, geologic structure, slope, and climatic conditions, many relatively large

and deep valleys contain no definite stream channel. These are still included in the
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network determined by DNESYS. A single unbranched stream segment may have
one open end which may be considered to be its flow source. However, its other end

must connect to other channels which drain the water that it collects.

In DNESYS, the model of a drainage system is a parameterized directed graph
(PDG) deduced from the DEM’s data. The graph is, in fact, a set of loop-free
stream trees, and the parameters are the attributes associated with each stream
segment. The nodes of the graph are either source nodes to which no other stream
segments connect, sink nodes which are on the edge of the DEM, or fork nodes
where stream segments merge together. Water flow direction is assumed to be from
the source nodes toward the sink nodes. The total flow into a node must equal
the flow out from the node (flow conservation). IN degree and OUT degree are
used to describe the connectivity of a node. Source nodes have IN degree zero and
OUT degree one. For fork and sink nodes, the IN degree is equal to the number of
directly connected branches which have negative end-elevation slopes, and the OUT
degree is equal to the number of directly connected branches which have positive
end-elevation slopes. Any node with zero OUT degree is a sink node. The branches
of the PDG are the stream segments, and the reasoning process will determine
which valley segments are stream segments and which are not. The parameters
associated with each stream segment include length, drainage direction, and the

elevation slope of the segment.
Stream segments have the following properties:
1. The width is only one picture element.
2. The length is arbitrary.

3. The elevation values along it decrease monotonically in the flow direction.
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4. There is no fork point on the segment between its endpoints.

5. The elevation value of any point on the segment is a local minimum point of

the stream segment cross section.

Any branch which does not satisfy above five conditions is called an inconsistent
branch in the PDG. A graph with any inconsistent branch is an incomplete PDG.
For example, a valley segment between two adjacent nodes but with conflicting flow
directions is an inconsistent branch in that graph, since it does not satisfy Condition
3. It must be split into several consistent branches by inserting nodes at suitable
points on the segment so that all five conditions are satisfied. Since the inserted
nodes will have either zero OUT degree or zero IN degree, linkages to other branches
must be located. A graph with a sink node occurring anywhere except on the map
edge is also called an incomplete PDG since sink nodes don’t make sense except at

the physical edges of the DEM where valleys are discontinuous.

When the reasoning process begins, each branch consists of a source node and

a sink node, and sinks and sources are joined as the merging process progresses.

However, in some cases global evidence will cause sinks and sources to be connected
even though that is not supported by local evidence. The the direction of a branch
of the PDG 1is the flow direction, i.e. the direction of decreasing elevation along

that segment.

Branching angle is another important issue in reasoning about the structure
of a drainage network. The angular relationships among segments incident at a
node are determined by drainage slopes near the node; the angles between inward
flowing streams are usually less than 90 degrees (Zerniz, 1932; Haralick, Campbell,

and Wang, 1985). In the literature there are two principal theoretical models for
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determining branching angle from slope—the Hortonian model (Horton, 1945) and
the Minimum Power model (Howard, 1971). From the theoretical point of view,
Roy found that both angular geometry models are based upon the optimality prin-
ciple, which implies that the drainage system must “perform its task” with maximal
efficiency and minimum cost (Roy, 1983). Because both models yield similar theo-
retical angles and because the Hortonian model is simpler to implement, DNESYS

uses the Hortonian model as part of its knowledge base.

Under the assumption that overland flow on the valley slopes follows the line

of steepest gradient, Horton’s model hypothesizes that

cosf = g—:, (7.13)

where 6 is the angle between the line of overland flow and the receiving stream, S,
is the stream gradient, and S, is the ground slope. For the case that a receiving

stream is joined by a single tributary stream, Horton modified his model to

cosf = i—:, (7.14)

where 6 is the junction angle, S, is the gradient of receiving stream, and S; is the
gradient of tributary stream as in Figure 44. Usually, S; > S;. However, when two
streams merge with nearly equal gradient, i.e. S; ~ S,, this model will erroneously
predict a zero junction angle. Nevertheless, this model clearly states that the junc-
tion angle § must vary within a range of 0 < 6 < 90 degrees. This is true for most

practical cases.
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Figure 44. The stream branching model (Hortonian model).
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In DNESYS, an incomplete parameterized graph with sink nodes, source nodes,
and possibly inconsistent branches is obtained from low-level processing. The graph
consists of many disjoint trees, and it is the function of the high-level reasoning pro-
cess to make mergers of trees and to split branches in order to remove inconsistencies

due to conflicting flow directions.
7.4.3 Evidence Collection and Uncertainty Reasoning

The procedures of low level processing including the initial drainage point
marking, network tracing, and property measuring, can be found in (Qian, Ehrich,
Campbell, 1990) and are omitted here. The method presented in this section is

based upon the output information of that low level processing.

Reasoning about a drainage system at a high level requires that DNESYS
have the ability to handle uncertainty. Uncertainty is caused both by imprecise
data and by imprecision in the rules used for extracting the drainage networks.
In the reasoning process, the evidence from the observed data is often incomplete
or conflicting; some rules are based simply upon intuitive knowledge. Therefore,
there are no simple measures or rules for deciding how a pair of broken segments
should be connected or how an inconsistent segment should be split. To reason
with uncertainty and to resolve possible conflicts in the data produced by the low-
level measurements, DNESYS applies the uncertainty reasoning algorithm to these

problems.

The uncertainty reasoning system is used to construct a global representation
using partial representations, each of which demonstrates local consistency. Thus,

it can simultaneously form and evaluate alternative hypotheses. An interpretation
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of a portion of a drainage network depends not only upon each individual piece of
evidence but also upon interactions among various pieces of evidence. Then the
problem becomes one of multicriteria optimization. To solve it requires consider-
ation of all the evidence from each partial representation and utilization of higher

level knowledge to resolve conflicts.

A set of functions are designed to extract specific partial evidence in support of
all hypotheses that are generated. The output of the feature extractors are inputs
to a set of tests which are organized as a procedural part of the knowledge base
of the expert system. These tests are made at higher-level processing stages. The
test results are used as inputs to the process of reasoning with uncertainty, which is
discussed later. Let 7, 7,...,7s be the set of tests. The following are the tests made

on the low-level spatial features in the PROLOG database.

Distance Test 7: This test provides support for the connection of two segments
based upon proximity of their endpoints. Let P;(z;,3) and P;(z;,y;) be endpoints of
two arbitrary segments; then the geometric distance between P; and P; is given by

the usual Euclidean distance

D=l =zl + v - wsl" (7.15)
Given a threshold, Tj, then
_ [true, if D<Ty;
nE {false, otherwise. (7.16)

Curvature Similarity Test r: Since most stream segments are locally smoothly

connected, this test is for confirming this property. Let CV; and CV, be the mean
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curvatures of the endpoints of two candidate segments and let T, be a threshold.

Then CV; is defined as

1S~0;; —0;s
CW:; E J_LAS,- (7.17)
j=1

where (6;; — 6;2) is the local measure of change of the orientation of the tangent
vector and AS; is the change in arc length corresponding to above angle changes.

Thus

_ J true, if |CV1 = CV,| < To;
2= {false, otherwise. (7.18)
Segment Length Test r3: The system assigns higher credibility to longer seg-
ments. All isolated valley points are ignored. Let L; be the lengths of two distinct

segments and let T3 be the test threshold. Then

v {i, LR =
Elevation Slope Test r,: This test is to confirm that if the stream flow directions
of two segments are consistent, then the signs of the elevation slopes at the nearest
endpoints of these two segments should be opposite according to the reference di-
rection. The positive reference direction is defined as the direction from the center
of the segment toward the endpoint. The elevation slope of the endpoint is calcu-
lated from the end section of valley segment. Then let ES; and ES, be the elevation

slopes at the ends of the valley segment.
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_ [true, if (ES; >0 and ES,<0) or (ES; <0 and ES; > 0);

s = . (7.20)
false, otherwise.

Elevation Similarity Test r5: This test is to confirm that the mean elevation dif-

ference between the endpoints of two mergable segments does not exceed a threshold

value, given the search distance. Let ME, and M E, be the mean elevations in a local

neighborhood near the ends of the segments, let T be the threshold for this test,

and let B, and B, be the predicates

B1=ES <0 and ES, >0 and 0< (ME, — ME;) < Ts

(7.21)
ﬂ'_):ESl >0 a.nd ESQ(O a.nd 0<(ME2—ME1)ST5
Then
_ [ true, if B; = true or B; = true;
= { false, otherwise. (7.22)

Forward Elevation Test r: This test is based on the knowledge that the eleva-
tion slope does not usually change rapidly in a local neighborhood. Therefore if a
segment is extrapolated toward another endpoint based on its slope, there should
not be a large disparity between the actual elevation and extrapolated elevation at
that endpoint. Let EE, and EE, be the elevations at the ends of two valley seg-
ments, let ES; and ES, be the corresponding elevation slopes, let D be the Euclidean

distance between these two ends, and let Ts be the test threshold.

_ {true, if [EE\(1+ ES\D) — EE;| < Ts or |EE3y(1+ ESyD) — EEy| < Ts; (7.23)

| false, otherwise.

Applications 186



Orientation Test 7: Since local curvatures of valley segments tend to be low,
one would expect that a segment connecting the endpoints of two disjoint segments
would not introduce sharp local curvatures. Therefore r, compares the orientations
at segment endpoints and the orientation of a segment between them. The smaller
the orientation differences, the higher the probability that the endpoints should
be merged. The following three angle differences completely specify the geometric

orientation and transition properties of three joined segments.

Let P, and P, be the endpoints of two distinct segments. Let 65 be the direction
of P, P,, 6, be the angle of the tangent vector to the flow direction at P, and let 6,
be the angle of the tangent vector to the flow direction at P, as in Figure 45. Then

the orientation test checks the orientation of the line PP, with respect to these

orientations. Specifically,

_ true, lf |93 - 02| S T71 a.nd |03 - 01' S T72 and |91 = 02| < T73;
T7 = . (724)
false, otherwise.

where Ty, Tro, and Trs are the thresholds for this test.

Ridge Intersection Test 73: This test is for checking for a ridge crossing in the
gap between the endpoints of two distinct segments. Let R be any ridge line. Let
Pi(zi, ) and Pj(zj,y;) be the endpoints of two distinct segments. Then the straight

line P;P; is defined by the slope

Ay
y=—=_(z=zj)+y; (7.25)
where z; <z < z;, i <y < yj, Ay =y; — yi, and Az = z; — z;.
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Figure 45. The angles in the orientation test.
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o= {f;:;z;, i(ft}f.-e};_;v;isc::s not intersect R; (7.26)

DNESYS maps the evidence that is extracted from the observed data into a
Boolean logic set by using the functions 7,7, ..., 75. In general, each 7, is a function
of a data vector Z; and a parameter vector T;, that is, n = f;(Z;,T;). In the case
of 1 < i< 17, the parameters are all thresholds which are determined in one of two
ways — from training data or by experts. An individual hypothesis is supported
according to the success of its corresponding tests. Each = is merely a contribution
to the overall support, and the influence of =, on hypothesis & is determined either
by a conditional probability p(h|r;) or by experts subjectively. DNESYS interprets
this probability as evidential strength or as a degree of confirmation. An inference

network that propagates evidence strength can then be constructed.

Let h be a hypothesis, let 7,...,7s be the evidence for that hypothesis, and let
p(h|m1), .., p(h|7s) be the evidence strengths. Note that several of the ; may logically
conflict, but other =, may still verify the hypothesis. DNESYS chooses a belief
function which is able to synthesize all partial representations of evidence and to
achieve the multicriteria optimization. DNESYS accumulates partial supports from
different evidence iteratively throughout the inference network. In DNESYS, a
frame of discernment © for produce a complete PDG, consists of the following

exhaustive and mutually exclusive subsets:
1. A source node is connected to a sink node.
2. A source node remains open (ie, not connected to a sink node).

3. A source node is backward merged to a sink point which splits an inconsistent

branch ( with a V-shaped elevation profile ) into two consistent branches.
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4. A sink node is forward merged to a source point which splits an inconsistent

branch ( with a A-shaped elevation profile ) into two consistent branches.
5. A sink node is located at the boundary of the map and remains open.

Each subset of © corresponds to a hypothesis. Frame of discernment © delimits
a sample space which contains all possible linking hypotheses, only one of which is
true at any one time. The evidence provided by each test 7; is represented as a basic
probability assignment (bpa) over the hypotheses discerned by a frame ©. The bpa
represents the impact of each distinct piece of evidence on the subsets of a frame ©.
Applying Dempster’s rule, DNESYS pools the multiple bodies of evidence obtained
from the different tests to get new belief functions. Finally, a single hypothesis
among others is selected, if and only if the belief function has a maximum value
which is greater than a threshold specified in the knowledge base. When there are no
remaining inconsistencies, the complete PDG contains the results of the reasoning
process. Global consistency is achieved for two reasons: individual segments are
consistent with one another and with ridge segments, and the PDG structure itself

precludes the formation of global loops among the valley segments.

7.4.4 Data Structure and Control Mechanism

The high-level expert of DNESYS consists three major parts: the database,
the knowledge base, and the inference procedures. The data structures and control

mechanisms similar to those described in Chapter V are used in DNESYS.

In the DNESYS database, all valley segments and ridge segments are structured

as hierarchical lists. These lists are treated as PROLOG fact rules asserted in the
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system database. The DEM coordinate space is partitioned into blocks, and for
each block an endpoint index is constructed for those segments having endpoints in
that block. A space spanning index is used to indicate which blocks are spanned
by each segment. The space spanning index is useful for the ridge intersection test
and for the merging that may occur when an inconsistent segment is split. Each

element in the index table has the form

((INDEX
*NODE-TYPE {SR: source node, SN: sink node, IN: inconsistent node}
*INDEX-TYPE {1: spanning index, 0: open-end index}
*SEARCH-FLAG {1: done, 0: to be tested}

*END-TYPE {1: start point, 0: end point}
*HORIZONTAL-INDEX
*VERTICAL-INDEX
*SEGMENT-NUMBER-IN-TREE
*TREE-NUMBER))

The data structure for drainage primitives includes four parts: a unique seg-
ment label, a segment parameter list, a list of sample points at each end, and an
extended segment chain code which includes the elevation and direction. The data

structure has the form

( ( SEGMENT-NUMBER *s
TREE-NUMBER *t
( (START-TYPE *sp)
(STOP-TYPE *tp)
(SEGMENT-LENGTH *sl)
(START-MEAN-ELEVATION *sme)
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(STOP-MEAN-ELEVATION *tme)
(START-ELEVATION *se)

(STOP-ELEVATION *te)
(START-MEAN-CURVATURE *smc)
(STOP-MEAN-CURVATURE *tmc)
(START-ELEVATION-SLOPE *ses)
(STOP-ELEVATION-SLOPE *tes)
(START-DIRECTION *sd)

(STOP-DIRECTION *td)
)
((START-SAMPLING-POINTS *x11 *yl11 *x12 *y12)
(STOP-SAMPLING-POINTS *x21 *y21 *x22 *y22)
)
((COMPOSED-SEGMENT-TRAIN-CODE

(POINT 1  *x

*y

*elevation
*direction
POINT 2 *x

*

y

*elevation

*direction

POINT N *x
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*y

*elevation
*direction)
)
)

This database contains all the information required to reconstruct a raster im-
age after reasoning has been completed. The data structure for drainage primitives
including valley lines and ridge lines is a two-level hierarchical list. As soon as the
segment number and the tree number have been chosen in the deduction process,
any one of the three elements in the first-level list can be moved to a global area
called the blackboard (Lesser and Erman, 1977). Then according to the END-
TYPE in the index, corresponding elements in the second-level list can be asserted
as the independent fact rules with their own predicates in the blackboard. Thus
these data are temporarily shared by the hypothesis generation and verification
processes. They are erased immediately from the blackboard before the data for

another segment are moved in.

The knowledge base consists of a test name list, a threshold table, a table of
evidence strengths (bpa) for confirmed or unconfirmed 7/s, a spatial search distance,
and inference procedures. The test name list contains the symbolic names for
71,..,7~. Through this list, DNESYS specifies how many tests and which tests
should be carried out in the system. The threshold table contains all threshold
values Ti,..,Tn for their corresponding tests. According to this table, DNESYS
maps the evidence that is extracted from the observed data into a Boolean logic
set. The table of bpas contains the evidential strengths, p(h|r;). The spatial search

distance provides an upper limit to the spatial neighborhood involved when the
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algorithm focuses attention on a particular segment. This distance specifies how
many neighboring blocks should be searched to generate hypotheses. Finally, the
inference procedures are used to implement the evidential reasoning using the D-S
model. The basic data structure in the knowledge base is the frame. Each frame
has a set of associated slots, which are empty buffers that will hold particular types
of information. Some of these are filled with the corresponding values assigned
by experts or obtained from training data, and the rest are filled as the reasoning
process takes place. Through the knowledge base frames, the user can specify or
modify the knowledge base freely except for the inference network, which is relatively
fixed.

The main controller in the high level expert of DNESYS is based upon the
database and knowledge base structures just described. It uses the spatial relevancy
finder to select an open node (either a source node or a sink node) and to calculate all
possible search indices which fall in a search radius. Then the hypothesis generator
generates hypotheses based upon the search index list. By consulting the test
name list in the knowledge base, the tests described previously are computed for
hypotheses. All the parameters concerned with a test are accessed. The evidence
extractor determines the Boolean values of m,7,...,7s according to the threshold
values imbedded in the knowledge base for each test. Then the initial bpas, p(k|%),
are extracted from the knowledge base by table look-up. These values are treated
as the evidence strengths and are propagated into the built-in inference network.
This is done by filling an evidence frame which contains the evidence names and
the corresponding slots for the evidence strengths. For each hypothesis, a belief
function which accumulates all the evidence can be computed recursively from the
evidence frame following the inference network. Finally, N belief functions are

calculated for N hypotheses generated according to the N pairs of indices. These
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are put into a hypothesis frame for hypothesis selection. The decision maker or the
hypothesis selector examines that frame to find the maximum belief function value
and compares it to a threshold specified in the knowledge base. A hypothesis is
accepted if and only if its belief function is above the threshold and if its value is
maximal among the alternatives. The other hypotheses are rejected. The selected
hypothesis invokes a curve fitting procedure to generate the digitization of a link
between the endpoints of two stream segments. After that, the relevancy finder
will pick up the next open node by searching the inverted index downward from
the current position. Then the controller will repeat the above processes, until
the inverted index is exhausted. A complete drainage PDG and its corresponding

drainage networks can now be produced.

7.4.5 Curve Interpolation

If a hypothesis is selected that requires reconnections among the valley seg-
ments, then the next problem is to determine how the connections should be made
at the pixel level. One way is to extend the end of one segment toward the other
pixel by pixel. However, it is easy to become lost in the middle if the gap is wide,
if the information in the gap is very ambiguous, or if there is missing information
in the gap due to occlusion. To overcome this difficulty, the DNESYS system uses
a parametric cubic spline to connect segments smoothly by maintaining continuous

curvature at segment endpoints.

The expression of a single parametric cubic spline segment e, in terms of arc

length S, is given by
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a($) =) B;S!
i=1

= B;S% + ByS + B3S? + B4S?

where 0< 5 < Spaz-

(7.27)

Let a(Si) = a; and a(Si4+1) = ai41, where S; and Si4; are two adjacent point

values within the range of parameter S. Then aj is the value of the first derivative

of a(S) with respect to S at S = S;, etc.. Four equations can be obtained by taking

derivatives of Equation 7.27 with respect to S and setting S = S; and S = Si4;

respectively.

a(S=S,=0)=a;, =B;

a(S = Sk+1) = Qpy) = B; + B2$k+1 + B3S§+l + B4S£+1

a(S=S=0)=a, =B,

o'(S = Si41) = ahyy = Bo+ 2B3Siey1 + 3B4SE,

The coefficient vectors B; are then solved from above equations:

B =a;
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2(ar — agyq) o) LI
B, = + ok g kil (7.29.d)
S¥i Sty SEa

Given N data points through which the curve must pass, to generate the curve
position vector a;(S), 1 < i< N, we need to know the tangent vector «!. In DNESYS,
two points at the end of each segment are chosen for fitting the interpolating cubic

as shown in Figure 46.

By using the natural end condition, d?|a|/dS? = 0 (Rogers and Adams, 1976),

we have

o) + %a; = g(“’—gzﬂ) (7.30.0)

Ssa} +2(Ss + Sz)ay + Sz0 = %53(5%(03 - a2) + Sj(az — a1)) (7.30.b)
Sy + 2(Ss + Ss)az + Ssey = %S,:(Sg(a,; —a3) + S2(a3 — a3)) (7.30.c)
2a4 + 4y = T.overSy(ay — az). (7.30.d)

The above system can be written in matrix form as

Ca' =B, (7.31)
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Figure 46. Control points in the curve fitting.
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where C is a 4 x 4 matrix, « is a 4 x 1 variable matrix, and B is a 4 x 1 matrix. Then
the matrix equation can be solved for a’ by matrix inversion. Substituting a’ into
Equation 7.27, one obtains the coefficient matrix B. Thus, the cubic spline segment

1s specified by

3(ak+1—ak) _ 2&’1 _ 0'2 52
St Sk+1 Ska1

a(S) = ap + a5+ (
(7.32)
2((!1, el ak+1)

o, a
- 42 Zkriyes
S
E+1

2 2
Sk+1 Sk+1

+(

where 0< S < Siy; and 1 <k < 3.
7.4.6 Verification

Curve e is a continuous curve superimposed on a discrete sampling grid. By
tracing this curve, grid points near the curve are marked as component pixels for
a new discrete segment connecting the endpoints of the original segments. Since
most drainage networks are locally smooth, the fitted curve tends to be close to
the shape of the true stream segment. A problem that arises from the computation
of the spline independent of external constraints is that the generated curve may
overlap with a few ridge points. This may occur if the resolution of the original DEM
data is too coarse, if the generated curve bridges segments near the flow sources,
or if the gap between the two segments is too wide. In fact, the real drainage
network patterns are often more variable than those of the abstract model in our
knowledge base. This is not surprising since natural streams are not so smooth and

well behaved as the model.

The overlap problem can be solved by adding a verification stage to the rea-

soning process. Each hypothesis that has been selected by high level reasoning is
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verified by evidential reasoning at the pixel level under the guidance of the high level
results. A belief function is computed for each pixel near those that are inserted as

well as for those on all the selected valley segments.

The belief function selects between exactly two hypotheses for each selected
pixel-stream or no stream, and the stream paths are corrected based on the results.
If a ridge line intersects a valley segment, the entire segment may be removed. The

evidence for the verification stage consists of:
1. The high-level reasoning results.
2. The V-shaped map.
3. The A-shaped map.
4. The flow-direction map.
5. The elevation data.

A pixel is verified as a component of a drainage network if its belief value is
higher than a preset threshold. The hypothesis verification at the low level provides
an opportunity to correct errors made at higher levels, and final decisions are based
on reasoning both at high levels and at low levels. The reasoning process in the
verification stage is similar to the high level reasoning process, and the details are

omitted here due to space considerations.

7.4.7 Experimental Results

Two sets of DEM data with different resolutions from the Stanardsville, Vir-

ginia and the Hamburg, Virginia USGS 7.5 minute topographic quadrangles were
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used in our experiments. The data for the Stanardsville area were derived by man-
ual digitization of elevations at the centers of 200 meter grid cells, referenced to the
UTM grid system, as shown on USGS 7.5 minute quadrangles. The data for the
Hamburg area were collected as a digital elevation model (DEM) by the U.S. Geo-
logical Survey (Elassal and Caruso, 1983). The 7.5 minute DEMs represent digital
elevations for areas corresponding to USGS 7.5 minute quadrangles published at
1:24,000. Each DEM represents the earth’s topography as a regular array of data
referenced to the UTM grid system. Elevations for this grid are derived either by
manual or automated compilation of stereo aerial photography at a scale of about
1:80,000. Values derived from the stereo models are then processed to represent
elevations on the terrain spaced at intervals of about 30 meters. Each value is an

integer representing topographic elevation in meters.

7.4.7.1 High Level Reasoning Results

In the first data set, peaks of the Blue Ridge mountains occupy the north-
western corner of the Stanardsville quadrangle, with drainage to the southeast to
the upper piedmont surface through South River and Conway River. This drainage
forms a dendritic pattern, with relatively steep channel gradients in the mountains,

and relatively low gradients once the streams reach the dissected piedmont surface.

The original DEM data of size 70 x 55 pixels are shown in Figure 47(a). The
topographic features plotted from the DEM data are shown in Figure 47(b). The
V-map which contains the possible valley points marked by the V-shaped operator
is shown in Figure 48(a). The A-map which contains possible ridge points marked
by A-shaped operator is shown in Figure 48(b). From these two maps, it can be

seen that the topography contains pits, saddle points (where valleys and ridges
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Figure 47. The original DEM map and its surface plot. (a)The original DEM map

(size: 70 x 55). (b)The surface plotted from the DEM map of (a).
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Figure 48. (a)The V-shaped map for Figure 47(a). (b)The A-shaped map for Fig-
ure 47(a). (c) The Valley segment map for Figure 47(a). (d) The drainage

network after reasoning..
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Figure 49. The comparison of extracted networks with the ground truth data:

(a) The ground truth data for Figure 47(a). (b) The extracted drainage
network (dark) with ridge lines (light).
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intersect), isolated stream segments, and other ambiguities. Figure 48(c) shows the
valley segment map after applying the A-map masked thinning algorithm. All the

segments in this map satisfy the conditions:
1) All segments have a width of one pixel.
2) All segments mark V-shaped topographic features.

3) No segments cross ridge lines.

However, this map also contains inconsistent segments. An incomplete
drainage parameterized directed graph is constructed from the this map by the

network tracing and property measuring algorithm described in Section 7.3.1.
The statistics of this incomplete PDG are as following:

Number of drainage trees: 26

Number of drainage trees not terminated on the boundaries: 11
Number of stream branches: 106

Number of inconsistent branches: 3

Number of inconsistent nodes: 92 .

DNESYS then performed the spatial reasoning on the incomplete drainage
graph. All inconsistent nodes and branches were examined and removed, and a
complete drainage PDG was obtained. The resulting map produced by the high-

level expert is shown in Figure 48(d).
The statistics for the resulting PDG are
Number of drainage trees: 10
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Number of trees not terminated on boundaries: 0
Number of branches: 100

Number of inconsistent nodes: 0

Number of inconsistent branches: 0

Number of curves generated: 15 .

This result shows considerable improvement compared with the result obtained
from low-level labeling shown in Figure 48(a). The only difficulty is a segment A
that is introduced by a noise point. It will be shown later that this is removed
when ridges are taken into account. The number of drainage trees which do not
terminate on the boundaries are reduced from 11 to 0, and all nodes are consistent.
The drainage network that is generated is consistent with the model of drainage
networks described in Section 7.4.2 and therefore has the structure of a real drainage
network. In particular, it is also comparable to the ground truth data in Figure
49(a). This ground truth was interpreted manually from the blue line drainage
network of a USGS topographic map with a much finer resolution. The extracted

drainage networks with the ridge lines are shown together in Figure 49(b).

The same improvements are obtained from the second set of test data. A
175 x 186 pixel region from the northeast quarter of the Hamburg, VA. quadrangle
was tested using DNESYS (Figure 50(a)). Topographic features plotted from this
DEM data are shown in Figure 50(b).

The same low-level processing operations and the same inference procedures
were applied to these test data. The parameters in the knowledge base, however,
were slightly modified according to the geographic features in this area. The valley
segment map that resulted from the low-level processing is shown in Figure 51(a).

An initial PDG was deduced from this map by DNESYS.
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Figure 50. (a) The DEM of the second test area (size: 175 x 186). (b) The surface

plotted from the DEM in (a).
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Figure 51. (a) The valley segment map of the second test area. (b) The corre-

sponding reasoning result. (c) The ground truth data for Figure 50(a)).
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The statistics for the initial PDG are:

Number of drainage trees: 198

Number of drainage trees not terminated on boundaries: 180
Number of source nodes: 233

Number of inconsistent nodes: 168

Number of inconsistent branches: 21.
The statistics for the resulting PDG are:

Number of drainage trees: 24

Number of drainage trees not terminated on boundaries: 8
Number of source nodes: 124

Number of inconsistent nodes: 8

Number of inconsistent branches: 3.

The map corresponding to the resulting PDG is shown in Figure 51(b). From
the comparison of the statistics of PDGs and the comparison of the extracted
drainage map with the ground truth data (Figure 51(c)), we see that DNESYS
also works well for the finer resolution data. The number of drainage trees which
do not terminate on the boundaries are reduced from 180 to 8. The number of in-
consistent nodes are reduced from 168 to 8. The number of inconsistent branches are
reduced from 21 to 3. The interpreted network shows more detail than the ground
truth network derived from the USGS blue lines. Although these interpretations
differ from the ground truth data, we do not consider them to be “errors” because
they show more detail than the ground truth data, and the additional detail appears

to depict true drainage.
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A third area of 160 x 150 pixels from the northwest quarter of the Hamburg
quadrangle was tested on DNESYS (Figure 52(a)). The corresponding topographic
features are shown in Figure 52(b). The same knowledge base as in the previous
test was used. The experimental results are comparable to the results for the first

DEM.
The statistics of the initial PDG are:

Number of drainage trees: 168

Number of drainage trees not terminated on boundaries: 153
Number of source nodes: 189

Number of inconsistent nodes: 148

Number of inconsistent branches: 16.

The valley segment map that corresponds to the initial PDG is shown in Figure
53(a).

The statistics of the resulting PDG are:

Number of drainage trees: 19

Number of drainage trees not terminated on boundaries: 6
Number of source nodes: 84

Number of inconsistent nodes: 6

Number of inconsistent branches: 1.

The drainage network after reasoning by DNESYS is shown in Figure 53(b).
The ground truth data for this map is shown in Figure 53(c). The experimental
results again demonstrate substantial improvement. The number of drainage trees

which do not terminate on boundaries are reduced from 153 to 6. The number of
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(b)The surface

52. (a) The DEDM of the third test area (size 160 x 150).

Figure

plotted from the DEM in (a).
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Figure 53. (a) The valley segment map of the third test area. (b) The correspond-

ing reasoning result. (c) The ground truth data for Figure 52(a).

Applications 212



inconsistent nodes are reduced from 148 to 6. The number of inconsistent branches

are reduced from 16 to 1, a very significant improvement.

7.4.7.2 Comparison with Earlier Methods

In order to compare these results with other local operators, we have run
Jenson’s operator on the elevation data for the second test area shown in Figure
50(a). The results are shown in Figures 54(a) and 54(b). Our experience is that it
is difficult to extract the drainage networks from the result of Jenson’s operator. In
both figures, most drainage pixels labeled by the operator are connected together
to form dense regions within which the stream segments are difficult to identify.

Possible reasons for that are
1. Jenson’s operator is sensitive to the data resolution.

2. Due to noise, quantization errors, and insufficient accuracy in the raw data,
some drainage features are not directly supported by the local features of the

raw data.

7.4.7.3 Results after Verification and Reinterpretation

It has been shown that high level reasoning significantly reduces the errors
inherent in low level operators. The errors remaining after high level reasoning
are relatively minor and may be categorized by comparing the extracted drainage

networks with ground truth data. These errors include:

1. A few isolated segments, which are counted as trees which do not terminate on

boundaries, are not connected to the overall system. These errors often occur
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Figure 54. (a)The drainage cells labeled by Jenson’s operator without filtering.
Black: drainage cells; white: others. (b) The drainage cells labeled by

Jenson’s operator with Gaussian filter. Black: drainage cells; white: others.
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in regions of low topographic slope where it is difficult to determine the correct

drainage direction due to the lack of sufficient evidence.

2. A few true stream segments incorrectly connected to one another. These are

counted as inconsistent branches.

3. A few interpreted segments that intersect ridge points. This is caused by the
curve fitting algorithm explained in Section 7.4.5. However, the ridge points

from the low-level labeling, especially the isolated one, are not always reliable.

The results can be further improved by adding the verification stage discussed
in Section 7.4.6 and then making a second pass through the high level reasoning
stage of DNESYS. The verification stage produces a new set of valley segments that

replaces those from the V-shaped map that were used in the first pass.

To demonstrate the effectiveness of verification, the upper left portion of the
second test area of Figure 50(a) was processed further. The results are shown
in Figure 55. The reinterpreted drainage networks are more accurate than the
hypothesized ones and reveal more detail than the digital ground truth data in
Figure 55(c). However, by detailed examination of corresponding topographic maps,
almost all the additional details are confirmed to be extensions of stream segments
into the valleys at their headwaters. To check this, Figure 55(d) shows the extensions

of the blue line stream map into the valleys, and the match is extremely good.

7.4.7.4 Drainage Basin Labeling

Earlier it was asserted that the drainage network was fundamental to the deter-

mination of the drainage basins. To confirm this a simple algorithm was tested for
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Figure 55. (a) The low-level labeling. (b) The high-level hypotheses. (c) The

networks after verification and reinterpretation. (d) The ground truth map.
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labeling the drainage basins using the network from Figure 55(c). The algorithm
is a drainage tree thickening algorithm that is used to grow the drainage basins
outward from. the streams while maintaining the maximum possible consistency
with the ridge line fragments that are located between the branches of the drainage
trees. Basin labels are propagated from labeled pixels to adjacent pixels with higher
elevations. The basins for the streams leaving the image area are shown in differ-
ent shades in Figure 56. Also, the system is able to label the extracted drainage
netwroks according to the hierarchical order model. This result is shown in Figure

o7.
7.5 Object Recognition on a Printed Circuit Board

The task of recognizing electrical parts on a printed circuit board (PCB) is an
important problem in automatic industrial inspection. The experiments presented
in this section do not attempt to solve the entire problem of automatic PCB inspec-
tion. By means of this experiment, we intend to illustrate the sources of uncertain
information, show how a hierarchical visual event space is constructed, show how
visual evidence is collected and mapped from one level to the other level, and show
how our reasoning algorithm can be used to cope with uncertain visual informa-
tion. This experiment also shows that an image which looks so clear and so simple
for human vision system still poses quite a complicated task for a computer vision

system.

A test PCB image is shown in Figure 58. There are IC chips, resistors, capac-
itors, and other electronic parts on the board. From Figure 58 we can clearly see

that all electronic parts have different appearances because of illumination, surface,
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Figure 56. Drainage basins with drainage network (white) and ridge line fragments

(black).
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Figure 57. The drainage network labeled according to the hierarchical order. Blue:

the first order. White: the second order. Yellow: the third order.
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and shape variations. For example, the dark marks on the resistors break the re-
sistor bodies into separate parts. Without e prior: knowledge about a resistor, one
can not even recognize that these separate parts are connected each other. Also,
the highlights on surfaces of capacitors and surfaces of resistors make the same type
of part look different at different locations. This raw data ensures the low-level
processing modules provide uncertain information to the higher processing levels,

whatever low level processing modules are chosen.

The hierarchical visual event space for this problem may consist of the sig-
nificant points, edges or lines, contours or regions, primary components, electronic
parts, and the PCB board. Since we have already shown how to reason from raw
data to edges and from edges to significant lines in Section 7.2 and Section 7.4 of
this chapter, we will focus on the reasoning process from region level to the object

level in this section.

The results from the previous levels are shown in Figure 59. Now we are at
the level of reasoning about the primary components of objects based on region-
level evidence. For simplicity, a subimage of Figure 58, which contains an array
of resistors, is used for this experiment (Figure 60). The corresponding lower level
processing results are shown in Figure 61. To label each region with a unique label
1s a necessary step for the evidence measuring and reasoning at the high level. The
symbolic image which is labeled by each region with a unique label is shown in
Figure 62. Notice that the regions in Figure 61 do not correspond to the shapes of
objects to be recognized. The visual events about which reasoning takes place at
this level involve components of resistors. A frame of discernment for components

of resistors is shown in Figure 63, and this corresponds to a single reasoning tree
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in Figure 25. There may be more reasoning trees as in Figure 25 if there are other

object types besides resistors to be recognized in the image.

Given a visual event at the current reasoning level, the focus of attention
function returns the names of the levels to be analyzed: the level of components of
objects, the region level, and the raw data level. The focus of attention function
also returns the search distance: 1.5 times the maximum component size. Then,
the focus of attention function selects an index element of a visual event from the
invertible index table at the level the region level. The control mechanism described

in Chapter VI is used to generate hypotheses about the event.

Visual evidence at the region level and the raw data level which is available for
supporting visual events at the component level in this example are the region size,
mean gray value, variance of graytone value, row center of mass, column center of
mass, angle, mean radius, variance of radius, length of the region boundary, measure
of circularity, etc. The measurements of these pieces of evidence are shown in Figure
64-75. From these figures we can see that no piece of evidence by itself is sufficient for
determining the component type because of the nature of uncertainty information.
However, each piece of evidence provides a grain of support for determining the type
of component, which can be combined into more certain support for hypotheses
about visual events at this level. Note that some evidence should be reextracted
from the original raw data under the guidance of the events at the region level. The
visual evidence extractor computes these visual evidence measurements. Among
these pieces of visual evidence, only six are chosen in this experiment. They are
region size, boundary length, circularity, center of mass, variance of radius, and
mean graytone. Evidence mapping functions map these measurements into evidence

strengths. The mapping functions in this experiment are discrete table look-up
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Figure 59. The reasoning results for Figure 58 at lower levels: significant points

and significant lines.
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60. The subimage of Figure 58. Size:

191 x 161.
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Figure 61. The reasoning results from lower levels at the region level.
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Figure 62. The symbolic image of Figure 61: each region with a unique label.
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Figure 65. Visual evidence 2: variance of graytone.
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Figure 67. Visual evidence 4: mean radius.
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Figure 68. Visual evidence 5: variance of radius.
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Figure 72. Visual evidence 9: circularity.
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Figure 73. Visual evidence 10: boundary length.
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Figure 74. Visual evidence 11: the third graytone moment.
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functions. The initial beliefs which are exactly committed to each hypothesis are
computed. These initial beliefs are propagated into the built-in reasoning tree
in Figure 63. Then, the interactions among pieces of hierarchical evidence can
be determined to deduce the type of component. For this step, the algorithm is
described in Section 5.2 of Chapter V, and the implementation method is given in
Section 6.4 of Chapter VI. The some of the dichotomy belief values computed at
this level are shown in Figure 76. The reasoning results at this level are shown in

Figure 77. The labeling accuracy is 91.1 percent in a total of 67 regions.

After the completion of the reasoning process at the region level, all asserted
components of resistors and the spatial relations among them are mapped into
evidence strengths at the object level for deducing electronic parts at that level. The
same reasoning steps as at the region level may be applied at this level. However,
the visual evidence in this level is mainly from spatial relation measurements. The
mapping procedures and reasoning steps for this stage are similar to the algorithm
described in Section 5.3 of Chapter V. As soon as a visual event is determined to be
a resistor, the detailed description of that resistor will be propagated downward to
check the consistency of related visual events at the level of components of resistor.
Meanwhile, missing information (easily seen in Figure 61) which results from low-
level processing alone is filled in. This completes the verification process for the

hypothesis about a resistor at the object level.
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Figure 76. Belief values calculated for hypotheses at the region level. Hypotheses:

1: left connector; 2: left part of the body; 3: middle part of the body; 4:

right part of the body with the righ connector.
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Figure 77. The reasoning results at the component level. Red: the left connector.
White: the left part of the resistor body. Purple: the middle part of the

resistor body. Green: the right part of the resistor body with the right
connector. Light blue: others.
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Chapter VIII
SOME ASPECTS OF DESIGNING THE SYSTEM

The principles and methods for designing an uncertainty reasoning system
within our framework have been already described in previous chapters. However,
some of the practical aspects of designing such a system should be emphasized

further.

General speaking, designing a system depends upon the type of task to be
solved, the kind of knowledge about images to be used, and the types of processing
modules available for extracting visual evidence. Designing such an uncertainty rea-
soning system, in fact, involves mainly designing three visual hierarchies: the visual
event hierarchy, the visual hypothesis hierarchy, and the visual evidence hierarchy

with an associated set of mapping functions.

A hierarchical visual event space should be constructed first. Then a visual

hypothesis space is constructed corresponding to the visual event hierarchy. Based
upon above two hierarchical spaces, the visual evidence hierarchy is constructed

together with the mapping functions that determine the bpa’'s.

8.1 Designing the Visual Event Hierarchy

The visual event space should be hierarchically constructed from the level of
image primitives to a high-level interpretation. The number of levels in the event
hierarchy depends upon the final processing goal. For the resistor problem, if the

final processing goal is to recognize different PCB pictures, then six levels of visual
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event hierarchy may be needed (see Figure 78). If the final processing goal is to
recognize electronic parts, then only five levels of visual event hierarchy may be
required, and the top level will consist of the visual events about different types of
electronic parts. Since each additional level of visual hierarchy requires considerable
computation including evidence mapping, evidence combining, evidence interaction,
hypothesis selection etc., too many levels of representation would considerably in-
crease the computational complexity. However, too few levels of representation
would make it difficult to make a reasonable model of a structured world. For
example, if we try to eliminate level 1 through 4 in Figure 78, then much useful
structural information would not be represented, and this certainly reduces the sys-
tem ability. A compromise can be made by balancing the computational complexity
and the efficiency of representation. In any case, the deep structure of the event

hierarchy sould correspond to meaningful structures in the visual image.

A visual event at a particular level of abstraction should provide as complete
a description as possible of the visual events at preceding levels. It should provide
as much information as possible for the next higher level representation. Usually
the initial levels are constrained by the types of primitives that can be computed
directly from a sensory image. At the lowest level, the size of a visual event is the
pixel size. The number of events may be very large, and the number of classes of
events is usually relatively small. The intermediate levels are constrained by what
is available from preceding levels and what is required by succeeding levels. The
visual events at these levels are transformed from the low level by grouping low-level
events into more complex entities or by describing the relationships between events
of different types. These events are more meaningful and describe the low level

events.
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The number of events are decreased as one moves up in the hierarchy. The
top levels are directly constrained by the final processing goal. The visual events
defined at this level depends upon the goals and the knowledge about the image.
For example, if you only need to discriminate two types of electronic parts: resistor
and capacitor, then only three types of visual events should be defined, that is,
resistor, capacitor, and others. However, if you need to recognize an object among
fifty possible objects, then all the fifty types of visual events need to be defined. If
you have more knowledge about the image so that only ten types of visual events
are possible, then the number of visual events defined can be reduced. The fewer

the visual events defined, the faster the reasoning speed will be.
8.2 Designing the Visual Hypothesis Hierarchy

A hypothesis that explains a visual event may also be supported or refuted by
evidence from other visual events or by other confirmed hypotheses. A confirmed
hypothesis at some level of abstraction is a visual event that provides evidence for
reasoning about hypotheses at a higher level of abstraction. Therefore, for each
level of the visual event hierarchy, there is a corresponding level of the hypothesis
hierarchy. Figure 79 shows level 4 and level 5 of the hypothesis hierarchy which

correspond to level 4 and level 5 of the event hierarchy.

A finite set of hypotheses H; € H at the level i explain a finite set of visual events
at that level in the visual event hierarchy. At level 4 in Figure 79, for example, H;
can be all primary components of electronic parts on the printed circuit board:
the components of resistor, the components of capacitor, components of IC chip,
etc. The finite set of hypotheses H; at the level i can be decomposed into groups

of mutually exclusive subsets, and each group can be considered to be a separate
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frame of discernment. This is shown in Figure 79 by ©,, ©,, and ©;. For simplicity,

only the frame of discernment for the components of resistor is shown in the figure.

Each such separate frame of discernment corresponds to a class of possibly
valid visual events at a particular level of the visual event hierarchy. These hierar-
chically related hypotheses at each level can be constructed as reasoning trees that
themselves are conceptual hierarchies. In the tree, all the terminal nodes correspond
to a set of possible visual events . Higher nodes correspond to a cluster of visual
events among that set. Each cluster corresponds to the union of the terminal nodes
below it. For example, in Figure 79, the node “part of a resistor body” is not an
elements of ©;. This node represents the union of the terminal nodes: left part of
the resistor, right part of the resistor, middle part of the resistor. These reasoning
trees are used for evidence interaction to deduce a possible visual event which may

not be directly supported by available visual evidence.

Designing a visual hypothesis hierarchy, in fact, requires designing a set of
suitable reasoning trees at different levels. First, according to the visual event
hierarchy, we need to group all possible predefined visual events into a set of clusters
at each level. For example, all components of electronic parts in level 4 of the visual
event hierarchy are grouped into the cluster of components of resistor, the cluster
of components of capacitor, and the cluster of components of IC chip. Then each
cluster is organized into a reasoning tree by the method described above. Reasoning
about evidence interaction usually needs both bottom-up and top-down processes
as described in Section 2 of Chapter V. The computational complexity for reasoning
about such interaction is linear in the number of nodes in the reasoning tree (Shafer
and Logan, 1987). Given the number of terminal nodes, the deepest reasoning

tree would be a binary tree in which each non-terminal node has at most two
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child nodes. This reasoning tree would require the worst computations. In this
case, however, the maximum number of nodes in the tree is only about twice of
the number of terminal nodes. For example, if there are 100 terminal nodes, the
number of nodes at the higher levels of this tree may be 50, 25, 13, 7, 4, 2. On one
hand, we need to use as many indirect evidence sources as possible; that requires
a deeper reasoning tree which contains more nodes that represent the super sets of
the terminal hypotheses. On the other hand, to speed up the reasoning process, the
fewer levels of tree depth the better. Shafer’s partitioning method can be used to
decompose a large reasoning tree into several small trees (see the spatial relationship

example in Section 3 of Chapter V) to achieve a balanced result.

8.3 Designing Visual Evidence Hierarchy and Mapping Functions

A visual event can provide visual evidence for confirming or disconfirming
hypotheses about other visual events. However, a piece of visual evidence may
not necessarily be a valid visual event defined in the visual event hierarchy. Visual
evidence is the information required for asserting other visual events. For example, a
spatial relationship between two visual events may provide visual evidence although
it is not a visual event defined in the hierarchy. Visual evidence comes from three
basic sources: the visual events confirmed from both lower levels or higher levels,
the spatial relationship determined among these conformed visual events at the
next lower level, and the intensity or geometric measurements from lower levels.
The general algorithm for mapping evidence to strength of evidence is provided in

Chapter V.
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Designing a visual evidence hierarchy is a task of collecting all available infor-
mation including inaccurate measurements and incomplete samples for the hypothe-
ses at each level of hierarchy. The visual evidence hierarchy for the resistor problem
is shown in Figure 80. Note that the design of a visual evidence hierarchy is the
third step after the designs of the visual event hierarchy and the visual hypothesis
hierarchy. To design a visual evidence hierarchy we need to refer to the visual event

hierarchy and visual hypothesis hierarchy first. The procedure is the following:
1. Pick up one level of visual events from the visual event hierarchy,

2. Examine the corresponding level of visual hypothesis hierarchy to see what

types of possible evidence is needed to support or to refute these hypotheses.

3. Examine the available information from raw data or other asserted visual events

to determine visual evidence extraction methods.

The visual evidence hierarchy shown in Figure 80 has the following property:
the visual evidence at each level consists of the statistical and structural measure-
ments of the visual events at the levels below that level. For example, the visual
evidence at level 2 consists of edge points, fork points, corner points, edge length,
edge curvature and direction etc. which come from the statistical and structural
measurements of intensity and spatial relations from the significant points at level
1. The visual evidence at level 4 consists of region size, center of mass, boundary
length, mean and variance of radius, mean and variance of intensity, texture etc.

which are extracted from the visual events at level 3 and the raw data.

It 1s important to note that not every piece of visual evidence has the same

importance for a hypothesis. The key evidence or trigger evidence provides the
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information needed for selecting a hypothesis; this is important for designing the
visual evidence hierarchy. However, the selection and definition of trigger evidence
depends upon available visual knowledge. At level 4 of the visual evidence hierarchy
in Figure 80 we may have more evidence sources than we used, for example, the
minimum graytone value, the maximum graytone value, the third graytone moment,
the fourth graytone value, etc. After analyzing the visual evidence data from a
training set, we noticed that they were not so important as other evidence sources.
Therefore, only the region size, center of mass, boundary length, circularity, variance
of radius, and mean graytone were chosen as the visual evidence for reasoning about

visual events at level 5.

Based upon the collection of multiple sources, subjective mapping functions are
designed according to image knowledge and training data. Mapping function design
is an important step in the design of an uncertainty reasoning system within our
framework. Through mapping functions and the D-S model, the uncertainty infor-
mation can be mapped from one visual hierarchical space onto another and can be
transformed from one level to another. Incorrectly designing the mapping functions
will mislead the uncertainty reasoning. The lack of knowledge about using proper
evidence to support a proper hypothesis will cause difficulty in designing mapping
functions. For example, in the available training data, we don’t have enough knowl-
edge about the relations between the fourth graytone moment of a region and the
primary components of a resistor. Blindly designing a mapping function would in-
troduce considerable bias and uncertainty into the reasoning process. However, the
mapping function design can be considered as a learning process for the uncertainty
reasoning system. Mapping functions can be modified and tuned by more training

data.
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So far we have discussed some important aspects in designing an uncertainty
reasoning system within the framework of this dissertation. These aspects should
be taken into consideration in the design process. To illustrate the design of three
visual hierarchies, an example for the problem of resistor recognition is shown in
Figure 78 through 80. (In Figure 79, only level 4 to 5 are shown, other levels have

the similar structure.)
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The Visual Event Hierarchy

Level 6 [ The PCB picture )

Level 5 ( Electronic parts j

Level 4 ( Primary components of resistor)

Level 3 C Significant regions j

Level 2 [ Significant lines and curves J

Level 1 [ Significant points j

Level 0 ( Raw data j

Figure 78. The visual event hierarchy for the resistor problem.

Some Aspects of Designing the System 251



The Visual Hypothesis Hierarchy

~
( 0
Level 5
resistors capacitors
others
resistor  resistor capacitor capacitor [C IC
typel typeN typel type2 typel type2
\§ J
{ N\
6 62 03
Level 4
{part of R body} {others}
{part of R body connected (2 {comnector of R}
{left part} {middl€ part} {right part) {left side} ({right side}
\_ J/

Figure 79. The visual hypothesis hierarchy for the resistor problem.
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The Visual Evidence Hierarchy

[ geometric and graytone measurements of PCB board, asserted]

Level 6 events and their lcations and spatial relations from level 5
locations and spatial relationships between asserted events
Level 5 from level 4, size and alignment of resistor or other parts

intensity and texture properties, center of mass, size, boundary
Level 4 length, mean & variance of radius, adjacency & surroundedness

( size, symmetry, continuity, smoothness, circularities, intcnsity)

Level 3 homogeneity, textures, and other properties of events of level 2

Level 2 edge points, fork points, corner points, edge smoothness, length,
curvatures, angles and directions, and other geometry properties

Level 1 Statistically and spatially significant properties of pixels,
intensity discontinuity and continuity, etc..

Level 0 ( Raw data J

Figure 80. The visual evidence hierarchy for the resister problem.
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Chapter IX
CONCLUSION

The problem of reasoning about uncertainty visual information in computer
vision systems is addressed in this dissertation. We define this problem on the basis
of three hierarchical spaces: the hierarchical visual event space, the hierarchical
visual evidence space, and the hierarchically related visual hypothesis space. Then
the uncertainty reasoning is carried out by means of mapping information from
one space to another and transforming uncertainty information from one level to

another using a prior: knowledge.

We have shown a computationally efficient way to apply D-S theory for rea-
soning in such hierarchically structured spaces. We also have resolved the problems
which arise from adapting D-S theory to such a computer vision system. That in-
cludes problems of uncertainty visual information representation, uncertainty trans-
fer and evidence discount, dependent measurements, and applying Dempster’s rule

under conflicting information.

Because a frame of discernment consists of a set of mutually exclusive visual
events, the reasoning process is visual evidence driven, and the goal is to assign
labels to visual events. Meanwhile, the interaction of hierarchical evidence can
provide a way to deduce a visual event indirectly from other relevant hypothesis.
However, at each level of the event hierarchy we may pose additional D-S problems
involving spatial relationships among hypotheses at that level and other evidence.
The results of these subsidiary D-S problems contribute to the belief functions for
the original hypotheses at that level. Therefore, we now have a framework for

incorporating relational model into an event driven reasoning process.
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At the system level, the Dempster-Shafer engine propagates interpretations up-
ward from the raw data to the highest level interpretations. On the other hand, at
any particular level the verification process propagates interpretations downward.
The verification process can also be based upon the Dempster-Shafer engine if de-
sired. This provides a bidirectional active reasoning through both bottom-up and

top-down processes.

We also described how to implement this reasoning system. The reasoning
paradigm, the data structure, and the control mechanism are briefly presented.
Finally, we have demonstrated some applications of such a framework in prepro-
cessing, lower level processing, and higher level processing. DNESYS-an expert

system also demonstrated its merit to support this framework.

On the minus side, establishing reasonable event and relational hierarchies
and implementing the mapping functions to compute the initial bpa’s is an arduous
process that may not be as intuitive as one would like. However, our structure does
enable us to solve very complex reasoning problems in computer vision on a more

axiomatic basis.

This framework of uncertainty reasoning algorithms for the hierarchical visual
recognition at multiple levels of abstraction can be used for more applications than
we have demonstrated. Consequently, many improvements and new methods could
be developed, low level processing could be more intelligent and more reliable, and
high level processing could be more powerful and more flexible in computer vision

systems.
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