

Cooperative Autonomous Resilient
Defense Platform for Cyber-Physical

Systems

Mohamed Mahmoud Mahmoud Azab

Dissertation submitted to the Faculty of the Virginia Polytechnic
Institute and State University in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
In Computer Engineering

Hou, Yiwei Thomas,
Eltoweissy, Mohamed Youssef
Rizk, Mohamed Rizk Mohamed

Riad, Sedki Mohamed
Chen, Ing Ray
Yang, Yaling

Jan 25th, 2013

Blacksburg, Virginia

Keywords: Cyber Physical Systems, Security, Resilience, Cloud
Computing, Autonomic Management

Cooperative Autonomous Resilient Defense Platform for Cyber-
Physical Systems

Mohamed Mahmoud Mahmoud Azab

Abstract

Cyber-Physical Systems (CPS) entail the tight integration of and coordination between

computational and physical resources. These systems are increasingly becoming vital to

modernizing the national critical infrastructure systems ranging from healthcare, to

transportation and energy, to homeland security and national defense. Advances in CPS

technology are needed to help improve their current capabilities as well as their adaptability,

autonomicity, efficiency, reliability, safety and usability. Due to the proliferation of increasingly

sophisticated cyber threats with exponentially destructive effects, CPS defense systems must

systematically evolve their detection, understanding, attribution, and mitigation capabilities.

Unfortunately most of the current CPS defense systems fall short to adequately provision defense

services while maintaining operational continuity and stability of the targeted CPS applications

in presence of advanced persistent attacks. Most of these defense systems use un-coordinated

combinations of disparate tools to provision defense services for the cyber and physical

components. Such isolation and lack of awareness of and cooperation between defense tools may

lead to massive resource waste due to unnecessary redundancy, and potential conflicts that can

be utilized by a resourceful attacker to penetrate the system.

Recent research argued against the suitability of the current security solutions to CPS

environments. We assert the need for new defense platforms that effectively and efficiently

manage dynamic defense missions and toolsets in real-time with the following goals:

iii

 Achieve asymmetric advantage to CPS defenders, prohibitively increasing the cost for

attackers;

 Ensure resilient operations in presence of persistent and evolving attacks and failures; and

 Facilitate defense alliances, effectively and efficiently diffusing defense intelligence and

operations transcending organizational boundaries.

Our proposed solution comprehensively addresses the aforementioned goals offering an

evolutionary CPS defense system. The presented CPS defense platform, termed CyPhyCARD

(Cooperative Autonomous Resilient Defenses for Cyber-Physical systems) presents a unified

defense platform to monitor, manage, and control the heterogeneous composition of CPS

components. CyPhyCARD relies on three interrelated pillars to construct its defense platform.

CyPhyCARD comprehensively integrates these pillars, therefore building a large scale,

intrinsically resilient, self- and situation- aware, cooperative, and autonomous defense cloud-like

platform that provisions adequate, prompt, and pervasive defense services for large-scale,

heterogeneously-composed CPS. The CyPhyCARD pillars are:

 Autonomous management platform (CyberX) for CyPhyCARD’s foundation. CyberX

enables application elasticity and autonomic adaptation to changes by runtime diversity

employment, enhances the application resilience against attacks and failures by

multimodal recovery mechanism, and enables unified application execution on

heterogeneously composed platforms by a smart employment of a fine-grained

environment-virtualization technology.

 Diversity management system (ChameleonSoft) built on CyberX. ChameleonSoft encrypts

software execution behavior by smart employment of runtime diversity across multiple

dimensions to include time, space, and platform heterogeneity inducing a trace-resistant

iv

moving-target defense that works on securing CyPhyCARD platform against software

attacks.

 Evolutionary Sensory system (EvoSense) built on CyberX. EvoSense realizes pervasive,

intrinsically-resilient, situation-aware sense and response system to seamlessly effect

biological-immune-system like defense. EvoSense acts as a middle layer between the

defense service provider(s) and the Target of Defense (ToD) creating a uniform defense

interface that hides ToD’s scale and heterogeneity concerns from defense-provisioning

management.

CyPhyCARD is evaluated both qualitatively and quantitatively. The efficacy of the presented

approach is assessed qualitatively, through a complex synthetic CPS attack scenario. In addition

to the presented scenario, we devised multiple prototype packages for the presented pillars to

assess their applicability in real execution environment and applications. Further, the efficacy

and the efficiency of the presented approach is comprehensively assessed quantitatively by a set

of custom-made simulation packages simulating each CyPhyCARD pillar for performance and

security evaluation. The evaluation illustrated the success of CyPhyCARD and its constructing

pillars to efficiently and effectively achieve its design objective with reasonable overhead.

v

Dedication

To my great precious Mom and Dad, for their
unwavering support, encouragement, wisdom

and guidance.

To my wonderful wife, for her patience and
dedication.

To Youssef and Fattima,

For lighting up my life with their adorable
smiles.

 To my country that supporting me each step of
the way.

vi

Acknowledgments

Though the following dissertation and research work is an individual work, I could never have

succeeded without the sincere help, support, guidance, and efforts of several individuals who in

one way or another contributed in the realization of this work. First and foremost, I would like to

express my deepest gratitude to my advisor Dr Mohamed Eltoweissy, for teaching me how to be

a good scientist. Dr Mohamed has been my inspiration as I bypass all the obstacles in the way of

completing this research work. His guidance helped me in all the time of research and writing of

this dissertation. I am so proud that I had the chance to be one of his students, and I hope that one

day I can be as a good advisor to my student as he was to me.

I would like to extend my sincere appreciation to Dr, Tom Hou, for his guidance, insight, and

support throughout this research endeavor. His diligent efforts have created a unique working

environment that made this work possible.

I would like to thank my committee members, Dr. Yaling Yang, Dr. Sedki M. Riad, Dr. Ing-Ray

Chen, and Dr. Mohamed Rizk for reviewing this manuscript, and for providing me with their

valuable comments and feedback that guided me to improve the quality of this dissertation.

I always dreamed to get my PhD from a prestigious university like Virginia Tech. This dream

could have never come true without the efforts of Dr. Sedki M. Riad in establishing the VT-

MENA program, and the VT-MENA Blacksburg-community. I would like to thank him and all

the members of the VT-MENA program for giving me the chance of enjoying Virginia Tech and

the lovely life here in Blacksburg.

Finally, I would like to thank my friends, and colleges for the encouragements, and support. I

would like also to express my deep gratitude and appreciation to my family. Special thanks to

my parents for their encouragement, wisdom and guidance, and for my wonderful wife for her

support and patience. She devoted her talent in devising unique, impressive, and illustrative

drawings that easily delivered the enclosed message without further description.

vii

Table of Contents

Abstract .. ii

1. Introduction .. 1

1.1 Motivation and Problem Statement ... 1

1.2 The BlackWidow attack scenario .. 2

1.2.1 Homeland Security example ... 6

1.2.2 Commercial security example ... 12

1.3 Research Approach ... 15

1.4 Evaluation ... 20

1.5 Contributions .. 21

1.6 Document Organization .. 24

2. CyberX: Biologically-inspired CyPhyCARD Management Platform ... 25

2.1 Introduction .. 25

2.2 The Cell Oriented architecture .. 28

2.2.1 The Cell .. 29

2.2.2 The Organism .. 34

2.3 The CyberX management platform ... 35

2.3.1 CyberX platform architecture ... 35

2.3.2 CyberX trustworthy platform-communication ... 37

2.4 CyberX enabling the CARD concept .. 43

2.4.1 Intelligence .. 43

2.4.2 Situation awareness framework ... 47

2.4.3 The Cooperation framework ... 52

2.4.4 Elasticity .. 55

2.4.5 Diversity .. 59

2.5 The CyberX managed multi-mode failure recovery .. 60

2.6 A CyberX-managed application ... 62

2.6.1 The simple and fast version of the Cell ... 66

2.7 CyberX role in mitigating the BlackWidow attack .. 69

2.8 Conclusion ... 71

viii

3. ChameleonSoft: Software Behavior Encryption for Moving-target Defense 73

3.1 Introduction .. 73

3.2 ChameleonSoft moving-target defense .. 76

3.3 ChamelonSoft behavior encryption .. 78

3.3.1 Variant generation .. 83

3.3.2 Decision making in ChameleonSoft .. 84

3.3.3 Shuffling dynamic policy change: .. 88

3.4 ChameleonSoft Implementation .. 89

3.4.1 Software Chameleonization process... 91

3.5 Security analysis .. 95

3.5.1 Identifying the assets .. 95

3.5.2 Identifying the threat .. 96

3.5.3 ChameleonSoft as a countermeasure ... 97

3.6 ChamelonSoft behavior encryotion mechanism “The Key”.. 100

3.6.1 Evaluating the strength of CBE ... 105

3.7 ChameleonSoft role in mitigating the BlackWidow attack ... 107

3.8 Conclusion ... 109

4. Bio-inspired Evolutionary Sensory System for Cyber-Physical System Defense 111

4.1 Introduction .. 111

4.2 Evolutionary Sensory System (EvoSense) ... 116

4.2.1 The Foundation ... 116

4.2.2 EvoSense defense provisioning methodology .. 117

4.2.3 Evolutionary sensing and effecting framework .. 120

4.2.4 EvoSense brain Architecture ... 124

4.2.5 Information sharing and exchange protocol within EvoSense ... 125

4.2.6 Intelligent attack detection and resolution .. 129

4.3 Example of CyPhyCARD defense mission .. 135

4.3.1 Detection and resolution scenario .. 136

4.4 EvoSense role in mitigating the BlackWidow attack ... 138

4.4.1 Attacker assumptions ... 138

4.4.2 EvoSense addressing attacker assumptions ... 140

4.5 EvoSense detection and resolution model ... 142

ix

4.5.1 The detection model ... 142

4.6 Conclusion ... 147

5. CyPhyCARD Evaluation .. 148

5.1 Overview ... 148

5.1.1 The simulator design ... 150

5.2 CyPhyCARD Platform... 151

5.2.1 A study of CyberX dynamic adaptation ... 152

5.2.2 A study of CyberX automated recovery .. 154

5.3 Simulation results ... 155

5.3.1 Observations ... 160

5.4 A moving-target defense approach for CyPhyCARD platform security 161

5.4.1 Analyzing the CBE approach ... 161

5.4.2 Simulation results ... 165

5.4.3 Observations ... 178

5.5 Pervasive defense provisioning, and trustworthy tipping and cueing...................................... 178

5.5.1 Parametric study ... 179

5.5.2 Simulation results ... 192

5.5.3 Observations ... 209

5.6 Conclusion ... 210

6. Related Work .. 213

6.1 Overview ... 213

6.2 Taxonomy .. 214

6.2.1 Programming landscape ... 215

6.2.2 Resilience landscape ... 217

6.2.3 Monitoring and Analysis (M&A) landscape .. 219

6.3 Elastic software design .. 220

6.3.1 Software modularization .. 220

6.3.2 Modularized software architectures ... 222

6.4 Diversity employment for security, performance, and adaptability .. 226

6.4.1 Design time diversity ... 226

6.4.2 Load time diversity .. 227

6.4.3 Runtime diversity .. 229

x

6.5 Attack detection and resolution ... 234

6.5.1 Malware detection .. 234

6.5.2 Standalone and distributed monitoring and evaluation solutions 240

6.5.3 CPS related control solutions .. 242

6.6 Conclusion ... 244

7. Conclusion and Future Work .. 246

7.1 Conclusion ... 246

7.2 Future Work .. 250

Publications ... 252

Patents and awards ... 253

Bibliography .. 254

xi

Table of Figures

Figure 1.1 Border patrol attack scenario .. 8

Figure 1.2 Border patrol successful attack ... 11

Figure 1.3 Commercial security example .. 14

Figure 1.4 Abstract view of CyPhyCARD .. 16

Figure 1.5 CyPhyCARD goals and features .. 17

Figure 2.1 Components of our COA .. 29

Figure 2.2 COA Cell at runtime .. 30

Figure 2.3 The Cell .. 30

Figure 2.4 The management platform architecture .. 36

Figure 2.5 CyberX security framework ... 39

Figure 2.6 The Inter-Cell message format. .. 40

Figure 2.7 CyberX secure messaging system .. 41

Figure 2.8 Incoming router message. ... 42

Figure 2.9 Router outgoing message. .. 42

Figure 2.10 CyPhyCARD Conceptual View .. 43

Figure 2.11 The architecture of a typical smart processor ... 45

Figure 2.12 One of the smart-processor expert-system rules. .. 46

Figure 2.13 The decision logic within the ARMS unit. ... 49

Figure 2.14 The ARMS reporting mechanism ... 50

Figure 2.15 The management hierarchy .. 51

Figure 2.16 The host classification process at time of attachment .. 54

Figure 2.17 COA Cell migration process .. 59

xii

Figure 3.1 ChameleonSoft reliable behavior encryption ... 77

Figure 3.2: Chameleonized CyberX management architecture ... 79

Figure 3.3 The software behavior encryption protocol variations ... 81

Figure 3.4 Application Chameleonization ... 82

Figure 3.5 The Cell, confusion and diffusion shuffling ... 86

Figure 3.6 The encryption protocol and the decision making process ... 87

Figure 3.7 DMS diffusion recommendation process. .. 88

Figure 3.8 Behavior encryption process .. 104

Figure 4.1 EvoSense Abstract View .. 121

Figure 4.2 EvoSense Architecture ... 124

Figure 4.3 EvoSense defense mission sharing protocol ... 126

Figure 4.4 The defense mission lifecycle .. 128

Figure 4.5 Sensor selection and deployment ... 130

Figure 4.6 Example of the hubristic mechanism selection procedure.. 134

Figure 4.7 The PSIDR model .. 144

Figure 5.1 CyberX dynamic adaptation Model. ... 152

Figure 5.2 Represents CyberX automated recovery process model .. 155

Figure 5.3 The average downtime in response to failures due to changes for different recovery modes with and
without adaptation. .. 157

Figure 5.4 The average downtime in response to increasing failure generation rate for three different experiments
and different recovery modes. ... 159

Figure 5.5 The total resource usage in case of failure with different recovery and adaptation modes 159

Figure 5.6 CBE Effect on the Network Behavior .. 171

Figure 5.7 Induced Confusions and Diffusions ... 172

Figure 5.8 The effect of applying CBE, and the different modes of recovery on the failure downtime due to failures
and attacks ... 173

xiii

Figure 5.9 The Average downtime in response to increasing attack generation rate for, no shuffling “mono variant”,
and CBE with no recovery, CBE and coarse grained recovery, and CBE and fine grained recovery 174

Figure 5.10 The automated system response to increase the level of provisioned security in response to an increase
of attack arrival rate ... 175

Figure 5.11 Ievel of induced confusion and diffusion with respect to a Change in the shuffling speed over time 176

Figure 5.12 The average downtime with respect to the increase of shuffling speed increasing the level of provisioned
security .. 177

Figure 5.13 The anatomy of attack detection tools .. 184

Figure 5.14 Evaluating EvoSense effectiveness and efficiency... 203

Figure 5.15 The effect of circulation ... 206

Figure 5.16 The effect of distributing defense missions and directing sensor circulation based on matched profiles
 ... 208

Figure 6.1The Taxonomy .. 214

Figure 6.2 The Taxonomy: Programming Landscape ... 215

Figure 6.3 The Taxonomy: Resilience Landscape ... 217

Figure 6.4 The Taxonomy : M&A Landscape ... 219

Figure 6.5 classification of malware related attacks .. 231

Figure 6.6 Classification of malware detection mechanisms ... 233

Figure 6.7 Single layer classifier ... 235

Figure 7.1 CyPhyCARD main contributions ... 245

xiv

List of Tables

Table 2.1 Comparison between biology and CyberX “Cell” ... 34

Table 2.2 Comparisons between CyberX Cell virtualization and conventional system virtualization 66

Table 3.1 Comparisons between Cell spatiotemporal shuffling / virtual machine migration 91

Table 3.2 Effectiveness of moving-target defense ... 97

Table 3.3 Comparison between message encryption and ChameleonSoft behavior encryption 103

Table 3.4 CBE strength evaluation parameters .. 106

Table 5.1 CyberX simulator parameters .. 157

Table 5.2 CBE simulator parameters ... 170

Table 5.3 Comparisons between different detection mechanisms ... 183

Table 5.4 EvoSense simulation parameters ... 195

1

Chapter 1

1. Introduction

1.1 Motivation and Problem Statement

Cyber Physical Systems (CPS) are increasingly becoming indispensable to our critical

infrastructure and defense domains, ranging from smart grids and smart healthcare to smart cities

and smart warfare. CPS usually come with large-scale heterogeneous compositions of interacting

cyber and physical components with differing capabilities and requirements. Securing these

large-scale, distributed, heterogeneous compositions remains a challenge especially with the

significant increase in cyber-physical attacker/attack sophistication.

CPS attacks usually target valuable infrastructure assets taking advantage of potential

weaknesses in their defense systems. These weaknesses might arise from:

 Large-scale heterogeneous compositions of interacting cyber and physical components

with varying capabilities and requirements

 Increased automation resulting in significant increase in volume of data flowing

between cyber and physical processes exceeding the analysis and investigation

capabilities of current defense solutions

 Patching can’t be fully automated in large-scale operational CPS as operation and

interaction occur at multiple temporal and spatial scales

“Research is to see what everybody else has
seen, and to think what nobody else has
thought.” Albert Szent-Gyorgi

2

 Legacy compatibility limits security system capabilities to deeply analyze and correlate

network behavior at runtime

 Isolated situation-oblivious defense service provisioning

o Cyber and physical security isolation could increase conflicts

o Possible privacy policy violation limits sharing of information

 Adversary asymmetric advantage

o Low cost of entry

o Widely available resources

o COTS security products makes it easy for attackers to discover possible security

system flaws

o Software monoculture facilitates attack re-application/diffusion

1.2 The BlackWidow attack scenario

To motivate our research, throughout the remainder of this document we will be referring to

the following working scenario depicting a hypothetical CPS attack named the BlackWidow

attack. The name came from the similarity between the operational characteristics and the

destructive effect of the attack and the deadly BlackWidow spider.

Definition: The BlackWidow malware (BlackWidow for short) is our synthetic experimental

attack that is designed to split into a set of code parts and spread in different directions and

locations to decrease the probability of detection. The distribution of parts and the

interconnection between the parts in different hosts weave a large web. This web is bi-

3

directionally traversed to send any harvested data from the attacked target and to update the

malware with new tools and missions. The BW is designed to be as generic as possible; it is not

oriented to any specific application. BW exploits system weak points “Ex, zero day exploits” to

penetrate the system to spread its initial web seeds that will help in constructing the whole web.

By constructing the BW web the attacker can starts to direct the BW towards its designated

mission based on the attacker target. These directions might be remotely assigned through the

internet or preprogrammed in internet inaccessible locations.

Using BlackWidow to facilitate border penetration

Attacker possible goals

 Espionage “Stealing secrets as a first wave to be used to construct the second wave”

 Take control of organization’s property for own gain

 Physical property manipulation

Attacker tools and capabilities

 Zero-day system exploits

 Social engineering methods to recruit insider agents via social networks

 Well trained and funded attackers

 Stolen certificates and digital keys

 Small lab to mimic the attacked system and its defense system

Design aspects

The attack is designed to be stealthy by hiding from the defense system sensors searching for

attack signatures. The attack will target an intermediate host machine that will contain the worm

4

and command and control channel communications.

In order to do so, the worm is designed to not harm the host or change any of its settings that

might raise the Anti-Malware (AM) alerts. The malware will use minimal resources and will

work in a very slow fashion not to alert the network defense systems by its existence.

The only way to detect this malware is through deep analysis of the logs of all the

communicating nodes, which is computationally very costly to the current systems that share the

same host machines. Further, in order to deeply analyze and correlate strange communications

patterns spreading all over the network, a global view for all the communicating entities within

the network will be needed.

The malware is equipped with a self-destruct timer that automatically resets upon successful

communication with the attacker. The self-destructive code adds to the sophistication of the

attack that removes any traces of the worm and attacker actions, while inflicting damage to the

target resources as a last resort.

The worm is later updated to use stolen digital certificates to authenticate its existence in the

host machine in the form of drivers.

The malware is intended to be targeted, but due to the intentionally random deployment

method, the code works in two modes as follows: (1) Benign mode where the malware infects

other machines that do not belong to the target space. The machines might be used later in case

of target change, or as a base for future attacks; and (2) Malicious mode, where the worm works

only on the target host systems. The attacker feedback can determine the mode. The default will

be benign unless the attacker changes that or predetermined targets have been programmed.

Attacker assumptions:

5

 The defense system shares the same network or host with the target of attack/defense

system.[Note: defense system might be exposed to attack by compromising the ToD.]

 The attack target defense system, or major parts of it, uses COTS security

products.[Note: A majority of defense systems are signature based, so that is probably

easily to bypass with custom code.]

 The system is not capable of being fully situation aware of all its components in a

massive-scale network in real time.

o Building a very slow motion worm will increase the log file sample size needed

to detect it.

o The attack will spread in small parts in the target network hosted by

geographically remote locations. This will make it more difficult to detect

attacker activity unless a deep nearly network-scale analysis can be conducted

to correlate all disparate logs.

 The defense system management workstations (that the administrators use) share the

same network with the target of defense. [Note: Stolen passwords can simply be used

to modify rules of IDS, routers, switches, firewalls, proxies, etc.]

 Attack hosts will not be manipulated in a detectable way so as not to alert the host AM.

These hosts will be used only to launch attack on the primary target. [Note: this might

be possible by using zero day exploits and malware code never seen before.]

 Host-based defense systems usually use malware signatures as an indication for

infection from various forms of malware.

 It is not feasible to monitor all the host behavior patterns while sharing the same

6

workstation that is performing user tasks.

 Defense systems are not resilient against attacks, and have weak recovery mechanisms.

[Note: most of them assume that they will not be the target of an attack as long as they

were able to secure their ToD. Additionally, usually they have no intrinsic failure

recovery.]

 Cyber security is oblivious of and is not coordinated with physical security to protect

the target cyber-physical system. Human intervention is need to facilitate such

coordination.[Note: the attack can make them conflict with each other to bypass both of

them.]

1.2.1 Homeland Security example

Players:

The attacker is a sophisticated group working for XYZ’s intelligence to facilitate border

penetration as a part of a military operation aiming to release captured prisoners by ABC

military. These prisoners are held at a maximum-security facility close to the borders. The

facility will be wiped out if necessary after releasing all the prisoners.

ABC is a country with sprawling borders. ABC uses automated Unmanned Arial Vehicles

(UAV) to monitor the country borders against possible penetrations. These border patrol UAVs

are equipped with multiple sensors searching for possible indications of border penetration.

Infrared cameras provide visual and thermal imaging represents the most important source of

information that the UAVs provides to the border management department. The image is

beamed via microwave link to a ground control stations; where a group of trained agents watches

the surveillance feed to assure border safety.

7

ABC uses UAVs in multiple applications besides border patrol. Agriculture, rescue effort,

aerial securities are examples of such applications. All these UAVs share the same control

platform manufactured by EFG a worldwide company specialized in UAV design and

manufacturing. EFG provides all the tools that will be used to design the UAV missions to its

customers. Unfortunately, such tools share a common base as they are targeting the same

controller provided by EFG.

The (synthetic) BlackWidow malware (BlackWidow for short) is an attack that is designed to

split into a set of parts and spread in different directions and locations to decrease the probability

of detection. The distribution of parts and the interconnection between parts in different hosts

weave a large web. This web is bi-directionally traversed to send any harvested data from the

attacked target to the attacker, and to update the malware with new tools and missions.

Border patrol operations using EFG’s UAV (Normal condition)

Given ABC’s vast sprawling borders, ABC’s DHS has decided to buy a group of EFG’s UAVs

to be used primarily in border patrol. Due to the limitations of the radio communication range of

this UAV, the DHS built a distributed set of ground stations to control such UAVs. These remote

ground stations where operated by trained agents to control and program the UAV missions and

visually inspect the UAV video feeds. In case of a positive detection of a border penetration

attempt, the agents will mount appropriate respond to halt such attempts. Many of the ground

stations were in remote areas. Communications with headquarters were limited to long-range

radio. No direct communications between the ground stations computers and any other DHS

department were possible. For that reason agents were allowed to use their personal computers or

PDAs in break hours as means of entertainment.

Normally, agents are working in shifts, each shift is composed of 4 to 6 agents each one has

8

full control of a group of UAVs. The agent is responsible in programming and loading missions

and monitor video feeds to/from the UAVs. At the end of the day agents hock their personal

computers to the station’s network and starts enjoying their break hours by constructing a

tournament in one of the recent video games. The winner shall be eligible for a long vacation

next week after the last game in the tournament.

Figure 1.1 Border patrol attack scenario

Attack procedure

This attack will be executed as follows.

Phase 1

• Attack on the UAV manufacturer EFG to steal the design files and access codes.

Phase 2

• Use the design files and the access codes to generate a patch for ABC’s UAVs mission

files to manipulate the mission to follow a predetermined plan.

9

• Construct a test lab using one or two UAVs to test the attack

• Hack into the control stations that control the UAVs and patch the mission files.

Details

Phase 1

The attacker uses phishing attack that targets users’ emails and social network personal pages.

The attacker uses social networks as a source of information to generate more convincing

phishing emails. These emails will be directed from one of the closely related contacts to the

victim.

The attacker selects a group of employees working in different branches of EFG. These

branches are distributed in various geographical locations, and the victims that will be the

malware couriers have no direct relation with each other. This will increase the chance of the

attack’s success in case that the same phishing technique is used with different targets. The BW

is programmed to search the user network for connected computers then it starts using one of the

zero days exploits to clone itself into these computers.

The attack victims will receive parts of the malware. Each of these parts will contain a fraction

of the designated mission and a simple communication module. The communications module

will be used to open a direct channel with the attacker and to search and establish communication

with other parts. Directions to other parts’ locations might be sent by the attacker to minimize

the search time.

The attacker uses malware fractions to construct logical executable entities in the form of

mobile software agents targeting different objectives. The first objective will be to search and

infiltrate the network for data stores.

10

The malware will sniff network traffic searching for predetermined signatures for such

locations. The second objective will be to attack such data stores using the zero day exploits and

the stolen certificates to locate targeted industrial secrets (the UAV design files, mission file

design, and any available access codes). The malware will frequently update the attacker of its

findings based on a predetermined update methodology.

Phase 2

The attacker will use the data received to generate a patch file that will manipulate the mission

files adding predetermined entries representing a set of tasks to be activated exactly on a

predetermined hour. These tasks include the following:

 Control the UAV surveillance feed source

 Clone the feed on the UAV internal storage

 Change the feed source from a live source to playback

The attacker uses one or two UAVs to test the patch file before using it on XYZ computers to

make sure of its success. This should be easy as all EFG products share the same controllers and

mission design file format. XYZ can buy these UAVs claiming that it will be used for any

nonmilitary application.

After successful design and testing of the patch file, the BW will carry the patch file to the

targeting ABC ground control stations.

The attacker uses the same phishing attack used in “phase 1” targeting agents working on the

ABC targeted UAV control stations to facilitate infecting the control stations computers with the

BW. A recruited insider might facilitate such infection in case of previous attack failure.

11

After successful infection, BlackWidow will search for machines holding the mission design

files. Upon successful determination of their location, BlackWidow will target these locations.

After successfully infecting these computers, the BW will schedule three executions of the patch

file with three different predetermined zero hours. The goal behind that is to give the XYZ troop

some flexibility to select the most convenient time to penetrate ABC borders.

After successfully patching the mission files and upon the first use of these files to update the

UAV missions, the UAV executes the mission tasks as expected. Then 30 mints before the

predetermined zero hour the UAV will start recording the video feeds to its internal data store.

The recorded video file will be used to replace the life feed for 30 mints at the exact zero hour.

Within these 30 mints the XYZ troops will make use on the area not under surveillance to cross

the ABC borders to execute the designated rescue mission. After exactly 30 mints the UAV will

maintain the life video feed and erase the recorded file.

 Figure 1.2 Border patrol successful attack

12

1.2.2 Commercial security example

Attack specific goals

 Operation disruption to cause losses

 Launch same (low cost) attack on competitors to maximize gain

Attack procedure (on Air-gapped Target)

The attacker uses phishing attack that targets users’ emails and social network personal pages.

The attacker uses social networks as a source of information to generate more convincing

phishing emails. These emails will be directed from one of the closely related contacts to the

victim.

The attacker selects a group of employees working in different branches of ABC. These

branches are distributed in various geographical locations, and the victims that will be the

malware couriers have no direct relation with each other. This will increase the chance of the

attack’s success in case that the same phishing technique is used with different targets. The BW

is programmed to search the user network for connected computers then it starts using one of the

zero days exploits to clone itself into these computers.

The attack victims will receive parts of the malware. Each of these parts will contain a fraction

of the designated mission and a simple communication module. The communications module

will be used to open a direct channel with the attacker and to search and establish communication

with other parts. Directions to other parts’ locations might be sent by the attacker to minimize

the search time.

The attacker uses malware fractions to construct logical executable entities in the form of

13

mobile software agents targeting different objectives. The first objective will be to search and

infiltrate the network for data stores.

The malware will sniff network traffic searching for predetermined signatures for such

locations. The second objective will be to attack such data stores using the zero day exploits and

the stolen certificates to locate targeted industrial secrets, and any available access keys to the

protected area behind the air gap. The malware will frequently update the attacker of its findings

based on a predetermined update methodology.

After successful reception of this data, the attacker will use it to generate legitimate keys to

access the air gap.

The attacker will use the malware to locate the workstations controlling the surveillance

cameras. In locations with no surveillance cameras the malware might use any available user

connected web cameras. The malware will record periodic video feeds to be sent to the attacker.

These videos with the help of the attacker generated access keys will guide a recruited insider

into infecting the air gap with a copy of the BlackWidow.

The malware controlling the video cameras will make sure that this process will not be

recorded on any of the cameras to protect the recruited insider.

The air gap malware is programmed to increase the operational hours of certain machines that

use specific raw materials manufactured by XYZ to increase XYZ profits. The malware can

easily identify such machines by searching a predetermined fixed identifier that must be added to

all the programming files targeting such machines. Further, the attacker will use the stolen

secrets and designs to equip the malware with the needed logic to randomly manipulate the

operational motors frequency in the production machines to induce random defects in the output

14

products to lower its quality. Doing so shall cause multiple financial problems to ABC. XYZ

shall benefit from ABC’s loss due to its low quality products. Additionally XYZ will maliciously

gain both financially and more control over ABC’s production lines by, for example, carefully

adjusting the amount of consumed and supplied raw materials.

 Figure 1.3 Commercial security example

15

1.3 Research Approach

Recent research argued against the suitability of the current security solutions to CPS

environments. We assert the need for new defense platforms that effectively and efficiently

coordinate defense missions and tools in real-time to achieve the following goals:

 Achieve asymmetric advantage to CPS defenders, prohibitively increasing the cost for

attackers;

 Ensure resilient operations in presence of persistent and evolving attacks and failures; and

 Facilitate defense alliances, effectively and efficiently diffusing defense intelligence and

operations transcending organizational boundaries.

Our proposed solution aims to comprehensively address these goals in order to present an

evolutionary defense platform that would enable self and situation awareness, resilient adaptive

defense, and cooperative autonomous control and sharing amongst cooperating organizations

without violating their individual privacy policy. Enabling such features makes it possible to

successfully provision defense services to mission critical heterogeneously composed systems

like CPS, while maintaining the operation timeliness and stability in presence of persistent

attacks.

In this work, we present CyPhyCARD (Cooperative Autonomous Resilient Defense platform

for Cyber-Physical Systems) - a biologically-inspired distributed dynamically configurable,

runtime programmable platform that manages a large number of cyber and physical resources

and services upon which evolutionary defenses can be built to protect participant organizations.

Figure 1.4 presents an abstract view of CyPhyCARD.

16

 Figure 1.4 Abstract view of CyPhyCARD

CyPhyCARD features a set of platform-managed capabilities and services through a

biologically-inspired architecture and methodologies to effect trace-resistant, resilient, and allied

defenses. CyPhyCARD provisions its services via an evolutionary sensory system, EvoSense,

working through an intrinsically resilient and autonomously-managed adaptable platform,

CyberX, and protected by novel moving-target defense mechanism, ChameleonSoft. Figure 1.5

presents CyPhyCARD goals and features which are described as follows:

17

 Figure 1.5 CyPhyCARD goals and features

Goals:

 Resilient operations: by managing automatic failure recovery and containment, and

adapting structure, function and performance to varying network scales and contexts;

 Trace-resistant moving-target defense: by multidimensional mobilization of the attack

target evading attackers; and

 Allied defense: by isolating the defense provisioning design concerns sensing, effecting,

control, and physical resources; enabling trustworthy automated defense sharing and

cooperation.

Features:

18

 Awareness: by providing pervasive monitoring and analytics for self and situation awareness

distributed throughout the targeted systems;

 Elasticity: right-sized resources and services by autonomically marshaling and adaptively

provisioning resources (cyber and physical) and services (monitoring, detection and

response) to effect appropriate evolutionary immune responses;

 Intelligence: by using autonomic, independent, self- and situation-aware, smart building

blocks to build the entire defense platform;

 Diversity: to induce software behavior encryption (i.e., inducing adequate confusion and

diffusion similar to message encryption); and

 Cooperative defense: by enabling mixed initiative and fully autonomic cooperative tipping

and cueing among participating organizations without violating their individual policies.

Hypotheses:

 Resilient operation in presence of attacks/failures can be significantly enhanced by:

– Utilizing intrinsically resilient, online programmable, composable building

blocks

– Mobilizing software for encrypted execution behavior (moving target)

– Enabling resource- and context-aware automated recovery

– Enabling trustworthy information sharing

 Efficiency of defense services can be significantly enhanced by:

– Providing a generic platform for provisioning defense services

– Tailoring resource consumption based on the task on hand

– Enabling online programmability and re-tasking

19

– Provisioning defense services in isolation from Target of Defense (ToD)

operations

– Context-aware automated resource management and control

Underlying assumptions:

 It is feasible to decouple application logic, state, data and physical resources

 The capability exist to produce functionally-equivalent behaviorally-different code

modules targeting different quality attribute objectives

 Applications can be defined in terms of interacting entities

Design principles:

 Platform managed

o Replication and automated recovery

o On demand resource acquisition, allocation, de-allocation, and sharing

o Dynamic, situation aware , real-time adaptation to changes

 A smart isolation layer isolating and exclusively interfacing between the defense platform

and target of defense

 Self- and situation- aware composable basic building blocks that autonomously manage

the underlying logical and physical resources

 An autonomously-managed trace-resistant moving-target defense securing the

infrastructure

 Autonomous privacy-preserving information sharing and exchange

20

1.4 Evaluation

For the purpose of evaluating the efficiency and applicability of the presented approach, we

constructed a prototype of the defense platform three pillars CyberX, ChameleonSoft, and

EvoSense. Our studies also include the design and implementation of different simulation

packages simulating each of the presented pillars. These simulators were utilized to

quantitatively evaluate the platform’s various performance and security aspects.

We devised a digital version of the Cell as a basic building block for CyPhyCARD pillars. We

used the synthetic Cell to build a prototype of ChameleonSoft behavior encryption mechanism

along with CyberX automated system adaptation and a multimodal recovery system. The

prototype illustrated ChameleonSoft capability to encrypt the runtime execution behavior of

software. The prototype also illustrated CyberX success to autonomously adapt to frequent

changes and to autonomously detect and recover Cell failure. Further, we devised a set of sensors

and effectors Cells and a circulation management platform as a part of EvoSense prototype. The

Cells are deployed on heterogeneously configured hosts and the feedback was analyzed to detect

and resolve a preexistent system malfunction. The prototype illustrated EvoSense success in

isolating the defense concerns “sensing, effecting, control, and physical resources”, its ability to

circulate defense tools on various hosts regardless of its configuration, and its capability to

collect privacy friendly feedback regarding specific incident.

Additionally, we designed and implemented three simulation packages using MATLAB to

evaluate the performance and security aspects of CyberX, ChameleonSoft, and EvoSense. The

results extracted from these packages showed that the three pillars were effectively and

efficiently successful in achieving their design objectives. However there were tradeoffs between

21

increasing the level of provisioned security of the system and maintaining the performance

quality at all times. The results also showed that when we utilize the system adaptive and elastic

features we can simply tolerate such tradeoffs in a way that satisfies almost all of the targeted

quality attribute objectives by the platform at all times.

Finally, we devised a synthetic attack scenario in order to conduct a qualitative study of

CyPhyCARD’s security effectiveness in provisioning defense services to CPS applications. The

study illustrated that CyPhyCARD has the capability and the tools to efficiently mitigate that

attack with minimal consequences. We also clarified the role of each of CyPhyCARD’s pillar in

defeating the attackers list of assumptions and hypotheses supporting their attack. We surmise

that by invalidating such assumptions, the attack itself will no longer be feasible.

1.5 Contributions

Intellectual Merit: To realize these capabilities, CyPhyCARD construction is based on three

main contributions:

 Biologically-inspired Management Platform (CyberX)

– Manages a distributed construction of composable basic building blocks termed

“Cells”.

• Enable Cell dynamic runtime configuration

• Support the Cell self-monitoring

• Enable the Cells to dynamically adapt to changing internal and external

conditions and acquire resources on demand based on the dynamics of the

tasks on hand

22

– A multimode, autonomous situation-aware recovery system for enhanced system

resilience

 Software Behavior Encryption System (ChameleonSoft)

– Employs runtime multidimensional software diversity to induce confusion and

diffusion to, in effect, induce spatiotemporal software behavior encryption

– ChameleonSoft mobilize running Cells among heterogeneously configured hosts

in a way that makes the attack target in a continuous random motion inducing

trace-resistant moving target defense .

– An elastic software platform that dynamically and autonomously change diversity

application and recovery policies to match the surroundings frequent changes

 Evolutionary Sensory System (EvoSense)

– Defense service provisioning by autonomous abstraction and virtualization of

heterogeneous compositions of physical resources, conventional defense services,

and autonomously customized formations of sensing and effecting tools

– Enable smart pervasive sensor circulation for enhanced detection efficiency and

better resource utilization

– Early enable trustworthy cooperative autonomous control and sharing of defense

intelligence amongst interconnected CyPhyCARDs and/or Target of Defense

(ToD) systems to enhance attack detection and deterrence

Broader Impact: CPS integrate computational and physical processes. Modernizing the critical

infrastructure often involves upgrades with CPS to enhance efficiency, safety and reliability.

New security and resilience requirements arise given the mission- and time-critical nature of

23

infrastructure systems, the massive-scale of enterprise and field deployments of, often resource-

constraint, CPS devices, and the emergent behavior and interactions between the interconnected

CPS components. Further, the expected profound increase in sophisticated persistent attacks

targeting high-value infrastructure assets and exploiting the potential vulnerabilities of the new

cyber-physical integration poses formidable challenges. The broader impact of our work

includes:

 Evolutionary comprehensive defense system capable of providing defense services to

mission critical CPS

 Enable continuity of operations as well as moving target defense to prohibitively increase

the cost on potential attackers

 Automated trustworthy multi organization information sharing enabling early attack

alarm and enhancing decision making accuracy

 Enable building intrinsically resilient, resource efficient, and adaptable software

 CyPhyCARD provides defense, resilience, security as services

Unified platform to monitor, manage, and control heterogeneously composed CPS components

expanding their applicability in multiple domains

24

1.6 Document Organization

The remainder of the dissertation is organized as follows: Chapter 2 presents details about

CyPhyCARD platform and CyberX, Chapter 3 describes ChameleonSoft behavior encryption

and moving target defense for platform security and resilience, Chapter 4 presents EvoSense for

defense service delivery and sharing, Chapter 5 presents our evaluation approach and models,

simulation framework, and evaluation results, Chapter 6 overviews related work, and finally

Chapter 7 concludes the dissertation and highlights future work.

25

Chapter 2

2. CyberX: Biologically-inspired
CyPhyCARD Management Platform

2.1 Introduction

Today, cyber systems form the backbone of national critical infrastructures, which means that

a major security incident on such systems could have significant disruptive impact on the

operation reliability and safety of many of the systems that we rely on to maintain our everyday

life. Both researchers and practitioners have been paying considerable attention to the cyber

security problems for more than two decades. However, the problems are far from being

comprehensively solved. The main challenges facing the current cyber security practice is that the

security approach is largely heterogeneous, increasingly complicated, and it is struggling to keep

pace with quickly evolving threats. The CARD concept is presented to inherently address such

challenges.

To achieve the CARD vision and simultaneously improve the nation’s cyber security posture,

the CARD should support a portfolio of defense techniques that when homogeneously-composed

into one solution (CyPhyCARD) would enable adequate and trustworthy defense provisioning. In

our work the CARD encompasses trace-resistant moving-target defense, resilience against failures

and attacks, and autonomous trustworthy allied-defense. We surmise that enabling the CARD

“Simple things should be simple and complex
things should be possible.” Alan Kay

26

would require software development, management, and operation to be based on five main pillars:

elasticity, diversity, awareness, cooperation, and intelligence.

Currently software products depend mostly on static or partially dynamic architectures where

data, logic, and/or physical resources are primarily tightly coupled. Multiple attempts have been

presented in the literature to partially decouple these design concerns [4, 5, 6]. However, up to our

knowledge our Cell Oriented architecture (COA) is the only architecture that comprehensively

supports intrinsic separation of design concerns needed for runtime re-programmability, intrinsic

autonomic online composability, and dynamic software adaptation and elasticity.

In this chapter, we propose CyberX, a situation-aware trustworthy management platform that

utilizes the COA features to realize the aforementioned pillars. COA is a biologically-inspired

architecture with active components termed Cells that support development, deployment,

execution, maintenance, and evolution of software. Cells separate logic, state and physical

resource management. Cells are realized in the form of intelligent capsules that encapsulates

executable applications defined as code variants. Cells are dynamically composable into

organisms that are bound to functional roles at runtime. CyberX manages such construction to

enable online re-programmability, hot code-swapping, local/global situation awareness, and

automated recovery.

CyberX enables applications to dynamically adapt to serious runtime changes in their

execution environment via a runtime diversification of multiple functionally-equivalent,

objectively-different “targeting different quality attributes” code variants. Reliability,

performance, robustness, reliability, survivability, compatibility, scalability, and mobility are

examples of such attributes. Currently we are in the process of using the same technology to

27

enhance the system resilience against software attacks. Our objective is to employ spatiotemporal

diversification of similar-function different-behavior code variants for moving target defense.

CyberX utilize the COA feature of enabling the application to exchange real-time status and

recommendation messages with the host Cell for administrative purposes to enhance the Cell

local application awareness and to enable application driven adaptation. CyberX use these

messages to guide the Cell runtime quality-attribute manipulation towards accurate and prompt

adaptation. Further, CyberX collects, analyze and trustworthy-share these messages and status

reports constructing a real-time sharable global view of the Cell network.

 CyberX enhances the system resilience by multiple recovery modes to cover different

application-requirements and host-configurations. CyberX offers a prompt and accurate fine-

grained recovery for resourceful hosts executing critical applications, and a more resource

efficient course-grained recovery for less critical applications. CyberX uses the COA loosely

coupled features to allow applications to seamlessly change their current active recovery modes

based on context, environment, or application-objective change.

CyberX contributions presented through this chapter are as follows:

 A biologically inspired architecture with the following capabilities:

o Intrinsic separation of design concerns (data, logic, and physical resources); and

o Employing a mission-oriented application design and inline code distribution to enable

adaptability, and online dynamic re-tasking;

 Elastic system design and platform-managed control enabling the following:

o Runtime diversity employment for hot manipulation of quality attributes to effect trace-

resistance and moving target defense;

28

o Multimodal, autonomous situation-aware recovery system for enhanced system resilience;

and

o Dynamic and autonomous change of shuffling and recovery policies according to run-time

changes in the execution environment.

2.2 The Cell Oriented architecture

The COA is an employment of a mission-oriented application design and inline code

distribution to enable adaptability, dynamic re-tasking, and re-programmability. The Cell is the

basic building block in COA. The COA Cell is inspired from the biological Cell in its

independent, generic, composable construction. COA Cell is an abstraction of a mission-oriented

autonomous active resource. Generic Cells termed stem-Cells, are seamlessly created by the host-

side middleware or the COA Cell DNA (CCDNA). Further, they participate in emerging tasks

through a process called specialization. The CCDNA is a middleware program that allows a

physical workstation to host Cells and facilitates Cell physical resource allocation and

management.

We envision applications built over COA as a group of cooperating roles representing mission

objectives. The term organism is used to represent a role player that performs a dedicated mission.

An organism might be composed of a single or multiple Cells based on its objectives. Figure 2.1

illustrates the different components of the COA.

29

Figure 2.1 Components of our COA
2.2.1 The Cell

Conceptually, the Cell is the smallest active resource in a distributed computing platform. Cells

are intelligent, and independent, autonomous, single-application capsules “sandbox” that acquires,

on the fly, application specific functionality in the form of an executable code variant "The

specialization process". Cells act as a simple virtualization environment isolating the executable

Logic from the underlying Physical resources. Figure 2.2 illustrates an abstract view of a COA Cell

at runtime. The Cell is dynamically composable into larger structures “organisms” representing

complex multi-tasking applications.

30

Figure 2.2 COA Cell at runtime

A single workstation can host one or more Cells, providing a flexible way to share the physical

resources among multiple applications. Figure 2.3 illustrates the main components of the COA

Cell briefly described as follows.

Figure 2.3 The Cell

31

Cells are instantiated at bootstrapping when the bootstrap manager initializes the Cell

components and ports with the appropriate parameters based on the bootstrap context. The

communications unit (I/O manager) handles local and remote I/O communication setup, I/O

logging, and IP/Port/Virtual naming resolution.

The specialization process occurs when the execution unit receives an executable COA-ready

code variant that represents the application specific functionality that the Cell should acquire.

A COA-ready variant is a program that enables check-pointing and frequent reporting through

a predetermined channel using predetermined syntax. We isolate the Data from the Logic by

necessitating that all sensitive data is committed to a remote data storage using a dedicated data

channel provided by the infrastructure before each checkpoint. The program must ask for, and

start execution from an infrastructure provided starting point. This point is zero for fresh Cells.

Finally, the programmer has to provide At least two similar-function different-objective variants

to enable CyberX quality attribute manipulation.

The execution unit starts by launching the selected variant with the appropriate parameters

“Ex., the Cell Id”. The execution unit is also responsible for the termination and replacement of

the executing variants based on incoming shuffling commands. All the issues regarding diversity

employment-methodology, shuffling policy, “shuffling frequency, commanding, and variant

selection” are the responsibility of the diversity-management unit.

The State Transaction Manager (STM) is responsible for monitoring the variant execution

progress. It is the only unit with direct access to the executing application through a dedicated

communication channel. STM reports checkpoint change and other incoming application requests

and status reports to the appropriate units “ex, holding shuffling frequency change, objective

change requests, etc”.

32

The recovery manager is responsible for adjusting the recovery settings, recovery mode

change, in addition to restoring and synchronizing checkpoints at the time of failure-recovery with

the cooperation of the execution unit. It is also responsible of sending the Cell beacon messages to

the tracking servers. These messages include the last checkpoint reported by STM, and other

reports regarding Cell state reported by the situational awareness unit; and any other

administrative messages needs to be delivered to the Global Management Servers (GMS). The

details about CyberX multimodal failure recovery processes are illustrated in section 4.

 The situational awareness unit, is responsible for providing the needed situational and context

awareness information to the other Cell units to support their decisions. It monitors the internal

and the external Cell surroundings and generates guideline reports for all Cell units. It also

informs the GMS with awareness reports through attached messages to the Cell frequent beacon

messages. GMS use these stored beacons to generate more meaningful status reports. These

reports contain information, directions, and commands that CyberX wants to deliver to a certain

area in the network. For example, if one of the Cells reported a malicious event that might affect

other neighbor Cells, GMS might inform other Cells to change the current variant to more secure

variant.

The decision-making tasks are totally distributed in the Cell. Each unit takes its own decisions

regarding its specific task autonomously. The global operation of the Cell is handled by the real

time cooperation between all these units.

2.2.1.1 The COA Cell VS biological Cell

We mimic biological systems in our work starting from the basic construction building blocks.

One of the most successful biological ability to adapt to changes is realized in the Sea

33

Chameleons. Our investigation illustrated that the key to success for Chameleon diversity starts

from its basic building block the biological Cell. In Table 2.1 we clarified by comparison the

main similarities and differences between the biological Cell and our digital COA Cell. We also

compared between CyberX and the Sea Chameleon identifying points of similarities and

differences. Table 2.1 illustrates that we selected most of the useful features from these biological

constructions, and enhanced some of these features to better serve our objective.

 Biology COA Cell

Cell

Composable Composable

Polymorphic before

specialization

Polymorphic

Generic Generic

Specialize once “disposable” Multiple specialization

“disposable/reusable”

Autonomous Autonomous

Adaptive before specialization Adaptive

Resilient Resilient

Chameleon Autonomous Autonomous

Independent Independent

Collaborative Collaborative

Adaptive Adaptive

34

Resilient Resilient

Multipurpose diversity

utilization

Multipurpose diversity utilization

Distributed diversity

management and control

Distributed diversity management and

control

Locally and globally

situational aware

Locally and globally situational aware

Table 2.1 Comparison between biology and CyberX “Cell”

2.2.2 The Organism

An organism is an autonomous logical execution unit that follows the logic patterns of role

providers. A role is an interpretation of a dedicated mission dynamically assigned to organisms.

An organism might comprise a number of Cells wired together dynamically (at runtime) to form

software structure having an independent execution context, see Figure 2.4. For example, let us

consider a distributed application defined as a set of tasks executing independently and

communicate via exchanging messages. We see this application as an organism playing a role

defined by the application objectives. The organism is composed of a set of Cells. Each Cell

encapsulates and executes one of the application tasks defined by a set of code variants.

The simplest organism is composed of only a single Cell. A more complex organism may span

any number of Cells that can be distributed among multiple physical computing hosts enabling

hosts with limited capabilities to collectively participate in the execution of complex autonomous

roles.

35

2.3 The CyberX management platform

CyberX is a situation-aware trustworthy management platform that utilizes the COA features

to enable a wide set of features and capabilities. Online re-programmability, hot code-swapping,

local/global situation awareness, and automated recovery are examples of such capabilities that

participate in the realization of the CARD concept. In the next subsections we describe CyberX

architecture, the main components participating in its construction and the functionality of each

component. Further, we will discuss the communication aspects and security issues with and

within CyberX.

2.3.1 CyberX platform architecture

CyberX is composed of a set of central powerful nodes we will address them as servers. These

servers cooperate autonomously to manage the whole network of Cells. This platform is

responsible for the organism creation “composition and deployment of Cells”, management, the

host side API(s) “CCDNA”, real-time monitoring and evaluation of the executing Cells, and

recovery management. Further, it provides the necessary management tools for system

administrators to manage, analyze, and evaluate the working Cells /organisms.

Auditing and Reputation Management Servers (ARMS); its main task is to monitor

outgoing or incoming Cell administrative messages for the lifetime of the Cell. This information

is used to assist evaluating the trustworthiness of the Cell. These servers cooperate with the

recovery tracking servers, routing nodes to frequently evaluate the Cell behavior for any

36

malicious activities. These servers will hold comprehensive reports about each Cell for the

lifetime of the Cell.

Figure 2.4 The management platform architecture

Recovery & Checkpoint Tracking Servers (RCTS); its main task is to monitor, and store

checkpoints changes for all running Cells. Checkpoint updates are always enclosed as a part of the

Cell frequent beacon message update. This server is also responsible for reporting failure events

by comparing the duration between consecutive beacon messages to a certain threshold matching

the reporting frequency settings of each Cell. Failure events are validated by comparing the

recently noticed reporting-delay for a particular Cell to the average reporting-delay within its

neighbors and other Cells hosted in the same host. A Cell failure notice is reported to the global

management servers with the last known failure recovery settings, Checkpoint, and variant

settings to start deploying replacement Cells.

37

Global Management Servers (GMS); its main task is to manage the underlying COA

infrastructure. It is responsible of Cell deployment, coordinating between servers, facilitating and

providing a platform for administrative control. It is the only server authorized of issuing Cell

termination signals. It can also force Cell migration or change the current active recovery policy

when needed. It is responsible of assigning the infrastructure global policy, routing protocol,

auditing granularity, registering/revoking new hosts, and keeping/adjusting the host-platform

configuration file.

The Data-Warehouse Servers (DWS), it is one of the main components of the infrastructure

that participate in the separation between the Data, Logic, and Physical-resources. DWS are

distributed through the Cell network, they are responsible for holding and maintaining all the data

being processed, and any other sensitive data that the management units want to store. All running

Cells are not permitted to store sensitive data “data processed and committed prior to a

Checkpoint event” on their local memory. All sensitive data has to be remotely stored in a specific

DWS serving the Cell area through the dedicated data channel. DWS synchronize their data

independently.

Distributed Naming Servers (DNS), is responsible for resolving the real host IP/Port

mapping to the virtual Cell Id and organism names. The working Cells use this mapping at

runtime to direct incoming and outgoing communications. DNS is major player in the COA’s

separation of concerns that enables virtually seamless, Cell relocation, and workload transition in

case of failure recovery. In case of Cell movement, the DNS will be instructed by the GMS to

maintain communication redirection.

2.3.2 CyberX trustworthy platform-communication

38

This section discusses CyberX management of the secrecy, authenticity, and anonymity of the

inter-Cell communications. We present a suitable key management scheme for various connection

types in the system. Further, we will illustrate our mechanism to detect maliciously behaving and

problematic cells in our system. Additionally, we present our secure authentication mechanism

securing the inter-Cell communications against identity theft attacks.

In order to maintain the secrecy of the sensitive information stored locally or externally, or

being exchanged over communication lines; CyberX uses an asymmetric key encryption scheme

to encrypt this data. At the deployment time, the GMS assigns a pair of keys to each cell, a public

key and a private key. The public key will be used to encrypt all incoming messages to the Cell.

The private key will be used to decrypt these incoming messages. The Cell can use the public key

to encrypt the sensitive data within the Cell itself, if the situation necessitates that. For example, it

can encrypt sensitive data stored in the local hard drive, or within the memory of the host in

locations not controlled by the Cell itself. Figure 2.5, illustrates the architecture of CyberX local

security mechanism.

CyberX manages the Cell to Server, and Cell to Replica data authenticity using a set of

encryption/decryption keys. At the deployment time GMS attaches to the Cell deployment

package, the Cell inputs, configuration parameters, the Cell public and private keys, and a pool of

public keys for other entities that the Cell might communicate with. The public keys pool will

include keys for CyberX servers and routers that the Cell might need to be indirect contact with.

Additionally, if the Cell had any replicas at the deployment time, the public keys for those

replicas are also included.

At runtime, cells can acquire new replicas as a response to a change in the current recovery

mechanism. The process will start by a request from this Cell or the RCTS to GMS to deploy new

39

replicas. GMS will reply with the public key and the unique Cell name of the new replica to the

requester in an encrypted message using the requester public key.

Figure 2.5 CyberX security framework

In order to guaranty the authenticity of all incoming messages, the source id will be enclosed

and encrypted with the message. The ARMS will be monitoring inter-Cell behavior with the

cooperation of RCTS that keeps track of all the Cells activities. Malicious, or problematic Cells,

will be terminated, and their terminated Cell id will be blacklisted and announced to all routing

Cells.

In CyberX managed applications, Inter-Cell communications can be classified into two main

types, administrative related communications, and application related communications.

Application related communications are messages being exchanged to serve the application needs

and identified by the application designer. The administrative communications are messages like,

40

recovery beacon messages between Cells and replicas or RCTS; alerts and events between Cells

and ARMS; and messages between Cells and routing nodes.

Figure 2.6 The Inter-Cell message format.

Figure 2.6 describes an abstract view for The Inter-Cell message format. The message is

divided into two main parts, the destination id, encrypted data block.

The encrypted data block is divided into four parts encrypted with different keys, sub

destination id, the source id, timestamp, message to be sent, and message integrity assurance data

“like hash code”.

Inter-Cell communications anonymity, Cells are not allowed to directly exchange messages.

The reason behind that is to protect the anonymity of the inter-Cell communications. Cells

communicate to intermediate routing nodes to conceal the physical location of the communicating

nodes like “replicas, and fractions of the same application”, and to control administrative related

communications. CyberX uses intelligent routing cells to anonymize the source and destination of

any outgoing message. Doing so can block attackers with access to the network from monitoring

outgoing messages searching for a certain transmission pattern like “Beacon messages”.

Identifying these patterns can expose the physical location, and the functionality of the destination

cells “replica”.

41

Figure 2.7 CyberX secure messaging system

Figure 2.7 illustrates a communication scenario between different nodes in the system, cells,

replicas, servers. Each node uses the destination public key to encrypt and sign all outgoing

messages. We use random router selection for each message (EX,1,2)

Cells are only permitted to directly communicate with routing nodes, and servers. Application

and administrative related communications involving Cell to Cell messages, has to go through an

intermediate routing node. The routing nodes will receive these messages and forward them to

their designated destinations in order to hide their physical location. The source Cell will use two

different keys to send a message. First, a router public key to encrypt the source ID, and the sub

destination ID part of the message. The sub destination ID is the final destination “targeted cell”

that the message is indented to be transmitted to. Figure 2.8 is an example of an incoming message

to the router from one of the Cells. Second the final destination key, which will be used to encrypt

the message and the integrity check fields.

42

Figure 2.8 Incoming router message.

Figure 2.9 Router outgoing message.

The destination ID will be the ID of one of the routers that are close to the Cell. Figure 2.9 is an

outgoing message from the router to one of the Cells. The list of close by routers is preloaded to

the cell at the deployment time, and updated when needed.

At each routing node the incoming messages will be decrypted using the router private key to

extract the source and sub destination information. If the source was blacklisted, the message will

be discarded. If the source was not blacklisted, the source ID will be re-encrypted with the

destination public key, and attached to the reaming part of the message into a new message to be

forwarded to the targeted cell.

We prefer using pre-deployed keys instead of asking for public keys prior communication to

block any attempts of a Man in the Middle attack.

43

2.4 CyberX enabling the CARD concept

As mentioned in Chapter 1, and illustrated in Figure 2.10, CyPhyCARD is designed to realize

Trace- resistance, Resilience, and Allied defense needed to support CPS security, by integrating,

utilizing, and employing Elasticity, Diversity, Awareness, Cooperation, and Intelligence

techniques through a biologically-oriented architecture and methodology. CyberX plays a major

role in enabling these five main techniques and in facilitating the employment of such techniques

towards the realization of CyPhyCARD design objectives. In this section, we will illustrate how

CyberX participates in the realization and employment of such techniques.

Figure 2.10 CyPhyCARD Conceptual View

2.4.1 Intelligence

44

There are multiple smart processors working within CyberX framework, these smart

processors control the decision making process of many of CyberX management platform

components, the Cell itself, and the communication framework. The ARMS for example, takes

smart decision judging the working Cells performance to allocate any problematic, or maliciously

behaving Cells. The GMS unit uses multiple smart processors to manage the Cell network. GMS

take serious and critical decisions all the time, for example what is the best location to deploy or

migrate to the Cells, which Cells needs to manipulate its current active quality-attribute-objective,

and many more similar decisions . Even at the Cell level, the Cell takes many decisions that relay

on smart control unit to guide. When to shuffle the current variant, do I need to request migration,

and what is the best recovery mode for my current state are good examples for Cell based runtime

decisions. The next subsection illustrates the details about such smart processors.

2.4.1.1 CyberX Intelligent smart processors

CyberX is designed of completely loosely coupled components at all levels. The components

responsible of decision making through all CyberX framework is called smart processors. Due to

the unified feedback uniformity within CyberX framework the smart processor is not bounded to

a specific logic or architecture. The feedback within CyberX framework is in the form of score

sheets, the same one that EvoSense uses to collect feedback from the ToD hosts as described later

in Chapter 4.

 CyberX smart processor will process the feedback in the form of score sheet and deliver

recommendations or even commands to the execution units. The logic that the smart processor

follows can include any static or dynamic decision making logic. CyberX can use and alternate

different AI techniques to define such logic. The loosely coupled construction of the CyberX

45

components at all levels makes it easy for CyberX to alternate different code logic for the smart

processor core at different locations.

For simplicity and for the purpose of illustrating the functionality of CyberX, we will present a

smart processor architecture working on simple expert system based AI logic. The same

representation will be valid regardless of the type of logic being used within CyberX smart

processor.

Figure 2.11 illustrates the architecture of a typical smart processor. The processor gets three

input parameters. The first input is an incident or consultation id, this id identifies the suitable

logic within the rule/logic reservoir to process the incoming input. This id is automatically

assigned by the requester based on the type of the guidance requested. For example, if the smart

process is needed to evaluate the Cell performance with respect to memory usage, then the id of

that specific event is send in the first field. The system will select the expert system logic or set or

rules addressing this specific request.

Figure 2.11 The architecture of a typical smart processor

46

The second field is the score sheet containing the senor feedback that will be used for

evaluation. The last input is the configuration script of the element under investigation. For

example, if we need to evaluate the performance of a Cell with respect to memory usage, then the

Cell configuration script indicating the expected memory usage of the application executing in the

Cell is attached as input three.

The output from the smart processor is an id for specific command or a set of commands that

the requester should follow based on the given inputs. The output can be a direct command, or a

request for further investigation. Figure 2.12, shows a flowchart representing one of the expert

system rules defining the smart processor logic being used to evaluate a memory misuse in one of

the Cells.

Send Sample 1

Send sample 2 Send sample 3

YesNo If value >Th1

If value >Th2 If value >Th3

Get more samples,
use sampling

mode 1, sensors
1,2

Cell OK

Yes

no

No

Attention is
needed, maybe

malicious, migrate,
and reevaluate

Yes

 Figure 2.12 One of the smart-processor expert-system rules.

47

The logic presented in Figure 2.12, represents a case where this logic was selected based on the

request id and acquired from the rule reservoir to be loaded to the expert system engine. The

process involves comparing certain fields in the score sheet and the script to evaluate the memory

performance and whether the Cell has to be moved from its current location or not.

The use of rule based expert system as the core logic of the smart processors is efficient and

accurate but might not be so smart. As mentioned before, CyberX can use any smart logic as the

core of its smart processor. We used this type of simple AI based solution for illustration purpose

only.

2.4.2 Situation awareness framework

One of the main objectives of CyberX is its enable runtime application adaptation to the

surroundings changes. In order to enable such adaptation, CyberX has to be fully aware of the

surroundings of all active Cells. CyberX situational awareness can be categorized under three

main levels; the first is the local situational awareness at the Cell level. By Local awareness we

refer to the Cell being aware of the application needs and requirements all the time. CyberX

maintain such level of awareness by enabling application and infrastructure message exchange at

runtime through a dedicated communication channel and language. The executing variants can

send messages to the host Cell informing it by its current state or request a certain change.

The Second level is the environment awareness at the Cell level. That level refers to the Cell

being aware of what is happening around it. CyberX maintain such level of awareness at two

scopes. The first is a local scope at the host level, and the second one is a global scope at the

neighborhood or the network level. The first scope is maintained using a set of host resident

sensors deployed as a part of the CCDNA on the host. These sensors monitor certain aspects on

48

the host and report its feedback to the CCDNA. The CCDNA group the feedback and post it to

the ARMS and to the hosted Cells. The Cell uses this feedback as a source to guide the dynamic

adaptation process.

The third level is a global situational awareness at the network level. ARMS unit collects the

feedback from the CCDNAs, the feedback from the intelligent routing nodes, and the feedback

from the local monitoring units monitoring the activities of all running Cells. The feedback is

grouped and meaningful conclusions are extracted from it. Such conclusions are sent to the GMS

to guide its decisions, and commands to the running Cells. The GMS can send further commands,

or even awareness messages to the Cells based on such conclusions. Figure 2.13 presents the

decision logic within the ARMS unit.

Messages exchange and inspection protocol

In order to support large scale Cell networks, CyberX is designed to scale in a hierarchal

fashion. Figure 2.15 illustrates the hierarchal management of CyberX. The leaf nodes are in direct

contact to manage a specific set of Cells. The management units “CyberX(s)” report to each other

in hierarchal fashion to update the global situational awareness of the whole system.

The feedback in CyberX framework takes one form, a score-sheet like report. At the host level,

the Score-sheet represents a report that compares the behavior deviation regarding the sensing

target to a predetermined threshold. CCDNA Sensors are classified into different sets representing

their targeted sensing objectives " ex, memory, communications, privacy, ..etc.". Thresholds are

dynamically adjusted based on the nature of each host, and the number of false negatives/positives

reported by the Sensor.

49

Score sheets from different sensors for the same host are sent to the ARMS of the leaf node to

compose comprehensive score-sheet and to report malicious events to the GMS of the leaf node.

Figure 2.13 illustrates the process within the leaf ARMS.

Figure 2.13 The decision logic within the ARMS unit.

The incoming input to the ARMS is either requests or feedback in score sheet format from

specific source. The incoming feedback is sent to a set of smart processors to evaluate different

aspects related to the source reputation, and performance. The output is stored in the local

database for future reference, and the source is reevaluated. If the evaluation indicated

maliciousness, the source is reported to the GMS for further actions. If the incoming input was a

request or an inquiry about specific object, the database is checked and the source is evaluated. If

50

the evaluation indicated maliciousness, the source is reported to the GMS for further actions. If

not the request is accepted. Figure 2.14 represents the ARMS reporting mechanism.

 Figure 2.14 The ARMS reporting mechanism

Each smart processor has set of rules with specific thresholds in a score sheet like format.

Rule-sheets have values for different objects "ex, memory, communication,.etc" reflecting the

behavior patterns "ex: attack signature, resource starvation signature, platform instability

signature, …etc" of each object in case of up normal behavior . Behavior pattern description can

be discreet or continuous. Rule description also includes the host sampling procedure. Sampling

51

procedure describes the needed number of samples per object and the duration of each sample,

and the sensors needed to takes such samples. The GMS can add new sensors to the CCDNA’s or

deploy temporarily sensors when needed.

The feedback is sent to the leaf GMS. Based on the feedback, up normal behaviors deviation

might be detected, and the adjustment of the Cell activity based on such deviation as described in

the rule will be followed by the source Cell. The GMS at the leaf node will send its commands to

the active Cells within its jurisdiction based on that adjustment. The commands might ask the Cell

to shuffle to target different quality attribute objective, or ask the Cell to migrate from this host to

another identifying the destinations, or even ask the Cell to sop; slow; or stop shuffling.

GMS of leaf nodes send grouped and classified score sheet reports to the parent node to

expand its awareness of the underlying Cell network. These units process the feedback and send

guidelines to the child ARMS nodes as an adjustment of the list of rules, and relevant thresholds.

Figure 2.15 The management hierarchy

52

2.4.3 The Cooperation framework

At the application level, CyberX Cells are designed to work in a divide-and-concur fashion to

increase the chance for survival for the whole application in case of partial failure. Cells are

capable of exchanging messages and coordinate certain tasks between multiple Cells to achieve

certain application objectives. Enabling such cooperation enhance the application resilience

against failure, enable application level resource sharing, and enhance the application

performance by enabling applications to distribute their workload over many Cells. Further,

enabling Cell mobilization among hosts can have a good impact on the application performance

as the cell can move to facilitate service delivery to consumers by moving within geographical

proximity from them. Doing so, enables a single application to distribute its tasks in multiple

geographical locations and seamlessly move between these locations when needed.

At the host level, CyberX Cells are designed to separate the main design concerns data, logic,

and physical resources. Enabling such separation enable Cells to easily move between hosts

regardless of the host configuration. CyberX gives the host a chance to share its resource among

multiple long lived applications. In that case different hosts cooperates together to serve the needs

of one application. CyberX can move Cells between hosts if the host configuration at certain

times was not acting to the best interest of the application, like it has no resources, security levels

are low, other applications working on the same host can induce conflicts, ..etc.

At the system “Cell network level”, CyberX manage vast number of Cells hosted in many

hosts distributed in many unrelated geographical locations. The design of the hierarchal

management platform allows the management units to transfer workload between them by

moving Cells between hosts to maximize the applications recourse utilization and the quality-

attribute-objectives satisfaction. Further, the collected information about the host from the Cell

53

monitoring units can guide the management of the host network to be more aware of the host. For

the diffusion management as described in Chapter 3, hosts share such information to guide the

diffusion management process to the best interest of the application. With CyberX, hosts are

cooperating even if they don’t know about that. The next subsection gives more details about the

Organism level resource sharing.

2.4.3.1 Organism level resource sharing

Due to the loosely coupled construction on CyberX application execution framework, a multi

task application is presented as a lager organism composed of multiple Cells. In conventional

architecture, automated resource sharing at the application level is not possible unless in one case

where the application is designed and customized to support that. In CyberX the application is

totally isolated from the underlying physical resources. Doing so enables CyberX to trick the

application by creating a virtual physical resource layer that is actually hosted among multiple

hosts. CyberX enable applications with no inherent support for resource sharing to share the

physical resources of multiple hosts.

A large multithreaded application is usually played by one large organism of multiple Cells.

Such organism can distribute its Cells among multiple hosts seamlessly and without any support

from the application. There is no special support needed from the application if the entire

organism was hosted on one or more Cells. Further, CyberX situational aware management

platform can change the organism, Cell, host distribution seamlessly at runtime for any reason.

For example, if the running Cell was starving for more resources in its current host, CyberX can

seamlessly move this Cell to another host without any involvement from the application.

The process starts at the time of deployment, as mentioned in section 2.4, a COA ready

application comes in a package of components designed based on certain aspects. The package

54

includes a set of variants and a configuration script indicating the configuration aspects, and

parameters of each variant, and the general aspects, requirements, …etc of the entire application.

When the host joins CyberX network is classified in one of 3 categories “normal, high, low”

under each targeted quality attribute objective and based on the available resources. Figure 2.16

represents the host classification process at time of attachment.

Figure 2.16 The host classification process at time of attachment

At the deployment time CyberX GMS process the application global configuration scrip

against a set of rules. Based on that comparison, the application will be classified under the

available classes based on the supports quality attributed by the system.

The application can be hosted in multiple hosts to satisfy the requested quality attribute

objectives mentioned in the application configuration script. The GMS will select the next host

55

available that fits into the same classification and with available resources that can satisfy the

application needs.

Based on the GMS selection of hosts, the application tasks identified in the packaged code

variants will be encapsulated into set of Cells and the Deployment process begins. Each Cell will

have its part of the requirements based on the task hosted. The Cell local monitoring unit will

notify the ARMS if any of the needed requirements where not doable. Upon such notification, a

report from the ARMS will be sent to the GMS indicating the problematic Cell, and the

performance and trustworthiness evaluation of such Cell, and all the available details about the

reported problem. The GMS will respond by selecting an alternative host capable of providing the

needed requirement and migrate the Cell to it as described in section 3.4.

2.4.4 Elasticity

CyberX was designed to enable the application, and the host / host network to be elastic in terms

of resource usage and availability.

At the application level, Working within one of CyberX Cells gives the application the

opportunity to expand or shrink its resource usage without caring whether this change might or

might not be possible or what will be the effect of that change on the hosting node. CyberX will

handle all this details enabling high level of resource elasticity. The application designer can build

the application to consume the resources that it needs as long as it is informing the host Cell for

major resource usage patterns. Upon the reception of a resource usage change, the Cell will check

with the CCDNA if the host will be able to afford this change. If the host was capable of

providing such resources then the Cell will remain in place and the CCDNA will grant these

resources to the Cell. If the host were incapable of providing the needed resources, the Cell will

56

ask for migration from this host to another host clarifying the reason behind request. The GMS

will move the Cell to another host and will resume application execution as described in section

2.6.

At the system/host level, CyberX Cells acting as a buffer between the host resources and the

application enable the host to change its resource availability and configuration profile at runtime

without any worries about possible application failure. CyberX will always adjust the Cell needs

based on the available host resource as long as it is possible. One of the techniques that CyberX

uses to adjust the resource usage based on the available resources, is to shuffle the active variant

to a more resource efficient variant if that change will not conflict with the application

requirements. In case that the host is no longer capable of hosting the Cell, CyberX will simply

migrate the Cell from this host to another host seamlessly and with minimal operation

interruption. The next subsection illustrates the details of Cell migration to support different

quality attribute objective, like resource elasticity, diversity, and resilience against failures.

2.4.4.1 Cell migration protocol

CyberX utilize COA intrinsic separation of design concerns to migrate active Cells between hosts

in order to balance the workload of the whole network. The migration process also targets other

objectives, these objectives and more technical details about the migration process will be

illustrated in ChameleonSoft Chapter, Chapter 3. ChameleonSoft uses Cell migration to induce

special confusion and diffusion to realize special diversity needed for the moving target defense

approach presented in the Chapter. In this section we will briefly describe the technical process

of migrating a life Cell between different hosts.

57

The migration process has two modes depending on the level of resources available at the

destination Cell, and the time frame available before terminating the source Cell. These modes are

cold and hot migration modes. CyberX always uses the hot migration mode as a default mode,

because it provides minimal transition time, and zero execution steps losses.

The process starts by the arrival of a migration request. This request can be issued by three

entities, the Cell itself, and the ARMS, or the CCDNA on the host. The CCDNA can request Cell

migration if the Cell was requesting too much resources than the available resources with an

increase crossing a certain threshold. Crossing such threshold indicates that the Cell is a threat to

the other Cells, and either this Cell or the other Cells hosted on the same host might face serious

failures if the Cell is not removed from this host. The ARMS issue Cell migration if the Cell was

marked dangerous due to the analysis of the feedback collected from the sensors hosted on the

CCDNA hosting the Cell. The Cell can ask for migration from the current host to another one if

the host was not capable of provisioning the needed resources to support the hosted application

within the Cell.

Regardless of the source or the reason behind the migration request, all these requests are sent

to the GMS to process and execute. When an authentic migration request comes to the GMS, it

comes with a report justifying the reason behind migration. Based on the reason GMS selects an

appropriate host for the Cell to migrate to. The logic behind this selection is illustrated in section

3.4.

The Cold migration mode:

In this mode the Cell can be terminated upon the issuance of the migration command, and the

GMS replaces the Cell with a new fresh Cell in another host. The new Cell will be initialized with

a Cold migration mode status and the last known Check point for the source Cell will be provided

58

upon initialization. The GMS will get this information from the RCTS. The new Cell will start

with the same variant that was running on the source Cell. The variant ID will be a part of the

datasheet provided to the Cell at bootstrapping. Upon startup, if the application was in

communication with any other Cells, they will be notified that the Cell was migrated, and

execution progress synchronization protocol will start.

The process ends by communication redirection at the DNS by changing the DNS record of the

Cell to point to the new host.

The Host migration mode:

This is the default migration mode in CyberX as it is more effective and provides a 0%

execution steps losses and minimal transition downtime. The GMS starts this process by

replicating the source Cell. The source Cell recovery mode is explicitly changed to hot recovery

mode. In this mode the Cell is forced to synchronize all its action with a replica Cell. The GMS

selects the appropriate host for the replica, starts the replica and informs the source Cell of the

replica virtual id. The details of Cell replication is illustrated in section 2.5.

Upon successful synchronization, the source Cell is terminated, and the virtual id of the source

Cell will point to the replica and the routing nodes will be informed by that change. The replica

will be resurrected to live mode, and the original recovery mode that the source cell was using

before migration will be restored.

The main advantage of this mode is its ability to keep the source Cell running until the new

Cell takes over. The estimated transition downtime for this process is the time needed to update

the DNS record for the Cell virtual id with the real physical host id of the replica, which is a very

small time, and it can be negligible leaving us with a zero transition downtime. Figure 2.17

illustrates the two different Cell Migration modes.

59

Figure 2.17 COA Cell migration process

2.4.5 Diversity

CyberX employs diversity to enable dynamic adaptation to surroundings changes as illustrated

in section 2.4.5. A more complicated multidimensional employment of diversity for software

behavior encryption and moving target defense is presented in Chapter 3. Chapter 3 illustrates the

details of using CyberX separation of design concerns and the loosely coupled infrastructure to

enable multidimensional diversity employment by ChameleonSoft. At the application level

ChameleonSoft employ temporal diversity by shuffling a set of similar function different behavior

variants inducing enough confusions and diffusions to encrypt the execution behavior of the

running software. Further, at the system level, ChameleonSoft uses CyberX management

platform, to move the running Cells between heterogeneous platforms to increase the complexity

of the encryption process. We will not go further into the details of this process in this chapter as

it is illustrated in details in the Chapter 3.

60

2.5 The CyberX managed multi-mode failure recovery

CyberX applies diversity techniques to enable autonomous adaptation and performance

optimization. Applying diversity might involve multiple interruptions of the executing variants.

Doing so might lead to multiple coincident failures. Therefore, CyberX is designed to equip COA

based applications with an autonomous, dynamic, and situational-aware multi-mode failure

recovery mechanism to resolve possible coincident failures. A major outcome of this recovery

mechanism is the failure resilience enhancement not only against coincidental failures, but also

against malicious induced failures by adversaries.

CyberX dynamically and autonomously changes the Cell recovery-policy to switch between

different fault-tolerance granularity levels. Such levels might target reliability, survivability, and

resource usage optimization. For fine-grained recovery “Hot-recovery” against logical failures,

the Cell can have one or more replicas on the same physical host. Further, for a finer-grained

recovery against logical or physical node failure, the Cell might have one or more replicas on

different physical hosts. The fine grained recovery comes in two modes, the resource saver, and

the fast-recovery modes.

In the resource-saver mode, replicas need to only replicate the STM, I/O unit and local data

store units of the Cell. The remaining Cell components stay in hibernation waiting for resurrection

when the replica takes over. These replicas will have one variant all the time and no shuffling or

recovery policy change until resurrection. We do that to minimize the resource usage by these

replicas. This mode do save the resources but on the account of increasing failure downtime by

the time needed to resurrect the Cell.

61

The fast-recovery mode can achieve virtually no task-transition downtime by using a fully-

alive replica Cells. Replicas mimic all the actions of the source Cell except outgoing

communications and data change. The execution-transition in this case is a simple network

rerouting by a DNS record update. The failure downtime is only the time needed to detect failure.

The only disadvantage of this mode is the resource duplication needed to keep both Cells alive.

In a resource-constrained environment, CyberX can follow a more coarse-grained recovery

“cold-recovery” that might save some of the resources used by replicas while compromising some

of the execution states, and increasing the failure downtime.

The default Cell design forces COA Cells to send a periodic beacon messages to the RCTS

containing the last executed Checkpoint, some sensitive data, and the currently executing variant

to be saved on the secure remote data-store. In case of failure, the RCTS notice the delay in

beacon message arrival, and investigates the possibility of failure. If failure was detected then the

last recovery procedure will be executed as follows:

In case of a failed Cell that follows a fine-grained recovery mode then the RCTS will inform

MGS to send a resurrection signal to the replica and notify the routers, and start deploying a new

replica to replicate the resurrected one. After successful restoration, DNS entry will be adjusted.

If the Cell was following a coarse-grained recovery mode then the management will deploy a

replacement of the failed Cell and the last checkpoint received by the RCTS is attached to the

deployment package. After successful restoration, DNS entry will be adjusted, and the Cell will

start execution as a recovered-Cell mode. This mode involves negotiating with all Cells in

communication to resynchronize any lost execution steps.

The coarse-grained recovery mode is always-on by default enabling the support of multiple

concurrent recovery policies. The remote safe store is updated regularly with beacon messages

62

from all working Cells. Each Cell will independently and dynamically set its own message update

frequency. Such update frequency could be influenced by the change of the current recovery

policy. The update frequency might decrease in fine-grained recovery mode; while they should

increase with lower granularity recovery.

CyberX can dynamically change the cell recovery policy at runtime. The change is guided by

the application requirements and host conditions. In a stable situation with non-mission critical

application, a coarse-grained recovery policy can be used, while in a more hazardous situation, a

fine-grained recovery is preferred. The cell utilizes the available information about the current

working environment with the application profile to decide the appropriate recovery policy to use.

As the surroundings change, the cell changes the current recovery policy to suit these changes.

2.6 A CyberX-managed application

The COA-Cell can be built in different techniques based on the targeted resource virtualization

depth. We implemented the simple and fast version of the Cell to enable quick development of a

prototype. We are in the process of realizing a more complex version of the Cell utilizing one of

the application virtualization techniques mentioned in [4].

The main differences between these two versions are: The Slow and complex version of the

Cell is a computationally heavier Cell, with a thin and uniform hardware virtualization layer.

Variants are built to target a uniform virtualized platform. The main advantage behind enabling

such uniform application design are: Reducing the cost of software production, management, and

maintainability, widening the scope of special shuffling in order to increase the system security

and reliability, and reducing the effort involved in system upgrades and/or changes. The main

63

disadvantages are the added workload, and higher risk of failure when compared to the simple

version.

CyberX migrate Cells between hosts for recovery purposes, and for Moving target defense as

presented in Chapter 3. The main difference between CyberX Cell migration and virtual machine

migration is that virtual machine migration is a computationally heavy process, and it needs

complex modifications to enable the kind of real-time migration and diversity employment-

dimensionality provisioned by CyberX. Working with virtual machine concepts as known in the

literature is not feasible, because of the cost of diversity employment, communication

bandwidth, and cost of failure recovery for such huge capsules.

CyberX uses fine-grained application development and single task capsules with a total

separation between the main design concerns, Data, Logic, and Physical resources. Such

separation facilitates runtime shuffling with minimal computational, and communication cost. In

addition, CyberX handle failure recovery intrinsically and with a minimal resource usage, and

downtime. The cost reduction are mainly the outcome of the COA fine-grained application

design, the utilization of lightweight capsules, high level of automation, intrinsic consideration of

failure recovery, and the separation between the data and the mobile capsule itself. In Table 2.2

we present a detailed comparison between two of the virtual machine techniques, and the COA

Cell illustrating the main aspects regarding composition, construction, and diversity application

methodology and cost differences.

 System Virtual

machine

Process Virtual

machine

(Application

Fast COA Cell Slow COA Cell

64

virtualization

)

The definition

of the Sandbox

used

completely

isolated guest

operating system

installation

within a normal

host operating

system

Unified platform-

independent

programming

environment that

abstracts away

details of the

underlying

hardware or

operating system

enabling the

execution of a

pre-encapsulated

single process

that runs as a

normal

application inside

a host OS.

Partially isolated,

CCDNA monitored

and controlled

program execution

enabling the

execution of a

single

Chameleonized

application that

runs as a normal

application inside a

host OS.

Completely

isolated,

CCDNA

monitored and

controlled

program

execution

enabling the

execution of a

single

Chameleonized

application that

runs as a normal

application

inside a host

OS.

Sandbox tasks Mainly hardware

abstraction and

virtualization

layer

Limited hardware

abstraction and

virtualization

layer

hardware

abstraction and

managed direct

access

hardware

abstraction and

partial hardware

virtualization

Sandbox size Full OS with

multiple

applications

Single application Single application Single

application

Utilization for

Diversity

Migration Migration “ can

be used to enable

Migration //

Internal shuffling

Migration //

Internal

65

CBE internal

shuffling”

shuffling

Resource usage Huge Less than System

Virtual machine

Very limited Limited

Complexity Very complex complex Very Simple Simple

Composability None or

explicitly

None or explicitly Intrinsically Intrinsically

Type

application

Normal

application with

suitable OS

within the

sandbox

Normal

application

encapsulated in a

container than

needs to be

rebuilt each time

the platform

change

CyberX application

with a dedicated

variant for each

targeted platform.

Simple variant

change when

platform change.

CyberX

application with

a uniform

targeted

platform.

Seamless

platform

change.

Virtualization

layer

Complex

hypervisor

Hardware

abstraction layer

Simple CCDNA CCDNA

Application /

virtualization

awareness

Applications

unaware of

virtualization

Applications

unaware of

virtualization

Application aware

virtualization

Application

aware

virtualization

Separation of

design

concerns

Only physical

resource isolation

Only physical

resource isolation

Data, logic, and

physical resources

(multiple

implementations

for different

hardware

platforms)

Data, logic, and

physical

resources

66

Sandbox

instance

creation, and

deployment

Manual/

application

specific

automated

Manual/

application

specific

automated

Automated Automated

Sandbox

intelligence

Limited or none None Intelligent Intelligent

Elasticity Static Static Dynamic Dynamic

Table 2.2 Comparisons between CyberX Cell virtualization and conventional system
virtualization

2.6.1 The simple and fast version of the Cell

In the simple and fast version of the Cell, variants always match the targeted deployment

platform. In this mode variants have a controlled direct access to the actual host hardware. The

Cell instantiates, monitors, and controls all the runtime aspects of the variant as descried latter. All

communications and data access are only permitted through the dedicated units/channels within

the Cell. No hardware virtualization is needed. The main advantage of this approach is its

simplicity, and lightweight with respect to the amount of consumed host resources to enable

virtualization. In order to enable emergency Cell-relocation, the variant pool should contain

variants matching all the targeted platforms.

As mentioned before a COA-ready program is a program that enables check-pointing with at

least two different objective variants enabling quality-attribute manipulation. The checkpoint

reporting location has to consider data integrity requirements especially in case of failure. All data

has to be committed before checkpoints.

67

At the deployment time, a new DNS record will be created by the GMS for each Cell

indicating the application virtual name to be used for inter-variant communications “if needed by

the application designer”, the Cell unique id for inter-Cell communication, and the IP of the

physical-host hosting the Cell.

 The deployment starts by the CCDNA receiving the deployment package from the GMS

including the Cell globally unique ID(s), the initial checkpoint value, variant pool setup “variant

binaries, names; numbers; sets; variant-classification” , the configuration script describing the

specs of each variant, the global objective of the application, and any specific specs added by the

developer to be considered at time of execution “number of application fractions; fraction-names;

..”, the initial shuffling and recovery policy, the needed security level, and the list of security

parameters and encryption keys.

The CCDNA starts the Cell by constructing the components mentioned in section 2 with the

provided unique id. Then the CCDNA starts to interpret the deployment configuration file in

order to generate separate configuration files for each Cell unit describing any modification in its

default task assignment, or special considerations to be taken care off at the time of execution.

The execution starts when the execution unit asks the STM for the starting checkpoint, the

STM will get this information as a part of the deployment configuration file. STM will repeatedly

provide this information to the execution unit at each shuffling event. The execution unit starts to

launch the first variant while passing the appropriate bootstrapping parameters.

The last executed checkpoint value will be held by the STM locally, and remotely at the RCTS

that will receive it via the Cell beacon messages.

At runtime, variants will update the STM frequently with the checkpoint advance and any

other special needs via a dedicated communication channel.

68

At the time of shuffling, the Cell diversity manager gives the shuffling signal to the STM and

the execution unit, which will start the process after the next reported Checkpoint and based on

the provided shuffling orientation as follows;

Quality attribute manipulation: let us take an example, an attacker might be able to induce a

change in the system surroundings, like a DOS attack to overload the network to force the system

to shuffle the currently executing variant. The CyberX will ask Cells close to the induced event to

change their variant to target a different quality attribute (e.g. performance) that suits the induced

change in the environment. We have two main realization modes for the shuffling operation the

greedy and the light modes. The system designer can select either one of them based on the

available deployment-platform host resources, and the criticality of the application. The greedy-

mode with seamless handover offers virtually no-downtime but duplicates the resource usage at

the time of shuffling, and the lightweight-mode offers no-resource increase at the time of

shuffling on the account of increasing the transition time by the time needed for variant loading

and synchronization. We will briefly describe both.

The greedy-mode “local replication”: Upon reception of the shuffling signal, the execution

unit starts to load the new variant in freeze “ideal” mode. The new variant will connect to the

STM that will locally synchronize the execution checkpoint with it. The communications unit will

duplicate all the inputs to the old and the new variant. Upon reception of the ACK Signal from the

STM and the communications unit confirming that the synchronization is completed, the

execution unit sends pause signal to the old variant, and a resume signal to the new one followed

by a termination signal to the old variant.

The lightweight-mode: Upon the reception of the shuffling signal, the execution unit starts by

local synchronization with the STM for the checkpoint update. Then it pause the old variant, and

69

informs the STM and communication unit about the execution hold. The communication unit will

buffer incoming messages for the duration of the handover. The execution unit will terminate the

variant, and starts loading the new variant with the last known checkpoint, and informs the

communication unit and the STM about the successful loading to resume execution. The

communications unit will send any buffered messages to the new variant.

2.7 CyberX role in mitigating the BlackWidow attack

 In this section we intend to discuss the ability of CyberX to invalidate the attacker

assumptions on the case study “blackwidow attack scenario” presented in Chapter 1. We list part

of the assumptions listed in Chapter 1. We focus only on the assumptions that CyberX

participates in disputing. The rest of the assumptions are disputed by the reaming contributions

of CyPhyCARD, EvoSense or ChameleonSoft.

Attacker assumptions:

 The defense system shares the same network or host with the target of attack/defense

system.

 The system is not capable of being fully situation aware of all its components in a

massive-scale network in real time.

 The defense system management workstations (that the administrators use) share the

same network with the target of defense.

 It is not feasible to monitor all the host behavior patterns while sharing the same

workstation that is performing user tasks.

 Defense systems are not resilient against attacks, and have weak recovery mechanisms.

70

[Note: most of them assume that they will not be the target of an attack as long as they

were able to secure their ToD. Additionally, usually they have no intrinsic failure

recovery.]

CyberX major contributions that participates in disputing such assumptions are, the online

autonomous adaptation to changes, and the intrinsic resilience of the building blocks, the full

time monitoring and surveillance of working Cells, the enhanced Self and situation awareness of

the platform and the Cell itself. These contributions will work against the aforementioned

attacker assumptions, or the goals behind such assumptions.

The dynamic adaptation to changes will work against the goal behind assumptions 1,and 3.

The attacker assumed that if the defense applications are sharing the ToD platform or network, it

can be affected by attacking it, or it can be utilized to disrupt the operation of the ToD

application. The attacker can induce certain changes to static applications working on defense

provisioning causing them to fail. Using CyberX dynamic adaptation work against that, as the

defense services hosted on a CyberX managed platform will be able to adapt to any sudden

changes and to adjust its working requirements and configuration to match the current state of

change.

The intrinsic smart situational awareness of the platform building blocks, and the platform as a

whole, works against assumptions, 1 and 4. The CyberX hierarchal management framework is

capable of handling large scale networks and being fully aware of what is really happing within

such networks.

The intrinsic recovery enabled by CyberX works against assumption 5 and the goals behind the

five assumptions that the attacker was targeting. The main target for the attacker was to fail the

defense services. With CyberX automated fast recovery, the attacker will not be able to easily

71

fail an application. The failed Cells “application thread” will be recovered from any failures

autonomously. Additionally, the recovery system by itself realize a partial part of the moving

target concept. The technique used for recovery intentionally deploy the replacement cells in a

different geographical location, and with different platform configuration from the failed Cell to

minimize any chances of re-failure. Doing so, move the attacker target which the application

within the Cell away from the attacker. Giving this mechanism, it is not even in the attacker

benefit to try to fail any of the COA Cells as doing so will make it almost impossible for him to

target this Cell again.

The CyberX management framework uses a secure communication protocol that works against

identifying the Cells hosting certain applications. Using such secure communication protocol is

intrinsically needed to make sure that the attacker will not be able to allocate the Cell replicas. If

the attacker was able to do so, it can disrupt the hot recovery system. Even if we assumed that the

attacker will be able to go through all that, a single Cell can have multiple replicas running.

Further, the Cell is always protected by default by the cold recovery mode and it will eventually

recover.

2.8 Conclusion

In this chapter, we presented the CyberX platform designed to enable the CARD concept through

supporting five main aspects: elasticity, diversity, awareness, cooperation, and intelligence.

CyberX utilized the COA capability to induce autonomous execution elasticity and adaptability,

and to enable adjusting the system’s shuffling and recovery policies at runtime matching the

continual operational-environment changes. Further, CyberX used its situation-aware, autonomic

adaptation and dynamic failure recovery mechanisms to enhance software resilience against

72

failures and attacks. Results showed that CyberX-managed COA-based software systems can

efficiently adapt to maintain the desired reliability, sustainability, and resilience objectives even

in hazardous, unstable environments at a reasonable overhead. There are several interesting

challenges still to be addressed. These include utilizing application-level virtualization to enable

seamless Cell migration across heterogeneous platforms, autonomous detection and profiling of

environment changes; adjusting shuffling and recovery settings based on context; formalizing an

automated variant generation system, and providing alternatives for legacy non COA-ready

software.

73

Chapter 3

3. ChameleonSoft: Software Behavior
Encryption for Moving-target Defense

3.1 Introduction

Biological inspiration in computer security dates, at least, to the definition of the term

“computer virus” in the early 1980’s [55]. Self-propagating malware and computer worms have

clear life-like properties [56]. In nature, diversity provides a defense against such self-propagating

threats by maximizing the probability that some individuals will survive and replenish the

population with a defense against that particular threat. It has been noted that much of the

vulnerability of our networked computing systems can be attributed to the monoculture or lack of

diversity in our software systems [57]. It is practically inevitable that software will contain flaws.

The software monoculture makes it easier for attacks to spread thus exposing the systems to large-

scale attacks by well-informed attackers.

Inspired by the resilience of diverse biological systems in the sea chameleons, we propose a

diversity-based defense mechanism against software attacks, termed ChameleonSoft. Sea

chameleons or cephalopods employ multi-layer diversity for different purposes. For example,

they leverage their capability to change their body color, texture and appearance to induce

“Philosophy: A route of many roads
leading from nowhere to nothing.”
Ambrose Bierce

74

diversity. Diversity is used to camouflage for defense, disguise for hunting, and change color for

communication [58]. Similarly, ChameleonSoft utilizes spatiotemporal software diversity to

enhance software system security, survivability and resilience.

ChameleonSoft is founded over Cell-Oriented Architecture (COA) based infrastructure

managed by CyberX. As mentioned before, COA is a biologically inspired architecture with

active components called Cells that support the development, deployment, execution,

maintenance, and evolution of software. Cells separate logic, state and physical resource

management. Cells are dynamically composable into organisms that are bound to functional roles

at runtime. Such construction supports online programmability, hot code swapping and automated

recovery. These features together enable what we term as “ChameleonSoft Behavior Encryption

(or CBE)” akin to message encryption.

CBE applies spatiotemporal diversity in a way that makes the attack target in continual random

motion evading attackers. CBE leverages the COA intrinsic separation of concerns to realize

temporal and spatial diversity. Temporal diversity is applied by shuffling multiple functionally-

equivalent, behaviorally-different software variants at runtime. In addition, CBE realizes spatial

diversity by enabling runtime seamless migration of Cells from one physical host node to another.

The goal behind that is to hide the potentially targeted software flaws that might be used to

penetrate the system.

CyberX divides the missions of a huge software program into smaller tasks. Each of these

tasks is assigned to one or more Cells executing sets of similar function and different-behavior

executable variants. These sets might have different objectives targeting different quality

attributes. Reliability, performance, robustness, and mobility are examples of such attributes.

ChameleonSoft shuffles variants and sets to induce diversity. The scope of diversity application

75

extends beyond security goals to the other quality attributes. The system might shuffle to a variant

that aims at high system performance in highly-loaded but low security risk situations.

Alternatively, the system would resort to a higher security, perhaps lower performance variant in

higher risk situations.

Researchers in [59] mentioned that multi-variant systems without appropriate recovery

mechanism might face a larger amount of coincidental failures. ChameleonSoft relay on CyberX

autonomous recovery system to handle any coincidental failures that might occurs due to diversity

application. Such support increases the system resilience against international and unintentional

failures.

Inspired by the sea chameleon dynamic change occur in response to frequent changes in the

environment, ChameleonSoft autonomously and seamlessly changes the shuffling policy at

runtime to suite the continual dynamic changes of the surroundings.

For the purpose of illustrating the details of our CBE prototype, we will present some details

about software Chameleonization in section 4. The discussion will also clarify the main rules

needed to enable software Chameleonization.

ChameleonSoft main contributions presented in this chapter can be outlined as follows:

1) CBE mechanism that applies multidimensional spatiotemporal diversity to mobilize attack

target;

2) An elastic software platform that dynamically and autonomously changes shuffling policy

to match the surroundings frequent changes.

Further, in chapter 5 we used analysis and simulation, to study the performance and security

aspects of the proposed system. This study aims to evaluate the provisioned level of security by

76

measuring the level of induced confusion and diffusion to quantify the strength of the CBE

mechanism. We also simulated the computational cost of security provisioning, and enhancing

system resilience in ChameleonSoft with regards to the amount of failure downtime with and

without CBE.

3.2 ChameleonSoft moving-target defense

In biology, sea chameleons, or chameleons for short, are well known for their capability to

induce diversity. We promote the novel moving target approach by ChameleonSoft as a defense

mechanism against software attacks. Inspired by the chameleon diversity employment for

camouflaging, ChameleonSoft encrypts software behavior by employing multidimensional

diversity. The outcome is continuous spatiotemporal changes of the network behavior to, in effect,

move the attack target away from the attacker. ChameleonSoft is founded over our unique elastic

CyberX managed Cell Oriented Architecture (COA) that enables spatiotemporal diversity

employment.

Chameleons employ different diversity techniques to increase the resilience of their

camouflaging process against attacker visual observation. Changing body color, texture, and

appearance are examples for such techniques. They recover from a technique failure by switching

to another technique. Similarly, ChameleonSoft applies different diversity techniques for

camouflaging to enhance the system resilience against attacker utilization of possible software

flaws. Applying diversity might involve multiple interruptions of the executing variants. Doing so

might lead to multiple coincident failures. Therefore, ChameleonSoft leverages the CyberX

autonomous, dynamic, situational aware, multi mode failure recovery mechanism to resolve

77

possible coincident failures. A major outcome of this recovery mechanism is the failure resilience

enhancement not only against coincidental failures, but also against malicious induced failures by

adversaries.

The CyberX autonomous, situational aware, multi-mode failure recovery mechanisms enhance

the system resilience against both intentional and un-intentional failures. The details about

CyberX managed automated recovery are illustrated in chapter 2. Figure 3.1, illustrates

ChameleonSoft behavior encryption concept in realizing a moving target defense against software

based attacks. ChameleonSoft uses and partially manages CyberX online configurability and the

loosely coupled foundation to enable runtime multidimensional diversity application, in time by

induce attacker confusion to encrypt the software execution behavior, in space to realize trace

resistant moving target defense. ChameleonSoft uses the CyberX multimodal autonomous

recovery to insure the resilience of its defense approach against coincidental or intentional

failures.

Figure 3.1 ChameleonSoft reliable behavior encryption

78

3.3 ChamelonSoft behavior encryption

Typical encryption entails transforming the plain text into an unrecognizable message to the

interceptor. Strong encryption schemes have two major properties namely confusion and

diffusion. The confusion property virtually prohibits interceptors from predicting the ciphertext

resulting from changing one character in the plaintext. An effective confusion is enforced via a

complex functional relationship between the plaintext, key pair and the ciphertext. Confusion

aims at maximizing the time that the attacker consumes to determine the relationship between the

plaintext and the key pair. Diffusion is the other property of strong encryption schemes. Diffusion

enables the cipher to spread the plaintext information over the entire ciphertext so that the changes

in the plaintext affect many parts of the ciphertext [60].

Behavior encryption in ChameleonSoft is analogous to typical encryption in the way it exhibits

the confusion and diffusion properties. ChameleonSoft induces confusion by dynamically

changing the behavior of the executing software variant using stationary runtime shuffling of code

variants “Temporal” and live-migration of Cells between heterogeneous hosts “Spatial”. The

dynamic software behavior change makes it more difficult for an attacker to generate a profile

with the possible flaws of the executing variant. The shuffling pattern is a supervised reflection

for the continuous change in the environs. In ChameleonSoft, an effective confusion is

determined by how complex to correlate the change in the output behavior relative to a single

induced change in the environment.

ChameleonSoft works above CyberX platform that manage all the details of the Cell and the

Cell network, and maintain its resilience against failures. ChameleonSoft add one new component

among some changes to the management framework of CyberX presented in Chapter 2 in order to

79

support the software behavior encryption process. Figure 3.2 illustrated the new architecture of the

management framework of the Chameleonized CyberX.

Figure 3.2: Chameleonized CyberX management architecture

The Diffusion Management Servers (DMS) are the main component added to the basic

platform. DMS main task is to manage diffusion broadcasting messages. It is the only server

authorized to send shuffle for diffusion messages to the platform Cells. The details of diffusion

shuffling process are illustrated as follows:

ChameleonSoft induces diffusion by generating none-uniform random virtually untraceable

significant change in the spatiotemporal network behavior using the Cell independent decision-

making capability. Cells send diffusion shuffling requests to the DMS either in response to an

80

induced change or based on a predetermined policy as part of the encryption process. DMS

receives diffusion shuffling requests from the Cells. It cooperates with the ARMS to make sure

that the request is trustworthy, and the source has a good reputation and justification for the

request. Then it cooperates with the auditing server to make an informed decision about the best

area to send a diffusion shuffle recommendation messages. Cells who receives a diffusion-

shuffling recommendation decides independently whether to comply or not, when to shuffle the

current variant, the shuffling frequency, and the variant selection for the next shuffle. These

decisions are guided by the situational awareness unit’s frequent reports regarding the application

requirements, and the host condition.

We propose a variant layout randomization technique to increase the level of CBE’s confusion

induction. The system assigns the variant shuffling index based on a predetermined sequence.

Variants’ indices are shuffled internally within each Cell based on a Cell independently generated

random number that changes over time. This random number is used to shift the next executing

variant selection index to a random location in the variant layout space.

Software behavior encryption by runtime hot shuffling of software variants is a realization of

ChameleonSoft temporal diversity. ChameleonSoft realizes space diversity by seamlessly moving

the Cell at runtime among different physical hosts. During this process, CyberX autonomously

maintains communications, Cell sensitive data, and state logic.

ChameleonSoft can follow different shuffling policies at runtime to suit the dynamic change in

the surrounding environment. A policy change might induce a change in the shuffling frequency

for more security, or the shuffling orientation to favor time over space diversity or vice versa.

Figure 3.3 illustrates the aforementioned software behavior encryption protocol variations. These

81

variations can be classified in either confusion or diffusion induction within the Cell network by

manipulating the application behavior across space, time, and platform heterogeneity.

Figure 3.3 The software behavior encryption protocol variations

Figure 3.4 illustrates the software Chameleonization process. A COA ready application tasks

are defined as multiple similar-function different-behavior variants grouped in different objective

sets targeting different quality-attributes. These variants are loaded into different Cells at runtime.

ChameleonSoft shuffle these variants locally for temporal diversity. ChameleonSoft migrate the

live Cells between heterogeneous/homogeneous platforms to realize the spatial.

82

Figure 3.4 Application Chameleonization

The overall diversity induced by our system can be expressed in the form of X missions

represented in Y roles. These roles are played by M organisms, composed of K Cells. Each Cell

has P quality attribute sets containing Z software variants, to be executed and migrate between Q

nodes with W different configuration-combinations and an average of R/S shuffling events/sec.

We will provide more details about CBE realization methodology through the description of

ChameleonSoft implementation presented in section 4.

83

3.3.1 Variant generation

The whole idea of software Chameleonization depends mainly on the availability of similar

function different behavior variants that can be grouped in different objective sets. Recent

research work presented multiple techniques to automatically or manually generate variants with

similar functionalities and different configurations and compositions in order to produce different

execution behavior at runtime [61].

Automated code variation techniques have focused on creating code diversity (e.g., instruction

set randomization [62, 56] and reordering of allocated memory objects or blocks (e.g., address

space layout randomization [37, 64]. Other possible variations that could provide a considerable

level of diversity was mentioned in [65] including varying, scheduling, system calls, calling

conventions, configuration properties, and Instruction set randomization.

Researchers in [41] utilized one or more diversity technique to diversify variant execution in

order to detect behavioral deviation of simultaneously executing variants processing the same

input, as a way to detect attacks. Diversity is utilized by [67, 56] to detect attacks like buffer

overflow attacks. Instruction set tagging and memory space portioning is used by [64] to generate

variants with no specific common flows that might be utilized by a specific category of attacks.

The authors’ target was to use this diversified versions for attack detection, and fault tolerance.

In ChameleonSoft we intend to utilize multiple variant generation techniques to satisfy the

requirements needed to enable behavior encryption, and runtime dynamic quality attribute

manipulation. For example, we can use the mechanical transformation approach presented in [64]

to generate variants sets with specific resilience against certain class of attacks. Within each set

we can use the N-version programming originally presented in [67,70] for fault tolerance and

84

proposed for security by [59,73] to generate multiple similar function different behavior variants

using different independent development groups, or at least different compilers processing the

same program-specifications. Additionally, we will use formal behavior computation techniques

like the ones presented in [74,54] to verify the functional similarity, and to compute the

behavioral difference between the generated variants. These computations will assess evaluating

the strength of our CBE.

The mandatory requirements needed to support COA based Chameleonization can be

summarized as follows, The application developer has to build a checkpoint enabled application

and reports execution advance to the underlying infrastructure using a dedicated name pipe. All

data has to be committed before all Checkpoints. Applications should support random startup

from a bootstrapping-time provided checkpoint. Applications will be given direct access to the

host memory to save only noncritical temporarily data, all critical data should be accessed through

the infrastructure dedicated data path “Static, remote, and separately managed Data warehouses".

Developers should provide at least two similar-function different-behavior variants to enable

temporal shuffling. Developers have to inform the host Cell about all uninterruptable tasks using a

provided communication script. Application designers also provide a brief description about the

application tasks, any special requirements, the needed security level, and the estimated resource

usage… etc “syntax provided”.

Behavior encryption strength depends mostly on the following; the behavioral distance

between the variants, number of variants in each set, number of hosts available for spatial

shuffling, the level of host configuration-diversity, and the granularity of the application design

“number of fractions”.

3.3.2 Decision making in ChameleonSoft

85

In chameleons, color shuffling decision making source and location depends mainly on the

targeted changing speed. In fast changing chameleons, shuffling decisions are mostly controlled

by the brain with dedicated connections “nerves”, or through distributed decision making Cells all

over the body. In ChameleonSoft, we favor the later approach as it is more realizable and

computationally cost effective from the communication and resource consumption point of views.

The decision-making unit in ChameleonSoft is an intrinsic Cell component enabling independent

decision making. More complex decisions affecting a group of Cells or organisms are handled by

GMS. These units are responsible for directing the network behavior change for global purposes.

The decision making unit depends mainly on the situational awareness unit to guide its decisions.

There are multiple levels of local situational awareness, between the host Cell and the variant

executing over it, and between the Cell and the CCDNA hosting it. A dedicated channel between

the Cell and the executing variant will allow the Cell to be aware of the application requirements.

Certain syntax is provided to the variant designer to be used for message exchange between the

variant and the host Cell to inform it with its needs and requirements, like holding shuffling

process until a cretin non-preemptive task complete. Another level of situation awareness is

achieved by the use of a group of sensors in the form of API’s. These sensors are frequently used

between Cells and the CCDNA hosting them to sense any phenomena of interest. The sensors’

feedback, incoming application requirements, and the GMS regular global report feeds are the

main source of information supporting shuffling policy change to be discussed in the next

subsection.

ChameleonSoft uses a set of smart processors similar to the one described in Chapter 4. To

guide the Cell decisions based on various feedbacks from the aforementioned sources “The

neighborhood Cells, application, and management servers” . Figure 3.5, illustrate the confusion

86

and diffusion shuffling process regarding, when to shuffle, how to shuffle “space or time”, and

which variant to swap to in the next shuffle. ChameleonSoft uses different smart processors that

have similar design and shares the same input but executes different logic to handle each decision.

The logic description is similar to the one presented in Chapter4 “EvoSense”, and it can vary

depending on the designer needs and representation. For simplicity we use a simple rule based

expert system to represent the logic within such processors. The same technique is used to guide

decision making in regards to changing the shuffling policy as illustrated in the next subsection.

The confusion induction process starts at the Cell level; the Cell uses built-in analyzers “smart

processors” analyzing the incoming feedback illustrated in Figure 3.5 to take confusion or

diffusion decisions. The smart processors logic is loaded to the Cell as a part of its deployment

package.

Figure 3.5 The Cell, confusion and diffusion shuffling

87

Figure 3.6 illustrates the encryption protocol and the decision making process involved. The

smart processors get the feedback from the different inputs at runtime and decide if a shuffling

event is needed or not, and what type of event to be executed. Then the current state of the

application is checked if it had any holds or reduces of shuffling frequency requests or not. The

host condition also is checked for needed resources for the next variant after selecting this variant

by another smart processor. Special shuffling would require sending a request to the DMS to

handle it with all the details about the reasons for that request. Such reasons are described as a

summarized log of the Cell and application state. If the situation permits the execution of the

shuffle or the migration then it occurs automatically as described in section 3.4. if not, then the

process will be repeated after a predetermined threshold and the failure event will be recorded and

poster to the ARMS.

Figure 3.6 The encryption protocol and the decision making process

88

The diffusion management servers receive diffusion requests from working Cells and process

these request as illustrated in Figure 3.7. The DMS receives requests, and consult the ARMS for

the requester reputation, and the latest report about the Cell net. The reports are analyzed and the

best locations are spotted. The recommendations are diffused through the master routing nodes

within the selected areas. The Cells within this area decides whether to comply with the request or

not based on the analysis of the various inputs and the application status as presented in

Figure 3.5Figure 3.6.

 Figure 3.7 DMS diffusion recommendation process.

3.3.3 Shuffling dynamic policy change:

89

ChameleonSoft shuffling policy is the main guide for the decisions being taken by all the

diversity management units locally within the Cell, and at the management level. The shuffling

policy defines the shuffling type “temporal or spatial” and the shuffling frequency for each type.

The shuffling policy also includes when, and why to ask for a diffusion shuffling. In addition,

shuffling policy also determines the nature and the roles of variant-set shuffling for quality

attribute manipulations. The configuration of the Cell shuffling policy is always in continuous

change in-response to changes within the Cell surroundings and the application requirements. As

illustrated in Figure 3.6, the shuffling policy is always analyzed at runtime to decide the next

confusion induction process will be temporal or spatial, and the level of heterogeneity required in

the spatial shuffling.

3.4 ChameleonSoft Implementation

As mentioned before in chapter 2, the COA Cell can be built in different techniques based on

the targeted resource virtualization depth. We implemented the simple and fast version of the

Cell to enable quick development of a CBE prototype. We intend to realize a more complex

version of the Cell utilizing one of the application virtualization techniques mentioned in [76] as

a more advanced version of the CBE prototype.

The main differences between these two versions are illustrated in chapter 2, we will not go

through the details in this chapter. However, we will illustrate through Table 3.1, a quick

comparison between the conventional virtual machine migration, and CBE on CyberX spatial

shuffling as it is an intrinsic part of the software behavior encryption realization procedure. The

main objective behind such comparison is to illustrate the inherent need for COA features to

enable CBE spatial shuffling.

90

The main difference between CBE spatial shuffling and virtual machine migration is that

virtual machine migration is a computationally heavy process, and it needs complex

modifications to enable the kind of real-time diversity employment-dimensionality provisioned

by ChameleonSoft. Working with virtual machine concepts as known in the literature [43,44,45]

is not feasible, because of the cost of diversity employment, communication bandwidth, and cost

of failure recovery for such huge capsules.

CBE uses CyberX and COA fine-grained application development and single task capsules

with a total separation between the main design concerns, Data, Logic, and Physical resources.

Such separation facilitates the temporal and spatial shuffling with minimal computational, and

communication cost. In addition, CyberX handle failure recovery intrinsically and with a

minimal resource usage, and downtime. The cost reduction are mainly the outcome of the COA

fine-grained application design, the utilization of lightweight capsules, high level of automation,

intrinsic consideration of failure recovery, and the separation between the data and the mobile

capsule itself. Table 3.1 illustrates by comparison the difference between conventional virtual

machine migration and ChameleonSoft behavior encryption.

 Virtual machine migration CBE

Definition

Moving “by cloning or startup-

time replication” a live machine

“whole OS and applications”

from one host to another with the

exact similar configuration

Live employment of

multidimensional software diversity

to, in effect, induce spatiotemporal

“software behavior encryption” and

a moving target defense.

Diversity technique Migration

Migration of single Cell “one

application” either by swap-time

cloning or replication// and Internal

91

shuffling “swapping code variants at

runtime”

Resource usage High Limited

Granularity Full OS
Fine granularity, application fraction

migration

Methodology

OS stalling, physical

transformation, Resurrection “

excessive bandwidth usage”

Local/Remote replication while

execution, communication rerouting,

and source termination. “no

excessive bandwidth usage”

Shuffling downtime

1) High

2) relative to the OS size, number

of application, and the whole

machine load time.

1) Virtually none, Limited to the

time needed for communication

redirection “negligible”

2) worst case scenario it will be

relative to the load time of a single

application.

Ability for temporal

shuffling

Possible explicitly with large

computational and downtime cost

by enabling check-pointing for

most of the OS components.

Intrinsically possible, minimal

computational load.

Diversity application

related bandwidth

usage

High Virtually none

Resource usage

involved
High Limited

 Table 3.1 Comparisons between Cell spatiotemporal shuffling / virtual machine
migration

3.4.1 Software Chameleonization process

As mentioned before a Chameleonized program is a program that enables check-pointing with

92

at least two similar-function different-behavior variants to enable temporal shuffling. The

checkpoint reporting location has to consider data integrity requirements especially in case of

failure. All data has to be committed before checkpoints.

At the deployment time, a new DNS record will be created by the GMS for each Cell

indicating the application virtual name to be used for inter-variant communications “if needed by

the application designer”, the Cell unique id for inter-Cell communication, and the IP of the

physical host hosting the Cell.

 The deployment starts by the CCDNA receiving the deployment package from the GMS

including the Cell globally unique ID(s), the initial checkpoint value, variant pool setup “variant

binaries, names; numbers; sets; variant-classification” , the configuration script describing the

specs of each variant, the global objective of the application, and any specific specs added by the

developer to be considered at time of execution “number of application fractions; fraction-

names; ..”, the initial shuffling policy, and the needed security level.

The CCDNA starts the Cell by constructing the components mentioned in sec 3.1.1 with the

provided unique id. Then the CCDNA starts to interpret the deployment configuration file in

order to generate separate configuration files for each Cell unit describing any modification in its

default task assignment, or special considerations to be taken care off at the time of execution.

The execution starts when the execution unit asks the STM for the starting checkpoint, the

STM will get this information as a part of the deployment configuration file. STM will

repeatedly provide this information to the execution unit at each shuffling event. The execution

unit starts to launch the first variant while passing the appropriate bootstrapping parameters.

The last executed checkpoint value will be held by the STM locally, and remotely at the RCTS

93

that will receive it via the Cell beacon messages.

At runtime, variants will update the STM frequently with the checkpoint advance and any

other special needs via a dedicated communication channel.

At the time of shuffling, the Cell diversity manager gives the shuffling signal to the STM and

the execution unit, which will start the process after the next reported Checkpoint and based on

the provided shuffling orientation as follows;

Temporal shuffling, we have mainly two realization modes for temporal shuffling the greedy

and the light modes. The system designer can select either one of them based on the available

deployment-platform host resources, and the criticality of the application. The greedy-mode

with seamless handover offers virtually no-downtime but duplicates the resource usage at the

time of shuffling, and the light-mode offers no-resource increase at the time of shuffling on the

account of increasing the transition time by the time needed for variant loading and

synchronization. We will briefly describe both.

The greedy-mode “local replication”: Upon reception of the shuffling signal, the execution

unit starts to load the new variant in freeze “ideal” mode. The new variant will connect to the

STM that will locally synchronize the execution checkpoint with it. The communications unit

will duplicate all the inputs to the old and the new variant. Upon reception of the ACK Signal

from the STM and the communications unit confirming that the synchronization is completed,

the execution unit sends pause signal to the old variant, and a resume signal to the new one

followed by a termination signal to the old variant.

The light-mode: Upon the reception of the shuffling signal, the execution unit starts by local

synchronization with the STM for the checkpoint update. Then it pause the old variant, and

94

informs the STM and communication unit about the execution hold. The communication unit

will buffer incoming messages for the duration of the handover. The execution unit will

terminate the variant, and starts loading the new variant with the last known checkpoint, and

informs the communication unit and the STM about the successful loading to resume execution.

The communications unit will send any buffered messages to the new variant.

Spatial shuffling: the Cell diversity management unit starts by asking the GMS to deploy new

Cell as a new spatial shuffle destination and reply with the distention temp id. The new Cell will

be deployed in replication mode with 2 ids the Source id, and a temp id valid only for the

duration of the handover. The source Cell will treat the destination as a replica, and inform the

routing nodes to forward a copy of all incoming messages to it. The GMS sends a resurrection

signal to the destination Cell when the process completes, followed by a termination procedure

to the source Cell. The GMS will fix the DNS and erase the temp id entry.

Diffusion induction and set change: let us take an example, an attacker might be able to

induce a change in the system surroundings, like a DOS attack to overload the network to force

the system to shuffle the currently executing variant-set. The Cells close to the induced event

change their variant set to target a different quality attribute (e.g. performance) that suits the

induced change in the environment. Based on the configuration policy this incident requires a

diffusion shuffling. The affected Cells send their request and incident report to the DMS. DMS

will check for the trustworthiness of the request by the help of the ARMS, then it selects the

most appropriate destination based on the current policy, security requirement, and load balance

threshold. DMS will forward the request to the appropriate routing nodes in the targeted area for

broadcasting.

The diffusion scope and direction depend on the ARMS feedback, and the situation evaluation

95

at the requester area” possibility of attacks, network problems,…..etc”. The destination area will

be selected to the best interest of the whole network taking into consideration the performance

aspects of the Cells in the destination area.

 Cells who receive shuffling recommendations will take their own decision independently

whether to comply or not. The decision is guided by the current local Cell policy and the status

of its working-context reported by the situational awareness units. Cells who decide to shuffle

will replace the current active variant by another variant from the same set preserving the

previously targeted quality attribute.

3.5 Security analysis

In this section, we discuss the security aspects within ChameleonSoft. A threat model will be

presented identifying the list of assets ChameleonSoft have from the application, and the

infrastructure point of views. We list some of the imminent threats facing moving target defense.

Additionally, we will present ChameleonSoft as a countermeasure for these threats. Finally, we

present an analytical study of CBE strength.

3.5.1 Identifying the assets

ChameleonSoft as a moving target defense is designed to protect the application survivability,

stability, and integrity, and to minimize the cost of development. ChameleonSoft reduce the time

and effort of software verification needed to locate hidden implementation and design

vulnerabilities that can be exploited to launch attacks. The only added requirement needed to

support Chameleonization is the necessity of respecting the separation between data, and logic.

Accomplishing that, enables ChameleonSoft to focus only on maintaining a valid execution

96

workflow. The application main assets are application survivability, execution

maintainability, and data safety.

3.5.2 Identifying the threat

Many of the well-known software attacks that has been identified for more than two decades

“Ex, Buffer overflow,..” are still being used by attackers to gain control-of or to crash an

executable software. The current software defense mechanism has proven to be inadequate to

insure software execution safety. Moving target defense was introduced as a solution minimizing

the attack surface by mobilizing the attack entry points “exploitable vulnerability” away from

attackers.

The authors of [77] argued that the actual benefits of the conventional applications of moving

target approach are in fact often much less considerable than one would expect. They analyzed the

security properties of a few example defenses and attacks/ attack-classes, and identified scenarios

where moving target defenses are and are not effective. Table 3.2 summarizes their effort

towards estimating the effectiveness of dynamic diversity presented by the current technology

against five important attack classes. The study illustrated that conventional dynamic diversity

yields no benefit for circumvention and deputy attacks, since the attack does not depend on

guessing the randomization key. For brute force and entropy reduction attacks, the benefits of

conventional dynamic diversity are marginal and only increase the attacker’s workload by at most

a factor of two. Dynamic diversity holds the most promise for probing and incremental attacks.

Giving the current technology, the rate of re-diversification required to obtain tangible benefits,

especially against probing attacks, appears to be very high [78].

97

The authors concluded by illustrating that the effectiveness of the diversity utilization for

moving target defense could be enhanced by combining more than one diversification technique

and by utilizing the N-variant approach.

 Circumvention

attacks

No advantage

Deputy attacks No advantage

Entropy reducing

attacks

At most doubles expected

attack time

Probing attacks Very high rate of

randomization may thwart

attack

Incremental

attacks

May provide significant

advantage

Table 3.2 Effectiveness of moving-target defense

3.5.3 ChameleonSoft as a countermeasure

In the subsections, we will briefly describe each attack class presented in [77] and how

ChameleonSoft can, be an adequate solution to mitigate or at least extremely complicate applying

such attack. We will focus on illustrating that using multidimensional spatiotemporal runtime

diversification can be sufficient to mitigate this list of attack-classes within the lifetime of a

Chameleonized software variant.

The circumvention attack is one of the most dangerous attacks; where attacker strategy is to

circumvent the diversification entirely [77]. This can be done if the attacker finds any exploit that

does not depend on the properties altered by the diversification. A good example of this attack

strategy is the return-oriented programming that was presented in [76]. Return-oriented

programming can be considered as a more general form of the well-known return-to-libc attack

98

[79]. The main difference is that instead of relying on the functions provided intentionally by

libc, return-oriented programming exploits fragments of code found in the binary to provide a

Turing-complete programming system without needing to inject any code.

CBE presents multidimensional spatiotemporal diversity with a frequent and Cell-independent

change of diversity-employment frequency, and orientation. Such dynamic unpredictable changes

massively widen the diversification scope increasing the attacker uncertainty about the

spatiotemporal location of any utilizable attack point. Giving the COA fine grained application

design, and ChameleonSoft, multidimensional diversity application it is very hard for an attacker

to trace and synchronize her attack with such complicated diversification methodology.

In addition, utilizing CBE non-uniform random special diversity where the Cell itself has no

idea about the migration destination adds a physical barrier against such attacks.

In a confused deputy attack [80], an attacker finds a way to use a benign program in a

malicious way. For the conventional defenses, the main fear was that an attacker will be able to

find a way to use the program to apply the randomizing transformation to the attacker’s data.

doing so reveals the details about the diversification mechanism being used.

This attack might be executed in our Chameleonized environment if the attacker was executing

a malicious Chameleonized application working as a probe or data collector nodes to reveal the

diversification mechanism used by ChameleonSoft. Fortunately, such attacks will not succeed, as

each program executes in an encapsulated environment within a dedicated host Cell. The Cell

takes independent real-time local decisions about the diversity employment methodology.

Knowing the details about the diversity application methodology of one or more Cells, does not

have any impact on, or reveal any information about others Cells. In addition, maliciously

utilizing one of the Cells will be detected and resolved by the infrastructure ARMS.

99

For the brute force and entropy reduction attacks where the attacker simply attempts all

possible randomization keys until an exploit is found that succeeds. Researches in [77] started that

if the key space is small enough, such attack may be practical.

 In ChameleonSoft, the search space is supposed to be large enough to circumvent such attack.

The application is fractionized into parts, encapsulated into Cells, and deployed randomly on

remote hosts. These Cells constantly apply stationery temporal shuffling, and frequently migrate

between heterogeneous platform/hosts. An attacker targeting specific vulnerability that can be

exploited aiming to crash certain service or a host has to resolve this dynamically changing puzzle

within the lifetime of the code variant that holds such vulnerability.

A probing attack attempts to overcome a diversity defense by using probe packets to learn

properties of the randomized execution. A probe attack is distinguished from a standard entropy

reduction attack in that the probe packets are designed only to obtain information about the target,

rather than to produce the desired malicious behavior [77]. An incremental attack is a form of

probing attacks where more than one successful probe is needed to obtain sufficient information

to construct the exploit.

The attacker can utilize the mechanism illustrated before by deputizing malicious Cells to

collect information about the shuffling scheme, or even use local probes in the host for the same

objective. In all cases, the information collected will not be useful as each Cell takes its own

decision about the diversity employment mechanism and orientation.

We finally conclude that using ChameleonSoft multidimensional spatiotemporal diversity

employment increase and widen the attacker search space for an utilizable vulnerability that can

be used to penetrate the system. The independent runtime behavior change complicates the

mission for probes to collect useful information about executable software. Even with incremental

100

distributed multithreaded data collection over large portion of the COA-Cell network, it is too

hard to synchronize the attack to cope with ChameleonSoft induced uncertainty and independent

decision-making.

After all, even if the attacker was successful, chameleonized software are always protected by

the CyberX multimodal dynamic recovery. If the attacker managed to crash specific Cell/Host,

the Cell will anonymously be recovered with a minimal downtime.

Additionally the system is built to emphases the idea of global situational awareness, where

infrastructure management is aware of what is happening in all the executing Cells. A partially

successful malicious attempt on any part of the network will most probably be avoided in the

future not only on that part but also over the entire network.

3.6 ChamelonSoft behavior encryotion mechanism “The Key”

Claude Shannon in 1949 introduced the confusion and diffusion properties of operation as a

way to quantify the strength of secure cipher. We present a key like mapping between the key in

message encryption and CBE key to enable quantification. We built our mapping based on the

fact that both keys have similar semantics but they are not exactly equivalent. Message encryption

depends on a key, while CBE depends on a set of parameters that maybe constructed as a key or

genetic material. We used measures of confusion and diffusion to evaluate the strength of our

CBE. CBE is an encryption technique with added unique characteristics.

We are not the first to make this mapping for the sole purpose of quantification [81].

Otherwise, it would be hard to find a methodology to quantify the level of provisioned security.

There might be other methods, but this was the one that we choice.

101

In normal encryption, the main objective is to produce an unbreakable cipher by prohibiting

the readability of the plain text, while in our case our objective is to prohibit the tractability of the

temporal or spatial location of any software vulnerability. We do not use the term encryption for

confidentiality; we address it in the terms of un-traceability.

In Table 3.3 we present a comparison between the CBE and the conventional message

encryption. The table presents the points of similarities and differences, in addition to clarifying

the definition, objective, methodology of realization of the term confusion and diffusion in both

CBE, and message encryption.

 Message encryption Behavior encryption
Definition Definition it is a conditionally

reversible transformation
of information (plaintext)

using an algorithm
(cipher) to make it

unreadable to anyone
except those possessing

special knowledge needed
to reverse the operation,
usually referred to as a

key.

it is an untraceable
multidimensional

transformation across
time, space, and platform

heterogeneity of the
software execution

behavior by employing
runtime spatiotemporal

diversity over executable
code variants. The process
must be irreversible within

the lifetime of the
software execution.

Objective Unbreakable cipher Untraceable cipher

Confusion Definition refers to making the
relationship between

the plaintext and
the ciphertext as complex
and involved as possible

it is the process of
inducing random and

intentional extremely un
correlated changes "across

time, space, platform
heterogeneity" in the

runtime execution
behavior of software to

complicate establishing a
relationship between the
encrypted behavior and

the expected normal
change in the execution

102

behavior in-response to an
induced malicious event.

Method Enforced via a complex
functional relationship

between the plaintext, key
pair, and the ciphertext,

single change in the input
result in massive change

in the output.

dynamic repeated
multidimensional runtime

transformation of
executable code variants
across time, space, and
platform heterogeneity

Objective Maximizing the time that
the attacker consumes to

determine the relationship
between the plaintext and

the ciphertext key pair.

Maximizing the time
needed to allocate in time

and space the exact
location of a specific flaw-

full software
Evaluation Measuring the bit mixing

property as an indication
for the complexity of

making a relation between
the key and the cipher text
. “Ex, the frequency test”

Measuring the amount of
the overall spatiotemporal

changes in the output
behavior of the network

over time, and in response
to induced changes.

Diffusion Definition Refers to the property that
redundancy in the

statistics of the plaintext is
"dissipated" in the

statistics of the ciphertext.

Refers to the non-
uniformity in the
distribution of the
behavior change in

response to malicious
induced change in the

input behavior should be
redistributed into the non-

uniformity in the
distribution of much larger

structures of the output
behavior to dissipate the
change across the whole
network, which is much

harder to detect.
Objective Complicating statistical

attacks by making any
changes in the plaintext

affect many uncorrelated
parts of the ciphertext

Complicating statistical
tracing attempt by making

intentional and non-
intentional changes in the

network execution
behavior independently

affect many uncorrelated
locations in the network.

Methods Dissipating the statistical
structure of the plaintext

in the long-range statistics

Dissipating multiple
independent random

behavior changes across

103

of the ciphertext. time and space "by
shuffling" in response to
any intended or random

changes in any part of the
network.

Evaluation The amount and the level
of change dissipation in

the output in response to a
single change in the input
“Ex, Avalanche criteria”

The amount and the level
of dissipation in the

distribution of change in
the output behavior in
response to a single
change in the input

behavior

Table 3.3 Comparison between message encryption and ChameleonSoft behavior
encryption

We consider CBE as a multi round encryption mechanism, where the output of a single round

is always valid for use directly without decryption within the lifetime of the round. Additionally,

CBE has no limits for the number of rounds needed to produce the final output. CBE use the

output of each round as an input to the next round in order to increase the complexity of the cipher

linearly overtime.

CBE is an encryption scheme that does not need any key management or exchange

mechanism. The reason behind that resides in the fact that CBE output is useable without

decryption. Additionally, CBE is an event driven encryption scheme; where the encryption key,

the inputs, and the outputs have multiple elements representing different events affecting the

encryption processes.

In our system, rounds are time slots. A single time slot might contain multiple temporal or

spatial shuffles for confusion induction, or random independent distributed variant changes for

diffusion induction.

104

Figure 3.8 Behavior encryption process

 Figure 3.8 gives an abstract view of the behavior encryption process. The process involves

multiple rounds of confusion and diffusion guided by dynamic parameters. These parameters

represent the key to our encryption mechanism. The confusion process is responsible for temporal

and special change in the current behavior by manipulating the Cell location and/or the executing

variants. The diffusion process is a random change in the execution behavior of multiple Cells

based on independent decisions guided by distributed recommendations to diffuse the changes all

over the network in an intractable way. The whole process is guided and controlled by the “key”

or the decision making input parameters.

The level and the nature of the induced confusion, and diffusion depend on the input

parameters and a set of runtime events. The following is a list of inputs, outputs, and events that

can significantly affect the decision-making process controlling the diffusion and confusion

processes.

The encryption module input parameters are mainly the {Current variant Id, Set Id, and

location Id}. CBE has two main incoming-events triggers that affect the encryption process {the

current temporal shuffle time stamp, and spatial shuffling time stamp}. The encryption module

output parameters are {Next variant id , Destination Cell X,Y location}. The output new list of

105

events triggers are {Change the current active Set , current active recovery mechanism, Shuffle

for diffusion requests, Next temporal shuffling time stamp, and Next spatial shuffling timestamp}.

The encryption key that determines the configuration for the next encryption round is

composed of the following; Application requests regarding shuffling “ uphold, hold, delay, speed”

, Application request to match new quality attribute, Current temporal shuffling frequency “ time

frame for the next shuffle” , Current spatial shuffling frequency “ time frame for the next shuffle”,

Incoming Shuffle for diffusion requests, and Change current targeted quality attribute request

based on external input. The encryption module output is mainly the input of the next round.

3.6.1 Evaluating the strength of CBE

Many algorithms are computationally strong, or practically unbreakable, in the sense that the

resources required for timely cryptanalysis are either unavailable or prohibitively expensive [82].

In practice, a system needs only to be strong enough to provide a level of security commensurate

with the risk and consequences of breakage in some specified period of time. Increasing the

strength of the cryptographic system usually increases its cost and degrades system performance,

so no more resources than the expected resource loss resulting from breakage should be invested

in encryption

One of the methods used to assure the strength of a certain algorithm is determining the key

strength against brute force attack considering the lifetime of that key.

Let us assume that the following is a list of possible values for the key presented in the

previous section for a Cell i in a network of k Cells.

106

Variable Possible range of values

Application requests regarding

shuffling

{u,h,d,s}+ possible 2 digit decimal number holding

the time out for the current command or the shuffling

speed; total of 6

Application request to match new

quality attribute

{number of available quality attributes} ; Z

Current temporal shuffling

frequency

2 digit decimal number

Current spatial shuffling frequency

2 digit decimal number

Incoming Shuffle for diffusion

requests

{S,NULL} , total of 2

Change current targeted quality

attribute request based on external

input

{number of available quality attributes} ; Z

Table 3.4 CBE strength evaluation parameters

We used the values in Table 3.4 to estimate the total number of permutations needed to crack

the key of this single Cell i. We assumed that the attacker has a prior knowledge of the current

input, the encryption algorithm, the Cell independent parameters, the variant shuffling selection

mechanism, the variant pool and the current indexing mechanism and seed.

The total number of permutations needed to crack that key for Cell i is a minimum of

Z*Z*2*2*2*6= 48Z2 permutation.

107

The attacker has to collect all these information and carry her calculations for that key within

the time frame of a single shuffle for that particular Cell I out of k Cells.

Regardless of the impracticality of such attack within such time constraints, Cells are highly

dynamic, and many of these parameters will be changing over time. Based on the fact that Cells

do not need to maintain any static information to be used for decryption, they can frequently

change the random seeds they use for local memory indexing, variant selection, and migration

destination selection.

In a mono-variant static system it is easy for an attacker to diffuse the same attack all over the

network with all nodes executing the same variant. Even if there was a recovery mechanism,

attack reapplication will cause a denial of service due to the excessive downtime due to multiple

failures. In CBE compromising a Cell is independent of compromising other Cells. An attacker

with full control over a certain Cell will be harmless to other Cells. On the contrary, any malicious

usage of this compromised Cell will result in increased level of security provisioning all over the

network.

3.7 ChameleonSoft role in mitigating the BlackWidow attack

In this section we intend to discuss the ability of ChameleonSoft to invalidate the attacker

assumptions on the case study “BlackWidow attack scenario” presented in Chapter 1. We list

part of the assumptions listed in Chapter 1. We focus only on the assumptions that

ChameleonSoft participates in disputing. The rest of the assumptions are disputed by the reaming

contributions of CyPhyCARD, EvoSense or CyberX.

Attacker assumptions:

108

1. The defense system shares the same network or host with the target of attack/defense

system.

2. The system is not capable of being fully situation aware of all its components in a

massive-scale network in real time.

3. The defense system management workstations (that the administrators use) share the

same network with the target of defense.

4. Defense systems are not resilient against attacks, and have weak recovery mechanisms.

[Note: most of them assume that they will not be the target of an attack as long as they

were able to secure their ToD. Additionally, usually they have no intrinsic failure

recovery.]

ChameleonSoft major contributions that participate in disputing such assumptions are:

ChameleonSoft software behavior encryption and trace resistant moving target defense, online

autonomous adaptation to changes, and the intrinsic resilience of the building blocks, the

enhanced Self and situation awareness of the platform and the Cell itself. These contributions will

work against the aforementioned attacker assumptions, or the goals behind such assumptions.

ChameleonSoft software behavior change will work against the goal behind assumptions 1,and

3. The attacker assumed that if the defense applications are sharing the ToD platform or network,

it can be affected by attacking it, or it can be utilized to disrupt the operation of the ToD

application. The attacker cannot target specific vulnerability in the executing software within the

host machines to lunch her attack. It is almost impossible with such runtime dynamic

spatiotemporal change, to induce certain changes to static applications working on defense

provisioning causing them to fail. Using ChameleonSoft works against that, as the defense

109

services hosted on a CyberX managed platform and protected by ChameleonSoft will be resilient

against any utilization of any available flaws.

The intrinsic smart situational awareness of the platform building blocks, and the platform as a

whole, works against assumptions, 1 and 2. The ChameleonSoft and CyberX hierarchal

management framework is capable of handling large scale networks and being fully aware of

what is really happing within such networks.

ChameleonSoft trace resistant moving target defense and CyberX intrinsic recovery works

against assumption four and the goals behind the four assumptions that the attacker was targeting.

The main target for the attacker was to fail the defense services. With ChameleonSoft moving

target defense it will be hard to target any available entry points for the attacker. Further, with

CyberX automated fast recovery; the attacker will not be able to easily fail an application. The

failed Cells “hosting application threads” will be recovered from any failures autonomously.

Additionally, the Chameleonized recovery system by itself contributes partially realizing the

moving target concept. The technique used for recovery intentionally deploys the replacement

Cells in different geographical locations, with different platform configuration from the failed

Cell to minimize any chances of re-failure. Doing so, moves the attacker target which is the

vulnerable application executing within the Cell away from the attacker. Giving this mechanism,

it is not even in the attacker benefit to try to fail any of the COA Cells as doing so makes it almost

impossible for him to target this Cell again.

3.8 Conclusion

In this chapter we presented ChameleonSoft as a moving target defense mechanism against

software attacks. The system is built over our novel CyberX-managed Cell-Oriented Architecture.

110

ChameleonSoft leverages CyberX to apply multidimensional spatiotemporal diversity and hot

shuffling of variants, hence effecting software execution behavior encryption. ChameleonSoft

relay on CyberX multi-mode, autonomous, situation-aware recovery system to enhance the

defense process against coincidental and intentional failures. Further, it adjusts system shuffling

and recovery policies at runtime to meet the continual change in the operational environment.

There are several interesting challenges to be addressed in the future. These include autonomous

detection and profiling of behavior; adjusting shuffling decisions based on that profile; software

Chameleonization including formalizing an automated variant generation system, and presenting

alternatives for legacy non Chameleonized software.

111

Chapter 4

4. Bio-inspired Evolutionary Sensory System
for Cyber-Physical System Defense

4.1 Introduction

Major physical infrastructure systems such as the water distribution systems and the electric

power grid are large-scale complex systems that are expected to be highly reliable and

trustworthy. Modern versions of these infrastructure systems go far beyond simple measures to

integrate intelligence and automated control into the system through tightly coordinated and

integrated cyber components constructing large-scale Cyber-Physical Systems (CPS).

CPS safety and security are prerequisites to assure stability, reliability, and survivability of such

mission-critical systems. Defense services for CPS are highly dependent on the promptness and

accuracy of the Monitoring and Analysis (M&A) mechanisms employed. Traditional M&A

approaches do not treat sensing and effecting for cyber components and physical components

seamlessly.

The current M&A mechanisms were designed based on a set of assumptions that unintentionally

neglect the real-time interaction and the tight coupling between these converging components.

The assumption was that physical components were protected by isolation and parameter

When you aim for perfection, you
discover it’s a moving target” ..
Geoffrey Fisher

112

defense while real-time response was not a primary factor for cyber components. Further, they

assumed that there is no need to employ privacy preservation techniques as the Target of

Defense (ToD) privacy is implicitly protected by cyber and physical parameter defense.

Additionally, they assumed that resource heterogeneity and scale could still be resolved by a

distributed set of heterogeneous, pre-deployed platform-dependent defense tools with fixed

resource profiles.

 Research works in [83,84] as well as our own have disputed the validity and correctness of such

assumptions as they lead to drastic problems and limitations negatively impacting the quality

and promptness of the CPS defense service provisioning. Current CPS Defense Service

Providers (CPS-DSPs) fail to provision trustworthy robust and reliable monitoring and

evaluation of the ToD components due to the use of scattered, uncoordinated, uncooperative,

unaware, isolated and heterogeneous monitoring tools, and reporting mechanisms. Such

limitations increase the use of resources due to redundancy, increase the risk of conflicts, and

failures due to limited awareness and coordination, lower the defense quality due to the poor, and

boundary limited feedback, increase the latency in defense provisioning and in detecting attacks

giving the attacker the advantage to spread the attacks through multiple networks, the tool

heterogeneity and uncooperative nature massively complicates automating its management, the

static nature of such tools complicates attempts to autonomously adapting to changes in the

surroundings.

The problem is not only at the monitoring and evaluation phase of the defense provision process,

but also at the analysis and investigation phase where the collected feedback gets analyzed

searching for attack signs and indications. When the network scale grows exponentially, it

becomes almost impossible to analyze the feedback from all the sensors, compile that feedback

113

together, and extract valuable information from it efficiently, and promptly. Additionally, due to

the isolation between the monitoring technology and the analysis technology, and the lack of

computational power needed to expand the sources of feedback, the current analysis technology

does not have enough data to be fully aware of what is globally happening in the network under

investigation.

Having most of the conventional analysis mechanisms designed to share the same host/host-

network for the sake of protecting their privacy, lead to serious limitations. The limited

investigation search space, being easy to be targeted by attackers, Can be used to cause a DOS

attack, and cannot cooperate in analyzing feedback or share information with out-of-perimeter

nodes are examples of such limitations.

In addition to the presented set of limitations in the field of monitoring and evaluation, and

analysis of feedback, the control phase has another set of serious limitations too. Control phase

represents the stage where the defense system takes actions regarding detected threats face a

serious set of limitations.

Control related limitations are mainly the result of lack of cooperation and awareness that limit

the defense tools capability to resolve or even contain persistent fast spreading attacks. For

example, it is too hard for such uncoordinated, scattered tools to marshal and coordinate task

force to hunt down the attacks spreading all over the network or a set of interconnected

networks. The reason behind such complexity is the difficulty in autonomously and promptly

controls and coordinates both the DSP, and the ToD tools and equipment to block attack access

given the current centralized management technology. Further, without appropriate global

control, and situational awareness it is too hard to block the source of dynamic fast-changing

114

remote attacks. Such limitations can be utilized to cause DoS attack by keeping the DSP busy

treating infected files and strike more and more files.

This chapter presents an Evolutionary Sensory System (EvoSense), designed to induce a new

paradigm for defense service provisioning that intrinsically and comprehensively addresses the

aforementioned challenges facing conventional techniques. EvoSense is a biologically-inspired,

intrinsically-resilient, intelligent, situation-aware sense and response system to effect biological-

immune-system-like defense provisioning. We address ToD heterogeneity and scale by enabling

dynamic defense resource elasticity.

EvoSense is designed to separate the main defense provisioning concerns; the tool logic,

management and control, delivery mechanism, and physical resources. EvoSense Utilize our

smart, biologically inspired, resilient, adaptable, self and situational aware, elastic, and

autonomously managed building blocks (the Cell) to construct mobile, dynamic, and runtime-

reprogrammable defense carriers to pervasively distribute accurate, trustworthy, and prompt

defense services. EvoSense acts as a middle layer between the defense service provider(s) and

the ToD creating a uniform defense interface that hides ToD’s scale and heterogeneity concerns

from control and management.

 This uniform representation enables interoperable and cooperative defense. Further, such

isolation maintains defense provisioning survivability in case of ToD failure and DoS attacks.

Additionally, EvoSense autonomously and dynamically profile ToD hosts and direct defense

services based on the host dynamic behavior and attachments. EvoSense shares the same

biologically-inspired, intrinsically-resilient, adaptable foundation of the remaining CyPhyCARD

pillars, the CyberX managed Cell Oriented Architecture (COA) described in chapter 2. The

115

COA provides intrinsic dynamic, distributed, resilient resource management and allocation

needed to support EvoSense pervasive M&A.

EvoSense manages a vast number of elastic and intelligent containers (Cells) to host/abstract

cyber/physical sensing and effecting tools. EvoSense mimics the human blood stream

circulation effect by utilizing its adaptable infrastructure to circulate these context-driven,

functionally customizable sensor and effector Cells into the ToD body to pervasively monitor,

analyze and control the TOD components. EvoSense sensors and effectors are used to execute

defense missions provisioned by DSP. A defense mission is a mixture of sensing and effecting

tasks involving information gathering, partial analysis, control, and manipulation of the ToD

elements.

EvoSense can alternate/mix different defense/control missions from different DSPs to provision

defense services to the same ToD in a process called vaccination. The vaccination process

involves sharing defense experience and tools between DSPs in terms of abstract missions, and

sensing and effecting packages. Vaccines are autonomously checked for privacy violations and

maliciousness before utilization or storage. It is exactly like in biological systems where

antibodies can be extracted from one immune body to another to create a healthy up-to-date

defense community.

EvoSense’s main contributions presented in this chapter can be outlined as follows:

• Enable pervasive autonomously managed monitoring and analysis;

• Uniform defense service provisioning for heterogeneously-composed multi-enclave

CPS systems;

116

• Enable trustworthy, interoperable multi-organization cooperative, dynamic,

autonomous defense; and

• Facilitate early failure/attack detection and resolution.

4.2 Evolutionary Sensory System (EvoSense)

4.2.1 The Foundation

EvoSense is an evolutionary sensory system designed to enable real-time pervasive monitoring

and analysis towards autonomous context aware defense service provisioning. EvoSense defense

provisioning platform is composed of three main layers, the management layer, sensor and

effector abstraction layer, and sensor and effector tools layer as presented in Figure 4.1. The three

layers are founded over our CyberX managed COA. The management layer rules are played by a

set of organisms composed of Cells. The abstraction layer uses COA Cells to encapsulate attack

investigation and resolution tools defined as binary code variants (APIs) constructing a set of

platform independent sensing and effecting capsules. EvoSense constructs a biological immune

system like, defense environment by circulating generic streams of such capsules into the (Target

of Defense) ToD body to induce a blood stream like effect. The following subsection illustrates

and provides more technical details about the defense-capsules creation process, and the defense

provisioning methodology of EvoSense.

4.2.1.1 EvoSense organisms and Capsules composition

EvoSense leverages the COA ability to abstract, encapsulate, and virtualize heterogeneous

physical and logical resources into unified programmable objects “Cells.” Cells are sandboxes

internally construct a suitable working environment for heterogeneous tools. Externally, it is

117

capable of changing its characteristics to work with many targeted architectures. Regardless

whether the sensing target was a computer in a network, or a physical sensor with COA-ready

digital interface COA Cells will hide these differences from the enclosed sensing/effecting API.

EvoSense uses the middleware (CC-DNA) installed on the ToD host machines to instantiate,

deploy, and host sensor and effector Cells. EvoSense sensors and effectors are a set of

precompiled APIs with specific sensing or effecting tasks. Sensors and effectors come with a

detailed specification file describing the targeted platform, estimated computational Wight,

needed libraries to support it, possible conflicts, ... etc

 EvoSense defense mission (organism role) is defined using a custom-made programming

language used to generate scripts defining the structure, workflow, and the set of tasks for the

sensing and effecting organisms. Additionally, it also defines the type of sensors and/or effectors

needed to execute that mission.

Organism creation starts when the host CC-DNA receives the logic script. CC-DNA interprets

this logic to construct the organism sensor or effector Cells. In COA, resources can easily be

acquired when needed. CC-DNA might ask the local or remote logic reservoir for any sensor or

effector APIs that are required to execute the designated sensing or effecting mission in case they

were not already available on the targeted host.

4.2.2 EvoSense defense provisioning methodology

EvoSense defense provisioning includes two main modes, a DSP-guided mode where EvoSense

blindly execute predetermined defense missions provided by the DSP; and an evolutionary-mode

that involves evolutionary sensing, and effecting. The DSP-guided modes use EvoSense as a

118

delivery platform that executes certain commands blindly without being involved in the details

of the process. EvoSense collects runtime commands and deliver real-time feedback to the DSP.

This mode is highly un-scalable and not recommended for large systems. As this is a limited

version of our Evolutionary sensory system, we will move forward and illustrate more about the

more generalized mode the evolutionary-mode.

4.2.2.1 Overview and initial configuration

Evolutionary sensing aims to detect malicious up-normal behaviors without prior knowledge of

that behavior. In both modes, EvoSense maintains minimum level of security by maintaining the

normal work mode of the currently-being-used tools on the ToD. EvoSense treats such tools as

part of its sensing and effecting arsenal. The Evolutionary sensing process involves analyzing

and correlating different information feeds from multiple sources to magnify up-normal behavior

deviation identifying possible attack indications. Evolutionary effecting involves utilizing the

pervasive control feature of EvoSense to autonomously deploy safe-resolution tools "that doesn't

conflict with the running applications," or to contain such attacks within certain perimeter while

waiting for administrators to provide clear resolution procedure to execute. The deployment or

containment mechanism works based on an intelligent and dynamic profiling mechanism.

The profiling mechanism works on the fact that attacks can be directed attacks working towards

certain objective, or undirected attacks that seek maximizing the victim losses. Even for

undirected attacks they can be considered as directed attacks at certain levels. For example, at the

operating system levels, windows based attacks cannot infect Unix operating hosts, Java based

attacks cannot infect C based software packages, ….etc. The working environment of a certain

host can significantly limit the type of attacks infecting this host even for undirected attacks.

Based on that, we can easily classify attacks into groups based on certain classification protocol.

119

Such classification can be attributed with a set of parameters determining the likelihood of

having an attack under this class/group in one of the hosts within certain boundaries.

EvoSense has a set of pre-deployed manually/automatically generated profiles used to direct the

sensor circulation and the basic deployment package for each host. EvoSense adapt such profiles

all the time to maximize the efficiency and accuracy of defense provisioning. The dynamic

adaptation of profiles adjusts the definitions defining the needed type and density of defense

missions within each profile. Each profile is configured to match the host, host network, attached

organization or enclave settings.

4.2.2.2 Joining EvoSense Network

Joining an EvoSense-equipped DSP network procedure starts by installing the CC-DNA on the

host machines, registering the hosts' physical IPs, hosts configurations, and their security and

privacy policies to the DSP host database, and classifying the host based on one of EvoSense

Profiles. Usually the host follows the general profile of the enclave/ organization that it belongs

to. However, EvoSense can assign a more fine-grained profile to a certain set of hosts within the

same network if they are supposed to behave differently at runtime. The configuration of such

fine grained profiles can change over time if the behavior of the host or the surrounding changes.

The host configuration profile illustrates all the details regarding the host platform,

computational capabilities, the organization /enclave id(s) for that host if any, and any special

consideration regarding the applications running on it. The security and privacy policy defines

the needed security level, the scope of cooperation, and the type of allowable sharing materials.

Upon registration of a new cyber/physical host, EvoSense is notified to start the initial evaluation

of the host to determine the profile that the host will follow, identifying the basic sensor

120

deployment-package composition-profile. EvoSense interprets the host record in the DSP

database to identify the appropriate types of sensors and effectors APIs that match the host

configuration-profile. EvoSense will deploy the evaluation-sensors package to initiate the initial

checkup to verify that the host the minimum requirements needed to join the DSP network. In

case of any problems, EvoSense will autonomously deploy the appropriate effectors to resolve it.

EvoSense frequently change the basic deployment-package by circulating new sensors to replace

old ones. The process is guided by the global sensing feedback not only at the host but also

through the network, and the defense provisioning profile that the host is following. EvoSense

use a grading system to continuously evaluate sensors on each host based on their success to

detect up-normal behaviors. In normal situations, at each evaluation-round, one of the new most

successful sensors within each profile replaces the least successful senor in the basic

deployment-package of the host. The details about sensor circulation are illustrated in subsection

4.2.6.1.

4.2.3 Evolutionary sensing and effecting framework

After joining EvoSense Network, the host defense related aspects will be handled by one of

EvoSense management units. The management unit works as a part of EvoSense sensing and

effecting framework presented in Figure 4.1. EvoSense sensing and effecting framework is

classified into three main layers management layer, sensing and effecting abstraction layer, and

the defense delivery tools as illustrated in Figure 4.1.

The sensing and effecting tools layer is a set of logical sensing or effecting APIs stored in the

local reservoirs. These tools are autonomously abstracted at runtime into uniform sensing and

effecting Cells participating in the construction of organisms playing certain defense missions.

121

EvoSense organisms are anonymously constructed, managed, and controlled at runtime by

EvoSense management layer. This layer is responsible for collecting, correlating, and analyzing

sensor feedbacks. Additionally, this layer is responsible for taking decisions based on the sensing

feedback, previous historical events, and DSP guidelines. Such decisions might involve

composing more capable effecting defense missions for resolution or new sensing missions for

deeper investigation.

Figure 4.1 EvoSense Abstract View

EvoSense management layer is a tree-like hierarchical construction, where hosts are connected to

leaf-Brains "decision making organisms" to be monitored and controlled as presented in

Figure 4.1. Based on EvoSense administrator settings, each leaf-Brain manages a specific number

of hosts. leaf-brains frequently reports to their parents "Higher-level brains" for more

comprehensive guidelines.

122

4.2.3.1 Feedback management and representation

EvoSense Sensors feedback is a score-sheet like report that compares the behavior deviation

regarding the sensing target to a predetermined threshold. Sensors are classified into different

sets representing their targeted sensing objectives " ex, memory, communications, privacy,

..etc.". Thresholds are dynamically adjusted based on the nature of each host, and the number of

false negatives/positives reported by the Sensor.

Score sheets from different sensors for the same host are sent to the leaf-brain to compose

comprehensive score-sheets to be checked against the defense rules database. Each defense rule

has a score-sheet attached to it. Rule-sheets have values for different objects "ex, memory,

communication,.etc" reflecting the behavior patterns "attack signature" of each object in case of

infection . Behavior pattern description can be discreet or continuous. Rule description also

includes the host sampling procedure. Sampling procedure describes the needed number of

samples per object and the duration of each sample, and the sensors needed to takes such

samples.

The leaf-brain checks the partial similarity between the sensor feedback "score-sheet" and the

existing rules-sheets to allocate the most useful rules for the next deployment round. Based on

that selection, the leaf-brain will compose a new organism, holding the list of sensors mentioned

in the rule description, with a set of preprogrammed tasks based on the rule sampling procedure.

Based on the feedback, threats might be detected, and the resolution mechanism described in the

rule will be followed. The leaf-brain will compose a new effector organism with list of effectors

mentioned in the rule description and the execution workflow described in the rule.

123

 Rules are under full time update by the parent-brains, and the DSP. Leaf-brain experience is

frequently reported to the parent-brains for further guidelines. Parent-brains can construct a more

comprehensive view of the whole network by correlating the leaf-brain feedbacks. Such views

can magnify certain behavior deviation across the network, which will guide the composition of

new defense roles to be executed by the leaf-brains for further investigations.

4.2.3.2 EvoSense information sharing (vaccination):

At the higher levels of the hierarchy "the parent-brains", the collected incident reports with the

rules, sensors, and effectors used are archived for sharing. The Clearing-House Organism (CHO)

role will be easy in this case, as it will check the ToD privacy policy against sharing of such

materials. As described before, the shared materials carry no indications about the specific

incident source. It is similar to defense related tips that encourage DSP to apply a specific rule

because it might reveal certain threats. The reason that motivated DSP to share such information

might be the rule successfulness to detect a threat at one of her ToDs or it is a new rule that was

developed with promising results. However, the ToD privacy policy will be checked in case it

prophets even that level of information sharing.

The CHO role becomes more significant when the DSP asks cooperating DSPs to provide a

solution for a problem she has. In this case, the reported suspicious score-sheet and the sensors

used to extract it will be shared with other DSPs. CHO will check that material to make sure that

the information enclosed dose not contradict with the ToD privacy policy. CHO rejected

authorizations are reported to the administrator to manually override or discard. CHO will also

check the DSP feedback regarding such requests, new rules, sensors, and guidelines might be

provided as a resolution for the problem. Authorized solutions will be deployed, and rejected

124

ones will be reported to the administrator for further guidelines. The details and the framework

of defense mission sharing will be described later in section 4.2.3.2.

4.2.4 EvoSense brain Architecture

Figure 4.2 illustrates EvoSense brain architecture and composition of organisms and the

interactions between these organisms to achieve EvoSense goals. I will briefly describe each

component and its dedicated task.

 Figure 4.2 EvoSense Architecture

The Analysis and investigation organism is responsible of analyzing the continuous feedback

from the ToD deployed sensors. The analysis and investigation organism sends reports to the

Decision making organism to take decisions regarding composing new defense missions,

authorizing the use; selecting the type of the effectors if needed. The Role composer organism

will use the decision making organism guidance to compose new defense roles. The role

125

composition is described using our custom made mission definition language. The role script will

be sent to the organism composer. The organism composer is a part of the CC-DNA installed

on the host. The organism composer organism is responsible for the resource virtualization

process. It will abstract the host resources to compose the requested organism Cells. These

resources might be physical resources “memory, processor, ..” or logical resources in the form of

conventional defense tools, or any locally stored sensors or effectors. If any of the resources

needed to compose the cell did not already exist on the host, the cell composer will acquire these

resources from the Sensor and effector Reservoir. Upon generating and testing new defense

missions the decision making unit might decide to instruct the Profiler to generate a profile for

the mission with the used tools to be shared with other cooperating DSPs. The sharing process is

handled through the sharing organism that will manage sending and receiving shared materials

between DSPs. Sharing or employing shared materials has to be authorized by the Clearing

House organism. The Defense missions repository organism will hold history of defense

mission usage either locally within the same DSP or globally through feedbacks from other

cooperating DSPs with an evaluation for such missions for future reference.

4.2.5 Information sharing and exchange protocol within EvoSense

One of the main contributions of EvoSense is the trustworthy information sharing and exchange.

EvoSense share attack events and detection/resolution materials between different management

organisms locally within the same organization, and globally between cooperation DSP’s.

Figure 4.3 illustrates EvoSense defense mission sharing protocol.

126

Figure 4.3 EvoSense defense mission sharing protocol

As mentioned before, the defense provisioning process is managed by a hierarchy of

management organisms. At the leaf nodes we have the management layer that manages defense

mission circulation and execution on the ToD hosts. Such layer collects the sensor feedback, and

the detected list of events that was sent to it through the score sheet technique described before.

The collected materials are forwarded to one of the distributed routing organisms.

The routing organisms collect the incoming reports and send them identifying the report-source

to the higher layer management. Additionally, all reports that was classified as important events

by the report source is anonymized and checked for privacy policy violation by the clearing

house organism to be forwarded directly to the others local management organisms. The clearing

house organism, ask the local broadcasting organism to handle this task. The broadcasting

organism will remove any duplicated reports regarding same event, or same defense mission and

instruct the leaf management units to raise the score of the missions related to the reported events

127

based on the severity of the event. Raising the score of a certain mission will increase the chance

of applying it in the next mission circulation round.

At the upper level of the management hierarchy, the collected reports from the lower level

management units are correlated and analyzed to be presented to the network administrator

through visualization software. Using such software will make it easier for the administrator to

visualize the attack activity, the defense provisioning process, and to provision manual override

or further guideline if needed.

The higher management units will analyze the collected reports providing further guideline to the

lower layers. It is also responsible for generating new missions to be stored in the missions

repository.

The upper layer management organisms layer provides guidelines to leaf management

organisms. The upper management layer organisms can add a new package of sensing or

effecting missions to be executed on a specific or a set of ToD hosts at specific time event; or by

prioritizing or de-prioritizing “in case of many false positives” one of the missions already being

used by this management unit.

DSP level sharing is the responsibility of the higher management layers only. This level of

sharing occurs upon the reception of a highly suspicious incoming event. The management

organisms mark such event and its relative defense mission for sharing. A dedicated organism

named as the sharing organism, anonymizes the shared material, and authorizes it for sharing via

the clearing house organism. If the shared materials were not in violation of any of the ToD

privacy policies, the shared materials are sent to all cooperating DSP’s either as an alert or

asking for a resolution guidelines.

128

DSP attack alerts should include details about the attack and detection/resolution methodology in

terms of defense missions and sensing/effecting tools. If the DSP was asking for an advice

related to certain malicious activity, the abstract information related to how such activity is

identified and formalized as a sensing only mission, all the tools needed to execute the mission is

added to it to be broadcasted to the cooperating DSPs.

Figure 4.4 The defense mission lifecycle

Upon reception of such missions, the receptor makes sure that there are no privacy violations.

The mission is then tested in a controlled environment before applying it to the DSP attached

ToD’s. If the request was for a resolution guideline, and the receptor DSP has the resolution

methodology, the resolution is composed in a defense mission format attaching all the needed

sensing and effecting elements to execute it and sent back to the source.

129

The source test the resolution tools in a controlled environment after making sure that there is no

privacy violations then based on the administration opinion it might be deployed to resolve the

reported attacks. Figure 4.4 represent the defense mission life Cycle.

4.2.6 Intelligent attack detection and resolution

The main objective of any attack detection mechanism is to accurately and properly direct the

correct defense tools towards matching attacks. Researchers proved that accurately identifying

attacks is an NP-Complete problem [96], while others proved that it might be considered as an

NP-hard problem as well [97]. The conclusion is that the problem cannot be solved in realistic

time as the problem space expands exponentially over time. The use of Heuristics is always

considered to be a good solution for such problems [98].

The most successful malware detection mechanisms uses heuristic scanning and signature based

mechanisms to detect attacks. Heuristics scanning in its basic form is an implementation of three

metaheuristics mechanism, the pattern matching, automatic learning, and environment

emulation. Due to the high computational cost of running such heuristics based techniques,

modern anti-malware techniques that are usually shares the same host or the host network of

their ToD use a limited set of the available metaheuristics techniques. The reason behind that is

to save the computational resources and to speed the process of classifying the executable tasks

without interrupting their execution.

EvoSense is designed to work in total isolation of the ToD, and to isolate the main design

concerns of malware detection and resolution, sensing, effecting, and control logic. Working in

isolation from the ToD enabled EvoSense to use more heuristics techniques and increase the

depth of learning and investigation of such techniques without any negative impact on the ToD

130

performance, or resources. Most of the workload on the analysis and investigation is waved to

the DSP platform, and the ToD participates only in hosted sensing and effecting elements for a

limited time frame.

As presented in section (C), separating the defense provisioning design concerns enabled

EvoSense to optimize the process of sensing and effecting saving more of the ToD resources.

EvoSense intelligent sensor reuse mechanism uses the same sensor to feed multiple heuristic

techniques, to save a considerable amount of the computational power of the ToD.

The next subsections illustrate the sensor circulation, selection and reuse mechanisms of

EvoSense.

Figure 4.5 Sensor selection and deployment

131

4.2.6.1 Profile guided Sensor circulation

EvoSense circulates its sensors and effectors to execute defense missions. The sensor circulation

protocol depends on the tool requesting sensor deployment. The defense provisioning process

involves cooperation between multiple detection and resolution tools. Each tool submits a sensor

deployment request to the sensor repository to deploy the requested sensors. The requests pass

through optimization unit to remove sensors that were recently deployed before. Figure 4.5

illustrates the sensor selection and deployment procedure.

4.2.6.1.1 Classification based on profiles

As mentioned before, EvoSense attach hosts to certain profiles based on the host engagement

with its organization and enclave, host configuration, behavior, usage pattern, ..etc. some of these

profiles are static and preloaded with EvoSense management units, and we call them the coarse

grained profiles. Such profiles focusses on static classification aspects, like organization id,

enclave id, platform configuration , network protocols, ….etc. this profiles determine the general

defense provisioning pattern for the host. The second type of profiles is a fine grained dynamic

profile that determines the usage behavior of the host and mostly reflects the user behavior using

the host. The type of applications being frequently used, the hours of operation are good

examples for the aspects controlling such level of profiling. This profile type is dynamically

adjusted based on changes on the usage behavior. EvoSense uses host resident sensors to monitor

such changes.

The main objective behind using such profiling system is to optimize the utilization of defense

provisioning tools by directing only tools with high success ratio.

132

Attacks are somehow targeted, either from the application-objective perspective, or from the

technical perspective. EvoSense circulates defense missions while favoring the activation of

defense tools targeting attacks that match the host profile. EvoSense do not limit tool activation

to only those who match the host profile to cover any unexpected out of profile attacks. Using

profiles to guide tool activation minimize the search space, enhance the detection accuracy and

promptness and optimize resource usage on the host and on the DSP.

The detection mechanism relays on multiple control techniques. Signature based technique is

used by the resident unit to maintain minimum level of security at all times. The evolutionary

sensing mechanism use heuristic technique to guide and control sensor circulation and to analyze

sensor feedback to detect unknown attacks, or to identify maliciously acting components.

4.2.6.1.2 Identifying unknown threats

The utilization of heuristic / metaheuristics is necessary to enable attack prediction, and detection

of unknown attacks. EvoSense utilizes its ability to isolate the main defense provisioning

concerns “sensing, effecting, and control logic” to extract abstract, privacy friendly information

regarding running processes. The feedback is safely sent to remote analysis units to apply

whatever logic is needed to detect attacks.

The selected logic “metaheuristics technique” determines the type of sensors to be used,

execution pattern for such sensors, sample collection protocol. Additionally, that logic is the one

responsible for processing the feedback coming for such sensor to determine whether the host is

safe or not. The process starts when the selection mechanism selects the metaheuristics

technique to be used for the next detection round.

133

4.2.6.1.3 Metaheuristics selection mechanism

EvoSense can use single metaheuristics technique or multiple metaheuristics technique at the

same time to investigate certain issue. The selection of how many techniques to be used and the

type of techniques used depend on the severity of the situation under investigation. The default is

the use of only one technique, while if the last utilized technique reported high level of attack

certainty that is close, but do not cross the required safety threshold, the system use other

techniques to enhance the quality of calculation. In EvoSense, metaheuristics techniques are

ordered and have weights assigned to each one. The metaheuristics technique selection

mechanism always prefers techniques with highest weight value. When an additional mechanism

is needed the next highest value technique is selected.

The weights for each technique is not fixed, it is dynamic and gets assigned based on the success

or failure of each technique to detect attacks, and the number of false positives or negatives of

each technique. This evaluation occurs independently at each management unit within EvoSense

framework.

Figure 4.6 presents a simple representation of the metaheuristics technique selection process.

134

Figure 4.6 Example of the hubristic mechanism selection procedure

4.2.6.1.4 Sensor reuse

EvoSense optimize ToD resource usage by minimizing the number of deployed sensors and

effectors on the host. EvoSense utilize it ability to separate the main concerns and the availability

of abstract sensing and effecting elements to remove any duplication of sensor deployment

requests. The separation between the tool and the control behind it enabled EvoSense to reuse

previous sensor feedback within a certain time frame to feed multiple control components.

For example, let us assume that the selection protocol at time (t) selected pattern matching

metaheuristics technique to investigate events occurring on host (h1). The investigations focused

on suspicious memory behavior of a certain process. The sensors are selected based on that

(mechanism-id) Select-mechanism(last used, weight, severity level)

(Sensor-list, activation-protocol) Activate (mechanism-id, suspicious-item, item-type)

(deployment-package) Call optimization-unit ((Sensor-list, activation-protocol)

(feedback) Call deploy-sensors (deployment-package)

(res) Process-feedback (feedback, mechanism-id)

If res>threshold

fire-alert (item-type, mechanism-id, deployment-package, feedback)

else

if res < Dynamic(10)% threshold

(mechanism-id) Select-next-mechanism(last used, weight, severity level)

Repeat process

Else

Discard event

135

objective, and the sampling protocol is automatically generated using the predetermined syntax.

The list and the protocol selected are sent to the optimization unit. The optimization unit checks

if there was any previous valid match for that request. If any, it removes it and report the

recorded feedback directly to the analysis unit. If not, the list is sent to the reservoir to program

and deploy the sensors. The feedback is sent back to be analyzed by the pattern matching

algorithm to determine whether there was an attack or not.

The optimization unit applies certain aging policy to determine the validity duration for a certain

senor feedback to be reused. The expiration date is dynamic and adjusted automatically based on

the ToD host workload, nature, types of application, level of changes, amount of data flowing

from and into it, number of application reinstalling, deployment, .. etc.

If the requested sensor list contain any sensor that was used before with a valid expiration date

and compatible deployment protocol “measurement sequence, time, sampling rate, ..etc” then it

will not be deployed again, and the old feedback will be reused. Doing so, is expected to save a

considerable amount of host resources.

4.3 Example of CyPhyCARD defense mission

The task of each EvoSense component is further illustrated through a discussion of one of

EvoSense’s automatically composed defense missions that search for memory behavior deviation

within a predetermined timeframe, and the dispersion of such deviation through the ToD host

networks.

Goals:

• Detect massive deviation in memory usage

136

• Locate the area under suspicion

• Collect information about processes with suspicious memory usage

• Identify critical and non-critical processes

• Resolve the problem

Tools:

• Memory usage monitoring sensors

• Processes information collection crawler sensors

• Process killing effectors

4.3.1 Detection and resolution scenario

This synthetic scenario illustrates the event of using X123 to secure organization ABC. ABC is a

large organization composed of multiple enclaves. The following incident happened in enclave

E1.

On the regular inspection round on E1 hosts, with an active heuristic mechanism X, the feedback

collected by the deployed sensing organisms and analyzed by the analysis organism indicated an

unidentified strange behavior in host A. The decision-making organism calculated the weights

from the score sheets and followed the heuristic rules and the comparison between the calculated

weights exceeds the threshold. The decision-making organism sent its guidelines to the role-

composer based on the analysis reports with the list of high similarity rules to the reported

feedback score-sheet.

137

The role-composer composes new defense mission that mix the sensing part of all the similar

rules. X123 was the newly generated mission that was built to investigate possible memory-

related behavior-deviations within E1. X123 have three main roles played by three organisms,

sensing, analysis, and effecting. The sensing organism uses the memory scanning Cells to take

multiple snapshots of the memory usage within host A for a certain period. The analysis

organism applies some predetermined statistics to evaluate the detected behavior deviation that

will be evaluated and compared against certain threshold to determine the next step. Based on the

result, further investigations might be needed.

These investigations will be handled by the sensing organism that will deploy processes-

information-crawler sensor Cells. Crawlers will collect information about process with high

memory usage. The collected data will be sent to the analysis organism that will generate a

comprehensive report to the decision-making organism. The decision-making organism will

decide whether to discard the incident, or to activate effector organisms on X123 to resolve the

situation.

The decision-making organism might decide to share the mission profile with other DSPs asking

for external feedback, or deploy X123 locally for further investigations. Based on the sharing

command search-scope and the clearinghouse permissions X123 will be re-deployed. The

deployment scope might be limited to only the hosts within enclave E1, allover ABC enclaves,

or globally between DSPs searching for similar behavior deviation pattern.

If the decision was to activate X123 effecting organisms for quick resolution, X123 will be

instructed to kill some of the suspicious non-critical processes and re-evaluate the situation.

138

 If the redeployment came-out with multiple incoming alerts for the same memory behavior

deviation, the decision-making organism will raise the severity level of the situation indicating

global wide spreading attack.

 Based on that, commands will be issued to the role composer to customize a new containment

mission based on the attack reported parameter. Meanwhile EvoSense will be applying

resolution effectors of X123. The containment effectors will be deployed over host A, other hosts

in communication with host A, and the intermediate communication elements “routers,

switches,..” to construct a quarantine area around the malicious host.

After successful containment and resolution the whole process will be profiled and stored in the

defense mission repository for future reference. These profiles will hold details about the

containment, and resolution methodology, and all the sensors and effectors API used to compose

the used missions. Sharing authorizations and scope of these profiles will depend on the local

clearing-house decision.

4.4 EvoSense role in mitigating the BlackWidow attack

In this section we intend to discuss the ability of EvoSense to invalidate the attacker assumption

on the case study “attack scenario” presented in Chapter 1. The following are the list of the

BlackWidow attack designer assumptions; we will list the assumptions and present how

EvoSense evolutionary defense system works against such assumptions.

4.4.1 Attacker assumptions

1. The defense system shares the same network or host with the target of attack/defense

system. [Note: defense system might be exposed to attack by compromising the ToD]

139

2. The attack target defense system, or major parts of it, uses COTS security

products.[Note: A majority of defense systems are signature based, so that is probably

easily to bypass with custom code]

3. The system is not capable of being fully situation aware of all its components in a

massive-scale network in real time.

o Building a very slow motion worm will increase the log file sample size needed

to detect it.

o The attack will spread in small parts in the target network hosted by

geographically remote locations. This will make it more difficult to detect

attacker activity unless a deep nearly network-scale analysis can be conducted

to correlate all disparate logs.

4. The defense system management workstations (that the administrators use) share the

same network with the target of defense. [Note: Stolen passwords can simply be used

to modify rules of IDS, routers, switches, firewalls, proxies, etc]

5. Attack hosts will not be manipulated in an undetectable way so as not to alert the host

AM. These hosts will be used only to launch attack on the primary target. [Note: this

might be possible by using zero day exploits and malware code never seen before]

6. Host-based defense systems usually use malware signatures as an indication for

infection from various forms of malware.

7. It is not feasible to monitor all the host behavior patterns while sharing the same

workstation that is performing user tasks.

140

8. Defense systems are not resilient against attacks, and have weak recovery mechanisms.

[Note: most of them assume that they will not be the target of an attack as long as they

were able to secure their ToD. Additionally, usually they have no intrinsic failure

recovery]

9. Cyber security is oblivious of and is not coordinated with physical security to protect

the target cyber-physical system. Human intervention is need to facilitate such

coordination.[Note: the attack can make them conflict with each other to bypass both of

them]

4.4.2 EvoSense addressing attacker assumptions

 EvoSense is designed to work in total isolation from the ToD, invalidating assumptions (1, and

4).

EvoSense is a buffer between the DSP and ToD. Neither EvoSense nor the DSP share the

network or the hosts of the ToD. The defense services are delivered to the ToD in a separate

network that connects the ToD to EvoSense. The defense delivery vehicles are secured using our

moving target defense described in Chapter 3, which invalidates assumption (8).

EvoSense is an active defense system founded over CyberX managed ChameleonSoft secured

and resilient foundation. One of the main tasks of ChameleonSoft as presented in Chapter 3 is

monitor and secure the COA based foundation against threats and attacks. Having

ChameleonSoft and CyberX handling such details waves this workload away from EvoSense

giving it more space to focus on provisioning defense services to the ToD. Additionally,

EvoSense is designed to support large scale systems and computationally expensive tasks.

141

EvoSense design supports distributing the tasks over a hierarchy of independent management

entities composed of fine grained components managed by CyberX. The fine granularity of such

components and the isolation between its logic , data , and physical resources enabled CyberX to

fractionize large tasks over multiple hosts constructing a cloud like platform with virtually

infinite resources. With that unique feature, EvoSense invalidated assumption (7).

EvoSense uses signature based detection tools as a part of its arsenal, while the major part of that

arsenal relay on an evolutionary sensory system. EvoSense evolutionary sensory system utilizes

multiple intelligent mechanisms to detect unknown attacks based on monitoring suspicious

activities and up normal behavior, and that invalidates assumption (6).

EvoSense is not a commercial product available for conventional users. Even though, the

foundation of EvoSense is highly dynamic and autonomous inducing high level of dissimilarity

between identical copies of the same system, and that invalidates assumption (2).

 One of the main objectives of EvoSense is to promote the defense system situational awareness

of the different ToD components and to isolate the platform composition heterogeneity enabling

seamless defense provisioning. EvoSense pervasive monitoring and analysis, and the intrinsic

trustworthy sharing and cooperative defense enhance the situational awareness all ToD

components. EvoSense collect events from different entities of the ToD, correlate the collected

information to generate a global image of the entire system to be analyzed by high management

units. Doing so, enables EvoSense to detect slow moving attacks, and attacks using remote bots

to lunch attacks on remote hosts. The aforementioned aspects successfully invalidate

assumptions (3, 5, and 9).

142

By invalidating all the attacker assumption, it is hard for such attack to succeed in attacking an

EvoSense protected system.

4.5 EvoSense detection and resolution model

The attack and cleanup model that we used to evaluate EvoSense performance is in the style of

the epidemiological model. This model is being used for years to study the spread of biological

diseases [99]. The same model was repeatedly used multiple times in the past few years to model

computer networks attacks [100]. Researchers in [101] used this model to develop a more

specific model that generated more accurate results when compared to real life attacks [102]. We

used their model to construct our experiments. I will present some details about the modified

model that we used in our experiments presented in Chapter 5.

4.5.1 The detection model

We used an epidemiological based model named the Progressive Susceptible Infections

Detection Removal (PSIDR) to construct the experiments presented in Chapter 5. The model

focuses on the progress and the dispersion of a contagious attack.

The model is named (PSIDR) or progressive susceptible infections detection removal based on

the fact that these four states represent the progress of an attack acting based on this model. The

attack progress is a consecutive transition between these states with different rates. Hosts are

always in one of four states, susceptible (S) or vulnerable to attacks, which is the case before

immunization. Infectious (I) which is the state of a host having an active attack on it. Detected

(D), which is the case for an attack being detected and countermeasure being devised. Finally the

(R) state which is the case where the attack is resolved or removed from the host, either by

143

removing the attack and immunizing the host before or after infection. The attack desperation,

detection, resolution or containment can be modeled as shown in Figure 4.7.

The general attack process begins when the attack starts targeting victims. These victims might

be randomly selected or intentionally selected as a start for a spreading infection. The second

step is the dispersion of the infection; the attack clones itself into as many machines as it can.

The third step is being detected or reported to the defense service provider. And the last step is

the DSP resolving the problem and clearing the infection.

Without any consideration for the evolutionary sensing and effecting the last two steps can take a

considerable amount of time. The DSP has to isolate the attack, generate a signature for it, start

spreading the signatures all over the network updating the local antivirus database, and device a

resolution methodology for the attack.

With evolutionary sensing, the system quickly shares the attack alerts, the sensor used for

detection and the detection methodology among all participating hosts in the form of

comprehensive set of defense missions. The pervasiveness of EvoSense sensing mechanism has

a great impact on the time needed for detection. Further, the system can deploy the evolutionary

containment effectors, to minimize the attack dispersion until a resolution methodology is

devised.

We assume that EvoSense containment organisms are one of the usable resolution methodologies

to mitigate attacks with a certain penalty on the resolution downtime. The mitigation missions

are applied to machines independent of their infection state (i.e. to S and I).

We started our experiments based on a PSIDR like model to represent the case of using local

none-cooperative defense service provisioning units. EvoSense evolutionary sensing and

144

effecting where modeled using a set of distributions representing the attack dispersion and

resolution rates. The same technique was used to model virus throttling [103].

Virus throttling is a technique to automatically contain the effect of a fast spreading virus while

searching for a possible resolution for the confirmed infections.

The PSIDR model calculates the downtime due to infection after determining whether the host

was infected or not. If it was not infected then it will be immunized against this attack and it will

not be infected with this attack in the future. The downtime is zero at this case. If the host was

infected then the downtime is calculated by a penalty for each time slot passed between infection

and detection plus the time needed for resolution.

Figure 4.7 The PSIDR model

Through the model all machines are initially susceptible and there is no clear method of

detection available to mitigate the attack. At this initial stage the attack can spread freely. The

parameter (β) is used to indicate the attack attempts per time slot. The time needed to detect is

145

modeled by parameter (π). The parameter (µ) is used to indicate the resolution dispersion per

time slot, which is the number of hosts having the appropriate effectors to mitigate/contain the

attack or to immunize the host against future similar attacks. The parameter (δ) is used to

represent the process of applying the effectors to resolve the infection and immunize the host.

The following summarizes the parameters used through this representation of the PSIDR model:

• (µ) time for permanent immunization by updating the local defense tools

• (β) Attack infection rate

• (δ) time for permanent immunization after attack by updating the local defense tools

• (t< π) Time before resolution mission composition

• (t> π) Time after resolution mission composition

The authors of the basic PSIDR model [99] calculated the following probabilities and used it to

evaluate their model by comparing the extracted results with results calculated from real

dispersion of a set of attacks. We used the same probabilities while controlling the

aforementioned parameters by a set of distributions to represent EvoSense methodology in

detecting and resolving attacks. The used probability distributions were controlled to generate

parameters within the recommended range suggested by the PSIDR authors.

P(S->I) = βI/N

P(I->D) = µ

146

P(S->R) = µ

P(D->R) = δ

Where N is the total number of hosts in the ToD network.

While the model was actually used to model vast number of threats, viruses, and attacks

[104,105]. One of the problems raised against this model, was the assumption that the local

defense mechanism will not be affected by the attack. This is not true for many attacks, and an

attack like [106] is a good example for such cases. Such attack breaks the link between I-> D

link.

Fortunately, EvoSense was designed to prohibit such cases making it a perfect choice to model

EvoSense’s defense provisioning process by modeling the attack dispersion and cleanup process.

EvoSense was designed specifically to remain operational even with the existence of aggressive

attacks that targets the DSP or the DSP network.

We used the model to measure the total time for detection, and the time needed for resolution

after detection. With EvoSense pervasive cooperative sensing, the time needed for detection was

much less than the normal case of using local defense provisioning units. Hosts move faster

between I -> D and conventionally R states; which means that the overall downtime due to attack

is also minimized using EvoSense evolutionary sensing and effecting.

EvoSense pervasive control of the ToD hosts and host network, allows the DSP to quickly, and

in a full/simi-autonomous fashion contain a contagious attack. In addition to minimizing the

attack negative impact by such containment, EvoSense can restore operation of an infected host

until a resolution methodology is devised by allowing it to work in a controlled quarantine mode.

147

In such mode, EvoSense utilize its pervasive control feature through the ToD components

“hosts, and network elements” to apply deeps scanning missions to all outgoing message coming

from the infected host before sending it to the ToD network.

From that we can see that EvoSense protected ToD’s hosts are expected to move faster from S or

I to R.

4.6 Conclusion

In this chapter, we presented EvoSense as an evolutionary sensory system enabling pervasive

and efficient, monitoring and analysis for heterogeneously composed targets like CPS. EvoSense

is built upon our novel CyberX-managed Cell-Oriented Architecture. EvoSense acts as a

trustworthy elastic intelligent middle layer interfacing between DSPs and ToDs. EvoSense

unique construction and functionality enables pervasive seamless monitoring and analysis;

interoperable and dynamic defense; early failure/attack detection and resolution; and trustworthy

scalable cooperative defense. There are several interesting challenges to be addressed in the

future. These include formalizing the runtime dynamic sensing and effecting autonomous

management and mission generation framework; correlating sensors’ feedback into

comprehensive real-time global views; and adjusting sensors circulation based on dynamic

changes of these views.

148

Chapter 5

5. CyPhyCARD Evaluation

5.1 Overview

CyPhyCARD utilizes unique defense provisioning platform founded over a loosely coupled

dynamic components that host and deliver defense services to the ToD hosts. CyPhyCARD

defense platform composition of CyberX-managed adaptive and resilient building blocks comes

with a cost. The cost is expected to increase when ChameleonSoft software behavior encryption

and trace resistant moving-target defense is used to secure CyPhyCARD infrastructure against

software attacks. CyPhyCARD is designed to provision a ToD isolated defense services through

EvoSense. Such isolation moves most of the workload from the ToD to the DSP side increasing

the platform computational cost even more.

As mentioned before, CyPhyCARD pillars are interrelated contributions providing solutions to

serious hard problems in the field of cyber and cyber physical security. In this chapter, we

conduct detailed quantitative study including deep analytical analysis followed by multiple

simulation experiments to evaluate the effectiveness of each pillar in achieving its design

objectives, and the efficiency of the pillar in terms of added execution-time delays and the

overall consumed resources. The study illustrates that CyPhyCARD pillars do achieve their

“Theory guides; Experiment
decides.” Izaak M. Kolthoff

149

design objective adequately and with reasonable cost. The computational cost in terms of

resources consumed to maintain platform resilience against attacks and failures, are justified

when compared to the expected losses due to such failure and attacks as shown in the simulation

results. The comprehensive evaluation of the entire framework of CyPhyCARD is not possible

at this stage. This comprehensive evaluation will be a part of our future work after completing

the construction of CyPhyCARD platform full test-bed.

CyPhyCARD platform was not designed to provision defense services for small scale networks

or enterprises as the cost of realizing such platform would exceed the expected losses due to

attacks and failures. However, we intended to develop a special version of our CC-DNA to be

used over the commercially available clouds to enable such clouds of hosting the CyberX Cells.

Doing so is expected to decrease the cost of building a dedicated CyPhyCARD cloud, and the

platform would rely on its intrinsic defense mechanism “ChameleonSoft” to insure the resilience

of defense provisioning and to maintain the privacy of the ToD hosts. However, that might not

be sufficient for certain organizations that would prefer an isolated dedicated cloud regardless of

the cost to maintain their privacy policy. The cost is application and ToD relevant, it depends on

the type of the application, the criticality levels and scale of the network(s), and the privacy rules

that needs to be enforced.

In order to evaluate the different performance and security aspects of CyPhyCARD pillars we

devised multiple models as a base for a set of simulation packages. Based on the fact that the

pillars are interrelated, and in order to increase the resolution of the study by clarifying the cost

of enabling each single feature by itself and when combined together, we started by modeling the

platform managed by CyberX alone to evaluate the cost of enabling mission oriented application

design, dynamic application adaptation to changes, and enhanced resilience using CyberX

150

recovery. Then we studied the cost of securing this platform by ChameleonSoft

multidimensional software behavior encryption and moving target defense. The study included

multiple experiments to clarify the cost of enabling ChameleonSoft moving-target defense alone

without CyberX added cost for recovery, and with the various recovery modes. Finally, we

conducted a detailed study to evaluate the cost of using the presented secure platform to

pervasively deliver defense services to the ToD hosts, and the cost of enabling trustworthy

tipping and cuing. Due to the tight interrelation between the first two pillars CyberX and

ChameleonSoft and the third one EvoSense, the study did not include an evaluation of

provisioning defense services through an insecure, failure-vulnerable platform without

ChameleonSoft, or without CyberX dynamic recovery, as these assumptions contradicts with

CyPhyCARD design invariants and cannot be considered as a reasonable case for study.

The following subsections presents the aforementioned studies including system models,

mathematical analysis and a set of experiments conducted using multiple MATLAB simulation

packages. The results focused on testing the presented approach ability to achieve its design

objectives effectively and efficiently.

5.1.1 The simulator design

 In order to evaluate the effectiveness and efficiency of the platform and the supporting pillars,

we built a prototype in C#. The prototype included a limited version of CyberX, ChameleonSoft,

and EvoSense management platforms. The prototype proved the ability of CyPhyCARD pillars

to enable Cell life adaptation to changes, automated failure recovery, the spatiotemporal

diversification of software execution behavior. Additionally, we devised a simple vision of

EvoSense sensors and effectors Cells. We managed to device a simple version of EvoSense

151

managing a pervasive circulation of such Cells to collect information and to apply remote

configurations based on a preconfigured set of defense missions.

For the quantitative evaluation we devised a set of event-driven MATLAB simulator to simulate

a hypothetical Cell network composed of multiple Cells distributed in random locations. The

simulator also simulated a hypothetical host network distributed in random locations, and

classified into different enclaves and organizations. The simulator is designed to mimic the

actions of a real system founded over CyberX managed Cell network, secured by ChameleonSoft

spatiotemporal moving target defense. Additionally, defense provisioning is simulated by an

emulated environment mimicking the remote defense provisioning of EvoSense pervasive and

cooperative defense. The system has multiple event generators as threads, working

simultaneously to generate different events including but not limited to (attacks, failure inducing

changes, Cell failure events, host failure events). These events are generated based on real-time

changing settings that determine the frequency of generating each event at each point through the

Cell and host networks. The main parameters controlling such stings are guided by a set of

random distributions selected to mimic the nature of each event. Upon arrival of each event, the

system responds automatically simulating the action of the actual network.

5.2 CyPhyCARD Platform

In this section, we present the results of multiple experiments that were performed using the

first MATLAB simulator package simulating CyberX. These experiments have different

objectives regarding evaluating the effect of enabling CyPhyCARD platform’s autonomic

adaptation and intrinsic failure recovery managed by CyberX on the system performance with

respect to failure downtime and the amount of consumed resources. The simulator was designed

152

based on an analytical study of the recovery and dynamic adaptation process of the platform. The

next subsection describes in details our analytical study followed by detailed description of our

simulator and the extracted results.

5.2.1 A study of CyberX dynamic adaptation

One of the main advantages of CyberX is its ability to utilize the Cell capability to separate the

main design concerns to enable application runtime adaptation. Adaptation may occur for

multiple reasons and can be utilized to satisfy different quality attributes.

 Figure 5.1 represents a model for CyberX dynamic adaptation process. The model guides the

analytical study presented later in this section.

Figure 5.1 CyberX dynamic adaptation Model.

In order to device the mathematical representation of CyberX adaptation process, we will

assume that the input behavior is a 2D matrix (n, m) where each point in the matrix represents a

153

Cell (i,j) as an entry in the (n, m) plane. Each (i, j) entry in the (n, m) plan has a pair of values (v,

s) representing the id of the currently executing variant and set.

The adaptation process is composed of multiple tasks. The formalization of the variant/set

shuffling process involves multiple decisions that will be taken based on a set of distributions.

The distributions and the random selection mechanisms presented here are for the illustration

purposes only. We intend to present a more focused study aiming to select the most appropriate

configuration, selection mechanisms, and set of distributions that can generate results closer to the

real system. The details of this will be the focus of our future work.

The adaptation process is concerned with manipulating V using a predetermined distribution.

We will use Poisson distribution FP to determine the time frame between consecutive shuffling

events. At the event time, another distribution will be used to represent the variant selection

mechanism. We will use uniform distribution FU to determine the new value of V,

V € {0,1,…a}, S € {0,1,…b},I € {0,1,…n}, J € {0,1,…m}

∆t=Fp (q), ∆t≠0

tx+1=∆t+tx

WhereFPis the function that we use to generate the distribution controlling t.

Assuming thatFP is a Poisson distribution, it will be calculated as follows:

(k being a non-negative integer, k = 0, 1, 2, ...)

∆t is the time interval between shuffling events, each Cell can determine the value of q

controlling the shuffling frequency

154

At each shuffle event, each Cell uses the following equation to select the next variant for

execution.

vtx=fu(z), vtx≠ vtx-1, vtx<a, z € {0,1,…a}

Where fu is the function used to generate the random number generator determining the id of

the next variant for execution selected from the variant selection pool at each Cell, and z is the

seed for the generation.

Assuming Fuis a uniform distribution it will be calculated using the following

Where a and b are the minimum and maximum number of valid values for V

5.2.2 A study of CyberX automated recovery

Another advantage of CyberX is its enforced resilience through an automated Recovery

system.

Figure 5.2 represents a model for CyberX automated recovery process. The model guided the

analytical study presented in this section.

The recovery process is concerned with manipulating (i, j) location for each Cell in the matrix.

We will use Poisson distribution FP to determine the time frame between consecutive failures

events. At each event t the Cell follows a Uniform distribution to determine the new location

(i,j)new that the Cell will migrate to after recovery.

∆t=fp (q), ∆t≠0, q=>0

tx+1=∆t+tx

155

Where Fp is the function that we use to generate the distribution controlling t. ∆t is the time

interval between failure events, each Cell can determine the value of q controlling the failure rate.

ix+1=fin (z) ,

jx+1=fjn (z)

Figure 5.2 Represents CyberX automated recovery process model

Where Fn is the function used to generate a new location for the Cell to migrate-to in the (n,m)

plane. And z is a random seed set to insure that the output range of i, and j ranges from 0 to (n,m)

respectively

Assuming that Fn will be a normal distribution it will be calculated as follows

5.3 Simulation results

In this section, we present the results of multiple experiments that were performed using a

MATLAB based simulator. These experiments have different objectives regarding evaluating the

156

effect of enabling autonomic adaptation and intrinsic failure recovery on the system performance

with respect to failure downtime and resource consumption.

 Table 5.1 shows the main parameters used in the simulation. The network parameters are

mainly static parameters used to setup the experiments, except for the deployment of fresh Cells

in the network. The dynamic part depends on a set of distributions mentioned in the column

named “Generator “.

The failure or environment-change parameters show the spatiotemporal distribution of failure

/environment-change events and the event type that necessities variant change in response to such

event. The recovery parameters represent the initial recovery mode for each Cell, and the dynamic

recovery change through the experiment lifetime. Deploy-new-Cell parameters represent the rate

and location for the deployment of fresh Cells to replace dead or problematic Cells in the network.

All experiments had the same period of 6 hours with a sample rate of six minutes giving us 60

samples (time slots) within the network of Cells. The presented parameters in (Run 1) were used

to device Figure 5.3, and Figure 5.4 We used the parameters in the three runs to evaluate the effect

of increasing the failure generation rate illustrated in Figure 5.4.

Classification Parameter Generator Run1 Run2 Run3

Network Network size

Static 100*
10

100*
10

100*1
0

shuffling variants Static 8 8 8

Exp_Time Static 60 60 60

Avg_App_exe_time normal 35 35 35

Deploy new
Cell

Period Poisson 23 18 14

Location normal 8,3

91,2

8,3

91,2

8,3

91,2

157

Resource
usage

Cell Static 5 5 5

For
Replica

Static 3 3 3

Cell
failure

static 2 2 2

Recovery Recovery at deploy normal 8,3 8,3 8,3

Mode change Period Poisson 20 18 16

Type normal 8,3 8,3 8,3

Event Failure or
environment
event change

Timing
(Period)

Poisson 24 20 16

Location Normal 8,3

91,2

8,3

91,2

8,3

91,2

Type Uniform 10 10 10

Table 5.1 CyberX simulator parameters

Figure 5.3 The average downtime in response to failures due to changes for different
recovery modes with and without adaptation.

Figure 5.3 illustrates the effect of failure due to unexpected changes on the average downtime

with and without CyberX autonomic adaptation. The average downtime is calculated as follows:

X axis: Time ticks (360 sec/Tick)
Y axis: Downtime in ticks (6 sec/Tick)

158

Average downtime per Cell = (∑ 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑤ℎ𝑖𝑙𝑒 𝐶𝑒𝑙𝑙 𝑖𝑠 𝑜𝑓𝑓𝑙𝑖𝑛𝑒𝑁
1)/𝑁

Figure 5.3 reflects the different system responses to failures when we activate and deactivate

CyberX autonomic adaptation with and without coarse or fine-grained recovery modes. The

experiment shows significant improvement in minimizing the failure downtime when the CyberX

autonomic adaptation is active as the system adapts autonomously to most of these changes

minimizing the number of failures. Additionally, the average downtime significantly decreases

when we activate CyberX fine or coarse grained recovery. Both recovery modes will rabidly

recover failed Cells minimizing the overall failure downtime.

Figure 5.4 presents the effect of increasing the failure generation rate by increasing the number

of changes over time “in an extended execution time mode” on the average downtime while

utilizing coarse or fine-grained recovery modes. The experiment shows that CyberX fine grained

recovery always minimizes the failure downtime when compared to coarse grained recovery. In

coarse grained recovery mode, CyberX spends more time instantiating replacement Cells; while

in fine grained mode, replicas take over and resume execution first then a new replica is

instantiated without holding the execution restoration.

Figure 5.5 illustrates that fast recovery comes on the expenses of consuming more resources.

This figure reflects the total resource usage through the experiment with different recovery and

adaptation modes.

159

Figure 5.4 The average downtime in response to increasing failure generation rate for three
different experiments and different recovery modes.

Figure 5.5 The total resource usage in case of failure with different recovery and
adaptation modes

X axis: Time ticks (360 sec/Tick)
Y axis: Downtime in ticks (6 sec/Tick)

160

Figure 5.5 illustrates the effect of using CyberX autonomous adaptation to minimize failures, in

saving some of the resource that would have been wasted in the recovery of such failures. The

total cost of resources is calculated in money value as follows:

 Total cost at each Cell = ∑ cost of peripheral usage in $ ∗ consumed 𝑣𝑎𝑙𝑢𝑒𝑛
1

Total Resource usage in $ = � overall cost of consumed resources at each host
H

1

Enabling such feature provides some guarantees that the system will always consider using the

right resources at the right time while maximizing the system quality-attribute satisfaction-scope.

Further, CyberX attempts to recompense resources wasted due to failure-recovery by changing

the system targeted quality-attribute towards optimizing the resource usage after each recovery

event. CyberX usually favor using one of the resource efficient variants to resume execution after

each recovery event. CyberX do that while maintaining the balance between the different

application objectives and targeted quality-attributes to the best interest of the application while

efficiently maximizing resource utilization.

5.3.1 Observations

From the presented results we can conclude by illustrating the following list of observations:

• CyberX dynamic real time application adaptation to changes decreases the chance of

failure, reduces the system downtime and wasted resources.

• CyberX multimodal failure recovery enhances the application resilience against

failures. The effect was reflected in the noticeable decrease in the average Cell

downtime.

161

• CyberX multimodal failure recovery increases the average host resource consumption;

however CyberX was apple to compensate that by enabling runtime dynamic

adaptation. Runtime dynamic adaptation saves even more resources that should have

been wasted due to failures.

5.4 A moving-target defense approach for CyPhyCARD platform security

In this section we focus on evaluating the cost of securing CyPhyCARD platform using

ChameleonSoft software Behavior Encryption (CBE) and moving target defense. We used

analysis and simulation to evaluate the security and performance of ChameleonSoft. A

comprehensive analytical study of the CBE is conducted to formalize the spatiotemporal diffusion

and confusion processes. The study was the base for building CyberX-based CBE MATLAB

simulator that we used to extract the presented results in section 6.2.

5.4.1 Analyzing the CBE approach

In order to device the mathematical representation of the CBE process, we will assume that the

input behavior is a 2D matrix (n, m) where each point in the matrix represents a Cell (i,j) as an

entry in the (n, m) plane. Each (i, j) entry in the (n, m) plan has a pair of values (v, s) representing

the id of the currently executing variant and set.

The encryption process is composed of multiple different processes. Temporal shuffling and

spatial shuffling occur separately, or combined together to form spatiotemporal confusion, and

diffusion. The formalization of the confusion and diffusion processes involves multiple decisions

that will be taken based on a set of distributions. The distributions and the random selection

162

mechanisms presented here are for the illustration purposes only. As a part of our future work, we

intend to present a more focused study aiming to select the most appropriate configuration,

selection mechanisms, and set of distributions that can generate results closer to the real system.

CBE temporal confusion: this process is concerned with manipulating V using a

predetermined distribution. We will use Poisson distribution FP to determine the time frame

between consecutive shuffling events. At the event time, another distribution will be used to

represent the variant selection mechanism. We will use uniform distribution FU to determine the

new value of V,

V € {0,1,…a}, S € {0,1,…b},I € {0,1,…n}, J € {0,1,…m}

∆t=Fp (q), ∆t≠0

tx+1=∆t+tx

Where FP is the function that we use to generate the distribution controlling t.

Assuming thatFP is a Poisson distribution, it will be calculated as follows:

(k being a non-negative integer, k = 0, 1, 2, ...)

∆t is the time interval between shuffling events, each Cell can determine the value of q

controlling the shuffling frequency

At each shuffle event, each Cell uses the following equation to select the next variant for

execution.

vtx=fu(z), vtx≠ vtx-1, vtx<a, z € {0,1,…a}

163

Where fu is the function used to generate the random number generator determining the id of

the next variant for execution selected from the variant selection pool at each Cell, and z is the

seed for the generation.

Assuming Fu is a uniform distribution it will be calculated using the following

Where a and b are the minimum and maximum number of valid values for V

Spatial confusion is concerned with manipulating (i, j) location for each Cell in the matrix.

We will use Poisson distribution to calculate the time frame between two consecutive spatial

shuffling events. At each event t the Cell follows a Uniform distribution to determine the new

location (i,j)new that the Cell will migrate to.

∆t=fp (q), ∆t≠0, q=>0

tx+1=∆t+tx

Where Fp is the function that we use to generate the distribution controlling t. ∆t is the time

interval between shuffling events, each Cell can determine the value of q controlling the shuffling

frequency

ix+1=fin (z) ,

jx+1=fjn (z)

Where Fn is the function used to generate a new location for the Cell to migrate-to in the (n,m)

plane and z is a random seed set to insure that the output range of i, and j ranges from 0 to (n,m)

respectively

164

Assuming that Fn will be a normal distribution it will be calculated as follows

Spatiotemporal confusion is a mixture of both

Diffusion is induced in response to each incoming event by making a random change for the

value of v in multiple locations (i,j).

In order to simulate that we use a predetermined distribution to guide the selection pool p for

the Cells that will make changes in their current active V.

Each Cell (i,j) € p will apply to select the id of next variant to execute Vtx+1.

Time between generated events at each Cell (I,J) is calculated as follows:

The type of event is calculated as follows:

e tx(i,j) =fu(z), e tx(i,j) ≠ e tx-1(i,j) , 0<z<b

Where ∆t is the time interval between surrounding change/attack events at each Cell, based on

that event s will be changed to match the etx, and V will reset to 1

Selection pool p is constructed using the following equation:

∆t=f
p
 (q), ∆t≠0, q=>0

t
x+1

=∆t+t
x

where, q is event generation frequency

, H
n+1
≠H

n

 Temporal
shuffling

Spatial
shuffling

165

(idif,jdif)={fu(a,b)|idif≠ i, jdif≠ j} Cell (i,j)

with an ongoing event and a, and b are random numbers >0 and <n,m

Where fu is the function used to generate a pool of random selections for (i,j) Cells that will

change their current V using fk

₳(i,j) €p, v(i,j)=fk(z), vx≠ vx-1 the situation permitting the change; where 0<z<a

Assuming the diffusion and confusion function is calculated based on the presented list of

functions f at each i,j with a ∆t as the duration between events then the encryption key

controlling the diffusion and confusion is a combination of the generation functions f and the

number of Cells in the plan with the variant and set pool size.

In this case the key will be:

k (i,j) ={ fp (q), fu(z), fn (z), fu(a,b), fk(z)} v0
a,s0

b

If we include event generation then we should add fep (q), feu(z),where fep (q), feu(z),is the

functions used to estimate the time and the type of an incoming change in the surroundings of

each Cell necessitating a set change; then the key will be:

k (i,j) ={ fp (q), fu(z), fn (z), fu(a,b), fk(z), fep (q), feu(z)} v0
a,s0

b

5.4.2 Simulation results

We designed a MATLAB simulator to mimic the Chameleonization process of a group of

Cells organized in a 10*100 matrix layout. Version 1 of the simulator (V1) that was presented in

[95] was a preliminary version with limited capabilities. V1 was designed to extract preliminary

results illustrating the effect of the confusion and diffusion process.

166

We have developed a more advanced version of the simulator (V2) addressing the confusion

and the diffusion processes more accurately. In V2, the diffusion induction in response to a single

event in any part of the network starts by broadcasting multiple shuffling for diffusion requests

within a predetermined scope to different Cells. Based on predetermined acceptance criteria, Cells

will comply with the incoming requests and change their current active variant. Additionally, V1

was mainly concerned with the temporal shuffling; while V2 is designed to simulate both the

temporal and special shuffling.

V2 is equipped with multiple performance monitors that will continuously monitor and records

the performance aspects of the Cells within the life time of the experiment. The performance

monitor feedback will be used to evaluate the effect of temporal or spatial confusion and diffusion

on the task completion time presented in the next subsection.

Additionally we integrated a module to simulate the effect of the CBE multimodal recovery

mechanism and the dynamic real-time recovery mode change. For evaluation purposes random

failure events are distributed based on predetermined criteria to induce the effect of multiple

failures. The system will automatically respond to these event based on the current recovery

technique at the point of failure. The performance monitors will record the failure event, and the

failure downtime at the point of failure.

V2 of the simulator is designed to simulate CBE effect for large network of Cells, with longer

experiment time. The simulator is capable of generating different configurations for the Cells.

Cells can have different application execution time and requirements and each Cell can change

these requirements at runtime based on a predetermined criteria. The simulator will be activating

and deactivating Cells at runtime in response to Cell termination events due to failure or execution

completion, and the deployment process of new fresh Cells.

167

5.4.2.1 Simulator Design:

We devised a Cell representation to simulate the COA behavior encryption module and the

multimodal recovery system, and a simple representation for the situational awareness unit. Our

simulator starts by deploying Cells all over the network based on the input parameters. Each Cell

should have a representation for a group of software variant sets for each possible induced change

in the network. Each of these sets contains a group of similar function, different behavior variants.

At the deployment time, each Cell will have a set of numerical values representing the

expected execution time for its task defined in the loaded variants. Each Cell will have a dedicated

situational awareness unit monitoring incoming attacks, failure incidents, time wasted in shuffles

for confusions; and diffusion, etc.

After automatically deploying these Cells, the attack, and failure event generators produces

different events following the user predetermined settings. Additionally, based on the user

parameters, we seamlessly replace dead or problematic Cells with new fresh Cells. All Cells that

successfully complete their task are considered dead Cells; while Cells with too many failure

events are considered problematic.

The variant shuffling at each Cell works seamlessly for temporal confusion induction. The set

shuffling occurs only in response to an induced change in a specific network location. Set

shuffling is always followed by a request to variant shuffle for a random sample of the network to

induce the needed diffusion to complete the encryption process. Independent shuffling for

diffusion decisions are taken based on a predetermined parameter defining the acceptance rate for

the shuffle for diffusion requests.

Spatial shuffling occurs based on the input parameter to a random sample of the network. A

single special shuffling event involves two Cells that will swap their location in the network. One

168

of these Cells is a live Cell and the other one a stem-Cell. The process starts by a request from the

Cell that had the event coming to the GMS to select a migration target Cell. After migration the

migrated Cell will transform to a Stem-Cell waiting for specialization.

5.4.2.2 Extracted results

 In this section we present the results of multiple experiments that were performed using our

MATLAB simulator. These experiments have different objectives regarding evaluating the

provisioned level of security and the effect of increasing the level of security over the execution

time of the application. CBE encrypt the execution behavior of the application by confusion and

diffusion induction. The following experiments quantify the strength of ChameleonSoft behavior

encryption mechanism in terms of confusion and diffusion induced levels. The performance

aspect of the experiment is introduced through a representation of the average downtime for all

the Cells in the network.

Table 5.2 shows the main parameters used in the simulation. The network parameters are

mainly static parameters used to setup the experiments, except for the deployment of fresh Cells

in the network. The dynamic part depends on a set of distributions mentioned in the column

named “Generator “.

Through the experiment we are simulating the case that all the nodes have average capabilities

and we assumed that a node would not refuse shuffling or relocation requests. With that

assumption, it is closer to a population description; which makes the normal distribution a good

distribution to describe the location of the next event. While the rate of change, or inter-arrival

time " the time frame between consecutive events" is best represented as a Poisson distribution.

Uniform distribution was selected to describe the variant selection "which variant to replace the

current active variant" and independent decision making.

169

The shuffling event parameters represent the spatiotemporal distribution of shuffling

commands to induce confusion while the attack or change in environment parameters show the

spatiotemporal distribution of attack events and the event type that necessities variant set change

to respond to the change. Events shuffling variants selection parameters represent the selection

criteria of the next variant to be shuffled while the independent shuffling decision on each Cell

parameter represents when the Cell should take shuffling decision for diffusion induction. The

recovery parameter represents the initial recovery mode for each Cell, and the dynamic recovery

change through the experiment life time. The “deploy new Cell” parameter represents the rate

and location for the deployment of fresh Cells to replace dead or problematic Cells in the network.

All experiments had the same time period of 6 hours with a sample rate of 6 mints giving us 60

samples of events of changes within the network of Cells.

Classification Parameter Generator Run

1

Run2 Run3

Network Network size

Static 10*1

00

10*10

0

10*100

shuffling variants in each set Static 8 8 8

shuffling sets Static 5 5 5

Exp_Time Static 60 60 60

Avg_App_exe_time normal 35 35 35

Deploy new Cell Period Poisson 20 18 16

Location normal 8,3

98,2

8,3

98,2

8,3

98,2

Recovery Recovery at deploy normal 8,3 8,3 8,3

Mode change Period Poisson 20 18 16

Type normal 8,3 8,3 8,3

170

Event Temporal

Shuffling event

Period Poisson 22 18 14

Location Normal 8,3

98,2

8,3

98,2

8,3

98,2

Spatial Shuffling

event

Period Poisson 22 18 14

Location Normal 8,3

98,2

8,3

98,2

8,3

98,2

Failure events Period Poisson 18 18 18

Location Normal 8,3 8,3 8,3

Attack or change

in environment

event

Timing Poisson 21 20 18

Location Normal 11,3

99,1

9,4

99,1

10,2

99,1

Type Uniform 10 10 10

Software Shuffling Variants Selection Uniform 10 10 10

Shuffling Independent shuffling decision

on each Cell

Uniform 10 10 10

 Table 5.2 CBE simulator parameters

We examined the behavior encryption module through three experiments with different

settings. The experiments aimed to measure the effect of changing attack arrival rate and location

with the change of shuffling event generation on the behavior output as illustrated in Figure 5.6

and Figure 5.7. The effect of continuous variant shuffling within CBE diffusion induction

mechanism on the output behavior was obvious. A simple change in any of those inputs leads to

significant change in the output.

Our primary goal in this study is to illustrate the effect of CBE on the overall network behavior

after attack events. This study focuses on the security analysis of the system by showing the level

of induced confusion and diffusion. Performance analysis will be discussed latter.

171

Figure 5.6 A gives a snapshot of the set and variant distribution over the Cells at bootstrap.

Each column represents a Cell in the network where the value represents the current executing set

index or variant index.

Figure 5.6 CBE Effect on the Network Behavior

In Figure 5.6 B we illustrate the behavior output after short period of continuous behavioral

encryption for the three experiments. It is clear that behavior changes are diffused all over the

network. This can be seen by the massive change in the behavior of the whole network by the end

of the experiment.

172

Figure 5.7 Induced Confusions and Diffusions

Figure 5.7 A reflects the total number of changes "diversity application" in the network

behavior at each time tick. This is an indication for the induced confusions at each time event.

Figure 5.7 B illustrates the accumulating change in the network behavior over time reflecting the

effect of re-encryption and the increase in complexity of correlating the input to the output over

time.

We performed multiple experiments to evaluate the performance of CBE system. Figure 5.8

illustrates four different experiments conducted to evaluate the effect of changing the recovery

mode on the average downtime due to failures, and attacks using the parameters presented in

Table 5.2. The first experiment conducted to evaluate the failure downtime in case of no CBE.

173

The remaining experiments where testing the effect of CBE with, and without recovery

considering the two recovery modes hot, and cold.

Figure 5.8 The effect of applying CBE, and the different modes of recovery on the failure
downtime due to failures and attacks

The results show a noticeable improvement in the failure downtime with only CBE even

without recovery. CBE saved a considerable amount of failure downtime just by mitigating wide

set of the induced attacks. The situation improves when we apply our coarse and fine grained

recovery that quickly resolve any coincidental or intentional failures that might result from the

shuffling process itself, or from attacks.

Figure 5.9, and Figure 5.10 aim to illustrate the effect of increasing the attack arrival rate on the

system downtime, and the system automated response to increase the provisioned level of security

by increasing the confusion and diffusion levels to mitigate these attacks. We used same

parameters of the first run in Table 5.2, and an attack generation rate range of (10,20,30).

174

Figure 5.9 illustrates the effect of the increase of the attack generation rate, with the presence of

our CBE with no recovery, and with coarse and fine grained recovery modes. The experiment

shows significant improvement in minimizing the failure downtime when the CBE is used when

compared with the mono-variant mode, even without recovery. The reason behind that resides in

the fact that a large portion of these attacks will fail to succeed if the targeted vulnerability was

not active where, and when it was supposed to be. The average downtime significantly decreases

when we activate the COA fine and coarse grained recovery mechanisms. Both recovery modes,

will rabidly recover failed Cells minimizing the attack and failure downtime.

Figure 5.9 The Average downtime in response to increasing attack generation rate for, no
shuffling “mono variant”, and CBE with no recovery, CBE and coarse grained recovery,

and CBE and fine grained recovery

Figure 5.10 shows the system automated response to the increase of incoming attack events.

The system autonomously increase the level of induced confusion and diffusion levels by

increasing the shuffling speed, and widening the diffusion-shuffling-requests scope to mitigate

175

incoming attacks, and by alerting other Cells of that event. The produced confusions and

diffusions are calculated as follows:

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝑠

= �𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑚𝑝𝑟𝑎𝑙 𝑎𝑛𝑑 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑠ℎ𝑢𝑓𝑓𝑙𝑖𝑛𝑔 𝑜𝑓 𝑒𝑎𝑐ℎ 𝐶𝑒𝑙𝑙
𝑁

1

These early warning alerts, will minimize the attack success ratio, minimizing the average

downtime of attacks.

Figure 5.10 The automated system response to increase the level of provisioned security in
response to an increase of attack arrival rate

We conducted more experiments to correlate the effect of enhancing the security provisioning

over the system performance. We used parameters from Table 5.2, and a shuffling frequency

range of (10,20,30) . Figure 5.11 and Figure 5.12, illustrates the level of induced confusion and

diffusion with respect to the change in the shuffling speed over time for different behavior

encryption mechanisms.

176

Figure 5.11 Ievel of induced confusion and diffusion with respect to a Change in the
shuffling speed over time

Figure 5.12 shows the effect of shuffling frequency change on the downtime. Figure 5.11 shows

the effect of changing the shuffling speed on the level of provisioned security. Figure 5.11 and

Figure 5.12 illustrates that complicating the correlation between the input and output network

behavior by increasing the level of induced confusion as a reflection of increasing the frequency

of shuffling linearly increase the average downtime. The reason behind that comes from the

increased number of preemptions prior to temporal and spatial shuffling, and the possible failures

that might result from these processes.

As mentioned before ChameleonSoft is capable of changing its diversity application technique

at runtime to suit changes in the surrounding environment, and application requirements. The

reason behind enabling such feature is to provide some guarantees that the system will always

consider using the right resources at the right time towards balancing the security and

performance output of the system.

177

ChameleonSoft employ different recovery mechanisms with different granularity levels to suit

the dynamic change in the surroundings. Fine grained recovery by Cell replication might consume

more resources in order to guarantee short recovery downtime and successful restoration of all the

previous states before failure. As mentioned before ChameleonSoft optimize the replication

resource usage by replicating only the STM,I/O, and data store components of the Cell. The

remaining components of the Cell remain in hibernation waiting for resurrection when the replica

takes over. The overall recovery time depends on the time needed to resurrect the hibernated

replica components and the time spent to detect failure.

Figure 5.12 The average downtime with respect to the increase of shuffling speed
increasing the level of provisioned security

ChameleonSoft usually uses coarse grained recovery mode in resource constrained

environments to save the resources used by the replicated Cell components. Restoring a failed

Cell with no replica might involve remote data store queries, collecting communication logs from

other Cells, and analyzing these logs for unsaved lost states. This process increases the overall

recovery time without any guarantee for a successful restoration for all states before failure.

178

5.4.3 Observations

From the presented results we can conclude by illustrating the following list of observations:

• ChameleonSoft software behavior encryption technique was able to induce the needed

confusions and diffusions to encrypt the behavior of the running software

• ChameleonSoft dynamically responds to attack arrival rate increase by increasing the

level of provisioned security

• ChameleonSoft utilized CyberX enhanced dynamic failure resilience to reduce the

effect of cell failure.

– Such failure might be the outcome of the increased attack arrival rate or the

shuffling speed escalation in response to such increase.

– This enhancement had a clear impact minimizing the average downtime of the Cell

even in high attack arrival rates

5.5 Pervasive defense provisioning, and trustworthy tipping and cueing

In this section we study the final stage where CyPhyCARD starts the defense provisioning

process through EvoSense. In this step, the defense services are hosted on the DSP side over

CyPhyCARD secured platform and uses EvoSense circulation mechanism to monitor the ToD

hosts and to provision the needed defense services based on the analysis of the collected data. In

order to comprehensively analyze this process we start by presenting a parametric study for the

different parameters controlling the various aspects of the defense provisioning techniques,

followed by a quantitative study of our defense delivery mechanism using simulation.

179

5.5.1 Parametric study

Currently attack detection tools can be categorized as either locally hosted within the attack

target or distributed with limited or no cooperation (between tools, or between DSPs) hosted

within the attack targeted network. Table 5.3 lists estimations for the resource usage with

respect to memory, storage, processing, and network bandwidth for each tools/components/ tasks

in the defense provisioning process. The table presents estimated values for the purpose of

illustrating the effect of enabling distributed defense provisioning, and isolating the defense

provisioning process from the ToD network on the overall resource consumption. The presented

estimations listed in Table 5.3 are justified by the discussion below. The table compares the

resource usage of each item in case of presenting defense services through a locally hosted

defense tool that use only signature based detection methods, or combines it with AI techniques to

predict attacks. Additionally, we also list our estimations for the resource usage of a distributed

defense provisioning platform that moves a major part of the analysis and investigation workload

to dedicated servers hosted within the ToD network. The investigation included cases where AI

techniques are combined with signature based techniques or not.

 EvoSense Local &

simple Local & AI Distributed &
simple

Distributed &
AI

 C1

External feedback events

Memory Usage

On
ToD

Negligible/non
e Not Supported Not Supported Negligible/none Normal

On
DSP High NA NA High High

Hard-disk Usage

On
ToD

Negligible/non
e Not Supported Not Supported Negligible/none Negligible/none

On
DSP High NA NA High High

Processor Usage

On
ToD

Negligible/non
e Not Supported Not Supported Normal Normal

On
DSP High NA NA High High

Network Bandwidth
Usage

On
ToD Extremely low Not Supported Not Supported Normal Normal

On
DSP High NA NA High High

Scanning

C2a

On-Demand Scanning Memory Usage

On
ToD Low High Extremely

High High High

On
DSP Low NA NA Normal Normal

180

Hard-disk Usage

On
ToD Low High Extremely

High High High

On
DSP Medium low NA NA Normal Normal

Processor Usage

On
ToD Medium low High Extremely

High High High

On
DSP Medium low NA NA Normal Normal

Network Bandwidth
Usage

On
ToD Medium low High Extremely

High High High

On
DSP Medium low NA NA Normal Normal

C2
b

On-Access & Real-time

Memory Usage

On
ToD Low High Extremely

High High High

On
DSP Low NA NA Normal Normal

Hard-disk Usage

On
ToD Low High Extremely

High High High

On
DSP Medium low NA NA Normal Normal

Processor Usage

On
ToD Medium low High Extremely

High High High

On
DSP Medium NA NA Normal Normal

Network Bandwidth
Usage

On
ToD Medium High Extremely

High High High

On
DSP Medium NA NA Normal Normal

C2c

Scheduled

Memory Usage

On
ToD Low High Extremely

High High High

On
DSP Low NA NA Normal Normal

Hard-disk Usage

On
ToD Low High Extremely

High High High

On
DSP Medium low NA NA Normal Normal

Processor Usage

On
ToD Medium low High Extremely

High High High

On
DSP Medium low NA NA Normal Normal

Network Bandwidth
Usage

On
ToD Medium low High Extremely

High High High

On
DSP Medium low NA NA Normal Normal

D1

Static analysis and emulation

Memory Usage

On
ToD Extremely low High Extremely

High High High

On
DSP High NA NA High High

Hard-disk Usage

On
ToD Extremely low High Extremely

High High High

On
DSP High NA NA High High

Processor Usage

On
ToD Extremely low High Extremely

High High High

On
DSP High NA NA High High

Network Bandwidth
Usage

On
ToD low High Extremely

High High High

On
DSP High NA NA High High

D2

Heuristics

Memory Usage

On
ToD Extremely low Extremely

High
Extremely
High High High

On
DSP High NA NA High High

Hard-disk Usage

On
ToD Extremely low Extremely

High
Extremely
High High High

On
DSP High NA NA High High

Processor Usage

On
ToD Extremely low Extremely

High
Extremely
High High High

On
DSP High NA NA High High

Network Bandwidth
Usage

On
ToD low Extremely

High
Extremely
High High High

On
DSP High NA NA High High

D3

Tunneling signatures
Memory Usage

On
ToD low Not Supported Not Supported Negligible/none Normal

On
DSP Medium low NA NA High High

Hard-disk Usage On
ToD low Not Supported Not Supported Negligible/none Negligible/none

181

On
DSP Medium low NA NA High High

Processor Usage

On
ToD Extremely low Not Supported Not Supported Normal Normal

On
DSP low NA NA High High

Network Bandwidth
Usage

On
ToD Extremely low Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

D4

Acquiring consultations

Memory Usage

On
ToD Extremely low Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

Hard-disk Usage

On
ToD Extremely low Not Supported Not Supported Negligible/none Negligible/none

On
DSP Medium low NA NA High High

Processor Usage

On
ToD Extremely low Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

Network Bandwidth
Usage

On
ToD Extremely low Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

D5

Advanced system cleaning protocol

Memory Usage

On
ToD Extremely low Extremely

High
Extremely
High Extremely High Extremely High

On
DSP Medium NA NA Extremely High Extremely High

Hard-disk Usage

On
ToD Extremely low Extremely

High
Extremely
High Extremely High Extremely High

On
DSP Medium NA NA Extremely High Extremely High

Processor Usage

On
ToD Extremely low Extremely

High
Extremely
High Extremely High Extremely High

On
DSP Medium NA NA Extremely High Extremely High

Network Bandwidth
Usage

On
ToD Extremely low Extremely

High
Extremely
High Extremely High Extremely High

On
DSP Medium NA NA Extremely High Extremely High

privacey assurance

Memory Usage

On
ToD Extremely low Normal High Normal High

On
DSP Medium low NA NA Normal Normal

Hard-disk Usage

On
ToD Extremely low Normal High Negligible/none Negligible/none

On
DSP Medium low NA NA Normal High

Processor Usage

On
ToD Extremely low Normal High Normal Normal

On
DSP Medium low NA NA Normal High

Network Bandwidth
Usage

On
ToD Extremely low Normal High Normal High

On
DSP Medium low NA NA Normal Normal

E1

Searching for a resolution
mechanism

Memory Usage

On
ToD Extremely low Extremely

High
Extremely
High Extremely High Extremely High

On
DSP Medium low NA NA Extremely High Extremely High

Hard-disk Usage

On
ToD Extremely low Extremely

High
Extremely
High Extremely High Extremely High

On
DSP Medium low NA NA Extremely High Extremely High

Processor Usage

On
ToD Extremely low Extremely

High
Extremely
High Extremely High Extremely High

On
DSP Medium low NA NA Extremely High Extremely High

Network Bandwidth
Usage

On
ToD Extremely low Extremely

High
Extremely
High Extremely High Extremely High

On
DSP Medium low NA NA Extremely High Extremely High

E2a

Quarantine
Memory Usage

On
ToD Extremely low Extremely

High
Extremely
High High High

On
DSP Medium low NA NA High High

Hard-disk Usage On
ToD Extremely low Extremely

High
Extremely
High High High

182

On
DSP Medium low NA NA High High

Processor Usage

On
ToD Extremely low Extremely

High
Extremely
High High High

On
DSP Medium low NA NA High High

Network Bandwidth
Usage

On
ToD Extremely low Extremely

High
Extremely
High High High

On
DSP Medium low NA NA High High

E2b

Cost of dedicated full time scanners
for the quarantine box

Memory Usage

On
ToD Extremely low Normal High Normal High

On
DSP Extremely low NA NA Normal Normal

Hard-disk Usage

On
ToD Extremely low Normal High Negligible/none Negligible/none

On
DSP Extremely low NA NA Normal High

Processor Usage

On
ToD Extremely low Normal High Normal Normal

On
DSP Extremely low NA NA Normal High

Network Bandwidth
Usage

On
ToD Extremely low Normal High Normal High

On
DSP Extremely low NA NA Normal Normal

E2c

Cost of prioritized reports

Memory Usage

On
ToD Extremely low Normal High Normal High

On
DSP Extremely low NA NA Normal Normal

Hard-disk Usage

On
ToD Extremely low Normal High Negligible/none Negligible/none

On
DSP Extremely low NA NA Normal High

Processor Usage

On
ToD Extremely low Normal High Normal Normal

On
DSP Extremely low NA NA Normal High

Network Bandwidth
Usage

On
ToD Extremely low Normal High Normal High

On
DSP Extremely low NA NA Normal Normal

E3

Process resolution protocol

Memory Usage

On
ToD Medium Normal High Normal High

On
DSP Medium low NA NA Normal Normal

Hard-disk Usage

On
ToD Medium Normal High Negligible/none Negligible/none

On
DSP Medium low NA NA Normal High

Processor Usage

On
ToD Medium low Normal High Normal Normal

On
DSP Medium low NA NA Normal High

Network Bandwidth
Usage

On
ToD Medium Normal High Normal High

On
DSP Medium low NA NA Normal Normal

E4

Reporting events

Memory Usage

On
ToD

Negligible/non
e Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

Hard-disk Usage

On
ToD

Negligible/non
e Not Supported Not Supported Negligible/none Negligible/none

On
DSP Medium low NA NA High High

Processor Usage

On
ToD

Negligible/non
e Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

Network Bandwidth
Usage

On
ToD

Negligible/non
e Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

E5
 Updating signature database

183

Memory Usage

On
ToD Extremely low Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

Hard-disk Usage

On
ToD Extremely low Not Supported Not Supported Negligible/none Negligible/none

On
DSP Medium low NA NA High High

Processor Usage

On
ToD

Negligible/non
e Not Supported Not Supported Normal Normal

On
DSP Medium low NA NA High High

Network Bandwidth
Usage

On
ToD Extremely low Not Supported Not Supported Normal Normal

On
DSP NA NA High High

sharing and exchange of
information

Memory Usage

On
ToD

Negligible/non
e Not Supported Not Supported Negligible/none Normal

On
DSP Medium NA NA High High

Hard-disk Usage

On
ToD

Negligible/non
e Not Supported Not Supported Negligible/none Negligible/none

On
DSP Medium NA NA High High

S

Processor Usage

On
ToD

Negligible/non
e Not Supported Not Supported Normal Normal

On
DSP Medium NA NA High High

Network Bandwidth
Usage

On
ToD

Negligible/non
e Not Supported Not Supported Normal Normal

On
DSP Medium NA NA High High

Table 5.3 Comparisons between different detection mechanisms

The following parametric study focuses mainly on the parameters that have great impact

on the aspects under evaluation. Figure 5.13 presents an anatomy of the typical defense

provisioning platform illustrating the main components of defense provisioning process. These

components are used to construct the equation that we used as a key tool to analyze the cost of

enabling EvoSense evolutionary sensing and effecting.

The total cost of executing a defense system locally within the host can be estimated as

described in the following equation (1),

Equation 1, The total cost of executing a defense system locally within the host

𝐴 + 𝐵 + (𝐶1 ∗ 𝐸𝑋𝐹𝐵) + �𝐶2𝑎evants ∗ 𝑆
𝐸1
� + �𝐶2𝑏events ∗ 𝑆

𝐸2
� + �𝐶2𝑐events ∗ 𝑆

𝐸3
� + (𝐷1 +

𝐷2 + 𝐷3 + 𝐷4 + 𝐷5 + 𝐷6) + (𝐸1 ∗ 𝑆𝐸) + �(𝐸2𝑎 ∗ 𝐵𝐵) + (𝐸2𝐵 ∗ 𝑆𝐶) + (𝐸2𝑐 ∗ 𝑁𝑅) +

𝐸2𝑑� + 𝐸3 + 𝐸4 + 𝐸5

Where, EXFB is the number of feedback sources , S/E1 is the number of sensor / on demand event ,

S/E2 is the number of sensor / on access event, S/E3 is the number of sensor / scheduled event, SE is

184

the search elements, BB is the number of boxes, “E2a = cost of a single box”, SC is the number of

scanners/box, and NR is the number of reports

Figure 5.13 The anatomy of attack detection tools

When we used equation (1) to estimate the effect of the aforementioned parameters on the

total cost vary by the variation of the target of calculation. For example some of the parameters

would have significant effect when used to calculate the effect of defense provisioning on the

memory usage, while same parameters might not have same effect when used to calculate the

network bandwidth usage.

Equation (1) presents the total cost of the detection process as an accumulation of the cost of

activating the different components of the detection tool. By analyzing the list of components we

can notice that some of these components add only static cost that neither adds a specific

workload once nor over time. Such parameters will not be affected by changing the detection tool

185

or mechanism. In this study we are going to focus only on the dynamic cost components, where

the added workload changes massively by changing the defense provisioning tool or technique.

The following study aims to analyze the total cost of defense provisioning in terms of resource

usage and time to detect attack. The study always refer to five main defense provisioning

mechanisms , four of them represents an abstract classification of the conventional defense

provisioning techniques (Local, Local with AI, distributed, and distributed with AI) based on their

working environment distance from the ToD, and the fifth is our EvoSense.

The study aims to illustrate the effect of enabling trustworthy information sharing and

exchange, and the effect of autonomous sharing defense tools between different components of

the DSP on the studied aspects. Additionally we also aim to illustrate the effect of enabling

pervasive sensing and effecting on the attack dispersion, and the time needed to immune the ToD

hosts against it.

5.5.1.1 Total consumed resources

The most resource consuming components in any defense provisioning tool based on the

anatomy presented in Figure 5.13 is presented in branch C, D, and E of the tree. These branches

represent, the data collection by monitoring, scanning and logging; the research and analysis

either by static analysis, emulation environment monitoring, heuristics, acquiring for consultations

from cooperating units if supported by the defense provisioning tool, and composing the cleaning

protocol.

The 3rd branch is the cleaning phase that involves executing the resolution protocol,

processing of the infected items to restore it to original condition, and quarantine attacks in

controlled sandboxes while closely monitoring the attack interactions within the box.

186

The main cost of the C branch “data collection by monitoring, scanning and logging” resides in

the resources consumed by the sensing and logging elements utilized by the data collection tools.

These tools are either acquired when needed or stored locally at each host. Also these tools are

either generic that can be composed at runtime to collect specific data, or specific where each

component has its own list of tools.

Tool reuse is expected to have a huge impact on the overall consumed resources by the data

collection unit. For example, if we have N component using M sensing element/component then

without sharing we have a total of N*M sensors. If on average each sensor consumes k memory

or storage space then we have N*M*K total consumed resources. In case of sharing with average

of h% shares then the total will be N*M*K*h% where H<100. The higher the value of (H) is, the

lower resource usage.

Conventional defense tools are mostly hardwired with a set of components that has its own

sensing elements integrated with the control logic. To our best of knowledge, the concept of

abstract sensing and effecting was not presented by any other technique rather than EvoSense.

Abstract sensing and effecting is a key enabler for resource sharing and reuse.

Distributed defense provisioning mechanisms utilize some sort of resource sharing by enabling

a single remote node to analyze the feedback from multiple hosts. The effect of that sharing is

expected to be clear with respect to parameters presented in the D branch of the tree. EvoSense is

designed to maximize resource sharing increasing the value of H. a single sensors feedback can be

utilized by multiple analysis and control techniques on EvoSense side. Additionally, the utilizing

the idea of programmable generic sensors, enable EvoSense Sensors to be used for collecting

information regarding different aspects of the system. Further, EvoSense sensors are designed to

crewel thought the ToD network and reside back on EvoSense side. EvoSense sensors are not

187

supposed to consume much storage or memory resources of the host, as they are all on demand

sensors that gets loaded only when needed then disposed automatically afterwards.

For the D branch “advanced research and analysis” we should mainly worry about the

consumed processing and memory usage. Most of the available defense tools carry partial or full

analysis of the senor feedback locally within the host. Distributed defense provisioning tools, tries

to minimize the processing workload on the local host by moving the high workload part to

remote servers [79,72]. However, they do not save much as the feedback sent from the local agent

to the remote server will be limited not to violate the privacy policy of the ToD. Additionally,

these tools were not designed to enable abstract sensing enabling automated sensor feedback

sharing saving huge network bandwidth in case of transferring the feedback to remote servers for

analysis.

Based on the anatomy presented in Figure 5.13 D2 and D6 are expected to be the most

resource consuming among the D branch. Using heuristics techniques to predict or reveal

unknown threats is known to noticeably increase the defense provisioning workload. For that

locally hosted defense tools tries to limit the investigation depth or the utilized techniques when

heuristics is used. Doing so limits the prediction capability and the accuracy of the detection tool

and increases the chance of false positives.

One of the most effective, and accurate way in predicting unknown threats is the environment

emulation presented by D6 , where attacks gets quarantined in a controlled virtual environment

for close monitoring and investigation. Some of the locally hosted tools can do that [69], while

this process involves huge resource consumption needed to create the virtual environment and to

keep the created virtual box and application executing within it under full time supervision.

Distributed defense systems solutions can do that remotely on dedicated servers saving a

188

considerable amount of the ToD resources. However, given the current virtualization technology,

the DSP invest a considerable amount of resources to apply such technique. Additionally, with the

limited cooperation nature of the current defense provisioning tools, multiple virtual environments

might be created to investigate same events.

With EvoSense intrinsic cooperative feature, such unnecessary duplication will be limited or

omitted saving the DSP network a considerable amount of resources. Further, EvoSense utilizing

the COA infrastructure, can create a virtualization environment for suspicious application with

one of the COA Cells, saving much of the resources wasted in creating a fully virtualized

environment utilizing one of the currently available techniques. COA Cells are Nano virtual

machines that can create a fully/Simi virtualized environment. Additionally, COA Cells are

designed to be in full time monitoring and supervision making it easier for EvoSense to monitor

the execution of the enclosed suspicious application.

The E branch is mainly concerned about after attack, and attack immunization process. Usually

this process involves cleaning or quarantine the infected application. In case of simple cleaning

the cost is relatively similar regardless of the technique used to provision defense services, while

in some cases cleaning becomes impossible and the application would revert to one of two

options, either delete the file, or to quarantine it. The quarantine is usually located within the host,

and the infected application is always under full time supervision by dedicated monitors. The

process is computationally expensive especially when the number of infected files passes certain

threshold.

One of the advantages that EvoSense grants to the defense provisioning process is the ability to

use the COA Cells to encapsulate suspicious applications. Doing so facilitates moving the

189

application outside the ToD to be executed in a more controlled environment. In this case, the

Cell will be under deep surveillance without adding extra workload to the ToD hosts.

Using COA Cell as a virtual environment either for analysis or as quarantine to threats is

computationally cheaper than using a fully virtualized environment utilizing any of the available

virtualization techniques. Meanwhile, EvoSense copy the infected application to one of its remote

serves to apply deep cleaning methods which might be effective to clean the infection.

Additionally, EvoSense can acquire a clean copy of the application from one of the available

backups of the host before infection and use it to replace the infected one.

Further, based on a research work of [68], a large set of threats massively increase the resource

consumption of their targets after infection. Time to detect, resolve, contain attacks is an

important factor in the overall estimated resource consumption of a networked system specially

after being infected by any of those attacks. The following discussion will represent that

EvoSense pervasiveness and autonomic defense missions and tips sharing can effectively

decrease the attack dispersion by rapidly distributing detection and resolution tools. Doing so, is

expected to have a noticeable effect on minimizing the resource consumption that would have

been wasted by the attack.

5.5.1.2 Time needed to detect attacks

The technique used to detect attacks has a great impact on the time frame between infection

and detection. Locally hosted techniques relay on signature database containing all the signature

of known attacks. AI enabled techniques use heuristics to allocate suspicious applications, and

report it or quarantine it. Large distributed techniques, feed their detection host side application

with frequent updates about recently known attacks in the form of added signatures. However,

190

both of them relay mostly on central servers that distributes new signatures for the recently found

threats. The time needed to device such signature is a major player in this process.

 The D branch includes the key components controlling the duration between infection and

detection. The components are either active or passive. For the active components like D2 and

D6, the spent in collecting and analyzing the sensing elements feedback either by one/more

heuristic technique has a great impact on the duration between infection and detection. Passive

components like D1, D3, and D4 relay on the speed of attack event distribution, and the time

needed to device valid signature for the attack.

Mostly, the conventional detection techniques do not share their attack prediction component

reports due to the high risk of violating the privacy policy of the ToD, and due to incompatibility

and lack of abstraction between defense tools. Different versions of the same products built by the

same company might utilize different formats to represent their signature database, or

detection/resolution protocols. Further, attack reports might indicate attacks that require specific

sensing equipment to be detected. Conventional detection tools are not designed to share tools, as

this might violate their manufacturer copy rights.

Generally speaking, sharing events without appropriate tools to verify the existence of certain

attack within the ToD network can be considered useless.

 EvoSense is built to support DSP cooperation locally within the DSP network, and globally

between EvoSense enabled DSPs. Enabling such cooperation reduces the time frame between

infection and detection, as EvoSense autonomously share detected attack events through the

pervasive management and control units distributed all over the ToD network. EvoSense sensors

extract privacy friendly information from infections hosts that can easily be shared with the tools

191

used for detection in one package “defense mission”. EvoSense share attack events easily without

violating the privacy policy of the ToD.

EvoSense leverage the homogeneity feature of its COA based infrastructure to enable sharing

attack detection packages “sensing missions”. The package includes set of tools and an execution

protocol and attack detection assurance mechanism to be distributed within the TOD network of

any EvoSense capable DSP. EvoSense sensing missions describes the behavior of an infected

application, rather than attack signature. Doing so massively reduce the time wasted in

manually/automatically creating signatures.

Let us assume that the average infection rate R/sec, then at time T we should have

IM=2 ^(T*R) infected machines.

If the time needed for the first attack to be detected is X, the time needed for a signature to be

devised is Z, the time needed for a single machine to have a copy of the signature is Y, at time to

resolve an infected computer is V

Time to safety either by immunization of by recovery and immunization is calculated as

follows: X+Z+ ((Y*(N-IM))+(Y*V*IM))

The most time consuming process is the (X+Z) period. It has a huge impact on the cost of

attack. The attack cost is an estimation of the losses occurred due to infection like, overloading

the host, or the host network, interruption of operation, … etc.

The time V also depends on the nature and the severity of the attack, some attacks sets the

detection system itself as one of its primary targets, doing so complicates the process of automatic

recovery.

192

With conventional systems, the value of X, and Z depends mostly on manual or semi-

automated analysis. The value of V depends on the cleverness of the defense tools, and the attack

type. With EvoSense, the value of X is the only important factor, as by the time of detection, the

system automatically responds to attacks by quarantining it either locally at the infection point, or

in a remote sandbox. In EvoSense, a successful mission that detects attack gets automatically

distributed to all machines connected to EvoSense enabled system minimizing the values of Z and

Y to great extent. The value of V is supposed to be small, as the system responds to threats

automatically by containing the attack in controlled environment until a resolution effector

resolves the situation. Using such technique limits the attack dispersion (R) minimizing the

number of infected machines.

From the presented study we can notice that using EvoSense to deliver defense services is

expected to reduce the overall consumed resources to detect attacks, and the time between

infection, detection, and resolution/immunization. Next I will present EvoSense sensing

circulation protocol.

5.5.2 Simulation results

We use simulation to conduct four experiments for the purpose of evaluating EvoSense

performance. The first experiment evaluates the overall downtime with and without EvoSense

evolutionary features while increasing attack arrival rate, it also evaluates the effect of widening

the defense experience sharing-scope on the system downtime. The second experiment evaluates

the effect of changing the pervasiveness-density while increasing the attack diversity on the

amount of consumed resources, on the attack detection promptness, and attack detection accuracy.

The third experiment is to illustrate the effect of sensor circulation of the system performance in

193

regard to resources consumed, and time to detect attacks. Finally, the last experiment aims to

illustrate the effect of using dynamic host classification using profiles on the system performance

aspects.

5.5.2.1 Simulator design

We used MATLAB to build a simulation program representing a 100*10*10 network of hosts

classified into different hosts in organizations and enclaves. Each node in the network holds

records for attack and resolution history during the experiment time.

Attacks are spatiotemporally distributed over the hosts based on a set of random distributions as

illustrated in Table 5.4. We designed defense mission generation module that mimics the defense

service provisioning in the real systems applying EvoSense. This mechanism uses containment

organisms to resolve un-resolvable attacks. We assume that containment organisms will resolve

the situation locally. Deploying containment organisms increases the downtime at the

deployment point by an estimated predetermined value reflecting the time needed to contain the

problem and restore the host to its original state. We used a predetermined threshold

representing the risk-factor, it is the time needed to authorize containment organisms

deployment.

Defense missions are rewarded at each successful resolution attempt. Rewarded missions are

shared and applied to other nodes within the sharing scope of the experiment. We tested the

sharing effect on the overall downtime using three scopes, single enclave, single organization,

and all community scopes.

194

The simulator was built assuming that attack activity is always detectable and it is either

resolvable or containable, sharing is only for successful attacks while containment events is not

for sharing, and all missions has only one active role.

Classification Parameter P_Type Low Normal High Very
High

Network

Number of hosts Static 100 100 100 100

Number of enclaves Static 10 10 10 10

Number of hosts/management unit Static 5 5 5 5

Number of organizations Static 10 10 10 10

Number of ToD hosts in each enclave Static 3 5 5 7

Host participation hosting sensors Static 30% 30% 30% 30%

Number of profiles Static 3 3 3 3

Number of Hosts/Profile Uniform 3,3 3,3 3,3 3,3

Event

Profile change
Timing Poisson 10 10 10 10

Type Uniform 3,3 3,3 3,3 3,3

Number of
active defense
missions

Timing Poisson 10 20 25 30

Locations Normal 10,10,
100

10,10,
100

10,10,
100

10,10,
100

How many hosts Uniform 100 100 100 100
Expiration date Uniform 10 10 10 10
Number of
sensors/effectors Uniform

5 5 5 5

Resource usage on ToD Uniform 12 12 12 12
Resource usage on DSP Uniform 40 40 40 40
Resolution time Uniform 5 5 5 5
Type Uniform 10000 10000 10000 10000

Attack
dispersion

Locations Normal 10,10,
100

10,10,
100

10,10,
100

10,10,
100

Scope Uniform 5 15 35 65

195

Rate Poisson 20 50 70 100

Sharing
Sharing scope Uniform 15 15 15 15

Sharing location Normal 10,10 10,10 10,10 10,10

Attack event
generation

Timing Poisson 10 20 30 50

Added downtime on
ToD Uniform 10 10 10 10

Resource usage on ToD Uniform 10 10 10 10

Location Normal 10,10,
100

10,10,
100

10,10,
100

10,10,
100

Type Uniform 10000 10000 10000 10000

Conventional
Deployment

Settings

Sensor Set Size Uniform 5 5 5 5
Sensor Set Locations Normal 10,10 10,10 10,10 10,10
Sensor Set scope Uniform 5 5 5 5

Sensor Set Deployment rate Poisson 15 15 15 15

Evolution

Sensor
Circulation

Timing Poisson 15 30 50 80

Deploy location Normal 10,10,
100

10,10,
100

10,10,
100

10,10,
100

Scope Uniform 5 15 25 40
Package size Uniform 5 5 5 5
Type Uniform 10000 10000 10000 10000

Containment

Contain after Uniform 15 15 15 15

Containment penalty
"time" Uniform 100 100 100 100

Containment penalty
"Resources" Uniform 100 100 100 100

Defense missions generation rate Poisson 10 10 10 10

Table 5.4 EvoSense simulation parameters

In the presented results, we are simulating the case that all hosts have same chance in getting

infected. Further, we assumed that the senor unguided circulation for the sake of detecting

unknown attacks uses balanced host selection scheme. With that assumption, it is closer to a

196

population description; which makes the normal distribution a good distribution to describe it.

The rate of change or inter-arrival time is best represented as a Poisson distribution.

We used three factors to evaluate EvoSense performance:

• Pervasiveness density reflects the amount of detection sensors deployed on each node.

• Attack diversity is the total number of successful attack types with respect to the

overall number of attacks per node.

• Detection accuracy is the number of successfully detected attacks with respect to the

overall number of attacks. Promptness is the time between infection and resolution.

 During the experiments, at each sensor deployment, resource usage calculated for the targeted

node is incremented by the estimated value of resources to be used by this sensor. Additionally, at

each attack event, the amount of consumed resources at the attack-targeted node is increased by a

predetermined value relevant to the type of attack.

The simulation experiments were built based on the following assumptions:

1) No immunization effect to save the computational power

2) Same number of attack types for each run (1, 2 , 3 ,4) and same # of machines

3) Use-everything and Commonly-used modes use the DSP resources for sharing only

4) All attacks are detectable there is a sensor matching all available attacks.

The commonly used mode “conventional tools”, is a random set of the sensors deployed on all

hosts at all times, new sensors are added with a slow rate to mimic the normal update process of

conventional tools. The update settings and the initial set size is illustrated on section

“Conventional Deployment Settings” in the table.

The use-everything mode, use all the sensors and pre-deploy them on the host at all times, no

expiration, no generation. This mode represents the most effective way to detect attacks.

197

The evolution section represent EvoSense crawlers “circulation and containment” , and the

frequent deployment of sensors and effectors that represent the normal remote sensing, analysis ,

and resolution.

Average time to detect attacks = Total time spent to detect the attack on all infected machines for

all attacks divided by the (total number of attacks + total number of machines)

Now we will discuss the simulation parameters presented in Table 5.4.

The network parameters:

Number of hosts, enclaves, organization, Number of ToD hosts in each enclave, and Number of

hosts/management unit represents the network construction and the host distribution among

enclaves and organizations. We use static values for this construction through the presented

experiment.

The “Host participation in hosting sensors “parameter represents the participation ratio of the

host in hosting sensing and effecting tools permanently in the ToD local platform. Increasing this

value to 100% means I am using only conventional defense tools with full defense package

hosted in the host. EvoSense rule in this case is just a sharing platform. In the case of using 0%

participation means I am moving all defense services to the remote DSP platform at all times, no

locally hosted sensing or effecting tools are allowed to be stored in the ToD platform.

Events:

Active defense missions: these set of parameters describes the configuration related to generating

defense missions “sensors, and effectors”. The timing sub parameter presents the time slot and

the rate of defense mission deployment on each host. This parameter is initialized and adjusted

based on Poisson distribution. The value of (λ) controls the generated result for the next round

determining the frequency of defense mission deployment. The Location sub parameter

198

represents the deployment locations for the next deployment event. We use normal distribution

to generate a set of random locations for the next deployment package. the number of hosts is

determined by the” how many hosts parameter”. The sub parameter Number of sensors/effectors

determines the size of each mission in terms of sensors and effectors. We use uniform

distribution to generate this number to stabilize the sensor load among deployed missions.

The parameters resource usage on ToD and on the DSP determines the amount of consume

resources by the deployed sensors on both platforms for each time event spend on the deployed

sensors while being active. Resolution time parameter determines the penalty applied to the

execution downtime as the time needed to clear the threat. The type parameter determines the

mission type to be deployed on the ToD. These parameters are initialized using uniform random

number generator.

Attack dispersion rate and location parameters determine the attack dispersion locations for

each time event identified by the Rate value. After infection, each attack spreads to a set of

locations with size initialized by the Scope parameter at the frequency determined by the rate

parameter.

Sharing scope and location parameters determine the scope and the locations of sharing

successful sensors with other hosts. We use normal and uniform distribution to initialize

locations and scope parameters respectively.

Attack event generation parameters is described by five sub parameters, timing to determine the

generation and deployment frequency and is initialized by Poisson distribution, the Added

downtime on ToD parameter determines the effect of infecting a host on the execution downtime

and is initialized using uniform distribution. The Resource usage on ToD Parameter determines

resource load increase on the ToD due to attack and is initialized by a uniform distribution.

199

The following sub parameters. The location and type parameter describes the location and type

of the deployed attack and is described by a normal and uniform distribution respectively.

Evolution :

The Sensor circulation parameter describes the configuration of the sensor circulation

mechanism in EvoSense. The timing describes the rate of circulation and is initialized using a

Poisson distribution, deploy location is the locations; scope is the list of hosts that will receive

the sensor package. The package size and type, describes the number and types of sensors in

each deployment package.

The containment parameter represents the containment process of deployed attacks. When the

value identified by the “Contain after” parameter expires, the containment effectors is deployed

and the process starts. The containment process has a penalty on the resources and on the

downtime identified by the parameters listed.

The Defense mission generation rate describes the frequency of adding new missions to the list

of available missions for deployment.

5.5.2.2 Extracted results and discussion

The simulator is designed to illustrate the effectiveness and efficiency of EvoSense. The results

were all generated using random distributions that were configured based on the parameters in

Table 5.4. The main objective of the experiments presented in this section is to illustrate the

effectiveness and efficiency of EvoSense when compared with “Use everything approach” that

simulate the case of deploying all the available attack detection tools on all machines at all times.

This mode guarantees 100% effective attack detection.

In real world this mode is impractical as it simulates using multiple tools working together on

same machine. This setup has been proven to be bad due to the uncooperative, and unawareness

200

nature of the available tools that might lead to multiple conflicts [1,2,3]. The commonly used

mode simulates the normal case of using a set of the available defense tools packaged in one

defense solution. This mode represents the most commonly used case in terms of efficiency as it

provides acceptable levels of guarantee that it will detect most of the attacks, while using a

reasonable amount of resources. We used this mode to replace the optimal detection mode, as it

was proved multiple times by researchers that the problem of attack detection is an NP-Complete

problem [96,97,98]. We used the most commonly used mode because it is a practical solution

closer to what is being used in the real world. Additionally it is a solution that balances attack

detection accuracy with reasonable resource usage.

The EvoSense crawlers mode describes EvoSense pervasive sensing, with intelligent

circulatory sensing mechanism, and trustworthy sharing.

The following illustrates the evaluation matrix we used to extract the presented results:

• Total consumed resources=

∑ ∑ ∑ ∑
�(𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑖𝑛 $ 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙� ∗

(𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑒𝑓𝑟𝑎𝑙))
𝑛
1

𝑁
1 𝐸

1
𝑅
1

Where N is the number of hosts in each enclave, E is the number of enclaves in each organization, R is

the number of organization, and n is the number of peripherals/ host

• Total time to detect attacks

=∑ ∑ ∑ ∑ (𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑒𝑟𝑛𝑐𝑒 𝑠𝑐𝑖𝑛𝑐𝑒 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑑𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑎𝑡𝑡𝑎𝑐𝑘)𝑛
1

𝑁
1 𝐸

1
𝑅
1

Where N is the number of hosts in each enclave, E is the number of enclaves in each organization, R is

the number of organization, and n is number of attacks infected that host

• Attack density: refers to the concentration of attacks/ hosts which is equal to the total

number of (active attacks for experiment time T) / (total number of hosts N)

• Average circulation frequency: refers to the concentration of sensors/ hosts which is

201

equal to (∑ (𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 /ℎ𝑜𝑠𝑡 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 𝑡) ∗ 𝑇)𝑁
1)/N

Where N is the number of hosts

• Attack diversity: is the total number of successful attack types with respect to the overall

number of attacks per host

The experiment is two parts, one focuses on evaluating the efficiency of detection in terms of

resource usage, and the other one focuses on the effectiveness of the detection in terms of time to

detect attacks.

202

Resources, ToD side

Average time to detect attacks in (ticks)

Resources on DSP

203

Figure 5.14 Evaluating EvoSense effectiveness and efficiency

5.5.2.3 Efficiency

Through the presented experiments we illustrate the effectiveness of our approach by

comparing the measured resource consumption by our approach with the two other approaches

known to have an acceptable defense provisioning levels “the use everything” having almost

100% detection accuracy given our simulator configuration, and the conventional mode

mimicking real life defense systems .

Figure 5.14 A1,A2, and A3 show that EvoSense resource consumption is slightly more than the

most commonly used solution and much less than the use everything in low attack rates mode

regardless of the sharing scope used.

The effect of sharing is obvious, when we expand the sharing scope of defense missions, we

managed to detect attacks much faster minimizing attack desperation and excessive resource

204

consumption. However, with EvoSense, expanding the sharing scope with low attack density

might consume more resources than needed due to the consumed resource invested in sharing

defense missions that exceeds the wasted resources by low rate attacks.

In the higher attack arrival rate cases, EvoSense was more successful than the other two modes

in saving ToD resources. EvoSense use of effective sensing martials lead to more efficient

utilization of resources and fast detection of attacks. The reason behind that is minimizing the

active period of attacks saves considerable amount of resources too. The effect of sharing is clear

in enhancing attack detection promptness and minimizing resource waste, with and we expect

that by enabling the immunization effect we can see that EvoSense can even save more resource

than the most commonly used solution. Sharing defense missions with non-infected hosts

immunize these hosts against future attacks saving unneeded future resource waste.

Figure 5.14 (C1, C2, C3) presents the resource consumption of the three modes on the DSP

side. On the DSP side, EvoSense is expected to consume much more resources when compared

to the other two modes. The simulator did not consider the cost of analysis that supposed to be

added to the ToD when using the “Use everything mode, and the most commonly used solution “

to make the comparison more focused. Adding this cost to the ToD will definitely make

EvoSense much more resource efficient than the other two modes. The reason behind that is that

EvoSense wave this cost from the ToD to the DSP side. This is why we see that EvoSense is

consuming much more resources on the DSP side than the other two modes.

The other two modes resource consumption is mainly the cost of sharing defense missions.

That is why we see a sharp decrease in the DSP resource consumption when we minimize the

sharing scope with the “Use everything mode, and the most commonly used solution “modes.

On the contrary, EvoSense consume more DSP resources when we reduce the sharing scope

205

due to the added cost of analysis of attacks that had better chance to spread all over the ToD.

5.5.2.4 Effectiveness

Figure 5.14 (B1, B2, and B3) illustrate the effectiveness of our approach by a comparison

between EvoSense and use-everything and the most commonly-used modes regarding “time to

detect attacks”.

We can notice that the use everything mode is always better that the two other modes because

giving the list of assumptions we build our simulator on, having all sensors deployed on all

machines gives the detection tool a 100% success chance in detecting attacks as soon as it hits

the host. While based on our discussion before, practically this mode is inappropriate.

EvoSense circulatory defense performs slightly less than the use everything mode, and much

better than the most commonly used solution in terms of time to detect attacks. The most

commonly used solution use random set of defense missions deployed on all hosts. Unknown

attacks would not be detected until the next update round carrying the detection tools. Attacks

will have good chance of spreading all over the system.

Expanding the sharing scope massively enhance EvoSense performance in detecting attacks,

with a slight enhancement on the other two modes, as this sharing comes in manual exchange of

signature update from central servers. EvoSense automated trustworthy sensing and effecting

tool sharing acts in much faster way than the signature database update message. EvoSense share

executable packages ready to surgically detect and remove attacks quickly and accurately from

infected hosts. Sharing such materials instead of sharing signatures enhances the detection

accuracy and promptness as shown in the figures.

1) The effect of circulation

206

Figure 5.15 The effect of circulation

We carried out another experiment to determine the effectiveness and the efficiency of EvoSense

circulatory mechanism, with different sensor/effectors circulation frequency. The experiment

evaluates both aspect based on the time to detect attacks, and resource consumption respectively

as shown in Figure 5.15 (D1, and D2).

We used three circulation frequency modes high, normal, and low circulation frequencies as

shown and highlighted in blue in the parameter Table 5.4. Lowering the sensor/effectors

circulation frequency enhances the system resource consumption on the account of increasing the

time to detect attacks. In this mode EvoSense is much like the most commonly used mode, as the

Effect of increasing frequency of circulation on resources, and time to detect attacks

Resources

 D1

Time

D2

207

sensor change slowly over time mimicking the speed of adding new signatures to the signature

database of such mode.

Increasing the sensor circulation frequency, do minimize attack detection time on the account of

increasing the ToD resources. This mode is much closer to the Use everything mode as the

number of sensors hosted on the host over time is closer to the total number of sensors available.

Additionally, the resources saved from not hosting the sensors all the time, is wasted by the load

of sensor circulation mechanism if the frequency is too high.

We can notice that EvoSense sensing and effecting circulation and sharing scope parameters can

control the spectrum of defense provisioning quality and cost. The parameters controlling these

aspects are usually adjusted by the heuristic mechanism in use at the time of deployment and

dynamically at runtime. Also enabling the immunization effect and the full-fledged EvoSense

with sensor reuse and estimation mechanisms is expected to even save more resources and

enhance detection time.

2) The effect of distributing defense missions and directing sensor circulation based on

matched profiles.

Average time to detect attacks

With

profiling

E1

208

Without

profiling

E2

Consumed resources

With

profiling

E3

Without

profiling

E4

Figure 5.16 The effect of distributing defense missions and directing sensor circulation
based on matched profiles

In this experiment we mimicked the configuration of one of the cases presented in Table 5.4,

Case (3), while enabling the profiling mechanism of EvoSense. The simulator was modified to

create a set of static profiles that describes different behavior patterns for the attached hosts. The

profiles were classified into three sup categories, Organization level profiles, Enclave level

profiles, and host level profiles. The Organization level profile describes the regular behavior of

all the hosts within this organization. The Enclave level profiles describe the behavior of all the

hosts working under certain enclave. The host level profile sub group the hosts under certain

enclave based on different profiles.

209

The attacks on the attack pool were classified in categories matching the generated set of

profiles. The attack generator was adjusted to direct only attacks that match the profile of the

targeted host.

The profiling mechanism used in this experiment presented simple classification profiles that

mimics the real system classification based on platform and application configuration.

Classifying attacks based on that profiles, was logic given that attacks are mostly targeted

targeting specific vulnerability in a certain application running on a specific platform

configuration. For example, it is highly unlikely to expect that a windows based attack would

infect a network where all hosts operate under Unix OS.

The main objectives of this experiment is to show that EvoSense capability to profile hosts into

set of classes, and direct the defense provisioning process based on that profile can enhance the

defense provisioning effectiveness quality and efficiency.

The use of such profiles minimized the search space of the investigation elements focusing on

a subset of tools matching the subset of the possible attacks. As presented in Figure 5.16 (E1, E2,

E3, and E4), doing so minimized the time needed to detect attacks, and the resources consumed

by the sensing and effecting elements. The set of resident sensors on each host, is cleverly

selected based on such profiles maximizing the success rate of such sensors and minimize the

resources wasted by useful sensors.

5.5.3 Observations

From the presented results we can conclude by illustrating the following list of observations:

• Using smart sensor deployment increases the attack detection promptness with a

reasonable overhead mostly on the DSP side.

– Most of the workload waived from the ToD to DSP enabling EvoSense to work in

210

networks with resource-constrained devices

• Increasing sensor circulation frequency and level of pervasiveness has positive impact on

minimizing time to detect attacks with a moderate overhead.

– Resources saved by limiting the attack activity, compensates in part the resource

consumption increase due to circulation frequency increase

• Smart sensor circulation based on dynamically changing profiles enhances the detection

promptness and accuracy and decrease the ToD resource consumption

• EvoSense detection accuracy is close to the optimal case with a much less overhead that

comes closely (on the ToD side) to the resource consumption of the practical case

• EvoSense is a complex defense delivery mechanism with a costly service on DSP side

– High DSP resource usage invested in;

• maintaining staple defense provisioning by;

– enabling defense resilience against attacks

– Isolating defense provisioning from ToD

• Global and deep analysis of sensor feedback to detect unknown attacks

autonomously

• Dynamic defense mission composition based on that analysis

• Constructing global real time view of the entire network to ease

management process

• Inspecting shared material against local privacy rules

• EvoSense was designed to serve large scale applications that desperately needs EvoSense

unique features

5.6 Conclusion

In this chapter we presented a quantitative study that included a set of models, experiments, and

analytical studies to evaluate the efficiency and effectiveness of CyPhyCARD and its pillars.

211

The conducted experiments and studies illustrated the capabilities of CyPhyCARD pillars to

successfully accomplish their design goals with a reasonable overhead. The presented study and

results illustrated that:

– The intrinsic adaptive and elastic nature of the basic building blocks enabled each

pillar to adapt its resource needs towards efficient utilization of the available

resources while maximizing the system performance;

– The effect of the successful and prompt detection and/or mitigation of attacks and

threats with ChameleonSoft and EvoSense have a clear impact on minimizing the

failure downtime;

– CyberX, ChameleonSoft and EvoSense were able to minimize the attack success

minimizing the impact of attacks on resources consumed; and

– Isolating defense provisioning, and moving heavyweight tasks on DSP side,

waived most of the workload from the ToD

– giving it more space to invest such resources on serving the running

applications,

– expand the system compatibility to legacy components,

– Minimize failures due to resource starvation, and

– Limit the attacker ability to utilize the defense provisioning workload to

interrupt the operation on the ToD hosts in attempt to lunch a DOS

attacks.

212

CyPhyCARD and its pillars were evaluated qualitatively through the dissertation chapters by

illustrating their effectiveness in mitigating our synthetic multi-threaded CPS attack, the

BlackWidow. The qualitative study demonstrated that CyPhyCARD and its pillars are capable of

mitigating such sophisticated attack and invalidating the attacker assumptions and the attack

design invariants.

213

Chapter 6

6. Related Work

6.1 Overview

CyPhyCARD main objective is to enable efficient, resilient pervasive and prompt attack

detection and resolution for heterogeneously composed targets. CyPhyCARD achieves its

design objectives by successful employment of its constructing pillars as described in the

previous chapters.

CyPhyCARD was founded over a COA based foundation managed by CyberX. CyberX-

managed Cell is the basic building block of the entire defense platform. CyberX works on

enabling efficient and failure resilient, adaptive application execution by means of application

modularization into fine grained components and smart employment of runtime diversity.

Attack resilience is granted by the second pillar, ChameleonSoft that enables runtime software

behavior encryption and trace-resistant moving-target defense via complex and smart

employment of diversity across time, space, and platform heterogeneity.

EvoSense uses this resilient platform to host the DSP defense services, to ensure resilience of

defense service provisioning and to isolate the defense provisioning work-load from the ToD.

Further, EvoSense pervasively deliver prompt and precise defense service to the ToD scattered

components regardless of its platform or software composition heterogeneity. In the following

“Good judgment comes from experience; experience
comes from bad judgment.” Jim Horning

214

subsections we will list the variant efforts that were presented by the current literature to enable

CyPhyCARD design objectives.

Figure 6.1The Taxonomy

6.2 Taxonomy

We presented taxonomy to lay down the foundation for the review of the literature review. The

taxonomy provided focuses on three fundamentals in CPS defense domain, the programing,

resilience, and monitoring and analysis domains. We will briefly explore each aspect moving

from general concepts to more solid concepts.

CPS Defense
Aspects

Programming

Paradigms Organization

Monolithic Modular

Resilience

Fault tolerance

Resource
redundancy

Homogeneous Heterogeneous

Attack
resilience

Detection Mitigation Prevention

M&A

Host Centric Network
Centric

Signature
based AI based

Host Net
Isolated

215

6.2.1 Programming landscape

Figure 6.2 The Taxonomy: Programming Landscape

We see the programing landscape should be divided into two aspects, paradigms and

organization. Programming paradigms describes style and methodologies used to solve software

engineering problems. Programing paradigms vary in the ideas and thoughts used to represent

the components of the programs. New technologies work on evolving platform, and applications.

However, new paradigms may be needed to enhance the efficiency and the quality of the

software development process.

CPS Defense
Aspects

Programming

Paradigms Organization

Monolithic Modular

Resilience

Fault tolerance

Resource
redundancy

Homogeneous Heterogeneous

Attack
resilience

Detection Mitigation Prevention

M&A

Host Centric Network
Centric

Signature
based AI based

Host Net
Isolated

216

Program organization represents the arrangement used to organize various sections of the

program. In this taxonomy we see the program organization as two main classes monolithic, and

modular.

Monolithic organization is the conventional technique used to present the programs as a single

module. We use this term to describe programs with single image, where software production is

a simple cloning process of the exact same module. Monolithic programs or mono culture

programing orientation builds programs as single, unstructured, self-contained software units.

These programs have serious security and performance limitations as illustrated before.

The modular programing organization describes programs that are constructed from small

structures and can be composed to construct the full application. This elastic software design by

fractionizing large programs into modules has been used to enhance the software flexibility,

reusability, and maintainability. In section 5.3 we will go deeply through the various techniques

available to realize such programing organization paradigm.

217

6.2.2 Resilience landscape

 Figure 6.3 The Taxonomy: Resilience Landscape

We define resilience as the ability of systems to autonomously maintain operational stability and

integrity in case of attacks, or intentional/coincidental failures. A resilient software product is a

product that can autonomously mitigate or block attacks, or a product with the ability to

autonomously heal from the effect of an attack or failure with minimal operation-interruption.

We see two main classes under this category, attack resilience, and fault tolerances.

Fault tolerance, is the ability of software or hardware to autonomously handle intentional or

coincidental failures and autonomously restore operation with minimal downtime. Redundancy

and replication are the main techniques being used to provide fault tolerance. Redundancy

CPS Defense
Aspects

Programming

Paradigms Organization

Monolithic Modular

Resilience

Fault tolerance

Resource
redundancy

Homogeneous Heterogeneous

Attack
resilience

Detection Mitigation Prevention

M&A

Host Centric Network
Centric

Signature
based AI based

Host Net
Isolated

218

includes duplications of data, logic or physical resources. The key element is how to detect

failure quickly, and how to minimize the time needed to restore operation with minimal resource

waste due to duplications. Section 5.4 illustrates the successful attempts of employing diversity

for fault tolerance and attack resilience. Attack resilient products are products that can detect and

autonomously mitigate attacks, or products with mechanisms to prevent certain attack classes.

Attack detection techniques vary by the variation of the application and the type of attacks that

they were design to detect, and the detection mechanism. Section 5.4 and 5.5 gives a deep

illustration of the different mechanisms available to provide attack resilience.

219

6.2.3 Monitoring and Analysis (M&A) landscape

Figure 6.4 The Taxonomy : M&A Landscape

M&A landscape focuses on the mechanism provided to facilitate host monitoring and analysis

for security objectives mainly. We classify it based on three main classes. Host centric, network

centric, and host-network isolated. The host centric defines mechanisms designed to share the

same host that it was design to monitor and analyze. These techniques use the same host

resources to provision its services. Network centric approaches are approaches that were

designed to provide monitoring and or analysis services via remote nodes that share the same

network with the host. These mechanisms usually rely on fully or partially host-resident

CPS Defense
Aspects

Programming

Paradigms Organization

Monolithic Modular

Resilience

Fault tolerance

Resource
redundancy

Homogeneous Heterogeneous

Attack
resilience

Detection Mitigation Prevention

M&A

Host Centric Network
Centric

Signature
based AI based

Host Net
Isolated

220

applications to execute its tasks. These applications share the same resources with the host, and

execute certain missions provided by remote nodes sharing the same network with the host. All

the elements have to operate within the same perimeter to protect the host privacy. Mobile agents

have long been used to establish such M&A mechanism as presented in section 5.5. The last

class is a host-network isolated mechanism that is designed to provide M&A services in total

isolation from the host and the host-network. Section 5.5 provides deep illustration of the

different mechanisms available to serve under these classes.

6.3 Elastic software design

6.3.1 Software modularization

CyberX is designed to manage COA-based systems to enable constructing elastic, dynamic,

and adaptable software products with intrinsic support for situation and context aware fault

tolerance. Currently software products depend mostly on static or partially dynamic architectures

where data, logic, and/or physical resources are primarily tightly coupled. Multiple attempts have

been presented in the literature to partially decouple these design concerns through what is termed

as application modularization.

COA separates the main design concerns through an intelligent modularization of the

application into a set of Cells. The application represented by an Organism is modularized into set

of Cells. There are different techniques along literature that worked on application modularization

for different objectives. In this section, we will illustrate the main approaches working in the field

of modularizing the application into compostable components that can adapt to certain aspects.

221

COA modularizes the application in terms of Cells, Service Oriented Architecture (SOA)

modularizes the application in terms of services, Object Oriented Architecture (OOA)

modularizes the application in terms of Objects, and Aspect Oriented Architecture (AsOA)

modularizes the application in terms of Aspects “quality attributes”. [4, 5, 6, 18]. An application

module is sometimes called components. OOA or AsOA, SOA modularize software systems into

set of components [16].

Component Oriented design was introduced to create independent entities for different

modules in a software application. [16] “Define a software component as unit of composition with

contractually specified interfaces and explicit context dependencies only”.

Generally speaking, a component can be represented as a closed composable box reflecting

certain functionality, and behavior at runtime and with interfacing capability through a clearly

defined inputs and outputs [18]. The component can communicate with other components and the

surrounding environment through such interface. A clear characterization for the component was

defined in [16].

Several versions of the component modularization were presented industry wise and as a

research work. For example, the COM [21] from Microsoft, the EJB specification from SUN [22],

CORBA [23] from the OMG, etc. Additionally the work presented like (Fractal [24], SOFA [25],

etc. is a good research work related to software modularization. Fractal was one of the approaches

that enable the component to modify its internal structure during the execution. The program

architecture can be modified at runtime enabling the application to dynamically change at

runtime.

Unfortunately none of these solutions considered the real meaning of adaptation to changes at

the application or the infrastructure level. Enabling the application to communicate with the

222

infrastructure to support its dynamic needs and to inform the infrastructure about the internals of

the execution process was not presented before CyberX COA. Additionally, the presented

approaches did not realize a full separation between design concerns. The best available solution

managed to partially isolate Data from Logic, while program components were always resource

oriented. However, none of these approaches investigated the concept of intrinsically resilient

component. CyberX Cell is a system by itself, a complex component with the ability of self-

adaptation and decision making, fully situational aware, smart, and resilient. The following

subsection provides more details about the main modularized software architectures.

6.3.2 Modularized software architectures

Aspect Oriented Software Architecture (AsOA) is one of the well-known software

modularization architectures. AsOS refers to a set of emerging mechanism that defines methods

of modularizing software systems [18]. The concept of modularization started with Parnas in the

seventies [16]. Parnas defined modularization as the process of isolating and localization of

quality attribute objectives. A quality attribute objective can represent any interest that the

developers might care for about a system. Quality attribute objectives can include high-level

objective, like security, robustness, or reliability. Low-level quality attribute objectives represent

technical aspects like caching and synchronization [24].

Separating such quality attribute objectives enabled programmers to focus on small modules,

which improved the overall application quality and minimize the chance of failure due to attacks

or design faults.

223

Separation of quality attribute objectives is an efficient way for software designers to

effectively split the application objective or the problem that the application is designed to solve

into multiple isolated modules that targets specific quality attribute objectives.

Object Oriented Programming (OOP), for example, is one of the techniques that works on the

concept of quality attribute objectives separation, by fractionizing the entire application into a set

of objects that targets specific functional quality attribute [25].

Aspect oriented programing was defined in 1996 by Kickzales and his group at the Xerox

PARC research center [24]. It was an enhanced version of the OOP to complement it in order to

obtain applications that are clearer and better structured [26].

Service Oriented Architecture (SOA) is a standard to design software applications based on

services that interact with each other. In [27], the authors define SOA as “a paradigm for dealing

with business processes distributed over a large landscape of existing and new heterogeneous

systems that are under the control of different owners.” SOA aims at facing several challenges;

like interoperability and heterogeneity. Heterogeneity refers to variation of resources,

geographical location of service provider, consumer, system developers, and owners.

SOA as a standard does not apply to a specific technology. The most mutual application

example of SOA is Web Services [18,28]. Web Services are a way to establish a SOA solution by

using a specific implementation strategy.

The Service Component Architecture (SCA) was developed as a more established version of

the SOA. SCA provides platform to achieve delivery, support, and management of distributed

applications compliant with the rules of SOA [29]. SCA utilize software components to device

services.

224

SCA is a set of specifications defining a formal method for developing application using SOA.

It is endorsed by many well-known software manufacturers including, IBM, Oracle IONA, BEA,

SAP, TIBCO and Sun.

SCA highlights the decoupling of service employment and of service assembly from the details

of infrastructure abilities and from the details of the access methods used to invoke services [18].

The SCA specification supports service implementations designed via many programming

languages, including declarative languages such as XQuery and SQL. SCA also supports a many

programming styles, including asynchronous and message-oriented styles, in addition to the

synchronous call-and-return style [29]. Also it includes object-oriented and procedural languages

such as Java, PHP, C++, COBOL; XML-centric languages such as BPEL and XSLT.

Up to our knowledge our COA is the only architecture that comprehensively supports intrinsic

separation of design concerns needed for runtime re-programmability, intrinsic autonomic online

composability, and dynamic software adaptation and elasticity.

Attempts were presented towards enabling some of these features separately. Agent Oriented

Architecture (AOA) utilized autonomic building blocks while SOA and OOA used non-

autonomic components. Using autonomic building blocks facilitated supporting non-

deterministic behavior change in AOA by explicit use of soft computing as presented in [8].

However, supporting online composability is not clear in AOA, while in OAA and SOA it is

enabled either by aggregation [9] or by service composition [10].

The COA Cell separates logic from physical resource management by constructing an

intelligently-managed elastic thin virtualization layer between the application and the underlying

physical resources. Such construction facilitates unifying the execution platform for distributed

applications regardless of the configuration of the host platform. Unifying the execution

225

environment waives the load of building platform/OS specific application for each targeted

platform. In addition, the maintainability issues are divided between the developer and the

technology owner. Software developers are concerned with maintaining the application itself,

while the technology owner is responsible for maintaining the execution platform. Partially elastic

virtualization approaches were presented for loosening the bond between physical and logical

resources; where applications are partially compiled at the production phase to be executed over

virtual machine host [4,16]. These techniques can be used to build a uniform execution

environment for distributed applications. However, these approaches presented static elasticity

and partial separation of design concerns. They did not separate data from logic and physical

resources. Such separation is a key enabler for supporting intrinsic fault-tolerance, live-

mobilization, and runtime adaptation to frequently changing execution environment. Our

approach provides an intelligent elastic virtualization utilizing mobile software capsules (Cells)

that gets specialized at runtime facilitating online re-programmability. This feature when managed

by CyberX enables COA Cells to seamlessly move between heterogeneous hosts, while

autonomously adapting to any resulted changes. Additionally, CyberX-managed COA Cell can

encapsulate different code variants and switch between them at runtime. CyberX utilized this

unique feature to enable runtime manipulation of targeted quality attributes. Doing so, facilitates

real-time adaptation to execution environment changes optimizing the application performance,

resource-utilization, and enhancing its reliability, survivability, and compatibility. Based on our

knowledge utilizing any of the available virtualization techniques to enable such features were not

possible prior to our work. The next subsection focuses on approaches employing component

diversity techniques for quality attribute manipulation.

226

6.4 Diversity employment for security, performance, and adaptability

Component diversity was investigated in Genesis [11], were the idea of providing both design

diversity in the form of multiple variants representing different designs of the same specification

as well as data diversity were proposed. Compiler guided code variance approach [12] aimed to

present automated massive-scale software diversity by the help of automated variant generation

and utilizing multi-core platforms. More advanced diversity employment approaches with the

objective of anomaly detection through detecting flow deviation but with fewer constraints were

presented in [13, 14]. A major drawback of such solutions is the need for virtualizing every input

to the whole set of executing variants at the same logical point to be able to detect the abnormal

deviation of the execution flow.

Based on our knowledge utilizing runtime hot shuffling of software variants for quality

attribute hot manipulation was not previously investigated. Additionally, failure recovery

mechanisms were not investigated as most of these solutions presented static diversity with low

probability of failure. None of them investigated the idea of a comprehensive solution that

provides elastic, autonomous, resilient, situation-aware platform targeting different quality

attributes, while dynamically shuffling its software components to suit changes in the

surroundings. Another drawback of these solutions is the massive use of resources to realize

diversity using heavy virtualization techniques and multicore or multiprocessor platforms. The

following subsections introduce variant techniques for diversity employment for different

objectives.

6.4.1 Design time diversity

227

Software diversity has a long history of research work in the field of software security and

fault tolerance dated back to the 70’s [4]. Basically software diversity was presented as multiple

independent solutions for the same problem. The realization of that is to develop multiple

independent versions of a program with different teams using different languages. The main goal

of this approach was to increase the attacker confusion by changing the behavior of the software,

which will make system exploitation harder. They expected that at any given time the majority of

these versions will be working correctly [4, 5].

Some research work showed that there is a high probability that a multi-variant software

approach might face many coincidental failures [6, 7]. On the contrary other research work

suggested that from the cost and the reliability point of view, the multi-variant approach is much

better than the one “good” version, especially in mission critical applications where the cost of

failure could be very high [30].

Design time diversity aims to device the same software in multiple designs to diversify the

software product [31, 32] the objective was to defeat the mono culture of software development,

and to increase the attacker search space for vulnerabilities. Different techniques[34,35] were

designed to automate inducing light changes in the software product at development time. The

basic idea is that the diverse software replicas maintain the same functionality, but differ only in

their implementation details.

The main problem facing this approach was the fact that it is static, and it can easily be

predicted by runtime analyzers working on the attacker targeted field of operations.

6.4.2 Load time diversity

228

System call randomization is a good mitigation mechanism against a wide set of code

injection attacks; it aims to randomize the mapping of system calls [12]. The attacker mission to

counterfeit such defense relies on guessing the system call numbers. The main issue is that the

realization of this technique requires kernel recompilation with the new randomized system call

mapping, and it necessitates that the binaries are rewritten to reflect the new system calls. These

requirements invalidate such approach, in addition to the fact that static redesign of the kernel is a

very complicated task [18]. Even with dynamic instrumentation [24] it still considered impractical

due to the excessive overhead. Additionally, it is a static solution that works only against one

class of attacks and is not valid for other classes of attacks.

Pointer randomization, this approach works on randomizing the stored pointer representation

values. The work presented in[12] is a good example for such mechanism. The authors perform

an XOR operation on the pointer values with a random integer mask the gets generated at the

bootstrap time. This mechanism works on mitigating attacks targeting corruption of pointer

values. Attackers trying to mitigate such attack have to guess the value of the random integer

mask used at bootstrap time to device the desired pointer value for corruption. The main

disadvantage of such solution is it is static randomization. The values remain the same after

bootstrapping and can be analyzed or guessed by the attacker with tools working on the same host

especially for long lived applications. Additionally, it works only with one class of attacks.

Attacks like buffer overflow for example cannot be mitigated with such mechanism. Further, it is

useless with languages that does not provide accurate type information, or languages working

with un-typed buffers. With such languages the corresponding pointer value(s) cannot be

protected.

229

Address space layout randomization is one of the most successful and most commonly used

mechanisms in many operating systems. Multiple implementations were presented to realize

address space layout randomization [37,39,38]. These approaches focused on randomizing the

base address of memory sections. It works fine with some attack classes like buffer overflow

attacks, while it share the same problem of static diversity approaches. These mechanisms provide

static diversity that can be detected by resourceful attacker with tools executing on the same

machine running the targeted software.

6.4.3 Runtime diversity

Diversity has been realized in various ways. Some work presented it in the form of confusion

induction paradigm [41,40] where diversity is used to confuse the attack in order to complicate

the attack process. An example for leveraging diversity for confusion induction is presented in the

form of a load-time binary transformation as the one mentioned before and the one presented in

[42]. Others presented different solution for diversity realization based on virtual machines called

“private machine architecture” [43]. They used randomization to promote heterogeneity at the

machine level aiming to increase the cost of broad-based binary attacks. Moreover, some

commercial operating systems realized the ideas of operating system randomization [44, 45].

System call mappings, global library entry point, and stack placement randomization were used to

induce diversity as mitigation for buffer overflow attacks.

Component diversity was investigated in Genesis [35], were the idea of providing both design

diversity in the form of multiple variants representing different designs of the same specification

as well as data diversity were proposed. Data diversity uses multiple copies of a single

implementation operating on different data inputs but yielding the same desired results.

230

Massive-scale software diversity was presented by the help of automated variant generation

and utilizing multicourse platforms. Compiler guided code variance approach aims to present

such automation [41]. A realization of this massive-scale software diversity approach for the

purpose of detecting anomalies by replicated execution was first presented by [11, 12, 50] they

mixed diversity with parallelism and check pointing. They execute different variants of a program

in a muti-core environment while monitoring any deviation in the program flow to issue an

intrusion alert.

A major drawback of existing solutions is the need for virtualizing every input to the whole set

of executing variants at the same logical point to be able to detect the abnormal deviation of the

execution flow. More advanced approaches with the objective of anomaly detection through

detecting flow deviation but with fewer constraints were presented in [51,52,13,54].

These approaches generally apply different types of diversity mainly for reliability by replication

or for intrusion detection by program flow deviation detection at runtime. Based on our

knowledge utilizing runtime hot shuffling of software variants for behavior encryption was not

previously investigated. Further, existing solutions used diversity to target specific quality

attribute. Failure recovery mechanisms were not investigated as most of these solutions

presented static diversity with low probability of failure. None of them investigated the idea of a

comprehensive solution that provides elastic, autonomous, resilient, situation-aware platform

targeting different quality attributes, while dynamically shuffling its software components to suit

changes in the surroundings. Another drawback of these solutions is the massive use of resources

to realize diversity using heavy virtualization techniques and multicore or multiprocessor

platforms. ChameleonSoft is designed to support legacy systems with limited resources. It can

dynamically tailor its tasks to suit the dynamic change in resource availability.

231

6.5 Attack detection and resolution

6.5.1 Malware detection

A malware is malicious software designed to infiltrate or damage a Cyber system or Cyber

Physical System (CPS) without the owner’s informed consent [107]. There are many malware

types with different shapes and entry points. Most of these software objects share similar

purposes while they are expected to behave differently at time of infection. Viruses, worms,

botnets, wabbits, Trojan-horses, exploits “backdoors”, spyware “scumware, stealware,

parasiteware, adware”, rootkits, blended threats, evolving threats, keyloggers, hoaxes are

examples of the different malware types. Figure 6.5 lists the different types of attacks and the

usability ration of each one of them [33].

Figure 6.5 classification of malware related attacks
Each malware group has its own way of being undetected. Modern malware detection tools

utilize multiple detection mechanisms to be able to detect multiple malware categories as

presented in Figure 6.5. Malware especially viruses are either memory resident or non-memory

232

resident. Non memory resident are simple attacks that can easily be detected an entry point with

a cleaver detection tool.

The memory resident attacks are more complex and efficient that stays in memory and hides

their presence from detection tools. These attacks are either fast infectious aiming to infect as

much files as possible locally within the infected host or remotely through the host network, and

network shares. The second category of memory resident attacks is the slow infectors. Slow

infectors are the most dangerous type of malware as it uses stealth and encryption techniques to

stay undetected as long as it can. They are powerful attacks that can be a combination of multiple

processes working together towards certain objective.

Malware detectors use signature based detection techniques to detect known attacks. Signature

based detection became very efficient way of detecting known threats [49]. Finding a specific

signature in one of the executable codes can accurately identify any enclosed threats within such

code. Attack signatures are frequently updated and stored on the local anti-malware database.

Unfortunately this technique is inefficient if the attack has a malformed signature either by the

programmer or by a mutation engine.

Heuristic techniques are one the most efficient ways to detect such mutated attacks. Heuristic

and metaheuristic techniques are used to spot unknown or known attacks with polymorphic

behavior.

233

Figure 6.6 Classification of malware detection mechanisms

By definition, heuristic technique is an informal technique to solve problems efficiently and in a

way close to the optimal path [49]. Heuristic techniques are commonly used to rapidly reach a

solution that is somehow close to the best possible solution. The metaheuristic technique is a

heuristic method for solving many of the computational problems by combining user-given

black-box procedures in a hopefully efficient way [49].

Most of the modern malware detection techniques that use metaheuristics to detect attacks utilize

a set of isolated tools utilizing different techniques hoping in detecting one of the attacks that

234

there is no specific way to detect it. Most of these tools utilize one of the following mechanisms,

Pattern matching, automatic learning, environment emulation, neural networks, data mining,

byes networks, and hidden markov models. There are other metaheuristics techniques but most

of them are built based on one or more of the aforementioned mechanisms.

The main concept of heuristic based detection techniques is to detect attacks without knowing

too much about its internal structure. Heuristic techniques mainly focus on examining the

behavior and the characteristics of the executing software to anticipate whether it is acting

maliciously or not. The most successful heuristic based detection technique named as The

Heuristic Scanning Technique utilizes a mixture of multiple metaheuristic techniques such as

pattern matching, automatic learning, and environment emulation.

Heuristic scanning in the common sense uses pattern matching to examine the assembly

language instruction execution sequence, and qualifies them by their potential dangerousness.

Heuristic scanning usually follows a set of built-in rules with pre-assigned weight on each rule.

In case of violation of any of any of the rules the weight of the violated rule is added to the total

violated rule by the same program or process. The program is flagged as malicious only if the

total sum of added weights exceeds certain threshold. Figure 6.7 illustrated the idea of a single

layer classifier with predetermined threshold.

235

Figure 6.7 Single layer classifier

The feedbacks from the different scanners are fed into global summarizing point that follows a

certain metaheuristic mechanism as illustrated in Figure 6.7. The overall result will decide

whether to flag the scanned object or not.

As the detection techniques gets more cleaver, the modern attacks or malware also emerge to

more complicated attacks utilizing more sophisticated stealth techniques. Such techniques give

them the advantage of being invisible to traditional scanners. Moreover the use of real-time

encryption, and anti-heuristic sequences made them looks totally harmless to traditional malware

scanners.

Heuristic scanners that use single metaheuristic mechanism that focuses only on monitoring the

execution flow of the instructions of a certain program are deceivable by code obfuscation. Code

obfuscation occurs by embedding some meaningless instructions within a malicious code. The

same technique deceives detectors utilizing heuristic and signature scanning combined together.

One of the successful mechanisms to resolve the aforementioned problem is the use of artificial

runtime environment emulation. However, it is not a light weight detection mechanism, but it has

236

high success rates in detecting unknown attacks. Environment emulation utilizes the idea of

virtual machines; the malware detection tool provides a virtual machine with independent and

isolated operating system and allows malware to perform its routines freely within the virtual

environment. The execution behavior of the suspicious application is being continuously

examined while the malware is not aware. Most of the stealth and anti-heuristic techniques are

irrelevant in this case, as the detection tools scan the behavior from outside the box with a clear

vision of what is really happening inside.

The main problem facing such technique is the massive resource consumption and the expected

delay needed to construct the virtualization environment, and infiltrate the harmful instructions

from being executed on the real machine.

Another problem that arises with using heuristic methods for detecting malwares is the

possibility of false positives. A false positive event occurs when a benign program gets flagged

as malicious by the heuristic scanner. The problem occurs frequently specially with

noncommercial programs having suspicious routines through their encryption functionalities.

 The use of automatic learning is a good resolution of such problem, where the detector learns

from its mistakes. The main issue with this technique is it requires an advanced user. In order to

resolve such problem autonomically, detection scanners have to increase their scanning depth,

and combine feedback from multiple heuristic mechanisms. Also external consultation is one of

the most efficient techniques, where an external resourceful node gets consulted for guidance

related to suspicious programs with weights that parley cross the threshold line. The only issue

with that solution is the possibility of privacy violation due to sending specifics about the

suspicious events.

237

Recently more complicated attacks were introduced that depends on infecting and controlling

multiple hosts creating an automated taskforce targeting multiple objectives. Such attacks usually

have dynamic objectives, and construction components. Additionally, they are frequently and

autonomically get updated using a dynamic up/down link between the attacker and the malware

itself. Detecting such attacks is a very complicated task given the uncooperative nature of the

conventional modern detection tools, and the fact that they share the same host, or host network

with their ToD.

Sharing the same network or host with the ToD makes them an easy target for attackers to

deceive, or destroy [46,71]. Additionally, the successfulness of the malware detector depends

mostly on the fast real-time, and deep analysis of the scanners feedback. Such process, especially

when it involved creating a runtime emulated execution environment is a computationally costly

process for a tool that shares the ToD resources.

6.5.2 Standalone and distributed monitoring and evaluation solutions

Defense services for CPS are highly dependent on the promptness and accuracy of the

Monitoring and Analysis (M&A) mechanisms employed. Traditional M&A approaches do not

treat sensing and effecting for cyber components and physical components seamlessly. The

current M&A mechanisms were designed based on a set of assumptions that unintentionally

neglect the real-time interaction and the tight coupling between these converging components.

The assumption was that physical components were protected by isolation and parameter defense

while real-time response was not a primary factor for cyber components. Further, they assumed

that there is no need to employ privacy preservation techniques as the Target of Defense (ToD)

privacy is implicitly protected by cyber and physical parameter defense. Additionally, they

238

assumed that resource heterogeneity and scale could still be resolved by a distributed set of

heterogeneous, pre-deployed platform-dependent defense tools with fixed resource profiles.

 Research works in [83,84] as well as our own have disputed the validity and correctness of such

assumptions as they lead to drastic problems and limitations negatively impacting the quality

and promptness of the CPS defense service provisioning. Current CPS Defense Service

Providers (CPS-DSPs) fail to provision trustworthy robust and reliable monitoring and

evaluation of the ToD components due to the use of scattered, uncoordinated, uncooperative,

unaware, isolated and heterogeneous monitoring tools, and reporting mechanisms. Such

limitations increase the use of resources due to redundancy, increase the risk of conflicts, and

failures due to limited awareness and coordination, lower the defense quality due to the poor, and

boundary limited feedback, increase the latency in defense provisioning and in detecting attacks

giving the attacker the advantage to spread the attacks through multiple networks, the tool

heterogeneity and uncooperative nature massively complicates automating its management, the

static nature of such tools complicates attempts to autonomously adapting to changes in the

surroundings.

Research presented in [87,88,89,90] attempted to resolve some of the problems resulting from

such assumptions using more flexible sensing and control elements. They devised a mobile

multi-agent based attack detection system. The presented solutions were situation unaware and

offered limited defense-tools pervasiveness and coordination. Generally speaking, provisioning

defense services while sharing the same host with the ToD exposes the ToD to DoS attacks, and

limit the system’s scalability and interoperability.

Works in [89, 90] utilized a multidisciplinary approach to intelligently resolve some of the

presented limitations. They combined multiple artificial intelligence techniques to build a

239

complex smart attack detection system. Unfortunately, these techniques were bounded by the

available technology constraints; they were designed to provision dedicated defense service while

sharing the ToD host or host network. They were unable to overcome the curse of complex

systems dimensionality. With the increase of system complexity and numerousness of input

features, the processing time involved with clustering system events might badly affect system,

and attack detection timeliness. Time constraints may sometimes force the system to prune less

important features (dimensionality reduction) to maintain system timelines. However, the pruning

approach is not always possible as it might compromise the detection accuracy.

All the above mentioned approaches were mainly concerned with defense service provisioning

for cyber components. The work presented in [91, 92] is a hardware based static detection system

capable of supporting the requirements of both cyber and physical components. Using hardware

based detection and analysis techniques guarantee prompt, and resource efficient response for

quickly spreading attacks. A major disadvantage of technology is its limited flexibility,

adaptability, interoperability, and maintainability. These systems are designed to work for specific

target and cannot seamlessly adapt to match different targets.

Multiple attack detection solutions were presented utilizing mixtures of the abovementioned

methodologies employing different M&A techniques [93, 94], Unfortunately, none of these

systems where capable of presenting a comprehensive, autonomous, interoperable, globally

situational aware and scalable solution that can guarantee adequate defense provisioning quality

and promptness while maintain the ToD survivability, operability, and privacy. Up to our

knowledge EvoSense is the first solution that can provide such features comprehensively and

pervasively with low overhead.

6.5.3 CPS related control solutions

240

In addition to the limitations presented in the previous two subsections, in regards to

monitoring and evaluation, and analysis of feedback, the control phase; where the defense system

takes actions regarding detected threats face a serious set of limitations [71]. The limitations are

mainly due to the lack of cooperation and awareness that limit the defense tools capability to

resolve or even contain persistent fast spreading attacks.

For example, it is too hard for such uncoordinated, scattered tools to marshal and coordinate

task force to hunt down the attacks spreading all over the network or a set of interconnected

networks as it is hard to control the DSP, and the ToD tools and equipment to block attack access

to the shared network. Further, without appropriate global control, and situational awareness too

hard to block the source of dynamic remote attacks. Such limitations can be utilized to cause DoS

attack by keeping the DSP busy treating infected files and strike more and more files.

Research work has been focusing on presenting a resolution for some of the control problems

in CPS environments. Researchers in [75] presented what is called Autonomous Multi-agent

Cooperative Problem Solving (TEAM-CPS), and successfully applied it on one of the critical

CPS, the public telephone networks. They used multi intelligent agents that were designed to

work together to provide distributed control for such system. Unfortunately, the system was not

scalable enough to suit large scale systems. The limitations against this approach and other agent

passed approaches like the work presented in [53,72] is the high resource consumption nature of

the agents, and the fact that they are designed to share the host resources. These limitations limit

the approach capability to scale.

From another perspective, the use of intelligent agents lacks the support of the physical part of

the network. The used agents are not aware of the interactions between the cyber and the physical

parts of the system. Such unawareness increases the chance of conflicts, errors, and failures.

241

 A more advanced version of this line of research was resented by the work of [71,53] as they

used multiple AI techniques to control a pool of mobile agents performing control tasks. The use

of AI guided the management platform towards smarter decisions. Unfortunately, they shared the

same problem of their insisters, the lack of situational awareness, and the inconsideration of

isolating the control platform from the host under control. Such limitations limited the scalability

of such systems, and their ability to suit CPS applications.

6.6 Conclusion

In this chapter we presented an overview of the latest efforts that were presented by the current

literature that can be utilized towards the realization of CyPhyCARD design objectives. We

illustrated the various techniques available to enable software elasticity needed to facilitate

efficient and dynamic adaptation to changes within CPS domain. Additionally, we presented the

various techniques available to enable software diversity that can be utilized to realize moving-

target defense for platform security. Finally, we presented the different attack detection and

resolution mechanisms being used within the cyber and CPS domains. We observed that despite

the existence of solid and concrete research base addressing these various design aspects, these

solution fall-short to realize the needed level of quality, efficiency, and effectiveness to support

the CPS defense cloud presented here. In addition to the efficiency and effectiveness limitations

of the presented solutions, these solutions were not designed to be composeable or cooperative

facilitating the construction such large defense platform like CyPhyCARD. Additionally, these

solutions were not designed to satisfy CyPhyCARD’s targeted field-of-operation needs and

characteristics. Based on our best of knowledge, the presented pillars independently or combined

together under CyPhyCARD umbrella, they present unique efficient and effective solution to a set

242

of CPS security challenges that were not previously addressed, inadequately-addressed, or

addressed-with-serious-limitations by other solutions.

243

Chapter 7

7. Conclusion and Future Work

7.1 Conclusion

In this dissertation we presented CyPhyCARD platform that provides the means to guarantee

continuity of operations as well as deter attacks and prohibitively increase the cost on potential

attackers. CyPhyCARD efficiently coordinates defense missions and tools in real-time to

accomplish the following objectives:

 Achieve asymmetric advantage to CPS defenders, prohibitively increasing the cost for

attackers;

 Ensure resilient operations in presence of persistent and evolving attacks and failures; and

 Facilitate defense alliances, effectively and efficiently diffusing defense intelligence and

operations transcending organizational boundaries.

CyPhyCARD presents a unified resilient platform to monitor, manage, and control the

heterogeneous composition of CPS components. Such unification of control with the help of

CyPhyCARD autonomous management capability expands the applicability of such system in

multiple domains related to cyber and CPS.

“I came to the conclusion that I am
not a fiction writer.” Tim LaHaye

244

CyPhyCARD uses its resilient cloud-like infrastructure to host defense services and to perform

all the heavy tasks related to defense provisioning waiving a large computationally-heavy load

from the ToD. Waiving that load in addition to CyPhyCARD utilization of platform independent

sensing and effecting capsules for defense provisioning expands the system support to various

host configuration and legacy systems.

 CyPhyCARD provides the means to automate trustworthy multi-organization information

sharing to enable early attack alarm and enhance the defense system global situation-awareness

towards more accurate decision making. Enabling such features makes it possible to

successfully provision defense services to mission-critical heterogeneously-composed systems

like CPS, while maintaining the operation timeliness and stability in presence of persistent

attacks.

Throughout CyPhyCARD, we presented three novel contributions addressing a list of serious

security challenges facing cyber and CPS domains. These solutions were designed to be self and

situation aware and can autonomously and harmonically work together to construct

CyPhyCARD.

 Figure 7.1 illustrates the main scientific contributions, solved hard-problems, and the major

outcomes of realizing CyPhyCARD and its constructing pillars.

245

Figure 7.1 CyPhyCARD main contributions

The main contributions of this dissertation are:

• CyberX is a smart management platform that isolate the main design concerns data, logic,

and physical resources. Such isolation enabled software applications to be platform-

independent, elastic, dynamically adaptable to changes, resilient, and resource efficient.

• ChameleonSoft that employs multidimensional software diversity to, in effect, induce

spatiotemporal software behavior encryption. ChameleonSoft utilizes the loosely coupled

foundation provided by CyberX to mobiles at runtime the executable behaviorally-

encrypted software components across heterogeneously-configured platforms inducing a

trace resistant moving target defense.

246

• EvoSense realizes pervasive monitoring and analysis for heterogeneously composed

targets. EvoSense is a biologically-inspired intrinsically-resilient, situation-aware sense

and response system to seamlessly effect biological-immune-system-like defense.

EvoSense acts as a middle layer between the defense service provider(s) and the Target

of Defense creating a uniform defense interface that hides ToD’s scale and heterogeneity

concerns from the defense-provisioning control and management. EvoSense is elastic

where solutions are dispatched through a dynamic set of sensors and effectors to the ToD

rather than using pre-deployed M&A components. EvoSense circulates context-driven,

online customizable sensing and effecting capsules into the ToD body to pervasively

monitor, analyze and control ToD components. The key design principles for EvoSense

are:

o ToD-independent defense service provisioning;

o Decoupling sensing and effecting tools from the control and management logic

towards enabling interoperable and dynamic defense; and

o Intrinsically supporting trustworthy scalable cooperative defense with shared

indicators.

The presented qualitative and quantitative study illustrated the capability of CyPhyCARD and its

pillars to effectively and efficiently achieve their design goals. Further, the study illustrated that

CyPhyCARD and its pillars can adjust their resource-needs and operational-characteristics to

support defense provisioning for large-scale mission critical heterogeneously-composed

platforms like CPS.

247

7.2 Future Work

Future work will focus on the following directions:

• The Cell: we realized the simple and fast version of the Cell with partial isolation

between the logic and the targeted execution platform. We will devise a lightweight,

complex version of the Cell with a fully virtualized environment. Devising such version

of the Cell will enable us to construct a full test bed of ChameleonSoft trace-resistant

moving-target defense where Cells can migrate between heterogeneous platforms

seamlessly with no need to change the current active variant to another variant matching

the targeted platform. Enabling such feature will expand the migration landscape

increasing the complexity for the attacker to trace its target.

• Variant generation: we will devise techniques for behavior computation to support the

design of an automated similar function different behavior variant generation framework

capable of generating variants based on specific requirements and behavior deviation

distances.

• Intelligence: the system currently uses a generic model for the smart processors

controlling all the decisions being taken within the entire platform. Further study will be

conducted to determine the best artificial intelligence technique suitable for each location.

The system should be able to switch between these techniques at runtime based on the

changes of the situation in hand.

• Quality of Service (QoS): we will devise models for the instrumentation and control of

various QoS parameters in CyPhyCARD, and develop corresponding control mechanism

to adjust the aspects of the working components to maintain the design targeted quality of

service levels.

248

• Sensing and effecting: Formal description of CyPhyCARD ready defense missions for

the DSPs to follow. In addition to developing sensor, effector, and control logic

extraction framework that can autonomously transform conventional tools to

CyPhyCARD ready sensing and effecting APIs.

• Test bed: we will complete the implementation of CyPhyCARD test bed and conduct

extensive evaluation of different classes for real life applications under various scales and

workload patterns. CyPhyCARD test bed integrates the C# implementation of the Cell,

CyberX, ChameleonSoft, EvoSense, and multiple simulation packages that were built

using MATLAB. Future versions of the test bed will exploit new virtualization

techniques to realize the Cell with integrations of such techniques within CyberX,

ChameleonSoft, and EvoSense platforms. Further, the Test bed shall include a framework

for building generic CyberX ready digital interface for various physical components. The

test bed will be tested on large-scale heterogeneously composed networks of cyber and

physical components.

249

8. Publications
• Mohamed Azab and Mohamed Eltoweissy, “ChameleonSoft: Software Behavior

Encryption for Moving Target Defense,” Springer Journal on Mobile Networks and

Applications (MONET), DOI: 10.1007/s11036-012-0392-0 ,2012.

• Mohamed Azab and Mohamed Eltoweissy, “Bio-inspired Evolutionary Sensory System

for Cyber-Physical System Defense,” IEEE Technologies for Homeland Security, Nov

2012.

• Mohamed Azab and Mohamed Eltoweissy,”CyberX: A Biologically-inspired Platform

for Cyber Trust Management,” 8th International Conference on Collaborative

Computing, Oct 2012.

• Mohamed Azab, Reham Hassan and Mohamed Eltoweissy, “ChameleonSoft: A Moving

Target Defense System,” 7th International Conference on Collaborative Computing, Oct

2011.

• Mohamed Azab and Mohamed Eltoweissy, “Towards A Cooperative Autonomous

Resilient Defense Platform for Cyber-Physical Systems,” 7th Annual Cyber Security and

Information Intelligence Research Workshop, Oct 2011.

• Mohamed Azab and Mohamed Eltoweissy,” Defense as a Service Cloud for Cyber-

Physical Systems,” 7th International Conference on Collaborative Computing, Oct 2011.

250

9. Patents and awards

• Provisional Patents

– ChameleonSoft: Software Behavior Encryption for Moving Target Defense

[Application 61731489, EFS ID 14347009] 2012

– CyberX: Resilient Software Management and Operation Technology

[Application 61724987, EFS ID 14198975], 2012

– Bio-inspired Evolutionary Sensory System for Cyber-Physical System

Defense [In preparation]

• Awards

– “CyPhyCARD, Smarter Cyber-Physical Security”, nominated as one of the

top ten projects in the Sixth Annual National Security Innovation

Competition, 2012

251

10. Bibliography

[1] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. S.Sastry, “Challenges for securing cyber physical systems,” in Workshop

on Future Directions in Cyber-physical Systems Security, 2009.
[2] GAO, “Critical infrastructure protection: Challenges and efforts to secure control systems.” United States General Accounting Office

(GAO), pp. 04–354, 2004.
[3] N. Adam, “Workshop on future directions in cyber-physical systems security.” Report on workshop organized by Department of

Homeland Security (DHS), 2010.
[4] C. Grim, “Application virtualization,” 2012. [Online]. Available: http://www.vmware.com/products/thinapp/overview.html .
[5] G. Lawler, “Distributed architecture for the object oriented methods for interoperability,” NAVAL POSTGRADUATE SCHOOL,

2003.
[6] C. Hahn, C. Madrigal-Mora, and K. Fischer, “Interoperability through a platform-independent model for agents,” in 3rd International

Conference on Interoperability for Enterprise Software and Applications, 2007.
[7] Zeigler, C. Seo, and B.P., “DEVS namespace for interoperable DEVS/SOA,” in 2009 Winter Simulation Conference, 2009.
[8] C. Carrascosa, A.Terrasa, A.García-Fornes, A.Espinosa, and V.Botti, “Behaviour management in real-time agents,” in Fifth

Iberoamerican Workshop on Multi-Agent Systems, 2004, pp. 1–11.
[9] A. Tolk, S. Diallo, C. Turnitsa, and L. Winters, “Composable M&S Web services for Net-centric Applications,” Journal of Defense

Modeling and Simulation, pp. 27–44, 2006.
[10] P.-O. Östberg and E. Elmroth, “GJMF - A Composable Service-Oriented Grid Job Management Framework,” 2010. [Online].

Available: http://www.cs.umu.se/ds.
[11] J. C. LKnight, J. W. Davidson, D. Evans, A. Nguyen-Tuong, and C. Wang, “Genesis: A Framework for Achieving Software

Component Diversity.” Technical Report AFRL-IF-RS-TR-2007-9, University of Virginia, January, 2007.
[12] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer systems,” in 6th Workshop on Hot Topics in Operating Systems

(HotOS-VI),, 1997, pp. 67–72.
[13] T. Jackson, B. Salamat, G. Wagner, C. Wimmer, and M.Franz, “On the Effectiveness of Multi-Variant Program Execution for

Vulnerability Detection and Prevention,” in International Workshop on Security Measurements and Metrics (MetriSec 2010), 2010.
[14] M. Franz, “E unibus pluram: Massive-Scale Software Diversity as a Defense Mechanism,” in New Security Paradigms Workshop 2010

(NSPW 2010), 2010.
[15] NSF, “Cyber Trust program solicitation,” 2012. [Online]. Available: http://www.nsf.gov/pubs/2008/nsf08521/nsf08521.htm .
[16] L.Parnas, “On the criteria to be used in decomposing systems into modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–

1058, 1972.
[17] G.Booch, “Object-oriented design,” ACM SIGAda Ada Letters, vol. I, no. 3, pp. 64–76, 1982.
[18] C.Szyperski, Component Software Beyond Object-Oriented Programming, 2nd ed. Addison Wesley, 2002.
[19] H.Kopetz, “Real-Time Systems Design Principles for Distributed Embedded Applications.” Norwell, MA: Kluwer, 1997.
[20] C.Parra, “Towards Dynamic Software Product Lines: Unifying Design and Runtime Adaptation,” Université Lille, 2011.
[21] D.Box, Essential COM. Addison Wesley, 1998.
[22] B.Burke and R.Monson-Haefel, Enterprise JavaBeans 3.0. O’Reilly, 5th ed. Beijing: , 2006.
[23] D.Schmidt, “Tutorial on the Lightweight COBRA Component Model (CCM),” 2012. [Online]. Available:

http://www.slideshare.net/jwillemsen/omg-corba-component-model-tutorial.
[24] E.Bruneton, T.Coupaye, M.Leclercq, V.Quéma, and J.Stefani, “The FRACTAL component model and its support in Java: Experiences

with Auto-adaptive and Reconfigurable Systems,” Software Practice & Experience, vol. 36, no. 11–12, pp. 1257–1284, 2006.
[25] F.Plasil, D.Balek, and R.Janecek, “Sofa/dcup: Architecture for component trading and dynamic updating,” in International Conference

on Configurable Distributed Systems, 1998.
[26] R.Filman, T.Elrad, S.Clarke, M.Ak¸, and Sit, Aspect Oriented Software Development. Boston: Addison-Wesley, 2005.
[27] G.Kiczales, J.Lamping, A.Mendhekar, C.Maeda, C.V.Lopes, J.Loingtier, and J.Irwin, “Aspect-oriented programming,” ECOOP, pp.

220–242, 1997.
[28] C.Quintero and et al, “Architectural Aspects of Architectural Aspects,” Springer.EWSA 2005. LNCS, vol. 3527, no. 247–262, 2005.
[29] N.Josuttis, “SOA in Practice: The Art of Distributed System Design,” 2007.
[30] D.Gisolfi, “Web services architect: Part 1, an introduction to dynamic e-business,” 2012. [Online]. Available:

http://www.ibm.com/developerworks/webservices/library/ws-arc1/.
[31] R. Feldt, “Generating Multiple Diverse Software Versions with Genetic Programming,” in 24th EUROMICRO Conference

(EUROMICRO ’98), 1998.
[32] L. Hatton, “N-version design versus one good version,” IEEE Software, vol. 14, no. 6, pp. 71–76, 1997.
[33] Symantec, “W32.bugbear@mm,” 2002. [Online]. Available:

http://securityresponse.symantec.com/avcenter/venc/data/w32.bugbear@mm.%html.
[34] R.Ommering, “Building Product Populations with Software Components,” University of Groningen, 2004.

252

[35] M. Chew and D. Song, “Mitigating buffer overflows by operating system randomization.” Carnegie Mellon University, pp. 02–197,
2002.

[36] S.Dai and S.Kuo, “MAPMon: A Host-Based Malware Detection Tool,” Dependable Computing ,PRDC, 2007.
[37] R. Pucella and F. Schneider, “Independence from obfuscation: A semantic framework for diversity,” in IEEE Computer Security

Foundations Workshop, 2006.
[38] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard: Protecting pointers from buffer overflow vulnerabilities,” in USENIX

Security Symposium, 2003.
[39] PaX, “PaX,” 2001. [Online]. Available: http://pax.grsecurity.net .
[40] R. P. Wilson and M. S. Lam, “Efficient context-sensitive pointer analysis for C programs,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation, 1995.
[41] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime randomization for security,” in Symposium on Reliable and Distributed

Systems (SRDS), 2003.
[42] F. Cohen, “Operating system protection through program evolution,” Computers and Security, 1993.
[43] C. Pu, A. Black, C. Cowan, and J. Walpole, “A specialization toolkit to increase the diversity of operating systems,” in ICMAS

Workshop on Immunity-Based Systems, 1996.
[44] J. E. Just and M. Cornwell, “Review and analysis of synthetic diversity for breaking monocultures,” in ACM Workshop on Rapid

Malcode (WORM ’04), 2004, pp. 23–32.
[45] D. A. Holland, A. T. Lim, and M. I. Seltzer, “An architecture a day keeps the hacker away,” SIGARCH Computer Architecture News,

vol. 33, no. 1, pp. 34–41, 2005.
[46] S.Sze and W.Tiong, “A Comparison between Heuristic and MetaHeuristic Methods for Solving the Multiple Traveling Salesman

Problem,” World Academy of Science, Engineering and Technology, 2007.
[47] R.Thomas, A.Householder, A.Manion, L.Pesanet, and G.M.Weaver, “Managing the Threat of Denial-of-Service Attacks,” CERT

Coordination Center, vol. 10.0, 2001.
[48] Y. Bjornsson and K. Halldorsson, “Improved heuristics for optimal path-finding on game maps,” in AIIDE, 2006, pp. 9–14.
[49] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards an understanding of anti-virtualization and anti-debugging

behavior in modern malware,” in International Conference on Dependable Systems and Networks, 2008.
[50] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Intrusion detection using parallel execution and monitoring of program variants in user-

space,” in Eurosys 2009, 2009.
[51] B. Salamat, A. Gal, and M. Franz, “Reverse stack execution in a multi-variant execution environment,” in Workshop on Compiler and

Architectural Techniques for Application Reliability and Security (CATARS’08), 2008.
[52] B. Salamat, T. J. A. Gal, K. Manivannan, G. Wagner, and M. Franz, “Multi-variant program execution: Using multi-core systems to

defuse buffer-overflow vulnerabilities,” in International Workshop on Multi-Core Computing Systems (MuCoCoS 2008), 2008.
[53] R.Lemos, “White House Network Attack Highlights Need for Stronger Defenses,” 2012. [Online]. Available:

http://www.eweek.com/security/white-house-network-attack-highlights-need-for-stronger-defenses/.
[54] M. Franz, “E unibus pluram: Massive-Scale Software Diversity as a Defense Mechanism,” in New Security Paradigms Workshop 2010

(NSPW 2010), 2010.
[55] T. Jackson, C. Wimmer, and M. Franz, “Multi-Variant Program Execution for Vulnerability Detection and Analysis,” in Sixth Annual

Cyber Security and Information Intelligence Research Workshop (CSIIRW’10), 2010.
[56] B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and M. Franz, “Run-Time Defense against Code Injection Attacks using Replicated

Execution,” IEEE Transactions on Dependable and Secure Computing. IEEE Computer Society, 2011.
[57] F. Cohen, “Computer Viruses,” University of Southern California, 1985.
[58] E. H. Spafford, “Computer viruses as artificial life,” Journal of Artificial Life, 1994.
[59] A. Avizienis and L. Chen, “On the implementation of n-version programming for software fault tolerance during execution,” IEEE

COMPSAC 77, pp. 149–155, 1977.
[60] J.Wood and K.Jackson, “How Cephalopods Change Color,” 2012. [Online]. Available: http://www.thecephalopodpage.org/cephschool/.
[61] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A. Vouk, and J. J. P. Kelly, “An experimental evaluation

of software redundancy as a strategy for improving reliability,” IEEE Transactions on Software Engineering, 1991.
[62] C.Pfleeger and S.Pfleeger, Security in Computing, 3rd ed. Prentice Hall, 2003.
[63] Y.Cai, “Mobile Agent Based Network Defense System in Enterprise Network,” International Journal of Handheld Computing

Research, vol. 2, pp. 41–54, 2011.
[64] E. Barrantes, D. Ackley, T. Palmer, D. Stefanovic, and D. Zovi, “Randomized instruction set emulation to disrupt binary code injection

attacks,” in ACM Conference on Computer and Communications Security, 2003, pp. 281–289.
[65] G. Kc, A. Keromytis, and V. Prevelakis, “Countering code-injection attacks with instruction-set randomization,” in ACM Conference

on Computer and Communications Security, 2003.
[66] S.Musman, A.Temin, M.Tanner, D.Fox, and B.Pridemore, “Evaluating the impact of cyber attacks on missions,” in 5th International

Conference on Information Warfare and Security, 2010.
[67] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A

secretless framework for security through diversity,” in the 15th USENIX Security Symposium, 2006.
[68] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, “Real-world polymorphic attack detection using network-level emulation,”

in CSIIRW ’08: Proceedings of the 4th annual workshop on Cyber security and information intelligence research, 2008.
[69] S. McGrath, D. C. N, and K. Whitebread, “Intelligent Mobile Agents in Military Command and Control.” Advanced Technology

Laboratories, 2000.

253

[70] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “Stack Guard: Automatic
adaptive detection and prevention of buffer-overflow attacks,” in the 7th USENIX Security Symposium, 1998.

[71] W.Podgórski, “Artificial Intelligence Methods in Virus Detection & Recognition - Introduction to heuristic scanning,” 2012. [Online].
Available: http://podgorski.wordpress.com.

[72] S.Prayurachatuporn and L.Benedicenti, “Increasing the reliability of control systems with agent technology,” ACM SIGAPP Applied
Computing, 2001.

[73] L. Chen and A. Avizienis, “N-Version Programming: A Fault Tolerance Approach to Reliability of Software Operation,” in 8th
International Symposium on Fault-Tolerant Computing, 1978.

[74] M.Joseph, “Architectural Issues in Fault- Tolerant, Secure Computing Systems,” UCLA Department of Computer Science, 1988.
[75] I.Santos, Y.Penya, J.Devesa, and P.Bringas, “N-Grams-based file signatures for malware detection,” in the 11 the International

Conference on Enterprise Information Systems (ICEIS), 2009.
[76] R.Linger, T.Daly, and M.Pleszkoch, “Function Extraction (FX) Research for Computation of Software Behavior: 2010 Development

and Application of Semantic Reduction Theorems for Behavior Analysis.” the Air Force Office of Scientific Research Mathematics and
Information Science Directorate, 2011.

[77] R.Bartholomew, L. Burns, T. Daly, R. Linger, and S.Prowell, “Function Extraction: Automated Behavior Computation for Aerospace
Software Verification and Certification,” in 2007 AIAA Aerospace Conference, 2007, pp. 2145–2153.

[78] R.Spruijt, “Application Virtualization Smack down: Head-to-head analysis of Citrix, Endeavors, Install Free, Microsoft, Spoon,
Symantec and VMware,” 2012. [Online]. Available: www.brianmadden.com/blogs/rubenspruijt/archive/2010/09/22/application-
virtualization-smackdown-head-to-head-analysis-of-endeavors-citrix-installfree-microsoft-spoon-symantec-and-vmware.aspx .

[79] M.Schmitt, “Wired Warfare: Computer Network Attack and Jus in Bello.” International Review of the Red Cross, 2002.
[80] A. Nguyen-Tuong, A.Wang, J. Hiser, J.Knight, and J. Davidson, “On the effectiveness of the metamorphic shield,” in The Fourth

European Conference on Software Architecture ECSA ’10, 2010, pp. 170–174.
[81] A.Peslyak, “Return-to-libc Attack.” Bugtraq Mailing List, 1997.
[82] N. Hardy, “The Confused Deputy (or why capabilities might have been invented),” ACM SIGOPS Operating Systems Review, vol. 22,

no. 4, 1988.
[83] J. C. Knight and N. G. Leveson, “An experimental evaluation of the assumption of independence in multiversion programming,” IEEE

Transactions on Software Engineering, vol. 12, no. 1, pp. 96–109, 1986.
[84] N. Jorstad and T. S. Landgrave, “Cryptographic algorithm metrics,” in 20th National Information Systems Security Conference, 1997.
[85] P.Pal, R.Schantz, K.Rohloff, and J.Loyall, “Cyber physical Systems Security Challenges and Research Ideas,” in Workshop on Future

Directions in Cyber-physical Systems Security, 2009.
[86] C.Neuman, “Challenges in Security for Cyber-Physical Systems,” in DHS Workshop on Future Directions in Cyber-Physical Systems

Security, 2009.
[87] J. Haack., G. Fink, E. Fulp, and W. Maiden, “Cooperative Infrastructure Defense,” in Workshop on Visualization for Computer Security

(VizSec), 2008.
[88] W. M. Maiden, “DualTrust, A Trust Management Model for Swarm-Based Autonomic Computing Systems,” Washington State

University, 2010.
[89] W. M. Maiden, I. Dionysiou, D. A. Frincke, G. A. Fink, and D. E. Bakken, “DualTrust: A Distributed Trust Model for Swarm-Based

Autonomic Computing Systems,” Data Privacy Management and Autonomous Spontaneous Security, 2010.
[90] Y.Lee, “A Pre-Kernel Agent Platform for security assurance,” in IEEE Symposium on Intelligent Agent (IA), 2011.
[91] A. Abraham, R. Jain, J. Thomas, and S. Y. Han, “D-SCIDS: distributed soft computing intrusion detection system,” Journal of Network

and Computer Applications, vol. 30, no. 1, pp. 81–98, 2007.
[92] S.Wu and W.Banzhaf, “The use of computational intelligence in intrusion detection systems: A review,” Applied Soft Computing, vol.

10, no. 1, pp. 1–35, 2010.
[93] S.Mukherjee, “FPGA based Network Security Architecture for High Speed Networks,” MTech, 2001.
[94] M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula, and D. Panda, “Towards nic based intrusion detection,” in the ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 723–728.
[95] K.Gurdip, “Intrusion detection system using honeypots and swarm intelligence,” in the International Conference on Advances in

Computing and Artificial Intelligence - ACAI ’11, 2011.
[96] C.Te-Shun, F.Sharon, Z.Wei, F.Jeffrey, and D.Asad, “Intrusion aware system-on-a-chip design with uncertainty classification,” in The

2008 International Conference on Embedded Software and Systems-ICESS, 2008.
[97] M.Azab, R.Hassan, and M.Eltoweissy, “ChameleonSoft: A Moving Target Defense System,” in 7th International Conference on

Collaborative Computing: Networking, Applications and Worksharing, (CollaborateCom’11), 2011.
[98] D. Spinellis, “Reliable identification of bounded-length viruses is NP-complete,” IEEE Transactions on Information Theory, vol. 49,

no. 1, pp. 280–284, 2003.
[99] M. Suresh, R. Stoleru, R. Denton, E. Zechman, and B. Shihada, “Towards optimal event detection and localization in acyclic flow

networks,” in International Conference on Distributed Computing and Networking, 2012.
[100] Y. Liu and K. Han, “Behavior-based Attack Detection and Reporting in Wireless Sensor Networks,” in Third International Symposium

on Electronic Commerce and Security (ISECS), 2010, pp. 209–212.
[101] J. D.Murray, Mathematical Biology, 2nd ed. Springer Verlag, 1993.
[102] J. Piqueira, B.Navarro, and L.Monteiro, “Epidemiological Models Applied to Viruses in Computer Networks,” Journal of Computer

Science, vol. 1, no. 1, pp. 31–34, 2005.
[103] A. V. R.Pastor-Satorras, “Epidemic spreading in scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp. 3200–3203, 2001.

254

[104] H.Ebel, L.-I.Mielsch, and S.Bornholdt, “Scale free topology of email networks,” Phys, vol. 66, 2002.
[105] M.Williamson, “Throttling viruses: Restricting propagation to defeat malicious mobile code,” in ACSAC Security Conference, 2002, pp.

61–68.
[106] S. Schechter, J. Jung, and A. Berger, “Fast Detection of Scanning Worm Infections,” in Seventh International Symposium on Recent

Advances in Intrusion Detection (RAID), 2004.
[107] C.Zou, W.Gong, D.Towsley, and L.Gao, “The monitoring and early detection of internet worms,” IEEE/ACM Transactions on

Networking (TON), vol. 13, no. 5, pp. 961–974, 2005.

	1. Introduction
	1.1 Motivation and Problem Statement
	1.2 The BlackWidow attack scenario
	1.2.1 Homeland Security example
	1.2.2 Commercial security example

	1.3 Research Approach
	1.4 Evaluation
	1.5 Contributions
	1.6 Document Organization

	2. CyberX: Biologically-inspired CyPhyCARD Management Platform
	2.1 Introduction
	2.2 The Cell Oriented architecture
	2.2.1 The Cell
	2.2.1.1 The COA Cell VS biological Cell

	2.2.2 The Organism

	2.3 The CyberX management platform
	2.3.1 CyberX platform architecture
	2.3.2 CyberX trustworthy platform-communication

	2.4 CyberX enabling the CARD concept
	2.4.1 Intelligence
	2.4.1.1 CyberX Intelligent smart processors

	2.4.2 Situation awareness framework
	2.4.3 The Cooperation framework
	2.4.3.1 Organism level resource sharing

	2.4.4 Elasticity
	2.4.4.1 Cell migration protocol

	2.4.5 Diversity

	2.5 The CyberX managed multi-mode failure recovery
	2.6 A CyberX-managed application
	2.6.1 The simple and fast version of the Cell

	2.7 CyberX role in mitigating the BlackWidow attack
	2.8 Conclusion

	3. ChameleonSoft: Software Behavior Encryption for Moving-target Defense
	3.1 Introduction
	3.2 ChameleonSoft moving-target defense
	3.3 ChamelonSoft behavior encryption
	3.3.1 Variant generation
	3.3.2 Decision making in ChameleonSoft
	3.3.3 Shuffling dynamic policy change:

	3.4 ChameleonSoft Implementation
	3.4.1 Software Chameleonization process

	3.5 Security analysis
	3.5.1 Identifying the assets
	3.5.2 Identifying the threat
	3.5.3 ChameleonSoft as a countermeasure

	3.6 ChamelonSoft behavior encryotion mechanism “The Key”
	3.6.1 Evaluating the strength of CBE

	3.7 ChameleonSoft role in mitigating the BlackWidow attack
	3.8 Conclusion

	4. Bio-inspired Evolutionary Sensory System for Cyber-Physical System Defense
	4.1 Introduction
	4.2 Evolutionary Sensory System (EvoSense)
	4.2.1 The Foundation
	4.2.1.1 EvoSense organisms and Capsules composition

	4.2.2 EvoSense defense provisioning methodology
	4.2.2.1 Overview and initial configuration
	4.2.2.2 Joining EvoSense Network

	4.2.3 Evolutionary sensing and effecting framework
	4.2.3.1 Feedback management and representation
	4.2.3.2 EvoSense information sharing (vaccination):

	4.2.4 EvoSense brain Architecture
	4.2.5 Information sharing and exchange protocol within EvoSense
	4.2.6 Intelligent attack detection and resolution
	4.2.6.1 Profile guided Sensor circulation
	4.2.6.1.1 Classification based on profiles
	4.2.6.1.2 Identifying unknown threats
	4.2.6.1.3 Metaheuristics selection mechanism
	4.2.6.1.4 Sensor reuse

	4.3 Example of CyPhyCARD defense mission
	4.3.1 Detection and resolution scenario

	4.4 EvoSense role in mitigating the BlackWidow attack
	4.4.1 Attacker assumptions
	4.4.2 EvoSense addressing attacker assumptions

	4.5 EvoSense detection and resolution model
	4.5.1 The detection model

	4.6 Conclusion

	5. CyPhyCARD Evaluation
	5.1 Overview
	5.1.1 The simulator design

	5.2 CyPhyCARD Platform
	5.2.1 A study of CyberX dynamic adaptation
	5.2.2 A study of CyberX automated recovery

	5.3 Simulation results
	5.3.1 Observations

	5.4 A moving-target defense approach for CyPhyCARD platform security
	5.4.1 Analyzing the CBE approach
	5.4.2 Simulation results
	5.4.2.1 Simulator Design:
	5.4.2.2 Extracted results

	5.4.3 Observations

	5.5 Pervasive defense provisioning, and trustworthy tipping and cueing
	5.5.1 Parametric study
	5.5.1.1 Total consumed resources
	5.5.1.2 Time needed to detect attacks

	5.5.2 Simulation results
	5.5.2.1 Simulator design
	The network parameters:
	Events:
	Evolution :
	5.5.2.2 Extracted results and discussion
	5.5.2.3 Efficiency
	5.5.2.4 Effectiveness

	5.5.3 Observations

	5.6 Conclusion

	6. Related Work
	6.1 Overview
	6.2 Taxonomy
	6.2.1 Programming landscape
	6.2.2 Resilience landscape
	6.2.3 Monitoring and Analysis (M&A) landscape

	6.3 Elastic software design
	6.3.1 Software modularization
	6.3.2 Modularized software architectures

	6.4 Diversity employment for security, performance, and adaptability
	6.4.1 Design time diversity
	6.4.2 Load time diversity
	6.4.3 Runtime diversity

	6.5 Attack detection and resolution
	6.5.1 Malware detection
	6.5.2 Standalone and distributed monitoring and evaluation solutions
	6.5.3 CPS related control solutions

	6.6 Conclusion

	7. Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	8. Publications
	9. Patents and awards
	10. Bibliography

