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Abstract 

Cyber-Physical Systems (CPS) entail the tight integration of and coordination between 

computational and physical resources. These systems are increasingly becoming vital to 

modernizing the national critical infrastructure systems ranging from healthcare, to 

transportation and energy, to homeland security and national defense. Advances in CPS 

technology are needed to help improve their current capabilities as well as their adaptability, 

autonomicity, efficiency, reliability, safety and usability.  Due to the proliferation of increasingly 

sophisticated cyber threats with exponentially destructive effects, CPS defense systems must 

systematically evolve their detection, understanding, attribution, and mitigation capabilities. 

Unfortunately most of the current CPS defense systems fall short to adequately provision defense 

services while maintaining operational continuity and stability of the targeted CPS applications 

in presence of advanced persistent attacks. Most of these defense systems use un-coordinated 

combinations of disparate tools to provision defense services for the cyber and physical 

components. Such isolation and lack of awareness of and cooperation between defense tools may 

lead to massive resource waste due to unnecessary redundancy, and potential conflicts that can 

be utilized by a resourceful attacker to penetrate the system.    

Recent research argued against the suitability of the current security solutions to CPS 

environments.  We assert the need for new defense platforms that effectively and efficiently 

manage dynamic defense missions and toolsets in real-time with the following goals: 
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  Achieve asymmetric advantage to CPS defenders, prohibitively increasing the cost for 

attackers;  

 Ensure resilient operations in presence of persistent and evolving attacks and failures; and   

 Facilitate defense alliances, effectively and efficiently diffusing defense intelligence and 

operations transcending organizational boundaries.  

Our proposed solution comprehensively addresses the aforementioned goals offering an 

evolutionary CPS defense system. The presented CPS defense platform, termed CyPhyCARD 

(Cooperative Autonomous Resilient Defenses for Cyber-Physical systems) presents a unified 

defense platform to monitor, manage, and control the heterogeneous composition of CPS 

components. CyPhyCARD relies on three interrelated pillars to construct its defense platform. 

CyPhyCARD comprehensively integrates these pillars, therefore building a large scale, 

intrinsically resilient, self- and situation- aware, cooperative, and autonomous defense cloud-like 

platform that provisions adequate, prompt, and pervasive defense services for large-scale, 

heterogeneously-composed CPS. The CyPhyCARD pillars are:  

 Autonomous management platform (CyberX) for CyPhyCARD’s foundation. CyberX 

enables application elasticity and autonomic adaptation to changes by runtime diversity 

employment, enhances the application resilience against attacks and failures by 

multimodal recovery mechanism, and enables unified application execution on 

heterogeneously composed platforms by a smart employment of a fine-grained 

environment-virtualization technology.  

 Diversity management system (ChameleonSoft) built on CyberX. ChameleonSoft encrypts 

software execution behavior by smart employment of runtime diversity across multiple 

dimensions to include time, space, and platform heterogeneity inducing a trace-resistant 
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moving-target defense that works on securing CyPhyCARD platform against software 

attacks.  

 Evolutionary Sensory system (EvoSense) built on CyberX. EvoSense realizes pervasive, 

intrinsically-resilient, situation-aware sense and response system to seamlessly effect 

biological-immune-system like defense. EvoSense acts as a middle layer between the 

defense service provider(s) and the Target of Defense (ToD) creating a uniform defense 

interface that hides ToD’s scale and heterogeneity concerns from defense-provisioning 

management. 

CyPhyCARD is evaluated both qualitatively and quantitatively. The efficacy of the presented 

approach is assessed qualitatively, through a complex synthetic CPS attack scenario. In addition 

to the presented scenario, we devised multiple prototype packages for the presented pillars to 

assess their applicability in real execution environment and applications. Further, the efficacy 

and the efficiency of the presented approach is comprehensively assessed quantitatively by a set 

of custom-made simulation packages simulating each CyPhyCARD pillar for performance and 

security evaluation.  The evaluation illustrated the success of CyPhyCARD and its constructing 

pillars to efficiently and effectively achieve its design objective with reasonable overhead.   
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Chapter 1 
 

1. Introduction 
 

 

 

1.1 Motivation and Problem Statement 

Cyber Physical Systems (CPS) are increasingly becoming indispensable to our critical 

infrastructure and defense domains, ranging from smart grids and smart healthcare to smart cities 

and smart warfare. CPS usually come with large-scale heterogeneous compositions of interacting 

cyber and physical components with differing capabilities and requirements. Securing these 

large-scale, distributed, heterogeneous compositions remains a challenge especially with the 

significant increase in cyber-physical attacker/attack sophistication.  

CPS attacks usually target valuable infrastructure assets taking advantage of potential 

weaknesses in their defense systems. These weaknesses might arise from:  

 Large-scale heterogeneous compositions of interacting cyber and physical components 

with varying capabilities and requirements  

 Increased automation resulting in significant increase in volume of data flowing 

between cyber and physical processes exceeding the analysis and investigation 

capabilities of current defense solutions 

 Patching can’t be fully automated in large-scale operational CPS as operation and 

interaction occur at multiple temporal and spatial scales 

“Research is to see what everybody else has 
seen, and to think what nobody else has 
thought.” Albert Szent-Gyorgi 
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   Legacy compatibility limits security system capabilities to deeply analyze and correlate 

network behavior at runtime 

 Isolated situation-oblivious defense service provisioning 

o Cyber and physical security isolation could increase conflicts 

o Possible privacy policy violation limits sharing of information 

 Adversary asymmetric advantage  

o Low cost of entry  

o Widely available resources  

o COTS security products makes it easy for attackers to discover possible security 

system flaws 

o Software monoculture facilitates attack re-application/diffusion 

1.2 The BlackWidow attack scenario 

To motivate our research, throughout the remainder of this document we will be referring to 

the following working scenario depicting a hypothetical CPS attack named the BlackWidow 

attack. The name came from the similarity between the operational characteristics and the 

destructive effect of the attack and the deadly BlackWidow spider. 

Definition: The BlackWidow malware (BlackWidow for short) is our synthetic experimental 

attack that is designed to split into a set of code parts and spread in different directions and 

locations to decrease the probability of detection. The distribution of parts and the 

interconnection between the parts in different hosts weave a large web. This web is bi-
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directionally traversed to send any harvested data from the attacked target and to update the 

malware with new tools and missions. The BW is designed to be as generic as possible; it is not 

oriented to any specific application. BW exploits system weak points “Ex, zero day exploits” to 

penetrate the system to spread its initial web seeds that will help in constructing the whole web. 

By constructing the BW web the attacker can starts to direct the BW towards its designated 

mission based on the attacker target. These directions might be remotely assigned through the 

internet or preprogrammed in internet inaccessible locations. 

Using BlackWidow to facilitate border penetration  

Attacker possible goals 

 Espionage “Stealing secrets as a first wave to be used to construct the second wave”  

 Take control of organization’s property for own gain 

 Physical property manipulation  

Attacker tools and capabilities 

 Zero-day system exploits 

 Social engineering methods to recruit insider agents via social networks 

 Well trained and funded attackers 

 Stolen certificates and digital keys 

 Small lab to mimic the attacked system and its defense system 

Design aspects 

The attack is designed to be stealthy by hiding from the defense system sensors searching for 

attack signatures. The attack will target an intermediate host machine that will contain the worm 
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and command and control channel communications. 

In order to do so, the worm is designed to not harm the host or change any of its settings that 

might raise the Anti-Malware (AM) alerts. The malware will use minimal resources and will 

work in a very slow fashion not to alert the network defense systems by its existence.  

The only way to detect this malware is through deep analysis of the logs of all the 

communicating nodes, which is computationally very costly to the current systems that share the 

same host machines. Further, in order to deeply analyze and correlate strange communications 

patterns spreading all over the network, a global view for all the communicating entities within 

the network will be needed. 

The malware is equipped with a self-destruct timer that automatically resets upon successful 

communication with the attacker. The self-destructive code adds to the sophistication of the 

attack that removes any traces of the worm and attacker actions, while inflicting damage to the 

target resources as a last resort.  

The worm is later updated to use stolen digital certificates to authenticate its existence in the 

host machine in the form of drivers.  

The malware is intended to be targeted, but due to the intentionally random deployment 

method, the code works in two modes as follows: (1) Benign mode where the malware infects 

other machines that do not belong to the target space. The machines might be used later in case 

of target change, or as a base for future attacks; and (2) Malicious mode, where the worm works 

only on the target host systems. The attacker feedback can determine the mode. The default will 

be benign unless the attacker changes that or predetermined targets have been programmed.  

Attacker assumptions: 
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 The defense system shares the same network or host with the target of attack/defense 

system.[Note: defense system might be exposed to attack by compromising the ToD.] 

 The attack target defense system, or major parts of it, uses COTS security 

products.[Note: A majority of defense systems are signature based, so that is probably 

easily to bypass with custom code.] 

 The system is not capable of being fully situation aware of all its components in a 

massive-scale network in real time. 

o Building a very slow motion worm will increase the log file sample size needed 

to detect it. 

o The attack will spread in small parts in the target network hosted by 

geographically remote locations. This will make it more difficult to detect 

attacker activity unless a deep nearly network-scale analysis can be conducted 

to correlate all disparate logs. 

 The defense system management workstations (that the administrators use) share the 

same network with the target of defense. [Note: Stolen passwords can simply be used 

to modify rules of IDS, routers, switches, firewalls, proxies, etc.] 

 Attack hosts will not be manipulated in a detectable way so as not to alert the host AM. 

These hosts will be used only to launch attack on the primary target. [Note: this might 

be possible by using zero day exploits and malware code never seen before.] 

 Host-based defense systems usually use malware signatures as an indication for 

infection from various forms of malware.  

 It is not feasible to monitor all the host behavior patterns while sharing the same 
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workstation that is performing user tasks. 

 Defense systems are not resilient against attacks, and have weak recovery mechanisms. 

[Note: most of them assume that they will not be the target of an attack as long as they 

were able to secure their ToD. Additionally, usually they have no intrinsic failure 

recovery.] 

 Cyber security is oblivious of and is not coordinated with physical security to protect 

the target cyber-physical system. Human intervention is need to facilitate such 

coordination.[Note: the attack can make them conflict with each other to bypass both of 

them.] 

1.2.1 Homeland Security example 

Players: 

The attacker is a sophisticated group working for XYZ’s intelligence to facilitate border 

penetration as a part of a military operation aiming to release captured prisoners by ABC 

military. These prisoners are held at a maximum-security facility close to the borders. The 

facility will be wiped out if necessary after releasing all the prisoners.  

ABC is a country with sprawling borders. ABC uses automated Unmanned Arial Vehicles 

(UAV) to monitor the country borders against possible penetrations. These border patrol UAVs 

are equipped with multiple sensors searching for possible indications of border penetration. 

Infrared cameras provide visual and thermal imaging represents the most important source of 

information that the UAVs provides to the border management department.  The image is 

beamed via microwave link to a ground control stations; where a group of trained agents watches 

the surveillance feed to assure border safety.  
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ABC uses UAVs in multiple applications besides border patrol. Agriculture, rescue effort, 

aerial securities are examples of such applications. All these UAVs share the same control 

platform manufactured by EFG a worldwide company specialized in UAV design and 

manufacturing. EFG provides all the tools that will be used to design the UAV missions to its 

customers. Unfortunately, such tools share a common base as they are targeting the same 

controller provided by EFG.  

The (synthetic) BlackWidow malware (BlackWidow for short) is an attack that is designed to 

split into a set of parts and spread in different directions and locations to decrease the probability 

of detection. The distribution of parts and the interconnection between parts in different hosts 

weave a large web. This web is bi-directionally traversed to send any harvested data from the 

attacked target to the attacker, and to update the malware with new tools and missions.  

Border patrol operations using EFG’s UAV (Normal condition)  

Given ABC’s vast sprawling borders, ABC’s DHS has decided to buy a group of EFG’s UAVs 

to be used primarily in border patrol. Due to the limitations of the radio communication range of 

this UAV, the DHS built a distributed set of ground stations to control such UAVs. These remote 

ground stations where operated by trained agents to control and program the UAV missions and 

visually inspect the UAV video feeds. In case of a positive detection of a border penetration 

attempt, the agents will mount appropriate respond to halt such attempts. Many of the ground 

stations were in remote areas. Communications with headquarters were limited to long-range 

radio.  No direct communications between the ground stations computers and any other DHS 

department were possible. For that reason agents were allowed to use their personal computers or 

PDAs in break hours as means of entertainment.  

Normally, agents are working in shifts, each shift is composed of 4 to 6 agents each one has 
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full control of a group of UAVs. The agent is responsible in programming and loading missions 

and monitor video feeds to/from the UAVs. At the end of the day agents hock their personal 

computers to the station’s network and starts enjoying their break hours by constructing a 

tournament in one of the recent video games. The winner shall be eligible for a long vacation 

next week after the last game in the tournament.   

 

Figure  1.1 Border patrol attack scenario 

Attack procedure 

This attack will be executed as follows.  

Phase 1 

• Attack on the UAV manufacturer EFG to steal the design files and access codes. 

Phase 2 

• Use the design files and the access codes to generate a patch for ABC’s UAVs mission 

files to manipulate the mission to follow a predetermined plan. 
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• Construct a test lab using one or two UAVs to test the attack  

• Hack into the control stations that control the UAVs and patch the mission files. 

Details 

Phase 1 

The attacker uses phishing attack that targets users’ emails and social network personal pages. 

The attacker uses social networks as a source of information to generate more convincing 

phishing emails. These emails will be directed from one of the closely related contacts to the 

victim.  

The attacker selects a group of employees working in different branches of EFG. These 

branches are distributed in various geographical locations, and the victims that will be the 

malware couriers have no direct relation with each other. This will increase the chance of the 

attack’s success in case that the same phishing technique is used with different targets. The BW 

is programmed to search the user network for connected computers then it starts using one of the 

zero days exploits to clone itself into these computers.  

The attack victims will receive parts of the malware. Each of these parts will contain a fraction 

of the designated mission and a simple communication module. The communications module 

will be used to open a direct channel with the attacker and to search and establish communication 

with other parts.  Directions to other parts’ locations might be sent by the attacker to minimize 

the search time.  

The attacker uses malware fractions to construct logical executable entities in the form of 

mobile software agents targeting different objectives. The first objective will be to search and 

infiltrate the network for data stores.  
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The malware will sniff network traffic searching for predetermined signatures for such 

locations.  The second objective will be to attack such data stores using the zero day exploits and 

the stolen certificates to locate targeted industrial secrets (the UAV design files, mission file 

design, and any available access codes). The malware will frequently update the attacker of its 

findings based on a predetermined update methodology.  

 

Phase 2 

The attacker will use the data received to generate a patch file that will manipulate the mission 

files adding predetermined entries representing a set of tasks to be activated exactly on a 

predetermined hour. These tasks include the following:  

 Control the UAV surveillance feed source 

 Clone the feed on the UAV internal storage 

 Change the feed source from a live source to playback  

The attacker uses one or two UAVs to test the patch file before using it on XYZ computers to 

make sure of its success. This should be easy as all EFG products share the same controllers and 

mission design file format. XYZ can buy these UAVs claiming that it will be used for any 

nonmilitary application.  

After successful design and testing of the patch file, the BW will carry the patch file to the 

targeting ABC ground control stations.  

The attacker uses the same phishing attack used in “phase 1” targeting agents working on the 

ABC targeted UAV control stations to facilitate infecting the control stations computers with the 

BW. A recruited insider might facilitate such infection in case of previous attack failure.   
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After successful infection, BlackWidow will search for machines holding the mission design 

files. Upon successful determination of their location, BlackWidow will target these locations. 

After successfully infecting these computers, the BW will schedule three executions of the patch 

file with three different predetermined zero hours. The goal behind that is to give the XYZ troop 

some flexibility to select the most convenient time to penetrate ABC borders.  

After successfully patching the mission files and upon the first use of these files to update the 

UAV missions, the UAV executes the mission tasks as expected. Then 30 mints before the 

predetermined zero hour the UAV will start recording the video feeds to its internal data store. 

The recorded video file will be used to replace the life feed for 30 mints at the exact zero hour. 

Within these 30 mints the XYZ troops will make use on the area not under surveillance to cross 

the ABC borders to execute the designated rescue mission. After exactly 30 mints the UAV will 

maintain the life video feed and erase the recorded file.  

 

 Figure  1.2 Border patrol successful attack   
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1.2.2 Commercial security example  

Attack specific goals  

 Operation disruption to cause losses 

 Launch same (low cost) attack on competitors to maximize gain 

Attack procedure (on Air-gapped Target) 

The attacker uses phishing attack that targets users’ emails and social network personal pages. 

The attacker uses social networks as a source of information to generate more convincing 

phishing emails. These emails will be directed from one of the closely related contacts to the 

victim.  

The attacker selects a group of employees working in different branches of ABC. These 

branches are distributed in various geographical locations, and the victims that will be the 

malware couriers have no direct relation with each other. This will increase the chance of the 

attack’s success in case that the same phishing technique is used with different targets. The BW 

is programmed to search the user network for connected computers then it starts using one of the 

zero days exploits to clone itself into these computers. 

The attack victims will receive parts of the malware. Each of these parts will contain a fraction 

of the designated mission and a simple communication module. The communications module 

will be used to open a direct channel with the attacker and to search and establish communication 

with other parts.  Directions to other parts’ locations might be sent by the attacker to minimize 

the search time.  

The attacker uses malware fractions to construct logical executable entities in the form of 
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mobile software agents targeting different objectives. The first objective will be to search and 

infiltrate the network for data stores.  

The malware will sniff network traffic searching for predetermined signatures for such 

locations.  The second objective will be to attack such data stores using the zero day exploits and 

the stolen certificates to locate targeted industrial secrets, and any available access keys to the 

protected area behind the air gap. The malware will frequently update the attacker of its findings 

based on a predetermined update methodology.   

After successful reception of this data, the attacker will use it to generate legitimate keys to 

access the air gap.  

The attacker will use the malware to locate the workstations controlling the surveillance 

cameras. In locations with no surveillance cameras the malware might use any available user 

connected web cameras. The malware will record periodic video feeds to be sent to the attacker. 

These videos with the help of the attacker generated access keys will guide a recruited insider 

into infecting the air gap with a copy of the BlackWidow.  

The malware controlling the video cameras will make sure that this process will not be 

recorded on any of the cameras to protect the recruited insider.  

The air gap malware is programmed to increase the operational hours of certain machines that 

use specific raw materials manufactured by XYZ to increase XYZ profits. The malware can 

easily identify such machines by searching a predetermined fixed identifier that must be added to 

all the programming files targeting such machines. Further, the attacker will use the stolen 

secrets and designs to equip the malware with the needed logic to randomly manipulate the 

operational motors frequency in the production machines to induce random defects in the output 
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products to lower its quality.  Doing so shall cause multiple financial problems to ABC. XYZ 

shall benefit from ABC’s loss due to its low quality products. Additionally XYZ will maliciously 

gain both financially and more control over ABC’s production lines by, for example, carefully 

adjusting the amount of consumed and supplied raw materials. 

 

     Figure  1.3 Commercial security example 
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1.3 Research Approach 

Recent research argued against the suitability of the current security solutions to CPS 

environments.  We assert the need for new defense platforms that effectively and efficiently 

coordinate defense missions and tools in real-time to achieve the following goals:  

 Achieve asymmetric advantage to CPS defenders, prohibitively increasing the cost for 

attackers;  

 Ensure resilient operations in presence of persistent and evolving attacks and failures; and   

 Facilitate defense alliances, effectively and efficiently diffusing defense intelligence and 

operations transcending organizational boundaries.  

Our proposed solution aims to comprehensively address these goals in order to present an 

evolutionary defense platform that would enable self and situation awareness, resilient adaptive 

defense, and cooperative autonomous control and sharing amongst cooperating organizations 

without violating their individual privacy policy. Enabling such features makes it possible to 

successfully provision defense services to mission critical heterogeneously composed systems 

like CPS, while maintaining the operation timeliness and stability in presence of persistent 

attacks. 

In this work, we present CyPhyCARD (Cooperative Autonomous Resilient Defense platform 

for Cyber-Physical Systems) - a biologically-inspired distributed dynamically configurable, 

runtime programmable platform that manages a large number of cyber and physical resources 

and services upon which evolutionary defenses can be built to protect participant organizations.  

Figure  1.4 presents an abstract view of CyPhyCARD. 
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 Figure  1.4 Abstract view of CyPhyCARD 

CyPhyCARD features a set of platform-managed capabilities and services through a 

biologically-inspired architecture and methodologies to effect trace-resistant, resilient, and allied 

defenses.  CyPhyCARD provisions its services via an evolutionary sensory system, EvoSense, 

working through an intrinsically resilient and autonomously-managed adaptable platform, 

CyberX, and protected by novel moving-target defense mechanism, ChameleonSoft.  Figure  1.5 

presents CyPhyCARD goals and features which are described as follows:  
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  Figure  1.5 CyPhyCARD goals and features 

Goals:  

 Resilient operations: by managing automatic failure recovery and containment, and 

adapting structure, function and performance to varying network scales and contexts;  

 Trace-resistant moving-target defense: by multidimensional mobilization of the attack 

target evading attackers; and 

 Allied defense: by isolating the defense provisioning design concerns sensing, effecting, 

control, and physical resources; enabling trustworthy automated defense sharing and 

cooperation.  

Features:  
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 Awareness: by providing pervasive monitoring and analytics for self and situation awareness 

distributed throughout the targeted systems;  

  Elasticity: right-sized resources and services by autonomically marshaling and adaptively 

provisioning resources (cyber and physical) and services (monitoring, detection and 

response) to effect appropriate evolutionary immune responses; 

 Intelligence: by using autonomic, independent, self- and situation-aware, smart building 

blocks to build the entire defense platform; 

 Diversity: to induce software behavior encryption (i.e., inducing adequate confusion and 

diffusion similar to message encryption); and  

  Cooperative defense: by enabling mixed initiative and fully autonomic cooperative tipping 

and cueing among participating organizations without violating their individual policies. 

Hypotheses: 

 Resilient operation in presence of attacks/failures can be significantly enhanced by:   

– Utilizing intrinsically resilient, online programmable,  composable building 

blocks 

– Mobilizing  software for encrypted execution behavior (moving target) 

– Enabling resource- and context-aware automated recovery  

– Enabling trustworthy information sharing 

 Efficiency of defense services can be significantly enhanced by: 

– Providing a generic platform for provisioning defense services 

– Tailoring resource consumption based on the task on hand 

– Enabling online programmability and re-tasking 
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– Provisioning  defense services  in isolation from Target of Defense (ToD) 

operations 

– Context-aware automated resource management and control 

Underlying assumptions: 

 It is feasible to decouple application logic, state, data and physical resources   

 The capability exist to produce functionally-equivalent behaviorally-different code 

modules targeting different quality attribute objectives  

 Applications can be defined in terms of interacting entities   

Design principles:  

 Platform managed  

o Replication and automated recovery 

o On demand resource acquisition, allocation, de-allocation, and sharing  

o Dynamic, situation aware , real-time adaptation to changes 

 A smart isolation layer isolating and exclusively interfacing between the defense platform 

and target of defense  

 Self- and situation- aware composable basic building blocks that autonomously manage 

the underlying logical and physical resources  

 An autonomously-managed trace-resistant moving-target defense securing the 

infrastructure 

 Autonomous privacy-preserving information sharing and exchange  
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1.4 Evaluation  

For the purpose of evaluating the efficiency and applicability of the presented approach, we 

constructed a prototype of the defense platform three pillars CyberX, ChameleonSoft, and 

EvoSense. Our studies also include the design and implementation of different simulation 

packages simulating each of the presented pillars. These simulators were utilized to 

quantitatively evaluate the platform’s various performance and security aspects. 

We devised a digital version of the Cell as a basic building block for CyPhyCARD pillars. We 

used the synthetic Cell to build a prototype of ChameleonSoft behavior encryption mechanism 

along with CyberX automated system adaptation and a multimodal recovery system. The 

prototype illustrated ChameleonSoft capability to encrypt the runtime execution behavior of 

software. The prototype also illustrated CyberX success to autonomously adapt to frequent 

changes and to autonomously detect and recover Cell failure. Further, we devised a set of sensors 

and effectors Cells and a circulation management platform as a part of EvoSense prototype. The 

Cells are deployed on heterogeneously configured hosts and the feedback was analyzed to detect 

and resolve a preexistent system malfunction. The prototype illustrated EvoSense success in 

isolating the defense concerns “sensing, effecting, control, and physical resources”, its ability to 

circulate defense tools on various hosts regardless of its configuration, and its capability to 

collect privacy friendly feedback regarding specific incident.  

Additionally, we designed and implemented three simulation packages using MATLAB to 

evaluate the performance and security aspects of CyberX, ChameleonSoft, and EvoSense. The 

results extracted from these packages showed that the three pillars were effectively and 

efficiently successful in achieving their design objectives. However there were tradeoffs between 
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increasing the level of provisioned security of the system and maintaining the performance 

quality at all times. The results also showed that when we utilize the system adaptive and elastic 

features we can simply tolerate such tradeoffs in a way that satisfies almost all of the targeted 

quality attribute objectives by the platform at all times.  

Finally, we devised a synthetic attack scenario in order to conduct a qualitative study of 

CyPhyCARD’s security effectiveness in provisioning defense services to CPS applications. The 

study illustrated that CyPhyCARD has the capability and the tools to efficiently mitigate that 

attack with minimal consequences.  We also clarified the role of each of CyPhyCARD’s pillar in 

defeating the attackers list of assumptions and hypotheses supporting their attack. We surmise 

that by invalidating such assumptions, the attack itself will no longer be feasible. 

1.5 Contributions 

Intellectual Merit: To realize these capabilities, CyPhyCARD construction is based on three 

main contributions:  

 Biologically-inspired Management Platform (CyberX)  

– Manages a distributed construction of composable basic building blocks termed 

“Cells”.  

• Enable Cell dynamic runtime configuration  

• Support the Cell self-monitoring 

• Enable the Cells to dynamically adapt to changing internal and external 

conditions and acquire resources on demand based on the dynamics of the 

tasks on hand  
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– A multimode, autonomous situation-aware recovery system for enhanced system 

resilience 

 Software Behavior Encryption System (ChameleonSoft)  

– Employs runtime multidimensional software diversity to induce confusion and 

diffusion to, in effect, induce spatiotemporal software behavior encryption  

– ChameleonSoft mobilize running Cells among heterogeneously configured hosts 

in a way that makes the attack target in a continuous random motion inducing 

trace-resistant moving target defense .  

– An elastic software platform that dynamically and autonomously change diversity 

application and recovery policies to match the surroundings frequent changes 

 Evolutionary Sensory System (EvoSense)  

– Defense service provisioning by autonomous abstraction and virtualization of 

heterogeneous compositions of physical resources, conventional defense services, 

and autonomously customized formations of sensing and effecting tools 

– Enable smart pervasive sensor circulation for enhanced detection efficiency and 

better resource utilization 

– Early enable trustworthy cooperative autonomous control and sharing of defense 

intelligence amongst interconnected CyPhyCARDs and/or Target of Defense 

(ToD) systems to enhance attack detection and deterrence 

  

Broader Impact: CPS integrate computational and physical processes. Modernizing the critical 

infrastructure often involves upgrades with CPS to enhance efficiency, safety and reliability. 

New security and resilience requirements arise given the mission- and time-critical nature of 
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infrastructure systems, the massive-scale of enterprise and field deployments of, often resource-

constraint, CPS devices, and the emergent behavior and interactions between the interconnected 

CPS components. Further, the expected profound increase in sophisticated persistent attacks 

targeting high-value infrastructure assets and exploiting the potential vulnerabilities of the new 

cyber-physical integration poses formidable challenges.  The broader impact of our work 

includes: 

 Evolutionary comprehensive defense system capable of providing defense services to 

mission critical CPS 

 Enable continuity of operations as well as moving target defense to prohibitively increase 

the cost on potential attackers 

 Automated trustworthy multi organization information sharing enabling early attack 

alarm and enhancing decision making accuracy   

 Enable building intrinsically resilient, resource efficient, and adaptable software  

 CyPhyCARD provides defense, resilience, security as services 

Unified platform to monitor, manage, and control heterogeneously composed CPS components 

expanding their applicability in multiple domains 
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1.6 Document Organization 

The remainder of the dissertation is organized as follows: Chapter 2 presents details about 

CyPhyCARD platform and CyberX, Chapter 3 describes ChameleonSoft behavior encryption 

and moving target defense for platform security and resilience, Chapter 4  presents EvoSense for 

defense service delivery and sharing, Chapter 5 presents our evaluation approach and models, 

simulation framework, and evaluation results, Chapter 6 overviews related work, and finally 

Chapter 7 concludes the dissertation and highlights future work.  
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Chapter 2 

2. CyberX: Biologically-inspired 
CyPhyCARD Management Platform 

 

 

2.1 Introduction 

Today, cyber systems form the backbone of national critical infrastructures, which means that 

a major security incident on such systems could have significant disruptive impact on the 

operation reliability and safety of many of the systems that we rely on to maintain our everyday 

life.  Both researchers and practitioners have been paying considerable attention to the cyber 

security problems for more than two decades.  However, the problems are far from being 

comprehensively solved. The main challenges facing the current cyber security practice is that the 

security approach is largely heterogeneous, increasingly complicated, and it is struggling to keep 

pace with quickly evolving threats. The CARD concept is presented to inherently address such 

challenges.  

To achieve the CARD vision and simultaneously improve the nation’s cyber security posture, 

the CARD should support a portfolio of defense techniques that when homogeneously-composed 

into one solution (CyPhyCARD) would enable adequate and trustworthy defense provisioning. In 

our work the CARD encompasses trace-resistant moving-target defense, resilience against failures 

and attacks, and autonomous trustworthy allied-defense. We surmise that enabling the CARD 

“Simple things should be simple and complex 
things should be possible.” Alan Kay 
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would require software development, management, and operation to be based on five main pillars: 

elasticity, diversity, awareness, cooperation, and intelligence. 

Currently software products depend mostly on static or partially dynamic architectures where 

data, logic, and/or physical resources are primarily tightly coupled. Multiple attempts have been 

presented in the literature to partially decouple these design concerns [4, 5, 6]. However, up to our 

knowledge our Cell Oriented architecture (COA) is the only architecture that comprehensively 

supports intrinsic separation of design concerns needed for runtime re-programmability, intrinsic 

autonomic online composability, and dynamic software adaptation and elasticity.  

In this chapter, we propose CyberX, a situation-aware trustworthy management platform that 

utilizes the COA features to realize the aforementioned pillars. COA is a biologically-inspired 

architecture with active components termed Cells that support development, deployment, 

execution, maintenance, and evolution of software. Cells separate logic, state and physical 

resource management. Cells are realized in the form of intelligent capsules that encapsulates 

executable applications defined as code variants. Cells are dynamically composable into 

organisms that are bound to functional roles at runtime. CyberX manages such construction to 

enable online re-programmability, hot code-swapping, local/global situation awareness, and 

automated recovery.   

CyberX enables applications to dynamically adapt to serious runtime changes in their 

execution environment via a runtime diversification of multiple functionally-equivalent, 

objectively-different “targeting different quality attributes” code variants.  Reliability, 

performance, robustness, reliability, survivability, compatibility, scalability, and mobility are 

examples of such attributes. Currently we are in the process of using the same technology to 
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enhance the system resilience against software attacks.  Our objective is to employ spatiotemporal 

diversification of similar-function different-behavior code variants for moving target defense.   

CyberX utilize the COA feature of enabling the application to exchange real-time status and 

recommendation messages with the host Cell for administrative purposes to enhance the Cell 

local application awareness and to enable application driven adaptation. CyberX use these 

messages to guide the Cell runtime quality-attribute manipulation towards accurate and prompt 

adaptation. Further, CyberX collects, analyze and trustworthy-share these messages and status 

reports constructing a real-time sharable global view of the Cell network.  

 CyberX enhances the system resilience by multiple recovery modes to cover different 

application-requirements and host-configurations. CyberX offers a prompt and accurate fine-

grained recovery for resourceful hosts executing critical applications, and a more resource 

efficient course-grained recovery for less critical applications. CyberX uses the COA loosely 

coupled features to allow applications to seamlessly change their current active recovery modes 

based on context, environment, or application-objective change. 

CyberX contributions presented through this chapter are as follows: 

 A biologically inspired architecture with the following capabilities: 

o Intrinsic separation of design concerns (data, logic, and physical resources); and 

o Employing a mission-oriented application design and inline code distribution to enable 

adaptability, and online dynamic re-tasking; 

 Elastic system design and platform-managed control enabling the following: 

o Runtime diversity employment for hot manipulation of quality attributes to effect trace-

resistance and  moving target defense;  
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o Multimodal, autonomous situation-aware recovery system for enhanced system resilience; 

and 

o Dynamic and autonomous change of shuffling and recovery policies according to run-time 

changes in the execution environment. 

2.2 The Cell Oriented architecture 

The COA is an employment of a mission-oriented application design and inline code 

distribution to enable adaptability, dynamic re-tasking, and re-programmability. The Cell is the 

basic building block in COA. The COA Cell is inspired from the biological Cell in its 

independent, generic, composable construction. COA Cell is an abstraction of a mission-oriented 

autonomous active resource. Generic Cells termed stem-Cells, are seamlessly created by the host-

side middleware or the COA Cell DNA (CCDNA). Further, they participate in emerging tasks 

through a process called specialization. The CCDNA is a middleware program that allows a 

physical workstation to host Cells and facilitates Cell physical resource allocation and 

management. 

We envision applications built over COA as a group of cooperating roles representing mission 

objectives. The term organism is used to represent a role player that performs a dedicated mission. 

An organism might be composed of a single or multiple Cells based on its objectives. Figure  2.1  

illustrates the different components of the COA.    
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Figure  2.1 Components of our COA 
2.2.1 The Cell 

Conceptually, the Cell is the smallest active resource in a distributed computing platform. Cells 

are intelligent, and independent, autonomous, single-application capsules “sandbox” that acquires, 

on the fly, application specific functionality in the form of an executable code variant "The 

specialization process". Cells act as a simple virtualization environment isolating the executable 

Logic from the underlying Physical resources. Figure  2.2 illustrates an abstract view of a COA Cell 

at runtime. The Cell is dynamically composable into larger structures “organisms” representing 

complex multi-tasking applications.  
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Figure  2.2 COA Cell at runtime 

A single workstation can host one or more Cells, providing a flexible way to share the physical 

resources among multiple applications.  Figure  2.3  illustrates the main components of the COA 

Cell briefly described as follows.  

 

Figure  2.3 The Cell 
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Cells are instantiated at bootstrapping when the bootstrap manager initializes the Cell 

components and ports with the appropriate parameters based on the bootstrap context. The 

communications unit (I/O manager) handles local and remote I/O communication setup, I/O 

logging, and IP/Port/Virtual naming resolution. 

The specialization process occurs when the execution unit receives an executable COA-ready 

code variant that represents the application specific functionality that the Cell should acquire.   

A COA-ready variant is a program that enables check-pointing and frequent reporting through 

a predetermined channel using predetermined syntax. We isolate the Data from the Logic by 

necessitating that all sensitive data is committed to a remote data storage using a dedicated data 

channel provided by the infrastructure before each checkpoint. The program must ask for, and 

start execution from an infrastructure provided starting point. This point is zero for fresh Cells. 

Finally, the programmer has to provide At least two similar-function different-objective variants 

to enable CyberX quality attribute manipulation. 

The execution unit starts by launching the selected variant with the appropriate parameters 

“Ex., the Cell Id”. The execution unit is also responsible for the termination and replacement of 

the executing variants based on incoming shuffling commands. All the issues regarding diversity 

employment-methodology, shuffling policy, “shuffling frequency, commanding, and variant 

selection” are the responsibility of the diversity-management unit.  

The State Transaction Manager (STM) is responsible for monitoring the variant execution 

progress. It is the only unit with direct access to the executing application through a dedicated 

communication channel. STM reports checkpoint change and other incoming application requests 

and status reports to the appropriate units “ex, holding shuffling frequency change, objective 

change requests, etc”.   
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The recovery manager is responsible for adjusting the recovery settings, recovery mode 

change, in addition to restoring and synchronizing checkpoints at the time of failure-recovery with 

the cooperation of the execution unit. It is also responsible of sending the Cell beacon messages to 

the tracking servers. These messages include the last checkpoint reported by STM, and other 

reports regarding Cell state reported by the situational awareness unit; and any other 

administrative messages needs to be delivered to the Global Management Servers (GMS). The 

details about CyberX multimodal failure recovery processes are illustrated in section 4. 

 The situational awareness unit, is responsible for providing the needed situational and context 

awareness information to the other Cell units to support their decisions. It monitors the internal 

and the external Cell surroundings and generates guideline reports for all Cell units. It also 

informs the GMS with awareness reports through attached messages to the Cell frequent beacon 

messages. GMS use these stored beacons to generate more meaningful status reports. These 

reports contain information, directions, and commands that CyberX wants to deliver to a certain 

area in the network. For example, if one of the Cells reported a malicious event that might affect 

other neighbor Cells, GMS might inform other Cells to change the current variant to more secure 

variant. 

The decision-making tasks are totally distributed in the Cell. Each unit takes its own decisions 

regarding its specific task autonomously. The global operation of the Cell is handled by the real 

time cooperation between all these units. 

2.2.1.1 The COA Cell VS biological Cell 

 

We mimic biological systems in our work starting from the basic construction building blocks. 

One of the most successful biological ability to adapt to changes is realized in the Sea 
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Chameleons.  Our investigation illustrated that the key to success for Chameleon diversity starts 

from its basic building block the biological Cell.  In Table  2.1 we clarified by comparison the 

main similarities and differences between the biological Cell and our digital COA Cell. We also 

compared between CyberX and the Sea Chameleon identifying points of similarities and 

differences. Table  2.1  illustrates that we selected most of the useful features from these biological 

constructions, and enhanced some of these features to better serve our objective. 

 

 Biology COA Cell 

Cell 

 

 

 

 

 

 

Composable Composable 

Polymorphic before 

specialization  

Polymorphic 

Generic Generic 

Specialize once “disposable”  Multiple specialization  

“disposable/reusable”  

Autonomous  Autonomous 

Adaptive before specialization Adaptive 

Resilient Resilient 

Chameleon  Autonomous Autonomous 

Independent Independent 

Collaborative Collaborative 

Adaptive Adaptive 
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Resilient  Resilient 

Multipurpose diversity 

utilization 

Multipurpose diversity utilization 

Distributed diversity 

management and control  

Distributed diversity management and 

control 

 

Locally and globally 

situational aware 

Locally and globally situational aware 

 

Table  2.1 Comparison between biology and CyberX “Cell” 

2.2.2 The Organism  

An organism is an autonomous logical execution unit that follows the logic patterns of role 

providers. A role is an interpretation of a dedicated mission dynamically assigned to organisms. 

An organism might comprise a number of Cells wired together dynamically (at runtime) to form 

software structure having an independent execution context, see Figure  2.4. For example, let us 

consider a distributed application defined as a set of tasks executing independently and 

communicate via exchanging messages. We see this application as an organism playing a role 

defined by the application objectives. The organism is composed of a set of Cells. Each Cell 

encapsulates and executes one of the application tasks defined by a set of code variants.  

The simplest organism is composed of only a single Cell. A more complex organism may span 

any number of Cells that can be distributed among multiple physical computing hosts enabling 

hosts with limited capabilities to collectively participate in the execution of complex autonomous 

roles. 
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2.3 The CyberX management platform 

CyberX is a situation-aware trustworthy management platform that utilizes the COA features 

to enable a wide set of features and capabilities. Online re-programmability, hot code-swapping, 

local/global situation awareness, and automated recovery are examples of such capabilities that 

participate in the realization of the CARD concept. In the next subsections we describe CyberX 

architecture, the main components participating in its construction and the functionality of each 

component. Further, we will discuss the communication aspects and security issues with and 

within CyberX. 

2.3.1 CyberX platform architecture  

CyberX is composed of a set of central powerful nodes we will address them as servers. These 

servers cooperate autonomously to manage the whole network of Cells. This platform is 

responsible for the organism creation “composition and deployment of Cells”, management, the 

host side API(s) “CCDNA”, real-time monitoring and evaluation of the executing Cells, and 

recovery management. Further, it provides the necessary management tools for system 

administrators to manage, analyze, and evaluate the working Cells /organisms. 

Auditing and Reputation Management Servers (ARMS); its main task is to monitor 

outgoing or incoming Cell administrative messages for the lifetime of the Cell. This information 

is used to assist evaluating the trustworthiness of the Cell.  These servers cooperate with the 

recovery tracking servers, routing nodes to frequently evaluate the Cell behavior for any 
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malicious activities.  These servers will hold comprehensive reports about each Cell for the 

lifetime of the Cell.  

 

Figure  2.4 The management platform architecture   

Recovery & Checkpoint Tracking Servers (RCTS); its main task is to monitor, and store 

checkpoints changes for all running Cells. Checkpoint updates are always enclosed as a part of the 

Cell frequent beacon message update. This server is also responsible for reporting failure events 

by comparing the duration between consecutive beacon messages to a certain threshold matching 

the reporting frequency settings of each Cell. Failure events are validated by comparing the 

recently noticed reporting-delay for a particular Cell to the average reporting-delay within its 

neighbors and other Cells hosted in the same host. A Cell failure notice is reported to the global 

management servers with the last known failure recovery settings, Checkpoint, and variant 

settings to start deploying replacement Cells.  
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Global Management Servers (GMS); its main task is to manage the underlying COA 

infrastructure. It is responsible of Cell deployment, coordinating between servers, facilitating and 

providing a platform for administrative control. It is the only server authorized of issuing Cell 

termination signals. It can also force Cell migration or change the current active recovery policy 

when needed. It is responsible of assigning the infrastructure global policy, routing protocol, 

auditing granularity, registering/revoking new hosts, and keeping/adjusting the host-platform 

configuration file.   

The Data-Warehouse Servers (DWS), it is one of the main components of the infrastructure 

that participate in the separation between the Data, Logic, and Physical-resources. DWS are 

distributed through the Cell network, they are responsible for holding and maintaining all the data 

being processed, and any other sensitive data that the management units want to store. All running 

Cells are not permitted to store sensitive data “data processed and committed prior to a 

Checkpoint event” on their local memory. All sensitive data has to be remotely stored in a specific 

DWS serving the Cell area through the dedicated data channel. DWS synchronize their data 

independently.    

Distributed Naming Servers (DNS), is responsible for resolving the real host IP/Port 

mapping to the virtual Cell Id and organism names. The working Cells use this mapping at 

runtime to direct incoming and outgoing communications. DNS is major player in the COA’s 

separation of concerns that enables virtually seamless, Cell relocation, and workload transition in 

case of failure recovery. In case of Cell movement, the DNS will be instructed by the GMS to 

maintain communication redirection. 

2.3.2 CyberX trustworthy platform-communication  
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This section discusses CyberX management of the secrecy, authenticity, and anonymity of the 

inter-Cell communications. We present a suitable key management scheme for various connection 

types in the system. Further, we will illustrate our mechanism to detect maliciously behaving and 

problematic cells in our system.  Additionally, we present our secure authentication mechanism 

securing the inter-Cell communications against identity theft attacks. 

In order to maintain the secrecy of the sensitive information stored locally or externally, or 

being exchanged over communication lines; CyberX uses an asymmetric key encryption scheme 

to encrypt this data. At the deployment time, the GMS assigns a pair of keys to each cell, a public 

key and a private key. The public key will be used to encrypt all incoming messages to the Cell. 

The private key will be used to decrypt these incoming messages. The Cell can use the public key 

to encrypt the sensitive data within the Cell itself, if the situation necessitates that. For example, it 

can encrypt sensitive data stored in the local hard drive, or within the memory of the host in 

locations not controlled by the Cell itself.  Figure  2.5, illustrates the architecture of CyberX local 

security mechanism. 

CyberX manages the Cell to Server, and Cell to Replica data authenticity using a set of 

encryption/decryption keys. At the deployment time GMS attaches to the Cell deployment 

package, the Cell inputs, configuration parameters, the Cell public and private keys, and a pool of 

public keys for other entities that the Cell might communicate with. The public keys pool will 

include keys for CyberX servers and routers that the Cell might need to be indirect contact with. 

Additionally, if the Cell had any replicas at the deployment time, the public keys for those 

replicas are also included. 

At runtime, cells can acquire new replicas as a response to a change in the current recovery 

mechanism. The process will start by a request from this Cell or the RCTS to GMS to deploy new 
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replicas. GMS will reply with the public key and the unique Cell name of the new replica to the 

requester in an encrypted message using the requester public key.  

 

Figure  2.5 CyberX security framework 

In order to guaranty the authenticity of all incoming messages, the source id will be enclosed 

and encrypted with the message. The ARMS will be monitoring inter-Cell behavior with the 

cooperation of RCTS that keeps track of all the Cells activities. Malicious, or problematic Cells, 

will be terminated, and their terminated Cell id will be blacklisted and announced to all routing 

Cells.   

In CyberX managed applications, Inter-Cell communications can be classified into two main 

types, administrative related communications, and application related communications. 

Application related communications are messages being exchanged to serve the application needs 

and identified by the application designer.  The administrative communications are messages like, 
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recovery beacon messages between Cells and replicas or RCTS; alerts and events between Cells 

and ARMS; and messages between Cells and routing nodes. 

 

Figure  2.6 The Inter-Cell message format. 

Figure  2.6 describes an abstract view for The Inter-Cell message format. The message is 

divided into two main parts, the destination id, encrypted data block. 

The encrypted data block is divided into four parts encrypted with different keys, sub 

destination id, the source id, timestamp, message to be sent, and message integrity assurance data 

“like hash code”. 

Inter-Cell communications anonymity, Cells are not allowed to directly exchange messages. 

The reason behind that is to protect the anonymity of the inter-Cell communications. Cells 

communicate to intermediate routing nodes to conceal the physical location of the communicating 

nodes like “replicas, and fractions of the same application”, and to control administrative related 

communications. CyberX uses intelligent routing cells to anonymize the source and destination of 

any outgoing message. Doing so can block attackers with access to the network from monitoring 

outgoing messages searching for a certain transmission pattern like “Beacon messages”. 

Identifying these patterns can expose the physical location, and the functionality of the destination 

cells “replica”.  
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Figure  2.7 CyberX secure messaging system 

Figure  2.7 illustrates a communication scenario between different nodes in the system, cells, 

replicas, servers. Each node uses the destination public key to encrypt and sign all outgoing 

messages. We use random router selection for each message (EX,1,2) 

Cells are only permitted to directly communicate with routing nodes, and servers. Application 

and administrative related communications involving Cell to Cell messages, has to go through an 

intermediate routing node. The routing nodes will receive these messages and forward them to 

their designated destinations in order to hide their physical location. The source Cell will use two 

different keys to send a message. First, a router public key to encrypt the source ID, and the sub 

destination ID part of the message. The sub destination ID is the final destination “targeted cell” 

that the message is indented to be transmitted to. Figure  2.8 is an example of an incoming message 

to the router from one of the Cells. Second the final destination key, which will be used to encrypt 

the message and the integrity check fields. 
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Figure  2.8 Incoming router message. 

 

 

Figure  2.9 Router outgoing message.  

The destination ID will be the ID of one of the routers that are close to the Cell. Figure  2.9  is an 

outgoing message from the router to one of the Cells. The list of close by routers is preloaded to 

the cell at the deployment time, and updated when needed.   

At each routing node the incoming messages will be decrypted using the router private key to 

extract the source and sub destination information. If the source was blacklisted, the message will 

be discarded. If the source was not blacklisted, the source ID will be re-encrypted with the 

destination public key, and attached to the reaming part of the message into a new message to be 

forwarded to the targeted cell.  

We prefer using pre-deployed keys instead of asking for public keys prior communication to 

block any attempts of a Man in the Middle attack.     
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2.4 CyberX enabling the CARD concept 

As mentioned in Chapter 1, and illustrated in Figure  2.10, CyPhyCARD is designed to realize 

Trace- resistance, Resilience, and Allied defense needed to support CPS security,  by integrating, 

utilizing, and employing  Elasticity, Diversity, Awareness, Cooperation, and Intelligence 

techniques through a biologically-oriented architecture and methodology. CyberX plays a major 

role in enabling these five main techniques and in facilitating the employment of such techniques 

towards the realization of CyPhyCARD design objectives. In this section, we will illustrate how 

CyberX participates in the realization and employment of such techniques. 

 

Figure  2.10 CyPhyCARD Conceptual View 

2.4.1 Intelligence 
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There are multiple smart processors working within CyberX framework, these smart 

processors control the decision making process of many of CyberX management platform 

components, the Cell itself, and the communication framework. The ARMS for example, takes 

smart decision judging the working Cells performance to allocate any problematic, or maliciously 

behaving Cells. The GMS unit uses multiple smart processors to manage the Cell network. GMS 

take serious and critical decisions all the time, for example what is the best location to deploy or 

migrate to the Cells, which Cells needs to manipulate its current active quality-attribute-objective, 

and many more similar decisions .  Even at the Cell level, the Cell takes many decisions that relay 

on smart control unit to guide. When to shuffle the current variant, do I need to request migration, 

and what is the best recovery mode for my current state are good examples for Cell based runtime 

decisions.  The next subsection illustrates the details about such smart processors.  

2.4.1.1 CyberX Intelligent smart processors  

CyberX is designed of completely loosely coupled components at all levels. The components 

responsible of decision making through all CyberX framework is called smart processors. Due to 

the unified feedback uniformity within CyberX framework the smart processor is not bounded to 

a specific logic or architecture. The feedback within CyberX framework is in the form of score 

sheets, the same one that EvoSense uses to collect feedback from the ToD hosts as described later 

in Chapter 4.  

 CyberX smart processor will process the feedback in the form of score sheet and deliver 

recommendations or even commands to the execution units.  The logic that the smart processor 

follows can include any static or dynamic decision making logic. CyberX can use and alternate 

different AI techniques to define such logic. The loosely coupled construction of the CyberX 
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components at all levels makes it easy for CyberX to alternate different code logic for the smart 

processor core at different locations.  

For simplicity and for the purpose of illustrating the functionality of CyberX, we will present a 

smart processor architecture working on simple expert system based AI logic. The same 

representation will be valid regardless of the type of logic being used within CyberX smart 

processor.  

Figure  2.11 illustrates the architecture of a typical smart processor. The processor gets three 

input parameters. The first input is an incident or consultation id, this id identifies the suitable 

logic within the rule/logic reservoir to process the incoming input. This id is automatically 

assigned by the requester based on the type of the guidance requested. For example, if the smart 

process is needed to evaluate the Cell performance with respect to memory usage, then the id of 

that specific event is send in the first field. The system will select the expert system logic or set or 

rules addressing this specific request.  

 

Figure  2.11 The architecture of a typical smart processor 
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The second field is the score sheet containing the senor feedback that will be used for 

evaluation. The last input is the configuration script of the element under investigation. For 

example, if we need to evaluate the performance of a Cell with respect to memory usage, then the 

Cell configuration script indicating the expected memory usage of the application executing in the 

Cell is attached as input three.  

The output from the smart processor is an id for specific command or a set of commands that 

the requester should follow based on the given inputs. The output can be a direct command, or a 

request for further investigation. Figure  2.12, shows a flowchart representing one of the expert 

system rules defining the smart processor logic being used to evaluate a memory misuse in one of 

the Cells.  

Send Sample 1

Send sample 2 Send sample 3

YesNo If value >Th1

If value >Th2 If value >Th3

Get more samples, 
use sampling 

mode 1, sensors 
1,2

Cell OK

Yes

no

No

Attention is 
needed, maybe 

malicious, migrate, 
and reevaluate

Yes

 

 Figure  2.12 One of the smart-processor expert-system rules. 
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The logic presented in Figure  2.12, represents a case where this logic was selected based on the 

request id and acquired from the rule reservoir to be loaded to the expert system engine. The 

process involves comparing certain fields in the score sheet and the script to evaluate the memory 

performance and whether the Cell has to be moved from its current location or not.  

The use of rule based expert system as the core logic of the smart processors is efficient and 

accurate but might not be so smart. As mentioned before, CyberX can use any smart logic as the 

core of its smart processor. We used this type of simple AI based solution for illustration purpose 

only.  

2.4.2 Situation awareness framework 

One of the main objectives of CyberX is its enable runtime application adaptation to the 

surroundings changes. In order to enable such adaptation, CyberX has to be fully aware of the 

surroundings of all active Cells. CyberX situational awareness can be categorized under three 

main levels; the first is the local situational awareness at the Cell level. By Local awareness we 

refer to the Cell being aware of the application needs and requirements all the time. CyberX 

maintain such level of awareness by enabling application and infrastructure message exchange at 

runtime through a dedicated communication channel and language. The executing variants can 

send messages to the host Cell informing it by its current state or request a certain change.  

The Second level is the environment awareness at the Cell level. That level refers to the Cell 

being aware of what is happening around it. CyberX maintain such level of awareness at two 

scopes. The first is a local scope at the host level, and the second one is a global scope at the 

neighborhood or the network level. The first scope is maintained using a set of host resident 

sensors deployed as a part of the CCDNA on the host. These sensors monitor certain aspects on 
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the host and report its feedback to the CCDNA. The CCDNA group the feedback and post it to 

the ARMS and to the hosted Cells. The Cell uses this feedback as a source to guide the dynamic 

adaptation process.  

The third level is a global situational awareness at the network level. ARMS unit collects the 

feedback from the CCDNAs, the feedback from the intelligent routing nodes, and the feedback 

from the local monitoring units monitoring the activities of all running Cells. The feedback is 

grouped and meaningful conclusions are extracted from it. Such conclusions are sent to the GMS 

to guide its decisions, and commands to the running Cells. The GMS can send further commands, 

or even awareness messages to the Cells based on such conclusions.  Figure  2.13 presents the 

decision logic within the ARMS unit. 

Messages exchange and inspection protocol 

In order to support large scale Cell networks, CyberX is designed to scale in a hierarchal 

fashion. Figure  2.15 illustrates the hierarchal management of CyberX. The leaf nodes are in direct 

contact to manage a specific set of Cells. The management units “CyberX(s)” report to each other 

in hierarchal fashion to update the global situational awareness of the whole system.   

The feedback in CyberX framework takes one form, a score-sheet like report. At the host level, 

the Score-sheet represents a report that compares the behavior deviation regarding the sensing 

target to a predetermined threshold. CCDNA Sensors are classified into different sets representing 

their targeted sensing objectives " ex, memory, communications, privacy, ..etc.". Thresholds are 

dynamically adjusted based on the nature of each host, and the number of false negatives/positives 

reported by the Sensor.   
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Score sheets from different sensors for the same host are sent to the ARMS of the leaf node to 

compose comprehensive score-sheet and to report malicious events to the GMS of the leaf node. 

Figure  2.13 illustrates the process within the leaf ARMS.  

 

Figure  2.13 The decision logic within the ARMS unit. 

The incoming input to the ARMS is either requests or feedback in score sheet format from 

specific source. The incoming feedback is sent to a set of smart processors to evaluate different 

aspects related to the source reputation, and performance. The output is stored in the local 

database for future reference, and the source is reevaluated. If the evaluation indicated 

maliciousness, the source is reported to the GMS for further actions.  If the incoming input was a 

request or an inquiry about specific object, the database is checked and the source is evaluated. If 
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the evaluation indicated maliciousness, the source is reported to the GMS for further actions. If 

not the request is accepted.   Figure  2.14  represents the ARMS reporting mechanism. 

 

  Figure  2.14 The ARMS reporting mechanism 

Each smart processor has set of rules with specific thresholds in a score sheet like format.  

Rule-sheets have values for different objects "ex, memory, communication,.etc" reflecting the 

behavior patterns "ex: attack signature, resource starvation signature, platform instability 

signature, …etc" of each object in case of up normal behavior . Behavior pattern description can 

be discreet or continuous. Rule description also includes the host sampling procedure. Sampling 
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procedure describes the needed number of samples per object and the duration of each sample, 

and the sensors needed to takes such samples. The GMS can add new sensors to the CCDNA’s or 

deploy temporarily sensors when needed.  

The feedback is sent to the leaf GMS. Based on the feedback, up normal behaviors deviation 

might be detected, and the adjustment of the Cell activity based on such deviation as described in 

the rule will be followed by the source Cell. The GMS at the leaf node will send its commands to 

the active Cells within its jurisdiction based on that adjustment. The commands might ask the Cell 

to shuffle to target different quality attribute objective, or ask the Cell to migrate from this host to 

another identifying the destinations, or even ask the Cell to sop; slow; or stop shuffling.  

GMS of leaf nodes send grouped and classified score sheet reports to the parent node to 

expand its awareness of the underlying Cell network. These units process the feedback and send 

guidelines to the child ARMS nodes as an adjustment of the list of rules, and relevant thresholds. 

 

Figure  2.15 The management hierarchy 
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2.4.3 The Cooperation framework 

At the application level, CyberX Cells are designed to work in a divide-and-concur fashion to 

increase the chance for survival for the whole application in case of partial failure. Cells are 

capable of exchanging messages and coordinate certain tasks between multiple Cells to achieve 

certain application objectives.  Enabling such cooperation enhance the application resilience 

against failure, enable application level resource sharing, and enhance the application 

performance by enabling applications to distribute their workload over many Cells. Further, 

enabling Cell mobilization among hosts can have a good impact on the application performance 

as the cell can move to facilitate service delivery to consumers by moving within geographical 

proximity from them. Doing so, enables a single application to distribute its tasks in multiple 

geographical locations and seamlessly move between these locations when needed.  

At the host level, CyberX Cells are designed to separate the main design concerns data, logic, 

and physical resources. Enabling such separation enable Cells to easily move between hosts 

regardless of the host configuration. CyberX gives the host a chance to share its resource among 

multiple long lived applications. In that case different hosts cooperates together to serve the needs 

of one application. CyberX can move Cells between hosts if the host configuration at certain 

times was not acting to the best interest of the application, like it has no resources, security levels 

are low, other applications working on the same host can induce conflicts, ..etc.  

At the system “Cell network level”, CyberX manage vast number of Cells hosted in many 

hosts distributed in many unrelated geographical locations. The design of the hierarchal 

management platform allows the management units to transfer workload between them by 

moving Cells between hosts to maximize the applications recourse utilization and the quality-

attribute-objectives satisfaction. Further, the collected information about the host from the Cell 
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monitoring units can guide the management of the host network to be more aware of the host. For 

the diffusion management as described in Chapter 3, hosts share such information to guide the 

diffusion management process to the best interest of the application. With CyberX, hosts are 

cooperating even if they don’t know about that.   The next subsection gives more details about the 

Organism level resource sharing.  

2.4.3.1 Organism level resource sharing  

Due to the loosely coupled construction on CyberX application execution framework, a multi 

task application is presented as a lager organism composed of multiple Cells. In conventional 

architecture, automated resource sharing at the application level is not possible unless in one case 

where the application is designed and customized to support that. In CyberX the application is 

totally isolated from the underlying physical resources. Doing so enables CyberX to trick the 

application by creating a virtual physical resource layer that is actually hosted among multiple 

hosts. CyberX enable applications with no inherent support for resource sharing to share the 

physical resources of multiple hosts. 

A large multithreaded application is usually played by one large organism of multiple Cells. 

Such organism can distribute its Cells among multiple hosts seamlessly and without any support 

from the application. There is no special support needed from the application if the entire 

organism was hosted on one or more Cells. Further, CyberX situational aware management 

platform can change the organism, Cell, host distribution seamlessly at runtime for any reason. 

For example, if the running Cell was starving for more resources in its current host, CyberX can 

seamlessly move this Cell to another host without any involvement from the application.  

The process starts at the time of deployment, as mentioned in section 2.4, a COA ready 

application comes in a package of components designed based on certain aspects. The package 
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includes a set of variants and a configuration script indicating the configuration aspects, and 

parameters of each variant, and the general aspects, requirements, …etc of the entire application. 

When the host joins CyberX network is classified in one of 3 categories “normal, high, low” 

under each targeted quality attribute objective and based on the available resources.  Figure  2.16 

represents the host classification process at time of attachment. 

 

Figure  2.16 The host classification process at time of attachment 

At the deployment time CyberX GMS process the application global configuration scrip 

against a set of rules. Based on that comparison, the application will be classified under the 

available classes based on the supports quality attributed by the system.  

The application can be hosted in multiple hosts to satisfy the requested quality attribute 

objectives mentioned in the application configuration script. The GMS will select the next host 
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available that fits into the same classification and with available resources that can satisfy the 

application needs.   

Based on the GMS selection of hosts, the application tasks identified in the packaged code 

variants will be encapsulated into set of Cells and the Deployment process begins. Each Cell will 

have its part of the requirements based on the task hosted. The Cell local monitoring unit will 

notify the ARMS if any of the needed requirements where not doable. Upon such notification, a 

report from the ARMS will be sent to the GMS indicating the problematic Cell, and the 

performance and trustworthiness evaluation of such Cell, and all the available details about the 

reported problem. The GMS will respond by selecting an alternative host capable of providing the 

needed requirement and migrate the Cell to it as described in section 3.4.  

2.4.4 Elasticity 

CyberX was designed to enable the application, and the host / host network to be elastic in terms 

of resource usage and availability.  

At the application level, Working within one of CyberX Cells gives the application the 

opportunity to expand or shrink its resource usage without caring whether this change might or 

might not be possible or what will be the effect of that change on the hosting node. CyberX will 

handle all this details enabling high level of resource elasticity. The application designer can build 

the application to consume the resources that it needs as long as it is informing the host Cell for 

major resource usage patterns. Upon the reception of a resource usage change, the Cell will check 

with the CCDNA if the host will be able to afford this change. If the host was capable of 

providing such resources then the Cell will remain in place and the CCDNA will grant these 

resources to the Cell. If the host were incapable of providing the needed resources, the Cell will 
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ask for migration from this host to another host clarifying the reason behind request. The GMS 

will move the Cell to another host and will resume application execution as described in section 

2.6.  

At the system/host level, CyberX Cells acting as a buffer between the host resources and the 

application enable the host to change its resource availability and configuration profile at runtime 

without any worries about possible application failure. CyberX will always adjust the Cell needs 

based on the available host resource as long as it is possible. One of the techniques that CyberX 

uses to adjust the resource usage based on the available resources, is to shuffle the active variant 

to a more resource efficient variant if that change will not conflict with the application 

requirements.  In case that the host is no longer capable of hosting the Cell, CyberX will simply 

migrate the Cell from this host to another host seamlessly and with minimal operation 

interruption.  The next subsection illustrates the details of Cell migration to support different 

quality attribute objective, like resource elasticity, diversity, and resilience against failures.  

2.4.4.1 Cell migration protocol  

CyberX utilize COA intrinsic separation of design concerns to migrate active Cells between hosts 

in order to balance the workload of the whole network. The migration process also targets other 

objectives, these objectives and more technical details about the migration process will be 

illustrated in ChameleonSoft Chapter, Chapter 3. ChameleonSoft uses Cell migration to induce 

special confusion and diffusion to realize special diversity needed for the moving target defense 

approach presented in the Chapter. In this section we will briefly describe the technical process 

of migrating a life Cell between different hosts. 
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The migration process has two modes depending on the level of resources available at the 

destination Cell, and the time frame available before terminating the source Cell. These modes are 

cold and hot migration modes. CyberX always uses the hot migration mode as a default mode, 

because it provides minimal transition time, and zero execution steps losses. 

The process starts by the arrival of a migration request. This request can be issued by three 

entities, the Cell itself, and the ARMS, or the CCDNA on the host.  The CCDNA can request Cell 

migration if the Cell was requesting too much resources than the available resources with an 

increase crossing a certain threshold. Crossing such threshold indicates that the Cell is a threat to 

the other Cells, and either this Cell or the other Cells hosted on the same host might face serious 

failures if the Cell is not removed from this host. The ARMS issue Cell migration if the Cell was 

marked dangerous due to the analysis of the feedback collected from the sensors hosted on the 

CCDNA hosting the Cell. The Cell can ask for migration from the current host to another one if 

the host was not capable of provisioning the needed resources to support the hosted application 

within the Cell.  

Regardless of the source or the reason behind the migration request, all these requests are sent 

to the GMS to process and execute. When an authentic migration request comes to the GMS, it 

comes with a report justifying the reason behind migration. Based on the reason GMS selects an 

appropriate host for the Cell to migrate to. The logic behind this selection is illustrated in section 

3.4.  

The Cold migration mode: 

In this mode the Cell can be terminated upon the issuance of the migration command, and the 

GMS replaces the Cell with a new fresh Cell in another host. The new Cell will be initialized with 

a Cold migration mode status and the last known Check point for the source Cell will be provided 
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upon initialization. The GMS will get this information from the RCTS. The new Cell will start 

with the same variant that was running on the source Cell. The variant ID will be a part of the 

datasheet provided to the Cell at bootstrapping.  Upon startup, if the application was in 

communication with any other Cells, they will be notified that the Cell was migrated, and 

execution progress synchronization protocol will start.  

The process ends by communication redirection at the DNS by changing the DNS record of the 

Cell to point to the new host.  

The Host migration mode: 

This is the default migration mode in CyberX as it is more effective and provides a 0% 

execution steps losses and minimal transition downtime. The GMS starts this process by 

replicating the source Cell. The source Cell recovery mode is explicitly changed to hot recovery 

mode. In this mode the Cell is forced to synchronize all its action with a replica Cell. The GMS 

selects the appropriate host for the replica, starts the replica and informs the source Cell of the 

replica virtual id. The details of Cell replication is illustrated in section 2.5.  

Upon successful synchronization, the source Cell is terminated, and the virtual id of the source 

Cell will point to the replica and the routing nodes will be informed by that change. The replica 

will be resurrected to live mode, and the original recovery mode that the source cell was using 

before migration will be restored.  

The main advantage of this mode is its ability to keep the source Cell running until the new 

Cell takes over. The estimated transition downtime for this process is the time needed to update 

the DNS record for the Cell virtual id with the real physical host id of the replica, which is a very 

small time, and it can be negligible leaving us with a zero transition downtime. Figure  2.17 

illustrates the two different Cell Migration modes.  
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Figure  2.17 COA Cell migration process  

2.4.5 Diversity 

CyberX employs diversity to enable dynamic adaptation to surroundings changes as illustrated 

in section 2.4.5.  A more complicated multidimensional employment of diversity for software 

behavior encryption and moving target defense is presented in Chapter 3. Chapter 3 illustrates the 

details of using CyberX separation of design concerns and the loosely coupled infrastructure to 

enable multidimensional diversity employment by ChameleonSoft.  At the application level 

ChameleonSoft employ temporal diversity by shuffling a set of similar function different behavior 

variants inducing enough confusions and diffusions to encrypt the execution behavior of the 

running software. Further, at the system level, ChameleonSoft uses CyberX management 

platform, to move the running Cells between heterogeneous platforms to increase the complexity 

of the encryption process.  We will not go further into the details of this process in this chapter as 

it is illustrated in details in the Chapter 3.   
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2.5 The CyberX managed multi-mode failure recovery  

CyberX applies diversity techniques to enable autonomous adaptation and performance 

optimization. Applying diversity might involve multiple interruptions of the executing variants. 

Doing so might lead to multiple coincident failures. Therefore, CyberX is designed to equip COA 

based applications with an autonomous, dynamic, and situational-aware multi-mode failure 

recovery mechanism to resolve possible coincident failures. A major outcome of this recovery 

mechanism is the failure resilience enhancement not only against coincidental failures, but also 

against malicious induced failures by adversaries. 

CyberX dynamically and autonomously changes the Cell recovery-policy to switch between 

different fault-tolerance granularity levels. Such levels might target reliability, survivability, and 

resource usage optimization. For fine-grained recovery “Hot-recovery” against logical failures, 

the Cell can have one or more replicas on the same physical host. Further, for a finer-grained 

recovery against logical or physical node failure, the Cell might have one or more replicas on 

different physical hosts. The fine grained recovery comes in two modes, the resource saver, and 

the fast-recovery modes. 

In the resource-saver mode, replicas need to only replicate the STM, I/O unit and local data 

store units of the Cell. The remaining Cell components stay in hibernation waiting for resurrection 

when the replica takes over. These replicas will have one variant all the time and no shuffling or 

recovery policy change until resurrection. We do that to minimize the resource usage by these 

replicas. This mode do save the resources but on the account of increasing failure downtime by 

the time needed to resurrect the Cell.  
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The fast-recovery mode can achieve virtually no task-transition downtime by using a fully-

alive replica Cells. Replicas mimic all the actions of the source Cell except outgoing 

communications and data change. The execution-transition in this case is a simple network 

rerouting by a DNS record update. The failure downtime is only the time needed to detect failure. 

The only disadvantage of this mode is the resource duplication needed to keep both Cells alive.  

In a resource-constrained environment, CyberX can follow a more coarse-grained recovery 

“cold-recovery” that might save some of the resources used by replicas while compromising some 

of the execution states, and increasing the failure downtime.  

The default Cell design forces COA Cells to send a periodic beacon messages to the RCTS 

containing the last executed Checkpoint, some sensitive data, and the currently executing variant 

to be saved on the secure remote data-store. In case of failure, the RCTS notice the delay in 

beacon message arrival, and investigates the possibility of failure. If failure was detected then the 

last recovery procedure will be executed as follows:  

In case of a failed Cell that follows a fine-grained recovery mode then the RCTS will inform 

MGS to send a resurrection signal to the replica and notify the routers, and start deploying a new 

replica to replicate the resurrected one. After successful restoration, DNS entry will be adjusted.  

If the Cell was following a coarse-grained recovery mode then the management will deploy a 

replacement of the failed Cell and the last checkpoint received by the RCTS is attached to the 

deployment package. After successful restoration, DNS entry will be adjusted, and the Cell will 

start execution as a recovered-Cell mode. This mode involves negotiating with all Cells in 

communication to resynchronize any lost execution steps. 

The coarse-grained recovery mode is always-on by default enabling the support of multiple 

concurrent recovery policies. The remote safe store is updated regularly with beacon messages 
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from all working Cells. Each Cell will independently and dynamically set its own message update 

frequency. Such update frequency could be influenced by the change of the current recovery 

policy. The update frequency might decrease in fine-grained recovery mode; while they should 

increase with lower granularity recovery.  

CyberX can dynamically change the cell recovery policy at runtime. The change is guided by 

the application requirements and host conditions. In a stable situation with non-mission critical 

application, a coarse-grained recovery policy can be used, while in a more hazardous situation, a 

fine-grained recovery is preferred. The cell utilizes the available information about the current 

working environment with the application profile to decide the appropriate recovery policy to use. 

As the surroundings change, the cell changes the current recovery policy to suit these changes. 

2.6  A CyberX-managed application 

The COA-Cell can be built in different techniques based on the targeted resource virtualization 

depth. We implemented the simple and fast version of the Cell to enable quick development of a 

prototype. We are in the process of realizing a more complex version of the Cell utilizing one of 

the application virtualization techniques mentioned in [4].   

The main differences between these two versions are: The Slow and complex version of the 

Cell is a computationally heavier Cell, with a thin and uniform hardware virtualization layer. 

Variants are built to target a uniform virtualized platform. The main advantage behind enabling 

such uniform application design are: Reducing the cost of software production, management, and 

maintainability, widening the scope of special shuffling in order to increase the system security 

and reliability, and  reducing the effort involved in system upgrades and/or changes. The main 
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disadvantages are the added workload, and higher risk of failure when compared to the simple 

version.   

CyberX migrate Cells between hosts for recovery purposes, and for Moving target defense as 

presented in Chapter 3. The main difference between CyberX Cell migration and virtual machine 

migration is that virtual machine migration is a computationally heavy process, and it needs 

complex modifications to enable the kind of real-time migration and diversity employment-

dimensionality provisioned by CyberX. Working with virtual machine concepts as known in the 

literature is not feasible, because of the cost of diversity employment, communication 

bandwidth, and cost of failure recovery for such huge capsules.  

CyberX uses fine-grained application development and single task capsules with a total 

separation between the main design concerns, Data, Logic, and Physical resources. Such 

separation facilitates runtime shuffling with minimal computational, and communication cost. In 

addition, CyberX handle failure recovery intrinsically and with a minimal resource usage, and 

downtime.  The cost reduction are mainly the outcome of the COA fine-grained application 

design, the utilization of lightweight capsules, high level of automation, intrinsic consideration of 

failure recovery, and the separation between the data and the mobile capsule itself. In Table  2.2 

we present a detailed comparison between two of the virtual machine techniques, and the COA 

Cell illustrating the main aspects regarding composition, construction, and diversity application 

methodology and cost differences.  

 

 System Virtual 

machine 

Process Virtual 

machine 

(Application 

Fast COA Cell Slow COA Cell 
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virtualization 

) 

The definition 

of the Sandbox 

used 

completely 

isolated guest 

operating system 

installation 

within a normal 

host operating 

system 

Unified  platform-

independent 

programming 

environment that 

abstracts away 

details of the 

underlying 

hardware or 

operating system 

enabling  the 

execution of a 

pre-encapsulated  

single process 

that runs as a 

normal 

application inside 

a host OS. 

Partially isolated, 

CCDNA monitored 

and controlled 

program execution 

enabling the 

execution of a 

single 

Chameleonized 

application that 

runs as a normal 

application inside a 

host OS. 

Completely 

isolated, 

CCDNA 

monitored and 

controlled 

program 

execution 

enabling the 

execution of a 

single 

Chameleonized 

application that 

runs as a normal 

application 

inside a host 

OS. 

Sandbox tasks Mainly hardware 

abstraction and 

virtualization 

layer   

Limited hardware 

abstraction and 

virtualization 

layer   

hardware 

abstraction and 

managed direct 

access   

hardware 

abstraction and 

partial hardware 

virtualization    

Sandbox size Full OS with 

multiple 

applications 

Single application Single application  Single 

application  

Utilization for 

Diversity  

Migration  Migration “ can 

be used to enable 

Migration // 

Internal shuffling 

Migration // 

Internal 
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CBE internal 

shuffling” 

shuffling 

Resource usage Huge Less than System 

Virtual machine 

Very limited Limited 

Complexity Very complex complex Very Simple Simple 

Composability None or 

explicitly  

None or explicitly Intrinsically  Intrinsically  

Type 

application  

Normal 

application with 

suitable OS 

within the 

sandbox 

Normal 

application 

encapsulated in a 

container than 

needs to be 

rebuilt each time 

the platform 

change 

CyberX application 

with a dedicated 

variant for each 

targeted platform. 

Simple variant 

change when 

platform change. 

CyberX 

application with 

a uniform 

targeted 

platform. 

Seamless 

platform 

change. 

Virtualization 

layer 

Complex 

hypervisor 

Hardware 

abstraction layer   

Simple CCDNA CCDNA 

Application / 

virtualization 

awareness 

Applications 

unaware of 

virtualization 

Applications 

unaware of 

virtualization 

Application aware 

virtualization 

Application 

aware 

virtualization 

Separation of 

design 

concerns  

Only physical 

resource isolation  

Only physical 

resource isolation  

Data, logic, and 

physical resources 

(multiple 

implementations 

for different 

hardware 

platforms) 

Data, logic, and 

physical 

resources 
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Sandbox 

instance 

creation, and 

deployment  

Manual/ 

application 

specific 

automated 

Manual/ 

application 

specific 

automated 

Automated Automated  

Sandbox 

intelligence  

Limited or none None Intelligent Intelligent 

Elasticity  Static Static Dynamic Dynamic  

 

Table  2.2 Comparisons between CyberX Cell virtualization and conventional system 
virtualization   

 

2.6.1 The simple and fast version of the Cell   

In the simple and fast version of the Cell, variants always match the targeted deployment 

platform. In this mode variants have a controlled direct access to the actual host hardware. The 

Cell instantiates, monitors, and controls all the runtime aspects of the variant as descried latter. All 

communications and data access are only permitted through the dedicated units/channels within 

the Cell. No hardware virtualization is needed. The main advantage of this approach is its 

simplicity, and lightweight with respect to the amount of consumed host resources to enable 

virtualization. In order to enable emergency Cell-relocation, the variant pool should contain 

variants matching all the targeted platforms. 

As mentioned before a COA-ready program is a program that enables check-pointing with at 

least two different objective variants enabling quality-attribute manipulation. The checkpoint 

reporting location has to consider data integrity requirements especially in case of failure. All data 

has to be committed before checkpoints. 



67 
 

At the deployment time, a new DNS record will be created by the GMS for each Cell 

indicating the application virtual name to be used for inter-variant communications “if needed by 

the application designer”, the Cell unique id for inter-Cell communication, and the IP of the 

physical-host hosting the Cell. 

 The deployment starts by the CCDNA receiving the deployment package from the GMS 

including the Cell globally unique ID(s), the initial checkpoint value, variant pool setup “variant 

binaries, names; numbers; sets; variant-classification” , the configuration script describing the 

specs of each variant, the global objective of the application, and any specific specs added by the 

developer to be considered at time of execution “number of application fractions; fraction-names; 

..”, the initial shuffling and recovery policy, the needed security level, and the list of security 

parameters and encryption keys.  

The CCDNA starts the Cell by constructing the components mentioned in section 2 with the 

provided unique id. Then the CCDNA starts to interpret the deployment configuration file in 

order to generate separate configuration files for each Cell unit describing any modification in its 

default task assignment, or special considerations to be taken care off at the time of execution.  

The execution starts when the execution unit asks the STM for the starting checkpoint, the 

STM will get this information as a part of the deployment configuration file. STM will repeatedly 

provide this information to the execution unit at each shuffling event. The execution unit starts to 

launch the first variant while passing the appropriate bootstrapping parameters.  

The last executed checkpoint value will be held by the STM locally, and remotely at the RCTS 

that will receive it via the Cell beacon messages.  

At runtime, variants will update the STM frequently with the checkpoint advance and any 

other special needs via a dedicated communication channel.  
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At the time of shuffling, the Cell diversity manager gives the shuffling signal to the STM and 

the execution unit, which will start the process after the next reported Checkpoint and based on 

the provided shuffling orientation as follows; 

Quality attribute manipulation: let us take an example, an attacker might be able to induce a 

change in the system surroundings, like a DOS attack to overload the network to force the system 

to shuffle the currently executing variant. The CyberX will ask Cells close to the induced event to 

change their variant to target a different quality attribute (e.g. performance) that suits the induced 

change in the environment.  We have two main realization modes for the shuffling operation the 

greedy and the light modes. The system designer can select either one of them based on the 

available deployment-platform host resources, and the criticality of the application. The greedy-

mode with seamless handover offers virtually no-downtime but duplicates the resource usage at 

the time of shuffling, and the lightweight-mode offers no-resource increase at the time of 

shuffling on the account of increasing the transition time by the time needed for variant loading 

and synchronization. We will briefly describe both. 

The greedy-mode “local replication”: Upon reception of the shuffling signal, the execution 

unit starts to load the new variant in freeze “ideal” mode.  The new variant will connect to the 

STM that will locally synchronize the execution checkpoint with it. The communications unit will 

duplicate all the inputs to the old and the new variant. Upon reception of the ACK Signal from the 

STM and the communications unit confirming that the synchronization is completed, the 

execution unit sends pause signal to the old variant, and a resume signal to the new one followed 

by a termination signal to the old variant.  

The lightweight-mode: Upon the reception of the shuffling signal, the execution unit starts by 

local synchronization with the STM for the checkpoint update. Then it pause the old variant, and 
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informs the STM and communication unit about the execution hold. The communication unit will 

buffer incoming messages for the duration of the handover. The execution unit will terminate the 

variant, and starts loading the new variant with the last known checkpoint, and informs the 

communication unit and the STM about the successful loading to resume execution. The 

communications unit will send any buffered messages to the new variant.  

2.7 CyberX role in mitigating the BlackWidow attack  

       In this section we intend to discuss the ability of CyberX to invalidate the attacker 

assumptions on the case study “blackwidow attack scenario” presented in Chapter 1. We list part 

of the assumptions listed in Chapter 1. We focus only on the assumptions that CyberX 

participates in disputing. The rest of the assumptions are disputed by the reaming contributions 

of CyPhyCARD, EvoSense or ChameleonSoft.  

Attacker assumptions: 

 The defense system shares the same network or host with the target of attack/defense 

system. 

 The system is not capable of being fully situation aware of all its components in a 

massive-scale network in real time. 

 The defense system management workstations (that the administrators use) share the 

same network with the target of defense.  

 It is not feasible to monitor all the host behavior patterns while sharing the same 

workstation that is performing user tasks. 

 Defense systems are not resilient against attacks, and have weak recovery mechanisms. 
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[Note: most of them assume that they will not be the target of an attack as long as they 

were able to secure their ToD. Additionally, usually they have no intrinsic failure 

recovery.] 

CyberX major contributions that participates in disputing such assumptions are, the online 

autonomous adaptation to changes, and the intrinsic resilience of the building blocks, the full 

time monitoring and surveillance of working Cells, the enhanced Self and situation awareness of 

the platform and the Cell itself. These contributions will work against the aforementioned 

attacker assumptions, or the goals behind such assumptions.  

The dynamic adaptation to changes will work against the goal behind assumptions 1,and 3. 

The attacker assumed that if the defense applications are sharing the ToD platform or network, it 

can be affected by attacking it, or it can be utilized to disrupt the operation of the ToD 

application. The attacker can induce certain changes to static applications working on defense 

provisioning causing them to fail. Using CyberX dynamic adaptation work against that, as the 

defense services hosted on a CyberX managed platform will be able to adapt to any sudden 

changes and to adjust its working requirements and configuration to match the current state of 

change. 

The intrinsic smart situational awareness of the platform building blocks, and the platform as a 

whole, works against assumptions, 1 and 4. The CyberX hierarchal management framework is 

capable of handling large scale networks and being fully aware of what is really happing within 

such networks.  

The intrinsic recovery enabled by CyberX works against assumption 5 and the goals behind the 

five assumptions that the attacker was targeting. The main target for the attacker was to fail the 

defense services. With CyberX automated fast recovery, the attacker will not be able to easily 
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fail an application. The failed Cells “application thread” will be recovered from any failures 

autonomously. Additionally, the recovery system by itself realize a partial part of the moving 

target concept. The technique used for recovery intentionally deploy the replacement cells in a 

different geographical location, and with different platform configuration from the failed Cell to 

minimize any chances of re-failure. Doing so, move the attacker target which the application 

within the Cell away from the attacker. Giving this mechanism, it is not even in the attacker 

benefit to try to fail any of the COA Cells as doing so will make it almost impossible for him to 

target this Cell again.  

The CyberX management framework uses a secure communication protocol that works against 

identifying the Cells hosting certain applications. Using such secure communication protocol is 

intrinsically needed to make sure that the attacker will not be able to allocate the Cell replicas. If 

the attacker was able to do so, it can disrupt the hot recovery system. Even if we assumed that the 

attacker will be able to go through all that, a single Cell can have multiple replicas running. 

Further, the Cell is always protected by default by the cold recovery mode and it will eventually 

recover.  

2.8 Conclusion 

In this chapter, we presented the CyberX platform designed to enable the CARD concept through 

supporting five main aspects: elasticity, diversity, awareness, cooperation, and intelligence. 

CyberX utilized the COA capability to induce autonomous execution elasticity and adaptability, 

and to enable adjusting the system’s shuffling and recovery policies at runtime matching the 

continual operational-environment changes. Further, CyberX used its situation-aware, autonomic 

adaptation and dynamic failure recovery mechanisms to enhance software resilience against 
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failures and attacks. Results showed that CyberX-managed COA-based software systems can 

efficiently adapt to maintain the desired reliability, sustainability, and resilience objectives even 

in hazardous, unstable environments at a reasonable overhead. There are several interesting 

challenges still to be addressed. These include utilizing application-level virtualization to enable 

seamless Cell migration across heterogeneous platforms, autonomous detection and profiling of 

environment changes; adjusting shuffling and recovery settings based on context; formalizing an 

automated variant generation system, and providing alternatives for legacy non COA-ready 

software. 
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Chapter 3 

3. ChameleonSoft: Software Behavior 
Encryption for Moving-target Defense 

 

 

 

3.1 Introduction 

Biological inspiration in computer security dates, at least, to the definition of the term 

“computer virus” in the early 1980’s [55]. Self-propagating malware and computer worms have 

clear life-like properties [56]. In nature, diversity provides a defense against such self-propagating 

threats by maximizing the probability that some individuals will survive and replenish the 

population with a defense against that particular threat. It has been noted that much of the 

vulnerability of our networked computing systems can be attributed to the monoculture or lack of 

diversity in our software systems [57]. It is practically inevitable that software will contain flaws. 

The software monoculture makes it easier for attacks to spread thus exposing the systems to large-

scale attacks by well-informed attackers.  

Inspired by the resilience of diverse biological systems in the sea chameleons, we propose a 

diversity-based defense mechanism against software attacks, termed ChameleonSoft. Sea 

chameleons or cephalopods employ multi-layer diversity for different purposes. For example, 

they leverage their capability to change their body color, texture and appearance to induce 

“Philosophy: A route of many roads 
leading from nowhere to nothing.” 
Ambrose Bierce 
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diversity. Diversity is used to camouflage for defense, disguise for hunting, and change color for 

communication [58]. Similarly, ChameleonSoft utilizes spatiotemporal software diversity to 

enhance software system security, survivability and resilience.  

ChameleonSoft is founded over Cell-Oriented Architecture (COA) based infrastructure 

managed by CyberX. As mentioned before, COA is a biologically inspired architecture with 

active components called Cells that support the development, deployment, execution, 

maintenance, and evolution of software. Cells separate logic, state and physical resource 

management. Cells are dynamically composable into organisms that are bound to functional roles 

at runtime. Such construction supports online programmability, hot code swapping and automated 

recovery. These features together enable what we term as “ChameleonSoft Behavior Encryption 

(or CBE)” akin to message encryption. 

CBE applies spatiotemporal diversity in a way that makes the attack target in continual random 

motion evading attackers. CBE leverages the COA intrinsic separation of concerns to realize 

temporal and spatial diversity. Temporal diversity is applied by shuffling multiple functionally-

equivalent, behaviorally-different software variants at runtime. In addition, CBE realizes spatial 

diversity by enabling runtime seamless migration of Cells from one physical host node to another. 

The goal behind that is to hide the potentially targeted software flaws that might be used to 

penetrate the system.  

CyberX divides the missions of a huge software program into smaller tasks. Each of these 

tasks is assigned to one or more Cells executing sets of similar function and different-behavior 

executable variants. These sets might have different objectives targeting different quality 

attributes. Reliability, performance, robustness, and mobility are examples of such attributes. 

ChameleonSoft shuffles variants and sets to induce diversity. The scope of diversity application 
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extends beyond security goals to the other quality attributes. The system might shuffle to a variant 

that aims at high system performance in highly-loaded but low security risk situations. 

Alternatively, the system would resort to a higher security, perhaps lower performance variant in 

higher risk situations.  

Researchers in [59] mentioned that multi-variant systems without appropriate recovery 

mechanism might face a larger amount of coincidental failures. ChameleonSoft relay on CyberX 

autonomous recovery system to handle any coincidental failures that might occurs due to diversity 

application. Such support increases the system resilience against international and unintentional 

failures.  

Inspired by the sea chameleon dynamic change occur in response to frequent changes in the 

environment, ChameleonSoft autonomously and seamlessly changes the shuffling policy at 

runtime to suite the continual dynamic changes of the surroundings.  

For the purpose of illustrating the details of our CBE prototype, we will present some details 

about software Chameleonization in section 4. The discussion will also clarify the main rules 

needed to enable software Chameleonization.  

ChameleonSoft main contributions presented in this chapter can be outlined as follows:  

1) CBE mechanism that applies multidimensional spatiotemporal diversity to mobilize attack 

target; 

2) An elastic software platform that dynamically and autonomously changes shuffling policy 

to match the surroundings frequent changes.    

Further, in chapter 5 we used analysis and simulation, to study the performance and security 

aspects of the proposed system. This study aims to evaluate the provisioned level of security by 
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measuring the level of induced confusion and diffusion to quantify the strength of the CBE 

mechanism. We also simulated the computational cost of security provisioning, and enhancing 

system resilience in ChameleonSoft with regards to the amount of failure downtime with and 

without CBE. 

 

3.2 ChameleonSoft moving-target defense  

In biology, sea chameleons, or chameleons for short, are well known for their capability to 

induce diversity. We promote the novel moving target approach by ChameleonSoft as a defense 

mechanism against software attacks. Inspired by the chameleon diversity employment for 

camouflaging, ChameleonSoft encrypts software behavior by employing multidimensional 

diversity. The outcome is continuous spatiotemporal changes of the network behavior to, in effect, 

move the attack target away from the attacker. ChameleonSoft is founded over our unique elastic 

CyberX managed Cell Oriented Architecture (COA) that enables spatiotemporal diversity 

employment.  

Chameleons employ different diversity techniques to increase the resilience of their 

camouflaging process against attacker visual observation. Changing body color, texture, and 

appearance are examples for such techniques. They recover from a technique failure by switching 

to another technique. Similarly, ChameleonSoft applies different diversity techniques for 

camouflaging to enhance the system resilience against attacker utilization of possible software 

flaws. Applying diversity might involve multiple interruptions of the executing variants. Doing so 

might lead to multiple coincident failures. Therefore, ChameleonSoft leverages the CyberX 

autonomous, dynamic, situational aware, multi mode failure recovery mechanism to resolve 
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possible coincident failures. A major outcome of this recovery mechanism is the failure resilience 

enhancement not only against coincidental failures, but also against malicious induced failures by 

adversaries. 

The CyberX autonomous, situational aware, multi-mode failure recovery mechanisms enhance 

the system resilience against both intentional and un-intentional failures. The details about 

CyberX managed automated recovery are illustrated in chapter 2. Figure  3.1, illustrates 

ChameleonSoft behavior encryption concept in realizing a moving target defense against software 

based attacks. ChameleonSoft uses and partially manages CyberX online configurability and the 

loosely coupled foundation to enable runtime  multidimensional diversity application, in time by 

induce attacker confusion to encrypt the software execution behavior, in space to realize trace 

resistant moving target defense. ChameleonSoft uses the CyberX multimodal autonomous 

recovery to insure the resilience of its defense approach against coincidental or intentional 

failures.  

 

Figure  3.1 ChameleonSoft reliable behavior encryption  
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3.3 ChamelonSoft behavior encryption 

Typical encryption entails transforming the plain text into an unrecognizable message to the 

interceptor. Strong encryption schemes have two major properties namely confusion and 

diffusion. The confusion property virtually prohibits interceptors from predicting the ciphertext 

resulting from changing one character in the plaintext. An effective confusion is enforced via a 

complex functional relationship between the plaintext, key pair and the ciphertext. Confusion 

aims at maximizing the time that the attacker consumes to determine the relationship between the 

plaintext and the key pair.  Diffusion is the other property of strong encryption schemes. Diffusion 

enables the cipher to spread the plaintext information over the entire ciphertext so that the changes 

in the plaintext affect many parts of the ciphertext [60].  

Behavior encryption in ChameleonSoft is analogous to typical encryption in the way it exhibits 

the confusion and diffusion properties. ChameleonSoft induces confusion by dynamically 

changing the behavior of the executing software variant using stationary runtime shuffling of code 

variants “Temporal” and live-migration of Cells between heterogeneous hosts “Spatial”. The 

dynamic software behavior change makes it more difficult for an attacker to generate a profile 

with the possible flaws of the executing variant. The shuffling pattern is a supervised reflection 

for the continuous change in the environs.  In ChameleonSoft, an effective confusion is 

determined by how complex to correlate the change in the output behavior relative to a single 

induced change in the environment.   

ChameleonSoft works above CyberX platform that manage all the details of the Cell and the 

Cell network, and maintain its resilience against failures. ChameleonSoft add one new component 

among some changes to the management framework of CyberX presented in Chapter 2 in order to 
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support the software behavior encryption process. Figure  3.2 illustrated the new architecture of the 

management framework of the Chameleonized CyberX.  

 

Figure  3.2: Chameleonized CyberX management architecture 

The Diffusion Management Servers (DMS) are the main component added to the basic 

platform. DMS main task is to manage diffusion broadcasting messages. It is the only server 

authorized to send shuffle for diffusion messages to the platform Cells. The details of diffusion 

shuffling process are illustrated as follows:  

ChameleonSoft induces diffusion by generating none-uniform random virtually untraceable 

significant change in the spatiotemporal network behavior using the Cell independent decision-

making capability. Cells send diffusion shuffling requests to the DMS either in response to an 
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induced change or based on a predetermined policy as part of the encryption process. DMS 

receives diffusion shuffling requests from the Cells. It cooperates with the ARMS to make sure 

that the request is trustworthy, and the source has a good reputation and justification for the 

request. Then it cooperates with the auditing server to make an informed decision about the best 

area to send a diffusion shuffle recommendation messages. Cells who receives a diffusion-

shuffling recommendation decides independently whether to comply or not, when to shuffle the 

current variant, the shuffling frequency, and the variant selection for the next shuffle. These 

decisions are guided by the situational awareness unit’s frequent reports regarding the application 

requirements, and the host condition. 

We propose a variant layout randomization technique to increase the level of CBE’s confusion 

induction. The system assigns the variant shuffling index based on a predetermined sequence.  

Variants’ indices are shuffled internally within each Cell based on a Cell independently generated 

random number that changes over time. This random number is used to shift the next executing 

variant selection index to a random location in the variant layout space.  

Software behavior encryption by runtime hot shuffling of software variants is a realization of 

ChameleonSoft temporal diversity. ChameleonSoft realizes space diversity by seamlessly moving 

the Cell at runtime among different physical hosts. During this process, CyberX autonomously 

maintains communications, Cell sensitive data, and state logic.  

ChameleonSoft can follow different shuffling policies at runtime to suit the dynamic change in 

the surrounding environment. A policy change might induce a change in the shuffling frequency 

for more security, or the shuffling orientation to favor time over space diversity or vice versa.  

Figure  3.3 illustrates the aforementioned software behavior encryption protocol variations. These 
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variations can be classified in either confusion or diffusion induction within the Cell network by 

manipulating the application behavior across space, time, and platform heterogeneity.  

 

Figure  3.3 The software behavior encryption protocol variations 

Figure  3.4 illustrates the software Chameleonization process. A COA ready application tasks 

are defined as multiple similar-function different-behavior variants grouped in different objective 

sets targeting different quality-attributes. These variants are loaded into different Cells at runtime. 

ChameleonSoft shuffle these variants locally for temporal diversity. ChameleonSoft migrate the 

live Cells between heterogeneous/homogeneous platforms to realize the spatial.  
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Figure  3.4 Application Chameleonization 

The overall diversity induced by our system can be expressed in the form of X missions 

represented in Y roles. These roles are played by M organisms, composed of K Cells. Each Cell 

has P quality attribute sets containing Z software variants, to be executed and migrate between Q 

nodes with W different configuration-combinations and an average of R/S shuffling events/sec.   

We will provide more details about CBE realization methodology through the description of 

ChameleonSoft implementation presented in section 4.  
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3.3.1 Variant generation 

The whole idea of software Chameleonization depends mainly on the availability of similar 

function different behavior variants that can be grouped in different objective sets. Recent 

research work presented multiple techniques to automatically or manually generate variants with 

similar functionalities and different configurations and compositions in order to produce different 

execution behavior at runtime [61].  

Automated code variation techniques have focused on creating code diversity (e.g., instruction 

set randomization [62, 56] and reordering of allocated memory objects or blocks (e.g., address 

space layout randomization [37, 64]. Other possible variations that could provide a considerable 

level of diversity was mentioned in [65] including varying, scheduling, system calls, calling 

conventions, configuration properties, and Instruction set randomization.   

Researchers in [41] utilized one or more diversity technique to diversify variant execution in 

order to detect behavioral deviation of simultaneously executing variants processing the same 

input, as a way to detect attacks. Diversity is utilized by [67, 56] to detect attacks like buffer 

overflow attacks. Instruction set tagging and memory space portioning is used by [64] to generate 

variants with no specific common flows that might be utilized by a specific category of attacks. 

The authors’ target was to use this diversified versions for attack detection, and fault tolerance.  

In ChameleonSoft we intend to utilize multiple variant generation techniques to satisfy the 

requirements needed to enable behavior encryption, and runtime dynamic quality attribute 

manipulation. For example, we can use the mechanical transformation approach presented in [64] 

to generate variants sets with specific resilience against certain class of attacks. Within each set 

we can use the N-version programming originally presented in [67,70] for fault tolerance and 
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proposed for security by [59,73] to generate multiple similar function different behavior variants 

using different independent development groups, or at least different compilers processing the 

same program-specifications. Additionally, we will use formal behavior computation techniques 

like the ones presented in [74,54] to verify the functional similarity, and to compute the 

behavioral difference between the generated variants. These computations will assess evaluating 

the strength of our CBE.    

The mandatory requirements needed to support COA based Chameleonization can be 

summarized  as follows, The application developer has to build a checkpoint enabled application 

and reports execution advance to the underlying infrastructure using a dedicated name pipe.  All 

data has to be committed before all Checkpoints. Applications should support random startup 

from a bootstrapping-time provided checkpoint. Applications will be given direct access to the 

host memory to save only noncritical temporarily data, all critical data should be accessed through 

the infrastructure dedicated data path “Static, remote, and separately managed Data warehouses". 

Developers should provide at least two similar-function different-behavior variants to enable 

temporal shuffling. Developers have to inform the host Cell about all uninterruptable tasks using a 

provided communication script.  Application designers also provide a brief description about the 

application tasks, any special requirements, the needed security level, and the estimated resource 

usage… etc “syntax provided”.  

Behavior encryption strength depends mostly on the following; the behavioral distance 

between the variants, number of variants in each set, number of hosts available for spatial 

shuffling, the level of host configuration-diversity, and the granularity of the application design 

“number of fractions”. 

3.3.2 Decision making in ChameleonSoft 
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In chameleons, color shuffling decision making source and location depends mainly on the 

targeted changing speed. In fast changing chameleons, shuffling decisions are mostly controlled 

by the brain with dedicated connections “nerves”, or through distributed decision making Cells all 

over the body.  In ChameleonSoft, we favor the later approach as it is more realizable and 

computationally cost effective from the communication and resource consumption point of views. 

The decision-making unit in ChameleonSoft is an intrinsic Cell component enabling independent 

decision making. More complex decisions affecting a group of Cells or organisms are handled by 

GMS. These units are responsible for directing the network behavior change for global purposes. 

The decision making unit depends mainly on the situational awareness unit to guide its decisions.  

There are multiple levels of local situational awareness, between the host Cell and the variant 

executing over it, and between the Cell and the CCDNA hosting it. A dedicated channel between 

the Cell and the executing variant will allow the Cell to be aware of the application requirements. 

Certain syntax is provided to the variant designer to be used for message exchange between the 

variant and the host Cell to inform it with its needs and requirements, like holding shuffling 

process until a cretin non-preemptive task complete. Another level of situation awareness is 

achieved by the use of a group of sensors in the form of API’s. These sensors are frequently used 

between Cells and the CCDNA hosting them to sense any phenomena of interest. The sensors’ 

feedback, incoming application requirements, and the GMS regular global report feeds are the 

main source of information supporting shuffling policy change to be discussed in the next 

subsection.   

ChameleonSoft uses a set of smart processors similar to the one described in Chapter 4. To 

guide the Cell decisions based on various feedbacks from the aforementioned sources “The 

neighborhood Cells, application, and management servers” . Figure  3.5, illustrate the confusion 
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and diffusion shuffling process regarding, when to shuffle, how to shuffle “space or time”, and 

which variant to swap to in the next shuffle. ChameleonSoft uses different smart processors that 

have similar design and shares the same input but executes different logic to handle each decision.  

The logic description is similar to the one presented in Chapter4 “EvoSense”, and it can vary 

depending on the designer needs and representation. For simplicity we use a simple rule based 

expert system to represent the logic within such processors. The same technique is used to guide 

decision making in regards to changing the shuffling policy as illustrated in the next subsection. 

The confusion induction process starts at the Cell level; the Cell uses built-in analyzers “smart 

processors” analyzing the incoming feedback illustrated in Figure  3.5 to take confusion or 

diffusion decisions.  The smart processors logic is loaded to the Cell as a part of its deployment 

package. 

 

Figure  3.5 The Cell, confusion and diffusion shuffling  
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Figure  3.6 illustrates the encryption protocol and the decision making process involved. The 

smart processors get the feedback from the different inputs at runtime and decide if a shuffling 

event is needed or not, and what type of event to be executed. Then the current state of the 

application is checked if it had any holds or reduces of shuffling frequency requests or not. The 

host condition also is checked for needed resources for the next variant after selecting this variant 

by another smart processor. Special shuffling would require sending a request to the DMS to 

handle it with all the details about the reasons for that request. Such reasons are described as a 

summarized log of the Cell and application state.  If the situation permits the execution of the 

shuffle or the migration then it occurs automatically as described in section 3.4. if not, then the 

process will be repeated after a predetermined threshold and the failure event will be recorded and 

poster to the ARMS.  

 

Figure  3.6 The encryption protocol and the decision making process 
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The diffusion management servers receive diffusion requests from working Cells and process 

these request as illustrated in Figure  3.7. The DMS receives requests, and consult the ARMS for 

the requester reputation, and the latest report about the Cell net. The reports are analyzed and the 

best locations are spotted. The recommendations are diffused through the master routing nodes 

within the selected areas. The Cells within this area decides whether to comply with the request or 

not based on the analysis of the various inputs and the application status as presented in 

Figure  3.5Figure  3.6.  

 

 Figure  3.7 DMS diffusion recommendation process. 

3.3.3 Shuffling dynamic policy change: 
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ChameleonSoft shuffling policy is the main guide for the decisions being taken by all the 

diversity management units locally within the Cell, and at the management level. The shuffling 

policy defines the shuffling type “temporal or spatial” and the shuffling frequency for each type. 

The shuffling policy also includes when, and why to ask for a diffusion shuffling. In addition, 

shuffling policy also determines the nature and the roles of variant-set shuffling for quality 

attribute manipulations. The configuration of the Cell shuffling policy is always in continuous 

change in-response to changes within the Cell surroundings and the application requirements.  As 

illustrated in Figure  3.6, the shuffling policy is always analyzed at runtime to decide the next 

confusion induction process will be temporal or spatial, and the level of heterogeneity required in 

the spatial shuffling.  

3.4 ChameleonSoft  Implementation  

As mentioned before in chapter 2, the COA Cell can be built in different techniques based on 

the targeted resource virtualization depth. We implemented the simple and fast version of the 

Cell to enable quick development of a CBE prototype. We intend to realize a more complex 

version of the Cell utilizing one of the application virtualization techniques mentioned in [76] as 

a more advanced version of the CBE prototype.   

The main differences between these two versions are illustrated in chapter 2, we will not go 

through the details in this chapter. However, we will illustrate through Table  3.1, a quick 

comparison between the conventional virtual machine migration, and CBE on CyberX spatial 

shuffling as it is an intrinsic part of the software behavior encryption realization procedure.  The 

main objective behind such comparison is to illustrate the inherent need for COA features to 

enable CBE spatial shuffling.  
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The main difference between CBE spatial shuffling and virtual machine migration is that 

virtual machine migration is a computationally heavy process, and it needs complex 

modifications to enable the kind of real-time diversity employment-dimensionality provisioned 

by ChameleonSoft. Working with virtual machine concepts as known in the literature [43,44,45] 

is not feasible, because of the cost of diversity employment, communication bandwidth, and cost 

of failure recovery for such huge capsules.  

CBE uses CyberX and COA fine-grained application development and single task capsules 

with a total separation between the main design concerns, Data, Logic, and Physical resources. 

Such separation facilitates the temporal and spatial shuffling with minimal computational, and 

communication cost. In addition, CyberX handle failure recovery intrinsically and with a 

minimal resource usage, and downtime.  The cost reduction are mainly the outcome of the COA 

fine-grained application design, the utilization of lightweight capsules, high level of automation, 

intrinsic consideration of failure recovery, and the separation between the data and the mobile 

capsule itself. Table  3.1 illustrates by comparison the difference between conventional virtual 

machine migration and ChameleonSoft behavior encryption.   

 
 Virtual machine migration CBE 

Definition 

Moving “by cloning or startup-

time replication” a live machine 

“whole OS and applications” 

from one host to another with the 

exact similar configuration 

Live employment of 

multidimensional software diversity 

to, in effect, induce spatiotemporal 

“software behavior encryption” and 

a moving target defense. 

Diversity  technique Migration 

Migration of single Cell “one 

application” either by swap-time 

cloning or replication// and Internal 
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shuffling  “swapping code variants at 

runtime” 

Resource usage High Limited 

Granularity Full OS 
Fine granularity, application fraction 

migration 

Methodology 

OS stalling, physical 

transformation, Resurrection “ 

excessive bandwidth usage” 

Local/Remote replication while 

execution, communication rerouting, 

and source termination.  “no 

excessive bandwidth usage” 

Shuffling downtime 

1) High 

2) relative to the OS size, number 

of application, and the whole 

machine load time. 

1) Virtually none, Limited to the 

time needed for communication 

redirection “negligible” 

2) worst case scenario it will be 

relative to the load time of a single 

application. 

Ability  for temporal 

shuffling 

Possible explicitly with large 

computational and downtime cost 

by enabling check-pointing for 

most of the OS components. 

Intrinsically possible, minimal 

computational load. 

Diversity application 

related bandwidth 

usage 

High Virtually none 

Resource usage 

involved 
High Limited 

 Table  3.1 Comparisons between Cell spatiotemporal shuffling / virtual machine 
migration 

 

3.4.1 Software Chameleonization process  

As mentioned before a Chameleonized program is a program that enables check-pointing with 
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at least two similar-function different-behavior variants to enable temporal shuffling. The 

checkpoint reporting location has to consider data integrity requirements especially in case of 

failure. All data has to be committed before checkpoints. 

At the deployment time, a new DNS record will be created by the GMS for each Cell 

indicating the application virtual name to be used for inter-variant communications “if needed by 

the application designer”, the Cell unique id for inter-Cell communication, and the IP of the 

physical host hosting the Cell. 

 The deployment starts by the CCDNA receiving the deployment package from the GMS 

including the Cell globally unique ID(s), the initial checkpoint value, variant pool setup “variant 

binaries, names; numbers; sets; variant-classification” , the configuration script describing the 

specs of each variant, the global objective of the application, and any specific specs added by the 

developer to be considered at time of execution “number of application fractions; fraction-

names; ..”, the initial shuffling policy, and the needed security level.  

The CCDNA starts the Cell by constructing the components mentioned in sec 3.1.1 with the 

provided unique id. Then the CCDNA starts to interpret the deployment configuration file in 

order to generate separate configuration files for each Cell unit describing any modification in its 

default task assignment, or special considerations to be taken care off at the time of execution.  

The execution starts when the execution unit asks the STM for the starting checkpoint, the 

STM will get this information as a part of the deployment configuration file. STM will 

repeatedly provide this information to the execution unit at each shuffling event. The execution 

unit starts to launch the first variant while passing the appropriate bootstrapping parameters.  

The last executed checkpoint value will be held by the STM locally, and remotely at the RCTS 



93 
 

that will receive it via the Cell beacon messages.  

At runtime, variants will update the STM frequently with the checkpoint advance and any 

other special needs via a dedicated communication channel.  

At the time of shuffling, the Cell diversity manager gives the shuffling signal to the STM and 

the execution unit, which will start the process after the next reported Checkpoint and based on 

the provided shuffling orientation as follows; 

Temporal shuffling, we have mainly two realization modes for temporal shuffling the greedy 

and the light modes. The system designer can select either one of them based on the available 

deployment-platform host resources, and the criticality of the application. The greedy-mode 

with seamless handover offers virtually no-downtime but duplicates the resource usage at the 

time of shuffling, and the light-mode offers no-resource increase at the time of shuffling on the 

account of increasing the transition time by the time needed for variant loading and 

synchronization. We will briefly describe both. 

The greedy-mode “local replication”: Upon reception of the shuffling signal, the execution 

unit starts to load the new variant in freeze “ideal” mode.  The new variant will connect to the 

STM that will locally synchronize the execution checkpoint with it. The communications unit 

will duplicate all the inputs to the old and the new variant. Upon reception of the ACK Signal 

from the STM and the communications unit confirming that the synchronization is completed, 

the execution unit sends pause signal to the old variant, and a resume signal to the new one 

followed by a termination signal to the old variant.  

The light-mode: Upon the reception of the shuffling signal, the execution unit starts by local 

synchronization with the STM for the checkpoint update. Then it pause the old variant, and 
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informs the STM and communication unit about the execution hold. The communication unit 

will buffer incoming messages for the duration of the handover. The execution unit will 

terminate the variant, and starts loading the new variant with the last known checkpoint, and 

informs the communication unit and the STM about the successful loading to resume execution. 

The communications unit will send any buffered messages to the new variant.  

Spatial shuffling: the Cell diversity management unit starts by asking the GMS to deploy new 

Cell as a new spatial shuffle destination and reply with the distention temp id. The new Cell will 

be deployed in replication mode with 2 ids the Source id, and a temp id valid only for the 

duration of the handover. The source Cell will treat the destination as a replica, and inform the 

routing nodes to forward a copy of all incoming messages to it. The GMS sends a resurrection 

signal to the destination Cell when the process completes, followed by a termination procedure 

to the source Cell. The GMS will fix the DNS and erase the temp id entry.  

Diffusion induction and set change: let us take an example, an attacker might be able to 

induce a change in the system surroundings, like a DOS attack to overload the network to force 

the system to shuffle the currently executing variant-set. The Cells close to the induced event 

change their variant set to target a different quality attribute (e.g. performance) that suits the 

induced change in the environment. Based on the configuration policy this incident requires a 

diffusion shuffling. The affected Cells send their request and incident report to the DMS. DMS 

will check for the trustworthiness of the request by the help of the ARMS, then it selects the 

most appropriate destination based on the current policy, security requirement, and load balance 

threshold. DMS will forward the request to the appropriate routing nodes in the targeted area for 

broadcasting.  

The diffusion scope and direction depend on the ARMS feedback, and the situation evaluation 
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at the requester area” possibility of attacks, network problems,…..etc”. The destination area will 

be selected to the best interest of the whole network taking into consideration the performance 

aspects of the Cells in the destination area. 

 Cells who receive shuffling recommendations will take their own decision independently 

whether to comply or not. The decision is guided by the current local Cell policy and the status 

of its working-context reported by the situational awareness units. Cells who decide to shuffle 

will replace the current active variant by another variant from the same set preserving the 

previously targeted quality attribute. 

3.5 Security analysis 

In this section, we discuss the security aspects within ChameleonSoft. A threat model will be 

presented identifying the list of assets ChameleonSoft have from the application, and the 

infrastructure point of views. We list some of the imminent threats facing moving target defense. 

Additionally, we will present ChameleonSoft as a countermeasure for these threats. Finally, we 

present an analytical study of CBE strength.  

3.5.1   Identifying the assets  

ChameleonSoft as a moving target defense is designed to protect the application survivability, 

stability, and integrity, and to minimize the cost of development. ChameleonSoft reduce the time 

and effort of software verification needed to locate hidden implementation and design 

vulnerabilities that can be exploited to launch attacks. The only added requirement needed to 

support Chameleonization is the necessity of respecting the separation between data, and logic. 

Accomplishing that, enables ChameleonSoft to focus only on maintaining a valid execution 
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workflow. The application main assets are application survivability, execution 

maintainability, and data safety.   

3.5.2 Identifying the threat 

Many of the well-known software attacks that has been identified for more than two decades 

“Ex, Buffer overflow,..” are still being used by attackers to gain control-of or to crash an 

executable software. The current software defense mechanism has proven to be inadequate to 

insure software execution safety. Moving target defense was introduced as a solution minimizing 

the attack surface by mobilizing the attack entry points “exploitable vulnerability” away from 

attackers.  

The authors of [77] argued that the actual benefits of the conventional applications of moving 

target approach are in fact often much less considerable than one would expect. They analyzed the 

security properties of a few example defenses and attacks/ attack-classes, and identified scenarios 

where moving target defenses are and are not effective.  Table  3.2  summarizes their effort 

towards estimating the effectiveness of dynamic diversity presented by the current technology 

against five important attack classes. The study illustrated that conventional dynamic diversity 

yields no benefit for circumvention and deputy attacks, since the attack does not depend on 

guessing the randomization key. For brute force and entropy reduction attacks, the benefits of 

conventional dynamic diversity are marginal and only increase the attacker’s workload by at most 

a factor of two. Dynamic diversity holds the most promise for probing and incremental attacks. 

Giving the current technology, the rate of re-diversification required to obtain tangible benefits, 

especially against probing attacks, appears to be very high [78].  
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The authors concluded by illustrating that the effectiveness of the diversity utilization for 

moving target defense could be enhanced by combining more than one diversification technique 

and by utilizing the N-variant approach.   

 Circumvention 

attacks 

No advantage 

Deputy attacks No advantage 

Entropy reducing 

attacks  

At most doubles expected 

attack time 

Probing attacks Very high rate of 

randomization may thwart 

attack 

Incremental 

attacks 

May provide significant 

advantage  

Table  3.2 Effectiveness of moving-target defense 

3.5.3 ChameleonSoft as a countermeasure  

In the subsections, we will briefly describe each attack class presented in [77] and how 

ChameleonSoft can, be an adequate solution to mitigate or at least extremely complicate applying 

such attack. We will focus on illustrating that using multidimensional spatiotemporal runtime 

diversification can be sufficient to mitigate this list of attack-classes within the lifetime of a 

Chameleonized software variant.  

The circumvention attack is one of the most dangerous attacks; where attacker strategy is to 

circumvent the diversification entirely [77]. This can be done if the attacker finds any exploit that 

does not depend on the properties altered by the diversification. A good example of this attack 

strategy is the return-oriented programming that was presented in [76]. Return-oriented 

programming can be considered as a more general form of the well-known return-to-libc attack 
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[79].  The main difference is that instead of relying on the functions provided intentionally by 

libc, return-oriented programming exploits fragments of code found in the binary to provide a 

Turing-complete programming system without needing to inject any code.   

CBE presents multidimensional spatiotemporal diversity with a frequent and Cell-independent 

change of diversity-employment frequency, and orientation. Such dynamic unpredictable changes 

massively widen the diversification scope increasing the attacker uncertainty about the 

spatiotemporal location of any utilizable attack point.  Giving the COA fine grained application 

design, and ChameleonSoft, multidimensional diversity application it is very hard for an attacker 

to trace and synchronize her attack with such complicated diversification methodology.   

In addition, utilizing CBE non-uniform random special diversity where the Cell itself has no 

idea about the migration destination adds a physical barrier against such attacks.  

In a confused deputy attack [80], an attacker finds a way to use a benign program in a 

malicious way. For the conventional defenses, the main fear was that an attacker will be able to 

find a way to use the program to apply the randomizing transformation to the attacker’s data. 

doing so reveals the details about the diversification mechanism being used.  

This attack might be executed in our Chameleonized environment if the attacker was executing 

a malicious Chameleonized application working as a probe or data collector nodes to reveal the 

diversification mechanism used by ChameleonSoft. Fortunately, such attacks will not succeed, as 

each program executes in an encapsulated environment within a dedicated host Cell. The Cell 

takes independent real-time local decisions about the diversity employment methodology. 

Knowing the details about the diversity application methodology of one or more Cells, does not 

have any impact on, or reveal any information about others Cells. In addition, maliciously 

utilizing one of the Cells will be detected and resolved by the infrastructure ARMS.  
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For the brute force and entropy reduction attacks where the attacker simply attempts all 

possible randomization keys until an exploit is found that succeeds. Researches in [77] started that 

if the key space is small enough, such attack may be practical.  

 In ChameleonSoft, the search space is supposed to be large enough to circumvent such attack.  

The application is fractionized into parts, encapsulated into Cells, and deployed randomly on 

remote hosts. These Cells constantly apply stationery temporal shuffling, and frequently migrate 

between heterogeneous platform/hosts.  An attacker targeting specific vulnerability that can be 

exploited aiming to crash certain service or a host has to resolve this dynamically changing puzzle 

within the lifetime of the code variant that holds such vulnerability.  

A probing attack attempts to overcome a diversity defense by using probe packets to learn 

properties of the randomized execution. A probe attack is distinguished from a standard entropy 

reduction attack in that the probe packets are designed only to obtain information about the target, 

rather than to produce the desired malicious behavior [77]. An incremental attack is a form of 

probing attacks where more than one successful probe is needed to obtain sufficient information 

to construct the exploit. 

The attacker can utilize the mechanism illustrated before by deputizing malicious Cells to 

collect information about the shuffling scheme, or even use local probes in the host for the same 

objective. In all cases, the information collected will not be useful as each Cell takes its own 

decision about the diversity employment mechanism and orientation.  

We finally conclude that using ChameleonSoft multidimensional spatiotemporal diversity 

employment increase and widen the attacker search space for an utilizable vulnerability that can 

be used to penetrate the system. The independent runtime behavior change complicates the 

mission for probes to collect useful information about executable software. Even with incremental 
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distributed multithreaded data collection over large portion of the COA-Cell network, it is too 

hard to synchronize the attack to cope with ChameleonSoft induced uncertainty and independent 

decision-making.  

After all, even if the attacker was successful, chameleonized software are always protected by 

the CyberX multimodal dynamic recovery. If the attacker managed to crash specific Cell/Host, 

the Cell will anonymously be recovered with a minimal downtime. 

Additionally the system is built to emphases the idea of global situational awareness, where 

infrastructure management is aware of what is happening in all the executing Cells. A partially 

successful malicious attempt on any part of the network will most probably be avoided in the 

future not only on that part but also over the entire network.    

3.6 ChamelonSoft behavior encryotion mechanism “The Key” 

Claude Shannon in 1949 introduced the confusion and diffusion properties of operation as a 

way to quantify the strength of secure cipher. We present a key like mapping between the key in 

message encryption and CBE key to enable quantification. We built our mapping based on the 

fact that both keys have similar semantics but they are not exactly equivalent. Message encryption 

depends on a key, while CBE depends on a set of parameters that maybe constructed as a key or 

genetic material. We used measures of confusion and diffusion to evaluate the strength of our 

CBE. CBE is an encryption technique with added unique characteristics.  

We are not the first to make this mapping for the sole purpose of quantification [81]. 

Otherwise, it would be hard to find a methodology to quantify the level of provisioned security. 

There might be other methods, but this was the one that we choice.   
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In normal encryption, the main objective is to produce an unbreakable cipher by prohibiting 

the readability of the plain text, while in our case our objective is to prohibit the tractability of the 

temporal or spatial location of any software vulnerability. We do not use the term encryption for 

confidentiality; we address it in the terms of un-traceability.  

In Table  3.3 we present a comparison between the CBE and the conventional message 

encryption. The table presents the points of similarities and differences, in addition to clarifying 

the definition, objective, methodology of realization of the term confusion and diffusion in both 

CBE, and message encryption.   

 Message encryption Behavior encryption 
Definition Definition it is a conditionally 

reversible transformation 
of information (plaintext) 

using an algorithm 
(cipher) to make it 

unreadable to anyone 
except those possessing 

special knowledge needed 
to reverse the operation, 
usually referred to as a 

key. 

it is an untraceable 
multidimensional 

transformation across 
time, space, and platform 

heterogeneity of the 
software execution 

behavior by employing 
runtime spatiotemporal 

diversity over executable 
code variants. The process 
must be irreversible within 

the lifetime of the 
software execution. 

 
Objective Unbreakable cipher Untraceable cipher 

Confusion  Definition  refers to making the 
relationship between 

the plaintext and 
the ciphertext as complex 
and involved as possible 

it is the process of 
inducing random and 

intentional extremely un 
correlated changes "across 

time, space, platform 
heterogeneity" in the 

runtime execution 
behavior of software to 

complicate establishing a 
relationship between the 
encrypted behavior and 

the expected normal 
change in the execution 
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behavior in-response to an 
induced malicious event. 

Method Enforced via a complex 
functional relationship 

between the plaintext, key 
pair, and the ciphertext, 

single change in the input 
result in massive change 

in the output. 

dynamic repeated 
multidimensional runtime 

transformation of 
executable code variants 
across time, space, and 
platform heterogeneity 

Objective Maximizing the time that 
the attacker consumes to 

determine the relationship 
between the plaintext and 

the ciphertext key pair. 

Maximizing the time 
needed to allocate in time 

and space the exact 
location of a specific flaw-

full software 
Evaluation Measuring the bit mixing 

property as an indication 
for the complexity of 

making a relation between 
the key and the cipher text  
.  “Ex, the frequency test” 

Measuring the amount of 
the overall spatiotemporal 

changes in the output 
behavior of the network 

over time, and in response 
to induced changes. 

Diffusion Definition Refers to the property that 
redundancy in the 

statistics of the plaintext is 
"dissipated" in the 

statistics of the ciphertext. 

Refers to the non-
uniformity in the 
distribution of the 
behavior change in 

response to malicious 
induced change in the 

input behavior should be 
redistributed into the non-

uniformity in the 
distribution of much larger 

structures of the output 
behavior to dissipate the 
change across the whole 
network, which is much 

harder to detect. 
Objective Complicating statistical 

attacks by making any 
changes in the plaintext 

affect many uncorrelated 
parts of the ciphertext 

Complicating statistical 
tracing attempt by making 

intentional and non-
intentional changes in the 

network execution 
behavior independently 

affect many uncorrelated 
locations in the network. 

Methods Dissipating the statistical 
structure of the plaintext 

in the long-range statistics 

Dissipating multiple 
independent random 

behavior changes across 
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of the ciphertext. time and space "by 
shuffling" in response to 
any intended or random 

changes in any part of the 
network. 

Evaluation  The amount and the level 
of change dissipation in 

the output in response to a 
single change in the input 
“Ex, Avalanche criteria” 

The amount and the level 
of dissipation in the 

distribution of change in 
the output behavior in 
response to a single 
change in the input 

behavior 

Table  3.3 Comparison between message encryption and ChameleonSoft behavior 
encryption 

 

We consider CBE as a multi round encryption mechanism, where the output of a single round 

is always valid for use directly without decryption within the lifetime of the round.  Additionally, 

CBE has no limits for the number of rounds needed to produce the final output. CBE use the 

output of each round as an input to the next round in order to increase the complexity of the cipher 

linearly overtime. 

CBE is an encryption scheme that does not need any key management or exchange 

mechanism. The reason behind that resides in the fact that CBE output is useable without 

decryption. Additionally, CBE is an event driven encryption scheme; where the encryption key, 

the inputs, and the outputs have multiple elements representing different events affecting the 

encryption processes.   

In our system, rounds are time slots. A single time slot might contain multiple temporal or 

spatial shuffles for confusion induction, or random independent distributed variant changes for 

diffusion induction.   
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Figure  3.8 Behavior encryption process  

 Figure  3.8 gives an abstract view of the behavior encryption process. The process involves 

multiple rounds of confusion and diffusion guided by dynamic parameters. These parameters 

represent the key to our encryption mechanism. The confusion process is responsible for temporal 

and special change in the current behavior by manipulating the Cell location and/or the executing 

variants. The diffusion process is a random change in the execution behavior of multiple Cells 

based on independent decisions guided by distributed recommendations to diffuse the changes all 

over the network in an intractable way. The whole process is guided and controlled by the “key” 

or the decision making input parameters.    

The level and the nature of the induced confusion, and diffusion depend on the input 

parameters and a set of runtime events.  The following is a list of inputs, outputs, and events that 

can significantly affect the decision-making process controlling the diffusion and confusion 

processes.  

The encryption module input parameters are mainly the {Current variant Id, Set Id, and 

location Id}. CBE has two main incoming-events triggers that affect the encryption process {the 

current temporal shuffle time stamp, and spatial shuffling time stamp}.  The encryption module 

output parameters are {Next variant id , Destination Cell X,Y location}. The output new list of 
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events triggers are {Change the current active Set , current active recovery mechanism, Shuffle 

for diffusion requests, Next temporal shuffling time stamp, and Next spatial shuffling timestamp}.  

The encryption key that determines the configuration for the next encryption round is 

composed of the following; Application requests regarding shuffling “ uphold, hold, delay, speed” 

, Application request to match new quality attribute, Current temporal shuffling frequency “ time 

frame for the next shuffle” , Current spatial shuffling frequency “ time frame for the next shuffle”, 

Incoming Shuffle for diffusion requests, and Change current targeted quality attribute request 

based on external input. The encryption module output is mainly the input of the next round. 

3.6.1 Evaluating the strength of CBE 

Many algorithms are computationally strong, or practically unbreakable, in the sense that the 

resources required for timely cryptanalysis are either unavailable or prohibitively expensive [82].  

In practice, a system needs only to be strong enough to provide a level of security commensurate 

with the risk and consequences of breakage in some specified period of time.  Increasing the 

strength of the cryptographic system usually increases its cost and degrades system performance, 

so no more resources than the expected resource loss resulting from breakage should be invested 

in encryption 

One of the methods used to assure the strength of a certain algorithm is determining the key 

strength against brute force attack considering the lifetime of that key.  

Let us assume that the following is a list of possible values for the key presented in the 

previous section for a Cell i in a network of k Cells.  
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Variable Possible range of  values 

Application requests regarding 

shuffling  

 

{u,h,d,s}+ possible 2 digit decimal number holding 

the time out for the current command or the shuffling 

speed; total of 6 

Application request to match new 

quality attribute  

 

{number of available quality attributes} ; Z 

Current temporal shuffling 

frequency  

 

2 digit decimal number  

Current spatial shuffling frequency  

 

2 digit decimal number 

Incoming Shuffle for diffusion 

requests 

 

{S,NULL} , total of 2 

Change current targeted quality 

attribute request based on external 

input  

{number of available quality attributes} ; Z 

 

Table  3.4 CBE strength evaluation parameters 

 

We used the values in Table  3.4  to estimate the total number of permutations needed to crack 

the key of this single Cell i. We assumed that the attacker has a prior knowledge of the current 

input, the encryption algorithm, the Cell independent parameters, the variant shuffling selection 

mechanism, the variant pool and the current indexing mechanism and seed.  

The total number of permutations needed to crack that key for Cell i is a minimum of 

Z*Z*2*2*2*6= 48Z2 permutation.  
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The attacker has to collect all these information and carry her calculations for that key within 

the time frame of a single shuffle for that particular Cell I out of k Cells.   

Regardless of the impracticality of such attack within such time constraints, Cells are highly 

dynamic, and many of these parameters will be changing over time. Based on the fact that Cells 

do not need to maintain any static information to be used for decryption, they can frequently 

change the random seeds they use for local memory indexing, variant selection, and migration 

destination selection. 

In a mono-variant static system it is easy for an attacker to diffuse the same attack all over the 

network with all nodes executing the same variant. Even if there was a recovery mechanism, 

attack reapplication will cause a denial of service due to the excessive downtime due to multiple 

failures.  In CBE compromising a Cell is independent of compromising other Cells. An attacker 

with full control over a certain Cell will be harmless to other Cells. On the contrary, any malicious 

usage of this compromised Cell will result in increased level of security provisioning all over the 

network.   

3.7 ChameleonSoft role in mitigating the BlackWidow attack 

 
In this section we intend to discuss the ability of ChameleonSoft to invalidate the attacker 

assumptions on the case study “BlackWidow attack scenario” presented in Chapter 1. We list 

part of the assumptions listed in Chapter 1. We focus only on the assumptions that 

ChameleonSoft participates in disputing. The rest of the assumptions are disputed by the reaming 

contributions of CyPhyCARD, EvoSense or CyberX.  

Attacker assumptions: 
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1. The defense system shares the same network or host with the target of attack/defense 

system. 

2. The system is not capable of being fully situation aware of all its components in a 

massive-scale network in real time. 

3. The defense system management workstations (that the administrators use) share the 

same network with the target of defense.  

4. Defense systems are not resilient against attacks, and have weak recovery mechanisms. 

[Note: most of them assume that they will not be the target of an attack as long as they 

were able to secure their ToD. Additionally, usually they have no intrinsic failure 

recovery.] 

ChameleonSoft major contributions that participate in disputing such assumptions are: 

ChameleonSoft software behavior encryption and trace resistant moving target defense, online 

autonomous adaptation to changes, and the intrinsic resilience of the building blocks, the 

enhanced Self and situation awareness of the platform and the Cell itself. These contributions will 

work against the aforementioned attacker assumptions, or the goals behind such assumptions.  

ChameleonSoft software behavior change will work against the goal behind assumptions 1,and 

3. The attacker assumed that if the defense applications are sharing the ToD platform or network, 

it can be affected by attacking it, or it can be utilized to disrupt the operation of the ToD 

application. The attacker cannot target specific vulnerability in the executing software within the 

host machines to lunch her attack. It is almost impossible with such runtime dynamic 

spatiotemporal change, to induce certain changes to static applications working on defense 

provisioning causing them to fail. Using ChameleonSoft works against that, as the defense 
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services hosted on a CyberX managed platform and protected by ChameleonSoft will be resilient 

against any utilization of any available flaws.  

The intrinsic smart situational awareness of the platform building blocks, and the platform as a 

whole, works against assumptions, 1 and 2. The ChameleonSoft and CyberX hierarchal 

management framework is capable of handling large scale networks and being fully aware of 

what is really happing within such networks.  

ChameleonSoft trace resistant moving target defense and CyberX intrinsic recovery works 

against assumption four and the goals behind the four assumptions that the attacker was targeting. 

The main target for the attacker was to fail the defense services. With ChameleonSoft moving 

target defense it will be hard to target any available entry points for the attacker. Further, with 

CyberX automated fast recovery; the attacker will not be able to easily fail an application. The 

failed Cells “hosting application threads” will be recovered from any failures autonomously. 

Additionally, the Chameleonized recovery system by itself contributes partially realizing the 

moving target concept. The technique used for recovery intentionally deploys the replacement 

Cells in different geographical locations, with different platform configuration from the failed 

Cell to minimize any chances of re-failure. Doing so, moves the attacker target which is the 

vulnerable application executing within the Cell away from the attacker. Giving this mechanism, 

it is not even in the attacker benefit to try to fail any of the COA Cells as doing so makes it almost 

impossible for him to target this Cell again.  

3.8   Conclusion 

In this chapter we presented ChameleonSoft as a moving target defense mechanism against 

software attacks. The system is built over our novel CyberX-managed Cell-Oriented Architecture. 
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ChameleonSoft leverages CyberX to apply multidimensional spatiotemporal diversity and hot 

shuffling of variants, hence effecting software execution behavior encryption. ChameleonSoft 

relay on CyberX multi-mode, autonomous, situation-aware recovery system to enhance the 

defense process against coincidental and intentional failures. Further, it adjusts system shuffling 

and recovery policies at runtime to meet the continual change in the operational environment. 

There are several interesting challenges to be addressed in the future. These include autonomous 

detection and profiling of behavior; adjusting shuffling decisions based on that profile; software 

Chameleonization including formalizing an automated variant generation system, and presenting 

alternatives for legacy non Chameleonized software. 
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Chapter 4 

4. Bio-inspired Evolutionary Sensory System 
for Cyber-Physical System Defense

 

 

 

4.1 Introduction 

Major physical infrastructure systems such as the water distribution systems and the electric 

power grid are large-scale complex systems that are expected to be highly reliable and 

trustworthy. Modern versions of these infrastructure systems go far beyond simple measures to 

integrate intelligence and automated control into the system through tightly coordinated and 

integrated cyber components constructing large-scale Cyber-Physical Systems (CPS).  

CPS safety and security are prerequisites to assure stability, reliability, and survivability of such 

mission-critical systems.  Defense services for CPS are highly dependent on the promptness and 

accuracy of the Monitoring and Analysis (M&A) mechanisms employed. Traditional M&A 

approaches do not treat sensing and effecting for cyber components and physical components 

seamlessly.  

The current M&A mechanisms were designed based on a set of assumptions that unintentionally 

neglect the real-time interaction and the tight coupling between these converging components. 

The assumption was that physical components were protected by isolation and parameter 

When you aim for perfection, you 
discover it’s a moving target” .. 
Geoffrey Fisher 
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defense while real-time response was not a primary factor for cyber components. Further, they 

assumed that there is no need to employ privacy preservation techniques as the Target of 

Defense (ToD) privacy is implicitly protected by cyber and physical parameter defense. 

Additionally, they assumed that resource heterogeneity and scale could still be resolved by a 

distributed set of heterogeneous, pre-deployed platform-dependent defense tools with fixed 

resource profiles.  

  Research works in [83,84] as well as our own have disputed the validity and correctness of such 

assumptions as they lead to drastic problems and limitations negatively impacting the quality 

and promptness of the CPS defense service provisioning. Current CPS Defense Service 

Providers (CPS-DSPs) fail to provision trustworthy robust and reliable monitoring and 

evaluation of the ToD components due to the use of scattered, uncoordinated, uncooperative, 

unaware, isolated and heterogeneous monitoring tools, and reporting mechanisms. Such 

limitations increase the use of resources due to redundancy, increase the risk of conflicts, and 

failures due to limited awareness and coordination, lower the defense quality due to the poor, and 

boundary  limited feedback, increase the latency in defense provisioning and in detecting attacks 

giving the attacker the advantage to spread the attacks through multiple networks, the tool 

heterogeneity and uncooperative nature massively complicates automating its management, the 

static nature of such tools complicates attempts to autonomously adapting to changes in the 

surroundings.  

The problem is not only at the monitoring and evaluation phase of the defense provision process, 

but also at the analysis and investigation phase where the collected feedback gets analyzed 

searching for attack signs and indications. When the network scale grows exponentially, it 

becomes almost impossible to analyze the feedback from all the sensors, compile that feedback 
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together, and extract valuable information from it efficiently, and promptly. Additionally, due to 

the isolation between the monitoring technology and the analysis technology, and the lack of 

computational power needed to expand the sources of feedback, the current analysis technology 

does not have enough data to be fully aware of what is globally happening in the network under 

investigation. 

Having most of the conventional analysis mechanisms designed to share the same host/host-

network for the sake of protecting their privacy, lead to serious limitations. The limited 

investigation search space, being easy to be targeted by attackers, Can be used to cause a DOS 

attack, and cannot cooperate in analyzing feedback or share information with out-of-perimeter 

nodes are examples of such limitations. 

In addition to the presented set of limitations in the field of monitoring and evaluation, and 

analysis of feedback, the control phase has another set of serious limitations too. Control phase 

represents the stage where the defense system takes actions regarding detected threats face a 

serious set of limitations.  

Control related limitations are mainly the result of lack of cooperation and awareness that limit 

the defense tools capability to resolve or even contain persistent fast spreading attacks. For 

example, it is too hard for such uncoordinated, scattered tools to marshal and coordinate task 

force to hunt down the attacks spreading all over the network or a set of interconnected 

networks. The reason behind such complexity is the difficulty in autonomously and promptly 

controls and coordinates both the DSP, and the ToD tools and equipment to block attack access 

given the current centralized management technology. Further, without appropriate global 

control, and situational awareness it is too hard to block the source of dynamic fast-changing 
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remote attacks.  Such limitations can be utilized to cause DoS attack by keeping the DSP busy 

treating infected files and strike more and more files.  

This chapter presents an Evolutionary Sensory System (EvoSense), designed to induce a new 

paradigm for defense service provisioning that intrinsically and comprehensively addresses the 

aforementioned challenges facing conventional techniques. EvoSense is a biologically-inspired, 

intrinsically-resilient, intelligent, situation-aware sense and response system to effect biological-

immune-system-like defense provisioning. We address ToD heterogeneity and scale by enabling 

dynamic defense resource elasticity.  

EvoSense is designed to separate the main defense provisioning concerns; the tool logic, 

management and control, delivery mechanism, and physical resources. EvoSense Utilize our 

smart, biologically inspired, resilient, adaptable, self and situational aware, elastic, and 

autonomously managed building blocks (the Cell) to construct mobile, dynamic, and runtime-

reprogrammable defense carriers to pervasively distribute accurate, trustworthy, and prompt 

defense services. EvoSense acts as a middle layer between the defense service provider(s) and 

the ToD creating a uniform defense interface that hides ToD’s scale and heterogeneity concerns 

from control and management.  

  This uniform representation enables interoperable and cooperative defense. Further, such 

isolation maintains defense provisioning survivability in case of ToD failure and DoS attacks. 

Additionally, EvoSense autonomously and dynamically profile ToD hosts and direct defense 

services based on the host dynamic behavior and attachments. EvoSense shares the same 

biologically-inspired, intrinsically-resilient, adaptable foundation of the remaining CyPhyCARD 

pillars, the   CyberX managed Cell Oriented Architecture (COA) described in chapter 2. The 
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COA provides intrinsic dynamic, distributed, resilient resource management and allocation 

needed to support EvoSense pervasive M&A.   

EvoSense manages a vast number of elastic and intelligent containers (Cells) to host/abstract 

cyber/physical sensing and effecting tools.  EvoSense mimics the human blood stream 

circulation effect by utilizing its adaptable infrastructure to circulate these context-driven, 

functionally customizable sensor and effector Cells into the ToD body to pervasively monitor, 

analyze and control the TOD components. EvoSense sensors and effectors are used to execute 

defense missions provisioned by DSP. A defense mission is a mixture of sensing and effecting 

tasks involving information gathering, partial analysis, control, and manipulation of the ToD 

elements.  

EvoSense can alternate/mix different defense/control missions from different DSPs to provision 

defense services to the same ToD in a process called vaccination. The vaccination process 

involves sharing defense experience and tools between DSPs in terms of abstract missions, and 

sensing and effecting packages. Vaccines are autonomously checked for privacy violations and 

maliciousness before utilization or storage.  It is exactly like in biological systems where 

antibodies can be extracted from one immune body to another to create a healthy up-to-date 

defense community.   

EvoSense’s main contributions presented in this chapter can be outlined as follows:  

• Enable pervasive autonomously managed monitoring and analysis; 

• Uniform defense service provisioning for heterogeneously-composed multi-enclave 

CPS systems; 
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• Enable trustworthy, interoperable multi-organization cooperative, dynamic, 

autonomous defense; and 

• Facilitate early failure/attack detection and resolution.  

4.2 Evolutionary Sensory System (EvoSense) 

4.2.1 The Foundation  

EvoSense is an evolutionary sensory system designed to enable real-time pervasive monitoring 

and analysis towards autonomous context aware defense service provisioning. EvoSense defense 

provisioning platform is composed of three main layers, the management layer, sensor and 

effector abstraction layer, and sensor and effector tools layer as presented in Figure  4.1. The three 

layers are founded over our CyberX managed COA. The management layer rules are played by a 

set of organisms composed of Cells. The abstraction layer uses COA Cells to encapsulate attack 

investigation and resolution tools defined as binary code variants (APIs) constructing a set of 

platform independent sensing and effecting capsules. EvoSense constructs a biological immune 

system like, defense environment by circulating generic streams of such capsules into the (Target 

of Defense) ToD body to induce a blood stream like effect.   The following subsection illustrates 

and provides more technical details about the defense-capsules creation process, and the defense 

provisioning methodology of EvoSense. 

4.2.1.1 EvoSense organisms and Capsules composition  

EvoSense leverages the COA ability to abstract, encapsulate, and virtualize heterogeneous 

physical and logical resources into unified programmable objects “Cells.” Cells are sandboxes 

internally construct a suitable working environment for heterogeneous tools. Externally, it is 
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capable of changing its characteristics to work with many targeted architectures. Regardless 

whether the sensing target was a computer in a network, or a physical sensor with COA-ready 

digital interface COA Cells will hide these differences from the enclosed sensing/effecting API. 

EvoSense uses the middleware (CC-DNA) installed on the ToD host machines to instantiate, 

deploy, and host sensor and effector Cells. EvoSense sensors and effectors are a set of 

precompiled APIs with specific sensing or effecting tasks. Sensors and effectors come with a 

detailed specification file describing the targeted platform, estimated computational Wight, 

needed libraries to support it, possible conflicts, ... etc 

 EvoSense defense mission (organism role) is defined using a custom-made programming 

language used to generate scripts defining the structure, workflow, and the set of tasks for the 

sensing and effecting organisms. Additionally, it also defines the type of sensors and/or effectors 

needed to execute that mission.   

Organism creation starts when the host CC-DNA receives the logic script. CC-DNA interprets 

this logic to construct the organism sensor or effector Cells. In COA, resources can easily be 

acquired when needed.  CC-DNA might ask the local or remote logic reservoir for any sensor or 

effector APIs that are required to execute the designated sensing or effecting mission in case they 

were not already available on the targeted host.  

4.2.2 EvoSense defense provisioning methodology 

EvoSense defense provisioning includes two main modes, a DSP-guided mode where EvoSense 

blindly execute predetermined defense missions provided by the DSP; and an evolutionary-mode 

that involves evolutionary sensing, and effecting.  The DSP-guided modes use EvoSense as a 
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delivery platform that executes certain commands blindly without being involved in the details 

of the process. EvoSense collects runtime commands and deliver real-time feedback to the DSP. 

This mode is highly un-scalable and not recommended for large systems. As this is a limited 

version of our Evolutionary sensory system, we will move forward and illustrate more about the 

more generalized mode the evolutionary-mode. 

4.2.2.1 Overview and initial configuration 

Evolutionary sensing aims to detect malicious up-normal behaviors without prior knowledge of 

that behavior. In both modes, EvoSense maintains minimum level of security by maintaining the 

normal work mode of the currently-being-used tools on the ToD. EvoSense treats such tools as 

part of its sensing and effecting arsenal. The Evolutionary sensing process involves analyzing 

and correlating different information feeds from multiple sources to magnify up-normal behavior 

deviation identifying possible attack indications. Evolutionary effecting involves utilizing the 

pervasive control feature of EvoSense to autonomously deploy safe-resolution tools "that doesn't 

conflict with the running applications," or to contain such attacks within certain perimeter while 

waiting for administrators to provide clear resolution procedure to execute. The deployment or 

containment mechanism works based on an intelligent and dynamic profiling mechanism.  

The profiling mechanism works on the fact that attacks can be directed attacks working towards 

certain objective, or undirected attacks that seek maximizing the victim losses. Even for 

undirected attacks they can be considered as directed attacks at certain levels. For example, at the 

operating system levels, windows based attacks cannot infect Unix operating hosts, Java based 

attacks cannot infect C based software packages, ….etc. The working environment of a certain 

host can significantly limit the type of attacks infecting this host even for undirected attacks. 

Based on that, we can easily classify attacks into groups based on certain classification protocol. 
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Such classification can be attributed with a set of parameters determining the likelihood of 

having an attack under this class/group in one of the hosts within certain boundaries.  

EvoSense has a set of pre-deployed manually/automatically generated profiles used to direct the 

sensor circulation and the basic deployment package for each host.  EvoSense adapt such profiles 

all the time to maximize the efficiency and accuracy of defense provisioning. The dynamic 

adaptation of profiles adjusts the definitions defining the needed type and density of defense 

missions within each profile. Each profile is configured to match the host, host network, attached 

organization or enclave settings.  

4.2.2.2 Joining EvoSense Network 

Joining an EvoSense-equipped DSP network procedure starts by installing the CC-DNA on the 

host machines, registering the hosts' physical IPs, hosts configurations, and their security and 

privacy policies to the DSP host database, and classifying the host based on one of EvoSense 

Profiles. Usually the host follows the general profile of the enclave/ organization that it belongs 

to. However, EvoSense can assign a more fine-grained profile to a certain set of hosts within the 

same network if they are supposed to behave differently at runtime. The configuration of such 

fine grained profiles can change over time if the behavior of the host or the surrounding changes. 

The host configuration profile illustrates all the details regarding the host platform, 

computational capabilities, the organization /enclave id(s) for that host if any, and any special 

consideration regarding the applications running on it. The security and privacy policy defines 

the needed security level, the scope of cooperation, and the type of allowable sharing materials.  

Upon registration of a new cyber/physical host, EvoSense is notified to start the initial evaluation 

of the host to determine the profile that the host will follow, identifying the basic sensor 
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deployment-package composition-profile. EvoSense interprets the host record in the DSP 

database to identify the appropriate types of sensors and effectors APIs that match the host 

configuration-profile. EvoSense will deploy the evaluation-sensors package to initiate the initial 

checkup to verify that the host the minimum requirements needed to join the DSP network. In 

case of any problems, EvoSense will autonomously deploy the appropriate effectors to resolve it. 

EvoSense frequently change the basic deployment-package by circulating new sensors to replace 

old ones. The process is guided by the global sensing feedback not only at the host but also 

through the network, and the defense provisioning profile that the host is following. EvoSense 

use a grading system to continuously evaluate sensors on each host based on their success to 

detect up-normal behaviors. In normal situations, at each evaluation-round, one of the new most 

successful sensors within each profile replaces the least successful senor in the basic 

deployment-package of the host.  The details about sensor circulation are illustrated in subsection 

4.2.6.1. 

4.2.3 Evolutionary sensing and effecting framework 

After joining EvoSense Network, the host defense related aspects will be handled by one of 

EvoSense management units. The management unit works as a part of EvoSense sensing and 

effecting framework presented in Figure  4.1.  EvoSense sensing and effecting framework is 

classified into three main layers management layer, sensing and effecting abstraction layer, and 

the defense delivery tools as illustrated in Figure  4.1.   

The sensing and effecting tools layer is a set of logical sensing or effecting APIs stored in the 

local reservoirs. These tools are autonomously abstracted at runtime into uniform sensing and 

effecting Cells participating in the construction of organisms playing certain defense missions. 
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EvoSense organisms are anonymously constructed, managed, and controlled at runtime by 

EvoSense management layer. This layer is responsible for collecting, correlating, and analyzing 

sensor feedbacks. Additionally, this layer is responsible for taking decisions based on the sensing 

feedback, previous historical events, and DSP guidelines. Such decisions might involve 

composing more capable effecting defense missions for resolution or new sensing missions for 

deeper investigation.  

 

Figure  4.1 EvoSense Abstract View 

EvoSense management layer is a tree-like hierarchical construction, where hosts are connected to 

leaf-Brains "decision making organisms" to be monitored and controlled as presented in 

Figure  4.1. Based on EvoSense administrator settings, each leaf-Brain manages a specific number 

of hosts. leaf-brains frequently reports to their parents "Higher-level brains" for more 

comprehensive guidelines.   
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4.2.3.1 Feedback management and representation  

EvoSense Sensors feedback is a score-sheet like report that compares the behavior deviation 

regarding the sensing target to a predetermined threshold. Sensors are classified into different 

sets representing their targeted sensing objectives " ex, memory, communications, privacy, 

..etc.". Thresholds are dynamically adjusted based on the nature of each host, and the number of 

false negatives/positives reported by the Sensor.   

Score sheets from different sensors for the same host are sent to the leaf-brain to compose 

comprehensive score-sheets to be checked against the defense rules database. Each defense rule 

has a score-sheet attached to it. Rule-sheets have values for different objects "ex, memory, 

communication,.etc" reflecting the behavior patterns "attack signature" of each object in case of 

infection . Behavior pattern description can be discreet or continuous. Rule description also 

includes the host sampling procedure. Sampling procedure describes the needed number of 

samples per object and the duration of each sample, and the sensors needed to takes such 

samples.  

The leaf-brain checks the partial similarity between the sensor feedback "score-sheet" and the 

existing rules-sheets to allocate the most useful rules for the next deployment round. Based on 

that selection, the leaf-brain will compose a new organism, holding the list of sensors mentioned 

in the rule description, with a set of preprogrammed tasks based on the rule sampling procedure.  

Based on the feedback, threats might be detected, and the resolution mechanism described in the 

rule will be followed. The leaf-brain will compose a new effector organism with list of effectors 

mentioned in the rule description and the execution workflow described in the rule. 
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 Rules are under full time update by the parent-brains, and the DSP. Leaf-brain experience is 

frequently reported to the parent-brains for further guidelines. Parent-brains can construct a more 

comprehensive view of the whole network by correlating the leaf-brain feedbacks. Such views 

can magnify certain behavior deviation across the network, which will guide the composition of 

new defense roles to be executed by the leaf-brains for further investigations.   

4.2.3.2 EvoSense information sharing (vaccination): 

At the higher levels of the hierarchy "the parent-brains", the collected incident reports with the 

rules, sensors, and effectors used are archived for sharing. The Clearing-House Organism (CHO) 

role will be easy in this case, as it will check the ToD privacy policy against sharing of such 

materials. As described before, the shared materials carry no indications about the specific 

incident source. It is similar to defense related tips that encourage DSP to apply a specific rule 

because it might reveal certain threats. The reason that motivated DSP to share such information 

might be the rule successfulness to detect a threat at one of her ToDs or it is a new rule that was 

developed with promising results. However, the ToD privacy policy will be checked in case it 

prophets even that level of information sharing.  

The CHO role becomes more significant when the DSP asks cooperating DSPs to provide a 

solution for a problem she has. In this case, the reported suspicious score-sheet and the sensors 

used to extract it will be shared with other DSPs. CHO will check that material to make sure that 

the information enclosed dose not contradict with the ToD privacy policy.  CHO rejected 

authorizations are reported to the administrator to manually override or discard.   CHO will also 

check the DSP feedback regarding such requests, new rules, sensors, and guidelines might be 

provided as a resolution for the problem. Authorized solutions will be deployed, and rejected 
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ones will be reported to the administrator for further guidelines.  The details and the framework 

of defense mission sharing will be described later in section 4.2.3.2. 

4.2.4 EvoSense brain Architecture    

Figure  4.2  illustrates EvoSense brain architecture and composition of organisms and the 

interactions between these organisms to achieve EvoSense goals. I will briefly describe each 

component and its dedicated task.  

 

 Figure  4.2 EvoSense Architecture 

The Analysis and investigation organism is responsible of analyzing the continuous feedback 

from the ToD deployed sensors. The analysis and investigation organism sends reports to the 

Decision making organism to take decisions regarding composing new defense missions, 

authorizing the use; selecting the type of the effectors if needed. The Role composer organism 

will use the decision making organism guidance to compose new defense roles.  The role 
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composition is described using our custom made mission definition language. The role script will 

be sent to the organism composer. The organism composer is a part of the CC-DNA installed 

on the host. The organism composer organism is responsible for the resource virtualization 

process. It will abstract the host resources to compose the requested organism Cells. These 

resources might be physical resources “memory, processor, ..” or logical resources in the form of 

conventional defense tools, or any locally stored sensors or effectors. If any of the resources 

needed to compose the cell did not already exist on the host, the cell composer will acquire these 

resources from the Sensor and effector Reservoir.  Upon generating and testing new defense 

missions the decision making unit might decide to instruct the Profiler to generate a profile for 

the mission with the used tools to be shared with other cooperating DSPs. The sharing process is 

handled through the sharing organism that will manage sending and receiving shared materials 

between DSPs. Sharing or employing shared materials has to be authorized by the Clearing 

House organism. The Defense missions repository organism will hold history of defense 

mission usage either locally within the same DSP or globally through feedbacks from other 

cooperating DSPs with an evaluation for such missions for future reference.  

4.2.5 Information sharing and exchange protocol within EvoSense 

One of the main contributions of EvoSense is the trustworthy information sharing and exchange. 

EvoSense share attack events and detection/resolution materials between different management 

organisms locally within the same organization, and globally between cooperation DSP’s.   

Figure  4.3 illustrates EvoSense defense mission sharing protocol.  
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Figure  4.3 EvoSense defense mission sharing protocol 

As mentioned before, the defense provisioning process is managed by a hierarchy of 

management organisms. At the leaf nodes we have the management layer that manages defense 

mission circulation and execution on the ToD hosts. Such layer collects the sensor feedback, and 

the detected list of events that was sent to it through the score sheet technique described before. 

The collected materials are forwarded to one of the distributed routing organisms. 

The routing organisms collect the incoming reports and send them identifying the report-source 

to the higher layer management. Additionally, all reports that was classified as important events 

by the report source is anonymized and checked for privacy policy violation by the clearing 

house organism to be forwarded directly to the others local management organisms. The clearing 

house organism, ask the local broadcasting organism to handle this task. The broadcasting 

organism will remove any duplicated reports regarding same event, or same defense mission and 

instruct the leaf management units to raise the score of the missions related to the reported events 
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based on the severity of the event. Raising the score of a certain mission will increase the chance 

of applying it in the next mission circulation round.  

At the upper level of the management hierarchy, the collected reports from the lower level 

management units are correlated and analyzed to be presented to the network administrator 

through visualization software. Using such software will make it easier for the administrator to 

visualize the attack activity, the defense provisioning process, and to provision manual override 

or further guideline if needed.   

The higher management units will analyze the collected reports providing further guideline to the 

lower layers. It is also responsible for generating new missions to be stored in the missions 

repository.  

The upper layer management organisms layer provides guidelines to leaf management 

organisms. The upper management layer organisms can add a new package of sensing or 

effecting missions to be executed on a specific or a set of ToD hosts at specific time event; or by 

prioritizing or de-prioritizing “in case of many false positives” one of the missions already being 

used by this management unit.  

DSP level sharing is the responsibility of the higher management layers only. This level of 

sharing occurs upon the reception of a highly suspicious incoming event. The management 

organisms mark such event and its relative defense mission for sharing. A dedicated organism 

named as the sharing organism, anonymizes the shared material, and authorizes it for sharing via 

the clearing house organism. If the shared materials were not in violation of any of the ToD 

privacy policies, the shared materials are sent to all cooperating DSP’s either as an alert or 

asking for a resolution guidelines.  
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DSP attack alerts should include details about the attack and detection/resolution methodology in 

terms of defense missions and sensing/effecting tools. If the DSP was asking for an advice 

related to certain malicious activity, the abstract information related to how such activity is 

identified and formalized as a sensing only mission, all the tools needed to execute the mission is 

added to it to be broadcasted to the cooperating DSPs.  

 

Figure  4.4 The defense mission lifecycle   

Upon reception of such missions, the receptor makes sure that there are no privacy violations. 

The mission is then tested in a controlled environment before applying it to the DSP attached 

ToD’s. If the request was for a resolution guideline, and the receptor DSP has the resolution 

methodology, the resolution is composed in a defense mission format attaching all the needed 

sensing and effecting elements to execute it and sent back to the source. 
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The source test the resolution tools in a controlled environment after making sure that there is no 

privacy violations then based on the administration opinion it might be deployed to resolve the 

reported attacks.  Figure  4.4 represent the defense mission life Cycle. 

4.2.6 Intelligent attack detection and resolution 

The main objective of any attack detection mechanism is to accurately and properly direct the 

correct defense tools towards matching attacks. Researchers proved that accurately identifying 

attacks is an NP-Complete problem [96], while others proved that it might be considered as an 

NP-hard problem as well [97]. The conclusion is that the problem cannot be solved in realistic 

time as the problem space expands exponentially over time. The use of Heuristics is always 

considered to be a good solution for such problems [98]. 

The most successful malware detection mechanisms uses heuristic scanning and signature based 

mechanisms to detect attacks. Heuristics scanning in its basic form is an implementation of three 

metaheuristics mechanism, the pattern matching, automatic learning, and environment 

emulation. Due to the high computational cost of running such heuristics based techniques, 

modern anti-malware techniques that are usually shares the same host or the host network of 

their ToD use a limited set of the available metaheuristics techniques. The reason behind that is 

to save the computational resources and to speed the process of classifying the executable tasks 

without interrupting their execution.  

EvoSense is designed to work in total isolation of the ToD, and to isolate the main design 

concerns of malware detection and resolution, sensing, effecting, and control logic. Working in 

isolation from the ToD enabled EvoSense to use more heuristics techniques and increase the 

depth of learning and investigation of such techniques without any negative impact on the ToD 
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performance, or resources. Most of the workload on the analysis and investigation is waved to 

the DSP platform, and the ToD participates only in hosted sensing and effecting elements for a 

limited time frame. 

As presented in section (C), separating the defense provisioning design concerns enabled 

EvoSense to optimize the process of sensing and effecting saving more of the ToD resources. 

EvoSense intelligent sensor reuse mechanism uses the same sensor to feed multiple heuristic 

techniques, to save a considerable amount of the computational power of the ToD.  

The next subsections illustrate the sensor circulation, selection and reuse mechanisms of 

EvoSense.  

 

Figure  4.5 Sensor selection and deployment 
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4.2.6.1 Profile guided Sensor circulation  

EvoSense circulates its sensors and effectors to execute defense missions. The sensor circulation 

protocol depends on the tool requesting sensor deployment. The defense provisioning process 

involves cooperation between multiple detection and resolution tools. Each tool submits a sensor 

deployment request to the sensor repository to deploy the requested sensors. The requests pass 

through optimization unit to remove sensors that were recently deployed before.  Figure  4.5 

illustrates the sensor selection and deployment procedure.  

4.2.6.1.1 Classification based on profiles 

As mentioned before, EvoSense attach hosts to certain profiles based on the host engagement 

with its organization and enclave, host configuration, behavior, usage pattern, ..etc. some of these 

profiles are static and preloaded with EvoSense management units, and we call them the coarse 

grained profiles. Such profiles focusses on static classification aspects, like organization id, 

enclave id, platform configuration , network protocols, ….etc. this profiles determine the general 

defense provisioning pattern for the host. The second type of profiles is a fine grained dynamic 

profile that determines the usage behavior of the host and mostly reflects the user behavior using 

the host. The type of applications being frequently used, the hours of operation are good 

examples for the aspects controlling such level of profiling. This profile type is dynamically 

adjusted based on changes on the usage behavior. EvoSense uses host resident sensors to monitor 

such changes.  

The main objective behind using such profiling system is to optimize the utilization of defense 

provisioning tools by directing only tools with high success ratio. 
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Attacks are somehow targeted, either from the application-objective perspective, or from the 

technical perspective. EvoSense circulates defense missions while favoring the activation of 

defense tools targeting attacks that match the host profile. EvoSense do not limit tool activation 

to only those who match the host profile to cover any unexpected out of profile attacks.  Using 

profiles to guide tool activation minimize the search space, enhance the detection accuracy and 

promptness and optimize resource usage on the host and on the DSP. 

The detection mechanism relays on multiple control techniques. Signature based technique is 

used by the resident unit to maintain minimum level of security at all times. The evolutionary 

sensing mechanism use heuristic technique to guide and control sensor circulation and to analyze 

sensor feedback to detect unknown attacks, or to identify maliciously acting components.  

4.2.6.1.2 Identifying unknown threats 

The utilization of heuristic / metaheuristics is necessary to enable attack prediction, and detection 

of unknown attacks. EvoSense utilizes its ability to isolate the main defense provisioning 

concerns “sensing, effecting, and control logic” to extract abstract, privacy friendly information 

regarding running processes. The feedback is safely sent to remote analysis units to apply 

whatever logic is needed to detect attacks.  

The selected logic “metaheuristics technique” determines the type of sensors to be used, 

execution pattern for such sensors, sample collection protocol. Additionally, that logic is the one 

responsible for processing the feedback coming for such sensor to determine whether the host is 

safe or not.  The process starts when the selection mechanism selects the metaheuristics 

technique to be used for the next detection round.  
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4.2.6.1.3 Metaheuristics selection mechanism 

EvoSense can use single metaheuristics technique or multiple metaheuristics technique at the 

same time to investigate certain issue. The selection of how many techniques to be used and the 

type of techniques used depend on the severity of the situation under investigation. The default is 

the use of only one technique, while if the last utilized technique reported high level of attack 

certainty that is close, but do not cross the required safety threshold, the system use other 

techniques to enhance the quality of calculation. In EvoSense, metaheuristics techniques are 

ordered and have weights assigned to each one. The metaheuristics technique selection 

mechanism always prefers techniques with highest weight value. When an additional mechanism 

is needed the next highest value technique is selected.  

The weights for each technique is not fixed, it is dynamic and gets assigned based on the success 

or failure of each technique to detect attacks, and the number of false positives or negatives of 

each technique. This evaluation occurs independently at each management unit within EvoSense 

framework. 

Figure  4.6 presents a simple representation of the metaheuristics technique selection process.  
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Figure  4.6 Example of the hubristic mechanism selection procedure   

4.2.6.1.4 Sensor reuse  

EvoSense optimize ToD resource usage by minimizing the number of deployed sensors and 

effectors on the host. EvoSense utilize it ability to separate the main concerns and the availability 

of abstract sensing and effecting elements to remove any duplication of sensor deployment 

requests. The separation between the tool and the control behind it enabled EvoSense to reuse 

previous sensor feedback within a certain time frame to feed multiple control components. 

For example, let us assume that the selection protocol at time (t) selected pattern matching 

metaheuristics technique to investigate events occurring on host (h1). The investigations focused 

on suspicious memory behavior of a certain process. The sensors are selected based on that 

(mechanism-id) Select-mechanism( last used, weight, severity level) 

(Sensor-list, activation-protocol) Activate (mechanism-id, suspicious-item, item-type) 

(deployment-package) Call optimization-unit ((Sensor-list, activation-protocol) 

(feedback) Call deploy-sensors (deployment-package) 

(res) Process-feedback (feedback, mechanism-id) 

If res>threshold  

fire-alert (item-type, mechanism-id, deployment-package, feedback) 

else 

if res < Dynamic(10)% threshold   

(mechanism-id) Select-next-mechanism( last used, weight, severity level) 

Repeat process 

Else 

Discard event 

 



135 
 

objective, and the sampling protocol is automatically generated using the predetermined syntax. 

The list and the protocol selected are sent to the optimization unit. The optimization unit checks 

if there was any previous valid match for that request. If any, it removes it and report the 

recorded feedback directly to the analysis unit. If not, the list is sent to the reservoir to program 

and deploy the sensors. The feedback is sent back to be analyzed by the pattern matching 

algorithm to determine whether there was an attack or not.  

The optimization unit applies certain aging policy to determine the validity duration for a certain 

senor feedback to be reused. The expiration date is dynamic and adjusted automatically based on 

the ToD host workload, nature, types of application, level of changes, amount of data flowing 

from and into it, number of application reinstalling, deployment, .. etc.  

If the requested sensor list contain any sensor that was used before with a valid expiration date 

and compatible deployment protocol “measurement sequence, time, sampling rate, ..etc” then it 

will not be deployed again, and the old feedback will be reused. Doing so, is expected to save a 

considerable amount of host resources.  

4.3 Example of CyPhyCARD defense mission  

The task of each EvoSense component is further illustrated through a discussion of one of 

EvoSense’s automatically composed defense missions that search for memory behavior deviation 

within a predetermined timeframe, and the dispersion of such deviation through the ToD host 

networks. 

Goals:  

• Detect massive deviation in memory usage 
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• Locate the area under suspicion 

• Collect information about processes with suspicious memory usage 

• Identify critical and non-critical processes 

• Resolve the problem  

Tools: 

• Memory usage monitoring sensors 

• Processes information collection crawler sensors 

• Process killing effectors 

4.3.1 Detection and resolution scenario 

This synthetic scenario illustrates the event of using X123 to secure organization ABC. ABC is a 

large organization composed of multiple enclaves. The following incident happened in enclave 

E1.  

On the regular inspection round on E1 hosts, with an active heuristic mechanism X, the feedback 

collected by the deployed sensing organisms and analyzed by the analysis organism indicated an 

unidentified strange behavior in host A. The decision-making organism calculated the weights 

from the score sheets and followed the heuristic rules and the comparison between the calculated 

weights exceeds the threshold. The decision-making organism sent its guidelines to the role-

composer based on the analysis reports with the list of high similarity rules to the reported 

feedback score-sheet.  
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The role-composer composes new defense mission that mix the sensing part of all the similar 

rules. X123 was the newly generated mission that was built to investigate possible memory-

related behavior-deviations within E1. X123 have three main roles played by three organisms, 

sensing, analysis, and effecting. The sensing organism uses the memory scanning Cells to take 

multiple snapshots of the memory usage within host A for a certain period. The analysis 

organism applies some predetermined statistics to evaluate the detected behavior deviation that 

will be evaluated and compared against certain threshold to determine the next step. Based on the 

result, further investigations might be needed.   

These investigations will be handled by the sensing organism that will deploy processes-

information-crawler sensor Cells. Crawlers will collect information about process with high 

memory usage. The collected data will be sent to the analysis organism that will generate a 

comprehensive report to the decision-making organism. The decision-making organism will 

decide whether to discard the incident, or to activate effector organisms on X123 to resolve the 

situation.   

The decision-making organism might decide to share the mission profile with other DSPs asking 

for external feedback, or deploy X123 locally for further investigations. Based on the sharing 

command search-scope and the clearinghouse permissions X123 will be re-deployed. The 

deployment scope might be limited to only the hosts within enclave E1, allover ABC enclaves, 

or globally between DSPs searching for similar behavior deviation pattern.  

If the decision was to activate X123 effecting organisms for quick resolution, X123 will be 

instructed to kill some of the suspicious non-critical processes and re-evaluate the situation.   
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  If the redeployment came-out with multiple incoming alerts for the same memory behavior 

deviation, the decision-making organism will raise the severity level of the situation indicating 

global wide spreading attack. 

 Based on that, commands will be issued to the role composer to customize a new containment 

mission based on the attack reported parameter. Meanwhile EvoSense will be applying 

resolution effectors of X123. The containment effectors will be deployed over host A, other hosts 

in communication with host A, and the intermediate communication elements “routers, 

switches,..” to construct a quarantine area around the malicious host.  

After successful containment and resolution the whole process will be profiled and stored in the 

defense mission repository for future reference. These profiles will hold details about the 

containment, and resolution methodology, and all the sensors and effectors API used to compose 

the used missions. Sharing authorizations and scope of these profiles will depend on the local 

clearing-house decision. 

4.4 EvoSense role in mitigating the BlackWidow attack 

In this section we intend to discuss the ability of EvoSense to invalidate the attacker assumption 

on the case study “attack scenario” presented in Chapter 1. The following are the list of the 

BlackWidow attack designer assumptions; we will list the assumptions and present how 

EvoSense evolutionary defense system works against such assumptions.  

4.4.1 Attacker assumptions 

1. The defense system shares the same network or host with the target of attack/defense 

system. [Note: defense system might be exposed to attack by compromising the ToD] 
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2. The attack target defense system, or major parts of it, uses COTS security 

products.[Note: A majority of defense systems are signature based, so that is probably 

easily to bypass with custom code] 

3. The system is not capable of being fully situation aware of all its components in a 

massive-scale network in real time. 

o Building a very slow motion worm will increase the log file sample size needed 

to detect it. 

o The attack will spread in small parts in the target network hosted by 

geographically remote locations. This will make it more difficult to detect 

attacker activity unless a deep nearly network-scale analysis can be conducted 

to correlate all disparate logs. 

4. The defense system management workstations (that the administrators use) share the 

same network with the target of defense. [Note: Stolen passwords can simply be used 

to modify rules of IDS, routers, switches, firewalls, proxies, etc] 

5. Attack hosts will not be manipulated in an undetectable way so as not to alert the host 

AM. These hosts will be used only to launch attack on the primary target. [Note: this 

might be possible by using zero day exploits and malware code never seen before] 

6. Host-based defense systems usually use malware signatures as an indication for 

infection from various forms of malware.  

7. It is not feasible to monitor all the host behavior patterns while sharing the same 

workstation that is performing user tasks. 
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8. Defense systems are not resilient against attacks, and have weak recovery mechanisms. 

[Note: most of them assume that they will not be the target of an attack as long as they 

were able to secure their ToD. Additionally, usually they have no intrinsic failure 

recovery] 

9. Cyber security is oblivious of and is not coordinated with physical security to protect 

the target cyber-physical system. Human intervention is need to facilitate such 

coordination.[Note: the attack can make them conflict with each other to bypass both of 

them] 

4.4.2 EvoSense addressing attacker assumptions 

 EvoSense is designed to work in total isolation from the ToD, invalidating assumptions (1, and 

4).  

EvoSense is a buffer between the DSP and ToD. Neither EvoSense nor the DSP share the 

network or the hosts of the ToD. The defense services are delivered to the ToD in a separate 

network that connects the ToD to EvoSense. The defense delivery vehicles are secured using our 

moving target defense described in Chapter 3, which invalidates assumption (8).  

EvoSense is an active defense system founded over CyberX managed ChameleonSoft secured 

and resilient foundation. One of the main tasks of ChameleonSoft as presented in Chapter 3 is 

monitor and secure the COA based foundation against threats and attacks.  Having 

ChameleonSoft  and CyberX handling such details waves this workload away from EvoSense 

giving it more space to focus on provisioning defense services to the ToD. Additionally, 

EvoSense is designed to support large scale systems and computationally expensive tasks. 
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EvoSense design supports distributing the tasks over a hierarchy of independent management 

entities composed of fine grained components managed by CyberX. The fine granularity of such 

components and the isolation between its logic , data , and physical resources enabled CyberX to 

fractionize large tasks over multiple hosts constructing a cloud like platform with virtually 

infinite resources. With that unique feature, EvoSense invalidated assumption (7).   

EvoSense uses signature based detection tools as a part of its arsenal, while the major part of that 

arsenal relay on an evolutionary sensory system. EvoSense evolutionary sensory system utilizes 

multiple intelligent mechanisms to detect unknown attacks based on monitoring suspicious 

activities and up normal behavior, and that invalidates assumption (6).  

EvoSense is not a commercial product available for conventional users. Even though, the 

foundation of EvoSense is highly dynamic and autonomous inducing high level of dissimilarity 

between identical copies of the same system, and that invalidates assumption (2). 

 One of the main objectives of EvoSense is to promote the defense system situational awareness 

of the different ToD components and to isolate the platform composition heterogeneity enabling 

seamless defense provisioning. EvoSense pervasive monitoring and analysis, and the intrinsic 

trustworthy sharing and cooperative defense enhance the situational awareness all ToD 

components. EvoSense collect events from different entities of the ToD, correlate the collected 

information to generate a global image of the entire system to be analyzed by high management 

units. Doing so, enables EvoSense to detect slow moving attacks, and attacks using remote bots 

to lunch attacks on remote hosts. The aforementioned aspects successfully invalidate 

assumptions (3, 5, and 9). 
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By invalidating all the attacker assumption, it is hard for such attack to succeed in attacking an 

EvoSense protected system.  

4.5 EvoSense detection and resolution model  

The attack and cleanup model that we used to evaluate EvoSense performance is in the style of 

the epidemiological model. This model is being used for years to study the spread of biological 

diseases [99]. The same model was repeatedly used multiple times in the past few years to model 

computer networks attacks [100]. Researchers in [101] used this model to develop a more 

specific model that generated more accurate results when compared to real life attacks [102]. We 

used their model to construct our experiments. I will present some details about the modified 

model that we used in our experiments presented in Chapter 5.  

4.5.1  The detection model   

We used an epidemiological based model named the Progressive Susceptible Infections 

Detection Removal (PSIDR) to construct the experiments presented in Chapter 5. The model 

focuses on the progress and the dispersion of a contagious attack.  

The model is named (PSIDR) or progressive susceptible infections detection removal based on 

the fact that these four states represent the progress of an attack acting based on this model. The 

attack progress is a consecutive transition between these states with different rates.  Hosts are 

always in one of four states, susceptible (S) or vulnerable to attacks, which is the case before 

immunization. Infectious (I) which is the state of a host having an active attack on it. Detected 

(D), which is the case for an attack being detected and countermeasure being devised. Finally the 

(R) state which is the case where the attack is resolved or removed from the host, either by 
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removing the attack and immunizing the host before or after infection. The attack desperation, 

detection, resolution or containment can be modeled as shown in Figure  4.7. 

The general attack process begins when the attack starts targeting victims. These victims might 

be randomly selected or intentionally selected as a start for a spreading infection. The second 

step is the dispersion of the infection; the attack clones itself into as many machines as it can. 

The third step is being detected or reported to the defense service provider. And the last step is 

the DSP resolving the problem and clearing the infection.  

Without any consideration for the evolutionary sensing and effecting the last two steps can take a 

considerable amount of time. The DSP has to isolate the attack, generate a signature for it, start 

spreading the signatures all over the network updating the local antivirus database, and device a 

resolution methodology for the attack. 

With evolutionary sensing, the system quickly shares the attack alerts, the sensor used for 

detection and the detection methodology among all participating hosts in the form of 

comprehensive set of defense missions. The pervasiveness of EvoSense sensing mechanism has 

a great impact on the time needed for detection. Further, the system can deploy the evolutionary 

containment effectors, to minimize the attack dispersion until a resolution methodology is 

devised.  

We assume that EvoSense containment organisms are one of the usable resolution methodologies 

to mitigate attacks with a certain penalty on the resolution downtime. The mitigation missions 

are applied to machines independent of their infection state (i.e. to S and I). 

We started our experiments based on a PSIDR like model to represent the case of using local 

none-cooperative defense service provisioning units. EvoSense evolutionary sensing and 
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effecting where modeled using a set of distributions representing the attack dispersion and 

resolution rates. The same technique was used to model virus throttling [103].  

Virus throttling is a technique to automatically contain the effect of a fast spreading virus while 

searching for a possible resolution for the confirmed infections.  

The PSIDR model calculates the downtime due to infection after determining whether the host 

was infected or not. If it was not infected then it will be immunized against this attack and it will 

not be infected with this attack in the future. The downtime is zero at this case. If the host was 

infected then the downtime is calculated by a penalty for each time slot passed between infection 

and detection plus the time needed for resolution.  

 

Figure  4.7 The PSIDR model 

Through the model all machines are initially susceptible and there is no clear method of 

detection available to mitigate the attack. At this initial stage the attack can spread freely. The 

parameter (β) is used to indicate the attack attempts per time slot. The time needed to detect is 
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modeled by parameter (π). The parameter (µ) is used to indicate the resolution dispersion per 

time slot, which is the number of hosts having the appropriate effectors to mitigate/contain the 

attack or to immunize the host against future similar attacks. The parameter (δ) is used to 

represent the process of applying the effectors to resolve the infection and immunize the host.  

The following summarizes the parameters used through this representation of the PSIDR model:  

• (µ)  time for permanent immunization by updating the local defense tools 

• (β) Attack infection rate 

• (δ) time for permanent immunization after attack by updating the local defense tools 

• (t< π) Time before resolution mission composition  

• (t> π) Time after resolution mission composition 

 

The authors of the basic PSIDR model [99] calculated the following probabilities and used it to 

evaluate their model by comparing the extracted results with results calculated from real 

dispersion of a set of attacks. We used the same probabilities while controlling the 

aforementioned parameters by a set of distributions to represent EvoSense methodology in 

detecting and resolving attacks. The used probability distributions were controlled to generate 

parameters within the recommended range suggested by the PSIDR authors.  

P(S->I) = βI/N 

P(I->D) = µ 
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P(S->R) = µ 

P(D->R) = δ 

Where N is the total number of hosts in the ToD network. 

While the model was actually used to model vast number of threats, viruses, and attacks 

[104,105]. One of the problems raised against this model, was the assumption that the local 

defense mechanism will not be affected by the attack. This is not true for many attacks, and an 

attack like [106] is a good example for such cases. Such attack breaks the link between I-> D 

link.  

Fortunately, EvoSense was designed to prohibit such cases making it a perfect choice to model 

EvoSense’s defense provisioning process by modeling the attack dispersion and cleanup process. 

EvoSense was designed specifically to remain operational even with the existence of aggressive 

attacks that targets the DSP or the DSP network.   

We used the model to measure the total time for detection, and the time needed for resolution 

after detection. With EvoSense pervasive cooperative sensing, the time needed for detection was 

much less than the normal case of using local defense provisioning units. Hosts move faster 

between I -> D and conventionally R states; which means that the overall downtime due to attack 

is also minimized using EvoSense evolutionary sensing and effecting.   

EvoSense pervasive control of the ToD hosts and host network, allows the DSP to quickly, and 

in a full/simi-autonomous fashion contain a contagious attack. In addition to minimizing the 

attack negative impact by such containment, EvoSense can restore operation of an infected host 

until a resolution methodology is devised by allowing it to work in a controlled quarantine mode. 
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In such mode, EvoSense utilize its pervasive control feature  through the ToD components 

“hosts, and network elements” to apply deeps scanning missions to all outgoing message coming 

from the infected host before sending it to the ToD network. 

From that we can see that EvoSense protected ToD’s hosts are expected to move faster from S or 

I to R. 

4.6 Conclusion  

In this chapter, we presented EvoSense as an evolutionary sensory system enabling pervasive 

and efficient, monitoring and analysis for heterogeneously composed targets like CPS. EvoSense 

is built upon our novel CyberX-managed Cell-Oriented Architecture. EvoSense acts as a 

trustworthy elastic intelligent middle layer interfacing between DSPs and ToDs.  EvoSense 

unique construction and functionality enables pervasive seamless monitoring and analysis; 

interoperable and dynamic defense; early failure/attack detection and resolution; and trustworthy 

scalable cooperative defense. There are several interesting challenges to be addressed in the 

future. These include formalizing the runtime dynamic sensing and effecting autonomous 

management and mission generation framework; correlating sensors’ feedback into 

comprehensive real-time global views; and adjusting sensors circulation based on dynamic 

changes of these views.   
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Chapter 5 

 
5. CyPhyCARD Evaluation 
 

 

 

 

5.1 Overview  

CyPhyCARD utilizes unique defense provisioning platform founded over a loosely coupled 

dynamic components that host and deliver defense services to the ToD hosts. CyPhyCARD 

defense platform composition of CyberX-managed adaptive and resilient building blocks comes 

with a cost. The cost is expected to increase when ChameleonSoft software behavior encryption 

and trace resistant moving-target defense is used to secure CyPhyCARD infrastructure against 

software attacks. CyPhyCARD is designed to provision a ToD isolated defense services through 

EvoSense. Such isolation moves most of the workload from the ToD to the DSP side increasing 

the platform computational cost even more.  

As mentioned before, CyPhyCARD pillars are interrelated contributions providing solutions to 

serious hard problems in the field of cyber and cyber physical security. In this chapter, we 

conduct detailed quantitative study including deep analytical analysis followed by multiple 

simulation experiments to evaluate the effectiveness of each pillar in achieving its design 

objectives, and the efficiency of the pillar in terms of added execution-time delays and the 

overall consumed resources.  The study illustrates that CyPhyCARD pillars do achieve their 

“Theory guides; Experiment 
decides.” Izaak M. Kolthoff 
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design objective adequately and with reasonable cost. The computational cost in terms of 

resources consumed to maintain platform resilience against attacks and failures, are justified 

when compared to the expected losses due to such failure and attacks as shown in the simulation 

results.  The comprehensive evaluation of the entire framework of CyPhyCARD is not possible 

at this stage. This comprehensive evaluation will be a part of our future work after completing 

the construction of CyPhyCARD platform full test-bed. 

CyPhyCARD platform was not designed to provision defense services for small scale networks 

or enterprises as the cost of realizing such platform would exceed the expected losses due to 

attacks and failures. However, we intended to develop a special version of our CC-DNA to be 

used over the commercially available clouds to enable such clouds of hosting the CyberX Cells. 

Doing so is expected to decrease the cost of building a dedicated CyPhyCARD cloud, and the 

platform would rely on its intrinsic defense mechanism “ChameleonSoft” to insure the resilience 

of defense provisioning and to maintain the privacy of the ToD hosts. However, that might not 

be sufficient for certain organizations that would prefer an isolated dedicated cloud regardless of 

the cost to maintain their privacy policy.  The cost is application and ToD relevant, it depends on 

the type of the application, the criticality levels and scale of the network(s), and the privacy rules 

that needs to be enforced.  

In order to evaluate the different performance and security aspects of CyPhyCARD pillars we 

devised multiple models as a base for a set of simulation packages.  Based on the fact that the 

pillars are interrelated, and in order to increase the resolution of the study by clarifying the cost 

of enabling each single feature by itself and when combined together, we started by modeling the 

platform managed by CyberX alone to evaluate the cost of enabling mission oriented application 

design, dynamic application adaptation to changes, and enhanced resilience using CyberX 
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recovery. Then we studied the cost of securing this platform by ChameleonSoft 

multidimensional software behavior encryption and moving target defense. The study included 

multiple experiments to clarify the cost of enabling ChameleonSoft moving-target defense alone 

without CyberX added cost for recovery, and with the various recovery modes. Finally, we 

conducted a detailed study to evaluate the cost of using the presented secure platform to 

pervasively deliver defense services to the ToD hosts, and the cost of enabling trustworthy 

tipping and cuing. Due to the tight interrelation between the first two pillars CyberX and 

ChameleonSoft and the third one EvoSense, the study did not include an evaluation of 

provisioning defense services through an insecure, failure-vulnerable platform without 

ChameleonSoft, or without CyberX dynamic recovery, as these assumptions contradicts with 

CyPhyCARD design invariants and cannot be considered as a reasonable case for study.  

The following subsections presents the aforementioned studies including system models, 

mathematical analysis and a set of experiments conducted using multiple MATLAB simulation 

packages. The results focused on testing the presented approach ability to achieve its design 

objectives effectively and efficiently.     

5.1.1 The simulator design  

 In order to evaluate the effectiveness and efficiency of the platform and the supporting pillars, 

we built a prototype in C#. The prototype included a limited version of CyberX, ChameleonSoft, 

and EvoSense management platforms. The prototype proved the ability of CyPhyCARD pillars 

to enable Cell life adaptation to changes, automated failure recovery, the spatiotemporal 

diversification of software execution behavior. Additionally, we devised a simple vision of 

EvoSense sensors and effectors Cells. We managed to device a simple version of EvoSense 
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managing a pervasive circulation of such Cells to collect information and to apply remote 

configurations based on a preconfigured set of defense missions.  

For the quantitative evaluation we devised a set of event-driven MATLAB simulator to simulate 

a hypothetical Cell network composed of multiple Cells distributed in random locations. The 

simulator also simulated a hypothetical host network distributed in random locations, and 

classified into different enclaves and organizations. The simulator is designed to mimic the 

actions of a real system founded over CyberX managed Cell network, secured by ChameleonSoft 

spatiotemporal moving target defense. Additionally, defense provisioning is simulated by an 

emulated environment mimicking the remote defense provisioning of EvoSense pervasive and 

cooperative defense. The system has multiple event generators as threads, working 

simultaneously to generate different events including but not limited to (attacks, failure inducing 

changes, Cell failure events, host failure events). These events are generated based on real-time 

changing settings that determine the frequency of generating each event at each point through the 

Cell and host networks. The main parameters controlling such stings are guided by a set of 

random distributions selected to mimic the nature of each event. Upon arrival of each event, the 

system responds automatically simulating the action of the actual network.   

5.2 CyPhyCARD Platform 

In this section, we present the results of multiple experiments that were performed using the 

first MATLAB simulator package simulating CyberX. These experiments have different 

objectives regarding evaluating the effect of enabling CyPhyCARD platform’s autonomic 

adaptation and intrinsic failure recovery managed by CyberX on the system performance with 

respect to failure downtime and the amount of consumed resources.  The simulator was designed 



152 
 

based on an analytical study of the recovery and dynamic adaptation process of the platform. The 

next subsection describes in details our analytical study followed by detailed description of our 

simulator and the extracted results.  

5.2.1 A study of CyberX dynamic adaptation  

One of the main advantages of CyberX is its ability to utilize the Cell capability to separate the 

main design concerns to enable application runtime adaptation. Adaptation may occur for 

multiple reasons and can be utilized to satisfy different quality attributes.  

 Figure  5.1 represents a model for CyberX dynamic adaptation process. The model guides the 

analytical study presented later in this section.  

 

Figure  5.1 CyberX dynamic adaptation Model. 

In order to device the mathematical representation of CyberX adaptation process, we will 

assume that the input behavior is a 2D matrix (n, m) where each point in the matrix represents a 
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Cell (i,j) as an entry in the (n, m) plane. Each (i, j) entry in the (n, m) plan has a pair of values (v, 

s) representing the id of the currently executing variant and set. 

The adaptation process is composed of multiple tasks. The formalization of the variant/set 

shuffling process involves multiple decisions that will be taken based on a set of distributions. 

The distributions and the random selection mechanisms presented here are for the illustration 

purposes only.  We intend to present a more focused study aiming to select the most appropriate 

configuration, selection mechanisms, and set of distributions that can generate results closer to the 

real system. The details of this will be the focus of our future work.  

The adaptation process is concerned with manipulating V using a predetermined distribution. 

We will use Poisson distribution FP to determine the time frame between consecutive shuffling 

events. At the event time, another distribution will be used to represent the variant selection 

mechanism. We will use uniform distribution FU  to determine the new value of  V,  

V € {0,1,…a},  S € {0,1,…b},I € {0,1,…n}, J € {0,1,…m}  

∆t=Fp (q), ∆t≠0 

tx+1=∆t+tx 

WhereFPis the function that we use to generate the distribution controlling t. 

Assuming thatFP is a Poisson distribution, it will be calculated as follows:  

 

(k being a non-negative integer, k = 0, 1, 2, ...) 

∆t is the time interval between shuffling events, each Cell can determine the value of q 

controlling the shuffling frequency 
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At each shuffle event, each Cell uses the following equation to select the next variant for 

execution.  

vtx=fu(z), vtx≠ vtx-1, vtx<a, z € {0,1,…a} 

Where fu is the function used to generate the random number generator determining the id of 

the next variant for execution selected from the variant selection pool at each Cell, and z is the 

seed for the generation. 

Assuming Fuis a uniform distribution it will be calculated using the following 

 

Where a and b are the minimum and maximum number of valid values for V 

5.2.2 A study of CyberX automated recovery 

Another advantage of CyberX is its enforced resilience through an automated Recovery 

system.  

Figure  5.2 represents a model for CyberX automated recovery process. The model guided the 

analytical study presented in this section.  

The recovery process is concerned with manipulating (i, j) location for each Cell in the matrix. 

We will use Poisson distribution FP to determine the time frame between consecutive failures 

events. At each event t the Cell follows a Uniform distribution to determine the new location 

(i,j)new that the Cell will migrate to after recovery.  

∆t=fp (q), ∆t≠0, q=>0 

tx+1=∆t+tx 
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Where Fp is the function that we use to generate the distribution controlling t. ∆t is the time 

interval between failure events, each Cell can determine the value of q controlling the failure rate. 

ix+1=fin (z) , 

jx+1=fjn (z) 

 

Figure  5.2 Represents CyberX automated recovery process model 

Where Fn is the function used to generate a new location for the Cell to migrate-to in the (n,m) 

plane. And z is a random seed set to insure that the output range of i, and j ranges from 0 to (n,m) 

respectively 

Assuming that Fn will be a normal distribution it will be calculated as follows 

 

5.3 Simulation results  

In this section, we present the results of multiple experiments that were performed using a 

MATLAB based simulator. These experiments have different objectives regarding evaluating the 
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effect of enabling autonomic adaptation and intrinsic failure recovery on the system performance 

with respect to failure downtime and resource consumption.  

 Table  5.1 shows the main parameters used in the simulation. The network parameters are 

mainly static parameters used to setup the experiments, except for the deployment of fresh Cells 

in the network. The dynamic part depends on a set of distributions mentioned in the column 

named “Generator “. 

The failure or environment-change parameters show the spatiotemporal distribution of failure 

/environment-change events and the event type that necessities variant change in response to such 

event. The recovery parameters represent the initial recovery mode for each Cell, and the dynamic 

recovery change through the experiment lifetime.  Deploy-new-Cell parameters represent the rate 

and location for the deployment of fresh Cells to replace dead or problematic Cells in the network. 

All experiments had the same period of 6 hours with a sample rate of six minutes giving us 60 

samples (time slots) within the network of Cells. The presented parameters in (Run 1) were used 

to device Figure  5.3, and  Figure  5.4 We used the parameters in the three runs to evaluate the effect 

of increasing the failure generation rate illustrated in Figure  5.4. 

Classification Parameter Generator Run1 Run2 Run3 

Network Network size 

 

Static 100*
10 

100*
10 

100*1
0 

# shuffling variants  Static 8 8 8 

Exp_Time Static 60 60 60 

Avg_App_exe_time normal 35 35 35 

Deploy new 
Cell 

Period Poisson 23 18 14 

Location normal 8,3 

91,2 

8,3 

91,2 

8,3 

91,2 
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Resource 
usage  

Cell  Static 5 5 5 

For 
Replica 

Static 3 3 3 

Cell 
failure 

static 2 2 2 

Recovery Recovery at deploy normal 8,3 8,3 8,3 

Mode change Period Poisson 20 18 16 

Type normal 8,3 8,3 8,3 

Event Failure or 
environment 
event change  

 

Timing 
(Period) 

Poisson 24 20 16 

Location Normal 8,3 

91,2 

8,3 

91,2 

8,3 

91,2 

Type Uniform 10 10 10 

Table  5.1 CyberX simulator parameters  

 

Figure  5.3 The average downtime in response to failures due to changes for different 
recovery modes with and without adaptation.   

Figure  5.3 illustrates the effect of failure due to unexpected changes on the average downtime 

with and without CyberX autonomic adaptation. The average downtime is calculated as follows: 

X axis: Time ticks (360 sec/Tick)  
Y axis: Downtime in ticks (6 sec/Tick) 
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Average downtime per Cell = (∑ 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑤ℎ𝑖𝑙𝑒 𝐶𝑒𝑙𝑙 𝑖𝑠 𝑜𝑓𝑓𝑙𝑖𝑛𝑒𝑁
1 )/𝑁 

Figure  5.3 reflects the different system responses to failures when we activate and deactivate 

CyberX autonomic adaptation with and without coarse or fine-grained recovery modes. The 

experiment shows significant improvement in minimizing the failure downtime when the CyberX 

autonomic adaptation is active as the system adapts autonomously to most of these changes 

minimizing the number of failures.   Additionally, the average downtime significantly decreases 

when we activate CyberX fine or coarse grained recovery. Both recovery modes will rabidly 

recover failed Cells minimizing the overall failure downtime.  

Figure  5.4 presents the effect of increasing the failure generation rate by increasing the number 

of changes over time “in an extended execution time mode” on the average downtime while 

utilizing coarse or fine-grained recovery modes. The experiment shows that CyberX fine grained 

recovery always minimizes the failure downtime when compared to coarse grained recovery. In 

coarse grained recovery mode, CyberX spends more time instantiating replacement Cells; while 

in fine grained mode, replicas take over and resume execution first then a new replica is 

instantiated without holding the execution restoration.  

Figure  5.5 illustrates that fast recovery comes on the expenses of consuming more resources. 

This figure reflects the total resource usage through the experiment with different recovery and 

adaptation modes.  
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Figure  5.4 The average downtime in response to increasing failure generation rate for three 
different experiments and different recovery modes. 

 

Figure  5.5 The total resource usage in case of failure with different recovery and 
adaptation modes 

 

X axis: Time ticks (360 sec/Tick)  
Y axis: Downtime in ticks (6 sec/Tick) 
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Figure  5.5 illustrates the effect of using CyberX autonomous adaptation to minimize failures, in 

saving some of the resource that would have been wasted in the recovery of such failures. The 

total cost of resources is calculated in money value as follows: 

  Total cost at each Cell = ∑ cost of peripheral usage in $ ∗  consumed 𝑣𝑎𝑙𝑢𝑒𝑛
1  

Total Resource usage in $ = � overall cost of consumed resources at each host
H

1

  

Enabling such feature provides some guarantees that the system will always consider using the 

right resources at the right time while maximizing the system quality-attribute satisfaction-scope.  

Further, CyberX attempts to recompense resources wasted due to failure-recovery by changing 

the system targeted quality-attribute towards optimizing the resource usage after each recovery 

event. CyberX usually favor using one of the resource efficient variants to resume execution after 

each recovery event. CyberX do that while maintaining the balance between the different 

application objectives and targeted quality-attributes to the best interest of the application while 

efficiently maximizing resource utilization. 

5.3.1 Observations  

From the presented results we can conclude by illustrating the following list of observations: 

• CyberX dynamic real time application adaptation to changes decreases the chance of 

failure, reduces the system downtime  and wasted resources. 

• CyberX multimodal failure recovery enhances the application resilience against 

failures. The effect was reflected in the noticeable decrease in the average Cell 

downtime.  
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• CyberX multimodal failure recovery increases the average host resource consumption; 

however CyberX was apple to compensate that by enabling runtime dynamic 

adaptation. Runtime dynamic adaptation saves even more resources that should have 

been wasted due to failures. 

 

5.4 A moving-target defense approach for CyPhyCARD platform security  

In this section we focus on evaluating the cost of securing CyPhyCARD platform using 

ChameleonSoft software Behavior Encryption (CBE) and moving target defense. We used 

analysis and simulation to evaluate the security and performance of ChameleonSoft. A 

comprehensive analytical study of the CBE is conducted to formalize the spatiotemporal diffusion 

and confusion processes. The study was the base for building CyberX-based CBE MATLAB 

simulator that we used to extract the presented results in section 6.2. 

5.4.1 Analyzing the CBE approach 

In order to device the mathematical representation of the CBE process, we will assume that the 

input behavior is a 2D matrix (n, m) where each point in the matrix represents a Cell (i,j) as an 

entry in the (n, m) plane. Each (i, j) entry in the (n, m) plan has a pair of values (v, s) representing 

the id of the currently executing variant and set. 

The encryption process is composed of multiple different processes. Temporal shuffling and 

spatial shuffling occur separately, or combined together to form spatiotemporal confusion, and 

diffusion.  The formalization of the confusion and diffusion processes involves multiple decisions 

that will be taken based on a set of distributions. The distributions and the random selection 
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mechanisms presented here are for the illustration purposes only.  As a part of our future work, we 

intend to present a more focused study aiming to select the most appropriate configuration, 

selection mechanisms, and set of distributions that can generate results closer to the real system.   

CBE temporal confusion: this process is concerned with manipulating V using a 

predetermined distribution. We will use Poisson distribution FP to determine the time frame 

between consecutive shuffling events. At the event time, another distribution will be used to 

represent the variant selection mechanism. We will use uniform distribution FU  to determine the 

new value of  V,  

V € {0,1,…a},  S € {0,1,…b},I € {0,1,…n}, J € {0,1,…m}  

∆t=Fp (q), ∆t≠0 

tx+1=∆t+tx 

Where FP is the function that we use to generate the distribution controlling t. 

Assuming thatFP is a Poisson distribution, it will be calculated as follows:  

 

(k being a non-negative integer, k = 0, 1, 2, ...) 

∆t is the time interval between shuffling events, each Cell can determine the value of q 

controlling the shuffling frequency 

At each shuffle event, each Cell uses the following equation to select the next variant for 

execution.  

vtx=fu(z), vtx≠ vtx-1, vtx<a, z € {0,1,…a} 
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Where fu is the function used to generate the random number generator determining the id of 

the next variant for execution selected from the variant selection pool at each Cell, and z is the 

seed for the generation. 

Assuming Fu is a uniform distribution it will be calculated using the following 

 

Where a and b are the minimum and maximum number of valid values for V 

Spatial confusion is concerned with manipulating (i, j) location for each Cell in the matrix. 

We will use Poisson distribution to calculate the time frame between two consecutive spatial 

shuffling events. At each event t the Cell follows a Uniform distribution to determine the new 

location (i,j)new that the Cell will migrate to.  

∆t=fp (q), ∆t≠0, q=>0 

tx+1=∆t+tx 

Where Fp is the function that we use to generate the distribution controlling t. ∆t is the time 

interval between shuffling events, each Cell can determine the value of q controlling the shuffling 

frequency 

ix+1=fin (z) , 

jx+1=fjn (z) 

Where Fn is the function used to generate a new location for the Cell to migrate-to in the (n,m) 

plane  and z is a random seed set to  insure that the output range of i, and j ranges from 0 to (n,m) 

respectively 



164 
 

Assuming that Fn will be a normal distribution it will be calculated as follows 

 

Spatiotemporal confusion is a mixture of both  

 

Diffusion is induced in response to each incoming event by making a random change for the 

value of v in multiple locations (i,j). 

In order to simulate that we use a predetermined distribution to guide the selection pool p for 

the Cells that will make changes in their current active V. 

Each Cell (i,j) € p will apply  to select the id of next variant to execute Vtx+1.  

Time between generated events at each Cell (I,J) is calculated as follows: 

 

The type of event is calculated as follows: 

e tx(i,j)  =fu(z), e tx(i,j) ≠ e tx-1(i,j) ,  0<z<b 

Where ∆t is the time interval between surrounding change/attack events at each Cell, based on 

that event s will be changed to match the etx, and V will reset to 1 

Selection pool p is constructed using the following equation: 

 

  

 

∆t=f
p
 (q), ∆t≠0, q=>0 

t
x+1

=∆t+t
x 

where, q is event generation frequency  

, H
n+1
≠H

n 

 Temporal 
shuffling 

Spatial 
shuffling 
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(idif,jdif)={fu(a,b)|idif≠ i, jdif≠ j}   Cell (i,j)  

with an ongoing event and a, and b are random numbers >0 and <n,m 

Where fu is the function used to generate a pool of random selections for (i,j) Cells that will 

change their current V using fk 

₳(i,j) €p, v(i,j)=fk(z), vx≠ vx-1  the situation permitting  the change; where 0<z<a 

Assuming the diffusion and confusion function is calculated based on the presented list of 

functions  f  at each i,j with a ∆t as the duration between events then the encryption key 

controlling the diffusion and confusion is a combination of the generation functions f  and the 

number of Cells in the plan with the variant and set pool size. 

In this case the key will be: 

k (i,j) ={ fp (q), fu(z), fn (z), fu(a,b), fk(z)} v0
a,s0

b 

If we  include event generation then we should add fep (q), feu(z),where fep (q), feu(z),is the 

functions used to estimate the time and the type of an incoming change in the surroundings of 

each Cell necessitating a set change; then the key will be: 

k (i,j) ={ fp (q), fu(z), fn (z), fu(a,b), fk(z), fep (q), feu(z)} v0
a,s0

b 

5.4.2 Simulation results  

We designed a MATLAB simulator to mimic the Chameleonization process of a group of 

Cells organized in a 10*100 matrix layout. Version 1 of the simulator (V1) that was presented in 

[95] was a preliminary version with limited capabilities. V1 was designed to extract preliminary 

results illustrating the effect of the confusion and diffusion process.  
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We have developed a more advanced version of the simulator (V2) addressing the confusion 

and the diffusion processes more accurately. In V2, the diffusion induction in response to a single 

event in any part of the network starts by broadcasting multiple shuffling for diffusion requests 

within a predetermined scope to different Cells. Based on predetermined acceptance criteria, Cells 

will comply with the incoming requests and change their current active variant. Additionally, V1 

was mainly concerned with the temporal shuffling; while V2 is designed to simulate both the 

temporal and special shuffling.  

V2 is equipped with multiple performance monitors that will continuously monitor and records 

the performance aspects of the Cells within the life time of the experiment. The performance 

monitor feedback will be used to evaluate the effect of temporal or spatial confusion and diffusion 

on the task completion time presented in the next subsection.  

Additionally we integrated a module to simulate the effect of the CBE multimodal recovery 

mechanism and the dynamic real-time recovery mode change. For evaluation purposes random 

failure events are distributed based on predetermined criteria to induce the effect of multiple 

failures. The system will automatically respond to these event based on the current recovery 

technique at the point of failure. The performance monitors will record the failure event, and the 

failure downtime at the point of failure.   

V2 of the simulator is designed to simulate CBE effect for large network of Cells, with longer 

experiment time. The simulator is capable of generating different configurations for the Cells. 

Cells can have different application execution time and requirements and each Cell can change 

these requirements at runtime based on a predetermined criteria. The simulator will be activating 

and deactivating Cells at runtime in response to Cell termination events due to failure or execution 

completion,  and the deployment process of new fresh Cells.  
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5.4.2.1 Simulator Design: 

We devised a Cell representation to simulate the COA behavior encryption module and the 

multimodal recovery system, and a simple representation for the situational awareness unit. Our 

simulator starts by deploying Cells all over the network based on the input parameters. Each Cell 

should have a representation for a group of software variant sets for each possible induced change 

in the network. Each of these sets contains a group of similar function, different behavior variants.  

At the deployment time, each Cell will have a set of numerical values representing the 

expected execution time for its task defined in the loaded variants. Each Cell will have a dedicated 

situational awareness unit monitoring incoming attacks, failure incidents, time wasted in shuffles 

for confusions; and diffusion, etc.  

After automatically deploying these Cells, the attack, and failure event generators produces 

different events following the user predetermined settings. Additionally, based on the user 

parameters, we seamlessly replace dead or problematic Cells with new fresh Cells. All Cells that 

successfully complete their task are considered dead Cells; while Cells with too many failure 

events are considered problematic.  

The variant shuffling at each Cell works seamlessly for temporal confusion induction. The set 

shuffling occurs only in response to an induced change in a specific network location. Set 

shuffling is always followed by a request to variant shuffle for a random sample of the network to 

induce the needed diffusion to complete the encryption process. Independent shuffling for 

diffusion decisions are taken based on a predetermined parameter defining the acceptance rate for 

the shuffle for diffusion requests. 

Spatial shuffling occurs based on the input parameter to a random sample of the network. A 

single special shuffling event involves two Cells that will swap their location in the network. One 
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of these Cells is a live Cell and the other one a stem-Cell. The process starts by a request from the 

Cell that had the event coming to the GMS to select a migration target Cell. After migration the 

migrated Cell will transform to a Stem-Cell waiting for specialization.  

5.4.2.2 Extracted results 

 In this section we present the results of multiple experiments that were performed using our 

MATLAB simulator. These experiments have different objectives regarding evaluating the 

provisioned level of security and the effect of increasing the level of security over the execution 

time of the application. CBE encrypt the execution behavior of the application by confusion and 

diffusion induction. The following experiments quantify the strength of ChameleonSoft behavior 

encryption mechanism in terms of confusion and diffusion induced levels. The performance 

aspect of the experiment is introduced through a representation of the average downtime for all 

the Cells in the network.  

Table  5.2 shows the main parameters used in the simulation. The network parameters are 

mainly static parameters used to setup the experiments, except for the deployment of fresh Cells 

in the network. The dynamic part depends on a set of distributions mentioned in the column 

named “Generator “. 

Through the experiment we are simulating the case that all the nodes have average capabilities 

and we assumed that a node would not refuse shuffling or relocation requests. With that 

assumption, it is closer to a population description; which makes the normal distribution a good 

distribution to describe the location of the next event. While the rate of change, or inter-arrival 

time " the time frame between consecutive events" is best represented as a Poisson distribution. 

Uniform distribution was selected to describe the variant selection "which variant to replace the 

current active variant" and independent decision making.  
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The shuffling event parameters represent the spatiotemporal distribution of shuffling 

commands to induce confusion while the attack or change in environment parameters show the 

spatiotemporal distribution of attack events and the event type that necessities variant set change 

to respond to the change. Events shuffling variants selection parameters represent the selection 

criteria of the next variant to be shuffled while the independent shuffling decision on each Cell 

parameter represents when the Cell should take shuffling decision for diffusion induction.  The 

recovery parameter represents the initial recovery mode for each Cell, and the dynamic recovery 

change through the experiment life time.  The “deploy new Cell” parameter represents the rate 

and location for the deployment of fresh Cells to replace dead or problematic Cells in the network. 

All experiments had the same time period of 6 hours with a sample rate of 6 mints giving us 60 

samples of events of changes within the network of Cells. 

 

Classification Parameter Generator Run

1 

Run2 Run3 

Network Network size 

 

Static 10*1

00 

10*10

0 

10*100 

# shuffling variants in each set Static 8 8 8 

# shuffling  sets Static 5 5 5 

Exp_Time Static 60 60 60 

Avg_App_exe_time normal 35 35 35 

Deploy new Cell Period Poisson 20 18 16 

Location normal 8,3 

98,2 

8,3 

98,2 

8,3 

98,2 

Recovery Recovery at deploy normal 8,3 8,3 8,3 

Mode change Period Poisson 20 18 16 

Type normal 8,3 8,3 8,3 
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Event Temporal 

Shuffling event 

 

Period Poisson 22 18 14 

Location Normal 8,3 

98,2 

8,3 

98,2 

8,3 

98,2 

Spatial Shuffling 

event 

 

Period Poisson 22 18 14 

Location Normal 8,3 

98,2 

8,3 

98,2 

8,3 

98,2 

Failure events Period Poisson 18 18 18 

Location Normal 8,3 8,3 8,3 

Attack or change 

in environment 

event 

 

Timing Poisson 21 20 18 

Location Normal 11,3 

99,1 

9,4 

99,1 

10,2 

99,1 

Type Uniform 10 10 10 

Software Shuffling Variants Selection Uniform  10 10  10 

Shuffling Independent  shuffling decision 

on each Cell 

Uniform 10 10 10 

 Table  5.2 CBE simulator parameters 

 

We examined the behavior encryption module through three experiments with different 

settings. The experiments aimed to measure the effect of changing attack arrival rate and location 

with the change of shuffling event generation on the behavior output as illustrated in Figure  5.6 

and Figure  5.7. The effect of continuous variant shuffling within CBE diffusion induction 

mechanism on the output behavior was obvious. A simple change in any of those inputs leads to 

significant change in the output.  

Our primary goal in this study is to illustrate the effect of CBE on the overall network behavior 

after attack events. This study focuses on the security analysis of the system by showing the level 

of induced confusion and diffusion. Performance analysis will be discussed latter. 
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Figure  5.6 A gives a snapshot of the set and variant distribution over the Cells at bootstrap. 

Each column represents a Cell in the network where the value represents the current executing set 

index or variant index.  

 

Figure  5.6 CBE Effect on the Network Behavior   

In Figure  5.6 B we illustrate the behavior output after short period of continuous behavioral 

encryption for the three experiments. It is clear that behavior changes are diffused all over the 

network. This can be seen by the massive change in the behavior of the whole network by the end 

of the experiment. 
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Figure  5.7 Induced Confusions and Diffusions 

Figure  5.7 A reflects the total number of changes "diversity application" in the network 

behavior at each time tick. This is an indication for the induced confusions at each time event. 

Figure  5.7 B illustrates the accumulating change in the network behavior over time reflecting the 

effect of re-encryption and the increase in complexity of correlating the input to the output over 

time.   

We performed multiple experiments to evaluate the performance of CBE system. Figure  5.8 

illustrates four different experiments conducted to evaluate the effect of changing the recovery 

mode on the average downtime due to failures, and attacks using the parameters presented in 

Table  5.2. The first experiment conducted to evaluate the failure downtime in case of no CBE.  
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The remaining experiments where testing the effect of CBE with, and without recovery 

considering the two recovery modes hot, and cold.  

 

Figure  5.8 The effect of applying CBE, and the different modes of recovery on the failure 
downtime due to failures and attacks 

The results show a noticeable improvement in the failure downtime with only CBE even 

without recovery. CBE saved a considerable amount of failure downtime just by mitigating wide 

set of the induced attacks. The situation improves when we apply our coarse and fine grained 

recovery that quickly resolve any coincidental or intentional failures that might result from the 

shuffling process itself, or from attacks. 

Figure  5.9, and Figure  5.10 aim to illustrate the effect of increasing the attack arrival rate on the 

system downtime, and the system automated response to increase the provisioned level of security 

by increasing the confusion and diffusion levels to mitigate these attacks.  We used same 

parameters of the first run in Table  5.2, and an attack generation rate range of (10,20,30).  
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Figure  5.9 illustrates the effect of the increase of the attack generation rate, with the presence of 

our CBE with no recovery, and with coarse and fine grained recovery modes. The experiment 

shows significant improvement in minimizing the failure downtime when the CBE is used when 

compared with the mono-variant mode, even without recovery. The reason behind that resides in 

the fact that a large portion of these attacks will fail to succeed if the targeted vulnerability was 

not active where, and when it was supposed to be. The average downtime significantly decreases 

when we activate the COA fine and coarse grained recovery mechanisms. Both recovery modes, 

will rabidly recover failed Cells minimizing the attack and failure downtime. 

 

Figure  5.9 The Average downtime in response to increasing  attack generation rate  for, no 
shuffling “mono variant”, and CBE with no recovery, CBE and coarse grained recovery, 

and CBE and fine grained recovery 

Figure  5.10 shows the system automated response to the increase of incoming attack events. 

The system autonomously increase the level of induced confusion and diffusion levels by 

increasing the shuffling speed, and widening the diffusion-shuffling-requests scope to mitigate 
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incoming attacks, and by alerting other Cells of that event.   The produced confusions and 

diffusions are calculated as follows: 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑠

= �𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑚𝑝𝑟𝑎𝑙 𝑎𝑛𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑠ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔 𝑜𝑓 𝑒𝑎𝑐ℎ 𝐶𝑒𝑙𝑙
𝑁

1

 

These early warning alerts, will minimize the attack success ratio, minimizing the average 

downtime of attacks.    

 

Figure  5.10 The automated system response to increase the level of provisioned security in 
response to an increase of attack arrival rate 

We conducted more experiments to correlate the effect of enhancing the security provisioning 

over the system performance. We used parameters from  Table  5.2, and a shuffling frequency 

range of (10,20,30) . Figure  5.11 and Figure  5.12, illustrates the level of induced confusion and 

diffusion with respect to the change in the shuffling speed over time for different behavior 

encryption mechanisms.   
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Figure  5.11 Ievel of induced confusion and diffusion with respect to a Change in the 
shuffling speed over time 

Figure  5.12 shows the effect of shuffling frequency change on the downtime. Figure  5.11 shows 

the effect of changing the shuffling speed on the level of provisioned security. Figure  5.11 and 

Figure  5.12  illustrates that complicating the correlation between the input and output network 

behavior by increasing the level of induced confusion as a reflection of increasing the frequency 

of shuffling linearly increase the average downtime. The reason behind that comes from the 

increased number of preemptions prior to temporal and spatial shuffling, and the possible failures 

that might result from these processes.  

As mentioned before ChameleonSoft is capable of changing its diversity application technique 

at runtime to suit changes in the surrounding environment, and application requirements. The 

reason behind enabling such feature is to provide some guarantees that the system will always 

consider using the right resources at the right time towards balancing the security and 

performance output of the system. 
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ChameleonSoft employ different recovery mechanisms with different granularity levels to suit 

the dynamic change in the surroundings. Fine grained recovery by Cell replication might consume 

more resources in order to guarantee short recovery downtime and successful restoration of all the 

previous states before failure. As mentioned before ChameleonSoft optimize the replication 

resource usage by replicating only the STM,I/O, and data store components of the Cell. The 

remaining components of the Cell remain in hibernation waiting for resurrection when the replica 

takes over.  The overall recovery time depends on the time needed to resurrect the hibernated 

replica components and the time spent to detect failure.  

 

Figure  5.12 The average downtime with respect to the increase of shuffling speed 
increasing the level of provisioned security 

ChameleonSoft usually uses coarse grained recovery mode in resource constrained 

environments to save the resources used by the replicated Cell components.  Restoring a failed 

Cell with no replica might involve remote data store queries, collecting communication logs from 

other Cells, and analyzing these logs for unsaved lost states. This process increases the overall 

recovery time without any guarantee for a successful restoration for all states before failure. 
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5.4.3 Observations  

From the presented results we can conclude by illustrating the following list of observations: 

• ChameleonSoft software behavior encryption technique was able to induce the needed 

confusions and diffusions to encrypt the behavior of the running software  

• ChameleonSoft dynamically responds to attack arrival rate increase by increasing the 

level of provisioned security 

• ChameleonSoft utilized CyberX enhanced dynamic failure resilience to reduce the 

effect of cell failure.  

– Such failure might be the outcome of the increased attack arrival rate or the 

shuffling speed escalation in response to such increase. 

– This enhancement had a clear impact minimizing the average downtime of the Cell 

even in high attack arrival rates 

 

5.5  Pervasive defense provisioning, and trustworthy tipping and cueing  

In this section we study the final stage where CyPhyCARD starts the defense provisioning 

process through EvoSense. In this step, the defense services are hosted on the DSP side over 

CyPhyCARD secured platform and uses EvoSense circulation mechanism to monitor the ToD 

hosts and to provision the needed defense services based on the analysis of the collected data.  In 

order to comprehensively analyze this process we start by presenting a parametric study for the 

different parameters controlling the various aspects of the defense provisioning techniques, 

followed by a quantitative study of our defense delivery mechanism using simulation.   
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5.5.1 Parametric study  

Currently attack detection tools can be categorized as either locally hosted within the attack 

target or distributed with limited or no cooperation (between tools, or between DSPs) hosted 

within the attack targeted network.    Table  5.3 lists estimations for the resource usage with 

respect to memory, storage, processing, and network bandwidth for each tools/components/ tasks 

in the defense provisioning process.  The table presents estimated values for the purpose of 

illustrating the effect of enabling distributed defense provisioning, and isolating the defense 

provisioning process from the ToD network on the overall resource consumption. The presented 

estimations listed in Table  5.3 are justified by the discussion below. The table compares the 

resource usage of each item in case of presenting defense services through a locally hosted 

defense tool that use only signature based detection methods, or combines it with AI techniques to 

predict attacks. Additionally, we also list our estimations for the resource usage of a distributed 

defense provisioning platform that moves a major part of the analysis and investigation workload 

to dedicated servers hosted within the ToD network. The investigation included cases where AI 

techniques are combined with signature based techniques or not.  

 
        EvoSense Local & 

simple Local & AI Distributed & 
simple 

Distributed & 
AI 

 C1 
  
  
  
  
  
  
  
  

External feedback events 

Memory Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Negligible/none  Normal 

On 
DSP High NA NA High High 

Hard-disk Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Negligible/none  Negligible/none  

On 
DSP High NA NA High High 

Processor Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Normal Normal 

On 
DSP High NA NA High High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Not Supported Not Supported Normal Normal 

On 
DSP High NA NA High High 

Scanning                

C2a 
  
  
  

On-Demand Scanning Memory Usage 

On 
ToD Low High Extremely 

High High High 

On 
DSP Low NA NA Normal Normal 
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Hard-disk Usage 

On 
ToD Low High Extremely 

High High High 

On 
DSP Medium low NA NA Normal Normal 

Processor Usage 

On 
ToD Medium low High Extremely 

High High High 

On 
DSP Medium low NA NA Normal Normal 

Network Bandwidth 
Usage 

On 
ToD Medium low High Extremely 

High High High 

On 
DSP Medium low NA NA Normal Normal 

C2
b 
  
  
  
  
  
  
  

On-Access & Real-time 

Memory Usage 

On 
ToD Low High Extremely 

High High High 

On 
DSP Low NA NA Normal Normal 

Hard-disk Usage 

On 
ToD Low High Extremely 

High High High 

On 
DSP Medium low NA NA Normal Normal 

Processor Usage 

On 
ToD Medium low High Extremely 

High High High 

On 
DSP Medium NA NA Normal Normal 

Network Bandwidth 
Usage 

On 
ToD Medium High Extremely 

High High High 

On 
DSP Medium NA NA Normal Normal 

C2c 
  
  
  
  
  
  
  

Scheduled 

Memory Usage 

On 
ToD Low High Extremely 

High High High 

On 
DSP Low NA NA Normal Normal 

Hard-disk Usage 

On 
ToD Low High Extremely 

High High High 

On 
DSP Medium low NA NA Normal Normal 

Processor Usage 

On 
ToD Medium low High Extremely 

High High High 

On 
DSP Medium low NA NA Normal Normal 

Network Bandwidth 
Usage 

On 
ToD Medium low High Extremely 

High High High 

On 
DSP Medium low NA NA Normal Normal 

D1 
  
  
  
  
  
  
  

Static analysis and emulation  

Memory Usage 

On 
ToD Extremely low High Extremely 

High High High 

On 
DSP  High NA NA High High 

Hard-disk Usage 

On 
ToD Extremely low High Extremely 

High High High 

On 
DSP  High NA NA High High 

Processor Usage 

On 
ToD Extremely low High Extremely 

High High High 

On 
DSP  High NA NA High High 

Network Bandwidth 
Usage 

On 
ToD low High Extremely 

High High High 

On 
DSP  High NA NA High High 

D2 
  
  
  
  
  
  
  

Heuristics  

Memory Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High High High 

On 
DSP  High NA NA High High 

Hard-disk Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High High High 

On 
DSP  High NA NA High High 

Processor Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High High High 

On 
DSP  High NA NA High High 

Network Bandwidth 
Usage 

On 
ToD low Extremely 

High 
Extremely 
High High High 

On 
DSP  High NA NA High High 

D3 
  
  
  
  
  

Tunneling signatures  
Memory Usage 

On 
ToD low Not Supported Not Supported Negligible/none  Normal 

On 
DSP  Medium low NA NA High High 

Hard-disk Usage On 
ToD low Not Supported Not Supported Negligible/none  Negligible/none  
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On 
DSP  Medium low NA NA High High 

Processor Usage 

On 
ToD Extremely low Not Supported Not Supported Normal Normal 

On 
DSP low NA NA High High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

D4 
  
  
  
  
  
  
  

Acquiring consultations  

Memory Usage 

On 
ToD Extremely low Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

Hard-disk Usage 

On 
ToD Extremely low Not Supported Not Supported Negligible/none  Negligible/none  

On 
DSP  Medium low NA NA High High 

Processor Usage 

On 
ToD Extremely low Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

D5 
  
  
  
  
  
  
  
  
  
  
  
  
  

Advanced system cleaning protocol 

Memory Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High Extremely High Extremely High 

On 
DSP  Medium   NA NA Extremely High Extremely High 

Hard-disk Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High Extremely High Extremely High 

On 
DSP  Medium   NA NA Extremely High Extremely High 

Processor Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High Extremely High Extremely High 

On 
DSP  Medium   NA NA Extremely High Extremely High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High Extremely High Extremely High 

On 
DSP  Medium   NA NA Extremely High Extremely High 

privacey assurance 

              

Memory Usage 

On 
ToD Extremely low Normal  High Normal  High 

On 
DSP  Medium low NA NA Normal Normal 

Hard-disk Usage 

On 
ToD Extremely low Normal  High Negligible/none  Negligible/none  

On 
DSP  Medium low NA NA Normal  High 

Processor Usage 

On 
ToD Extremely low Normal  High Normal Normal 

On 
DSP  Medium low NA NA Normal  High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Normal  High Normal  High 

On 
DSP  Medium low NA NA Normal Normal 

E1 
  
  
  
  
  
  
  

Searching for a resolution 
mechanism 

Memory Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High Extremely High Extremely High 

On 
DSP  Medium low NA NA Extremely High Extremely High 

Hard-disk Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High Extremely High Extremely High 

On 
DSP  Medium low NA NA Extremely High Extremely High 

Processor Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High Extremely High Extremely High 

On 
DSP  Medium low NA NA Extremely High Extremely High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High Extremely High Extremely High 

On 
DSP  Medium low NA NA Extremely High Extremely High 

E2a 
  
  
  
  
  

Quarantine  
Memory Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High High High 

On 
DSP  Medium low NA NA High High 

Hard-disk Usage On 
ToD Extremely low Extremely 

High 
Extremely 
High High High 
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On 
DSP  Medium low NA NA High High 

Processor Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High High High 

On 
DSP  Medium low NA NA High High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Extremely 

High 
Extremely 
High High High 

On 
DSP  Medium low NA NA High High 

E2b 
  
  
  
  
  
  
  

Cost of dedicated full time scanners 
for the quarantine box  

Memory Usage 

On 
ToD Extremely low Normal  High Normal  High 

On 
DSP Extremely low NA NA Normal Normal 

Hard-disk Usage 

On 
ToD Extremely low Normal  High Negligible/none  Negligible/none  

On 
DSP Extremely low NA NA Normal  High 

Processor Usage 

On 
ToD Extremely low Normal  High Normal Normal 

On 
DSP Extremely low NA NA Normal  High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Normal  High Normal  High 

On 
DSP Extremely low NA NA Normal Normal 

E2c 
  
  
  
  
  
  
  
  

Cost of prioritized reports  

              

Memory Usage 

On 
ToD Extremely low Normal  High Normal  High 

On 
DSP Extremely low NA NA Normal Normal 

Hard-disk Usage 

On 
ToD Extremely low Normal  High Negligible/none  Negligible/none  

On 
DSP Extremely low NA NA Normal  High 

Processor Usage 

On 
ToD Extremely low Normal  High Normal Normal 

On 
DSP Extremely low NA NA Normal  High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Normal  High Normal  High 

On 
DSP Extremely low NA NA Normal Normal 

E3 
  
  
  
  
  
  
  
  

Process resolution protocol  

              

Memory Usage 

On 
ToD Medium  Normal  High Normal  High 

On 
DSP  Medium low NA NA Normal Normal 

Hard-disk Usage 

On 
ToD Medium  Normal  High Negligible/none  Negligible/none  

On 
DSP  Medium low NA NA Normal  High 

Processor Usage 

On 
ToD Medium low Normal  High Normal Normal 

On 
DSP  Medium low NA NA Normal  High 

Network Bandwidth 
Usage 

On 
ToD Medium  Normal  High Normal  High 

On 
DSP  Medium low NA NA Normal Normal 

E4 
  
  
  
  
  
  
  
  

Reporting events 

              

Memory Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

Hard-disk Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Negligible/none  Negligible/none  

On 
DSP  Medium low NA NA High High 

Processor Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

Network Bandwidth 
Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

E5 
  Updating signature database               
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Memory Usage 

On 
ToD Extremely low Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

Hard-disk Usage 

On 
ToD Extremely low Not Supported Not Supported Negligible/none  Negligible/none  

On 
DSP  Medium low NA NA High High 

Processor Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Normal Normal 

On 
DSP  Medium low NA NA High High 

Network Bandwidth 
Usage 

On 
ToD Extremely low Not Supported Not Supported Normal Normal 

On 
DSP   NA NA High High 

sharing and exchange of 
information  
  

Memory Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Negligible/none  Normal 

On 
DSP  Medium   NA NA High High 

Hard-disk Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Negligible/none  Negligible/none  

On 
DSP  Medium   NA NA High High 

S 
  
  
  

Processor Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Normal Normal 

On 
DSP  Medium   NA NA High High 

Network Bandwidth 
Usage 

On 
ToD 

Negligible/non
e  Not Supported Not Supported Normal Normal 

On 
DSP  Medium   NA NA High High 

 

Table  5.3 Comparisons between different detection mechanisms 
 

The following parametric study focuses mainly on the parameters that have great impact 

on the aspects under evaluation. Figure  5.13 presents an anatomy of the typical defense 

provisioning platform illustrating the main components of defense provisioning process. These 

components are used to construct the equation that we used as a key tool to analyze the cost of 

enabling EvoSense evolutionary sensing and effecting. 

The total cost of executing a defense system locally within the host can be estimated as 

described in the following equation (1),  

Equation 1, The total cost of executing a defense system locally within the host 

𝐴 + 𝐵 + (𝐶1 ∗ 𝐸𝑋𝐹𝐵) + �𝐶2𝑎evants ∗ 𝑆
𝐸1
� + �𝐶2𝑏events ∗ 𝑆

𝐸2
� + �𝐶2𝑐events ∗ 𝑆

𝐸3
� + (𝐷1 +

𝐷2 + 𝐷3 + 𝐷4 + 𝐷5 + 𝐷6) + (𝐸1 ∗ 𝑆𝐸) + �(𝐸2𝑎 ∗ 𝐵𝐵) + (𝐸2𝐵 ∗ 𝑆𝐶) + (𝐸2𝑐 ∗ 𝑁𝑅) +

𝐸2𝑑� + 𝐸3 + 𝐸4 + 𝐸5    

 

Where, EXFB is the number of feedback sources , S/E1 is the  number of sensor / on demand event , 

S/E2 is the  number of sensor / on access event, S/E3 is the  number of sensor / scheduled event, SE is 



184 
 

the  search elements, BB is the number of boxes, “E2a = cost of a single box”, SC is the number of 

scanners/box, and NR is the number of reports  

 

Figure  5.13 The anatomy of attack detection tools 

 
When we used equation (1) to estimate  the effect of the aforementioned parameters on the 

total cost vary by the variation of the target of calculation. For example some of the parameters 

would have significant effect when used to calculate the effect of defense provisioning on the 

memory usage, while same parameters might not have same effect when used to calculate the 

network bandwidth usage.  

Equation (1)  presents the total cost of the detection process as an accumulation of the cost of 

activating the different components of the detection tool. By analyzing the list of components we 

can notice that some of these components add only static cost that neither adds a specific 

workload once nor over time. Such parameters will not be affected by changing the detection tool 
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or mechanism.  In this study we are going to focus only on the dynamic cost components, where 

the added workload changes massively by changing the defense provisioning tool or technique.  

The following study aims to analyze the total cost of defense provisioning in terms of resource 

usage and time to detect attack. The study always refer to five main defense provisioning 

mechanisms , four of them represents an abstract classification of the conventional defense 

provisioning techniques (Local, Local with AI, distributed, and distributed with AI) based on their 

working environment distance from the ToD, and the fifth is our EvoSense.  

The study aims to illustrate the effect of enabling trustworthy information sharing and 

exchange, and the effect of autonomous sharing defense tools between different components of 

the DSP on the studied aspects. Additionally we also aim to illustrate the effect of enabling 

pervasive sensing and effecting on the attack dispersion, and the time needed to immune the ToD 

hosts against it. 

5.5.1.1 Total consumed resources  

The most resource consuming components in any defense provisioning tool based on the 

anatomy presented in Figure  5.13 is presented in branch C, D, and E of the tree. These branches 

represent, the data collection by monitoring, scanning and logging; the research and analysis 

either by static analysis, emulation environment monitoring, heuristics, acquiring for consultations 

from cooperating units if supported by the defense provisioning tool, and composing the cleaning 

protocol.  

The 3rd branch is the cleaning phase that involves executing the resolution protocol, 

processing of the infected items to restore it to original condition, and quarantine attacks in 

controlled sandboxes while closely monitoring the attack interactions within the box.  
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The main cost of the C branch “data collection by monitoring, scanning and logging” resides in 

the resources consumed by the sensing and logging elements utilized by the data collection tools. 

These tools are either acquired when needed or stored locally at each host. Also these tools are 

either generic that can be composed at runtime to collect specific data, or specific where each 

component has its own list of tools.  

Tool reuse is expected to have a huge impact on the overall consumed resources by the data 

collection unit. For example, if we have N component using M sensing element/component then 

without sharing we have a total of N*M sensors. If on average each sensor consumes k memory 

or storage space then we have N*M*K total consumed resources. In case of sharing with average 

of h% shares then the total will be N*M*K*h% where H<100.  The higher the value of (H) is, the 

lower resource usage.  

Conventional defense tools are mostly hardwired with a set of components that has its own 

sensing elements integrated with the control logic. To our best of knowledge, the concept of 

abstract sensing and effecting was not presented by any other technique rather than EvoSense. 

Abstract sensing and effecting is a key enabler for resource sharing and reuse.  

Distributed defense provisioning mechanisms utilize some sort of resource sharing by enabling 

a single remote node to analyze the feedback from multiple hosts. The effect of that sharing is 

expected to be clear with respect to parameters presented in the D branch of the tree.  EvoSense is 

designed to maximize resource sharing increasing the value of H. a single sensors feedback can be 

utilized by multiple analysis and control techniques on EvoSense side. Additionally, the utilizing 

the idea of programmable generic sensors, enable EvoSense Sensors to be used for collecting 

information regarding different aspects of the system. Further, EvoSense sensors are designed to 

crewel thought the ToD network and reside back on EvoSense side. EvoSense sensors are not 
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supposed to consume much storage or memory resources of the host, as they are all on demand 

sensors that gets loaded only when needed then disposed automatically afterwards. 

For the D branch “advanced research and analysis” we should mainly worry about the 

consumed processing and memory usage. Most of the available defense tools carry partial or full 

analysis of the senor feedback locally within the host. Distributed defense provisioning tools, tries 

to minimize the processing workload on the local host by moving the high workload part to 

remote servers [79,72]. However, they do not save much as the feedback sent from the local agent 

to the remote server will be limited not to violate the privacy policy of the ToD. Additionally, 

these tools were not designed to enable abstract sensing enabling automated sensor feedback 

sharing saving huge network bandwidth in case of transferring the feedback to remote servers for 

analysis.  

Based on the anatomy presented in Figure  5.13 D2 and D6 are expected to be the most 

resource consuming among the D branch. Using heuristics techniques to predict or reveal 

unknown threats is known to noticeably increase the defense provisioning workload. For that 

locally hosted defense tools tries to limit the investigation depth or the utilized techniques when 

heuristics is used. Doing so limits the prediction capability and the accuracy of the detection tool 

and increases the chance of false positives. 

One of the most effective, and accurate way in predicting unknown threats is the environment 

emulation presented by D6 , where attacks gets quarantined in a controlled virtual environment 

for close monitoring and investigation. Some of the locally hosted tools can do that [69], while 

this process involves huge resource consumption needed to create the virtual environment and to 

keep the created virtual box and application executing within it under full time supervision. 

Distributed defense systems solutions can do that remotely on dedicated servers saving a 
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considerable amount of the ToD resources. However, given the current virtualization technology, 

the DSP invest a considerable amount of resources to apply such technique. Additionally, with the 

limited cooperation nature of the current defense provisioning tools, multiple virtual environments 

might be created to investigate same events.  

With EvoSense intrinsic cooperative feature, such unnecessary duplication will be limited or 

omitted saving the DSP network a considerable amount of resources. Further, EvoSense utilizing 

the COA infrastructure, can create a virtualization environment for suspicious application with 

one of the COA Cells, saving much of the resources wasted in creating a fully virtualized 

environment utilizing one of the currently available techniques. COA Cells are Nano virtual 

machines that can create a fully/Simi virtualized environment. Additionally, COA Cells are 

designed to be in full time monitoring and supervision making it easier for EvoSense to monitor 

the execution of the enclosed suspicious application.  

The E branch is mainly concerned about after attack, and attack immunization process. Usually 

this process involves cleaning or quarantine the infected application.  In case of simple cleaning 

the cost is relatively similar regardless of the technique used to provision defense services, while 

in some cases cleaning becomes impossible and the application would revert to one of two 

options, either delete the file, or to quarantine it. The quarantine is usually located within the host, 

and the infected application is always under full time supervision by dedicated monitors. The 

process is computationally expensive especially when the number of infected files passes certain 

threshold.   

One of the advantages that EvoSense grants to the defense provisioning process is the ability to 

use the COA Cells to encapsulate suspicious applications. Doing so facilitates moving the 
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application outside the ToD to be executed in a more controlled environment. In this case, the 

Cell will be under deep surveillance without adding extra workload to the ToD hosts.  

Using COA Cell as a virtual environment either for analysis or as quarantine to threats is 

computationally cheaper than using a fully virtualized environment utilizing any of the available 

virtualization techniques. Meanwhile, EvoSense copy the infected application to one of its remote 

serves to apply deep cleaning methods which might be effective to clean the infection. 

Additionally, EvoSense can acquire a clean copy of the application from one of the available 

backups of the host before infection and use it to replace the infected one.  

Further, based on a research work of [68], a large set of threats massively increase the resource 

consumption of their targets after infection. Time to detect, resolve, contain attacks is an 

important factor in the overall estimated resource consumption of a networked system specially 

after being infected by any of those attacks.  The following discussion will represent that 

EvoSense pervasiveness and autonomic defense missions and tips sharing can effectively 

decrease the attack dispersion by rapidly distributing detection and resolution tools. Doing so, is 

expected to have a noticeable effect on minimizing the resource consumption that would have 

been wasted by the attack.   

5.5.1.2 Time needed to detect attacks  

The technique used to detect attacks has a great impact on the time frame between infection 

and detection. Locally hosted techniques relay on signature database containing all the signature 

of known attacks. AI enabled techniques use heuristics to allocate suspicious applications, and 

report it or quarantine it. Large distributed techniques, feed their detection host side application 

with frequent updates about recently known attacks in the form of added signatures. However, 
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both of them relay mostly on central servers that distributes new signatures for the recently found 

threats. The time needed to device such signature is a major player in this process.  

 The D branch includes the key components controlling the duration between infection and 

detection. The components are either active or passive. For the active components like D2 and 

D6, the spent in collecting and analyzing the sensing elements feedback either by one/more 

heuristic technique has a great impact on the duration between infection and detection.  Passive 

components like D1, D3, and D4 relay on the speed of attack event distribution, and the time 

needed to device valid signature for the attack.  

Mostly, the conventional detection techniques do not share their attack prediction component 

reports due to the high risk of violating the privacy policy of the ToD, and due to incompatibility 

and lack of abstraction between defense tools. Different versions of the same products built by the 

same company might utilize different formats to represent their signature database, or 

detection/resolution protocols. Further, attack reports might indicate attacks that require specific 

sensing equipment to be detected. Conventional detection tools are not designed to share tools, as 

this might violate their manufacturer copy rights.  

Generally speaking, sharing events without appropriate tools to verify the existence of certain 

attack within the ToD network can be considered useless.  

 EvoSense is built to support DSP cooperation locally within the DSP network, and globally 

between EvoSense enabled DSPs. Enabling such cooperation reduces the time frame between 

infection and detection, as EvoSense autonomously share detected attack events through the 

pervasive management and control units distributed all over the ToD network. EvoSense sensors 

extract privacy friendly information from infections hosts that can easily be shared with the tools 
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used for detection in one package “defense mission”. EvoSense share attack events easily without 

violating the privacy policy of the ToD.  

EvoSense leverage the homogeneity feature of its COA based infrastructure to enable sharing 

attack detection packages “sensing missions”. The package includes set of tools and an execution 

protocol and attack detection assurance mechanism to be distributed within the TOD network of 

any EvoSense capable DSP. EvoSense sensing missions describes the behavior of an infected 

application, rather than attack signature. Doing so massively reduce the time wasted in 

manually/automatically creating signatures.      

Let us assume that the average infection rate R/sec, then at time T we should have  

IM=2 ^(T*R)  infected machines.  

If the time needed for the first attack to be detected is X, the time needed for a signature to be 

devised is Z, the time needed for a single machine to have a copy of  the signature is Y, at time to 

resolve an infected computer is V  

Time to safety either by immunization of by recovery and immunization is calculated as 

follows: X+Z+ ((Y*(N-IM))+(Y*V*IM)) 

The most time consuming process is the (X+Z) period. It has a huge impact on the cost of 

attack. The attack cost is an estimation of the losses occurred due to infection like, overloading 

the host, or the host network, interruption of operation, … etc.   

The time V also depends on the nature and the severity of the attack,  some attacks sets the 

detection system itself as one of its primary targets, doing so complicates the process of automatic 

recovery.  
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With conventional systems, the value of X, and Z depends mostly on manual or semi-

automated analysis. The value of V depends on the cleverness of the defense tools, and the attack 

type. With EvoSense, the value of X is the only important factor, as by the time of detection, the 

system automatically responds to attacks by quarantining it either locally at the infection point, or 

in a remote sandbox. In EvoSense, a successful mission that detects attack gets automatically 

distributed to all machines connected to EvoSense enabled system minimizing the values of Z and 

Y to great extent. The value of V is supposed to be small, as the system responds to threats 

automatically by containing the attack in controlled environment until a resolution effector 

resolves the situation. Using such technique limits the attack dispersion (R) minimizing the 

number of infected machines.  

From the presented study we can notice that using EvoSense to deliver defense services is 

expected to reduce the overall consumed resources to detect attacks, and the time between 

infection, detection, and resolution/immunization. Next I will present EvoSense sensing 

circulation protocol.   

5.5.2 Simulation results 

We use simulation to conduct four experiments for the purpose of evaluating EvoSense 

performance. The first experiment evaluates the overall downtime with and without EvoSense 

evolutionary features while increasing attack arrival rate, it also evaluates the effect of widening 

the defense experience sharing-scope on the system downtime. The second experiment evaluates 

the effect of changing the pervasiveness-density while increasing the attack diversity on the 

amount of consumed resources, on the attack detection promptness, and attack detection accuracy. 

The third experiment is to illustrate the effect of sensor circulation of the system performance in 
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regard to resources consumed, and time to detect attacks.  Finally, the last experiment aims to 

illustrate the effect of using dynamic host classification using profiles on the system performance 

aspects.  

5.5.2.1 Simulator design 

We used MATLAB to build a simulation program representing a 100*10*10 network of hosts 

classified into different hosts in organizations and enclaves. Each node in the network holds 

records for attack and resolution history during the experiment time.   

Attacks are spatiotemporally distributed over the hosts based on a set of random distributions as 

illustrated in Table  5.4. We designed defense mission generation module that mimics the defense 

service provisioning in the real systems applying EvoSense. This mechanism uses containment 

organisms to resolve un-resolvable attacks. We assume that containment organisms will resolve 

the situation locally. Deploying containment organisms increases the downtime at the 

deployment point by an estimated predetermined value reflecting the time needed to contain the 

problem and restore the host to its original state.  We used a predetermined threshold 

representing the risk-factor, it is the time needed to authorize containment organisms 

deployment.  

Defense missions are rewarded at each successful resolution attempt.  Rewarded missions are 

shared and applied to other nodes within the sharing scope of the experiment. We tested the 

sharing effect on the overall downtime using three scopes, single enclave, single organization, 

and all community scopes.   
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The simulator was built assuming that  attack activity is always detectable and it is either 

resolvable or containable, sharing is only for successful attacks while containment events is not 

for sharing, and all missions has only one active role. 

Classification Parameter P_Type Low Normal High Very 
High 

Network 

Number of hosts  Static 100 100 100 100 

Number of enclaves Static 10 10 10 10 

Number of hosts/management unit Static 5 5 5 5 

Number of organizations Static 10 10 10 10 

Number of ToD hosts in each enclave Static 3 5  5 7 

Host participation hosting sensors Static 30% 30% 30% 30% 

Number of profiles Static 3 3 3 3 

Number of Hosts/Profile  Uniform 3,3 3,3 3,3 3,3 

Event 

Profile change  
Timing Poisson 10 10  10 10 

Type Uniform 3,3 3,3 3,3 3,3 

Number of 
active defense 
missions  

Timing Poisson 10 20  25 30 

Locations Normal 10,10, 
100 

10,10, 
100 

10,10, 
100 

10,10, 
100 

How many hosts Uniform  100 100 100 100 
Expiration date Uniform  10 10 10 10 
Number of 
sensors/effectors Uniform  

5 5 5 5 

Resource usage on ToD Uniform  12 12 12 12 
Resource usage on DSP Uniform  40 40 40 40 
Resolution time Uniform  5 5 5 5 
Type Uniform 10000 10000 10000 10000 

Attack 
dispersion 

Locations Normal 10,10, 
100 

10,10, 
100 

10,10, 
100 

10,10, 
100 

Scope Uniform 5 15 35 65 
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Rate  Poisson 20 50 70 100 

Sharing 
Sharing scope Uniform 15 15 15 15 

Sharing location Normal 10,10 10,10 10,10 10,10 

Attack event 
generation  

Timing Poisson 10 20 30 50 

Added downtime on 
ToD Uniform 10 10 10 10 

Resource usage on ToD Uniform 10 10 10 10 

Location Normal 10,10, 
100 

10,10, 
100 

10,10, 
100 

10,10, 
100 

Type Uniform 10000 10000 10000 10000 

Conventional 
Deployment 

Settings 

Sensor Set Size Uniform 5 5 5 5 
Sensor Set Locations Normal 10,10 10,10 10,10 10,10 
Sensor Set scope Uniform 5 5 5 5 

Sensor Set Deployment rate Poisson 15 15 15 15 

Evolution 

Sensor 
Circulation  

Timing Poisson 15 30 50 80 

Deploy location Normal 10,10, 
100 

10,10, 
100 

10,10, 
100 

10,10, 
100 

Scope Uniform 5 15 25 40 
Package size Uniform 5 5 5 5 
Type Uniform 10000 10000 10000 10000 

Containment  

Contain after Uniform 15 15 15 15 

Containment penalty  
"time" Uniform 100 100 100 100 

Containment penalty  
"Resources" Uniform 100 100 100 100 

Defense missions generation rate Poisson 10 10 10 10 

Table  5.4 EvoSense simulation parameters 

 

In the presented results, we are simulating the case that all hosts have same chance in getting 

infected. Further, we assumed that the senor unguided circulation for the sake of detecting 

unknown attacks uses balanced host selection scheme. With that assumption, it is closer to a 
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population description; which makes the normal distribution a good distribution to describe it. 

The rate of change or inter-arrival time is best represented as a Poisson distribution.  

We used three factors to evaluate EvoSense performance: 

• Pervasiveness density reflects the amount of detection sensors deployed on each node.  

• Attack diversity is the total number of successful attack types with respect to the 

overall number of attacks per node.  

• Detection accuracy is the number of successfully detected attacks with respect to the 

overall number of attacks. Promptness is the time between infection and resolution. 

 During the experiments, at each sensor deployment, resource usage calculated for the targeted 

node is incremented by the estimated value of resources to be used by this sensor. Additionally, at 

each attack event, the amount of consumed resources at the attack-targeted node is increased by a 

predetermined value relevant to the type of attack.   

The simulation experiments were built based on the following assumptions: 

1) No immunization effect to save the computational power 

2) Same number of attack types for each run (1, 2 , 3 ,4) and same # of machines 

3) Use-everything and Commonly-used modes use the DSP resources for sharing only 

4) All attacks are detectable there is a sensor matching all available attacks.  

  

The commonly used mode “conventional tools”, is a random set of the sensors deployed on all 

hosts at all times, new sensors are added with a slow rate to mimic the normal update process of 

conventional tools. The update settings and the initial set size is illustrated on section 

“Conventional Deployment Settings” in the table.  

The use-everything mode, use all the sensors and pre-deploy them on the host at all times, no 

expiration, no generation. This mode represents the most effective way to detect attacks.  
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The evolution section represent EvoSense crawlers “circulation and containment” , and the 

frequent deployment of sensors and effectors that represent the normal remote sensing, analysis , 

and resolution.  

Average time to detect attacks = Total time spent to detect the attack on all infected machines for 

all attacks divided by the (total number of attacks + total number of machines) 

Now we will discuss the simulation parameters presented in Table  5.4. 

The network parameters: 

Number of hosts, enclaves, organization, Number of ToD hosts in each enclave, and Number of 

hosts/management unit represents the network construction and the host distribution among 

enclaves and organizations. We use static values for this construction through the presented 

experiment.  

The “Host participation in hosting sensors “parameter represents the participation ratio of the 

host in hosting sensing and effecting tools permanently in the ToD local platform. Increasing this 

value to 100% means I am using only conventional defense tools with full defense package 

hosted in the host. EvoSense rule in this case is just a sharing platform. In the case of using 0% 

participation means I am moving all defense services to the remote DSP platform at all times, no 

locally hosted sensing or effecting tools are allowed to be stored in the ToD platform.  

Events: 

Active defense missions: these set of parameters describes the configuration related to generating 

defense missions “sensors, and effectors”. The timing sub parameter presents the time slot and 

the rate of defense mission deployment on each host. This parameter is initialized and adjusted 

based on Poisson distribution. The value of (λ) controls the generated result for the next round 

determining the frequency of defense mission deployment. The Location sub parameter 
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represents the deployment locations for the next deployment event. We use normal distribution 

to generate a set of random locations for the next deployment package. the number of hosts is 

determined by the” how many hosts parameter”. The sub parameter Number of sensors/effectors 

determines the size of each mission in terms of sensors and effectors. We use uniform 

distribution to generate this number to stabilize the sensor load among deployed missions.   

The parameters resource usage on ToD and on the DSP determines the amount of consume 

resources by the deployed sensors on both platforms for each time event spend on the deployed 

sensors while being active. Resolution time parameter determines the penalty applied to the 

execution downtime as the time needed to clear the threat.  The type parameter determines the 

mission type to be deployed on the ToD. These parameters are initialized using uniform random 

number generator.   

Attack dispersion rate and location parameters determine the attack dispersion locations   for 

each time event identified by the Rate value. After infection, each attack spreads to a set of 

locations with size initialized by the Scope parameter at the frequency determined by the rate 

parameter.  

Sharing scope and location parameters determine the scope and the locations of sharing 

successful sensors with other hosts. We use normal and uniform distribution to initialize 

locations and scope parameters respectively.  

Attack event generation parameters is described by five sub parameters, timing to determine the 

generation and deployment frequency and is initialized by Poisson distribution, the Added 

downtime on ToD parameter determines the effect of infecting a host on the execution downtime 

and is initialized using uniform distribution. The Resource usage on ToD Parameter determines 

resource load increase on the ToD due to attack and is initialized by a uniform distribution.  
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The following sub parameters. The location and type parameter describes the location and type 

of the deployed attack and is described by a normal and uniform distribution respectively.  

Evolution : 

The Sensor circulation parameter describes the configuration of the sensor circulation 

mechanism in EvoSense. The timing describes the rate of circulation and is initialized using a 

Poisson distribution, deploy location is the locations; scope is the list of hosts that will receive 

the sensor package. The package size and type, describes the number and types of sensors in 

each deployment package.  

The containment parameter represents the containment process of deployed attacks. When the 

value identified by the “Contain after” parameter expires, the containment effectors is deployed 

and the process starts. The containment process has a penalty on the resources and on the 

downtime identified by the parameters listed.  

The Defense mission generation rate describes the frequency of adding new missions to the list 

of available missions for deployment.  

5.5.2.2 Extracted results and discussion  

The simulator is designed to illustrate the effectiveness and efficiency of EvoSense. The results 

were all generated using random distributions that were configured based on the parameters in 

Table  5.4. The main objective of the experiments presented in this section is to illustrate the 

effectiveness and efficiency of EvoSense when compared with “Use everything approach” that 

simulate the case of deploying all the available attack detection tools on all machines at all times. 

This mode guarantees 100% effective attack detection.  

In real world this mode is impractical as it simulates using multiple tools working together on 

same machine. This setup has been proven to be bad due to the uncooperative, and unawareness 
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nature of the available tools that might lead to multiple conflicts [1,2,3].  The commonly used 

mode simulates the normal case of using a set of the available defense tools packaged in one 

defense solution. This mode represents the most commonly used case in terms of efficiency as it 

provides acceptable levels of guarantee that it will detect most of the attacks, while using a 

reasonable amount of resources. We used this mode to replace the optimal detection mode, as it 

was proved multiple times by researchers that the problem of attack detection is an NP-Complete 

problem [96,97,98]. We used the most commonly used mode because it is a practical solution 

closer to what is being used in the real world. Additionally it is a solution that balances attack 

detection accuracy with reasonable resource usage. 

The EvoSense crawlers mode describes EvoSense pervasive sensing, with intelligent 

circulatory sensing mechanism, and trustworthy sharing.  

The following illustrates the evaluation matrix we used to extract the presented results: 

• Total consumed resources= 

∑ ∑ ∑ ∑
�(𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑖𝑛 $ 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙� ∗  

(𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑒𝑓𝑟𝑎𝑙))
𝑛
1

𝑁
1  𝐸

1
𝑅
1  

Where N is the number of hosts in each enclave, E is the number of enclaves in each organization, R is 

the number of organization, and n is the number of peripherals/ host 

• Total time to detect attacks 

=∑ ∑ ∑ ∑ (𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑒𝑟𝑛𝑐𝑒 𝑠𝑐𝑖𝑛𝑐𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑑𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑎𝑡𝑡𝑎𝑐𝑘)𝑛
1

𝑁
1  𝐸

1
𝑅
1  

Where N is the number of hosts in each enclave, E is the number of enclaves in each organization, R is 

the number of organization, and n is number of attacks infected that host 

• Attack density: refers to the concentration of attacks/ hosts which is equal to the total 

number of (active attacks for experiment time T )  / (total number of hosts N)  

• Average circulation frequency: refers to the concentration of sensors/ hosts which is 
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equal to  (∑ (𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 /ℎ𝑜𝑠𝑡  𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 𝑡) ∗  𝑇  )𝑁
1 )/N 

Where N is the number of hosts 

• Attack diversity: is the total number of successful attack types with respect to the overall 

number of attacks per host 

 

The experiment is two parts, one focuses on evaluating the efficiency of detection in terms of 

resource usage, and the other one focuses on the effectiveness of the detection in terms of time to 

detect attacks.  
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Resources,  ToD side 

 

Average time to detect attacks in (ticks) 

 

Resources on DSP 
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Figure  5.14 Evaluating EvoSense effectiveness and efficiency  

5.5.2.3 Efficiency  

Through the presented experiments we illustrate the effectiveness of our approach by 

comparing the measured resource consumption by our approach with the two other approaches 

known to have an acceptable defense provisioning levels “the use everything” having almost 

100% detection accuracy given our simulator configuration, and the conventional mode 

mimicking real life defense systems .  

Figure  5.14 A1,A2, and A3 show that EvoSense resource consumption is slightly  more than the 

most commonly used solution and much less than the use everything in low attack rates mode 

regardless of the sharing scope used.  

The effect of sharing is obvious, when we expand the sharing scope of defense missions, we 

managed to detect attacks much faster minimizing attack desperation and excessive resource 
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consumption. However, with EvoSense, expanding the sharing scope with low attack density 

might consume more resources than needed due to the consumed resource invested in sharing 

defense missions that exceeds the wasted resources by low rate attacks.  

In the higher attack arrival rate cases, EvoSense was more successful than the other two modes 

in saving ToD resources. EvoSense use of effective sensing martials lead to more efficient 

utilization of resources and fast detection of attacks. The reason behind that is minimizing the 

active period of attacks saves considerable amount of resources too. The effect of sharing is clear 

in enhancing attack detection promptness and minimizing resource waste, with and we expect 

that by enabling the immunization effect we can see that EvoSense can even save more resource 

than the most commonly used solution. Sharing defense missions with non-infected hosts 

immunize these hosts against future attacks saving unneeded future resource waste. 

Figure  5.14 (C1, C2, C3) presents the resource consumption of the three modes on the DSP 

side. On the DSP side, EvoSense is expected to consume much more resources when compared 

to the other two modes. The simulator did not consider the cost of analysis that supposed to be 

added to the ToD when using the “Use everything mode, and the most commonly used solution “ 

to make the comparison more focused. Adding this cost to the ToD will definitely make 

EvoSense much more resource efficient than the other two modes. The reason behind that is that 

EvoSense wave this cost from the ToD to the DSP side. This is why we see that EvoSense is 

consuming much more resources on the DSP side than the other two modes.  

The other two modes resource consumption is mainly the cost of sharing defense missions. 

That is why we see a sharp decrease in the DSP resource consumption when we minimize the 

sharing scope with the “Use everything mode, and the most commonly used solution “modes.  

On the contrary, EvoSense consume more DSP resources when we reduce the sharing scope 
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due to the added cost of analysis of attacks that had better chance to spread all over the ToD.  

5.5.2.4 Effectiveness  

Figure  5.14 (B1, B2, and B3) illustrate the effectiveness of our approach by a comparison 

between EvoSense and use-everything and the most commonly-used modes regarding “time to 

detect attacks”.  

We can notice that the use everything mode is always better that the two other modes because 

giving the list of assumptions we build our simulator on, having all sensors deployed on all 

machines gives the detection tool a 100% success chance in detecting attacks as soon as it hits 

the host. While based on our discussion before, practically this mode is inappropriate. 

EvoSense circulatory defense performs slightly less than the use everything mode, and much 

better than the most commonly used solution in terms of time to detect attacks. The most 

commonly used solution use random set of defense missions deployed on all hosts. Unknown 

attacks would not be detected until the next update round carrying the detection tools. Attacks 

will have good chance of spreading all over the system.  

Expanding the sharing scope massively enhance EvoSense performance in detecting attacks, 

with a slight enhancement on the other two modes, as this sharing comes in manual exchange of 

signature update from central servers. EvoSense automated trustworthy sensing and effecting 

tool sharing acts in much faster way than the signature database update message. EvoSense share 

executable packages ready to surgically detect and remove attacks quickly and accurately from 

infected hosts. Sharing such materials instead of sharing signatures enhances the detection 

accuracy and promptness as shown in the figures.  

 
1) The effect of circulation  

 



206 
 

Figure  5.15 The effect of circulation  

 

We carried out another experiment to determine the effectiveness and the efficiency of EvoSense 

circulatory mechanism, with different sensor/effectors circulation frequency. The experiment 

evaluates both aspect based on the time to detect attacks, and resource consumption respectively 

as shown in Figure  5.15 (D1, and D2).  

We used three circulation frequency modes high, normal, and low circulation frequencies as 

shown and highlighted in blue in the parameter Table  5.4. Lowering the sensor/effectors 

circulation frequency enhances the system resource consumption on the account of increasing the 

time to detect attacks. In this mode EvoSense is much like the most commonly used mode, as the 

Effect of increasing frequency of circulation on resources, and time to detect attacks 

Resources 
 

 

 

 

  D1 
  

 

Time 
 

 

 

D2 
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sensor change slowly over time mimicking the speed of adding new signatures to the signature 

database of such mode.  

Increasing the sensor circulation frequency, do minimize attack detection time on the account of 

increasing the ToD resources. This mode is much closer to the Use everything mode as the 

number of sensors hosted on the host over time is closer to the total number of sensors available. 

Additionally, the resources saved from not hosting the sensors all the time, is wasted by the load 

of sensor circulation mechanism if the frequency is too high.   

We can notice that EvoSense sensing and effecting circulation and sharing scope parameters can 

control the spectrum of defense provisioning quality and cost.  The parameters controlling these 

aspects are usually adjusted by the heuristic mechanism in use at the time of deployment and 

dynamically at runtime.  Also enabling the immunization effect and the full-fledged EvoSense 

with sensor reuse and estimation mechanisms is expected to even save more resources and 

enhance detection time.  

 

 
2) The effect of distributing defense missions and directing sensor circulation based on 

matched profiles. 
 

Average time to detect attacks  

With 

profiling 

 

E1 
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Figure  5.16 The effect of distributing defense missions and directing sensor circulation 
based on matched profiles 

 
In this experiment we mimicked the configuration of one of the cases presented in Table  5.4, 

Case (3), while enabling the profiling mechanism of EvoSense. The simulator was modified to 

create a set of static profiles that describes different behavior patterns for the attached hosts. The 

profiles were classified into three sup categories, Organization level profiles, Enclave level 

profiles, and host level profiles. The Organization level profile describes the regular behavior of 

all the hosts within this organization. The Enclave level profiles describe the behavior of all the 

hosts working under certain enclave. The host level profile sub group the hosts under certain 

enclave based on different profiles.  
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The attacks on the attack pool were classified in categories matching the generated set of 

profiles. The attack generator was adjusted to direct only attacks that match the profile of the 

targeted host. 

The profiling mechanism used in this experiment presented simple classification profiles that 

mimics the real system classification based on platform and application configuration. 

Classifying attacks based on that profiles, was logic given that attacks are mostly targeted 

targeting specific vulnerability in a certain application running on a specific platform 

configuration. For example, it is highly unlikely to expect that a windows based attack would 

infect a network where all hosts operate under Unix OS.    

The main objectives of this experiment is to show that EvoSense capability to profile hosts into 

set of classes, and direct the defense provisioning process based on that profile can enhance the 

defense provisioning effectiveness quality and efficiency.   

The use of such profiles minimized the search space of the investigation elements focusing on 

a subset of tools matching the subset of the possible attacks. As presented in Figure  5.16 (E1, E2, 

E3, and E4), doing so minimized the time needed to detect attacks, and the resources consumed 

by the sensing and effecting elements. The set of resident sensors on each host, is cleverly 

selected based on such profiles maximizing the success rate of such sensors and minimize the 

resources wasted by useful sensors.  

5.5.3 Observations  

From the presented results we can conclude by illustrating the following list of observations: 

• Using smart sensor deployment increases the attack detection promptness with a 

reasonable overhead mostly on the DSP side.  

– Most of the workload waived from the ToD to DSP enabling EvoSense to work in 
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networks with resource-constrained devices 

• Increasing sensor circulation frequency and level of pervasiveness has positive impact on 

minimizing time to detect attacks with a moderate overhead. 

– Resources saved by limiting the attack activity, compensates in part the resource 

consumption increase due to circulation frequency increase 

• Smart sensor circulation based on dynamically changing profiles enhances the detection 

promptness and accuracy and decrease the ToD resource consumption 

• EvoSense detection accuracy is close to the optimal case with a much less overhead that 

comes closely (on the ToD side) to the resource consumption of the practical case  

• EvoSense is a complex defense delivery mechanism with a costly service on DSP side  

– High DSP resource usage invested in; 

• maintaining staple defense provisioning by; 

– enabling defense resilience against attacks  

– Isolating defense provisioning from ToD  

• Global and deep analysis of sensor feedback to detect unknown attacks 

autonomously  

• Dynamic defense mission composition based on that analysis  

• Constructing global real time view of the entire network to ease 

management process 

• Inspecting shared material against local privacy rules 

• EvoSense was designed to serve large scale applications that desperately needs EvoSense 

unique features  

 

5.6 Conclusion  

In this chapter we presented a quantitative study that included a set of models, experiments, and 

analytical studies to evaluate the efficiency and effectiveness of CyPhyCARD and its pillars. 
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The conducted experiments and studies illustrated the capabilities of CyPhyCARD pillars to 

successfully accomplish their design goals with a reasonable overhead. The presented study and 

results illustrated that:  

– The intrinsic adaptive and elastic nature of the basic building blocks enabled each 

pillar to adapt its resource needs towards efficient utilization of the available 

resources while maximizing the system performance; 

– The effect of the successful and prompt detection and/or mitigation of attacks and 

threats with ChameleonSoft and EvoSense have a clear impact on minimizing the 

failure downtime; 

– CyberX, ChameleonSoft and EvoSense were able to minimize the attack success 

minimizing the impact of attacks on resources consumed; and 

– Isolating defense provisioning, and moving heavyweight tasks on DSP side, 

waived most of the workload from the ToD  

– giving it more space to invest such resources on serving the running 

applications, 

– expand the system compatibility to legacy components,  

– Minimize failures due to resource starvation, and 

– Limit the attacker ability to utilize the defense provisioning workload to 

interrupt the operation on the ToD hosts in attempt to lunch a DOS 

attacks.  
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CyPhyCARD and its pillars were evaluated qualitatively through the dissertation chapters by 

illustrating their effectiveness in mitigating our synthetic multi-threaded CPS attack, the 

BlackWidow. The qualitative study demonstrated that CyPhyCARD and its pillars are capable of 

mitigating such sophisticated attack and invalidating the attacker assumptions and the attack 

design invariants.   
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Chapter 6 
 
6. Related Work 
 

 

 

6.1 Overview 

CyPhyCARD main objective is to enable efficient, resilient pervasive and prompt attack 

detection and resolution for heterogeneously composed targets.  CyPhyCARD achieves its 

design objectives by successful employment of its constructing pillars as described in the 

previous chapters.  

CyPhyCARD was founded over a COA based foundation managed by CyberX. CyberX-

managed Cell is the basic building block of the entire defense platform. CyberX works on 

enabling efficient and failure resilient, adaptive application execution by means of application 

modularization into fine grained components and smart employment of runtime diversity.  

Attack resilience is granted by the second pillar, ChameleonSoft that enables runtime software 

behavior encryption and trace-resistant moving-target defense via complex and smart 

employment of diversity across time, space, and platform heterogeneity.  

EvoSense uses this resilient platform to host the DSP defense services, to ensure resilience of 

defense service provisioning and to isolate the defense provisioning work-load from the ToD. 

Further, EvoSense pervasively deliver prompt and precise defense service to the ToD scattered 

components regardless of its platform or software composition heterogeneity.   In the following 

“Good judgment comes from experience; experience 
comes from bad judgment.” Jim Horning 
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subsections we will list the variant efforts that were presented by the current literature to enable 

CyPhyCARD design objectives.  

 

Figure  6.1The Taxonomy  

6.2 Taxonomy  

We presented taxonomy to lay down the foundation for the review of the literature review. The 

taxonomy provided focuses on three fundamentals in CPS defense domain, the programing, 

resilience, and monitoring and analysis domains. We will briefly explore each aspect moving 

from general concepts to more solid concepts.  
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6.2.1 Programming landscape  

 

Figure  6.2 The Taxonomy: Programming Landscape  

 

We see the programing landscape should be divided into two aspects, paradigms and 

organization.  Programming paradigms describes style and methodologies used to solve software 

engineering problems. Programing paradigms vary in the ideas and thoughts used to represent 

the components of the programs. New technologies work on evolving platform, and applications. 

However, new paradigms may be needed to enhance the efficiency and the quality of the 

software development process.  
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Program organization represents the arrangement used to organize various sections of the 

program. In this taxonomy we see the program organization as two main classes monolithic, and 

modular.  

Monolithic organization is the conventional technique used to present the programs as a single 

module. We use this term to describe programs with single image, where software production is 

a simple cloning process of the exact same module. Monolithic programs or mono culture 

programing orientation builds programs as single, unstructured, self-contained software units.  

These programs have serious security and performance limitations as illustrated before.  

The modular programing organization describes programs that are constructed from small 

structures and can be composed to construct the full application. This elastic software design by 

fractionizing large programs into modules has been used to enhance the software flexibility, 

reusability, and maintainability. In section 5.3 we will go deeply through the various techniques 

available to realize such programing organization paradigm. 
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6.2.2 Resilience landscape 

 
 Figure  6.3 The Taxonomy: Resilience Landscape  

 
We define resilience as the ability of systems to autonomously maintain operational stability and 

integrity in case of attacks, or intentional/coincidental failures. A resilient software product is a 

product that can autonomously mitigate or block attacks, or a product with the ability to 

autonomously heal from the effect of an attack or failure with minimal operation-interruption.  

We see two main classes under this category, attack resilience, and fault tolerances.  

Fault tolerance, is the ability of software or hardware to autonomously handle intentional or 

coincidental failures and autonomously restore operation with minimal downtime. Redundancy 

and replication are the main techniques being used to provide fault tolerance. Redundancy 
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includes duplications of data, logic or physical resources. The key element is how to detect 

failure quickly, and how to minimize the time needed to restore operation with minimal resource 

waste due to duplications. Section 5.4 illustrates the successful attempts of employing diversity 

for fault tolerance and attack resilience. Attack resilient products are products that can detect and 

autonomously mitigate attacks, or products with mechanisms to prevent certain attack classes. 

Attack detection techniques vary by the variation of the application and the type of attacks that 

they were design to detect, and the detection mechanism.  Section 5.4 and 5.5 gives a deep 

illustration of the different mechanisms available to provide attack resilience.  
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6.2.3 Monitoring and Analysis (M&A) landscape  

 
Figure  6.4 The Taxonomy : M&A Landscape  

 
M&A landscape focuses on the mechanism provided to facilitate host monitoring and analysis 

for security objectives mainly. We classify it based on three main classes. Host centric, network 

centric, and host-network isolated. The host centric defines mechanisms designed to share the 

same host that it was design to monitor and analyze. These techniques use the same host 

resources to provision its services. Network centric approaches are approaches that were 

designed to provide monitoring and or analysis services via remote nodes that share the same 

network with the host. These mechanisms usually rely on fully or partially host-resident 
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applications to execute its tasks. These applications share the same resources with the host, and 

execute certain missions provided by remote nodes sharing the same network with the host. All 

the elements have to operate within the same perimeter to protect the host privacy. Mobile agents 

have long been used to establish such M&A mechanism as presented in section 5.5. The last 

class is a host-network isolated mechanism that is designed to provide M&A services in total 

isolation from the host and the host-network.  Section 5.5 provides deep illustration of the 

different mechanisms available to serve under these classes.  

  

6.3 Elastic software design  

6.3.1 Software modularization  

CyberX is designed to manage COA-based systems to enable constructing elastic, dynamic, 

and adaptable software products with intrinsic support for situation and context aware fault 

tolerance.  Currently software products depend mostly on static or partially dynamic architectures 

where data, logic, and/or physical resources are primarily tightly coupled. Multiple attempts have 

been presented in the literature to partially decouple these design concerns through what is termed 

as application modularization. 

COA separates the main design concerns through an intelligent modularization of the 

application into a set of Cells. The application represented by an Organism is modularized into set 

of Cells. There are different techniques along literature that worked on application modularization 

for different objectives. In this section, we will illustrate the main approaches working in the field 

of modularizing the application into compostable components that can adapt to certain aspects.  
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COA modularizes the application in terms of Cells, Service Oriented Architecture (SOA) 

modularizes the application in terms of services, Object Oriented Architecture (OOA) 

modularizes the application in terms of Objects, and Aspect Oriented Architecture (AsOA) 

modularizes the application in terms of Aspects “quality attributes”. [4, 5, 6, 18].  An application 

module is sometimes called components. OOA or AsOA, SOA modularize software systems into 

set of components [16].  

Component Oriented design was introduced to create independent entities for different 

modules in a software application. [16] “Define a software component as unit of composition with 

contractually specified interfaces and explicit context dependencies only”.  

Generally speaking, a component can be represented as a closed composable box reflecting 

certain functionality, and behavior at runtime and with interfacing capability through a clearly 

defined inputs and outputs [18]. The component can communicate with other components and the 

surrounding environment through such interface. A clear characterization for the component was 

defined in [16].  

Several versions of the component modularization were presented industry wise and as a 

research work. For example, the COM [21] from Microsoft, the EJB specification from SUN [22], 

CORBA [23] from the OMG, etc. Additionally the work presented like (Fractal [24], SOFA [25], 

etc. is a good research work related to software modularization. Fractal was one of the approaches 

that enable the component to modify its internal structure during the execution. The program 

architecture can be modified at runtime enabling the application to dynamically change at 

runtime.  

Unfortunately none of these solutions considered the real meaning of adaptation to changes at 

the application or the infrastructure level. Enabling the application to communicate with the 
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infrastructure to support its dynamic needs and to inform the infrastructure about the internals of 

the execution process was not presented before CyberX COA. Additionally, the presented 

approaches did not realize a full separation between design concerns. The best available solution 

managed to partially isolate Data from Logic, while program components were always resource 

oriented. However, none of these approaches investigated the concept of intrinsically resilient 

component. CyberX Cell is a system by itself, a complex component with the ability of self-

adaptation and decision making, fully situational aware, smart, and resilient. The following 

subsection provides more details about the main modularized software architectures. 

6.3.2 Modularized software architectures  

Aspect Oriented Software Architecture (AsOA) is one of the well-known software 

modularization architectures. AsOS refers to a set of emerging mechanism that defines methods 

of modularizing software systems [ 18]. The concept of modularization started with Parnas in the 

seventies [16].  Parnas defined modularization as the process of isolating and localization of 

quality attribute objectives. A quality attribute objective can represent any interest that the 

developers might care for about a system. Quality attribute objectives can include high-level 

objective, like security, robustness, or reliability. Low-level quality attribute objectives represent 

technical aspects like caching and synchronization [24].  

Separating such quality attribute objectives enabled programmers to focus on small modules, 

which improved the overall application quality and minimize the chance of failure due to attacks 

or design faults.  
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Separation of quality attribute objectives is an efficient way for software designers to 

effectively split the application objective or the problem that the application is designed to solve 

into multiple isolated modules that targets specific quality attribute objectives.  

Object Oriented Programming (OOP), for example, is one of the techniques that works on the 

concept of quality attribute objectives separation, by fractionizing the entire application into a set 

of objects that targets specific functional quality attribute [25]. 

Aspect oriented programing was defined in 1996 by Kickzales and his group at the Xerox 

PARC research center [24]. It was an enhanced version of the OOP to complement it in order to 

obtain applications that are clearer and better structured [26].  

Service Oriented Architecture (SOA) is a standard to design software applications based on 

services that interact with each other. In [27], the authors define SOA as “a paradigm for dealing 

with business processes distributed over a large landscape of existing and new heterogeneous 

systems that are under the control of different owners.” SOA aims at facing several challenges; 

like interoperability and heterogeneity. Heterogeneity refers to variation of resources, 

geographical location of service provider, consumer, system developers, and owners.  

SOA as a standard does not apply to a specific technology. The most mutual application 

example of SOA is Web Services [18,28]. Web Services are a way to establish a SOA solution by 

using a specific implementation strategy. 

The Service Component Architecture (SCA) was developed as a more established version of 

the SOA. SCA provides platform to achieve delivery, support, and management of distributed 

applications compliant with the rules of SOA [29]. SCA utilize software components to device 

services.  
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SCA is a set of specifications defining a formal method for developing application using SOA. 

It is endorsed by many well-known software manufacturers including, IBM, Oracle IONA, BEA, 

SAP, TIBCO and Sun.   

SCA highlights the decoupling of service employment and of service assembly from the details 

of infrastructure abilities and from the details of the access methods used to invoke services [18].  

The SCA specification supports service implementations designed via many programming 

languages, including declarative languages such as XQuery and SQL. SCA also supports a many 

programming styles, including asynchronous and message-oriented styles, in addition to the 

synchronous call-and-return style [29]. Also it includes object-oriented and procedural languages 

such as Java, PHP, C++, COBOL; XML-centric languages such as BPEL and XSLT. 

Up to our knowledge our COA is the only architecture that comprehensively supports intrinsic 

separation of design concerns needed for runtime re-programmability, intrinsic autonomic online 

composability, and dynamic software adaptation and elasticity.  

Attempts were presented towards enabling some of these features separately. Agent Oriented 

Architecture (AOA) utilized autonomic building blocks while SOA and OOA used non-

autonomic components.  Using autonomic building blocks facilitated supporting non-

deterministic behavior change in AOA by explicit use of soft computing as presented in [8]. 

However, supporting online composability is not clear in AOA, while in OAA and SOA it is 

enabled either by aggregation [9] or by service composition [10].  

The COA Cell separates logic from physical resource management by constructing an 

intelligently-managed elastic thin virtualization layer between the application and the underlying 

physical resources. Such construction facilitates unifying the execution platform for distributed 

applications regardless of the configuration of the host platform. Unifying the execution 
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environment waives the load of building platform/OS specific application for each targeted 

platform. In addition, the maintainability issues are divided between the developer and the 

technology owner. Software developers are concerned with maintaining the application itself, 

while the technology owner is responsible for maintaining the execution platform. Partially elastic 

virtualization approaches were presented for loosening the bond between physical and logical 

resources; where applications are partially compiled at the production phase to be executed over 

virtual machine host [4,16]. These techniques can be used to build a uniform execution 

environment for distributed applications. However, these approaches presented static elasticity 

and partial separation of design concerns. They did not separate data from logic and physical 

resources. Such separation is a key enabler for supporting intrinsic fault-tolerance, live-

mobilization, and runtime adaptation to frequently changing execution environment. Our 

approach provides an intelligent elastic virtualization utilizing mobile software capsules (Cells) 

that gets specialized at runtime facilitating online re-programmability. This feature when managed 

by CyberX enables COA Cells to seamlessly move between heterogeneous hosts, while 

autonomously adapting to any resulted changes. Additionally, CyberX-managed COA Cell can 

encapsulate different code variants and switch between them at runtime. CyberX utilized this 

unique feature to enable runtime manipulation of targeted quality attributes. Doing so, facilitates 

real-time adaptation to execution environment changes optimizing the application performance, 

resource-utilization, and enhancing its reliability, survivability, and compatibility. Based on our 

knowledge utilizing any of the available virtualization techniques to enable such features were not 

possible prior to our work. The next subsection focuses on approaches employing component 

diversity techniques for quality attribute manipulation.  
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6.4 Diversity employment for security, performance, and adaptability  

Component diversity was investigated in Genesis [11], were the idea of providing both design 

diversity in the form of multiple variants representing different designs of the same specification 

as well as data diversity were proposed.  Compiler guided code variance approach [12] aimed to 

present automated massive-scale software diversity by the help of automated variant generation 

and utilizing multi-core platforms. More advanced diversity employment approaches with the 

objective of anomaly detection through detecting flow deviation but with fewer constraints were 

presented in [13, 14].   A major drawback of such solutions is the need for virtualizing every input 

to the whole set of executing variants at the same logical point to be able to detect the abnormal 

deviation of the execution flow.  

Based on our knowledge utilizing runtime hot shuffling of software variants for quality 

attribute hot manipulation was not previously investigated. Additionally, failure recovery 

mechanisms were not investigated as most of these solutions presented static diversity with low 

probability of failure. None of them investigated the idea of a comprehensive solution that 

provides elastic, autonomous, resilient, situation-aware platform targeting different quality 

attributes, while dynamically shuffling its software components to suit changes in the 

surroundings. Another drawback of these solutions is the massive use of resources to realize 

diversity using heavy virtualization techniques and multicore or multiprocessor platforms. The 

following subsections introduce variant techniques for diversity employment for different 

objectives.  

6.4.1 Design time diversity 
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Software diversity has a long history of research work in the field of software security and 

fault tolerance dated back to the 70’s [4]. Basically software diversity was presented as multiple 

independent solutions for the same problem. The realization of that is to develop multiple 

independent versions of a program with different teams using different languages. The main goal 

of this approach was to increase the attacker confusion by changing the behavior of the software, 

which will make system exploitation harder. They expected that at any given time the majority of 

these versions will be working correctly [4, 5]. 

Some research work showed that there is a high probability that a multi-variant software 

approach might face many coincidental failures [6, 7]. On the contrary other research work 

suggested that from the cost and the reliability point of view, the multi-variant approach is much 

better than the one “good” version, especially in mission critical applications where the cost of 

failure could be very high [30].  

Design time diversity aims to device the same software in multiple designs to diversify the 

software product [31, 32] the objective was to defeat the mono culture of software development, 

and to increase the attacker search space for vulnerabilities. Different techniques[34,35] were 

designed to automate inducing light changes in the software product at development time. The 

basic idea is that the diverse software replicas maintain the same functionality, but differ only in 

their implementation details. 

The main problem facing this approach was the fact that it is static, and it can easily be 

predicted by runtime analyzers working on the attacker targeted field of operations. 

6.4.2 Load time diversity 
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System call randomization is a good mitigation mechanism against a wide set of code 

injection attacks; it aims to randomize the mapping of system calls [12]. The attacker mission to 

counterfeit such defense relies on guessing the system call numbers. The main issue is that the 

realization of this technique requires kernel recompilation with the new randomized system call 

mapping, and it necessitates that the binaries are rewritten to reflect the new system calls. These 

requirements invalidate such approach, in addition to the fact that static redesign of the kernel is a 

very complicated task [18]. Even with dynamic instrumentation [24] it still considered impractical 

due to the excessive overhead. Additionally, it is a static solution that works only against one 

class of attacks and is not valid for other classes of attacks.  

Pointer randomization, this approach works on randomizing the stored pointer representation 

values. The work presented in[12] is a good example for such mechanism. The authors perform 

an XOR operation on the pointer values with a random integer mask the gets generated at the 

bootstrap time. This mechanism works on mitigating attacks targeting corruption of pointer 

values. Attackers trying to mitigate such attack have to guess the value of the random integer 

mask used at bootstrap time to device the desired pointer value for corruption. The main 

disadvantage of such solution is it is static randomization. The values remain the same after 

bootstrapping and can be analyzed or guessed by the attacker with tools working on the same host 

especially for long lived applications. Additionally, it works only with one class of attacks. 

Attacks like buffer overflow for example cannot be mitigated with such mechanism.  Further, it is 

useless with languages that does not provide accurate type information, or languages working 

with un-typed buffers. With such languages the corresponding pointer value(s) cannot be 

protected. 
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Address space layout randomization is one of the most successful and most commonly used 

mechanisms in many operating systems. Multiple implementations were presented to realize 

address space layout randomization [37,39,38]. These approaches focused on randomizing the 

base address of memory sections. It works fine with some attack classes like buffer overflow 

attacks, while it share the same problem of static diversity approaches. These mechanisms provide 

static diversity that can be detected by resourceful attacker with tools executing on the same 

machine running the targeted software.  

6.4.3 Runtime diversity 

Diversity has been realized in various ways. Some work presented it in the form of confusion 

induction paradigm [41,40] where diversity is used to confuse the attack in order to complicate 

the attack process. An example for leveraging diversity for confusion induction is presented in the 

form of a load-time binary transformation as the one mentioned before and the one presented in 

[42]. Others presented different solution for diversity realization based on virtual machines called 

“private machine architecture” [43]. They used randomization to promote heterogeneity at the 

machine level aiming to increase the cost of broad-based binary attacks. Moreover, some 

commercial operating systems realized the ideas of operating system randomization [44, 45]. 

System call mappings, global library entry point, and stack placement randomization were used to 

induce diversity as mitigation for buffer overflow attacks. 

Component diversity was investigated in Genesis [35], were the idea of providing both design 

diversity in the form of multiple variants representing different designs of the same specification 

as well as data diversity were proposed.  Data diversity uses multiple copies of a single 

implementation operating on different data inputs but yielding the same desired results.  
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Massive-scale software diversity was presented by the help of automated variant generation 

and utilizing multicourse platforms. Compiler guided code variance approach aims to present 

such automation [41]. A realization of this massive-scale software diversity approach for the 

purpose of detecting anomalies by replicated execution was first presented by [11, 12, 50] they 

mixed diversity with parallelism and check pointing. They execute different variants of a program 

in a muti-core environment while monitoring any deviation in the program flow to issue an 

intrusion alert. 

A major drawback of existing solutions is the need for virtualizing every input to the whole set 

of executing variants at the same logical point to be able to detect the abnormal deviation of the 

execution flow. More advanced approaches with the objective of anomaly detection through 

detecting flow deviation but with fewer constraints were presented in [51,52,13,54].    

These approaches generally apply different types of diversity mainly for reliability by replication 

or for intrusion detection by program flow deviation detection at runtime. Based on our 

knowledge utilizing runtime hot shuffling of software variants for behavior encryption was not 

previously investigated. Further, existing solutions used diversity to target specific quality 

attribute. Failure recovery mechanisms were not investigated as most of these solutions 

presented static diversity with low probability of failure. None of them investigated the idea of a 

comprehensive solution that provides elastic, autonomous, resilient, situation-aware platform 

targeting different quality attributes, while dynamically shuffling its software components to suit 

changes in the surroundings. Another drawback of these solutions is the massive use of resources 

to realize diversity using heavy virtualization techniques and multicore or multiprocessor 

platforms. ChameleonSoft is designed to support legacy systems with limited resources. It can 

dynamically tailor its tasks to suit the dynamic change in resource availability. 
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6.5 Attack detection and resolution  

6.5.1 Malware detection 

A malware is malicious software designed to infiltrate or damage a Cyber system or Cyber 

Physical System (CPS) without the owner’s informed consent [107].  There are many malware 

types with different shapes and entry points. Most of these software objects share similar 

purposes while they are expected to behave differently at time of infection. Viruses, worms, 

botnets, wabbits, Trojan-horses, exploits “backdoors”, spyware “scumware, stealware, 

parasiteware, adware”, rootkits, blended threats, evolving threats, keyloggers, hoaxes are 

examples of the different malware types. Figure  6.5  lists the different types of attacks and the 

usability ration of each one of them [33]. 

 

Figure  6.5 classification of malware related attacks  
Each malware group has its own way of being undetected. Modern malware detection tools 

utilize multiple detection mechanisms to be able to detect multiple malware categories as 

presented in Figure  6.5.  Malware especially viruses are either memory resident or non-memory 
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resident. Non memory resident are simple attacks that can easily be detected an entry point with 

a cleaver detection tool.  

The memory resident attacks are more complex and efficient that stays in memory and hides 

their presence from detection tools. These attacks are either fast infectious aiming to infect as 

much files as possible locally within the infected host or remotely through the host network, and 

network shares. The second category of memory resident attacks is the slow infectors. Slow 

infectors are the most dangerous type of malware as it uses stealth and encryption techniques to 

stay undetected as long as it can. They are powerful attacks that can be a combination of multiple 

processes working together towards certain objective.  

Malware detectors use signature based detection techniques to detect known attacks. Signature 

based detection became very efficient way of detecting known threats [49]. Finding a specific 

signature in one of the executable codes can accurately identify any enclosed threats within such 

code. Attack signatures are frequently updated and stored on the local anti-malware database. 

Unfortunately this technique is inefficient if the attack has a malformed signature either by the 

programmer or by a mutation engine. 

Heuristic techniques are one the most efficient ways to detect such mutated attacks. Heuristic 

and metaheuristic techniques are used to spot unknown or known attacks with polymorphic 

behavior.  
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Figure  6.6 Classification of malware detection mechanisms 

 

By definition, heuristic technique is an informal technique to solve problems efficiently and in a 

way close to the optimal path [49].  Heuristic techniques are commonly used to rapidly reach a 

solution that is somehow close to the best possible solution.  The metaheuristic technique is a 

heuristic method for solving many of the computational problems by combining user-given 

black-box procedures in a hopefully efficient way [49].  

Most of the modern malware detection techniques that use metaheuristics to detect attacks utilize 

a set of isolated tools utilizing different techniques hoping in detecting one of the attacks that 
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there is no specific way to detect it. Most of these tools utilize one of the following mechanisms, 

Pattern matching, automatic learning, environment emulation, neural networks, data mining, 

byes networks, and hidden markov models. There are other metaheuristics techniques but most 

of them are built based on one or more of the aforementioned mechanisms. 

The main concept of heuristic based detection techniques is to detect attacks without knowing 

too much about its internal structure.  Heuristic techniques mainly focus on examining the 

behavior and the characteristics of the executing software to anticipate whether it is acting 

maliciously or not.  The most successful heuristic based detection technique named as The 

Heuristic Scanning Technique utilizes a mixture of multiple metaheuristic techniques such as 

pattern matching, automatic learning, and environment emulation.  

Heuristic scanning in the common sense uses pattern matching to examine the assembly 

language instruction execution sequence, and qualifies them by their potential dangerousness.  

Heuristic scanning usually follows a set of built-in rules with pre-assigned weight on each rule. 

In case of violation of any of any of the rules the weight of the violated rule is added to the total 

violated rule by the same program or process. The program is flagged as malicious only if the 

total sum of added weights exceeds certain threshold.  Figure  6.7  illustrated the idea of a single 

layer classifier with predetermined threshold.  
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Figure  6.7 Single layer classifier 

The feedbacks from the different scanners are fed into global summarizing point that follows a 

certain metaheuristic mechanism as illustrated in Figure  6.7. The overall result will decide 

whether to flag the scanned object or not.     

As the detection techniques gets more cleaver, the modern attacks or malware also emerge to 

more complicated attacks utilizing more sophisticated stealth techniques. Such techniques give 

them the advantage of being invisible to traditional scanners. Moreover the use of real-time 

encryption, and anti-heuristic sequences made them looks totally harmless to traditional malware 

scanners.  

Heuristic scanners that use single metaheuristic mechanism that focuses only on monitoring the 

execution flow of the instructions of a certain program are deceivable by code obfuscation. Code 

obfuscation occurs by embedding some meaningless instructions within a malicious code. The 

same technique deceives detectors utilizing heuristic and signature scanning combined together.  

One of the successful mechanisms to resolve the aforementioned problem is the use of artificial 

runtime environment emulation. However, it is not a light weight detection mechanism, but it has 
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high success rates in detecting unknown attacks. Environment emulation utilizes the idea of 

virtual machines; the malware detection tool provides a virtual machine with independent and 

isolated operating system and allows malware to perform its routines freely within the virtual 

environment. The execution behavior of the suspicious application is being continuously 

examined while the malware is not aware. Most of the stealth and anti-heuristic techniques are 

irrelevant in this case, as the detection tools scan the behavior from outside the box with a clear 

vision of what is really happening inside.  

The main problem facing such technique is the massive resource consumption and the expected 

delay needed to construct the virtualization environment, and infiltrate the harmful instructions 

from being executed on the real machine.  

Another problem that arises with using heuristic methods for detecting malwares is the 

possibility of false positives. A false positive event occurs when a benign program gets flagged 

as malicious by the heuristic scanner. The problem occurs frequently specially with 

noncommercial programs having suspicious routines through their encryption functionalities.  

 The use of automatic learning is a good resolution of such problem, where the detector learns 

from its mistakes. The main issue with this technique is it requires an advanced user.  In order to 

resolve such problem autonomically, detection scanners have to increase their scanning depth, 

and combine feedback from multiple heuristic mechanisms. Also external consultation is one of 

the most efficient techniques, where an external resourceful node gets consulted for guidance 

related to suspicious programs with weights that parley cross the threshold line.  The only issue 

with that solution is the possibility of privacy violation due to sending specifics about the 

suspicious events.  



237 
 

Recently more complicated attacks were introduced that depends on infecting and controlling 

multiple hosts creating an automated taskforce targeting multiple objectives. Such attacks usually 

have dynamic objectives, and construction components. Additionally, they are frequently and 

autonomically get updated using a dynamic up/down link between the attacker and the malware 

itself. Detecting such attacks is a very complicated task given the uncooperative nature of the 

conventional modern detection tools, and the fact that they share the same host, or host network 

with their ToD.  

Sharing the same network or host with the ToD makes them an easy target for attackers to 

deceive, or destroy [46,71]. Additionally, the successfulness of the malware detector depends 

mostly on the fast real-time, and deep analysis of the scanners feedback. Such process, especially 

when it involved creating a runtime emulated execution environment is a computationally costly 

process for a tool that shares the ToD resources. 

6.5.2 Standalone and distributed monitoring and evaluation solutions 

Defense services for CPS are highly dependent on the promptness and accuracy of the 

Monitoring and Analysis (M&A) mechanisms employed. Traditional M&A approaches do not 

treat sensing and effecting for cyber components and physical components seamlessly. The 

current M&A mechanisms were designed based on a set of assumptions that unintentionally 

neglect the real-time interaction and the tight coupling between these converging components. 

The assumption was that physical components were protected by isolation and parameter defense 

while real-time response was not a primary factor for cyber components. Further, they assumed 

that there is no need to employ privacy preservation techniques as the Target of Defense (ToD) 

privacy is implicitly protected by cyber and physical parameter defense. Additionally, they 
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assumed that resource heterogeneity and scale could still be resolved by a distributed set of 

heterogeneous, pre-deployed platform-dependent defense tools with fixed resource profiles.  

  Research works in [83,84] as well as our own have disputed the validity and correctness of such 

assumptions as they lead to drastic problems and limitations negatively impacting the quality 

and promptness of the CPS defense service provisioning. Current CPS Defense Service 

Providers (CPS-DSPs) fail to provision trustworthy robust and reliable monitoring and 

evaluation of the ToD components due to the use of scattered, uncoordinated, uncooperative, 

unaware, isolated and heterogeneous monitoring tools, and reporting mechanisms. Such 

limitations increase the use of resources due to redundancy, increase the risk of conflicts, and 

failures due to limited awareness and coordination, lower the defense quality due to the poor, and 

boundary  limited feedback, increase the latency in defense provisioning and in detecting attacks 

giving the attacker the advantage to spread the attacks through multiple networks, the tool 

heterogeneity and uncooperative nature massively complicates automating its management, the 

static nature of such tools complicates attempts to autonomously adapting to changes in the 

surroundings.  

Research presented in [87,88,89,90] attempted to resolve some of the problems resulting from 

such assumptions using more flexible sensing and control elements.  They devised a mobile 

multi-agent based attack detection system. The presented solutions were situation unaware and 

offered limited defense-tools pervasiveness and coordination.  Generally speaking, provisioning 

defense services while sharing the same host with the ToD exposes the ToD to DoS attacks, and 

limit the system’s scalability and interoperability.  

Works in [89, 90] utilized a multidisciplinary approach to intelligently resolve some of the 

presented limitations. They combined multiple artificial intelligence techniques to build a 
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complex smart attack detection system. Unfortunately, these techniques were bounded by the 

available technology constraints; they were designed to provision dedicated defense service while 

sharing the ToD host or host network. They were unable to overcome the curse of complex 

systems dimensionality. With the increase of system complexity and numerousness of input 

features, the processing time involved with clustering system events might badly affect system, 

and attack detection timeliness. Time constraints may sometimes force the system to prune less 

important features (dimensionality reduction) to maintain system timelines. However, the pruning 

approach is not always possible as it might compromise the detection accuracy. 

All the above mentioned approaches were mainly concerned with defense service provisioning 

for cyber components. The work presented in [91, 92] is a hardware based static detection system 

capable of supporting the requirements of both cyber and physical components. Using hardware 

based detection and analysis techniques guarantee prompt, and resource efficient response for 

quickly spreading attacks. A major disadvantage of technology is its limited flexibility, 

adaptability, interoperability, and maintainability. These systems are designed to work for specific 

target and cannot seamlessly adapt to match different targets.  

Multiple attack detection solutions were presented utilizing mixtures of the abovementioned 

methodologies employing different M&A techniques [93, 94], Unfortunately, none of these 

systems where capable of presenting a comprehensive, autonomous, interoperable, globally 

situational aware and scalable solution that can guarantee adequate defense provisioning quality 

and promptness while maintain the ToD survivability, operability, and privacy.  Up to our 

knowledge EvoSense is the first solution that can provide such features comprehensively and 

pervasively with low overhead. 

6.5.3 CPS related control solutions 
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In addition to the limitations presented in the previous two subsections, in regards to 

monitoring and evaluation, and analysis of feedback, the control phase; where the defense system 

takes actions regarding detected threats face a serious set of limitations [71]. The limitations are 

mainly due to the lack of cooperation and awareness that limit the defense tools capability to 

resolve or even contain persistent fast spreading attacks. 

For example, it is too hard for such uncoordinated, scattered tools to marshal and coordinate 

task force to hunt down the attacks spreading all over the network or a set of interconnected 

networks as it is hard to control the DSP, and the ToD tools and equipment to block attack access 

to the shared network. Further, without appropriate global control, and situational awareness too 

hard to block the source of dynamic remote attacks.  Such limitations can be utilized to cause DoS 

attack by keeping the DSP busy treating infected files and strike more and more files.  

Research work has been focusing on presenting a resolution for some of the control problems 

in CPS environments. Researchers in [75] presented what is called Autonomous Multi-agent 

Cooperative Problem Solving (TEAM-CPS), and successfully applied it on one of the critical 

CPS, the public telephone networks. They used multi intelligent agents that were designed to 

work together to provide distributed control for such system. Unfortunately, the system was not 

scalable enough to suit large scale systems.  The limitations against this approach and other agent 

passed approaches like the work presented in [53,72] is the high resource consumption nature of 

the agents, and the fact that they are designed to share the host resources. These limitations limit 

the approach capability to scale.  

From another perspective, the use of intelligent agents lacks the support of the physical part of 

the network. The used agents are not aware of the interactions between the cyber and the physical 

parts of the system. Such unawareness increases the chance of conflicts, errors, and failures.  
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 A more advanced version of this line of research was resented by the work of [71,53] as they 

used multiple AI techniques to control a pool of mobile agents performing control tasks. The use 

of AI guided the management platform towards smarter decisions. Unfortunately, they shared the 

same problem of their insisters, the lack of situational awareness, and the inconsideration of 

isolating the control platform from the host under control. Such limitations limited the scalability 

of such systems, and their ability to suit CPS applications. 

6.6 Conclusion  

In this chapter we presented an overview of the latest efforts that were presented by the current 

literature that can be utilized towards the realization of CyPhyCARD design objectives.  We 

illustrated the various techniques available to enable software elasticity needed to facilitate 

efficient and dynamic adaptation to changes within CPS domain. Additionally, we presented the 

various techniques available to enable software diversity that can be utilized to realize moving-

target defense for platform security. Finally, we presented the different attack detection and 

resolution mechanisms being used within the cyber and CPS domains. We observed that despite 

the existence of solid and concrete research base addressing these various design aspects, these 

solution fall-short to realize the needed level of quality, efficiency, and effectiveness to support 

the CPS defense cloud presented here. In addition to the efficiency and effectiveness limitations 

of the presented solutions, these solutions were not designed to be composeable or cooperative 

facilitating the construction such large defense platform like CyPhyCARD. Additionally, these 

solutions were not designed to satisfy CyPhyCARD’s targeted field-of-operation needs and 

characteristics. Based on our best of knowledge, the presented pillars independently or combined 

together under CyPhyCARD umbrella, they present unique efficient and effective solution to a set 
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of CPS security challenges that were not previously addressed, inadequately-addressed, or 

addressed-with-serious-limitations by other solutions. 

  



243 
 

Chapter 7 
 
7. Conclusion and Future Work 
 

 

 

 

7.1 Conclusion 

In this dissertation we presented CyPhyCARD platform that provides the means to guarantee 

continuity of operations as well as deter attacks and prohibitively increase the cost on potential 

attackers.  CyPhyCARD efficiently coordinates defense missions and tools in real-time to 

accomplish the following objectives: 

 Achieve asymmetric advantage to CPS defenders, prohibitively increasing the cost for 

attackers;  

 Ensure resilient operations in presence of persistent and evolving attacks and failures; and   

 Facilitate defense alliances, effectively and efficiently diffusing defense intelligence and 

operations transcending organizational boundaries.  

CyPhyCARD presents a unified resilient platform to monitor, manage, and control the 

heterogeneous composition of CPS components. Such unification of control with the help of 

CyPhyCARD autonomous management capability expands the applicability of such system in 

multiple domains related to cyber and CPS.  

“I came to the conclusion that I am 
not a fiction writer.”  Tim LaHaye 
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CyPhyCARD uses its resilient cloud-like infrastructure to host defense services and to perform 

all the heavy tasks related to defense provisioning waiving a large computationally-heavy load 

from the ToD. Waiving that load in addition to CyPhyCARD utilization of platform independent 

sensing and effecting capsules for defense provisioning expands the system support to various 

host configuration and legacy systems.   

  CyPhyCARD provides the means to automate trustworthy multi-organization information 

sharing to enable early attack alarm and enhance the defense system global situation-awareness 

towards more accurate decision making.  Enabling such features makes it possible to 

successfully provision defense services to mission-critical heterogeneously-composed systems 

like CPS, while maintaining the operation timeliness and stability in presence of persistent 

attacks. 

Throughout CyPhyCARD, we presented three novel contributions addressing a list of serious 

security challenges facing cyber and CPS domains. These solutions were designed to be self and 

situation aware and can autonomously and harmonically work together to construct 

CyPhyCARD.  

 Figure  7.1 illustrates the main scientific contributions, solved hard-problems, and the major 

outcomes of realizing CyPhyCARD and its constructing pillars.  
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Figure  7.1 CyPhyCARD main contributions 

The main contributions of this dissertation are:  

• CyberX is a smart management platform that isolate the main design concerns data, logic, 

and physical resources. Such isolation enabled software applications to be platform-

independent, elastic, dynamically adaptable to changes, resilient, and resource efficient.  

• ChameleonSoft that employs multidimensional software diversity to, in effect, induce 

spatiotemporal software behavior encryption. ChameleonSoft utilizes the loosely coupled 

foundation provided by CyberX to mobiles at runtime the executable behaviorally-

encrypted software components across heterogeneously-configured platforms inducing a 

trace resistant moving target defense. 
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• EvoSense realizes pervasive monitoring and analysis for heterogeneously composed 

targets. EvoSense is a biologically-inspired intrinsically-resilient, situation-aware sense 

and response system to seamlessly effect biological-immune-system-like defense. 

EvoSense acts as a middle layer between the defense service provider(s) and the Target 

of Defense creating a uniform defense interface that hides ToD’s scale and heterogeneity 

concerns from the defense-provisioning control and management. EvoSense is elastic 

where solutions are dispatched through a dynamic set of sensors and effectors to the ToD 

rather than using pre-deployed M&A components. EvoSense circulates context-driven, 

online customizable sensing and effecting capsules into the ToD body to pervasively 

monitor, analyze and control ToD components. The key design principles for EvoSense 

are:  

o ToD-independent defense service provisioning;  

o Decoupling sensing and effecting tools from the control and management logic 

towards enabling interoperable and dynamic defense; and  

o Intrinsically supporting trustworthy scalable cooperative defense with shared 

indicators. 

The presented qualitative and quantitative study illustrated the capability of CyPhyCARD and its 

pillars to effectively and efficiently achieve their design goals. Further, the study illustrated that 

CyPhyCARD and its pillars can adjust their resource-needs and operational-characteristics to 

support defense provisioning for large-scale mission critical heterogeneously-composed 

platforms like CPS.  
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7.2 Future Work 

Future work will focus on the following directions:  

• The Cell: we realized the simple and fast version of the Cell with partial isolation 

between the logic and the targeted execution platform. We will devise a lightweight, 

complex version of the Cell with a fully virtualized environment.  Devising such version 

of the Cell will enable us to construct a full test bed of ChameleonSoft trace-resistant 

moving-target defense where Cells can migrate between heterogeneous platforms 

seamlessly with no need to change the current active variant to another variant matching 

the targeted platform. Enabling such feature will expand the migration landscape 

increasing the complexity for the attacker to trace its target.  

• Variant generation: we will devise techniques for behavior computation to support the 

design of an automated similar function different behavior variant generation framework 

capable of generating variants based on specific requirements and behavior deviation 

distances.  

• Intelligence: the system currently uses a generic model for the smart processors 

controlling all the decisions being taken within the entire platform. Further study will be 

conducted to determine the best artificial intelligence technique suitable for each location. 

The system should be able to switch between these techniques at runtime based on the 

changes of the situation in hand.  

• Quality of Service (QoS): we will devise models for the instrumentation and control of 

various QoS parameters in CyPhyCARD, and develop corresponding control mechanism 

to adjust the aspects of the working components to maintain the design targeted quality of 

service levels.  
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• Sensing and effecting:  Formal description of CyPhyCARD ready defense missions for 

the DSPs to follow. In addition to developing sensor, effector, and control logic 

extraction framework that can autonomously transform conventional tools to 

CyPhyCARD ready sensing and effecting APIs. 

• Test bed: we will complete the implementation of CyPhyCARD test bed and conduct 

extensive evaluation of different classes for real life applications under various scales and 

workload patterns. CyPhyCARD test bed integrates the C# implementation of the Cell, 

CyberX, ChameleonSoft, EvoSense, and multiple simulation packages that were built 

using MATLAB. Future versions of the test bed will exploit new virtualization 

techniques to realize the Cell with integrations of such techniques within CyberX, 

ChameleonSoft, and EvoSense platforms. Further, the Test bed shall include a framework 

for building generic CyberX ready digital interface for various physical components. The 

test bed will be tested on large-scale heterogeneously composed networks of cyber and 

physical components. 
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8. Publications  
• Mohamed Azab and Mohamed Eltoweissy, “ChameleonSoft: Software Behavior 

Encryption for Moving Target Defense,” Springer Journal on Mobile Networks and 

Applications (MONET), DOI: 10.1007/s11036-012-0392-0 ,2012. 

• Mohamed Azab and Mohamed Eltoweissy, “Bio-inspired Evolutionary Sensory System 

for Cyber-Physical System Defense,” IEEE Technologies for Homeland Security, Nov 

2012. 

• Mohamed Azab and Mohamed Eltoweissy,”CyberX: A Biologically-inspired Platform 

for Cyber Trust Management,” 8th International Conference on Collaborative 

Computing, Oct 2012. 

• Mohamed Azab, Reham Hassan and Mohamed Eltoweissy, “ChameleonSoft: A Moving 

Target Defense System,” 7th International Conference on Collaborative Computing, Oct 

2011. 

• Mohamed Azab and Mohamed Eltoweissy, “Towards A Cooperative Autonomous 

Resilient Defense Platform for Cyber-Physical Systems,” 7th Annual Cyber Security and 

Information Intelligence Research Workshop, Oct 2011. 

• Mohamed Azab and Mohamed Eltoweissy,” Defense as a Service Cloud for Cyber-

Physical Systems,” 7th International Conference on Collaborative Computing, Oct 2011. 
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9. Patents and awards 
 

• Provisional Patents  

– ChameleonSoft: Software Behavior Encryption for Moving Target Defense 

[Application 61731489, EFS ID 14347009] 2012 

– CyberX: Resilient Software Management and Operation Technology 

[Application 61724987, EFS ID 14198975], 2012 

– Bio-inspired Evolutionary Sensory System for Cyber-Physical System 

Defense [ In preparation] 

• Awards 

– “CyPhyCARD, Smarter Cyber-Physical Security”, nominated as one of the 

top ten projects in the Sixth Annual National Security Innovation 

Competition, 2012 
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