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Abstract

Hybrid actuation is an expanding ¯eld in which several systems, such as a mechani-

cal, electrical, hydraulic, pneumatic, and/or thermal, among others, are integrated in order

to combine certain aspects of each system, and achieve a better and more e±cient perfor-

mance under certain operating conditions.

The concept of piezohydraulic actuation takes advantage of the high force capabilities

that piezoceramics have and combines it with the operation at high frequencies, in order

to achieve the hydraulic actuation of a system under a speci¯ed stroke and force. High

frequency recti¯cation translates the low stroke of a piezoelectric stack into a desired amount

of stroke per unit time. Thus, the low displacement, oscillatory motion of the piezoelectric

device (coupled with a high frequency operation) is translated into a unidirectional motion

of a hydraulic cylinder.

As part of this research, a benchtop piezohydraulic unit has been developed and

the concept of piezohydraulic actuation has been demonstrated. The e®ective bidirectional

displacement of a hydraulic cylinder through the actuation of a piezoelectric stack has been

achieved. A lumped parameter model is developed in order to simulate the dynamics of

the hydraulic system and of the entire piezohydraulic unit. The model did approximate the

response of the piezohydraulic unit under a one-sided operation. Time response analysis is

performed through the frequency spectrum comparison of the measured and the simulated

data. Then a two-stage cycle simulation is used to model the pumping operation of the unit.

Discrepancies were obtained between the model and the actual system for the single-ended
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piezohydraulic unit, nonetheless, a good approximation has been achieved for the pumping

operation of the double-ended unit under certain conditions.

Furthermore, several factors have been identi¯ed that may limit the operation of

the piezohydraulic unit. First, the need of high displacement piezoelectric actuators often

comes with the requirement of high voltage operation along with high current consumptions.

Thus, the ampli¯er becomes the ¯rst limitation to overcome. Second, is the response of the

controlled valves. The highest valve operating frequency and their time response will set the

limit on the piezohydraulic unit. And ¯nally, once these limitations are overcome, the unit is

eventually limited by the dynamics of the °uid and the hydraulic system itself. Attenuation

in the frequency response, or the operation near resonance and the possibility of cavitation,

are some of the aspects that eventually will limit the operation of the piezohydraulic unit.

A custom made, high displacement stack is used along with a custom made switching

ampli¯er. The current system is being limited by the second factor, the solenoid valves.

Nonethelss the analysis performed has addresed the relevant issues required for the de-

sign and use of another set of controlled valves. Finally, the eventual limitation from the

hydraulic system has been determined through the analysis of the °uid dynamics of the

system. The analysis does not account for potential cavitation, and future operation at

high frequencies should take it into account.
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Chapter 1

Introduction

A bench-top, test setup unit of a piezohydraulic actuator has been designed and constructed,

with the e®ort and contributions from Julio Lodetti, Nikola Vujic, Antoine Latapie and

Esteve Simon. The following chapters are related to the development and analysis of the

lumped parameter model used to simulate the experimental results and to predict the

operation of the piezohydraulic unit under di®erent conditions.

1.1 Motivation

Hydraulics have long been used due to their reliability and the wide range of forces and

stroke actuation that can be achieved. Control surfaces of airplanes and robot arms are

examples of systems the use hydraulics for actuation. But the implementation of hydraulics

requires the use of pumps, pressure lines, return lines, reservoirs, and the actuator cylinders

(as shown in Figure 1.1). Moreover, a critical issue is that pipes must connect the location

of the input to the output device (cylinder). This implies more hardware, which in turn

translates into more weight and maintenance, key aspects for many applications. As the

servo-motor technology has become more precise, reliable, and of reduced weight, many of

the hydraulic operated systems that required forces and strokes achievable by their electrical

counterparts, are being replaced.

The piezohydraulic concept combines the use of piezoelectric stacks and their ca-

pabilities with those corresponding to hydraulic systems. It is an attempt to ¯ll the gap

existent between the force, displacement and power characteristics of hydraulic devices,

and those corresponding to the servomotor technology (note that for many applications the

1



Figure 1.1: Doebelin (1972).

comparison has to be based on a an equivalent size and weight).

Piezoelectric stacks are composed of piezoceramic wafers that are stacked physically

in series but are connected electrically in parallel. Piezoceramic wafers are elements that

can be stressed electrically. When a voltage is applied, their dimensions change and a re-

sulting force is exerted (by the piezoceramic). In the same manner, if the piezoceramic is

stressed by an external force, then it generates a charge, and a voltage that is associated

with it. Thus, a piezoceramic can be used as a sensor or as an actuator, or both. A general

introduction to piezoceramic elements can be found in the catalogs of piezoceramic man-

ufacturers such as Piezo Systems (1998) and Physik Instrumente (1999). A more detailed

analysis of piezoelectric materials and the fundamentals of piezoelectricity is performed

by Ikeda (1990). Furthermore, for standards, and the general constitutive equations for a

piezoceramic material, refer to the IEEE standard on piezoelectricity (1987).
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The development, study and analysis of piezoceramics is a fast growing ¯eld, as well

as the areas to which they are applied. A piezoceramic couples electrical and mechanical

systems as a sensor, an actuator, or even both. As an actuator, advantages include the

possible operation at high frequencies (up to the kHz region), the output of high pushing

forces (several kN), high sti®nesses (in the order of kN/mm and higher), no wear and

tear, fast responses (sub-millisecond) and an accuracy in the micrometer and even in the

nanometer scale. On the other hand, stacks of piezoceramics may exert high pushing forces

but they exhibit low pulling force capability. This is due to the eventual separation of

the piezoceramic layers in a stack. Thus, piezoelectric stacks under dynamic operation are

usually protected with a mechanical preload that compensates for eventual pulling forces

and prevents the ceramic stack from being damaged. Another disadvantage experienced

in many applications, is the fact that generally piezoceramics by themselves exhibit very

low displacements, with strains in the order of 0.001 units (0.10 percent). Thus, usually

piezoceramics are integrated with other elements or designed in such a way that their

displacement is ampli¯ed while keeping the force within the desired limits. Figure 1.2

shows some commercially available piezoelectric (PZT) stacks obtained from the catalogs

of their respective manufacturers.

a) b)

Figure 1.2: PZT Stacks: a) Piezo Systems (1998), b)Physik Instrumente (1999).
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1.1.1 The PiezoHydraulic Concept

The concept of piezohydraulic actuation takes advantage of the high force capabilities that

piezoceramics have and combines it with the operation at high frequencies. The piezoelectric

stack is used as a piston type of pump that is connected in a closed circuit with the hydraulic

actuator (output cylinder). The output of the piston-pump arrangement is regulated with

a pair of controlled valves, and therefore the direction of motion of the output cylinder is

controlled. Furthermore, even though the driver of the piston pump -the piezoelectric stack-

exhibits low displacements, the high frequency recti¯cation performed with the controlled

valves, translates the low stroke of the piezoelectric stack into a desirable amount of stroke

(per unit time) for the output cylinder. In other words, the low displacement, oscillatory

motion of the piezoelectric device (coupled with a high frequency operation) is translated

into a unidirectional motion of the hydraulic cylinder.

Input

Hydraulic Actuator

4-Way Valve
High Side

Return
Pump, 
Reservoir, 
Directiona
l Valves, 
…

Input

Electrical wires

Piezohydraulic unit

a) b)

Figure 1.3: Generic: a) Hydraulic System, b)Piezohydraulic System.

Also, as shown in the ¯gure, the piezoelectric stack replaces the hydraulic pump

with the advantage of no wear or need for maintenance, and higher response times. In

addition, the entire system of hydraulic lines used to connect the input to the output are

eliminated, since the piezoelectric device and the actuator are incorporated into one unit,

the piezohydraulic unit. The input to this unit is achieved through electrical wires which

are lightweight and easy to install and distribute.
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1.2 Literature Review

1.2.1 Piezoelectric Hybrid Actuators

As mentioned earlier, piezoelectric actuated applications is a fast growing ¯eld. Piezo-

electrics are often used in products for micropositioning, for control and suppression of

vibrations, and for dynamic actuation, among others. In the ¯eld of dynamic operation,

piezoelectric hybrid actuators are the trend.

One of the groups is the electromechanical-piezoelectric hybrid actuators, where

inchworm type of motors are under extensive research and development. These devices,

rely on a set of piezoelectric actuators that work simultaneously in order to move and

clamp the rod of a cylinder. Advantages include high clamping forces and displacements at

considerable speeds, that are only limited by the size of the rod. Disadvantages include the

use of friction as the primary source of actuation, which results in energy losses and eventual

wear in the system. The concept is explained and illustrated in the article \Inchworm

Actuator" from NASA's technical brie¯ngs [NASA (1994)]. Additional documents that

deal with the design, modeling, analysis and performance of inchworm motors are Lee and

Esashi (1995), Bexell et al. (1994) and Frank et al. (1999).

Another group is the ¯eld of piezohydraulic devices, such as piezoelectric pumps.

The literature review performed in this ¯eld resulted in various documents and articles that

relate to piezoelectric pumps, speci¯cally micro pumps. Some of these articles include

the study and development of micropumps, such as in Gerlach and Wurmus (1995), and

Koch et al. (1998); and also the combination of these micropumps with micro-valves or

valveless arrangements, such as in Smits (1990), and Ullmann (1998). Nonetheless, of all

the literature review only one article referred to the development of a piezohydraulic unit

that uses the actuation of a piezoelectric stack along with a hydraulic system and an output

cylinder. The article \Piezoelectric Hydraulic Pump", by Mauck and Lynch (1999), presents

the results of the operation of a piezohydraulic unit composed of a piezoelectric stack, a set

of check valves, a closed hydraulic circuit that includes a reservoir, and a four way valve to

control the operation of the output cylinder.

The experimental test setup unit that was developed under this research, eliminates

the use of the four way valve with the replacement of the check valves with controlled valves.

It is the timing of these controlled valves that speci¯es the direction of movement of the
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hydraulic cylinder. Moreover, the installation of controlled valves permits the manipulation

of the cycle under which the piezoelectric stack operates, optimizing the process. And

¯nally there is no need for a reservoir and the hydraulic system is reduced to a simple,

closed circuit pipeline.

With respect to the modeling of a piezohydraulic unit, the only document found was

the article titled \Electromechanical Modeling of Hybrid PiezoHydraulic Actuator System

for Active Vibration Control" by Tang et al. (1997). Starting with the equations for a

piezoceramic crystal, the transfer function for a piezoelectric actuator is derived. Then,

the analysis of the hydraulic system is performed through the transfer function matrix

measurement method. Thus the model of the entire piezohydraulic actuator is obtained

by coupling the transfer function derived for the piezoelectric actuator with the transfer

function measured for the hydraulic system.

1.2.2 Lumped Models for Fluid System Analysis

Lumped parameter models for °uid pipelines or components have long been used. One early

reference is the \Handbook of Fluid Dynamics" by Streeter (1961), where lumped parameter

models are used to study pressure transients in hydraulic pipelines that demonstrate both

inertial and elastic e®ects. A good introduction and explanation of the °uid elements

of resistance, capacitance and inductance is found in \System Dynamics, modeling and

response" by Doebelin (1972). Furthermore, the application of the lumped parameter model

to a °uid pipeline and the comparison of the results with those corresponding to a distributed

model, has been found in Doebelin (1980). The analysis in both cases, follows a transfer

function approach. For a more recent reference, there is an entire section for \lumped

models for hydraulic systems" in the publication \Understanding Dynamic Systems" by

Dorny (1993). Concerning journal articles, in Wang and TAN (1997) the \Coupled analysis

of °uid transients and structural dynamic responses of a pipeline system" is performed. The

analysis starts with the extended one dimensional °uid ¯lled water hammer equations in

a pipe system, couples it with the structural equations of the pipe, and then the resulting

di®erential equations are solved using the Galerkin's method, which ends up expressing the

set of equations in terms of a mass, damping, sti®ness and force coe±cient matrices. In

Wolf and Paronesso (1992) a lumped parameter model is used for the time domain analysis

of a semi-in¯nite uniform °uid channel.
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a) b)

Figure 1.4: a) Pietrabissa et al. (1996), b) Doebelin (1972).

The most representative example of the use of a lumped parameter model for the

study of °uid pipelines, has been found in Pietrabissa et al. (1996). In this article, a lumped

parameter model for di®erent coronary bypasses is developed in order to evaluate the °uid

dynamics. Figure 1.4 shows some diagrams of lumped parameter models, obtained from

the references cited.

1.3 Overview of Thesis

1.3.1 Research Objectives

The objective of the ¯rst year of this research e®ort was to build a benchtop that would

demonstrate the concept and provide the tools necessary to obtain experimental data about

the performance of the piezohydraulic unit. Most of the components used are standard o®-

the-shelf parts, due to their conventional and easy installation, but mainly because of their

availability and relatively fast shipment times. The reasoning behind it was that once the

test setup is built and analyzed, the limitations outlined, and the possible improvements

obtained, then it is possible to set the next set of objectives or goals. Furthermore, it is

possible to acquire speci¯c components or custom build them in accordance to the new set

of speci¯cations, for the rearrangement or even the complete redesign of the entire unit. For

example, latest technology advances have enabled companies like TRS Ceramics to develop

single crystal actuators \with strain levels in excess of 1% and exhibit ¯ve times the strain
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energy density of conventional piezoceramics. Unlike piezoceramic actuators that employ

strain magni¯cation schemes, single crystal actuators can thus deliver higher strain levels

without sacri¯cing generative force" [TRS Ceramics (2000)]. Although stacked actuator

performance improvements are yet to come, they have under development actuators that

operate at 1000V and 500V with strain levels greater than 0.2%. Another area is the

research and development of piezoelectric driven valves since they exhibit fast responses

and high operating frequencies. As these and other products become available, then the

design of piezohydraulic units can be updated and their performance enhanced.

1.3.2 Contribution

In this thesis a lumped parameter model is developed in order to determine the response

of the °uid in a hybrid-actuator. The lumped parameter model developed can be used to

study the excitation of any °uid under any method as long as the assumptions made are

satis¯ed. The experimental work of this thesis involves the use of a piezo-electric stack, a

pair of solenoid valves and two cylinders that along with the connectors and the piping,

constituted most of the piezo-hydraulic system. One last important component is the power

ampli¯er used to drive the stack.

From research of previous work, and from the experience of the current work, it is

possible to identify the following set of limitations involved with a piezohydraulic unit. First,

the need of high displacement actuators often comes with the requirement of high voltage

operation (from 150V to 1000V) along with high current consumptions (up to hundreds

of mA). Many ampli¯ers in the market only o®er peak current capabilities of 100mA to

200mA. Therefore, the ampli¯er to be used limits the type of piezoelectric stack employed.

Second, is the response of the controlled valves. The highest operating frequency will set

the limit on the piezohydraulic unit. And ¯nally, once these limitations are overcome, the

unit is eventually limited by the dynamics of the °uid and the hydraulic system itself. The

frequency response, the operation near resonance and the presence of cavitation, are some

of the aspects that would limit the entire unit.

Also, early test setup arrangements and procedures revealed the importance of elim-

inating to the greatest extent, the amount of air entrainment in the system. The great

in°uence of parameters like these, prompted to the modeling and the understanding of the

dynamics of the system. The analysis of the system involved the study of the excitation
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of the hydraulic °uid at various frequencies, and the corresponding time response. For

these purposes, a lumped parameter approach was used to model the °uid. The model is

obtained by developing electrical components that are analogous to a °uid system under

certain conditions. Then these electrical components are used to develop the model of a

lump of °uid in a pipeline. Once the electrical model is obtained, an equivalent mechanical

system is developed (for one lump) and used to model the entire hydraulic network. Finally

the model is integrated with the rest of the systems that form part of the piezohydraulic

unit.

The entire model for the piezohydraulic system was developed in a modular fashion,

in order to simplify its coding in Matlab, and to facilitate changes within the components

of the system itself. The model is eventually de¯ned in state space form, in order to take

advantage of the simple simulation tools that are provided by Matlab. Thus, it is possible to

simulate the response of the actuator to the stack's excitations and quantify the importance

and the tradeo®s between several design parameters. Some include: the type of stack and

the type of °uid used, the type of excitation and its frequency, the location and magnitude

of resonance, the percentage of air entrained in the system, and the magnitude at which the

system is pressurized, among others. Also, the state-space formulation in Matlab, enables

the future development of pole-placement controllers that would operate over the entire

system.

1.3.3 Approach

Chapter 2 is an introduction to the piezohydraulic system. The electrical system, and

the mechanical system are presented and modeled. The hydraulic system is also discussed,

speci¯cally on how the model is used. The extensive derivation of the model itself is per-

formed in the following chapter. Furthermore, the electrical and mechanical systems are

coupled through the electro-mechanical equations for a piezoelectric stack. The resulting

electro-mechanical system is coupled with the hydraulic system through the introduction

of constraints with the variational approach described by Hamilton's principle. Character-

istics, limitations, modeling and derivations are speci¯cally developed with respect to the

components used in the systems of the piezohydraulic unit developed under this research.

Chapter 3 introduces the lumped parameter model to analyze the °uid system.

It links the lumped mass type of analysis used to obtain a lumped parameter model of a
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°uid, to the governing equations of a °uid system that are applied to a control volume.

The result is the de¯nition of the °uid elements of resistance, capacitance (compliance) and

inductance (inertance). Then they are used to develop a model analogous to a lump of °uid

in a pipeline.

Chapter 4 uses the models and equations of each of the systems presented in

Chapter 2. It also uses the model of the hydraulic system discussed in Chapter 3, and

it combines all the information in order to develop the model for the entire piezohydraulic

system.

Chapter 5 is devoted to the experimental and the simulated results under one-sided

operation (oscillation) and two-sided operation (pumping) with both, a single ended and a

double ended cylinder. The results are analyzed and tradeo®s are outlined.

Finally, Chapter 6 summarizes conclusions, proposes future work and formulates

the corresponding recommendations.
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Chapter 2

The PiezoHydraulic Unit

2.1 Introduction

This chapter is an introduction to the piezohydraulic system. The electrical system, and

the mechanical system are presented and modeled. The hydraulic system is also discussed,

speci¯cally on how the model is used. The extensive derivation of the model itself is per-

formed in the following chapter. Furthermore, the electrical and mechanical systems are

coupled through the electro-mechanical equations for a piezoelectric stack. The resulting

electro-mechanical system is coupled with the hydraulic system through the introduction of

constraints with the variational approach described by Hamilton's principle.Characteristics,

limitations, modeling and derivations are speci¯cally developed with respect to the compo-

nents used in the systems of the piezohydraulic unit developed under this research.

Thus, the topics discussed in this chapter are:

- The electrical system: composed of the power supply and the ampli¯er.

- The electro-mechanical coupling: performed by the piezoelectric stack.

- The mechanical system: composed of the piston, rods and links involved.

- The mechanical-hydraulic coupling: through the introduction of constraints.

- The hydraulic system: analyzed with two separate models.

- And, the controlled valve dynamics: operation and e®ects.

Figure 2.1 shows the actual version of the single-ended piezohydraulic unit that has

been assembled as part of this research, with the contribution of research assistants Nikola

Vujic and Julio Lodetti.
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Figure 2.1: Test setup of the single-ended piezohydraulic unit developed.

Figure 2.2 is a simpli¯ed diagram of the test unit developed. Components are not

drawn to scale. The electrical system is composed by the power supply and the ampli¯er,

while the mechanical system is composed of an input component (the coupler-force gage-

rod-piston) and an output component (the piston and rod of the actuator). The hydraulic

system can be divided in two sides, and as shown in the ¯gure below, they are labeled as

SideA and SideB. The de¯nition and the modeling of these sides depends on the operation

and the timing of the solenoid valves. Furthermore, testing and modeling was not only

Amplifier
and

Power Supply

Stack
Coupler/Force Gage/ 
Cylinder Rod-Piston

Input Cylinder 
(pumping chamber)

Solenoid 
Valves

Output Cylinder 
(actuator)

Valve

Side  A

Side  B Pressurized 
Reservoir

Figure 2.2: Diagram of a single-ended piezohydraulic unit.
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performed with a single-ended cylinder (Figure 2.1), but also with a double-ended cylinder

(as shown in Figure 2.3). The test setup for both, the single-ended and the double-ended

unit are basically the same. In addition to the hydraulic cylinder, the only di®erence lies

on the length of the pipes, as well as the adaptors required to connect the pipes to the

respective hydraulic cylinder.

Also, note that a vacuum pump is used to evacuate the air in the system before ¯lling it

with °uid. This is done to ensure that the amount of entrained air is practically eliminated

once the unit is ¯lled with °uid. The °uid is supplied with a pressurized reservoir, that it is

also used to control the initial pressure on the hydraulic system. Both of these components

are isolated with manually controlled valves. Furthermore, their connection to the unit

is only needed during ¯rst time °uid ¯lling procedures, or re-¯lls. Afterwards they are

easily removed thanks to the installation of a quick connect/disconnect hookup, which is

highlighted in red in the ¯gure below.

Solenoid Valves

Piezoelectric stack

Vacuum Pump 
Connection  
(temporary)

Double-ended 
Hydraulic Cylinder

Pressurized 
Reservoir 
Connection   
(temporary)

Force Gage

Input Cylinder  
(pumping chamber)

To the Amplifier and 
the Power Supply Current Input Feedback 

Figure 2.3: Setup of the double-ended piezohydraulic unit.

In the next sections, the various systems that form part of the piezo-hydraulic unit

are presented and discussed. Characteristics, limitations, modeling and derivations are

speci¯cally developed with respect to the components used in the piezohydraulic unit de-

veloped in this research.
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2.2 The Electrical System

The main components of the electrical system are the power supply and the ampli¯er. The

requirements and the output characteristics of the ampli¯er depend on the piezo-electric

stack (PZT) used, and in the same manner, the operating characteristics of the piezo stack

are determined by the system's overall requirements. Piezo-electric stacks are often classi¯ed

into a \High Voltage PZT" group and a \Low Voltage PZT" group. Each group has

di®erent current consumption requirements, which also depend on whether the device is

used under static or dynamic operation. Voltage, current and frequency of operation often

determine the type of ampli¯er needed. Piezo-ceramic manufacturer catalogs such as Piezo

Systems (1998) and Physik Instrumente (1999) provide several types of ampli¯ers suitable

for di®erent applications.

For this research, Dynamic Structures and Materials (DSM), a Nashville based com-

pany, has developed a switching ampli¯er that delivers the input required by the piezo-

electric stack while reducing the amount of power dissipated in the process. The prototype

is shown in Figure 2.4. It is a three-channel unit, 2 channels targeted for PZT operating

valves (400V) and 1 channel for the piezoelectric stack actuator (150V). The maximum cur-

rent rating is 1.55 Amps and it supplies a total power output of 270 Watts. For additional

information refer to the appendix.

ON

OFF
I 1 I 2 I 3A I 3B I 4

F 1

F 2 F 3

F P

IP
O 3O 1 O 2

AMPLIFIER INPUTS AMPLIFIER OUTPUTS

Front Panel

Figure 2.4: Three channel, recirculating PZT driver developed by DSM.

The ampli¯er current controls the PZT stack with a switching signal. The result is a trian-

gular voltage waveform across the capacitive load (PZT stack). Furthermore, and as shown
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in the next section, piezoelectric stacks display a fairly linear relationship between the volt-

age applied and their free displacement. Thus, the excitation of the mechanical-hydraulic

system through the stack is also triangular. An ideal representation of the relationship

between the current, charge, voltage and displacement of the PZT stack/ampli¯er system

is shown in Figure 2.5. It is ideal, because the ampli¯er's current signal is assumed to be

a \clean" step wave (with no noise), and the piezoelectric stack is assumed to be unloaded

and therefore modeled as a capacitive load. The second assumption is valid under free oper-

ation, and can be obtained from the ¯nal constitutive equations for the PZT stack, derived

in the following section. The result of the simpli¯ed system is a current source driving a

capacitor.

Charge, Q

Current, i

Voltage, V

Displacement, x

PZT Stack

x

V
+

-

i

i

Time, t

Figure 2.5: Ideal, unloaded representation of a piezoelectric stack.

Finally, recall that the force and displacement of the piezoelectric stack are exerted

through the mechanical system into the hydraulic system. This discontinuous type of exci-

tation, as opposed to a \smooth" signal such as a sine wave, may have several e®ects on the

°uid system. These will be discussed in Chapter 5, along with the measured and simulated

results. Nonetheless it is clear that a tradeo® is to be considered between the frequency

type of excitation of the °uid (and the resulting implications) versus the type of ampli¯er

used.
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2.3 The Electro-mechanical Coupling:

Model of the Piezoelectric Stack

In many cases, a piezoelectric (PZT) stack couples electrical and mechanical systems as

a sensor, an actuator, or even both. In our piezohydraulic system, the stack serves as an

actuator that couples the electrical and mechanical systems. This section is devoted to the

analysis of the properties, electro-mechanical equations, and performance of a piezoelectric

stack. A general introduction to piezoceramic elements can be found in the catalogs of

piezoceramic manufacturers such as Piezo Systems (1998) and Physik Instrumente (1999).

A more detailed analysis of piezoelectric materials and the fundamentals of piezoelectric-

ity is performed by Ikeda (1990). Furthermore, for standards, and the general constitutive

equations for a piezoceramic material, refer to the IEEE standard on piezoelectricity (1987).

The objective of this section is to merge the information given in the references mentioned

previously, to obtain the electro-mechanical equations speci¯cally for a piezoelectric stack.

As a contribution of this thesis, this section relates the various notations used and summa-

rizes the relevant information such that a clear and detailed derivation is developed for the

electro-mechanical equations of a piezoelectric stack.

A piezoelectric stack consists of a stack of thin piezoceramic elements. Various piezo-

electric designs can be found in the \PZT Fundamentals" subsection of Physik Instrumente

(1999). When a voltage is applied, the piezoceramic element is stressed electrically and its

dimensions change. In the same manner, \if it is stressed mechanically by a force, then it

generates an electric charge. If the electrodes are not short-circuited, a voltage associated

with the charge appears" [Piezo Systems (1998)]. Because of this, a piezoceramic can be

used as a sensor or as an actuator, or both.

One important aspect of a piezoceramic is that in addition to its piezoelectric prop-

erties and its geometry, its response also depends on the direction of the mechanical and

electrical excitation. Therefore, usually a piezoceramic and its properties are labeled with

respect to the axes in Figure 2.6, where P is the polarization vector. Also, the 3rd axis

is de¯ned as parallel to the direction of polarization of the ceramic. This direction is de-

termined during the manufacturing process and it is a result of a high DC voltage applied

between a pair of electroded faces.
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Figure 2.6: Axes and polarization of a piezoceramic element.

In the study of piezoelectricity, properties have subscripts, superscripts, or both. A

single subscript gives the direction or the axis of interest. \Piezoelectric coe±cients with

double subscripts link electrical and mechanical quantities. The ¯rst subscript gives the

direction of the electrical ¯eld associated with the voltage applied, or the charge produced.

The second subscript gives the direction of the mechanical stress or strain" Piezo Systems

(1998). As shown in Figure 2.7, the induced electrical ¯eld (from the applied voltage or

charge) for the piezoelectric stack is in the 3rd direction, as well as the force applied and

the displacement. Thus, a coe±cient X will be denoted as X33. Furthermore, superscripts

specify either a mechanical or an electrical boundary condition. Following the standard

notation given in Piezo Systems (1998), the following superscripts are used:

T = constant stress = mechanically free

E = constant electrical ¯eld = short circuit

D = constant electrical displacement = open circuit

S = constant strain = mechanically clamped

1

2

3

L

∆∆L
A Q

VQinV

+

-

~

Fpzt a) b)

Figure 2.7: Piezoelectric stack: a) Voltage controlled, b) Current/Charge controlled.
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Generally, a piezoelectric stack is assumed to strain in only one direction. Thus, the consti-

tutive equations for a one-dimensional excitation and deformation of a piezoceramic element

are [ANSI/IEEE Standard 176 (1987)]:

D = ²T E + d T (2.1)

S = dE + sE T (2.2)

where: D = Electric Density or Flux Density
£
C
m2

¤

E = Electric Field
£
V
m

¤

T = Mechanical Stress
£
N
m2

¤

S = Mechanical Strain
£
m
m

¤

² = Dielectric Permittivity of the Material
h
F
m = C2

Nm2

i

d = Piezoelectric d-constant
£
m
V

= C
N

¤

s = Mechanical Compliance
h
m2

N

i

and all of these parameters are either related to, or a function of the direction of the

mechanical or electrical excitation. For example, the value of the d-constant, may change

as it is expressed as d33; d31; d15... Then, following the use of subscripts and superscripts in

piezoelectricity, the equations (2.1) and (2.2) de¯ned for a piezoelectric stack as shown in

Figure 2.7, are expressed more speci¯cally as:

D3 = ²T3 E3 + d33 T3 (2.3)

S3 = d33 E3 + sE3 T3 (2.4)

In order to simplify the following expressions, the subscripts and superscripts will not be

included, granted that it is already known that the properties are those linked to both the

mechanical and electrical excitations in the direction of the 3rd axis. Furthermore, since

D3 represents a charge per area, then the electric density will be referred to as the surface

charge density, which in Serway (1994) is de¯ned as:

¾q =
Q

A
(2.5)

where a uniformly distributed charge Q, on a surface of area A has been assumed, and

the \q" subscript has been added to distinguish it from the mechanical stress. Also, the
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dielectric permittivity of the material, ², is related to the constant of permittivity of free

space, ²o, by the dielectric constant [Ikeda (1990)]:

k =
²

²o
(2.6)

By using equations (2.5) and (2.6), and by adopting the conventional notation for the

mechanical stress (¾m) and the mechanical strain (²m), then the equations for a piezoelectric

stack (2.3 and 2.4) are written as:

¾q = (k²o)E + d ¾m (2.7)

²m = d E + s¾m (2.8)

Following the notation shown in Figure 2.7, the mechanical strain is de¯ned as:

²m = +
¢L

L
(2.9)

Positive because for the sign convention used, an elongation represents a positive strain.

Furthermore, the mechanical stress is de¯ned as:

¾m =
F

A
=

¡Fpzt
A

(2.10)

and it is negative because Fpzt is a compressive force. Note that Fpzt represents the force

developed or exerted by the piezoelectric stack on the element it is acting on. A breakup

of the stack and the actuated element, along with a free body diagram will result in the

presence of a force as depicted in Figure 2.7. Thus, by substituting equations (2.9) and (2.10)

into equations (2.7) and (2.8), then the electro-mechanical equations for a piezoelectric stack

become:

Qpzt

A
= k ²o E ¡ d

Fpzt
A

(2.11)

¢L

L
= dE ¡ s

Fpzt
A

(2.12)

From physics, the electric potential di®erence between two points, is related to an induced

electric ¯eld in the direction of the movement of a positive charge from point A to B by

the equation [Serway (1994)]:

VB ¡ VA = ¡
Z B

A
E ds (2.13)
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where given the sign convention used, point B is at a lower electric potential than point A

(VA > VB ), and ds denotes the di®erential distance between point A and B. Thus, for the

piezoelectric stack shown in Figure 2.7, the upper surface (shaded in gray) has a potential

VA while the lower surface has a potential VB , and the voltage or the electric potential across

the piezoelectric stack can be expressed as Vpzt = VA ¡ VB . Therefore, equation (2.13) can

be written as:

Vpzt =

Z B

A

E d` (2.14)

Figure 2.8 illustrates the relationship expressed in equations (2.13 and 2.14). In this ¯gure,

an induced electric ¯eld in the direction shown causes a positive charge qo, to move from

point A to a lower electric potential at point B (assuming zero initial conditions for the

charge). Since the electric ¯eld is constant, then equation (2.13) reduces to VB¡VA = ¡E d.

Figure 2.8b is an ideal representation of the piezoelectric stack shown in Figure 2.7. By

A A

B
B

d

L

E
E

a)  Positive Test Charge [ Serway (1994) ]

qo

b)  Uniform Surface Charge Distribution 

VA > VB

Figure 2.8: Electric potential energy for a charge through an electric ¯eld.

assuming equipotential surfaces (continuous distribution of points having the same poten-

tial) or similarly, by assuming a uniform surface charge distribution, the piezoelectric stack

can be represented as a two-plate capacitor. By neglecting the e®ect of the sides of each

plate, then the electric ¯eld can be described as uniform across the distance, L, between

both plates (and therefore, constant within d`). As a result, then the potential di®erence

in equation (2.14), and the electric ¯eld, can be expressed as:

Vpzt = EL => E =
Vpzt
L

(2.15)
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Substituting the previous expression for the electric ¯eld into the equations of the piezo-

electric stack (equations 2.11 and 2.12) yields to the following equations:

Qpzt

A
= k ²o

Vpzt
L

¡ d
Fpzt
A

(2.16)

¢L

L
= d

Vpzt
L

¡ s
Fpzt
A

(2.17)

Furthermore, both expressions can be rearranged in the form:

Qpzt =

µ
k
²oA

L

¶
Vpzt ¡ (d) Fpzt (2.18)

¢L = (d)Vpzt ¡
µ
sL

A

¶
Fpzt (2.19)

Recall that these equations are valid for a PZT stack when: the area A is the surface

perpendicular to the polar or 3rd axis, the length L is parallel to it, and the rest of the

properties (with exception to the constant of permittivity of free space) are those that

correspond to the excitation and response along the 3rd axis. Also note that the piezoelectric

d-constant appears as the coe±cient of the force in the ¯rst equation, and as the coe±cient

of the voltage in the second equation. Thus, the d-constant (as some other piezoelectric

constants) can be expressed in two di®erent ways, that as expected, should be equal to one

another. As presented in Piezo Systems (1998), the d-constant is sometimes expressed as

the ratio:

d =
short circuit charge density

applied mechanical stress

·
C=m2

N=m2

¸
(2.20)

which is used to de¯ne the coe±cient of the force in equation (2.18). In addition, the

d-constant is also expressed as the ratio:

d =
strain developed

applied electric f ield

·
m=m

V=m

¸
(2.21)

which in turn, is used to de¯ne the coe±cient of the voltage in equation (2.19). Both

d-constant representations have the same units (
£
C
N

¤
=

£
m
V

¤
) and are equivalent to one

another. Furthermore, in Leo (1999), the coe±cient of the voltage is also refereed to as

the free displacement per unit voltage and it is denoted as xo. This is because under free
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operation (no load), the force in equation (2.19) is not present and the expression reduces

to ¢L = (d)Vpzt. Thus, for the model of the piezoelectric stack, the d-constant represents

the stress-free extension per unit volt ( d = xo).

In addition to the d-constant, there are two more coe±cients left in the set of equa-

tions (2.18) and (2.19). By inspection, the expression
¡
k ²oA

L

¢
represents the capacitance of

the PZT stack:

Cpzt = k
²oA

L

·
F ;

C2

N m

¸
(2.22)

which follows from the de¯nition of capacitance [Serway (1994)]. Moreover, the expression
¡
s L
A

¢
from equation (2.19), is related through \s" to the mechanical compliance. Since the

compliance is inversely proportional to the sti®ness of an element, and a deformation is

related to the force by F = ks x (where ks is the sti®ness of the spring element), then it is

possible to relate the term
¡
s L
A

¢
to the sti®ness of the PZT stack actuator, ka, through the

expression:

ka =
A

s L

·
N

m

¸
(2.23)

By substituting equations (2.22),(2.23), xo = d, and xpzt for the extension or displacement of

the stack, ¢L, into equations (2.18) and (2.19), then the result is the following constitutive

equations for the piezoelectric stack:

Qpzt = Cpzt Vpzt ¡ xo Fpzt (2.24)

xpzt = xo Vpzt ¡
1

ka
Fpzt (2.25)

Under free operation, or no load, the stack does not exert any force and equation (2.25)

reduces to xpzt = xo Vpzt. Thus, xpzt becomes the free displacement of the stack, it varies

linearly with voltage, and it will be denoted as xfree . In the same manner, if the stack

operates under a very large load, its output displacement xpzt is zero and equation (2.25)

reduces to Fpzt = ka xo Vpzt. This is the blocked force of the PZT stack and it will be

denoted as Fblkd. Furthermore, for the operation of the stack under the maximum voltage

allowed, Vmax, equation (2.25) can be rearranged in the form:

Fpzt = ¡ka xpzt + ka xo Vmax (2.26)
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while the free displacement and the blocked force are expressed as:

xfree = xo Vpzt (2.27)

Fblkd = ka xo Vpzt (2.28)

Equation (2.26) can be plotted as shown in Figure 2.9, and it represents the characteristic

curve for a piezoelectric stack. The characteristic curve de¯nes the operating point of a

PZT stack, given the loading conditions it is operating under.

Fop

xop

Characteristic CurveOP

xfree
xpzt

Fpzt

Fblkd

Vmax

V2

V1

V1 < V2 < Vmax

-ka

Figure 2.9: Force-displacement characteristic curve for a stack.

Characteristic Curve

OP

Vmax
Vpzt

Qpzt

Qblkd

a)  Fpzt = 0

b)  Fpzt = Fop

c)  Fpzt = Fblkd

Cpzt

Qfree

Cblkd

Qop

a)
b)

c)

Figure 2.10: Charge-voltage characteristic curve for a stack.
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Figure 2.9 represents the force-displacement characteristics for a piezoelectric stack. It

results from Equation (2.26) and it describes the mechanical performance of the PZT stack.

In the same manner, Equation (2.24) yields to the charge-voltage characteristic shown in

Figure 2.10, and it is related to the electrical performance of the PZT stack.

In the piezohydraulic unit, the piezoelectric stack actuates under di®erent condi-

tions through the di®erent stages of the operating cycle. The operating point in the force-

displacement and charge-voltage characteristic curves depends on the nature of the stage,

i.e. the conditions under which the stack is operating. Thus, cycle curves can be obtained,

and an example of these are shown in Figure 2.11.
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Figure 2.11: Stack under pump cycle operation with an incompressible °uid.

The ¯gure represents one cycle of a piezoelectric stack within a constant low pressure

reservoir and a high pressure side, and as shown in the diagram in Figure 2.12, both sides are

restrained with a pair of check valves. The °uid is assumed to be essentially incompressible.

The replacement of the check valves with controlled (solenoid) valves a®ects the

location of the four points that de¯ne the cycles shown in the Figure 2.11. Furthermore,

the elimination of an ideal constant low pressure and high pressure side along with the

addition of hydraulic components, would a®ect the shape of the curves between each of the

points. A complete and detailed study of these cycles is performed and presented in Leo

and Nasser (2000), where mechanical and electrical e±ciencies are de¯ned and related to

the characteristic curves and the operating cycle of the piezoelectric stack.
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Low Pressure Side

Check Valves

High Pressure Side
Piezoelectric Stack

Figure 2.12: Diagram of a check valve restrained piezohydraulic unit.

Below, Figure 2.13 shows the piezoelectric stack used in the piezo-hydraulic unit,

along with a list of its properties.

Stiffness 37 N / µµm
Blocked Force 3500 N (estimated)

Max Free Displacement 110 µµm
Capacitance 39 µµF
Input Voltage -20 to 150 V (150 Vpp)

Figure 2.13: Pre-loaded piezoelectric stack.

The piezoelectric stack is a custom made unit developed by Dynamic Structures and Mate-

rials (DSM), and as mentioned previously in the Electrical System section, it is operated

under a triangular charge/voltage waveform that results from a square wave current exci-

tation. The free displacement and the rated blocked force are comparable to commercial

stacks that usually require 1000 Volts.

2.3.1 Operation under Load

In Figure 2.13, the wires attached to the case of the unit represent the mechanical preload

for the piezoelectric stack. Recall that under dynamic operation, a mechanical preload is

used to compensate for pulling forces and therefore, protect the ceramics of a stack from

damage. The wires used are pre-stretched and composed of Nitinol. Nitinol is a super-elastic
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binary nickel titanium alloy with optimal properties, including a low permanent set, high

loading and unloading plateau stresses, and excellent kink-resistant characteristics. The

high loading and unloading plateau stresses can be observed in Figure 2.14 (which has been

provided by Dynamic Structures and Materials). The importance of this characteristic is

that if the stretched nitinol is set to operate in the °at region of the curve, then regardless

of the strain, the piezoelectric stack will be loaded with a constant stress. This is important

since the type of preload in a piezoelectric stack may a®ect its performance.

Figure 2.14: Typical stress-strain curve for super-elastic nitinol.

The remainder of the section is a brief explanation on the e®ects of the type of preload on

a piezoelectric stack.

As described in Physik Instrumente (1999), a piezoelectric actuator is an elastic

body with a given sti®ness, and from a mechanical standpoint it will be represented with a

spring of sti®ness ka. Furthermore, it can be operated under two di®erent types of loading.

The ¯rst case, is when the load remains constant during the expansion process. This

is represented in Figure 2.15, where a mass exerts a constant force on the piezoelectric

stack. The force of the mass compresses the piezoelectric stack until equilibrium is reached.

Thus, the initial position of the stack changes by the amount of ¢x = F=ka . However, and

as represented in the ¯gure, the constant force and the nonzero initial condition does not

a®ect the stack's free displacement capability.
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∆x

xfree

xfree

xpzt

Vpzt

A

B
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A B

M

Figure 2.15: E®ect of a constant force pre-load on a piezoelectric stack.

The second case occurs when the load on the stack changes during the expansion

process. In Figure 2.16 the stack is loaded with a spring of sti®ness ks, that is coupled in

parallel to it. Therefore, the free displacement of the unloaded stack is xf reeA = Fpzt=ka

(case A), while the free displacement of the spring loaded stack (shown as case B) becomes

xf reeB = Fpzt=(ka + ks).

xfree

∆x

xfree

xpzt

Vpzt

kskaka

A

A

B

B

Figure 2.16: E®ect of a spring pre-load on a piezoelectric stack.

Thus, a spring load does a®ect the free displacement capability of the piezoelectric

stack, reducing the free displacement by ¢x where:
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¢x = xfreeA ¡ xfreeB = xfreeA (1¡ xfreeB
xfreeA

)

= xfreeA (1¡ Fpzt=(ka + ks)

Fpzt=ka
)

= xfreeA (1¡ ka
ka + ks

) (2.29)

Furthermore, the free displacement of the loaded case can be also expressed as a

function of the original free displacement:

xfreeB =
Fpzt

(ka + ks)
=

Fpzt
(ka + ks)

ka
Fpzt

Fpzt
ka

=
ka

(ka + ks)
xf reeA (2.30)

and by substituting the expression above and the equivalent sti®ness of the stack into

equation (2.25), then the resulting constitutive equation for a piezoelectric stack becomes:

xpzt = xfree ¡
1

ka
Fpzt

=
ka

(ka + ks)
xfreeA ¡ 1

ka + ks
Fpzt

=
ka

(ka + ks)
xoV ¡ 1

ka + ks
Fpzt (2.31)

Finally note that for the blocked case (xpzt=0), the blocked force capability of the

piezoelectric stack is still Fblkd = ka xo Vpzt (equation 2.28).

2.3.2 Current Controlled Operation

The rearranged constitutive equation (2.26) relates the force exerted by the piezo stack

and its displacement, to the voltage applied on it. Then equation (2.24) relates these

parameters to the resulting charge. In fact, these equations represent a voltage controlled

stack, meaning that it is controlled with a voltage input. It is, the most general form of

these expressions. Nonetheless, for a current controlled or a charge controlled system it is

necessary to express equation (2.26) in terms of the charge across the piezo stack, Qpzt. In

order to do so, it is useful to solve equation (2.24) for the voltage across the piezoelectric

stack:

Vpzt =
Qpzt ¡ xoFpzt

Cpzt
(2.32)
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Then by the substituting this expression into equation (2.26):

Fpzt = ka xo

µ
Qpzt

Cpzt
+

xo Fpzt
Cpzt

¶
¡ ka xpzt

=
ka xo
Cpzt

Qpzt +
ka x2

o

Cpzt
Fpzt ¡ ka xpzt (2.33)

and further manipulation yields to:

µ
1¡ ka x

2
o

Cpzt

¶
Fpzt =

ka xo

Cpzt
Qpzt ¡ ka xpzt

Fpzt =

0
@

ka xo
Cpzt

Cpzt¡ka x2
o

Cpzt

1
A Qpzt ¡

0
@ ka

Cpzt¡ka x2
o

Cpzt

1
A xpzt

Fpzt =

µ
ka xo

Cpzt ¡ ka x2
o

¶
Qpzt ¡

µ
kaCpzt

Cpzt ¡ ka x2
o

¶
xpzt (2.34)

where the term Cpzt ¡ ka x2
o is also known as the blocked capacitance of the piezoelectric

stack, or Cblkd. Also, further substitution of the coe±cients F1 and F2 for the coe±cients

of the previous equation, will reduce the expression to:

Fpzt = F1 Qpzt ¡ F2 xpzt (2.35)

where

F1 =
ka xo

Cpzt ¡ ka x2
o

;

·
N

C

¸
(2.36)

F2 =
ka Cpzt

Cpzt ¡ ka x2
o

;

·
N

m

¸
(2.37)

Thus, equations (2.35) and (2.32) represent the set of constitutive equations for a

charge controlled piezoelectric stack. Expressing the set of constitutive equations in terms

of the force and the input variable (as done in equations (2.24) and (2.25) ) then the charge

controlled equations for a piezoelectric stack become:

Vpzt =

µ
1

Cpzt

¶
Qpzt ¡

µ
xo
Cpzt

¶
Fpzt (2.38)

xpzt =

µ
xo
Cpzt

¶
Qpzt ¡

µ
Cpzt ¡ ka x

2
o

kaCpzt

¶
Fpzt (2.39)
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As mentioned in Section 2.2, the ampli¯er used in the experimental setup current

controls the piezoelectric actuator. Therefore, these equations will become useful during

the assembly of the entire model for the piezohydraulic unit, in Chapter 4.

2.4 The Mechanical System

As discussed previously, the mechanical system consists of two elements: an input compo-

nent and the output component. The input component transmits the force and displacement

exerted by the stack to the hydraulic °uid. It is composed of various elements, as shown in

Figure 2.17, and it is modeled in a lumped parameter fashion. Masses Mr and Mp1 account

for the entire mass of the component while the sti®ness Kr is the equivalent sti®ness of all

the elements that form part of the input component.

Mr Mp1

xp1xr

RodRod Piston-RodCoupler
Force
Gage

Kr

Figure 2.17: Lumped model of the mechanical input component.

The output component is basically the piston and the rod of the output cylinder. It is mod-

eled simply as a mass that lies between the two sides of the hydraulic system. Figure 2.18

Mc

xc

kil

Figure 2.18: Lumped model of the mechanical output component.
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displays that notation that will be used in model. The spring load Kil is an additional

element that is used only when an asymmetric (one sided) output cylinder is employed. It

accounts for the force needed to reach equilibrium once the system is pressurized. From

Figure 2.19, it can be observed that when the entire system is pressurized at a level Pi, then

a net force Fil will result from the di®erence in areas on both sides of the piston.

Fnet = FB ¡ FA = Pi(AB ¡ AA) = Pi
¼

4
(D2

A ¡D2
B) (2.40)

The cylinder then moves in that direction until it reaches equilibrium and it stops. At this

point the net resulting force is being counteracted by the force of the expanded/contracted

°uid.

xil

FnetSide A Side B

Figure 2.19: A single-ended hydraulic cylinder under equal pressure.

The net e®ect is modeled with a compressed spring of sti®ness Kil. The distance traveled,

xil, depends on the magnitude of the force and therefore also on the pressure. For Pi =

100 psi, xil is usually in the order of 103 microns. Once this distance is measured, then the

sti®ness can be obtained, through the equation:

Kil =
Fnet
xil

=
Pi ¼

4xil
(D2

A ¡D2
B ) (2.41)

Finally note that for both, the input and the output components, the dynamic friction of the

mechanical elements has been neglected. This is because the nonlinear behavior has been

assumed to have no considerable e®ect on the linear model within its operating conditions.
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2.5 Mechanical-hydraulic Coupling

2.5.1 System Coupling

Following the diagram of the piezohydraulic unit in Figure 2.2, and by assuming that one

solenoid valve is open while the other one is closed, then it is possible to arrange the various

systems that integrate it in the following manner:

Electro-Mechanical
System

(Amp/Stack/Links/Cylinder-in)

Hydraulic
System

( one side)

Mechanical
System

(Cylinder-out)

Hydraulic
System

( other side)

Figure 2.20: Coupling within the systems of the piezohydraulic unit.

Each block represents a system that is analyzed and modeled separately from the

others. This is done in order to simplify the modeling and to facilitate changes in the actual

properties or the components of a system. Afterwards, it is necessary to integrate all the

systems together for the development of the entire model of the piezohydraulic unit. In many

cases, systems may be de¯ned in di®erent coordinates and a coordinate transformation is

required. In our case, all the systems are eventually de¯ned in the same coordinate system

(the mechanical system) but there is still a need to couple them together. This is usually

performed with the introduction of constraints.

2.5.2 Coordinate Transformations - Introducing Constraints

Hamilton's Principle:

As stated in Meirovitch (1967), Hamilton's principle is the most famous and advanced

variational principle of mechanics. It considers the entire motion of a system between two

times t1 and t2 and the variation ± of the path between these two instants. This variation

is sometimes referred to as a virtual displacement, since they are not true displacements

and therefore there is no time change associated with them. \The symbol ± was introduced

by Lagrange to emphasize the virtual character of the variations as opposed to the symbol

d, which designates di®erentials" [Meirovitch (1967)]. Furthermore, Hamilton's principle

\is an integral principle, and it reduces the problems of dynamics to the investigation of a
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scalar de¯nite integral. This formulation has the remarkable advantage of being invariant

to the coordinate system used to express the integrand"[Meirovitch (1970)].

Dynamic systems can be de¯ned with various sets of coordinates, but usually the

minimum number of coordinates required is employed, and these constitute the set of

n generalized coordinates. The generalized coordinates are all independent of one an-

other and they represent the number of degrees of freedom a system has. Figure 2.21

represents a system that is de¯ned with n = 3 generalized coordinates, x, y, and z .

( x1 , y1 , z1 , t1 )
δ

( x2 , y2 , z2 , t2 )

x

y

z

Figure 2.21: True and varied path in the con¯guration space.

Therefore, points are de¯ned in a dimensional space (in this case it is 3 dimensional) known

as the configuration space. As the con¯guration of the system changes with time, a path

is traced in the con¯guration space. This path is shown in bold in the ¯gure below, and

it is referred to as the true path. The varied path is also shown, and it represents small

variations ± in the position (x; y; z) with no associated time change. However, the principle

stipulates that at the two time instants t1 and t2, the variation ± is zero and both the true

and the varied path coincide.

Hamilton's principle states that the variation of the integral of the energy in a system

with respect to time is zero. In the mathematical form, it translates to the expression

[Meirovitch (1967)]:

±

Z t2

t1

(L) dt = 0 (2.42)

where L = T ¡ V . The symbol L represents the Lagrangian, which is usually de¯ned in

terms of the kinetic energy, T , and the potential energy, V , that is present in the system.
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δ
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Figure 2.22: Second order mass-spring system.

In order to associate Hamilton's principle with the introduction of constraints, lets consider

the simple mass-spring system shown in Figure 2.22. The mass is a source of kinetic energy

while the spring \carries" the potential energy. By de¯nition:

@V = F @x = (k x)@x

V =
1

2
k x2 (2.43)

and

T =
1

2
mv2 =

1

2
m _x2 (2.44)

Then by substituting these expressions into equation (2.42) the result is:

±

Z t2

t1

µ
1

2
m _x2 ¡ 1

2
k x2

¶
dt = 0 (2.45)

where the variation ± is an operator that follows the rules of calculus. It operates over the

generalized coordinates and it can be moved inside or outside the integral as long as the

system is holonomic. This is the designation given to a system in which the constraints are

a function of the coordinates or the coordinates and time [Meirovitch (1967)].

Z t2

t1

±

·µ
1

2
m _x2

¶
¡
µ
1

2
k x2

¶¸
dt = 0 (2.46)

Then, since ±( _x2) = 2 _x±( _x) and ±(x2) = 2x ±(x) the previous equation becomes:

Z t2

t1

m _x ± ( _x) dt¡
Z t2

t1

k x ± (x) dt = 0 (2.47)
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Furthermore, the ¯rst integral can be simpli¯ed through integration by parts, which is

usually expressed as
R
u v0dt = u v ¡

R
v u0dt. By using the following expressions

u = m _x v 0 = ±( _x)

u0 = m Äx v = ±(x)

it is possible to simplify the ¯rst integral in equation (2.47) and express the entire equation

in the form:

µ
m _x±(x)

¯̄
t2
t1 ¡

Z t2

t1

±(x)m Äx dt

¶
¡
Z t2

t1

±(x) k x dt = 0 (2.48)

In addition, by using the stipulation that at the time instants t1 and t2 the variation ± is

zero, then the ¯rst term of equation (2.48) is equal to zero and the expression reduces to:

¡
Z t2

t1

±(x) (m Äx+ k x) dt = 0 (2.49)

Moreover, the integral is equal to zero when the integrand is also equal to zero,

±(x) [m Äx + k x] = 0 (2.50)

and since the variation ±(x) is arbitrary, then it follows that

m Äx+ k x = 0 (2.51)

This is, the equation of motion of the mass-spring system in the Newtonian form. But, what

is important from this derivation, is that if a coordinate transformation is required, then it

is necessary to perform the operation not only in the equation of motion, but also in the

variation itself. In other words, if the variables x and _x are transformed to the coordinates

x̂ and _̂x, then the change of variables has to be done in both terms of equation (2.50), the

variation and the equation of motion. Perhaps, the following example with a second order

system, will illustrate this issue.

Introducing Constraints in a Multi-Degree of Freedom System:

In this section, the introduction of constraints in a three degree of freedom system is covered.

The example serves as the basis of the modeling performed for the entire piezohydraulic
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system done in Chapter 4 , and it will be referred to often. This is done to simplify

the analysis in Chapter 4 , which involves a system of a high degree of freedom. If each

component of the pipeline in the experimental setup is modeled with only one lump, then

the lumped parameter model of the system would exhibit 30 degrees of freedom which would

require the use of 60 states. Therefore, this example is used, not only to further explain the

introduction of constraints, but to also layout the same procedure involved in the analysis

of the model in Chapter 4 .

M1

K1

b1

Fin
x1

M2

x2

M3

K3

b3

x3

Figure 2.23: Second order forced mass-spring-damper system.

Figure 2.23 represents a three degree of freedom system, but the dynamics of the

¯rst mass are uncoupled to the rest of the system. Both parts of the system can be coupled

by introducing a constraint. For example, by forcing the second displacement, x2, to be

a constant, Actt, times the ¯rst displacement, x1, then the original set of coordinates are

transformed and the original system becomes coupled. Once the system is coupled, then it

would reduce to two degrees of freedom. It is the result of the introduction of the constraint.

From the free body diagram of each of the masses, it is possible to derive the equation

of motion for each one of them, to express them in matrix form, and then include them in

equation (2.50). The result is:

±

2
6664

x1

x2

x3

3
7775

T 0
BBB@

2
6664

m1 0 0

0 m2 0

0 0 m3

3
7775

2
6664

Äx1

Äx2

Äx3

3
7775+

2
6664

b1 0 0

0 b2 ¡b2

0 ¡b2 b2

3
7775

2
6664

_x1

_x2

_x3

3
7775+

2
6664

k1 0 0

0 k2 ¡k2

0 ¡k2 k2

3
7775

2
6664

x1

x2

x3

3
7775 ¡

2
6664

1

0

0

3
7775F

1
CCCA = 0 (2.52)
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By designating M , B, K , and fm to the constant coe±cient matrices, then the set

of di®erential equations can be written in matrix form as:

±(xT ) [M Äx +B _x +K x¡ fmF ] = 0 (2.53)

and note that the variation operates over the transpose of the set of coordinates. Now, as

mentioned previously, lets couple the ¯rst and the second coordinates by introducing the

constraint: x2 = Actt x1. Expressed in matrix form:

2
6664

x1

x2

x3

3
7775 =

2
6664

1 0

Actt 0

0 1

3
7775

2
4 x1

x3

3
5 (2.54)

x = C x̂

Thus, the vector x represents the original set of coordinates while the vector x̂

represents the new set of coordinates, obtained through the transformation or the constraint

matrix C. From the previous equation x = C x̂ it will also follow that:

_x = C _̂x

Äx = C Ä̂x

±(xT ) = ±(x̂T CT ) (2.55)

With these relations, equation (2.53) can be expressed in terms of the transformed coordi-

nates as it follows:

±(x̂T CT )
h
M C Ä̂x+B C _̂x +K C x̂¡ fmF

i
= 0 (2.56)

Since the transpose of the constraint matrix C is also a constant, then it is possible to

remove it from the variation operation and include it in the equation as

±(x̂T )
h
CTMC Ä̂x + CTBC _̂x + CTKC x̂ ¡ CT fmF

i
= 0 (2.57)

Again, the variation of x̂T is arbitrary (nonzero) and the previous equation can be reduced

to the form:

[CTMC] Ä̂x+ [CTBC] _̂x + [CTKC] x̂ = [CT fm]F (2.58)

37



Equation (2.53) represents the set of transformed equations of motion expressed in the

Newtonian form. Furthermore, if the transformed, constant coe±cient matrices of mass,

damper, spring, and force input are expressed as MC, BC, KC , and fmC, then the previous

equation becomes:

[MC ] Ä̂x = ¡[BC ] _̂x ¡ [KC ] x̂ + [fmC ]F (2.59)

If both sides is multiplied by the inverse of MC, then the result is

Ä̂x = ¡[MC ]
¡1[BC ] _̂x¡ [MC ]

¡1[KC ] x̂ + [MC ]
¡1[fmC ]F (2.60)

And by following the notation used in the model, and in the Matlab code, the constant

matrix coe±cients are de¯ned as

AkmC = ¡[MC ]
¡1[KC ]

AbmC = ¡[MC ]
¡1[BC ]

BlowerC = +[MC ]
¡1[fmC ] (2.61)

Then Equation (2.60) reduces to

Ä̂x = [AbmC ] _̂x + [AkmC ] x̂ + [BlowerC ] F (2.62)

and note that the minus signs have been already accounted for.

Finally, the matrix equation (2.62) can be rearranged in the form:

2
4 _̂x

Ä̂x

3
5 =

2
4 0 I

AkmC AbmC

3
5
2
4 x̂

_̂x

3
5+

2
4 0

BlowerC

3
5F (2.63)

_x = A x + B u (2.64)

This matrix equation (equation 2.63), is expressed in what is known as the state space for-

mulation (equation 2.64). The vectors x and _x, represent the states and their corresponding

derivatives, the A matrix contains all the information about the dynamics of the system,

while the B matrix speci¯es the input and its coupling on the system. In this example, the

states are the transformed coordinates of the system, and be aware that the notation of _x ,
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x, u, A, and B, used in the state space formulation above, does not represent or match any

of the variables used in the derivation of the equations of the mass-spring-damper system

in study.

The model of the entire piezohydraulic unit will be covered in Chapter 4. As it will

become clear by then, the entire system will be modeled with a set of masses, dampers and

springs. Furthermore, the entire derivation is performed so that the equations of motion

are expressed in state space form. This is, because state space techniques and their simple

implementation in Matlab, are employed to analyze the system and to run the simulations.

An introduction to state-space methods can be found in Friedland (1986).

2.6 The Hydraulic System

For the analysis of the °uid in the piezohydraulic unit, the hydraulic system is modeled

with two di®erent sets of models, one for each side of the unit. As shown in Figure 2.2 these

sides have been labeled as A or B, and even if the output cylinder is symmetric (double

ended) both sides have to be considered in order to take into account for the di®erence in

geometry (pipe lengths, or di®erent components).

The excitation and the response of the °uid in the piezohydraulic unit is represen-

tative of a nonlinear, time variant system. In the lumped parameter model developed, the

nonlinear aspect is approximated with a linear model that is valid for small perturbations

around an operating point. Furthermore, the pumping process is broken into two steps

or stages. Within each stage, the linear lumped parameter model uses constant (time in-

variant) coe±cients, that in order to approximate the time variance aspect, are updated

(modi¯ed) after each cycle.

The algorithm followed in the two-stage cycle is shown in Figures 2.24 and 2.25.

These ¯gures were developed under the assumption that the rod of the output cylinder

moves in the direction towards side A (see Figure 2.2). The direction of the displacement

of the output cylinder rod is controlled by the timing of the solenoid valves with respect to

the operation of the stack. During the ¯rst stage, the piezoelectric stack is under positive

displacement (pushing or forward stroke) while valve B is open and valve A is closed. Then,

during the second stage, the piezoelectric stack is under negative displacement (pulling or

backward stroke) while valve A is open and valve B is closed. One way of understanding
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PistonSide B Side A

+ xout
Input

+ xin

Figure 2.24: Model B used during the ¯rst stage.

these ¯gures, is to relate them to the open path of °uid the stack "sees" during each stage.

Also note that if the same coordinate is used for the output, then the direction for positive

output displacement in the second stage, is as shown in the next ¯gure.

PistonSide A Side B

Input
+ xout+ xin

Figure 2.25: Model A used during the second stage.

Once the end of the second stage is achieved then one complete cycle has been

performed. At this moment, the coe±cients of the state space model for the hydraulic

system are updated with respect to the ¯nal state of the system. To be more speci¯c, it is

the coe±cients that are related to the output cylinder the ones that are updated. Further

detail is covered in Chapter 4.

2.7 Controlled Valve Dynamics: Operation and E®ects

One important aspect that is not part of the hydraulic system but has a considerable e®ect

on its input, is the dynamic characteristics of the solenoid valves along with the way they

are employed. Although this section focuses on the solenoid valves used in the experimental

setup, it is also valid for most electrically controlled valves that are coupled to a mechanical

system. These usually involve a time constant to reach steady state. The solenoid valves

used consist of a piston actuated valve that is within a coil or an inductor, and therefore,

its response characteristics depend on the mass of the piston and the counteracting spring,

the inductor, and the load to which is subjected. The important aspect for this discussion,

is not the constitution of the valve, but the fact that depending on its constitution, there
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are two main aspects that are associated with it. The ¯rst one is the time response, which

determines how fast the valves respond. The second aspect is the frequency response, or

frequency range under which the valve operates e®ectively.

The solenoid valves used in the benchtop test setup unit are normally closed, and

therefore a voltage is required to keep them open. Figure 2.26 relates the voltage input to

the solenoid valve with its output, or actual state. The output ¯gure represents a generic

curve. The displacement of the piston in the valve may not be linear, but the point is to

illustrate that there is a period of time needed to move from the closed position to the open

one, and vice versa.

Time, t

Time, t

Closed

T / 2

T / 2

T 

T 

Vvalve

Open 
ttr

+6 V 

-0.5 V 

In
pu

t
O

ut
pu

t

Figure 2.26: Generic representation of the time response of a solenoid valve.

The magnitude of the transition time (ttr) is related to the time response of the

solenoid valve. The implications of having a transition time in the complete execution of

an opening or a closing operation will become relevant when the unit is under operation,

and both valves are set under di®erent timing patterns. These aspects are discussed in

Chapter 4, under the two-stage cycle model.

Furthermore, note that for a given transition time, the frequency of operation may

be increased up to the point were the piston is open or closed only for an instant and the

resulting output curve reduces to a triangular waveform. This is, assuming that the piston

moves in a linear fashion from one of the positions to the other. But again, the point is

that the operation of the valves at this frequency will not ensure an e®ective response.
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Figure 2.27: E®ect of an increased operating frequency on the time response.

Further increase of the operating frequency will result in a similar triangular wave-

form except that the peak of the output curve, will never achieve the fully open condition.

The conclusion is that valves operated under these frequencies will always be \somewhat"

open. Operation near the vicinity of a period that is twice the magnitude of the transition

time will not ensure a proper response from the valve. Thus, a critical frequency can be

de¯ned, and it is related to the transition time in the following manner:

Fvalvecr =
1

2 ttr
(2.65)

This critical frequency is related to the frequency response of the valve, and therefore it

provides an approximate range of frequency to which the operation of the valve is e®ective.

The solenoid valves currently used in the experimental setup were tested (under no

load) and the results suggested that a cyclic full opening and closing was not achievable at a

frequency of 10Hz or higher. Therefore the corresponding transition time expected is of 0.05

seconds. Nonetheless, the critical frequency may reduce as the valve operates under loaded

conditions (in the presence of pressurized °uid) and therefore the corresponding transition

time may increase. Measured data con¯rmed the ine®ective operation of the valves at

frequencies close to 10 Hz. Thus, the frequency response of the valves used became a

limitation for the operation of the piezohydraulic unit. Although the transition time is

related to the frequency response, additional e®ects are to be considered when both valves
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are used in the operation of the unit, with di®erent phasing or timing patterns. These

aspects are covered in Chapter 4.

2.8 Summary

The basic systems that compose the piezohydraulic unit have been introduced, along with

their corresponding models. In summary, the most important aspects and some ¯nal ob-

servations are outlined.

The power ampli¯er should be matched with the piezoelectric stack in order to pre-

vent operating limitations. The piezoelectric stack serves as the piston pump actuator that

couples the electrical and mechanical systems. Its output capabilities (force and displace-

ment) along with the operation of the solenoid valves will a®ect the speed of response of

the output hydraulic cylinder.

The mechanical and hydraulic systems are modeled in a lumped parameter fashion.

The introduction of constraints through the use of Hamilton's principle, is performed in

order to couple both systems. Furthermore, the analysis of the hydraulic system follows a

two-stage cycle algorithm, with two di®erent models used for each stage.

And ¯nally the controlled valve dynamics are introduced. Their operation and their

e®ect on the input to the hydraulic system is analyzed. The following chapter will explain

the development of the model used to represent the hydraulic system of the piezohydraulic

unit.
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Chapter 3

Lumped Parameter Fluid System

3.1 Introduction

The purpose of this chapter is to link the lumped mass type of analysis used to obtain a

lumped parameter model of a °uid, to the governing equations of a °uid system that are

applied to a control volume. In a lumped parameter model, the °uid system is divided into

lumps, with a lumped mass and average parameters such as velocity and pressure. Then,

the system elements are obtained by applying conservation of mass and Newton's Law to

the lump of °uid. This type of analysis is the approach taken by Doebelin (1972) and in

similar derivations found in other texts, and it yields to the de¯nition of the °uid system

elements of °uid resistance, capacitance (compliance) and inductance (inertance). It is of

interest to link these system elements to the governing equations of a °uid system, and

to clearly know and understand the assumptions made, so then each system element can

be used to construct a lumped parameter model of a °uid element under the respective

circumstances.

3.1.1 Analogous Systems

Before proceeding with the details of the lumped parameter model for the °uid, it is nec-

essary to discuss the topic of analogous systems, and how it constitutes a tool to obtain

an approximate electrical lumped parameter model of the °uid system, and then used to

convert it or transform it into an analogous mechanical system.
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In many cases electrical, mechanical and °uid systems can be described with equiv-

alent di®erential equations and equivalent or analogous variables. The result is that analo-

gous systems have similar solutions and it is an additional tool that can be used to extend

the solution of one particular system to all the analogous systems. This is done by using

the same di®erential equations along with the corresponding analogous variables. However,

there are two types of analogous systems. The force-current analogy \relates the analogous

through- and across-variables of the electrical and mechanical systems", as described in

Dorf and Bishop (1995). The second type of analogy is known as the force-voltage analogy,

and it relates the velocity and current variables of a system.

Table 3.1: Force-Voltage Analogy.

Mechanical Electrical Fluid or Hydraulic

M (mass) L (inductance) If (inductance)
b (damping) R (resistance) Rf (resistance)

K (sti®ness) 1=C (1/capacitance) 1=Cf (1/compliance)
x (displacement) Q (charge) 8 (volume)

_x ; (velocity) i (current) q (°owrate)

F (force) ¢V (voltage) ¢P (pressure di®erence)

In this chapter, the elements of °uid resistance, °uid inertance or inductance, and

°uid compliance or capacitance are derived. Then they are used to develop an equivalent

electrical circuit to a lump of °uid. This equivalency is based on the force-voltage analysis,

and the relationship between the analogous variables is shown in Table 3.1.

Table 3.2: System Analogy

Resistance/ Capacitance/ Inductance/

System Damping Sti®ness Mass

Mechanical F = Cb _x F = k x F = M d _x
dt

Electrical ¢V = R i ¢V = 1
C

R
i dt ¢V = L di

dt

Hydraulic ¢P = Rf q P = 1
Cf

R
q dt ¢P = If

dq
dt
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The analogous variables can then be used to construct equivalent di®erential equa-

tions among the analogous systems. Starting with the known components of the mechanical

elements of damping, sti®ness and inertia (mass), it is possible to obtain equivalent equa-

tions in the electrical and °uid system with the use of the analogous variables. The result

is shown in Table 3.2. Finally, the system analogy is used to obtain a mechanical system

that is analogous to the electrical representation of a lump of °uid.

3.2 Fluid Model: Description and Assumptions

Consider the °ow of a °uid in a constant area pipe as in Figure 3.1. Due to viscous e®ects,

a °uid must satisfy the no slip condition at the wall, and therefore the velocity pro¯le is

not uniform over the cross sectional area, A. But, even though the velocity, V , and the

pressure, P , do vary from point to point over the °ow cross section in a real °uid, the

lumped parameter model is based on a one dimensional °ow model in which the velocity

and pressure are uniform over the area. Thus, the average velocity and pressure correspond

to the values at any point in the cross section. In a lumped parameter analysis, the pipeline

is broken into segments. Within each segment or lump, pressure and velocity may vary

with time, but are also assumed to be uniform over the volume of the lump. In the same

manner, the density ½, is assumed to be uniform over the entire lump. Doebelin (1972) uses

these assumptions and considers the behavior of one typical lump ( the nth) to obtain the

de¯nitions of the basic °uid elements.

Vn-1 Vn

Al
n-1 n n+1

ρ n

Pn-1

Pn

Vn

Pn+1

Vn+1Vn-1

x

Figure 3.1: Lumped model of a °uid pipeline [Doebelin (1972)].
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Some derivation and the de¯nition of the °uid elements of resistance, capacitance and

inductance, can be found in several texts, such as in Dorny (1993), Lindsay and Katz (1978)

and in Doebelin (1972). Nonetheless, in this chapter, these °uid elements are rigorously

derived from the governing equations of a °uid system. In order to do so, and in a slightly

di®erent approach, we will consider a lump as our control volume. It is like a local control

volume type of analysis. As shown in Figure 3.2, Xn¡1 are the parameters entering the nth

control volume and Xn represent the parameters leaving the control volume. By using a

lumped model approach, some properties such as density, are assumed to be uniform within

the lump. They are also denoted as Xn, where X is the property of the nth lump. Changes

of the nth parameter Xn are denoted as dXn . Changes between the nth and the previous

lump n¡ 1 are represented by dX . Finally, for the de¯nition, explanation and further detail

on the governing equations of a °uid system refer to Munson et al. (1998).

n

dPn

A Pn

Vn-1 Vn

A Pn-1

Ff

Figure 3.2: The nth lump as a control volume.

3.3 System Elements

As discussed in the previous chapter, there are three basic elements for a hydraulic system.

The °uid's compliance, friction and inertia have electrical analogies of capacitance, resis-

tance and inductance, respectively. In the next subsections, the °uid elements are obtained

through the use of the continuity equation, the energy equation and the equation for the

conservation of momentum. These form part of the governing equations of a °uid °ow and

they are stated in any °uids book. The text used and a good reference is Munson et al.

(1998). By applying a certain set of assumptions for each case, each governing equation

can be reduced to the form of the set of hydraulic equations shown in Table 3.2, where a

constant is a function of pressure (P ) and either the °owrate (q), its integral (
R
q dt), or its

derivative (dq=dt). These constants are then de¯ned as either the °uid capacitance, °uid
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resistance or the °uid inductance. It is the constant capacitance, resistance and inertance

what makes a lumped parameter model a linear one. It approximates the behavior of the

°uid around an operating point. Otherwise, the analysis of a °uid under general circum-

stances and not around an operating point would require a model to incorporate a varying

capacitance, resistance and/or inductance.

3.3.1 Fluid Capacitance

The °uid capacitance is related to the compliance of the liquid. Real °uids, including

liquids, are to some point compressible. This compressibility shows as a mass storage or

a mass release and becomes the di®erence between the amount of mass in and mass out

of the control volume. Equation (3.1) is the general continuity equation for a °uid in a

control volume. The ¯rst term represents the time rate of change of mass inside the control

volume (unsteady term). The second term represents the mass °owrate °ux through the

boundaries of the control volume (control surfaces).

@

@t

Z

cv

½ d8 +

Z

cs

½(~V ¢ ~n) dA = 0 (3.1)

As mentioned previously, for a lumped parameter model, the properties of a corre-

sponding lump are assumed to be uniform throughout the entire volume. Thus, by assuming

density to be uniform through the entire volume, the ¯rst integral reduces to a mass rate of

change. For an incompressible °uid, the ¯rst term would not manifest itself and the mass

°owrates would be equal to one another.

µ
dM

dt

¶

cv

+
X

(½AV )out ¡
X

(½AV )in = 0 (3.2)

By adopting the notation established for the control volume of the nth °uid lump

shown in Figure 3.2, equation (3.2) can be written in the form:

(½nAVn ¡ ½n¡1AVn¡1) dt = ¡dM (3.3)

where dM can be written as ½nd8, since it is a change of mass in the nth lump and its density,

½n , is assumed to be uniform. But to continue with our linear lumped model approach, it

is now necessary to assume that the density change (d½ = ½n ¡ ½n¡1) is small around some
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operating point. This assumption will be referred to as the small density change assumption

(SDC). Therefore, ½n¡1 = ½n = ½ and equation (3.3) becomes:

(AVn ¡ AVn¡1) ½ dt = ¡½ d8 (3.4)

The term d8 is related to the compressibility of the °uid, which in turn is described

by the bulk modulus. Also referred to as the bulk modulus of elasticity, it states the

di®erential pressure change dP needed to create a di®erential change in volume, d8, of a
volume 8, for that particular °uid. It is a measure then, of how easily can the volume (and

therefore the density) of a certain mass of °uid change with a change in pressure. It is a

property that can be estimated experimentally, and it is de¯ned as [Munson et al. (1998)]:

B = ¡ dP

d8 = 8 (3.5)

The bulk modulus has units of pressure and a large value indicates that a °uid is relatively

incompressible. Using the °owrate de¯nition, q = V A, and substituting the expression for

d8 (obtained from the de¯nition of the bulk modulus) into equation (3.4),

(qn ¡ qn¡1) dt =
8 dPn
B

(3.6)

Furthermore, since the volume of a lump and the bulk modulus of a °uid remain constant

with time, it is possible to solve for dP , integrate both sides, and obtain the expression:

Z
dPn =

Z
1
8
B

(qn ¡ qn¡1) dt (3.7)

which can be simpli¯ed into:

Pn =
1
8
B

Z
q dt (3.8)

where Pn is the pressure across the nth lump, and q = qn¡qn¡1 represents the amount of °ow

that is either stored or released at that particular pressure. By comparing equation (3.8)

with the corresponding expression in Table 3.2, the °uid capacitance is de¯ned as:

Cf =
A l

B
;

·
m2 m

Pa
=

m5

N

¸
(3.9)

where A is the cross-sectional area of the lump, and l, its length. The °uid capacitance

de¯ned is valid for a uniform, one dimensional °ow, with small density changes around an

operating point.
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3.3.2 Fluid Resistance

The °uid resistance is related to the viscous e®ects of a °uid °ow. It is associated to the

energy dissipation due to frictional losses and other minor losses (due to the geometry of

the °uid °ow). The e®ect of these losses is a pressure drop in the °uid °ow, that is also

related to the amount of °uid °ow or °owrate. Equation (3.10) is the energy equation for

a °uid in a control volume, and it is derived from the 1st Law of Thermodynamics.

@

@t

Z

cv

e½ d8 +

Z

cs

e ½(~V ¢ ~n) dA = _Qnetin
+ _Wshaftin (3.10)

Assuming a steady , one dimensional, and compressible °uid °ow, the energy equation can

be expressed as:

_m [¢u+ ¢(P=½) + ¢V 2=2 + g¢z ] = _Qnetin
+ _Wshaftin (3.11)

where ¢u is the change in internal energy for the °uid. The rest of the terms in brackets

account for the total change in energy. For a °uid °ow in a pipe, the rate of work is zero

( _W = 0) and for our analysis, the amount of heat transfer as well as the gravitational e®ects

are neglected ( _Q = 0,¢z = 0). Then, equation (3.11) reduces to:

uout ¡ uin
g

+
Pout
½out g

¡ Pin
½in g

+
V 2
out ¡ V 2

in

2g
= 0 (3.12)

Equation (3.12) is in head form, and it has units of length. ¢(P=½)=g is known as the

pressure head, while ¢u=g is de¯ned as the head loss, hL. It is the head loss then, the term

that accounts for losses due to friction and to changes in the geometry of the °ow. Thus,

the de¯nition of head loss can be substituted into equation (3.12). Also, note that a steady

process has been assumed (when deriving equation 3.11). Therefore, for a constant area

pipe, along with the steady and SDC assumption, the continuity equation (3.2) reduces to

Vin = Vout and ½in = ½out; and equation (3.12) reduces to:

hL =
Pin ¡ Pout

½ g
(3.13)

By dividing both sides by the °owrate, and by using the notation in Figure 3.2, the previous

equation becomes:

½ g hL
VnA

=
Pn¡1 ¡ Pn

qn
(3.14)
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and rearranging:

¢P =

µ
½ g hL
VnA

¶
qn (3.15)

By comparing equation (3.15) with the corresponding expression in Table 3.2, the °uid

resistance is de¯ned as:

Rf =
½ g hL
V A

(3.16)

where the head loss coe±cient, hL, is obtained with experimental parameters and equa-

tion (3.17). The ¯rst term represents the frictional losses while the second term represents

a summation of the minor losses in the system. Minor losses account for changes in the

pipeline geometry and changes in the cross-sectional area (bends, valves, tees, etc).

hL = f
l

D

V 2

2g
+

X
KL

V 2

2g
(3.17)

For the ¯rst term, the frictional e®ects are given by the friction factor, f . It is

a function of the nature of the °uid and the properties of the °ow (determined by the

Reynolds number), and the roughness (") of the pipe relative to its size. The Moody chart

shows the functional dependence of f on Re and "=D and it can be found in any °uids

book. For laminar °ow (Re < 2100) the friction factor has a linear relationship and it is

only a function of the Reynolds number:

f =
64

Re
(3.18)

where the Reynolds number,Re, is a nondimensional parameter that relates inertial e®ects

to viscous e®ects, and it is de¯ned as:

Re =
½ V D

¹
(3.19)

In the case of turbulent °ow, the Colebrook formula or other equations can be used. But

for our analysis, a laminar °ow will be assumed. For further details refer to Munson et al.

(1998).

For the second term of equation (3.17), the minor loss coe±cient (KL) is strongly

dependent on the geometry of the component considered as well as on the Reynolds number.
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For very large Reynolds number, inertial e®ects dominate and the head loss coe±cient

becomes only a function of geometry. Thus, for most practical cases, the loss coe±cient is

determined by experimental means (where the °ow has a high Re) and it is tabulated with

the corresponding geometry. For a low Reynolds number °ow, it is desirable to include its

e®ect (Re) on the loss coe±cient (KL). This is achieved by expressing the loss coe±cient

indirectly in terms of an equivalent length to diameter ratio of a straight pipe, such that:

KL = f

µ
l

d

¶
eq (3.20)

Substituting equation (3.20) into the expression for the head loss coe±cient (equation 3.17),

and then into equation (3.16),

Rf =
½ g

V A

Ã
f

l

D

V 2

2g
+ f

Xµ
l

d

¶

eq

V 2

2g

!
(3.21)

Furthermore, by substituting equations (3.18) and (3.19) into the equation above, and by

assuming that A = ¼
4
D2, then the resulting expression for the resistance of a given lump

of °uid becomes:

Rf =
128¹ l

¼ D4
+

128¹

¼D3

Xµ
l

d

¶

eq

;

·
N s

m2

m

m4
=

Kg

m4 s

¸
(3.22)

which it can be also expressed as

Rf =
128 ¹

¼D4

³
l +D

X
(l=d)eq

´
;

·
Kg

m4 s

¸
(3.23)

Finally, it is important to recall that equation (3.23) is valid for a steady, one dimensional,

essentially incompressible, adiabatic, laminar °ow.

3.3.3 Fluid Inductance

The °uid inductance is also referred to as °uid inertance, since it is associated with the

inertial e®ects of a lump of °uid. In Doebelin (1972) the inertia element is derived by

applying Newton's 2nd Law to a mass lump of °uid. Following our local control volume

type of approach, we start with the general conservation of momentum equation:

X
~Fcv =

@

@t

Z

cv

~V ½ d8 +

Z

cs

~V ½(~V ¢ ~n) dA (3.24)
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where the ¯rst integral represents the time rate of change of momentum within the control

volume, and the second term re°ects the momentum °ux through the boundaries of the con-

trol volume. In accordance with our lumped type of control volume model, we assume that

the density and velocity are uniform within the lump itself, and equation (3.24) becomes:

X
~Fcv =

d

dt
(~V ½ 8) +

X
( _m~V )out ¡

X
( _m~V )in (3.25)

By assuming that density changes with time are small around an operating point, and by

applying the equation in the x-direction (one dimensional °ow):

X
Fx = ½8 dV

dt
(3.26)

Note that the momentum °ux terms do not manifest themselves anymore. This is because

for an \essentially" constant density the continuity equation yields to equal mass °owrates

and velocities in and out of the control volume. Applying the previous equation to the nth

lump shown in Figure 3.2:

APn¡1 ¡ APn ¡ Ff = ½Al
dVn
dt

(3.27)

where Ff is the friction force the pipe exerts on the °uid element, and it is obtained by

multiplying equation (3.15) by the cross-sectional area of the lump, A. Substitution in the

equation yields to:

A(Pn¡1 ¡ Pn) ¡ RfA qn = ½ l
dqn
dt

(3.28)

If the resistance (friction) is neglected, then equation (3.28) reduces to:

Pn¡1 ¡ Pn = ¢P =
½ l

A

dqn
dt

(3.29)

By comparing equation (3.29) with the corresponding expression in Table 3.2, the °uid

inductance is de¯ned as:

If =
½ l

A
;

"
Kg
m3 m

m2
=

Kg

m4

#
(3.30)

Furthermore, it is valid for the same assumptions under which the capacitance was derived.

That is, one dimensional °ow and small density changes (w.r.t. time) around an operating

point. Finally, note that equation (3.28) contains both the resistance (friction) and the

inductance (inertia). If the inductance is neglected, then the expression for resistance

(equation 3.15) is obtained.
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3.4 Additional Considerations

3.4.1 E®ective Bulk Modulus

As discussed previously, in the derivation of the °uid capacitance, the bulk modulus relates

the e®ects of a pressure change to the volume change of a given volume of °uid. It is a

measure of the `sti®ness' of the °uid. And a small amount of entrained air can result in

a great reduction of the sti®ness of a hydraulic °uid. Also, depending on their geometry

and the internal pressure, metal pipes and other elements within a hydraulic system may

also deform slightly and therefore exhibit some compliance. Furthermore, accumulators

are speci¯cally designed to introduce high compliance or capacitance (and therefore, lower

sti®ness) in a desired location of the hydraulic line. They become °uid energy storage

devices that are used as a short term °uid supply, to damp out transients, and to assist the

pump, among other things. For our analysis, accumulators will not be considered. Their

analysis can be found in Chapter 4 of Doebelin (1972).

Equation (3.5) can be arranged in the form of ¢8 = ¡ 8
B
¢P . The negative sign

indicates that for an increase in pressure by ¢P , there will be a decrease in volume by

¢8. Accounting for entrained air, as an x percent of the total volume 8, then the e®ective

volume change can be de¯ned as:

¢8e = ¡
·
(1¡ x)8

Bf
+

x8
Bg

¸
¢P (3.31)

In addition, it is possible to include the °exibility of the pipes. Thus, lets consider brie°y

the strain and stresses in pipes carrying pressurized °uids and relate them to the e®ective

change of volume.

σt

σr

σl

P

Figure 3.3: Stresses in a pressurized cylindrical vessel.

The stress of a pipe is related to its strain, or percentage of deformation, through

the modulus of elasticity (E). Assuming that the deformation or change of volume of the
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°uid is equal to that of the pipe, then the strain can be written as ² = ¡¢8=8, where 8
and ¢8 correspond to the °uid. The negative sign corresponds to our de¯nition of ¢8 as

a negative change in volume. Thus, by substituting this expression into Hooke's Law,

¾ = E ² (3.32)

and solving for the change in volume, then

¢8 = ¡ 8
E

¾ (3.33)

For a cylindrical pressure vessel of internal radius a, external radius b and internal pressure

P , the maximum stresses occur at the inner surface, where r = a [Shigley and Mitchell

(1993)]. Their magnitudes are

¾t = P
b2 + a2

b2 ¡ a2
(3.34)

¾r = ¡P (3.35)

where the longitudinal stress has been neglected and ¾t and ¾r represent the tangential and

radial stress, respectively. Equation (3.34) can be written in terms of the internal diameter

D, and the pipe's thickness t; by substituting a = D and b = D+2 t. Further manipulation

will yield to:

¾t = P
2D2 + 4 tD + 4 t2

4 t D+ 4 t2
(3.36)

Both, tangential and radial stresses become a function of ¢P for deformations that corre-

spond to a change in the internal pressure P . By using equations (3.36),(3.35) and (3.33),

then the total change in volume of a °uid within a cylindrical vessel becomes:

¢8 = ¡
·
1

E

µ
2D2 + 4 tD + 4 t2

4 tD + 4 t2
¡ 1

¶¸
8¢P (3.37)

Note that as the thickness increases, the amount of deformation (represented by the change

in volume) reduces, up to the point where the terms 4 tD+4 t2 become much greater than

2D2 and the change in volume becomes ¢8 ¼ 0. On the other hand, as the thickness

decreases, the amount of change in volume increases, up to the point where the thickness
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of a pipe is about 5%, or less, of its radius. \Then the radial stress which results from pres-

surizing the vessel is quite small compared to the tangential stress. Under these conditions

the tangential stress can be assumed to be uniformly distributed across the wall thickness.

When this assumption is made, the vessel is called a thin-walled pressure vessel" [Shigley

and Mitchell (1993)]. Since for our analysis the pipes are connected to other elements (they

are not closed at the ends), then our assumption for the longitudinal stress still holds and

we only consider the tangential stress. Known also as the hoop stress, it is de¯ned as

¾t =
P D

2 t
(3.38)

Then, similar to the previous approach for a pressurized cylinder, the change in volume of

a °uid within a thin walled vessel is

¢8 = ¡
·

D

2 t E

¸
8¢P ; t · 0:05D (3.39)

Thus, in general, the volume change inside a pressurized vessel can be written as:

¢8 = ¡ [Cpv] ¢P (3.40)

where Cpv is either one of the constants within the brackets of equations (3.37) and (3.39).

Then adding to the total e®ective volume change ¢8e of equation (3.31) the e®ect of the

compliance in a pressurized vessel, the total e®ective volume becomes:

¢8e = ¡
·
(1¡ x)

Bf
+

x

Bg
+ Cpv

¸
8¢P (3.41)

Finally, by using the de¯nition of the bulk modulus (equation 3.5) then the e®ective bulk

modulus is de¯ned as:

Be =

·
(1¡ x)

Bf
+

x

Bg
+ Cpv

¸¡1

(3.42)

where Be accounts for the sti®ness of the °uid (Bf ), the percentage of air entrained in the

system (x) along with its sti®ness Bg, and the compliance of the pressurized vessel (Cpv).

Note that the percentage of air will dramatically a®ect the e®ective bulk modulus. On the

other hand, the contribution of the pipe's compliance is relatively small and its inclusion

depends on the nature of the analysis.
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3.4.2 Equivalent Fluid Mass

As mentioned in Section 3.2, the lumped parameter model assumes a uniform velocity

pro¯le across the cross section of the °uid °ow. But in reality, the °ow of a °uid exhibits

various pro¯les, depending on the viscosity of the °uid, the nature of the °ow (laminar or

turbulent), and the frequency of the excitation. Taken from Doebelin (1972), Figure 3.4

shows the velocity pro¯le for various °ow conditions. In various applications, the basic

equations of a °uid °ow are altered so that they appear in terms of average velocities. This

type of analysis is illustrated in Streeter (1961), where a constant is added in the equations

of energy and conservation of momentum. In our case, the set of assumptions made in the

derivation of the °uid system elements make the inductance, the only element that needs

to be corrected. But from equation (3.30), it can be observed that the inductance is related

through the density, to the mass of the lump of °uid. The inductance is related to the

inertial e®ects of a lump of °uid, and the correction is performed so that the kinetic energy

in both, the steady laminar °ow case and the model's uniform case, is conserved.

As pictured for the steady laminar °ow, the velocity pro¯le is parabolic, and in Munson

et al. (1998) it is written as:

V (r) =

µ
¢PD2

16¹ l

¶"
1¡

µ
2r

D

¶2
#

(3.43)

where ¢P corresponds to the pressure loss in a length l of the pipe due to viscous forces

(friction). Furthermore, the pressure di®erence and the viscous forces are related through

the wall shear stress, and the previous equation can be written as:

V (r) =
¿wD

4¹

·
1 ¡

³ r

R

´2
¸
= Vc

·
1¡

³ r

R

´2
¸

(3.44)

where Vc is the maximum velocity of the pro¯le and it is at the centerline (where r = 0). For

the lumped parameter model, the velocity pro¯le is uniform and it is based on the average

velocity,

Vavg =

R
½(~V ¢ ~n) dA

½A
(3.45)
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Figure 3.4: Velocity pro l̄es for various pipe °ow conditions [Doebelin (1972)].

and for a pipe °ow, V (r) = (~V ¢~n) and dA = 2¼r dr. Then for the steady laminar °ow case,

the average velocity is

Vavg =

R R
0
½ Vc

³
1¡ r2

R2

´
(2¼r dr)

½ ¼R2
=

Vc
2

(3.46)

Now it is possible to calculate the kinetic energy for both cases. In the steady laminar case,

it is a function of the parabolic velocity,

KE =
m[V (r)]2

2
=

½Al

2
[V (r)]2 (3.47)

Realizing that the velocity varies across the cross sectional area, A, then the following

integral is de¯ned,

KE =

Z
½l

2
[V (r)]2dA =

Z R

0

½Al

2
V 2
c

µ
1¡ r2

R2

¶2

(2¼r)dr (3.48)
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and solved to obtain the kinetic energy in terms of the actual mass of the lump and the

maximum velocity:

KE =
1

6
½Al V 2

c =
1

6
mV 2

c (3.49)

Similarly, for a uniform velocity pro¯le that uses the average velocity of Vc=2, the kinetic

energy is:

KEm =
mm(Vc=2)

2

2
=

1

8
mmV

2
c (3.50)

By equating both, the actual and the model's kinetic energy, the model's mass is found to

be one third higher than the actual mass,

mm =
4

3
m (3.51)

Furthermore, from equation (3.30), the °uid inductance can be written as:

If =
½ l

A
=

m

A l

l

A
=

m

A2
(3.52)

Then, by using equations (3.51) and (3.52), the relationship between the model's inductance

and the actual inductance of a °uid lump is also:

(If )m =
4

3
If (3.53)

Therefore for a steady laminar °ow, the °uid element of inductance needs to be corrected

so it is one third higher than the actual value.

3.5 Oscillating Fluid Flow

3.5.1 Operating Frequency

The results found in the previous section (equations 3.51 and 3.53) can be also applied in

unsteady or oscillating °ows (but steady in the mean) when the frequency is su±ciently

low. \As frequency increases (Figure 3.4) the velocity pro¯le becomes more square and

the correct mass approaches the physical mass ½Al. The inertance for laminar °ow is

thus always between (4=3)½l=A and ½l=A , the midpoint (7=6)½l=A occurring at about
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w = 50¹=R2½ " [Doebelin (1972)]. Thus, the midpoint frequency in a sinusoidal laminar

°ow, within a pipe of radius R, can be expressed as:

fc =
25¹

¼½R2
(3.54)

where fc is denoted as the critical frequency. For sinusoidal laminar °ow with frequencies

below fc, the inertance can be approximately corrected by 4=3 of the actual value. On the

other hand, for frequencies higher than fc, the inertance is close enough to the actual value

and no correction is needed. Also note from equation (3.54), that the larger the area of

the pipe, the faster the inertance of an increasing frequency sinusoidal laminar °ow will

approach the physical mass of ½A l and therefore the actual inertance of ½l=A.

But in addition to fc, another critical frequency needs to be de¯ned and it will be

denoted as fcRe . This term, fcRe , will represent the highest frequency for which an oscil-

lating °uid °ow will be laminar. This is useful, since our previous discussion of inductance

correction has been developed under the assumption of laminar °ow. Moreover, the same

assumption applied for the derivation of the °uid resistance in Section 3.3.2. Under this

section, and as shown in the Moody chart (found in Munson et al. (1998)), it has been

established that laminar °ows occur at a Reynolds number below of 2100. Thus from

equation (3.19), laminar °ow exists when

Re =
½ V D

¹
< 2100 (3.55)

For our derivation of fcRe, an oscillating °uid °ow can be obtained through the sinusoidal

motion of a piston in a constant area pipe, as depicted in Figure 3.5

Ax

x = Ax sin(wt)

Figure 3.5: Oscillating °uid °ow.
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Denoting Ax as the magnitude of an oscillating displacement x, of frequency w, then the

velocity is:

V =
dx

dt
= Axw sin(wt) = (2¼Axf ) sin(wt) (3.56)

Then, by substituting the magnitude of the velocity into equation (3.19):

Re =
½ (2¼Axf )D

¹
(3.57)

The critical frequency fcRE corresponds to the highest Reynolds number for which there is

laminar °ow, and if expressed in terms of the radius, R, then the previous equation becomes

½ (2¼AxfcRE) (R=2)

¹
= 2100 (3.58)

Finally, the critical frequency can be de¯ned as

fcRE <
2100¹

¼Ax½R
(3.59)

This result applies for a sinusoidal °uid °ow, and below the value of fcRE the °ow is

considered to be sinusoidal. Thus, the assumptions made in sections 3.3.2 and 3.4.2 require

that the frequency of an oscillating °uid °ow be below its corresponding critical value.

3.5.2 The Fluid Elements as a Function of Frequency

The °uid elements of capacitance, resistance and inductance were derived as an analogy

to their electrical counterparts. As in any electrical circuit, the presence of a capacitor

or an inductor adds phase information to the dynamics of the system, and the operating

frequency becomes important. Following there is a brief discussion on the e®ect of the °uid

elements with respect to the range of the operating frequency.

First, let's consider the capacitive e®ect. Equation (3.9) de¯nes the capacitance as a function

of (inversely proportional to) the bulk modulus of the °uid. Further on, Equation (3.42)

de¯nes the e®ective bulk modulus. Recall that the percentage of air will dramatically a®ect

the e®ective bulk modulus. On the other hand, the contribution of the pipe's compliance

is relatively small. Hence, the pipe's capacitance might seem of no importance. "To the
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contrary, however, the rapid shuto® of °ow in a pipe causes a pressure surge owing to

the interaction between the momentum of the °uid and the minute capacitance of the

pipe and °uid. These pressure surges are observed as °uid hammer" [Dorny (1993)]. As

described by Streeter (1961), the term °uid hammer or water hammer "is commonly used

to cover all pressure transients in hydraulic pipelines that demonstrate both inertial and

elastic e®ects". As a synonym for °uid transients, °uid hammer might not be relevant for

a particular system, but the pipe's capacitance may still be important. This is because

the general °uid element of capacitance is also analogous to its electrical counterpart, in

the sense that the capacitive e®ect increases as the frequency of the network decreases

(ZC = 1= ¡ jwC ). Thus, for a hydraulic system where the percentage of entrained air is

relatively small and the frequency of excitation is low, then the capacitive e®ect of a pipe

does become relevant. The capacitance of a thin walled vessel is the ¯rst one to consider,

and whether to include or neglect the e®ect corresponding to a regular pressurized cylinder

depends on the nature of the analysis.

Also, and in the same manner as with the °uid capacitance, the inertia of a °uid

is analogous to the electrical inductance, in the sense that the inductive e®ect increases as

the frequency is raised (ZL = jwL). Therefore, a corrected mass for the °uid inductance,

does become relevant when from a °uids standpoint, you are operating below the critical

frequency fc, but from an electrical network standpoint, it is high enough such that the

inductive e®ect can't be neglected.

Thus, the lumped parameter model analogous to an electrical network will be largely

dependent upon the range of frequencies under consideration. Often, models exposed to

low frequency excitations include only resistive and capacitive elements, but also include

and inductive element when operating under high frequencies [Foster and Parker (1970)].

3.6 Fluid Capacitance, Resistance and Inductance Network

3.6.1 Single Lump of Fluid Model

In this section, many variables are represented with the same letter. Therefore, the notation

used in Table 3.1 is used to avoid any confusion. Note that a variable, x, does not represent

the same parameter as X .
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Derived from the general conservation of momentum equation (in section 3.3.3), equa-

tion (3.28) can be written as:

Pn¡1 ¡ Pn = Rf qn +
½ l

A

dqn
dt

(3.60)

Using the de¯nition of inductance (equation 3.53) and dropping the subscripts for the nth

lump, then the previous equation can be stated as:

¢P = Rf q + If
dq

dt
(3.61)

Furthermore, by using the force-voltage analogy displayed in Table 3.1, the °owrate q is

equivalent to a current i, and the pressure di®erence ¢P is analogous to a voltage drop

¢V . Then the previous equation becomes the voltage drop across both, a resistor and an

inductor in series (as shown in Figure 3.6):

¢V = Rf i+ If
di

dt
(3.62)

i = dQ/dt Rf Lf

∆V

Figure 3.6: Model of a lump of °uid (non-capacitive).

This electrical circuit is valid for some °uid systems, where there is a minor compliance that

can be neglected and therefore no storage or release of mass occurs. For example, the °ow

of °uid through a rigid pipe in a system where transients or minor changes from an average

output does not matter. Also remembering that the current is analogous to the °owrate,

then it can be seen that the °owrate in, is equal to the °owrate out. This agrees with the

continuity equation (3.1) ¯rst introduced in section 3.3.1:

@

@t

Z

cv
½ d8 +

Z

cs
½(~V ¢ ~n) dA = 0 (3.63)

In the absence of compliance in the system, there is no mass storage or release and the time

rate of change of mass is equal to zero. This implies that mass is constant, and therefore

density is constant (for a control volume).Thus the second term of equation (3.63) is left,
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with density, as a constant that does not manifest itself. Then, the °owrate balance is

obtained by substituting the de¯nition of °owrate (q = V A).

½

Z

cs

(~V ¢ ~n) dA = 0

X
(AV )out ¡

X
(AV )in = 0

X
(q)out ¡

X
(q)in = 0 (3.64)

In order to account for the compliance in a system, it is necessary to use a capacitor in the

way it is shown in Figure 3.7. This type of con¯guration has been used to model a lump

of several °uid pipeline systems, such as water pipes, oil ducts, and arteries, among others.

References are covered in the literature review presented in the Introduction.

 
R1 L1

C1

i2 = dQ2/dti1 = dQ1/dt

V1 V2

ic = dQc/dt

Figure 3.7: Model of a lump of °uid.

As shown in the ¯gure above, the current out, i2, is not necessarily the same as the current

in, i1. It could be lower or even higher, depending on the charging or discharging e®ect of

the capacitor. Thus, in the presence of compliance (modeled with a capacitor) there is some

energy storage and/or release, and therefore the °owrates in and out of the lump are not

equal. Nonetheless, it is very important to realize that this model (Figure 3.7) is di®erent

than the ¯rst one (Figure 3.6) in a very important aspect. The ¯rst model is derived

from the equation of conservation of momentum and satis¯es the continuity equation. The

second model results from the addition of the capacitive e®ect in order to simulate the

compliance represented by the ¯rst term of the continuity equation. In addition, recall from

previous sections that the derivation of the °uid element of capacitance had a di®erent set

of assumptions than those used to obtain the °uid resistance and inductance. Thus, the

result is a model that approximates the lump of °uid and the °uid dynamics in a pipeline.
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3.6.2 Model of a Fluid Pipeline

Following the model of a lump of °uid (Figure 3.7) then a hydraulic pipeline can be modeled

as shown in Figure 3.8. The current source represents a °ow source, and it is a good analogy

to the case shown in Figure 3.5 (as an alternating current source), where an oscillating piston

de¯nes the °owrate through the pipeline.

 

R1 R2 R3L1 L2 L3

C2C1 C3i1 i2 i3i

Figure 3.8: Analogous electrical model of a °uid pipeline.

The easiest way to analyze this circuit (for programming purposes) is to apply Kircho®'s

voltage law (KVL). The principle behind it is that no energy is lost or created in an electric

circuit and therefore the net voltage around a closed circuit is zero [Rizzoni (1996)]. By

applying Kircho®'s voltage law to each loop, and by expressing each voltage drop in terms

of the charge, Q, then the following set of equations is obtained:

L1
d2Q1

dt2
+

1

C1
(Q1 ¡Q2) +R1

dQ1

dt
= 0 (3.65)

L2
d2Q2

dt2
+

1

C2
(Q2 ¡Q3) +

1

C1
(Q2 ¡Q1) +R2

dQ2

dt
= 0 (3.66)

L3
d2Q3

dt2
+

1

C3
(Q3 ¡Q4) +

1

C2
(Q3 ¡Q2) +R3

dQ3

dt
= 0 (3.67)

Note that the current source, which represents the °ow source, appears in the equation as

the term dQ1=dt. By using the force-voltage analogy shown in Table 3.1 it is possible to

write an equivalent set of mechanical equations in terms of the elements of mass, spring

and damping:

m1 Äx1 + k1 (x1 ¡ x2) + b1 _x1 = 0 (3.68)

m2 Äx2 + k2 (x2 ¡ x3) + k1 (x2 ¡ x1) + b2 _x2 = 0 (3.69)

m3 Äx3 + k3 (x3 ¡ x4) + k2 (x3 ¡ x2) + b3 _x3 = 0 (3.70)
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Then, by inspection of these equations, it is possible to construct the following mechanical

system as the analogous system to the electrical circuit model shown in Figure 3.8.

M1

M2

M3

k1

k2

k3

b1

b2

b3

x1 x2 x3
dx1/dt

Figure 3.9: Analogous mechanical model of a °uid pipeline.

Note that the input to the system, which represents the °ow source, is _x1, the velocity

of the ¯rst lump (from the mechanical system standpoint). Recall that from the force-

voltage analogy, a given °owrate is analogous to a given velocity in a mechanical system.

Nonetheless, once the mechanical system is de¯ned, then the input to the system may also

be expressed in terms of a displacement, such as x1, instead of the velocity, _x1. Also note

that if further lumps are to be added, then the next mass would be coupled to the sti®ness

k3. Otherwise, the spring corresponding to the last lump (in this case the 3rd lump) would

be also coupled to ground.

Thus Figure 3.9 represents a mechanical lumped parameter model of a °uid pipeline,

with the elements of sti®ness, damping and mass related to the electrical analogies of ca-

pacitance, resistance and inductance, respectively. Recall from equations (3.9), (3.23) and

(3.30), and from the force-voltage analogy shown in Table 3.1, that:

Cf =
A l

B
» 1

k
;

·
m2 m

P a
=

m5

N

¸
(3.71)

Rf =
128¹ l

¼ D4

³
1 + D

X
(l=d)eq

´
» b ;

·
N s

m2

m

m4
=

Kg

m4 s

¸
(3.72)

If =
½ l

A
» m ;

"
Kg
m3 m

m2
=

Kg

m4

#
(3.73)

66



Then the analogous sti®ness, damping and mass for each lump of °uid, is de¯ned as:

k = A2 1

Cf
=

AB

l
;

·
N

m

¸
(3.74)

b = A2 Rf = 8¼ ¹
³
l +D

X
(l=d)eq

´
;

·
Kg

s

¸
(3.75)

m = A2 If = ½ Al ; [Kg] (3.76)

Note that for equations (3.72) and (3.75) an area of A = ¼
4
D2 has been assumed.

In summary, the de¯nitions stated in the set of equations (3.74), (3.75) and (3.76),

along with the set of di®erential equations (3.68), (3.69) and (3.70), that describe the

mechanical system shown in Figure 3.9, represent a three-lump model of the °uid in the

following system:

Ax

x = Ax sin(wt)

Figure 3.10: Fluid-mechanical oscillating system.

The next step is to verify that the lumped parameter model converges as the number

of lumps for a given °uid pipeline is increased. This is performed in the following section.

Finally, once the convergence of the model is obtained, then it is possible to couple the

lumped parameter model of the °uid pipeline to the dynamics of the stack and the piston

used as the °ow source, to the dynamics of the output cylinder (the unit's output actuator),

and ultimately, also to the dynamics of the valves. This is covered in the next chapter,

Model of the P iezoHydraulic Unit.

3.6.3 Lumped Model Convergence

A lumped parameter model of a °uid pipeline is similar to a ¯nite element model of a beam,

and in general, it is desired that as the number of lumps or elements is increased, the results

of the model di®er less and less and eventually, a further increase in the number of lumps

would have no e®ect on the output or the results. This is known as the convergence of a
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lumped or ¯nite element model, which is often the point at which the model best matches

the exact theoretical solution or the corresponding experimental results. Usually the extent

to which a model is required to match the exact solution depends on the nature of the

problem. As the number of lumps or elements is increased, the dynamics of the modeled

system and the actual system begin to match, starting with the slowest pole, and then

following the higher frequency or faster poles. This is illustrated in Figure 3.11, where a

third-order system is depicted. The ¯rst pole, p1, is the slowest or the lowest frequency

pole, and eventually it converges to a given value. Faster poles p2 and p3 will also converge,

but with a greater number of lumps used to model the system.

Im

Number of Lumps

Re
p1

p1

p2
p2p3

p3

Frequency 

Figure 3.11: Pole location, and corresponding convergence (generic curves).

The convergence of the lumped parameter model for a °uid pipeline was performed

on the system shown in Figure 3.10. The °uid pipeline is modeled with a mechanical system

as shown in Figure 3.9 but initially with one lump, then with two lumps, and further on.

Note that a one element system represents a second order system, and therefore it has two

poles related to it. For a two lump system, there would be four poles, and so on.

Figure 3.12 is a representation of the algorithm followed for the convergence analysis.

First, the °uid pipeline is modeled with one lump, and the values used for the sti®ness (ko),

damping (bo), and mass (mo) elements are displayed in Table 3.3. Each part or component

of the hydraulic pipeline (such as a tee, a bend or a pipe) is modeled with at least one lump.

Then, by considering the setup of the piezohydraulic unit, the lowest sti®ness of a part in

the system was used as ko. Furthermore, the addition of all the damping elements was used

as bo, and in the same manner, the total mass of °uid of the system, was used as mo. The

objective, is to start with an approximate one lump, second order model of the system in

order to perform the convergence analysis. For now, it is not an attempt to obtain the
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number of lumps needed for the convergence of the hydraulic system in the piezohydraulic

unit, but to verify that the model itself does converge. Once the lumped parameter model is

proved to converge, then the convergence analysis of the hydraulic system as it is (currently

it is not a one-part system but a multi-part system) can be performed.

kr
mo

bo

ko

xoxin

Figure 3.12: Addition of lumps for the convergence analysis.

Note that an additional spring has been added at the input. The sti®ness kr , rep-

resents the rod and the piston elements through which the input to the hydraulic system

is applied. For the purpose of this analysis, the input is considered to be the displacement

xin . Also note that as a function of the number of lumps, n, then the equivalent elements of

sti®ness, damping and mass are obtained through the expression shown in Table 3.3. This

Table 3.3: Equivalent sti®ness, damping and mass elements.

ko = 1.26*104 N/m
bo = 4.89*101 Kg/s 
mo = 8.74*10-3 Kg 

ki = ko * n
bi = bo / n
mi = mo / n

ki = ko * 2
bi = bo / 2
mi = mo / 2

For  ‘n’ lumps, 
1 < i < n :

For  two lumps 
n =2,  1 < i < n :

One-lump 
equivalent system:
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expression is obtained from the set of equations (3.74), (3.75) and (3.76), where the sti®ness

is inversely proportional to the length while the damping and the mass are proportional

to the length. Thus, for a pipe of a de¯nite length l, then the length of lump depends on

the number of lumps used (l/n), and the sti®ness element of each lump then becomes a

proportional function of n. In the same manner, the damping and mass elements for each

lump become inversely proportional to n, as shown in Table 3.3.

The analysis of the one-lump model up to the nth lump model was performed using

the state-space formulation. Thus, the n di®erential equations of an nth lump system, can

be formulated in the form of the matrix equation (2.52), used to describe the second-order

system introduced in Chapter 2. Then the set of equations can be expressed in the state

space form (equation 2.64), where the dynamics of the system are related to the eigenvalues

of the \A" matrix. The eigenvalues represent the poles of the characteristic equation, and

it is used to analyze the convergence of a system, as explained previously and shown in

Figure 3.11.

In the ¯gure below, the frequency magnitude of the slowest pole (the smallest in

magnitude of the entire set of poles) is plotted versus the number of lumps used to de¯ne

the system.
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Figure 3.13: Variation of the slowest pole with respect to the number of lumps used.

The next ¯gure shows the percent change in the magnitude of the frequency of the

slowest pole as the result of the increase of the number of lumps by one unit. After the

11th lump, the percent change in magnitude is less than 1%. Thus, 11 lumps become the
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minimum number of elements required to at least model the low frequency dynamics of the

system. Furthermore, a divergence in these results would indicate that there is an error in

the model.
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Figure 3.14: Percent change of the slowest pole versus the number of lumps used.

The e®ect of using additional lumps in the input-output relationship of the system

has been also analyzed. This relationship is usually presented as a transfer function of

the output y, to the input x, and expressed using Laplace transforms, as Y (s)=X(s), in

order to relate the ratio to the frequency domain. In the convergence analysis, the input

is the displacement xin , while the output is the displacement of the last lump of °uid, xn.

But due to the set of di®erential equations involved in a multi-degree of freedom system,

then the state space formulation for the input-output relationship has been used, de¯ned

as [Friedland (1986)]:

Y (s)

X(s)
= C (sI ¡A)¡1 B +D (3.77)

were Y (s)=X (s) is known as the transfer function and it represents the frequency response

of the system, with the assumption of zero initial conditions.

The next ¯gure, shows the e®ect of additional lumps in the frequency response of

the system. For these simulations, a sinusoidal displacement input is assumed. Looking at

Figure 3.12, the input operates through an input sti®ness (that represents the sti®ness of the

piston) and into the mass of the ¯rst lump. The output is assumed to be the displacement

of the last lump.
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Figure 3.15: Frequency response as a function of the number of lumps.

The resulting frequency response resembles that of a low pass ¯lter. The dark blue

curve represents a system modeled with one lump, the green curve corresponds to two lumps,

the red one for three lumps, and so on. Note that as the number of lumps is increased,

the DC component of the frequency response shifts down, the break frequency and the

bandwidth increases, as well as the magnitude or the order of the rollover. Eventually, the

frequency response curves converge and a further increase in the number of lumps has no

considerable e®ect on the dynamics of the modeled system. For this system, the frequency

response curves were plotted up to a number of lumps n = 12. From the ¯gure, it is easy

to observe that the system has approximately converged towards the last set of curves.

Furthermore, knowing that less than a 1% change in the slowest pole is achieved after 11

lumps, and that further faster poles would require additional lumps, then it becomes clear

that the low frequency dynamics dominate the system.

One last note, is that the sti®ness, damping and mass used in these simulations are

in the order of: k » 104, b » 101, and m » 10¡3, which corresponds to an approximate

and equivalent second order system of the experimental setup of the piezohydraulic unit.
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Further simulations indicate that only signi¯cant changes in the order of these parameters

would a®ect the minimum number of lumps required to model the low frequency dynamics

of the system. The Matlab m.¯le thesis convergence:m was developed and used for these

simulations, and for further reference, it has been included in the appendix.

3.7 Summary

Following the system analogy presented at the beginning of the chapter, the °uid elements

of resistance, capacitance and inductance have been derived from the governing equations

used for a control volume and applied to the °uid in a pipeline. The lumped parameter

model is based on a one-dimensional °ow that divides the pipeline in lumps of volume with

uniform properties, such as pressure and velocity. Once the model of a single lump of °uid

has been obtained, then a mechanical system that model the entire °uid pipeline has been

derived. Finally, the convergence of the model has been veri¯ed, and the results discussed.
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Chapter 4

Model of the PiezoHydraulic Unit

4.1 Introduction

This chapter uses the models and equations of each of the systems presented in Chapter 2.

It also uses the model of the hydraulic system that was discussed in Chapter 3, and it

combines all the information in order to develop the model for the entire piezohydraulic

system. The analysis of the hydraulic system, and therefore the analysis of the entire unit,

will follow a two-stage cycle algorithm (as introduced in the Hydraulic System section of

Chapter 2 ).

Also, the following terminology will be used:

- One-sided operation: operation of the unit with one valve open and the other one

closed. The result is an oscillating motion of the hydraulic cylinder. Therefore, this type of

operation is also referred to as oscillating operation , or under oscillation.

- Two-stage operation: operation of the unit with both valves opening and closing

with a speci¯ed phasing or timing pattern. The result is a directed °uid °ow through the hy-

draulic system, and therefore this type of operation is also denoted as the pumping operation.

- Single-ended cylinder: asymmetric hydraulic cylinder, since there is only one rod

attached to one of the sides of the piston.

- Double-ended cylinder: symmetric hydraulic cylinder, with rods extending from

both sides of the piston.

- First side: as it will become clear further on, at any given moment there will

always be one valve closed and one valve open (regardless of a one-sided or a two-stage

operation). The result, is that the diagram of the piezohydraulic unit in Figure 2.2 can
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then be represented as shown in Figure 4.1. The hydraulic system that is connected to the

open valve, and therefore to the piezoelectric stack, is denoted as the first side, or the

oscillating side.

- Other side: the hydraulic system that is to the other side of the piston (of the

output cylinder) and ends at the closed valve. Furthermore, the corresponding elements of

°uid sti®ness, damping and mass are distinguished with those of the ¯rst side, by using the

subscript \OS".

Finally, the terms output cylinder and hydraulic actuator or hydraulic cylinder

are used interchangeably.

First Side Other Side

PZT Stack

Open Valve Closed Valve

Figure 4.1: Representation of a double-ended piezohydraulic unit under one-sided
operation.

Figure 4.1 is the one-sided representation of the piezohydraulic unit. A model of

this representation is used to simulate the one-sided operation of the piezohydraulic unit.

Valve Closed

Valve Open

Stage 2 
(pulling)

Stage 1 
(pushing)

Model  B Model  A 

Side A

Side B

Side A

Side B

Figure 4.2: Simulation of a pumping operation with a two-stage cycle model of the a
double-ended piezohydraulic unit.
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Furthermore, the model is derived in Section 4.2. Then, two di®erent one-sided models

are used in order to simulate the pumping operation of the unit, with the two-stage cycle

process shown in Figure 4.2. Thus, one model is excited during the pushing stroke of the

stack while the other one, during the pulling stroke. Following the same notation introduced

in Chapter 2, Model B is used during the ¯rst stage since it is Side B the side with direct

contact with the piezoelectric actuator. In the same manner, Model A is used during the

second stage. A switch of models, Model A during the ¯rst (pushing) stage while Model B

for the second (pulling) stage results in the opposite (downward) movement of the rod of

the hydraulic cylinder. The two-stage cycle operation is discussed in Section 4.3.

4.2 One Sided Operation

Following the previous two-stage cycle example, for the purpose of this section, solenoid

valve B will be assumed to be open while solenoid valve A is closed (Model B). Figure 4.3

shows the corresponding mechanical model of the entire piezohydraulic unit (as shown in

Fpzt

lp lp_os

xr xcxp1 x1 x2 x3 xlp -1 xlp xlp_os - 1 Xlp_osxos1 xos2

INPUT OUTPUT

Figure 4.3: Lumped parameter model of the piezohydraulic unit.
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Figure 4.1). The input to this system is the force exerted by the piezoelectric stack, Fpzt,

which is a function of either the voltage or the charge across the stack itself. The output

is the displacement of the piston of the output cylinder, xc. The variable lp refers to

the number of °uid lumps used to de¯ne the ¯rst side, which in this stage is Side B.

Similarly, lp os is the number of lumps used to de¯ne the other side, in this case, Side A.

The unconnected links between some of the masses in the model are due to a separate model

development (in the Matlab code) of some of the systems within the unit. And as discussed

in Chapter 2 these are coupled through the introduction of constraints that would set both

displacements across an unconnected link as equal to one another. For the model used and

shown in Figure 4.3, three constraints will be required.

First it is necessary to derive the equations of motion that describe this system. The

analysis of the free body diagram of the ¯rst mass, mr , yields to the following equation:

mr Äxr = Fpzt ¡ kr xr + kr xp1 (4.1)

For a piezoelectric stack that is voltage-controlled, equation (2.26) is used and its substitu-

tion into equation (4.1) results into:

Äxr =

µ¡ka ¡ kr
mr

¶
xr +

µ
kr
mr

¶
xp1 +

µ
ka xo
Mr

¶
Vpzt (4.2)

Similarly, for a charge-controlled piezoelectric stack, equation (2.35) is used and its substi-

tution into equation (4.1) results into:

mr Äxr = F1 Qpzt ¡ F2 xr ¡ kr xr + kr xp1 (4.3)

Äxr =

µ¡F2 ¡ kr
mr

¶
xr +

µ
kr
mr

¶
xp1 +

µ
F1

mr

¶
Qpzt (4.4)

The analysis of the free body diagram of the rest of the masses, will yield to the

following set of pairs of equations. The ¯rst equation of a pair is the equation of motion

following Newton's Law. The second equation expresses the equation of motion in a state

space format. Also note that the notation used is consistent with the Matlab code developed.

For the input cylinder piston's mass:
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mp1 Äxp1 = kr xp1 ¡ kr x1 (4.5)

Äxp1 =

µ¡kr
mp1

¶
xp1 +

µ
kr
mp1

¶
xr (4.6)

For the ¯rst mass of Side B, m1,

m1 Äx1 = ¡b1 _x1 ¡ k1 (x1 ¡ x2) (4.7)

Äx1 =

µ¡b1
m1

¶
_x1 +

µ¡k1

m1

¶
x1 +

µ
k1

m1

¶
x2 (4.8)

For the second mass, m2,

m2 Äx2 = ¡b2 _x2 ¡ k2 (x2 ¡ x3)¡ k1 (x2 ¡ x1) (4.9)

Äx2 =

µ¡b2
m2

¶
_x2 +

µ¡k2 ¡ k1

m2

¶
x2 +

µ
k2

m2

¶
x3 +

µ
k1

m2

¶
x1 (4.10)

Furthermore, after the second mass the corresponding equations for the rest of the masses

follow the same pattern, up until the last lump for the side. In other words, for 2 < n < lp

the pairs of equations can be expressed as:

mn Äxn = ¡bn _xn ¡ kn (xn ¡ xn+1)¡ kn¡1 (xn ¡ xn¡1) (4.11)

Äxn =

µ¡bn
mn

¶
_xn +

µ¡kn ¡ kn¡1

mn

¶
xn +

µ
kn
mn

¶
xn+1 +

µ
kn¡1

mn

¶
xn¡1 (4.12)

For the last lump and mass (when n = lp ) the subscript lp is used. Also, for the additional

mass, the subscript fi is used. It represents a negligible 1% of the mass of the last lump,

mlp, but it has been introduced in order to have a second order equation related to the

displacement at the end of the last spring for this side, klp. This displacement is shown as

xf i and it will be later eliminated as the model of Side B gets coupled with the piston's

mass, Mc. Further on, following this notation, equation (4.12) can be written for the last

lump as:
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Äxlp =

µ¡blp
mlp

¶
_xlp +

µ¡klp ¡ klp¡1

mlp

¶
xlp +

µ
klp
mlp

¶
xfi +

µ
klp¡1

mlp

¶
xlp¡1 (4.13)

Furthermore, the analysis of the free body diagram of the additional mass result in the

equations:

mf i Äxfi = klp (xlp ¡ xf i) (4.14)

Äxfi =

µ¡klp
mf i

¶
xfi +

µ
klp
mfi

¶
xlp (4.15)

Continuing with the analysis of the piston of the output cylinder,

mc Äxc = (¡bL) _xc ¡ (kL + kil)xc (4.16)

Äxc =

µ¡bL
mc

¶
_xc +

µ¡kL ¡ kil
mc

¶
xc (4.17)

The terms kL and bL represent static spring and damping loads that have been added, as

shown in Figure 4.3. They are identi¯ed as static loads since they are attached to ground,

or a constant reference point. For the simulations performed in the next chapter, these

variables are set equal to zero. Nonetheless, they have been added ( kL and bL ) in the

derivations, in order to enable the study of the e®ects of a load in future research. Also

recall that the sti®ness kil is only used when a single ended cylinder is under operation.

Therefore, the equation for a double sided cylinder under no load would reduce to only the

mass or the inertia of the piston.

In the same manner as for the ¯rst side (Side B), for the other side (Side A) the

corresponding equations of motion use the subscript \ os ", and the equations for the ¯rst

mass, mos2 , are expressed as:

mos1 Äxos1 = ¡bos1 _xos1 ¡ kos1 (xos1 ¡ xos2) (4.18)

Äxos1 =

µ¡bos1
mos1

¶
_xos1 +

µ¡kos1
mos1

¶
xos1 +

µ
kos1
mos1

¶
xos2 (4.19)
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For the second mass, mos2 :

Äxos2 =

µ¡bos2
mos2

¶
_xos2 +

µ¡kos2 ¡ kos1
mos2

¶
xos2 +

µ
kos2
mos2

¶
xos3 +

µ
kos1
mos2

¶
xos1 (4.20)

From this point up to the lump before the last mass, the equations follow the same pattern

as in equation (4.12). Thus, for 2 < n < (lpos ¡ 1) the equations are expressed as:

Äxosn =

µ¡bosn
mosn

¶
_xosn +

µ¡kosn ¡ kosn¡1

mosn

¶
xosn +

µ
kosn
mosn

¶
xosn+1 +

µ
kosn¡1

mosn

¶
xosn¡1

(4.21)

Finally, for the last lump (when n = lpos ), the subscript lpos is used and its corresponding

equation is expressed as:

Äxlpos =

µ¡blpos
mlpos

¶
_xlpos +

µ¡klpos ¡ klpos¡1

mlpos

¶
xlpos +

µ
klpos¡1

mlpos

¶
xlpos¡1 (4.22)

Once all these equations are de¯ned, they can be grouped in a matrix type of for-

mulation just like equation (2.52), which describes the system shown in Figure 2.23, used

as an example in Section 2.5.2. Actually, in the Matlab code developed, the model shown

in Figure 4.3 is initially expressed in state space form. Then it is transformed into the

Newtonian formulation. Once this formulation is obtained, then it is possible to introduce

the following constraints:

x1 = xp1

xfi = xc

xos1 = xc (4.23)

Therefore the constraint matrix C , introduced in Section 2.5.2, is de¯ned as shown in the

following page. Again, note that by the introduction of the three constraints in the matrix

equation, three degrees of freedom have been eliminated. Thus, variables x1 ,xfi , and

xos1 do not manifest themselves in the new set of coordinates x̂.
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2
66666666666666666666666666666666666664

xr

xpi

x1

x2

x3

:

xlp

xfi

xc

xos1

xos2

:

xlpos¡1

xlpos

3
77777777777777777777777777777777777775
ldx 1

=

2
66666666666666666666666666666666666664

1 0 0 0 :: 0 0 0 :: 0 0

0 1 0 0 :: 0 0 0 :: 0 0

0 1 0 0 :: 0 0 0 :: 0 0

0 0 1 0 :: 0 0 0 :: 0 0

0 0 0 1 :: 0 0 0 :: 0 0

: : : : : 0

0 0 0 0 :: 1 0 0 :: 0 0

0 0 0 0 :: 0 1 0 :: 0 0

0 0 0 0 :: 0 1 0 :: 0 0

0 0 0 1 :: 0 1 0 :: 0 0

0 0 0 1 :: 0 0 1 :: 0 0

: : : : : 0

0 0 0 1 :: 0 0 0 :: 1 0

0 0 0 1 :: 0 0 0 :: 1 0

3
77777777777777777777777777777777777775
ld x (ld¡3)

2
66666666666666666666666666664

xr

xpi

x2

x3

:

xlp

xc

xos2

:

xlpos¡1

xlpos

3
77777777777777777777777777775

(ld¡3) x 1

(4.24)

x = C x̂

Furthermore, the set of equations derived in this section and expressed in a New-

tonian matrix form such as in equation (2.52), can be transformed with the constraint

matrix into the coupled set of equations:

±(x̂T CT )
h
M C Ä̂x +B C _̂x +K C x̂¡ fmQpzt

i
= 0 (4.25)

Note that the matrix equation is the same as equation (2.56), except that the matrices M ,

B, K , and fm now correspond to the set of equations developed in this section. Also note

that the input for the current/charge controlled system becomes the charge, Qpzt.

Finally, following the same notation and the same procedure outlined in Section

2.5.2, the coupled set of equations for the model of the ¯rst stage (equation 4.25) can be

then expressed in the state space form:
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2
4 _̂x

Ä̂x

3
5 =

2
4 0 I

AkmC AbmC

3
5
2
4 x̂

_̂x

3
5 +

2
4 0

BlowerC

3
5Qpzt (4.26)

_̂x = A x̂ + B u

It is important to remember that this model in state space form represents the

operation of the piezohydraulic unit with one valve open and one valve closed (one-sided

model). Thus, if an oscillatory excitation Qpzt is induced, and this model is used, then an

oscillatory output, xc, is expected. This section developed the model with the assumption

that solenoid valve B is open while valve A is closed. The reverse scenario can be also

modeled (where Side A becomes the first side and Side B the other side). It is just a

matter of assigning the variables mn , kn , and bn the values corresponding to the lumps

created from Side A, and in the same manner, assigning the variables mosn, kosn, and bosn

the values corresponding to the lumps created from Side B. Finally, and as mentioned

previously, the one-sided operation -where one valve is closed and one is open- is referred to

as oscillation. The oscillating mode was used to gather experimental data and compare it

with the predicted data from the simulation of the model. It is a measure for validating the

model before using it to predict the operation of the piezohydraulic unit under the two-stage

cycle operation.

4.3 Two-Stage Cycle Operation

The two-stage cycle operation results in the °ow of °uid through the hydraulic system,

and therefore it will be denoted as the pumping operation. Also, for the purpose of the

following discussion, it will be assumed that the displacement of the stack exhibits a fairly

linear relationship with the input charge. Furthermore, a triangular-wave charge input will

be assumed (as in Figure 4.4) and therefore, the stroke of the piezoelectric actuator will be

similar in nature.

The two-stage cycle operation uses two di®erent one sided models in order to simulate

the operation of the piezohydraulic unit. Assuming that for the ¯rst stage valve B is open

while valve A is closed, then the corresponding one sided model (Model B ) is developed and

excited. Afterwards, a second one sided model is developed for the second stage (Model A),

where valve A is open and valve B is closed, and it is excited. Notice that the models used
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Time, tT / 2 T 

Xpzt ( Qpzt in ) 

Figure 4.4: Input signal.

in each stage have the same structure but they di®er from one other. Thus, the set of states

in the vector x for the ¯rst stage model is di®erent than those for the second stage model.

By representing each model with the notation and the diagrams used in Section 2.6, then

the input signal can be also considered in two stages, as shown in the ¯gure below.

Side A

+ xout

PistonSide B

Input
+ xin

PistonSide A

Input
+ xin

Side B

+ xout

Time, t

Time, t

Xpzt ( Qpzt  in ) 

Xpzt ( Qpzt  in ) 

Stage 1 Stage 2 Stage 1 Stage 2

T / 2

T / 2

T 

T 

M
od

el
  B

M
od

el
  A

Figure 4.5: Input signal for: model B (top), and model A (bottom).

Notice that during the ¯rst stage (from 0 to T/2) the stack is under its forward stroke

(pushing) and Model B is excited. Therefore, the piston is pushed towards the direction of

Side A. In the same manner, during the second stage (from T/2 to T) the stack is under its

backward stroke (pulling) and Model A is excited. As a result, the piston is pulled towards

the direction of Side A. The net e®ect after one cycle (two stages), is the movement of

the piston towards Side A, by an amount ¢x. In summary, by exciting Side B during

the ¯rst stage, the result is a piston movement towards Side A, which will be denoted as

a BA pumping operation. Then similarly, an AB pumping operation results from the
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excitation of Side A during the ¯rst stage, and a piston movement towards Side B.

The BA type of pumping operation shown in Figure 4.5 is achieved through the

50% onset timing pattern of the valves, which is de¯ned as:

@ t = 0 ; V alveA => Closes V alve B => Opens

@ t = T=2 ; V alve A => Opens V alveB => Closes

@ t = T ; V alveA => Closes V alve B => Opens (4.27)

It is important to note that Figure 4.5 assumes an instantaneous opening and closing

of the solenoid valves at the every half of a period (at 0, T/2, T...). Nonetheless, controlled

valves in general require a speci¯ed amount of time to fully open or fully close once the

input valve signal is received ( Chapter 2). This transition time can not be neglected and

its e®ect on the two-stage model of the hydraulic system is shown in the ¯gure below.

Time, t

Time, tT / 2

T / 2

T 

T 

Xpzt ( Qpzt  in ) 

Xpzt ( Qpzt  in ) 

ttr

Stage  1

Stage  2

Figure 4.6: Input Signal `seen' by the hydraulic system, including the e®ect of the
valve transition time.

As it can be observed in Figure 4.6, due to the transition time, one valve is in the

process of fully closing while the other is in the process of fully opening. This brief period

of time, will be referred to as a valve overlap. During a period of valve overlap , both

sides of the system are no longer isolated and therefore there is no longer a pushing or a

pulling e®ect on either side. Because of this, the input signal `seen' by the hydraulic system

is assumed to be constant during this period, meaning that the piezoelectric stack is not

moving and therefore the °uid is not being excited. This is illustrated in Figure 4.7.
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Time, t
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T / 2
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T 

Xpzt ( Qpzt  in ) 

Xpzt ( Qpzt  in ) 

ttr

Stage  1

Stage  2

Figure 4.7: Actual input signal used for Model A and Model B.

Although this constant signal approach is a good approximation, it is not by any

means, an exact model of the system. Thus, while transients may occur in this brief period

of time they are not expected to be predicted by the simulation of the current model. In

order to include the dynamics involved in this short period of time, then it is necessary to

de¯ne an additional stage, where the entire hydraulic system is excited but it is no longer

separated in two sides. The complexity added (not only to the model but mainly to the

Matlab code) to predict these transients is, at this point, not worth of achieving.

4.4 Transition Between Stages and Cycles

Time-Variance Implications:

Since each stage consists of two di®erent models, and therefore a di®erent set of states,

then the initial condition response has been neglected and thus, only the forced response

is taken into account. This approach does a®ect the correct prediction of the outcome of

the pumping operation of the piezohydraulic unit with a single-ended cylinder. It does not,

however, a®ect the correct prediction of the pumping operation with a double-sided cylinder.

Other considerations include the initial condition response versus the forced response of the

system in study.
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System-Element Update:

After two-stages, one cycle is completed. By this time, the piston of the output cylinder

has moved and amount ¢x, and therefore the volume of °uid contained in each side of

the cylinder changes in proportion to this amount. Thus, after one cycle, the geometry

of the lumps of °uid contained within the cylinder is updated and then the elements of

mass, sti®ness and damping are calculated again. This updating could be done after every

stage, but it was not implemented in order to avoid further complexity in the program.

Furthermore, the analysis of the dynamics of the entire system at both extreme cases, when

the piston is at one end of the cylinder and then at the other end, revealed no considerable

change. The poles, which represent the roots of the characteristic equation or the eigenvalues

of the A matrix, are a good indication of the dynamics of the system. When analyzed for

both of the cases mentioned previously, their change in magnitude was less than 1%. This

indicates that even though the dynamics associated with the cylinder itself do change (due

to the displacement of the piston), the overall e®ect of the entire system coupled together

is small and depending on the nature of the analysis, it could be neglected.

4.5 Summary

The lumped parameter model of the entire piezohydraulic unit has been integrated and the

resulting equations derived for further use in state space form. The concept of one-sided

operations has been introduced, along with the two-stage cycle simulation of the pumping

operation of the piezohydraulic unit. The input to the hydraulic system has been analyzed

for the valve timing case where opening and closing occurs at every half of a period. The

e®ect of the transition time has been introduced, and the resulting input obtained, as a

preview of the analysis that is performed on the measured data in Chapter5. Finally,

the assumptions and implications of the two-stage cycle model are discussed. The most

important one, being the zero initial condition that is used at the beginning of each stage

due to the nature of having two di®erent models. Thus, the simulated response of the model

only considers the forced response output of the system and is not expected to predict the

output of an initial condition response dominated system.
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Chapter 5

Measurements and Simulations

5.1 Introduction

This chapter presents the data measured from the benchtop piezohydraulic unit under

operation, and the corresponding data from the simulation of the model developed. The

information has been organized in the following main sections:

- Experimental Setup (Section 5.2)

- Simulation Parameters (Section 5.3)

- Single-ended Cylinder (Section 5.4)

One-sided Operation: Input measurements

Time response measurements

Time response simulations and analysis

Frequency response simulation

Two-stage Cycle Operation: Measured and simulated results

- Double-ended Cylinder (Section 5.5)

One-sided Operation: Time response measurements,

simulations and analysis

Frequency response simulation

Two-stage Cycle Operation: Measured and simulated results

Finally, a summary of the most important aspects and the corresponding conclusions

are included.
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5.2 Experimental Setup

The ¯gure below is a representation of the test setup used to obtain the experimental data.

Furthermore, for a more detailed diagram of the piezohydraulic unit, refer to Figure 2.2.

Also, note that the same notation for the hydraulic sides is used. The distinction between

sides A and B is important, specially for a single-ended cylinder, where the geometry

involved in the modeling of the °uid is asymmetric.

Side A Side B

Single-ended  
Cylinder

Laser Vibrometer

Power Supply 
& AmplifierPC

Input Control

Data 
Acquisition

Piezoelectric Stack

Input Current 

Output 
Displacement 

Figure 5.1: Diagram of the test setup used to obtain data.

As shown in the ¯gure, the input to the piezohydraulic unit is software controlled

and it is transmitted through a terminal connected to the computer in use. The frequency

of operation and the timing of the piezoelectric stack along with the set of solenoid valves is

speci¯ed through Matlab *.m ¯les, that are used in Simulink, and ¯nally interfaced with

the digital signal processor through the use of DSpace. The digital signal processor then

outputs the signals to the piezohydraulic unit. In the same manner, output measurements

from the unit itself are captured by the digital signal processor, which is shown in DSpace

and recorded as *.mat ¯les that are usable in Matlab.

Since the ampli¯er current controls the piezoelectric stack, then a current measure-

ment is performed in order to provide data about the input to the system. This current

signal is then integrated in order to obtain the charge input required by the charge-controlled

model of the system. In the same manner, a laser vibrometer is used to determine the dis-

placement of the piston of the hydraulic cylinder. The data, provides information about the

output of the system, and its measurement provides the output/input relationship needed

when comparing the simulated output of the model with the measured output of the system.
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Figure 5.2: Display of the modular-benchtop-test setup piezohydraulic unit.

Figure 5.2 shows once again the experimental test setup of the piezohydraulic unit.

The ¯gure displays several of the components of the benchtop unit. These components

have been integrated in a modular design, in order to simplify the addition, replacement or

removal of components. Furthermore, it makes easier the location and troubleshooting of

certain problems that may arise.

5.3 Simulation Parameters

The predicted results for the operation of the piezohydraulic unit have been obtained

through the simulation of the state space model of the system, derived and de¯ned in

Chapter 4. Furthermore, all the simulations were performed with the following design

parameters:

- Initial pressure, Pi, at 100 psi; since previous to all of the following experiments,

the initial pressure of the hydraulic system was set at 100 psi.

- The percentage of air entrained, ½air, at 0.001%. The percentage of air entrained

in the test setup is a quantity that is not easy to determine, but as discussed in Chapter 3,

it is a parameter that should not be neglected. For simulation purposes, it was assumed

that the entrained air is distributed uniformly over the entire hydraulic system, and that its

presence is almost zero. Thus, the comparison of the measured and the simulated data is
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performed under the assumption that there is almost no air in the system. Then, the e®ects

of an increasing percentage of air is analyzed and discussed along the trends and tradeo®s

in Section 5.6.

- For the single-ended cylinder, the initial displacement xil (de¯ned in Chapter 2),

is set at 2500¹m; which was approximately the average in all of the experiments performed.

5.4 Single-ended Cylinder

The use of a single-ended cylinder in the piezohydraulic unit yielded to unwanted results,

which will become clear further on. Nonetheless, the data captured and the analysis per-

formed is presented in order to introduce several aspects and trends that will be discussed

in more detail under the double-ended cylinder con¯guration.

5.4.1 One-sided Operation

Input Measurements:

The input to the piezohydraulic unit from the current-controlled ampli¯er is measured

through a shunt resistance. Since a switching, current control ampli¯er is used, and as

discussed in Chapter2, then a step-wave current signal is expected. Figures 5.3 and 5.4

show the current measured during the operation of the piezohydraulic unit at a frequency

of 10Hz and 50Hz respectively.
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Figure 5.3: Measured current under operation at 10Hz.
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Figure 5.4: Measured current under operation at 50Hz.

Note that the magnitude of the noise is relatively the same, but as the frequency of operation

is increased, the amplitude of the current drawn by the piezoelectric stack also increases.

Then, the presence of noise at lower frequencies becomes more \dominant", in the sense

that its magnitude becomes much larger than that of the actual signal. Nonetheless, once

the current signal is integrated to obtain charge, the noise is reduced. But the high content

of noise in the current signal may yield to a varying DC component per period of time, and

the result is a charge waveform as shown below. Thus, even though the noise is reduced

through integration, it is its e®ect on the DC component of the signal what causes trouble.
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Figure 5.5: Charge obtained from the measured current at a frequency of 10Hz.
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Figure 5.5 shows the charge waveform that results from the integration of the mea-

sured current signal (with noise content) at a frequency of 10Hz. The result is a charge

signal that may not be used as the input to the model. This is because the time simula-

tions will result in an output signal with the same varying DC component pattern, which

does not represent the pattern of the actual (measured) output signal. In other words, the

simulated output will also exhibit a decaying component (as shown in Figure 5.5) while the

measured output exhibits no decay and a constant DC component per period of time. The

ideal case is to have an input charge signal with a constant DC component per period of

time, as shown in the following ¯gure.
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Figure 5.6: Charge obtained from a noise-reduced current at a frequency of 50Hz.

The charge signal shown in Figure 5.6 has been obtained through the integration

of a noise-reduced current signal. The noise-reduction required the use of several ¯ltering

procedures and DC correction techniques. The important issue is not the type of noise

reducing process used, but the noise reduction of the signal without any additional and

unwanted ¯ltering that would result in the distortion of the actual signal.

Time Response Measurements:

The following set of ¯gures represent the time response data for the single-ended piezohy-

draulic unit under a one-sided operation. In other words, the ¯gures show the measured

displacement of the piston of the hydraulic cylinder, xc, versus time.
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Figure 5.7: Time response measured under one-sided operation, for ¯ve di®erent
operating frequencies. Initial pressure, Pi = 100psi.

93



Recall that under one-sided operation the piezohydraulic unit operates with one valve

open and the other one closed. Therefore the excitation of the hydraulic system (through

the piezoelectric stack) with an oscillating signal, will result in an oscillating output. As

mentioned previously, the input to the stack is a triangular charge waveform (as shown

in Figure 5.6), and as discussed in Chapter 2 , the resulting voltage and displacement of

the piezoelectric stack is similar in nature. Thus, for a triangular input excitation under a

one-sided operation, a similar waveform is expected. Furthermore, the data captured and

shown in Figure 5.7 correspond to the operation of the piezohydraulic unit with valve B

open and valve A closed. Thus, Side B is excited directly by the piezoelectric stack while

Side A remains as a closed system at the other side of the piston.

Referring again to the set of time responses shown in Figure 5.7, note that for a

frequency of 10Hz, the output displacement is similar to the triangular input waveform,

but as the frequency of operation (and therefore of excitation) is increased, the shape of

the output displacement waveform slowly changes to resemble more the shape of a sine

wave. Also, while the shape of the wave changes as the frequency increases, note that the

amplitude remains fairly constant. These observations suggest that the dynamics of the

piezohydraulic unit, which in turn, re°ect the dynamics of the hydraulic system, are similar

to the dynamics of a low pass ¯lter. This is because a triangular waveform has frequency

content at the fundamental frequency along with a number of harmonics (by using Fourier

transforms to express the triangular wave). The high frequency harmonic content seems

to be ¯ltered and as the frequency of operation increases, eventually the resulting signal

has most of its frequency content at one frequency, the fundamental frequency. More detail

will be covered as the analysis is performed. For more information on complex relations,

Fourier transforms, fundamental and harmonic frequencies, and frequency spectrum analysis

of waveforms refer to Beckwith et al. (1995).

Time Response Simulations and Analysis:

The set of simulated time responses are shown in the next page. These time simulations used

the data from the measured current to determine the input to the model. Thus, Figure 5.8

corresponds to the simulation of the operation measured and shown in Figure 5.7. Note that

from the comparison of the magnitude of the curves and the transition from a triangular

waveform to a sinusoidal curve, both ¯gures seem to correlate well with one another.
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Figure 5.8: Time response simulated with the corresponding measured charge input.

95



The comparison between the time curves at frequencies of 10Hz, 50Hz and 90Hz is

shown below. From these set of curves, it seems that the \transition" towards a sine-wave

curve occurs at a lower frequency in the modeled system. Nonetheless, a visual comparison

of the time response curves does not provide enough information to draw conclusions on

the correlation between the measured response and the simulated one.
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Figure 5.9: Measured and simulated time response comparison.

In order to have an e®ective comparison of these curves, a Fast Fourier Transform

(FFT) has been performed to obtain the frequency spectrum of each signal. The comparison

of the frequency content between the measured and the simulated data does indeed, provide

a good indication on the correlation between them.
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The frequency content comparison in Figure 5.10 is performed for the data obtained

at a frequency of 10Hz. Thus, for this triangular waveform the fundamental frequency

is 10Hz, and harmonic content is expected at 30Hz, 50Hz, 70Hz and so on (as shown in

the ¯gure below). Furthermore, the magnitude of the fundamental frequency component is

slightly higher in the simulated data. Nonetheless, the frequency content at the fundamental

frequency and at the corresponding harmonics, is well matched by the simulated data.
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Figure 5.10: Frequency spectrum of the simulated (top) and the measured (bottom)
output data, with the operating frequency at 10 Hz.

The frequency spectrum comparison for the data obtained at the frequencies of 50Hz

and 90Hz is shown in the following page. For the 50Hz case, the simulated data seems to

match the fundamental harmonic along with the ¯rst and the second harmonic (150Hz and

250Hz). The magnitude of the frequency component is, as in the 10Hz case, higher than the

measured data. On the other hand, in the 90Hz case the frequency content of the second

harmonic of the simulated data is considerably smaller than the one in the measured data.

Thus, the fundamental frequency is more dominant in the simulated case, which explains

why the simulated response at 90Hz is closer to a sine wave than the corresponding measured

response.

97



50 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
0

5

10

15

 

F r e q u e n c y   [ H z ]

M
a

g
n

it
u

d
e

  
[m

ic
ro

n
s
]

50 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
0

5

10

15

 

F r e q u e n c y   [ H z ]

M
a

g
n

it
u

d
e

  
[m

ic
ro

n
s
]

Figure 5.11: Frequency spectrum of the simulated (top) and the measured (bottom)
output data, with the operating frequency at 50 Hz.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0

5

10

15

20

 

F r e q u e n c y   [ H z ]

M
a

g
n

it
u

d
e

  
[m

ic
ro

n
s
]

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0

5

10

15

20

 

F r e q u e n c y   [ H z ]

M
a

g
n

it
u

d
e

  
[m

ic
ro

n
s
]

Figure 5.12: Frequency spectrum of the simulated (top) and the measured (bottom)
output data, with the operating frequency at 90 Hz.
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Frequency Response Simulation and Analysis:

The frequency response represents the steady-state response of a system to a sinusoidal

input. Thus, for the frequency response of j xc(s) =Qin(s) j in Figure 5.13, the magnitude

and phase of a sinusoidal output xc, is given per unit of magnitude of a sinusoidal input

Qin .
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Figure 5.13: Simulated frequency response of a single-ended piezohydraulic unit.
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From both of these ¯gures, the following observations are made:

- Resonance occurs at » 158Hz with a magnitude of »17 ¹m/mC.

- A rollo® of » 45dB/decade after resonance.

- A bandwidth of approximately 240Hz.

- The magnitude of the DC response is approximately 5.5 ¹m/mC.

- And a phase lag of » 5.5 degrees at low frequencies. The lag starts to increase at

about 22 Hz (-14 degrees) and at 100Hz it is approximately -40 degrees.

From Figure 5.6, the magnitude of the measured charge at a frequency of 50Hz is

approximately 6:5¤10¡3 Coulombs, or 6:5mC. Furthermore, at 50 Hz, the frequency response

shows that jxc(s)=Qin(s)j ¼ 6:0 ¹m/mC. Thus the sinusoidal output xc, is expected to be of

39 microns of magnitude (6¹m/mC * 6.5 mC). But the input to the piezohydraulic unit is a

triangular charge waveform. In addition, the frequency spectrum of a sinusoidal signal has

only content at its frequency \w", while the frequency spectrum of a triangular waveform has

frequency content at its frequency \w", and at every odd multiple of it, 3w; 5w; 7w:::. This

explains the change in shape in the output curves shown in Figure 5.7. At a frequency of 10

Hz, the triangular input signal has also frequency content at 30, 50, 70, 90, 110 Hz.... Thus,

only the sixth harmonic component and higher (110 Hz and up) are attenuated. The result

is an almost triangular output with a magnitude close to what is speci¯ed by the frequency

response plot. Meanwhile, at a frequency of 50 Hz, the triangular input signal has also

frequency content at 150, 250, 350 Hz.. and therefore only the content at the fundamental

frequency (50Hz) remains unchanged. All the following harmonics are attenuated and the

result is a signal that has most of its content at the fundamental frequency, thus, looking

more like a sine wave. Closer to the resonant frequency, the time response at 90 Hz looks

more like a sine wave rather than a triangular wave. Thus, and as mentioned previously, the

frequency response of the hydraulic system resembles that of a second order low pass ¯lter,

with a corner or passband edge frequency around 240 Hz. In other words, the °uid serves as

a low pass ¯lter, where frequencies below the resonance are not a®ected, while those signals

with fundamental frequencies or harmonics higher than resonance get attenuated.

100



Furthermore, the analysis of the simulated frequency response along with the fre-

quency spectrum plots (¯gures 5.10, 5.11 and 5.12) suggest that both, the modeled and

the actual system have very similar dynamics. But the di®erence existent between the

magnitude and the frequency content of the measured and the simulated data suggests a

frequency response comparison as shown below.
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Figure 5.14: Generic frequency response comparison of two systems with similar
dynamics, but shifted in the frequency domain. Curve 1 represents the modeled system
while curve 2 represents the actual system.

Figure 5.14 is a generic comparison between two systems that have a similar fre-

quency response, with the exception that they are \shifted" from one another. This \shift"

is related to the overall equivalent sti®ness of the system, k, and the entire mass, m. Changes

in these quantities do a®ect the location of the resonant frequency, wr, since it is a linear

function of the natural frequency, wn, and:

wn =

r
k

m
(5.1)

Furthermore, considering the hydraulic system , then the sti®ness can be replaced with the

expression k = A B=l (equation 3.74), and the mass as m = ½ A l (equation 3.76). Then

equation 5.1 becomes:

wn =

s
B

½ l2
(5.2)

where the bulk modulus, B, is a function of the percentage of air entrained in the system

(as discussed in Chapter 3). Furthermore, the di±cult measurement of the quantity of air

present in the system makes this parameter an uncertainty. Also, for some hydraulic compo-

nents (such as a hydraulic piston cylinder) the determination of the length of the hydraulic
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°uid within results from an estimate. Therefore, approximations of the bulk modulus and

of the geometry of the hydraulic system add a margin of uncertainty in the simulated fre-

quency response. In addition, major approximations are made while obtaining the value

of the damping terms. This is because they are a function of loss coe±cients or equivalent

lengths (equation 3.75). These quantities are usually obtained through experimental data

and tabulated. The values vary from reference to reference, depending on the speci¯c con-

ditions under which the tests are performed (such as Reynolds number). Therfore the use

of these quantities is an approximation and it adds uncertainty.

Thus, since the sti®ness, damping and mass elements do a®ect the response of a

system, then it is necessary to be aware of the uncertainties present in the parameters used

to de¯ne these elements, particularly when performing comparisons such as the one between

the frequency responses.

5.4.2 Two-stage Cycle Operation:

Considering the notation used in Figures 5.2 and 2.2, and the types of operation outlined

in the two-stage cycle operation section of Chapter 4, then, for a single-ended cylinder it

becomes imperative to draw the distinction between an AB and a BA pumping operation.

This will become clear during the following discussion.
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Figure 5.15: BA pumping operation at a frequency of 3Hz. Pi = 100psi.

Figure 5.15, shows the time response of the single-ended piezohydraulic unit under
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the BA pumping configuration. Recall that under this type of operation the piston of

the cylinder moves towards Side A. Thus, after one cycle, the piston moves by an amount

¢x and the volume of °uid displaced in Side A of the hydraulic cylinder is pumped back

to Side B. Nonetheless, the di®erence of cross-sectional areas between both sides of the

piston, implies the movement of a certain mass of °uid in a given volume at Side A, to a

larger volume in Side B. This causes a continuous pressure drop at Side B that eventually

a®ects the actuation of the piezoelectric stack and decreases the output displacement up to

the point were pressure distributions prevent the further movement of the piston.

Also, tests performed under the BA pumping configuration were not very consis-

tent as of the rate of decay or decrease of the speed of the output piston. Nonetheless, a

very consistent trend is shown in Figure 5.16, where the rate of decrease in the speed
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Figure 5.16: BA pumping operation at various frequencies. Pi = 100psi.

of the output increased as the frequency increased. In other words, at higher frequencies the

system converged faster to a steady time response. Also, the amount of displacement after

a complete cycle, ¢x, decreased drastically at frequencies higher than 5Hz. These aspects

are attributed to the combined e®ect of a limited operating frequency range of the solenoid

valves (as discussed in Chapter 2), along with the use of a 50% duty cycle for their timing

with respect to the stack (as covered in Chapter 4). More detail about these limitations
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and their relationship with the measured data, is done with the double-ended cylinder case.

On the other hand, for tests under the AB pumping configuration, the piston of

the cylinder is expected to move towards Side A. Nonetheless, experimental data revealed

no movement at all, regardless of the frequency of operation. This is again, due to the

asymmetry in the cylinder. After one cycle, the piston moves by an amount ¢x and the

volume of °uid displaced in Side B of the hydraulic cylinder is pumped back to Side A.

But the di®erence of cross-sectional areas between both sides of the piston, implies the

movement of a certain mass of °uid in given volume at Side B, to a smaller volume in

Side A. Basically, the operation at this con¯guration requires the compression \at large"

of the hydraulic °uid. Therefore, the piston does not move and no pumping operation is

accomplished.

Two-stage cycle comparison:

Figure 5.17 is a comparison of the measured and simulated output results during the two-

stage cycle operation of a single-ended piezohydraulic unit, at a frequency of 3Hz. Detailed

analysis of the ability of the model to simulate the two-stage cycle operation of the pump

is left for the double-ended cylinder case. What is evident from the ¯gure below is that

the model matches the initial slope of the curve and then continues with a constant slope

curve.

0 2 4 6 8 10

0

50

100

150

200

250

300

350

400

450

T ime,  t  [ sec ]

O
ut

pu
t 

D
is

pl
ac

em
en

t,
 X

c 
[m

ic
ro

ns
]

Simula ted  Output

Meausured Output

Figure 5.17: Comparison of the measured and simulated output results during the
two-stage cycle operation of a single-ended piezohydraulic unit, at a frequency of 3Hz.
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This is due to the fact that the response obtained from the simulation of the model represents

the forced response of the system while assuming zero initial conditions between each stage

and cycle (as explained in Chapter 4). The implication is that the state variables in the

vector x̂, are assumed to be equal to zero at the beginning of each simulation. These states,

which are displacements and velocities, are analogous to volumes and °ow rates in the °uid

system. By assuming a zero initial condition at a new stage then the ¯nal value or condition

of a state in the previous stage is not considered. In other words, the volume or °ow of °uid

from the previous stage is not considered when simulating the model for the next stage.

This is quite signi¯cant for the operation under the single-ended cylinder, since as discussed

earlier, the asymmetry causes a di®erent amount of volume displacement at each of the

sides (A & B). Therefore the states of each of the models (A & B) should re°ect that at

the beginning and the ending of each simulation at each stage. The failure to do so results

in the constant slope simulation, as re-iterated in the ¯gure below.
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Figure 5.18: Generic representation of the curves for a simulated and a measured
two-stage cycle (pumping) operation.

Thus, the simulation only represents the forced-response of the system and it neglects

the initial condition response by assuming zero initial conditions. This is, the di®erence

between both of the curves shown in Figure 5.18. On the other hand, the forced-response

does dominate during the operation of a double-ended cylinder, as it will be discussed in

the following section.
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5.5 Double-ended Cylinder

The unidirectional response of a one-sided cylinder (only under the BA pumping con¯gu-

ration), along with the decaying nature of the response, prompted the use of a double-ended

cylinder. The geometric symmetry of the hydraulic cylinder suggests that the unidirectional,

decaying response, should be replaced by a directional, linear response.

5.5.1 One-sided Operation

Time Response Measurements, Simulation and Analysis:

The measured and simulated data is presented in the same format and organization as for

the one-sided cylinder. First, the measured time response data is shown and then compared

to the simulated data. A good correlation between these sets of data is an indication of the

correct modeling of the dynamics of the system under oscillation. Then it is possible to use

the model under certain assumptions, in order to simulate the two-stage cycle operation of

the system.

The measured time response is shown in Figure 5.19, the corresponding simulated

response is shown in Figure 5.20, while the time comparison of both is shown in Figure 5.21.

These ¯gures are displayed in the following three pages.

The measured time response follows a similar transition pattern to a sine wave, as

to the single-ended cylinder case. The magnitude of the response seems to increase slightly

as the frequency is increased. The simulated time response follows the same pattern as

the measured data, while its magnitude remains fairly constant throughout the captured

frequency range. The comparison of both curves shows close approximation by the model

to the actual response of the system. One noticeable pattern is that at low frequencies, the

simulated response shows a larger magnitude and a phase lag with respect to the measured

response. The best correlation of magnitude and phase is achieved at the frequency of 50Hz.

Then for higher frequencies, there is not much of a di®erence in magnitude, but a phase

lead is exhibited by the simulated response with respect to the its measured counterpart.

Nonetheless, and as performed for the single-ended cylinder case, a frequency spec-

trum analysis is performed on the time response data in order to establish the correlation

between the simulated and the measured response.
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Figure 5.19: Time response measured under one-sided operation, for ¯ve di®erent
operating frequencies. Initial pressure, Pi = 100psi, Valve A = Closed, Valve B =
Open.
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Figure 5.20: Time response simulated with the corresponding measured charge input.
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Figure 5.21: Measured and simulated time response comparison.
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The frequency spectrum of the simulated and the measured time data for the frequency of

10 Hz is shown in the ¯gure below.
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Figure 5.22: Frequency spectrum of the simulated (top) and the measured (bottom)
output data, with the operating frequency at 10 Hz.

Since the operating frequency is at 10Hz, then as mentioned earlier, frequency content is

expected at odd multiples of the fundamental frequency, f . That is, at 3f , 5f , 7f ..., or as

it is usually expressed, 3w, 5w, 7w...(circular frequency). Thus, the ¯rst harmonic content

is at 30Hz, the second harmonic content is at 50Hz, and so on.

The frequency spectrum of the simulated and the measured time response for the

remaining data, captured at the operating frequencies of 30Hz, 50Hz, 70Hz and 90Hz, is

shown in the following set of ¯gures. For the operating frequency of 30Hz, note that the

magnitude of the frequency content in the simulated data is higher than in the measured

one. For the rest of the operating frequencies, the magnitudes are fairly equal to one

another. Also note that an unexpected frequency content shows in the measured data and

it is clearly noticeable at the operating frequencies higher than 50Hz. In the 50Hz case, the

unexpected frequency content appears at 100Hz, it becomes more prominent in the 70Hz

case, showing at 140Hz, while it is not as noticeable in the 90Hz case, but it still shows

at 180Hz. Note that in all the cases, the unexpected frequency appears at the ¯rst even

multiple of the fundamental frequency, that is 2f or 2w. The same trend is exhibited in
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Figure 5.23: Frequency spectrum of the simulated (top) and the measured (bottom)
output data, with the operating frequency at 30 Hz.
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Figure 5.24: Frequency spectrum of the simulated (top) and the measured (bottom)
output data, with the operating frequency at 50 Hz.
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Figure 5.25: Frequency spectrum of the simulated (top) and the measured (bottom)
output data, with the operating frequency at 70 Hz.
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Figure 5.26: Frequency spectrum of the simulated (top) and the measured (bottom)
output data, with the operating frequency at 90 Hz.
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the frequency spectrum ¯gures shown previously, for the one-sided cylinder case. The

frequency content at 2f or 2w is unexpected since a triangular waveform is used, with

frequency content at f , 3f , 5f ,... Its presence is attributed to the measured charge signal,

which as shown in Figure 5.6, it is not a 100% clean signal. Also, the frequency response

of the actual signal may di®er slightly, specially at the region after resonance. More on the

frequency response analysis is covered next.

Table 5.1 is a comparison of the frequency content between the measured and the

simulated data, and it shows that the best correlation between the actual and the modeled

system occurs at the operating frequency of 50Hz. The magnitude comparison is performed

as the percentage di®erence of the simulated data with respect to the measured data (sim-

ulated/measured).

Table 5.1: Correlation of the measured and simulated time response through
the comparison of the magnitude of the frequency content.

Fundamental Content                        Expected Harmonics   Frequency Content
First Second                   at  “ 2f ”  or  “ 2w ”

Freq [Hz] Mag [%]     Freq [Hz] Mag [%]    Freq [Hz] Mag [%]    Freq [Hz] Mag [%]

10 + 30 30                  + 30                   50              + 27                     20         - 60

30 + 30 90                  + 32                 150               + 12                     30                 - 78

50                      0 150                  - 17                  300 0                     100                 - 66

70                    + 13 210 0                    350               - 140 - 57

90 +  1 270                  - 14                   450                    - 180                 - 50 

Dashes are used for frequency content that has almost a zero magnitude. For the frequen-

cies of 70 and 90Hz, the second harmonic barely manifests itself due to the attenuation

experienced after the resonant frequency. Finally, the data tabulated above indicates that

the model performs a better simulation of the actual system at operating frequencies higher

than 50Hz, where at least one or more frequency component of the simulated data, di®ers

by 1% or less with respect to the measured data.
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Table 5.2 compares the peak to peak magnitude of the measured and the simulated

time response data. A good correlation of the harmonic content ensures the correct predic-

tion of most of the dynamics of the system. Nonetheless, the magnitude of every harmonic

or frequency content does a®ect the total magnitude of the signal, and therefore, if some

harmonic content is predicted with a much higher value, then it could be o®set by another

harmonic predicted with a much lower magnitude. Thus, the overall e®ect on the predic-

tion of the magnitude of the actual signal is not clear in Table 5.1, and therefore, the time

comparison of the signal has been performed and it is shown below.

Table 5.2: Comparison of the peak to peak magnitude of the measured and the

simulated time response.

Frequency Peak-to-peak magnitude  [microns]     Pct difference,  [+/- 1%]

[Hz]                 Measured data Simulated data      simulated / measured

10 44.91 58.95 31 %

30 43.86 52.98                               21 %

50 52.16 53.80                                3  %

70   49.83                          52.81                    6 %

90                           56.37 56.14                       0.5 %

The tabulated data con¯rms the previous conclusion in that the simulation of the model

yields better predictions at higher frequencies.

Finally note that the simulated system overestimates the actual response in all cases.

The comparison however, has to be made with the fact that the simulations have been

performed on a very sti® system, with an amount of entrained air of 0.001% while the

amount of entrained air in the actual system is unknown. These results suggest that the

actual system is indeed, very sti®, and that the amount of entrained air is minimal.
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Frequency Response Simulation:

The simulated frequency response of Side B of the double-ended piezohydraulic unit is

shown in Figure 5.27, where the output of the system is the displacement of the piston

of the hydraulic cylinder, xc, while the input is the charge that results from the current

through the piezoelectric stack, Qin .
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Figure 5.27: Simulated frequency response of a double-ended piezohydraulic unit.
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From both of these ¯gures, the following observations are made:

- A resonant peak does not show in the simulation. The °at \peak" suggests that

resonance -thus highly damped- occurs between 119Hz and 143 Hz with a

magnitude of » 10.7 ¹m/mC.

- A rollo® of » 50dB/decade after resonance.

- A bandwidth of approximately 214 Hz.

- The magnitude of the DC response is approximately 7.5 ¹m/mC.

- And a phase lag slowly increases right from the beginning. At 10Hz the phase is

approximately -4 degrees, at 20Hz it is about -7 degrees, and at 100Hz it is around

-50 degrees.

The comparison of this frequency response with the one for the single-ended case,

suggests that for the double-ended unit, the system is more damped, sti®er and with more

mass. Although both sti®ness and mass seem to be larger, the equivalent sti®ness to mass

ratio has to be smaller in order to have a lowering e®ect on the resonant frequency.

Figure 5.28 is a comparison of the simulated frequency response for Model A and

Model B . Recall that for Model A , Side A is excited ¯rst, while for Model B , it is

Side B .
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Figure 5.28: Simulated frequency response comparison between model A and B.
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The dynamics of both models are very similar, di®ering only at very high frequencies. Recall

that for the double-ended unit, the hydraulic cylinder is symmetrical while minor di®erences

may exist on both sides due to pipe lengths or adaptors used. Thus the time response data

for both sides is expected to be close to being identical.

5.5.2 Two-stage Cycle Operation:

As mentioned earlier, the use of a double-ended cylinder enabled the bidirectional pumping

operation of the piezohydraulic unit. Furthermore, and as expected due to the symmetry,

the rates of displacement for the AB pumping con¯guration and the BA pumping con¯gu-

ration are almost the same. This is illustrated in Figure 5.29, where a positive displacement

corresponds to the BA pumping con¯guration and a negative displacement, to the AB

counterpart. This relationship between the displacement and the corresponding pumping

con¯guration is maintained throughout the rest of the ¯gures in this chapter, being just a
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Figure 5.29: Measured time response under bi-directional pumping operation at 3Hz.

function of the orientation of the unit with respect to the laser vibrometer (as shown in

Figure 2.2). Figure 5.29 represents the time data that has been captured starting from a

zero -reference- displacement. A BA pumping operation was induced through the timing

of the valves, then a closed-valve period is shown, followed by another BA pumping oper-
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ation. The valves were closed again, and then their timing was switched to induce the AB

pumping operation. Also note that once both valves are closed, there is no transient and

the displacement of the unit remains steady with no change.

Furthermore, the linear relationship of the pumping operation remained constant

and did not change, as in the single-ended case. This is shown in Figure 5.30 where the

pumping operation of the unit is captured with the displacement of the piston/rod of the

cylinder starting at one end and culminating almost at the other end. The sudden drops

from about 2500¹m to -2500¹m do not represent the response of the system, but an out-

of-range condition from the laser vibrometer. Once its range limit is achieved, then the

measurement device resets back to the lower limit. Therefore, the data shown corresponds

to a total displacement of about 20mm, which represents an approximate 79% of the one-

inch stroke of the hydraulic cylinder.
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Figure 5.30: Measured time response under the BA pumping operation (at 3Hz)
between both ends of the cylinder.

The two previous ¯gures have been obtained through an operating frequency of 3Hz

and a 25% offset timing of the valves. Moreover, the pumping operation and the data

measurement has been performed for two types of valve timing. They are denoted as a

50% onset timing and a 25% offset timing . The de¯nition of these timing patterns is

illustrated in the following ¯gure.
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Figure 5.31: Valve and ampli¯er/stack control voltage curves for the: 50% onset timing
case (top), and the 25% offset timing case (bottom). Operating frequency = 5Hz.

The blue and green curves represent the voltage across the valves. The solenoid

valves used are normally closed and therefore a voltage is required to keep them open.

Thus, a high (6V) represents an open solenoid and a low (-1.5V) represents a closed valve.

Although no voltage is required to keep the valves closed, the negative voltage is applied to

induce a faster response from the open position to the closed one.

The red curve on each ¯gure represents the digital TTL input voltage signal to the

ampli¯er. The digital input signal is used to set the operating frequency of the ampli¯er.

Furthermore, it is a representation of the step-current signal supplied by the switching

ampli¯er. It is a not-to-scale representation since the red curve shown represents an input

voltage, but the output current of the ampli¯er is still similar in shape. Thus, following

the discussion in Section 2.2 and the result in Figure 2.5, then the red curve in both

plots of Figure 5.31 can be integrated to obtain a non-scaled representation of the ideal

charge, voltage and displacement of the piezoelectric stack. This is performed for the

50% onset timing case and the result is shown in Figure 5.32.
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Figure 5.32: Relating the displacement of the stack (black) to the current signal
through it (red) and the valve timing pattern (blue and green); F = 5Hz.

Since the red curve also represents the current across the stack, then the black curve

is associated with its displacement. Furthermore, the positive slope side of the black curve

represents the pushing stroke of the stack, while the negative slope side represents the

pulling stroke. Also, note that valve B is set to open right at the beginning of the pushing

stroke of the stack and it is set to close at the end of the stroke. At this point, valve A

is set to open as the pulling stroke begins, and it is set to close at the end of the stroke.

Thus, the valves are set to open and close at the endpoint of every stroke, and that is what

the term onset timing refers to. Furthermore, the valves remain open or closed for half

of a period, or 50% of the time. Therefore this type of valve timing is referred to as the

50% onset timing case, and it is, the valve timing pattern for which a time delay e®ect was

analyzed in Chapter 4.

In the same manner, the term 25% offset timing is used since the valves remain

open only for 25% of the period, Tst (which is the period of the stack). Therefore, the

period of time the valve is open is Tvo = 0:25Tst, while the equivalent period of the pulse is

Tv = 0:5 Tst. They have an o®set timing since they neither open or close at the endpoints

of each of the strokes of the stack (at 0, Tst=2, Tst ...). For this 25% offset timing in

particular, valve A has been set to open at a period of time after the pushing stroke begins

and to close slightly before it ends. The same is done for valve B in relation to the pulling
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stroke. Thus, with the open period of the valves set at Tvo = 0:25Tst , then the timing used

for the 25% offset timing in Figure 5.31 is de¯ned by the equations:

V alve B opens @ t1 = 0 + 0:2Tst = 0:2Tst

V alve B closes @ t2 = t1 + Tvo = 0:45Tst

V alve A opens @ t3 = Tst=2 + 0:2Tst = 0:7Tst

V alve A closes @ t4 = t3 + Tvo = 0:95Tst (5.3)

By taking into account the instants at which each valve opens and closes, then it is

possible to determine the input `seen' by the hydraulic system, as shown in Figure 5.33
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Figure 5.33: Valve and ampli¯er/stack control voltage curves for the: 50% onset timing
case (top), and the 25% offset timing case (bottom). Operating frequency = 5Hz.

Thus, the type of valve timing used is expected to have an impact on the output of

the system. These e®ects are re°ected in the nature of the time response under the pumping

operation, and they are presented in the following section.
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Time measurements:

Pumping operation under the 50% onset timing pattern:

Figures 5.34, 5.35, 5.36, and 5.37, show the measured time response under the

pumping operation for the frequencies of 3Hz, 5Hz, 7Hz, and 9Hz, respectively. Both

pumping directions are included for each case.
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Figure 5.34: Measured time response under the pumping operation at 3Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.35: Measured time response under the pumping operation at 5Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.36: Measured time response under the pumping operation at 7Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.37: Measured time response under the pumping operation at 9Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).

From these set of ¯gures, several observations can be made. They hold for both

pumping directions, but for ease of appreciation, consider the BA pumping con¯guration

(¯gures to the right). First, after each increase in displacement, there is a corresponding

\return" or decrease in displacement that is smaller in magnitude. Also notice that this

\return" displacement increases in magnitude as the frequency of operation increases. Fur-

thermore, it will be referred to as the spring effect, for reasons that will become obvious

later. Finally, after the return, a constant position (no displacement) is observed before
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the beginning of a new cycle.

Figure 5.38 is one of a set of data that was captured under the same conditions as

for Figures 5.34, 5.35, 5.36, and 5.37, but with a lower resolution in order to capture a

greater range in the time domain.
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Figure 5.38: Obtaining the speed of response under the pumping operation at 3Hz,
for: the AB pumping con¯guration (left), and the BA pumping con¯guration (right).

Then, they are used to obtain an average change in displacement per unit of time. Thus,

the speed of operation as a function of frequency and the displacement achieved per cycle

versus the operating frequency are determined, and the result is shown in Figure 5.39.
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Figure 5.39: Measured performance under the 50% onset timing pattern, for both, the
AB and the BA pumping operations.
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Pumping operation under the 25% offset timing pattern:

Time response measurements have been also performed with the operation of the

piezohydraulic unit under the 25% offset timing case. The results are shown in Fig-

ures 5.40, 5.41, 5.42, 5.43, 5.44, and 5.45. Both pumping directions are included for

each case.
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Figure 5.40: Measured time response under the pumping operation at 3Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.41: Measured time response under the pumping operation at 4Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.42: Measured time response under the pumping operation at 5Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.43: Measured time response under the pumping operation at 6Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).

Note that the measurements for the ¯rst pair of frequencies (3Hz and 4Hz) do not

exhibit the spring effect present in the measurements for the 50% onset timing case. A

small return is ¯rst noticeable at the operating frequency of 5Hz, and it increases as the

frequency increases, up to the point where the return becomes of the same magnitude as

the previous increase in displacement. This is the case for Figure 5.45, where the operating

frequency is at 8Hz.
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Figure 5.44: Measured time response under the pumping operation at 7Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.45: Measured time response under the pumping operation at 8Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).

The same condition occurs under the 50% onset timing case but at a higher

frequency. Note that the return is almost of the same magnitude as the increase in dis-

placement stroke, in Figure 5.37, but there is still an average change in displacement while

the frequency is at 9Hz. On the other hand, there is an average change in displacement

under the 25% offsetset timing case at 7Hz (Figure 5.44) but no considerable change in

the average position is achieved at 8Hz (Figure 5.45).
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In addition to these di®erences, and appreciation of the di®erent pumping perfor-

mance between both types of valve timing, is possible through the comparison of Figure 5.39

(for the 50% onset timing ) and Figure 5.46 (for the 25% offset timing ).
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Figure 5.46: Measured performance under the 25% offset timing pattern, for both,
the AB and the BA pumping operations.

Pumping operation performance analysis:

From the comparison of Figures 5.39 and 5.46 it is possible to observe that under

the 50% onset timing pattern the piezohydraulic unit has a higher frequency range of

operation, but with a 25% offset timing pattern, higher speeds and displacements per

cycle are achieved. This is due to the spring effect that is present in all the measure-

ments for the 50% onset timing case, while it only shows at higher frequencies under the

25% offset timing case. Thus, the return in the spring effect reduces the performance

of the unit, and therefore it is an undesired e®ect. The main cause of this e®ect is related

to the transition time of the valves and the possible valve overlap (discussed in detail in

the upcoming transition time and valve overlap section).

Also, it is necessary to state that all the measured results for the pumping opera-

tion of the double-ended piezohydraulic unit represent slightly over half the speed values

expected. This is because only one side is being excited e®ectively during the two-stage

cycle (pumping) operation, according to the following analysis of the data measured.
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A close analysis of the pumping curves shown in Figures 5.34 to 5.38 and 5.40 to

5.45 reveals that a signi¯cant change in position, ¢x, occurs only once per cycle. And as

presented in Chapter 4 , during the pumping operation a displacement is expected in the

¯rst (pushing) stage while another displacement is expected at the second (pulling) stage.
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Figure 5.47: Time response of the BA pumping con¯guration of Figure 5.35 with the
corresponding control signals for the valves and the stack.

Figure 5.47 shows the time response under the BA pumping operation (Figure 5.42)

with the respective control signals for the valves and the stack. Note that when valve
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B is open, there is a noticeable displacement, while with valve A open, a much smaller

displacement is barely noticed. Thus, these results suggest that there is a problem with the

operating condition of valve A. Furthermore, all time response simulations for the double-

ended unit under the one-sided operation (oscillation) captured and shown in Figure 5.19

correspond to the direct excitation of Side B , with valve A closed and valve B open. As the

reverse condition was attempted (valve A open, valve B closed), no signi¯cant oscillation

was achieved with the direct excitation of Side A . This, con¯rmed the possibility of

a problem with valve A. Then, the °uid in the system was evacuated and the unit was

dismantled. During the process, a small string of Te°on was found at the small inlet of

solenoid valve A (0.8mm Dia) and therefore causing a partial block to the movement of

°uid. The partial block explains the performance obtained for the oscillating and pumping

conditions. Note that a total block, would reduce the pumping operation performance to

that of an oscillating procedure.

Finally, given these conditions, the set of data presented previously has been used

since a very sti® system was achieved (negligible or no amount of entrained air) and a

correlation of the measured and the simulated data can be achieved with a reduced concern

with respect to the uncertainty of an unknown amount of entrained air. Recall that even

though valve A has been found to be \clogged", it does not a®ect the time response under

the one-sided operation (oscillation) with valve B open and valve A closed. The pumping

data, proved to be useful to introduce the trends between both timing patterns, and to show

how the analysis of the control signals may be useful to identify and troubleshoot problems.

A second set of data (case II), for each timing pattern, has been captured. The

objective, to obtain data for the pumping operation of the unit with both valves unblocked

and working properly, has been achieved. A displacement is captured with the excitation

of each side. Nonetheless, extensive and repeated e®orts were unable to obtain a \sti®"

system, as before. Most possibly an unidenti¯ed leakage has been preventing the \re-¯ll"

of the piezohydraulic unit with reduced or no amount of entrained air. Although it is not

an ideal set of measured data, the measured response is a good representation of the e®ects

of having entrained air in the system.
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Time measurements (case II):

Pumping operation under the 50% onset timing pattern (case II):

Figures 5.48, 5.49, 5.50, and 5.51, show the measured time response under the

pumping operation for the frequencies of 2Hz, 4Hz, 6Hz, and 8Hz, respectively. Both

pumping directions are included for each case.
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Figure 5.48: Measured time response under the pumping operation at 2Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.49: Measured time response under the pumping operation at 4Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Comparison of the low frequency time response between case I (Figure 5.34, 3Hz)

and case II (Figures 5.48, 2Hz, and 5.48, 4Hz) yields to several observations. Furthermore,

consider again the BA pumping con¯guration (¯gures to the right). First, as mentioned

previously, in case I there is one increase in position per cycle, while two increases can be

observed in case II. Also note that the return in both cases is of about the same magnitude.

The magnitude of the displacements are however, considerably di®erent. The only increase

in position per cycle in Figure 5.34 is of about 30¹m, while the magnitude of both
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Figure 5.50: Measured time response under the pumping operation at 6Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.51: Measured time response under the pumping operation at 8Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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displacements per cycle in Figure 5.48 is lower. Also note that each of the two increases

per cycle is of di®erent magnitude. In Figure 5.48 for instance, as one side is excited, a

displacement of 20¹m is achieved, while exciting the other side, a 10¹m displacement is

achieved. The lower displacements are a result of the presence of entrained air in the system,

which reduces the performance of the unit. The uneven displacement per stage within a

pumping cycle (in case II) might be attributed to an uneven air percentage distribution

within the system.

Figure 5.52 shows the time response data of the unit under a one-sided operation.

Note that for the excitation of side A (valve A open, valve B closed), the magnitude of

oscillation is of about 14¹m. On the other hand, a »20¹m oscillation is achieved with the

excitation of side B. The uneven oscillatory magnitudes are re°ected during the pumping

operation of the unit, and corresponding this oscillation example is Figure 5.51, where one

displacement is slightly higher than the other one within a pumping period or cycle.
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Figure 5.52: One-sided operation (oscillation) at 8Hz of (case II): side A (left), and
side B (right).

Figure 5.53 shows the performance of the system. From the comparison of Fig-

ure 5.53 (case II) with Figure 5.39 (case I), note that the range of frequency for the captured

data in case II is from 1Hz to 9Hz, while in case I, it is from 3Hz to 9Hz. As mentioned

previously, the presence of only one increase in position per cycle in case I, versus two dis-

placements per cycle in case II, should result in roughly half the speed and displacement

for case I with respect to case II. Nonetheless, the performance curves for case II are much

lower than those of case I, mainly due to the presence of entrained air.
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Figure 5.53: Measured performance under the 50% inset timing pattern, for both, the
AB and the BA pumping operations (case II).

Pumping operation under the 25% offset timing pattern (case II):

Figures 5.54, 5.55, 5.56, and 5.57, show the measured time response under the

pumping operation for the frequencies of 3Hz, 5Hz, 7Hz, and 8Hz, respectively. Both

pumping directions are included for each case.
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Figure 5.54: Measured time response under the pumping operation at 3Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Similar to case II of the 50% onset timing pattern, the 25% offset timing pattern

(case II) holds the same di®erence from its counterpart in case I, in the sense that two

displacements are achieved per unit cycle. The uneven displacement magnitude, and all the

aspects discussed previously apply. Also the same observations performed between both

timing patterns in case I apply here, between both timing patterns in case II.
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Figure 5.55: Measured time response under the pumping operation at 5Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.56: Measured time response under the pumping operation at 7Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).
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Figure 5.57: Measured time response under the pumping operation at 8Hz, for: the
AB pumping con¯guration (left), and the BA pumping con¯guration (right).

Figure 5.58 shows the performance of the piezohydraulic unit under the 25% offset

timing pattern and the conditions of case II. The speed and displacement per cycle versus

frequency is considerably higher than the corresponding valve timing pattern in case I.

Nonetheless, performance values for case II are still lower than double the values of case I,

as expected. Again, it is the result of the entrained air in the system. Furthermore, the

performance curves for case II show considerable drop after 7Hz, which is due to the e®ect

of the transition time and the possible valve overlap. The drop is not as large in case I,
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Figure 5.58: Measured performance under the 25% offset timing pattern, for both,
the AB and the BA pumping operations (case II).
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since the speed values are not as large and the valve overlap e®ect is attenuated due to

the partial block of the valve.

5.5.3 Analysis of the two-stage cycle operation:

Time delay and valve overlap:

The comparison of Figures 5.39 and 5.46 for case I, and of Figures 5.53 and 5.58 for case

II, shows that under the 50% onset timing pattern the piezohydraulic unit has a higher

frequency range of operation, but with a 25% offset timing pattern, higher speeds and

displacements per cycle are achieved. This is due to the spring effect that is present in all

the measurements for the 50% onset timing case, while it only shows at higher frequencies

under the 25% offset timing case. Thus, the return in the spring effect reduces the

performance of the unit, and therefore it is an undesired e®ect. The main cause of this

e®ect is related to the transition time of the valves and the possible valve overlap.

The e®ects of the transition time of the valves and the resulting valve overlap have

been introduced with the 50% onset timing case and analyzed in Chapter 4. The following

discussion applies the same concepts to the 25% offset timing case, and compares both

timing patterns.

Figure 5.59 shows the valve timing patterns along with the e®ects of the transition

time. Recall that the 50% onset timing pattern follows a valve timing as speci¯ed in

equation (4.27), while the 25% offset timing case follows that of equation (5.3), with

a valve period of Tvo = 0:25Tst . Furthermore, the purple lines show the extent of the

transition time, which has been set as 0.05sec. Thin, solid black lines represent the input

(displacement of the stack) `seen' by the hydraulic system. If, during an open valve period

there is both, a forward and a backward stroke (as in the bottom case of Figure 5.59), then

thick, solid black lines are used to represent the net total input `seen' by the hydraulic

system. Finally, the dashed lines are used for two conditions at the same time. The ¯rst,

dashed lines cover regions where neither valve is open, and the time delay e®ect is no longer

present. Thus the input is not seen by the hydraulic system. Second, dashed lines are also

used to cover regions were both valves happen to be open at the same time. As discussed in

Chapter 4, this is modeled as if the hydraulic system does not `see' any input, and therefore

it is the same as if both valves were closed: a constant position (no displacement).
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Figure 5.59 shows the valve and stack control signals for an operating frequency of

3Hz, Figure 5.60 corresponds to the 5Hz operation, and Figure 5.61 to 7Hz. Note that under

the 50% onset timing case (top ¯gures), the opening of one valve and the closing of the

other is set for the same instant. Therefore, the transition time of the closing valve and the

opening valve overlap, and are shown with one purple curve per cycle. Note that during this

period, both valves are open and therefore, due to the previous excitation of one side, the

system experiences the spring effect in order to return to equilibrium. This is the reason

why regardless of the frequency of operation, the 50% onset timing case will always display

a return in its response. Finally, as the frequency increases, the valve overlap due to the

transition time becomes more signi¯cant. For a time delay of 0.05, an operating frequency

of 10Hz results in a constantly open system, that is, both valves are always somewhat open,

within the process of fully closing and fully opening. Therefore, operation of the system

close to this frequency or higher, results in no considerable output or response.
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Figure 5.59: The e®ect of the transition time and the resulting valve overlap for
the: 50% onset timing case (top), and the 25% offset timing case (bottom). Operating
frequency = 3Hz, time delay = 0.05sec.
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The analysis of the input signal `seen' by the hydraulic system under the 25% offset

timing case is not as simple. In order to keep it as simple as possible, only the transition

time related to a closing process is shown in Figures 5.59 and 5.60. Note that when a signal

rises from -1.5V to +6.5V the corresponding valve is set to open and the transition time

associated with it is not shown. When the signal falls back to -1.5V, the valve is set to close

and the corresponding valve transition is shown in purple. Note that when a valve is set

to close, it is not assumed to be closed until the transition time has elapsed. During that

period of time, it is considered to be partially open. Finally, note that for the 3Hz and 5Hz

operation under the 25% offset timing case, there is no valve overlap, even when the

transition time is taken into account. Nonetheless, during the period of time where a valve

is open, the hydraulic system will `see' most of the input from a stroke (forward stroke, for

the blue curve) while also experiencing some of the reverse stroke (backward,
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Figure 5.60: The e®ect of the transition time and the resulting valve overlap for
the: 50% onset timing case (top), and the 25% offset timing case (bottom). Operating
frequency = 5Hz, time delay = 0.05sec.

139



for the blue curve) as the valve fully closes. The result is a small return that is not due

to valve overlap, and it can be observed in the measured data for the pumping operation

(presented earlier) up to 5 Hz.

As the frequency increases the opening transition time overlaps with the closing

transition time, as shown in the 25% offset timing case for 7Hz, displayed below (bottom

¯gure). The opening valve transition time is only shown for the ¯rst two pulses. The

closing valve transition time is shown during the entire range. With no need for detail, note

that major valve overlap occurs and therefore the input `seen' by the hydraulic system is

drastically reduced. This explains the reason why the performance of the piezohydraulic

unit under the 25% offset timing case (Figure 5.58) exhibited a sharp drop at a frequency

higher than 7Hz. Furthermore this is an indication that the transition time of the actual

valves is indeed, close to the value of 0.05sec.
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Figure 5.61: The e®ect of the transition time and the resulting valve overlap for
the: 50% onset timing case (top), and the 25% offset timing case (bottom). Operating
frequency = 7Hz, time delay = 0.05sec.
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5.6 Simulation Results:

The simulation of the pumping operation uses two models in a two-stage cycle algorithm,

and as mentioned in Chapter 4 , the result is a model that predicts the forced response of

the system, while neglecting the natural response with the use of zero initial conditions.

The initial condition of the system becomes important when the timing pattern employed

and the operating frequency used result in a valve overlap condition. Thus, the simulations

are only expected to predict the output under operating conditions with no valve overlap.

Following the notation and the direction of displacement shown in Figure 4.2, along

with a valve timing as shown in Figure 5.32, consider the following example. During the

¯rst stage, valve B is open and valve A is closed, and therefore Side B is excited directly and

moves a given distance while Side A is being `compressed'. Then at the same instant, valve

B closes and valve A opens, and the previously `compressed' Side A is pulled by the stack,

while Side B is `expanded' (second stage). At the end of the cycle, the output cylinder moves

by an amount ¢x and the cycle starts again. Now, instead of assuming an instantaneous

opening and closing of the valves, consider the presence of a transition time, as shown in

Figure 5.59 (top ¯gure). Then, at the end of the ¯rst stage, as Side B is moved and Side

A is `compressed' the valve overlap occurs, and for a brief period of time both sides are

connected. Therefore, the `compressed' Side A acts like a pre-loaded spring that expands

as the load is reduced in order to achieve equilibrium. The e®ect, has been denoted as the

spring effect and the reverse displacement as the return. But as discussed in Chapter 4

the two-stage cycle model assumes that both sides are separated from one another at each

stage, and therfore the dynamics during a valve overlap are not simulated. Furthermore,

periods of valve overlap are modeled in the same manner as periods of no excitation, and

therefore no displacements. That is, similar to periods of time when both valves are closed.

The result is shown in Figure 5.62, where the measured time response of the piezo-

hydraulic unit under the 50% onset timing pattern (case II) is compared with a simulated

response at the corresponding frequency (5Hz) and a valve transition time of 0.05 sec. As

it is shown, the measured data exhibits a return that it is not accounted for in the simu-

lations. The average of the magnitude of the return is approximately 11¹m and therefore,

66¹m are lost due to the total of six returns, two per cycle, for the three cycles shown. In

addition, the simulation assumes a sti® hydraulic system, while the measured data is from
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the set of responses captured under case II. The amount of entrained air not only reduces

drastically the performance of the system, but an uneven distribution of its presence may

cause an uneven response as the one measured. Uneven, because the displacement during

one stage is slightly larger than the displacement at the other stage.
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Figure 5.62: Left: measured pumping operation under the 50% onset timing pattern
(case II) at a frequency of 5Hz. Right: corresponding simulated response with a
transition time of 0.05, and a percentage of air of 0.001%.

Thus, in addition to the valve overlap, the percentage of air entrained in the hydraulic

system is another important parameter in the simulation process. In the lumped parameter

model, the amount of entrained air is speci¯ed as a percentage of the total volume of the

lump, a®ecting the equivalent bulk modulus (equation 3.42), and therefore, the sti®ness

element (equation 3.74) of each lump. Also, a considerable amount of air would a®ect the

total mass of a lump.

Furthermore, the e®ect of the entrained air on the frequency response of the system

has been analyzed. Figure 5.63 shows the frequency response of model B as function of

the amount of entrained air in the system. Recall that model B is the one-sided model

that assumes a valve B open and a valve A closed condition. In addition, an important

assumption is the uniform distribution of the entrained air throughout the entire hydraulic

system.
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Figure 5.63: E®ect of a uniform percentage of air entrained in the system on the
frequency response of model B.

Note that the presence of entrained air a®ects ¯rst, the higher frequency dynamics. Then,

as the percentage of entrained air is increased, the decay in the frequency response becomes

more critical for lower frequency responses. Thus, for the operation of the unit at 5Hz,

the uniform distribution of 5% of entrained air within the system reduces the magnitude

of the response and increases the phase lag with respect to the input. Therefore, if a valve

timing analysis is performed with an output signal with considerable phase lag, then the

black curves used in the previous section (T ransition time and valve overlap) to represent

the input to the system, have to be shifted accordingly.

Moreover, Figure 5.64 shows the e®ect of an uneven distribution of entrained air

within the system. It is the time simulation of the pumping operation at 5Hz, under the

50% onset timing pattern, with a valve transition time of 0.05sec and a 4% air distribution

throughout the entire system, except for the piping in side A, which has been set with an

air presence of 8%. By comparing this ¯gure, with the simulated response in Figure 5.62

(right ¯gure) it can be easily seen that the total displacement, and therefore the speed of

response, reduces drastically. In addition, the uneven distribution of air causes an uneven

displacement per stage within a cycle. In the ¯gure, the ¯rst stage corresponds to the
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Figure 5.64: Simulated pumping operation under the 50% onset timing pattern, a
transition time of 0.05 and an operating frequency of 5Hz. The percentage of air used
is 4%, except for the piping of Side A, which has been set at 8%.

excitation of model B and shows a greater displacement than in the second stage, where

model A is excited. But again, the model does not take into account the spring effect

that results from the valve overlap in this timing pattern, and therefore, the resulting

simulation will have a much higher total displacement and speed of response.

The transition time and valve overlap analysis on the 25% offset timing pattern

showed that under the assumption of a transition time of 0.05sec, there is no valve overlap

with operating frequencies up to 5Hz. Figure 5.65 compares the measured response under

the 25% offset timing pattern (case II) at a frequency of 3Hz with the corresponding

simulation. Again, for the simulated response, a transition time of 0.05sec has been assumed,

and also, an uneven percentage of air distribution. After several iterations, a 0.9% of air

in the entire system has been used, with 2.5 times that quantity in the piping of Side A.

Thus, only the component for the pipe in Side A has been set with a 2.25% of entrained

air, while the rest of the system remained with a uniform distribution of 0.9%. With these

parameters, a close approximation of the measured data has been achieved. Note that the

displacement at each is stage is not only di®erent in magnitude, but also in slope. Recall

that the measured response corresponds to a BA pumping con¯guration. Therefore, Side

B is excited directly in the ¯rst stage (valve B open, valve A closed) while Side A is excited
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in the second stage. With the uneven air percentage distribution, Side A becomes `softer'

or less sti® than Side B. The result is that during the ¯rst stage, a higher displacement is

achieved than the one in the second stage. Remember, that each stage can be `seen' as a

one-side model as introduced in Chapter 4 (Figure 4.1).
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Figure 5.65: Left: measured pumping operation under the 25% offset timing pattern
(case II) at a frequency of 3Hz. Right: corresponding simulated response with a
transition time of 0.05, and an uneven percentage of air distribution: 2.25% for the
piping of Side A, and 0.9% for the rest of the system.

Further simulations indicated that small changes in this uneven distribution of en-

trained air result in considerable changes in the magnitude and the shape of the response of

the system. Also, the e®ect of this uneven distribution of air does depend on the part being

a®ected. Changes in the piping (as done in the previous example) have a di®erent e®ect on

the performance than the result from changes in the hydraulic cylinder, for example. The

conclusion is, that the amount of entrained air in a system has a great in°uence on the

response of the system. The nature of this response, is also very susceptible to uneven air

distributions. Finally, the proven reduction in performance, and the resulting implications,

make the elimination of entrained air within the system a top priority.
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5.6.1 Simulated performance:

Simulations have been obtained for the 50% onset timing case. Further analysis of these

simulations will lead to series of observations that apply to the 25% offset timing and

that may be used to obtain an initial estimate.

Figure 5.66 shows the simulated performance of the piezohydraulic unit under the

50% onset timing pattern. The transition time used is of 0.05sec and the system has

been assumed to be almost as sti® as it can be, by setting the amount of entrained air to

0.001%. The performance of the simulated system is much higher than the actual system

(by comparison with Figure 5.53) due to two di®erences: the model does not account for

losses due to the spring effect (which become larger as the frequency increases), and

the actual system contained some entrained air. Therefore, Figure 5.66 is not a good

representation of the actual performance of the system, nonetheless, the general trend of

a reduced performance with an increased valve transition time, still holds for the actual

system.
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Figure 5.66: Simulated performance of the pumping operation under the
50% onset timing for various valve transition time magnitudes. Percentage of air =
0.001%.

Figures 5.67 and 5.68 show the simulated performance of the piezohydraulic unit
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under the 25% offset timing pattern, with a varying valve transition time. Also, the

system has been assumed to be almost as sti® as it can be, by setting the amount of entrained

air to 0.001%. The di®erence between both plots is the way the input 'seen' by the hydraulic

system is de¯ned. The ¯rst ¯gure, uses the de¯nition used in the Transition time and valve overlap

section, as shown in Figure 5.59 (bottom ¯gure). Figure 5.68 uses a di®erent method to

determine the input `seen' by the system and therefore the resulting performance is di®er-

ent, as it is shown. Comparison of these performance curves with the measured data in

Figure 5.58 shows similar trends up to a frequency higher than 7Hz. The drop in speed and

displacement per cycle in the actual system has been related to the resulting valve overlap,

which is not accounted for in the model. The valve overlap is related to the transition time

of the valves, and as de¯ned in Chapter 2, the highest frequency of operation for a valve

without the generation of valve overlap is:

Fvalvecr =
1

2 ttr
(5.4)

Expressing the equation in terms of the equivalent period of the valves, Tv , and rearranging:

1

Tv
=

1

2 ttr

1

2Tvo
=

1

2 ttr

Tvo = ttr (5.5)

Then, with the 25% offset timing pattern used, Tvo = 0:25Tst can be substituted into

the expression, and the resulting equation expressed in terms of the period or the frequency

of the stack:

0:25Tst = ttr

Tst = 4 ttr (5.6)

Fst =
1

4 ttr
(5.7)

Thus, Fst is the highest frequency of operation that can be used without generating any

valve overlap. This frequency is determined for every valve transition time used in Fig-

ures 5.67 and 5.68 and the result is shown in Table 5.3. Furthermore, since the model does
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Figure 5.67: Simulated performance of the pumping operation under the
25% offset timing for various transition time magnitudes. Percentage of air = 0.001%.
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Figure 5.68: Simulated performance of the pumping operation under the
25% offset timing for various transition time magnitudes. Percentage of air = 0.001%.
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not account for the return during a valve overlap, then the performance curves for the

25% offset timing pattern shown previously, are only valid up to the frequency shown in

Table 5.3.

Table 5.3: Maximum operating frequency with no valve overlap.

25 %  offset timing pattern

ttr [sec]         Tmin [sec]        Fmax [Hz]

0.01                  0.04 25.0

0.03                  0.12 ~ 8.3

0.05                  0.20 5.0

0.07                  0.28                  ~ 3.6

0.09                  0.36                  ~ 2.8

Finally, recall that although a good estimate may be obtained for the valve transition

time, both parameters, the transition time and the amount of entrained air, are simulation

parameters that can't be measured. Furthermore, the percentage of air present becomes

the greatest uncertainty in the simulated results, since its value in the actual system is hard

to determine while it has a great impact on the performance of the system. Therefore, the

additional unknown in a 25% offset timing pattern, which is how to model the input 'seen'

by the hydraulic system, should be determined with a set of measured data with almost

no entrained air content, in order to reduce the e®ect of air presence and the underlying

uncertainty of not knowing the actual quantity. Once the modeled input is calibrated to this

data, then the performance curves shown in Figures 5.67 and 5.68 can be used to predict

the performance of the actual system, up to the frequencies permitted by the transition

time of the valves. The trends in general, remain the same.
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5.7 Summary

Time response measurements and simulations have presented and analyzed. The comparison

of the measured and the simulated responses under the one-sided operation demonstrate

that the lumped parameter model for the hydraulic system is a good approximation and it

does predict the dynamics of the °uid. Analysis on the data corresponding to the pumping

operation, showed that the two-stage cycle model is a good approximation of the actual

system only under operating conditions were the valve timing pattern, and the transition

time delay of the valves do not \create" an overlap condition. In addition, it has been

demonstrated that the overlap condition is responsible for the spring effect which in turn,

reduces and limits the output capacity of the piezohydraulic unit. Thus, even though the

model does not approximate the operation under an overlap condition, the limited output

implies that this type of operation is not desired in the ¯rst place. Finally, the overlap

condition can be avoided with a valve timing such as the 25% offset timing pattern used,

but as analyzed and shown for the 25% offset timing case, the overlap¡ free region of

operation is achieved up to a given frequency, that in turn, depends on the nature of the

pattern and the valve transition time.
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Chapter 6

Conclusions

A benchtop piezohydraulic unit has been developed and the concept of piezohydraulic ac-

tuation has been demonstrated. From the analysis performed in this research, the following

conclusions are made:

² The lumped parameter model (linear model) is a good approximation of the dynamics

of the °uid pipeline in the hydraulic system (nonlinear system).

² The model (time invariant) simulates the pumping operation (time variant) through

a two-stage cycle algorithm that is valid under regions of no valve overlap.

² The time response of the valves (transition time) and their operating range of fre-

quency eventually will limit the operation of the unit (under a given valve timing

pattern).

² The performance of the system is highly dependant on the valve timing chosen.

Furthermore, in a brief summary of the most important aspects it can be stated that:

² The separate analysis of each of the systems that compose a piezohydraulic unit

enables the determination of the e®ects of each system on the entire unit. Thus,

the electrical system, the mechanical system, and the hydraulic system have been

modeled separately. Furthermore, the electrical and mechanical systems are cou-

pled through the electro-mechanical equations for a piezoelectric stack. The resulting

electro-mechanical system is coupled with the hydraulic system through the introduc-

tion of constraints with the variational approach described by Hamilton's principle.
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² Following the force-voltage system analogy introduced, the °uid elements of resistance,

capacitance and inductance have been derived from the governing equations used for

a control volume and applied to the °uid in a pipeline. The lumped parameter model

is based on a one-dimensional °ow that divides the pipeline in lumps of volume with

uniform properties, such as pressure and velocity. Once the model of a single lump of

°uid has been obtained, then a mechanical system that models the entire °uid pipeline

has been derived. Furthermore, the convergence of the model has been veri¯ed, and

the results discussed.

² The analysis of the hydraulic system involves two di®erent models that are used in a

two step algorithm. Thus, a two-stage cycle simulation is performed in order to predict

the output of the piezohydraulic unit under the pumping operation. Moreover, even

though they are not part of the hydraulic system as a lump of °uid, the valves have

an important role. Their dynamics and their timing with respect to the piezoelectric

stack determine the input seen by the hydraulic system and therefore, have a great

e®ect on the output and the expected performance of the unit.

² The e®ective bidirectional displacement of a hydraulic cylinder through the actuation

of a piezoelectric stack has been achieved. Data from the one-sided operation of the

piezohydraulic unit has been captured and used to validate the model of the actual

system. Time response analysis is performed through the frequency spectrum com-

parison of the measured and the simulated data. Then a two-stage cycle simulation

is used to model the pumping operation of the unit.

² The simulated response obtained from the two-stage cycle model, represents the forced

response of the system and assumes zero initial conditions. Thus, after one stage,

states have a de¯nite value and the zero initial condition assumption for the next

stage, neglects the initial condition response. The initial condition response does

manifest itself in the total response of the one-sided piezohydraulic unit. Therefore,

the simulated response was unable to predict correctly the response of the actual

system. On the other hand, analysis of the operation of the double-ended cylinder

concluded that the forced response is dominant and that the initial condition response

can be neglected (only in regions of no valve overlap). Therefore, the two-stage cycle

lumped parameter model does predict the pumping operation of the double-ended
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unit under regions of no valve overlap. Furthermore, the good correlation obtained

for the one-sided time response simulations suggest that the lumped parameter model

was good enough to predict the dynamics of the hydraulic system for both, the single-

ended and the double-ended unit.

² Analysis of the dynamics of the system revealed that the location of the piston within

the hydraulic cylinder has no considerable e®ect. As the piston is moved from one

end of the cylinder, to the other, the slowest pole of the entire system changes by

less than 1%. In the code, the varying sti®ness, damping and mass elements are only

updated after each cycle. Nonetheless, if the simulation is performed for a double-

ended cylinder, where only the forced response is enough to model the system, then

the update process is unnecessary since it has no e®ect on the output of the system.

² Finally, from the experimental side of the research, it is possible to identify the fol-

lowing set of limitations involved with a piezohydraulic unit. First, the need of high

displacement piezoelectric actuators often comes with the requirement of high voltage

operation along with high current consumptions. Thus, the ampli¯er becomes the ¯rst

limitation to overcome. Second, is the response of the controlled valves. The highest

valve operating frequency will set the limit on the piezohydraulic unit. And ¯nally,

once these limitations are overcome, the unit is eventually limited by the dynamics of

the °uid and the hydraulic system itself. Attenuation in the frequency response, or

the operation near resonance and the possibility of cavitation, are some of the aspects

that eventually will limit the operation of the piezohydraulic unit.

6.1 Recommendations and Future Work

From the experience of this research, the following recommendations on future work are

suggested:

² In order to minimize or eliminate entrained air in the system, the use of a vacuum

pump is highly recommended for at least one hour (with new oil). Vacuum pump use

is only needed for ¯rst time hydraulic ¯ll or re-¯lls. Nonetheless, change the vacuum

pump oil right after each evacuation, while the oil in the pump is hot. This ensures

faster, higher evacuation and longer pump life. Re-used oil seems to require much
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longer periods to achieve the same evacuation rate.

² The performance of the system has been a®ected several times due to particles present

in the °uid that eventually block the passage through the valves. The use of Te°on as

a sealant is common and suggested only in components that may require it. Special

attention is recommended while connecting or disconnecting a component, since a

small and hard to notice Te°on particle may end up inside the °uid pipeline.

² Furthermore, application of torque in the installation of pipe connectors should be

carefully applied, in order to prevent torsional loads that could cause a minor and

un-noticeable leakage in the system. Also, in order to prevent unwanted particles

that may be introduced in a re-¯ll process, it is recommended to install a ¯lter after

the pressurized cylinder, and before the quick connect link to the piezohydraulic unit.

² The solenoid valves are o®-the-shelf components the were used due to their availability,

fast delivery, and standard installation. Now that the important aspects and resulting

limitations of the valves have been identi¯ed, then the next step is to experiment with

higher frequency response valves that may also have much faster time responses.

Perhaps the use of PZT actuated valves that may withstand the pressure at which

the ¯nal system will operated are recommended.

² The lumped parameter model developed does not account for the eventual appearance

of cavitation and its e®ect on the performance of the system. Cavitation is more

likely to occur during the pulling strokes of the piezoelectric stack, and the operation

with a pre-pressurized system helps to prevent it. Nonetheless, once the limiting

e®ect of the valves is overcome, then it is necessary to include the e®ects of a high

frequency operation on the dynamics of the lumped parameter model. One option is

to keep track of the forces of each lump of °uid. Then these can be translated into

the pressures acting on each lump. The objective is to ensure that these pressure

values are higher than the vapor pressure of the °uid. If the pressure of one lump

within the hydraulic system falls close or below the vapor pressure of the °uid, then

cavitation is likely to occur, and the formation of vapor bubbles will indeed reduce

drastically the e®ectiveness of the unit (as it has been shown with the e®ect of an

increased percentage of air entrained in the system) or even prevent its operation at
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all. Furthermore, damage may be done to the components present, such as the piston

in the input hydraulic cylinder.

² Since cavitation is related to the pressures in the system, and these are associated

with the forces acting on each lump, then it is intuitive to think that the operation

of the system close to or under resonance may induce cavitation. This is because, for

a mass spring system, for example, once the frequency of operation becomes close to

resonance, the amount of force required to excite the system exhibits a drastic drop.

The analogy to a hydraulic system suggests that the excitation of a °uid pipeline

close to resonance, may induce high pressure drops and eventual cavitation. Further

literature review and analysis of previous research on this topic is highly recommended.

² If resonance and cavitation do become a limiting factor on the operating frequency,

then the analysis and possible development of the following piezohydraulic system is

recommended. With the con¯guration shown in Figure 6.1, at any given stage there

is always a stack pushing the °uid. Then the stack under a pulling stroke is prevented

from lowering the pressure on the °uid due to pulling forces. The second stack,

Valve Closed

Valve Open

Stage 1 Stage 2

Figure 6.1: Double-ended piezohydraulic unit operating under the actuation of a pair
of synchronized piezoelectric stacks.

basically serves as an accumulator by providing additional force (and pressure) on

the system. Furthermore, this con¯guration may enhance the force capability of the

output cylinder. This is because under the current operating con¯guration (shown in
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Figure 4.2), during the pushing stage, one side is pushed while the other side is being

compressed. In the same manner, during a pulling stage, one side is pulled while the

other side is being expanded. In this scenario, pressure increases or decreases occur

at both sides.

² Although two di®erent types of timing patterns have been analyzed, it is recommended

to perform a series of experiments to quantity the e®ects of several di®erent timing

patterns on the performance of the piezohydraulic unit. E®ects on displacement have

been simulated with the model and compared with experimental data. Nonetheless

the e®ect on the output force of the hydraulic cylinder has yet to be analyzed. By

output force, it is referred to the amount of force that the output cylinder may exert

on a load or vice versa, at a given rate of displacement or at no displacement (clamped

force).

² Study the e®ects of a constant spring and damper load on the output cylinder. The

model developed o®ers the possibility of including a constant spring and damper load.

Thus simulations can be performed and correlated with some measured data. One

suggestion is to express the sti®ness of the load as a percentage of the softest sti®ness in

the hydraulic system, and to involve in a load performance analysis, the use of various

timing patterns. Both, the sti®ness of the load (and therefore the force it is exerting)

and the valve timing, are two of the factors considered to a®ect the performance of

the piezohydraulic unit under load.

² The lumped parameter model seemed to simulate well the dynamics of the °uid system

up to a frequency of 100 Hz. Nonetheless, the assumptions and the nature of the

lumped parameter model suggest that a good correlation will start to decrease at some

point, and continue to decrease as the frequency is increased. Then, a distributed type

of model is suggested, and a good example can be found in Doebelin (1980), where a

comparison between the distributed and the lumped parameter model is made.

² Finally, it is necessary to de¯ne and to determine the characteristics of the unit, such

as e±cency parameters, power densities, energy consumption, work output, etc... in

order to establish advantages and disadvantages with current hybrid actuators.
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Appendix A

Switching Ampli¯er Speci¯cations

(provided by Dynamic Structures and Materials)

The front panel is shown in the Figure A.1.

- I1 & I2: Digital input voltage (TTL signal, 0 to 5V), used to determine the operating

frequency for ports 1 and 2.

- I3A: Digital input voltage (TTL signal, 0 to 5V), used to determine the operating frequency

for port 3.

- I3B: Analog input voltage (0 to 3V), used to determine the current supply for port 3.

- I4: Not used.

- IP: Input power voltage (up to 80 VDC).

- O1 & O2: Output ports 1 and 2. Square voltage (0-400V) for capacitive loads of up to

400nF.

- O3: Output port 3. Triangular voltage waveform (0-150V) for capacitive loads of up to

40¹F .

- F1: Fuse for port 1, 2 Amps.

- F2: Fuse for port 2, 2 Amps.

- F3: Fuse for port 3, 3 Amps.

- FP: Fuse for input power port 2, 5 Amps.
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ON

OFF
I 1 I 2 I 3A I 3B I 4

F 1

F 2 F 3

F P

IP
O 3O 1 O 2

AMPLIFIER INPUTS AMPLIFIER OUTPUTS

Figure A.1: Front Panel of the Ampli¯er (Built by Dynamic Structures andMaterials).

A simpli¯ed version of the circuit of the switching ampli¯er for the port used to

power the piezoelectric stack (port 3) is shown below.

VTTL

VIN

LoadIIN

I  3A

I  3B IIN ≈ VIN / 2

switches
a    a'
b    b'

a

a'

b'

b

IMAX ≈ 1.55 Amps

O 3

Figure A.2: Simpli¯ed I/O Circuit for the Ampli¯er (provided by Carlos, in DSM).
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Appendix B

Additional Speci¯cations

Additional speci¯cations on relevant components used in the experimental benchtop piezo-

hydraulic unit have been included.

Figure B.1 shows a custom designed part used to connect the input hydraulic cylinder

to the solenoid valves.

Figure B.1: Designed connecting tee drawings.
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Figure B.2 shows the information provided by the manufacturer of the solenoid

valves.

Figure B.2: Information on the solenoid valves used.
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Figure B.3 shows the circuit developed with Nikola Vujic and Julio Lodetti, in order

to power and drive the solenoid valves.

Figure B.3: Circuit used to drive the solenoid valves along with DSpace.
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Figure B.4 is a drawing of the double ended cylinder used (provided by Bimba).

Figure B.4: Speci¯cations on the double-ended cylinder used.
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The following two pages contain the information provided by Mobil about the hy-

draulic °uid used (type HFA).
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Appendix C

Convergence of the Lumped Parameter Model

The following pages show the Matlab code used to develop the convergence simulations

presented in Chapter 3. The following plots can be obtained:

- Variation of the slowest pole with respect to the number of lumps used.

- Percent change of the slowest pole versus the number of lumps used.

- Frequency response of the system as a function of the number of lumps.
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%---------------------------------------------------------------------% 
% thesis_convergence.m                 % 
% DESCRIPTION: Testing the convergence of the lumped parameter model. % 
% September, 2000                   % 
% Khalil Nasser                   % 
%---------------------------------------------------------------------% 
 
clc 
clear all 
close all 
 
 
% Defining Parameters: 
% Input stiffness (it's the same as Kr) 
Kin = 10^4; 
 
% for p_PA 
% Ko  = 1.3806*10^4; 
% bo  = 3.3969*10^0; 
% Mo  = 5.3118*10^-4; 
% for an estimate of entire side A 
% Ko  = 1.3806*10^4; 
% bo  = 3.11*10^1; 
% Mo  = 5.36*10 -̂3; 
% for an ESTIMATE of the entire system 
Ko  = 1.26*10^4;    %lowest stiffness 
bo  = 4.89*10^1;    %all damping added 
Mo  = 8.74*10^-3;   %all masses added  
 
 
% For the Frequency Response: 
w = logspace(-1,6,1000)*2*pi;    % Freq in rad/sec 
 
 
n = input('Range, Number of Lumps from 1 to   '); 
 
lf=1; 
for c=1:n 
   clear  A  A_lower A_lower_l  A_lower_r 
    
    
for i=1:lf 
   eval(sprintf('M%d = Mo/lf;',i )); 
   eval(sprintf('K%d = Ko*lf;',i )); 
 eval(sprintf('b%d = bo/lf;',i )); 
end 
 
 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Defining the coefficients of the A matrix, 
% which represents the dynamics of the system. 
 
if lf==1 
      a_11 = (-K1-Kin)/M1;  
      a_1d = -b1/M1; 
end 
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  a_21 =  K1/M2; 
      a_22 = (-K2-K1)/M2; 
      a_2d = -b2/M2; 
end 
 
if lf>2    
      a_11 = (-K1-Kin)/M1; 
      a_12 =  K1/M1; 
      a_1d = -b1/M1; 
   for i=2:lf-1 
       eval(sprintf('a_%d1 = K%d/M%d;',i,i-1,i)); 
     eval(sprintf('a_%d2 = (-K%d-K%d)/M%d;',i,i,i-1,i)); 
     eval(sprintf('a_%d3 = K%d/M%d;',i,i,i)); 
     eval(sprintf('a_%dd = -b%d/M%d;',i,i,i)); 
 end 
   for i=lf 
       eval(sprintf('a_%d1 = K%d/M%d;',i,i-1,i)); 
     eval(sprintf('a_%d2 = (-K%d-K%d)/M%d;',i,i,i-1,i)); 
     eval(sprintf('a_%dd = -b%d/M%d;',i,i,i)); 
 end 
end 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Defining the coefficient of the B matrix: 
Bin = Kin/M1; 
 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Constructing the A,B,C,D matrices: 
% NOTE: Size of A is nxn where  n = # of states = 2* # of lumps = 2*lf 
 
if lf==1 
   A = [  0    1    ; 
       a_11 a_1d ]; 
   B = [  0 ; Bin ];    
   C = [  1  0 ]; 
   D = [ 0 ]; 
end 
%---------------------------------------------------------------------% 
if lf==2 
   A = [  0   0   1   0  ; 
        0   0   0   1  ; 
         a_11  a_12  a_1d   0    ; 
         a_21  a_22   0    a_2d  ]; 
   B = [  0 ; 0 ; Bin ; 0 ];       
   C = [  0  1  0  0 ];          
   D = [  0 ];            
end 
%---------------------------------------------------------------------%      
if lf>2           
   A_lower(1,:)=[ a_11  a_12  zeros(1,lf-2)    a_1d  zeros(1,lf-1) ];       
    
   if lf==3 
      A_lower(2,:)=[ a_21  a_22  a_23          0     a_2d     0   
]; 
      A_lower(3,:)=[  0    a_31  a_32              0      0      a_3d 
]; 
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       eval(sprintf('A_lower_r(%d,:)=[ zeros(1,%d)  a_%dd  
zeros(1,%d) ];',i,i-1,i,lf-1-(i-1)  ));  
       eval(sprintf('A_lower(%d,:)=[ A_lower_l(%d,:)  A_lower_r(%d,:) 
];',i,i,i )); 
    end 
    for i=lf 
       eval(sprintf('A_lower_l(%d,:)=[ zeros(1,%d)  a_%d1  a_%d2 
];',i,i-2,i,i ) );    
       eval(sprintf('A_lower_r(%d,:)=[ zeros(1,%d)  a_%dd ];',i,i-1,i  
));  
       eval(sprintf('A_lower(%d,:)=[ A_lower_l(%d,:)  A_lower_r(%d,:) 
];',i,i,i )); 
    end 
   end 
    
   A = [ zeros(lf)  eye(lf)  ; 
              A_lower         ]; 
   B = [ zeros(lf,1)  ;  Bin ; zeros(lf-1,1) ]; 
   C = [ zeros(1,lf-1)  1  zeros(1,lf) ]; 
   D = [ 0 ]; 
end 
%---------------------------------------------------------------------% 
% Obtaining the slowest pole -lowest frequency- of the system 
% and developing convergence plots 
%A 
Wn = damp(A); 
Fn = Wn/(2*pi); 
Fn_min = min(Fn); 
 
Freq_min(lf) = Fn_min; 
n_lump(lf)   = lf; 
 
if lf>1 
   pct_change(lf) = abs((Freq_min(lf-1) - 
Freq_min(lf))*100/Freq_min(lf-1)); 
   if pct_change(lf)<1 
      n_lump(lf) 
      pct_change(lf) 
   end 
end 
% Assigning the A,B,C,D system corresponding to the number of lumps lf, 
% and computing the corresponding frequency response 
eval(sprintf('A%d = A;',lf)); 
eval(sprintf('B%d = B;',lf)); 
eval(sprintf('C%d = C;',lf)); 
eval(sprintf('D%d = D;',lf)); 
 
lf = lf+1; 
end 
 
 
% Output Plots: 
figure(1) 
plot(n_lump,Freq_min,'*-') 
xlabel('Number of Lumps') 
ylabel('Frequency, [Hz]') 
title('Slowest or Lowest Frequency Pole') 
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c=1; 
fprintf(' \n\n ') 
figure(3) 
while c==1 
in1 = input(' Frequency Response Number, from 1 to lf, 0 = quit  [0]   '); 
in2 = isempty(in1); if in2==1  in1=0; end 
 
if in1>0 
   w = logspace(-1,6,1000)*2*pi;    % Freq in rad/sec 
   eval(sprintf('[mag,phase] = bode(A%d,B%d,C%d,D%d,1,w);',in1,in1,in1,in1)); 
   loglog(w/2/pi,mag) 
   title(sprintf('Frequency Response with %d lumps',in1)) 
   xlabel('Frequency [Hz]'); 
   ylabel(sprintf('X%d(s)/Xin(s)',in1)); 
    
   % Grouping all the output for one plot 
   eval(sprintf('mag_t(:,%d) = mag;',in1)); 
   eval(sprintf('phase_t(:,%d) = phase;',in1)); 
    
end 
hold on 
if in1==0  c=0; end 
end 
figure(3) 
grid 
hold off 
 
 
figure(4) 
loglog(w/2/pi,mag_t) 
title(sprintf('Frequency Response as a Function of the Number of Lumps',in1)) 
xlabel('Frequency [Hz]'); 
ylabel('Xout(s)/Xin(s)'); 
legend('1','2','3','4','5','6','7','8','9','10','11','12') 
gtext('No. Lumps') 
grid 
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Appendix D

Partial Matlab code Developed for the Simulations

The Matlab code has been developed in a modular fashion. The thesis main01:m ¯le is

shown in the following two pages, and it is the main ¯le of the entire code. It calls the rest

of the .m ¯les and updates .mat ¯les containing data from variables, or entire operations.

Through this ¯le, measured oscillating data can be viewed and compared with a simulated

set of data that has been generated with the corresponding measured input. Also, it is

possible to generate simulations with theoretical input signals, that is, input signals that

are de¯ned by the user rather than using measured data.

One notorious branch or division, is the thesis pumping:m ¯le. It is just like the

current main ¯le, but it is solely devoted for the organization and execution of the ¯les

needed to simulate a pumping operation.

Finally, the .m ¯le thesis fluidparam02:m has been included, as a reference of the

values used to de¯ne the lumps of the various parts that compose the °uid system. The rest

of the .m ¯les have not been included due to their extensive size. For further information

about the Matlab code, contact the author.
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%---------------------------------------------------------------------% 
% thesis_main01.m                   % 
% DESCRIPTION: MAIN Program - calls all the other 'm' files     % 
% May-June-September, 2000                % 
% Khalil Nasser                   % 
%---------------------------------------------------------------------% 
 
clc 
clear all 
close all 
 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
thesis_mechparam 
save thesis_data_mechparam 
clear all 
 
load thesis_data_mechparam 
 
thesis_input01 
 
if choice==2  choice2=0;end 
 
if choice2==2  
   % Theoretical - Pumping 
   thesis_pumping 
else 
thesis_fluidparam02 
 
save thesis_data_fluidparam  p_PA p_PB p_CPC p_PC p_CC p_PCY p_SV  
p_SVc p_SVc1 p_SVW p_AAC p_ACA p_ACB p_ACBc p_ACBW Pi pair  p_SPA p_SPB 
p_SCA p_SCB p_ELB p_TEE 
pause 
clear all 
load thesis_data_fluidparam 
 
thesis_parts01 
 
load thesis_data_mechparam 
load thesis_data_initial 
thesis_coeff 
 
save thesis_data_coeff 
 
thesis_matrices 
 
save thesis_data_matrices 
save thesis_data_matrices01  A B1 B2 C D lp  lp_os  ld  nc  Pi 
 
clear all 
 
load thesis_data_input 
load thesis_data_matrices01 
 
load thesis_choice 
if choice==1 
   % Theoretical - Oscillation 
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   thesis_simulation_1 
else 
   % Experimental - Oscillation 
   thesis_simulation_2 
end 
 
load thesis_choice 
if choice==1 
   thesis_tfr01 
end 
 
load thesis_choice 
if choice==2 
   thesis_fft 
end 
 
save thesis_data_fft 
 
end 
 
clear all 
 
%---------------------------------------------------------------------% 
fprintf('\n\n')    
fprintf(' ****************************************************** \n') 
fprintf(' **********      END OF PROGRAM      *********** \n')   
fprintf(' ****************************************************** \n') 
fprintf('\n\n')  
%---------------------------------------------------------------------% 
format short e 
 
 
% END 
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%---------------------------------------------------------------------% 
% thesis_fluidparam02.m                 % 
% DESCRIPTION: Defining the fluid's lumped parameters.            % 
%     Each component is broken into geometrical lumpes       % 
%     that are divided further in order to ensure the        % 
%     convergence of the simulations, with a finer grid.   % 
% May-June, 2000                   % 
% Khalil Nasser                   % 
%---------------------------------------------------------------------% 
 
% Data used for an individual run of the file: 
% clear all 
% pair=0.1; 
% Pi=100; 
% Dcyl=(0.5*2.54/100); 
% Dch=(5/8*2.54/100); 
 
 
% FLUID's Properties: 
% Density is assumed to have small variations around its original 
% value (operating point). 
density = 860.1;        % HFA MOBIL Fluid  [Kg/m^3] 
viscosity = 3.8*10^-1;      % HF Dynamic Visc. [N*s/m^2] 
Bpsi = 220000;         % HF Bulk Modulus  [Psi] 
Bf = 6895*Bpsi;        % HF Bulk Modulus  [Pa] 
% Re # used to calculate (l/d)equiv from Kl factors from MUNSON fluids 
% book. IT IS NOT the Re# of the system (thus, f=64/Re, laminar flow). 
reb = 1800; 
 
% AIR's Properties: 
% Air's pressure can be approximated to the initial pressure (for bulk  
% modulus calculations) in the oscillating operation (Good for small 
% variations around Pi). It is NOT the case for the pumping config. 
Bg = 6895*1.4*Pi;        % Air's Bulk Modulus [Pa] 
 
% LUMP's EXTERNAL BODY (LEB) Properties (pipes..conectors..): 
% Modulus of Elasticity of the following materials: 
E_aluminum    = 71*10^9;     % [Pa] 
E_brass       = 106*10^9;     % [Pa] 
E_carbonsteel = 207*10^9;     % [Pa] 
E_castiron    = 100*10^9;     % [Pa] 
E_stainless   = 190*10^9;     % [Pa] 
 
 
%---------------------------------------------------------------------% 
% Part: PIPE A w/ bends (PA) 
xpa  = pair/100;        % Fraction of Air 
tpa  = .7112e-3;         % Pipe's thickness [m] 
Epa  = E_stainless;       % Pipe's Elasticity [Pa] 
Dpa  = 1.7526e-3;        % Internal Diameter [m] 
Apa  = pi*(Dpa^2)/4;       % Area     [m^2] 
Lpa  = 256e-3;         % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
Bpa  = ( Dpa/(tpa*Epa) + (1-xpa)/Bf + xpa/Bg )^-1; 
% Pipe's minor losses: 
ld_1 = 20;          % Long rad 90 deg elbow  
ld_2 = 5.625;         % Long rad 45 deg elbow 
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ld_3 = 16;          % Regular 45 deg elbow 
%ld_3 = 11.25;         % Regular 45 deg elbow 
ld_4 = 20;          % Long rad 90 deg elbow  
ld_eq = ld_1+ld_2+ld_3+ld_4; 
 
Kpa  = Apa*Bpa/Lpa;         % Capacitance (stiff)[N/m] 
Mpa  = density*Apa*Lpa;        % Inductance (mass) [Kg] 
bpa = 8*pi*viscosity*(Lpa + Dpa*ld_eq);% Resistance (damp.) [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: PIPE B w/ bends (PB) 
xpb  = pair/100;        % Fraction of Air 
tpb  = .7112e-3;         % Pipe's thickness [m] 
Epb  = E_stainless;       % Pipe's Elasticity [Pa] 
Dpb  = 1.7526e-3;        % Internal Diameter [m] 
Apb  = pi*(Dpb^2)/4;       % Area     [m^2] 
Lpb  = 280e-3;         % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
Bpb  = ( Dpb/(tpb*Epb) + (1-xpb)/Bf + xpb/Bg )^-1; 
% Pipe's minor losses: 
ld_1 = 30;          % Std 90 degree elbow  
ld_2 = 30;          % Std 90 degree elbow  
ld_3 = 30;          % Std 90 degree elbow  
ld_eq = ld_1+ld_2+ld_3; 
 
Kpb  = Apb*Bpb/Lpb;         % Capacitance (stiff)[N/m] 
Mpb  = density*Apb*Lpb;        % Inductance (mass) [Kg] 
bpb = 8*pi*viscosity*(Lpb + Dpb*ld_eq);% Resistance (damp.) [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Customized Brass Pipe Conectors (CPC) 
xcpc  = pair/100;        % Fraction of Air 
tcpc  = 2.25e-3;         % CPC's thickness  [m] 
Ecpc  = E_brass;        % CPC's Elasticity [Pa] 
Dcpc  = 1.7e-3;        % Internal Diameter [m] 
Acpc  = pi*(Dcpc^2)/4;      % Area     [m^2] 
Lcpc  = 25.5e-3;        % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
%Bcpc  = ( Dcpc/(tcpc*Ecpc) + (1-xcpc)/Bf + xcpc/Bg )^-1; 
Bcpc  = ( (1-xcpc)/Bf + xcpc/Bg )^-1; 
% CPC's minor losses: 
ld_1 = (.5)/(64/reb);      % ld = K/f for one side  
ld_2 = (.98)/(64/reb);      % ld = K/f for other side  
ld_eq = ld_1+ld_2; 
 
Kcpc  = Acpc*Bcpc/Lcpc;        % Capacitance (stiff)[N/m] 
Mcpc  = density*Acpc*Lcpc;        % Inductance (mass) [Kg] 
bcpc= 8*pi*viscosity*(Lcpc+Dcpc*ld_eq);% Resistance (damp.) [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Pipe Conectors (PC) 
% PC model is good for any direction. Minor losses differnces due to 
% direction operation is averaged and compensated by the use of PC 
% in pairs (2 per pipe) 
xpc  = pair/100;        % Fraction of Air 
tpc  = 2.25e-3;         % PC's thickness  [m] 
Epc  = E_brass;        % PC's Elasticity  [Pa] 
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Dpc  = [ 1.7526e-3  2.32e-3 ];   % Internal Diameter [m] 
Apc  = pi*(Dpc.^2)./4;      % Area     [m^2] 
Lpc  = [ (17e-3)/2  (17e-3)/2 ];   % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
%Bpc  = ( Dpc/(tpc*Epc) + (1-xpc)/Bf + xpc/Bg ).^-1; 
Bpc  = ( (1-xpc)/Bf + xpc/Bg ).^-1; 
 
% PC's minor losses: 
ld_1 = (.9)/(64/reb);      % ld = K/f for one direc  
ld_2 = (.49)/(64/reb);      % ld = K/f for other direc  
ld_eq = (ld_1+ld_2)/2;       % AVRG  
 
Kpc    = Apc.*Bpc./Lpc;        % Capacitance (stiff)[N/m] 
%Kpc  = ( 1/K(1) + 1/K(2) )^-1;   % Equiv. Stiffness  [N/m] 
Mpc    = density*Apc.*Lpc;        % Inductance (mass) [Kg] 
%Mpc  = M(1) + M(2);       % Equiv. Mass   [Kg] 
bpc    = 8*pi*viscosity*(Lpc+Dpc*ld_eq); % Resistance (damp.) [Kg/s] 
%bpc  = ( 1/b(1) + 1/b(2) )^-1;   % Equiv. Damping  [Kg/s] 
 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Customized Chamber (CC) 
% Due to symmetry assumptions of charge and discharge area changes, 
% the CC model is valid for both directions of operation. 
xcc  = pair/100;        % Fraction of Air 
tcc  = [ 2.5e-3  6.71e-3  1.71e-3 ] ;  % CC's thickness  [m] 
Ecc  = E_carbonsteel;      % CC's Elasticity  [Pa] 
Dcc  = [ 10e-3  1.5875e-3  1.5875e-3 ];% Internal Diameter [m] 
Acc  = pi.*(Dcc.^2)./4;      % Area     [m^2] 
Lcc  = [ 3.5e-3  8e-3  35e-3 ];   % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
%Bcc  = ( Dcc./(tcc.*Ecc) + (1-xcc)/Bf + xcc/Bg ).^-1; 
Bcc  = ( (1-xcc)/Bf + xcc/Bg ).^-1; 
 
% Chamber's minor losses: 
ld_1 = (.5)/(64/reb);      % ld = K/f for one side  
ld_2 = 30;          % Std 90 degree elbow  
ld_3 = (.98)/(64/reb);      % ld = K/f for other side  
ld_eq = [ ld_1  ld_2  ld_3]; 
 
Kcc    = Acc.*Bcc./Lcc;        % Capacitance (stiff)[N/m] 
%Kcc  = ( 1/K(1) + 1/K(2) + 1/K(3) )^-1;% Equiv. Stiffness  [N/m] 
Mcc    = density*Acc.*Lcc;       % Inductance (mass) [Kg] 
%Mcc  = M(1) + M(2) + M(3);     % Equiv. Mass   [Kg] 
bcc    = 8*pi*viscosity*(Lcc +Dcc.*ld_eq);% Resistance (damp.) [Kg/s] 
%bcc  = ( 1/b(1) + 1/b(2) + 1/b(3) )^-1;% Equiv. Damping  [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Pumping Cylinder (PCY) 
xpcy  = pair/100;        % Fraction of Air 
tpcy  = [ 10e-3  10e-3 ] ;             % PCY's thickness  [m] 
Epcy  = E_brass;        % PCY's Elasticity [Pa] 
Dpcy  = [ Dch  10e-3 ];      % Internal Diameter [m] 
Apcy  = pi.*(Dpcy.^2)./4;     % Area     [m^2] 
Lpcy  = [ 2.5e-3  4e-3 ];     % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
%Bpcy  = ( Dpcy./(tpcy.*Epcy) + (1-xpcy)/Bf + xpcy/Bg ).^-1; 
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Bpcy  = ( (1-xpcy)/Bf + xpcy/Bg ).^-1;  
 
% Chamber's minor losses: 
ld_1 = (.325)/(64/reb);      % ld = K/f for change in A  
ld_eq = ld_1; 
 
Kpcy    = Apcy.*Bpcy./Lpcy;      % Capacitance (stiff)[N/m] 
%Kpcy = ( 1/K(1) + 1/K(2) )^-1;   % Equiv. Stiffness  [N/m] 
Mpcy    = density*Apcy.*Lpcy;      % Inductance (mass) [Kg] 
%Mpcy = M(1) + M(2);       % Equiv. Mass   [Kg] 
bpcy   = 8*pi*viscosity*(Lpcy+Dpcy*ld_eq);% Resistance (damp.) [Kg/s] 
%bpcy = ( 1/b(1) + 1/b(2) )^-1;   % Equiv. Damping  [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Adaptor for the Actuator Cylinder (AAC) 
xaac  = pair/100;        % Fraction of Air 
taac  = [ 1.125e-3  5e-3 ];            % AAC's thickness  [m] 
Eaac  = E_brass;        % AAC's Elasticity [Pa] 
Daac  = [ 10e-3  2.75e-3 ];    % Internal Diameter [m] 
Aaac  = pi.*(Daac.^2)./4;     % Area     [m^2] 
Laac  = [ 3e-3  6e-3 ];      % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
%Baac  = ( Daac./(taac.*Eaac) + (1-xaac)/Bf + xaac/Bg ).^-1; 
Baac  = ( (1-xaac)/Bf + xaac/Bg ).^-1; 
 
% AAC's minor losses: 
ld_a = (.49)/(64/reb);      % ld = K/f - dA in part 
ld_b = (.85)/(64/reb);      % ld = K/f - dA into cyl 
ld_eq = [ ld_a  ld_b ]; 
 
Kaac    = Aaac.*Baac./Laac;      % Capacitance (stiff)[N/m] 
%Kaac = ( 1/K(1) + 1/K(2) )^-1;   % Equiv. Stiffness  [N/m] 
Maac    = density*Aaac.*Laac;       % Inductance (mass) [Kg] 
%Maac = M(1) + M(2);       % Equiv. Mass   [Kg] 
baac  = 8*pi*viscosity*(Laac+Daac.*ld_eq);% Resistance (damp.) [Kg/s] 
%baac  = ( 1/b(1) + 1/b(2) )^-1;   % Equiv. Damping  [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Solenoid Valves (SV) 
xsv  = pair/100;        % Fraction of Air 
tsv  = [ 5e-3  15e-3  5e-3 ] ;         % SV's thickness  [m] 
Esv  = E_carbonsteel;      % SV's Elasticity  [Pa] 
Dsv  = [ 8.8e-3  1.5e-3  8.8e-3 ];  % Internal Diameter [m] 
Asv  = pi.*(Dsv.^2)./4;      % Area     [m^2] 
Lsv  = [ 4.8e-3  5e-3  11.45e-3 ];  % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
%Bsv  = ( Dsv./(tsv.*Esv) + (1-xsv)/Bf + xsv/Bg ).^-1; 
Bsv  = ( (1-xsv)/Bf + xsv/Bg ).^-1; 
 
% SV's minor losses: 
ld_b = (1.11)/(64/reb)+30+30;    % Side B 
ld_m = 30;          % Std 90 degree elbow  
ld_a = (1.12)/(64/reb)+30+30;    % Side A 
ld_eq = [ ld_b  ld_m  ld_a ]; 
 
Ksv    = Asv.*Bsv./Lsv;        % Capacitance (stiff)[N/m] 
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Msv    = density*Asv.*Lsv;       % Inductance (mass) [Kg] 
%Msv  = M(1) + M(2);       % Equiv. Mass   [Kg] 
bsv    = 8*pi*viscosity*(Lsv+Dsv.*ld_eq);% Resistance (damp.) [Kg/s] 
%bsv  = ( 1/b(1) + 1/b(2) )^-1;   % Equiv. Damping  [Kg/s] 
%---------------------------------------------------------------------% 
% Part: Closed Solenoid Valve (SVc) 
% Pipe Conected to Side A 
Bsvc = Bsv(1); 
%Bsvc = Bsv(2); 
Ksvc = Ksv(2);         % Capacitance (stiff)[N/m] 
%Msvc = 0.25*Msv(2);        % Inductance (mass) [Kg] 
Msvc = 0.5*Msv(2);        % Inductance (mass) [Kg] 
bsvc = bsv(2);         % Resistance (damp.) [Kg/s] 
% Taking the wall as the valve's piston (w) 
Asvw = pi/4*(15e-3)^2; 
Lsvw = 5e-3; 
Ksvw = Asvw*E_stainless/Lsvw;      % Capacitance (stiff)[N/m] 
%Msvw = 0.75*Msv(2); 
Msvw = 0.5*Msv(2); 
bsvw = 0; 
Bsvw = 0; % no bulk mod for a solid 
 
% Part: Closed Solenoid Valve (SVc1) 
% Pipe Conected to Side A of valve 
% Taking the wall as the valve's piston (w) 
Asvw = pi/4*(15e-3)^2; 
Lsvw = 5e-3; 
Ksvw = Asvw*E_stainless/Lsvw;      % Capacitance (stiff)[N/m] 
 
Bsvc1 = [ Bsv(1) ]; 
Ksvc1 = [ Ksv(1)*Ksvw/(Ksv(1)+Ksvw) ]; 
Msvc1 = [ Msv(1) ]; 
bsvc1 = [ bsv(1) ]; 
 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% FOR THE ACTUATOR-CYLINDER 
% Initial position of the piston (from 0 to 1 in) 
dp   = (0.5)*(2.54/100);     % [m] 
%---------------------------------------------------------------------% 
% Part: Actuator Cylinder Side B (ACB) 
xacb = pair/100;        % Fraction of Air 
%tacb = [ 5e-3  2.6e-3 ] ;           % ACB's thickness  [m] 
tacb = [ 0.3937*Dcyl  0.2047*Dcyl ]; 
Eacb = [ E_aluminum  E_brass];   % ACB's Elasticity [Pa] 
%Dacb = [ 9.53e-3  12.7e-3 ];    % Internal Diameter [m] 
Dacb = [ 0.7504*Dcyl  Dcyl ]; 
Aacb = pi.*(Dacb.^2)./4;     % Area     [m^2] 
Lacb = [ 19.05e-3  (25.4e-3 -dp) ];  % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
%Bacb = ( Dacb./(tacb.*Eacb) + (1-xacb)/Bf + xacb/Bg ).^-1; 
Bacb = ( (1-xacb)/Bf + xacb/Bg ).^-1; 
 
% ACB's minor losses: 
ld_b  = (.22)/(64/reb);      % Side B reduction in A 
ld_eq = ld_b; 
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Kacb    = Aacb.*Bacb./Lacb;        % Capacitance (stiff)[N/m] 
%Kacb = ( 1/K(1) + 1/K(2) )^-1;   % Equiv. Stiffness  [N/m] 
Macb    = density*Aacb.*Lacb;       % Inductance (mass) [Kg] 
%Macb = M(1) + M(2);       % Equiv. Mass   [Kg] 
bacb   = 8*pi*viscosity*(Lacb+Dacb*ld_eq);% Resistance (damp.) [Kg/s] 
%bacb = ( 1/b(1) + 1/b(2) )^-1;   % Equiv. Damping  [Kg/s] 
%---------------------------------------------------------------------% 
% Part: Actuator Cylinder Side B -closed- (ACBc) -last lump 
Bacbc = Bacb; 
Kacbc = Kacb;         % Capacitance (stiff)[N/m] 
%Macbc = [ Macb(1) 0.25*Macb(2) ];  % Inductance (mass) [Kg] 
Macbc = [ Macb(1) 0.5*Macb(2) ];  % Inductance (mass) [Kg] 
bacbc = bacb;         % Resistance (damp.) [Kg/s] 
% Taking the wall as the cylinder's end (ACBW) 
Aacbw = pi/4*(Dcyl)^2; 
Lacbw = Dcyl/2; 
Kacbw = Aacbw*E_aluminum/Lacbw;   % Capacitance (stiff)[N/m] 
%Macbw = 0.75*Macb(2); 
Macbw = 0.5*Macb(2); 
bacbw = 0; 
Bacbw = 0; % no bulk mod for a solid 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Actuator Cylinder Side A (ACA) 
xaca = pair/100;        % Fraction of Air 
%taca = 2.6e-3 ;              % ACB's thickness  [m] 
taca = 0.2047*Dcyl; 
Eaca = E_brass;        % ACB's Elasticity [Pa] 
%Dpist= 12.7e-3;        %        [m] 
Dpist = Dcyl; 
%Drod = 6.35e-3;        %       [m] 
%Drod = 0.5*Dcyl; 
%Daca = sqrt(Dpist^2 - Drod^2);   % Equiv Diameter  [m] 
Aaca = pi.*(Dpist^2 - Drod^2)./4;  % Area     [m^2] 
Laca = dp + 19.05e-3;      % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
%Baca = ( Daca/(taca*Eaca) + (1-xaca)/Bf + xaca/Bg )^-1; 
Baca = ( (1-xaca)/Bf + xaca/Bg )^-1; 
 
Kaca = Aaca*Baca/Laca;        % Capacitance (stiff)[N/m] 
Maca = density*Aaca*Laca;       % Inductance (mass) [Kg] 
baca = 8*pi*viscosity*(Laca);    % Resistance (damp.) [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: PIPE A w/ bends (SPA) 
xspa  = 2*pair/100;        % Fraction of Air 
tspa  = .7112e-3;         % Pipe's thickness [m] 
Espa  = E_stainless;       % Pipe's Elasticity [Pa] 
Dspa  = 1.7526e-3;       % Internal Diameter [m] 
Aspa  = pi*(Dspa^2)/4;      % Area     [m^2] 
Lspa  = 140e-3;        % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
Bspa  = ( Dspa/(tspa*Epa) + (1-xspa)/Bf + xspa/Bg )^-1; 
% Pipe's minor losses: 
ld_1 = 5.625;         % Long rad 45 deg elbow 
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ld_2 = 2;          % Long rad 15 deg elbow  
ld_3 = 20;          % Long rad 90 deg elbow  
ld_eq = ld_1+ld_2+ld_3; 
 
Kspa  = Aspa*Bspa/Lspa;          % Capacitance (stiff)[N/m] 
Mspa  = density*Aspa*Lspa;         % Inductance (mass) [Kg] 
bspa  = 8*pi*viscosity*(Lspa + Dspa*ld_eq);% Resistance (damp.)
 [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: PIPE B w/ bends (SPB) 
xspb  = pair/100;        % Fraction of Air 
tspb  = .7112e-3;         % Pipe's thickness [m] 
Espb  = E_stainless;       % Pipe's Elasticity [Pa] 
Dspb  = 1.7526e-3;       % Internal Diameter [m] 
Aspb  = pi*(Dspb^2)/4;      % Area     [m^2] 
Lspb  = 150e-3;        % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
Bspb  = ( Dspb/(tspb*Espb) + (1-xspb)/Bf + xspb/Bg )^-1; 
% Pipe's minor losses: 
ld_1 = 5.625;         % Long rad 45 deg elbow 
ld_2 = 20;          % Long rad 90 deg elbow  
ld_3 = 20;          % Long rad 90 deg elbow  
ld_eq = ld_1+ld_2+ld_3; 
 
Kspb  = Aspb*Bspb/Lspb;          % Capacitance (stiff)[N/m] 
Mspb  = density*Aspb*Lspb;         % Inductance (mass) [Kg] 
bspb  = 8*pi*viscosity*(Lspb + Dspb*ld_eq);% Resistance (damp.)
 [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: one side of TEE (TEE) 
xtee  = pair/100;        % Fraction of Air 
Dtee  = [ 4.75e-3  4.75e-3 ];    % Internal Diameter [m] 
Atee  = pi.*(Dtee.^2)./4;     % Area     [m^2] 
Ltee  = [ 4.5e-3  10.5e-3 ];    % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
Btee  = ( (1-xtee)/Bf + xtee/Bg ).^-1;  
 
% Minor losses: 
ld_1 = ((.42+.58)/2)/(64/reb);   % ld = K/f for change in A 
ld_2 = 30+((.42+.58)/2)/(64/reb);  % Std 90 deg elbow + change in A 
ld_eq = [ ld_1 ld_2 ]; 
 
Ktee    = Atee.*Btee./Ltee;         % Capacitance (stiff)[N/m] 
Mtee    = density*Atee.*Ltee;         % Inductance (mass) [Kg] 
btee    = 8*pi*viscosity*(Ltee+Dtee.*ld_eq); % Resistance (damp.)
 [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Elbow (ELB) 
xelb  = pair/100;        % Fraction of Air 
Delb  = [ 2.32e-3  4.75e-3 ];    % Internal Diameter [m] 
Aelb  = pi.*(Delb.^2)./4;     % Area     [m^2] 
Lelb  = [ 5.4e-3  10.5e-3 ];    % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
Belb  = ( (1-xelb)/Bf + xelb/Bg ).^-1;  
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% Minor losses: 
ld_1 = ((.42+.58)/2)/(64/reb);   % ld = K/f for change in A 
ld_2 = 30;          % Std 90 deg elbow  
ld_eq = [ ld_1 ld_2 ]; 
 
Kelb    = Aelb.*Belb./Lelb;         % Capacitance (stiff)[N/m] 
Melb    = density*Aelb.*Lelb;         % Inductance (mass) [Kg] 
belb    = 8*pi*viscosity*(Lelb+Delb.*ld_eq); % Resistance (damp.)
 [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Symmetric Cylinder Side B (SCB)  -from port to bore-  
%pair_scb = 5*pair 
%xscb = (pair_scb)/100;      % Fraction of Air 
xscb = pair/100;        % Fraction of Air 
Dscb = [ 14e-3  19.05e-3 ];    % Internal Diameter [m] 
Drs  = 0.25*25.4*10^-3;      % Rod's Diameter  [m] 
Ascb = pi.*(Dscb.^2 - Drs^2)./4;   % Area     [m^2] 
Lscb = [ 17e-3  (18.375e-3 +dp) ];  % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
Bscb = ( (1-xscb)/Bf + xscb/Bg ).^-1; 
 
ld_1 = 30+((.82+.5)/2)/(64/reb);   % Std 90 deg elbow + change in A 
ld_2 = (0.2)/(64/reb);      % Change in A  
ld_eq = [ ld_1 ld_2 ]; 
 
Kscb = Ascb.*Bscb./Lscb;        % Capacitance (stiff)[N/m] 
Mscb = density*Ascb.*Lscb;       % Inductance (mass) [Kg] 
bscb = 8*pi*viscosity*(Lscb+Dscb.*ld_eq); % Resistance (damp.) [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
% Part: Symmetric Cylinder Side A (SCA)  -from bore to port- 
%pair_sca = 3*pair 
%xsca = (pair_sca)/100;      % Fraction of Air 
xsca = pair/100;        % Fraction of Air 
Dsca = [ 19.05e-3  14e-3 ];    % Internal Diameter [m] 
Drs  = 0.25*25.4*10^-3;      % Rod's Diameter  [m] 
Asca = pi.*(Dsca.^2 - Drs^2)./4;   % Area     [m^2] 
Lsca = [ (18.375e-3 -dp)  17e-3 ];  % Length     [m] 
% The equivalent Bulk Modulus of the Lump of Fluid [Pa] 
Bsca = ( (1-xsca)/Bf + xsca/Bg )^-1; 
 
ld_1 = (0.2)/(64/reb);      % Change in A  
ld_2 = 30+((.82+.5)/2)/(64/reb);   % Std 90 deg elbow + change in A 
ld_eq = [ ld_1 ld_2 ]; 
 
Ksca = Asca.*Bsca./Lsca;        % Capacitance (stiff)[N/m] 
Msca = density*Asca.*Lsca;       % Inductance (mass) [Kg] 
bsca = 8*pi*viscosity*(Lsca+Dsca.*ld_eq); % Resistance (damp.) [Kg/s] 
%---------------------------------------------------------------------% 
%---------------------------------------------------------------------% 
 
% FORMATTED OUTPUT: 
fprintf('\n\n Press Any Key to Continue') 
pause 
 
fprintf('\n \n') 
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fprintf('OUTPUT FROM thesis_fluidparam.m') 
fprintf('\n \n') 
fprintf(' Element\t    Stiffness [N/m]\t  Damping [Kg/s]\t  Mass [Kg]') 
fprintf('\t  Bulk Modulus [Pa] \n') 
fprintf('   PA\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d  
\n',Kpa,bpa,Mpa,Bpa) 
fprintf('   PB\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d  
\n',Kpb,bpb,Mpb,Bpb) 
fprintf('   CPC\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d  
\n',Kcpc,bcpc,Mcpc,Bcpc) 
 
fprintf('   PC 1\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kpc(1),bpc(1),Mpc(1),Bpc(1)) 
fprintf('   PC 2\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kpc(2),bpc(2),Mpc(2),Bpc(1)) 
 
fprintf('   CC 1\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kcc(1),bcc(1),Mcc(1),Bcc(1)) 
fprintf('   CC 2\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kcc(2),bcc(2),Mcc(2),Bcc(1)) 
fprintf('   CC 3\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kcc(3),bcc(3),Mcc(3),Bcc(1)) 
 
fprintf('   PCY 1\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kpcy(1),bpcy(1),Mpcy(1),Bpcy(1)) 
fprintf('   PCY 2\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kpcy(2),bpcy(2),Mpcy(2),Bpcy(1)) 
 
fprintf('   SV 1\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Ksv(1),bsv(1),Msv(1),Bsv(1)) 
fprintf('   SV 2\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Ksv(2),bsv(2),Msv(2),Bsv(1)) 
 
fprintf('   SVc\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Ksvc,bsvc,Msvc,Bsvc) 
fprintf('   AAC 1\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kaac(1),baac(1),Maac(1),Baac(1)) 
fprintf('   AAC 2\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kaac(2),baac(2),Maac(2),Baac(1)) 
 
fprintf('   ACA\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d  
\n',Kaca,baca,Maca,Baca) 
fprintf('   ACB 1\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kacb(1),bacb(1),Macb(1),Bacb(1)) 
fprintf('   ACB 2\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kacb(2),bacb(2),Macb(2),Bacb(1)) 
 
fprintf('   ACBc 1\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kacbc(1),bacbc(1),Macbc(1),Bacbc(1)) 
fprintf('   ACBc 2\t    %1.4d\t  %1.4d\t  %1.4d\t  %1.4d 
\n',Kacbc(2),bacbc(2),Macbc(2),Bacbc(1)) 
 
fprintf('   SVW\t     %1.4d\t  %1.4d\t\t  %1.4d \n',Ksvw,bsvw,Msvw) 
fprintf('   ACBW\t     %1.4d\t  %1.4d\t\t  %1.4d \n',Kacbw,bacbw,Macbw) 
fprintf('\n\n') 
 
fprintf('\t Stiff. \t    Damping    Mass       Bulk Modulus \t') 

185



fprintf('Wn \t z-damp. coeff. \n') 
fprintf('\t [N/micron]  [Kg/s]          [g]           [Psi]    \t\t[Hz] 
\n') 
 
K  = [ 
Kpa;Kpb;Kcpc;Kpc(1);Kpc(2);Kcc(1);Kcc(2);Kcc(3);Kpcy(1);Kpcy(2);Ksv(1);
Ksv(2);Ksvc;Kaac(1);Kaac(2);Kaca;Kacb(1);Kacb(2);Kacbc(1);Kacbc(2);Ksvw
;Kacbw ];   % [N/m] 
Ku = K.*10^-6;                   % 
[N/um] 
b  = [ 
bpa;bpb;bcpc;bpc(1);bpc(1);bcc(1);bcc(1);bcc(1);bpcy(1);bpcy(1);bsv(1);
bsv(1);bsvc;baac(1);baac(1);baca;bacb(1);bacb(1);bacbc(1);bacbc(1);bsvw
;bacbw ];   % [Kg/s] 
M  = [ 
Mpa;Mpb;Mcpc;Mpc(1);Mpc(2);Mcc(1);Mcc(2);Mcc(3);Mpcy(1);Mpcy(2);Msv(1);
Msv(2);Msvc;Maac(1);Maac(2);Maca;Macb(1);Macb(2);Macbc(1);Macbc(2);Msvw
;Macbw ];   % [Kg] 
Mu = M.*10^3;                    % 
[g] 
 
B  = [ 
Bpa;Bpb;Bcpc;Bpc(1);Bpc(1);Bcc(1);Bcc(1);Bcc(1);Bpcy(1);Bpcy(1);Bsv(1);
Bsv(1);Bsvc;Baac(1);Baac(1);Baca;Bacb(1);Bacb(1);Bacbc(1);Bacbc(1);Bsvw
;Bacbw ]; % [Pa] 
%B  = [ 
Bpa;Bpb;Bcpc;Bpc(1);Bpc(2);Bcc(1);Bcc(2);Bcc(3);Bpcy(1);Bpcy(2);Bsv(1);
Bsv(2);Bsvc;Baac(1);Baac(2);Baca;Bacb(1);Bacb(2);Bacbc(1);Bacbc(2);Bsvw
;Bacbw ]; % [Pa] 
 
Bu = B./6895;                   % 
[Psi] 
Wn = sqrt(K./M);                  % 
[rad/sec] 
Fn = Wn./2./pi;                  % 
[Hz] 
z  = (b.*Wn)./(2*K); 
 
c=1; 
for n=1:length(K) 
   if n>=length(K)-1    
      fprintf('%d\t %4.2f \t    %2.4f \t      %2.4f    %5.2f                
%9.2f         %3.4f \n',c,Ku(n),b(n),Mu(n),Bu(n),Fn(n),z(n)) 
   else 
    %if n==1;fprintf(' ');end    
      fprintf('%d\t %2.5f \t    %2.4f \t      %2.4f     %5.2f         
%9.2f          %3.4f \n',c,Ku(n),b(n),Mu(n),Bu(n),Fn(n),z(n)) 
   end 
   c=c+1; 
end 
    
%fprintf('\t %4.1f \t %2.4f \t %2.4f \t %5.2f \n',Kw*10^-
6,bw,Mw*10^3,Bw,) 
fprintf('\n\n') 
 
 clear K b M B 
%---------------------------------------------------------------------% 
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% ADDING MORE LUMPS PER COMPONENT (except for wall elements): 
% if Mo,Ko,bo are original quantities for a lump within a component, 
% then M, K, b are the new values of the broken up component into lf 
lumps 
% K = Ko*lf 
% b = bo/lf 
% M = Mo/lf 
clear n 
 
% p_PA 
n = 4; 
for i=1:n; K_pa(i) = n*Kpa; b_pa(i) = bpa/n; M_pa(i) = Mpa/n; end  
 
% p_PB 
n = 4; 
for i=1:n; K_pb(i) = n*Kpb; b_pb(i) = bpb/n; M_pb(i) = Mpb/n; end 
 
% p_CPC 
n = 2; 
for i=1:n; K_cpc(i) = n*Kcpc; b_cpc(i) = bcpc/n; M_cpc(i) = Mcpc/n; end 
 
% p_PC 
n = 2; 
for i=1:n; K_pc(i) = n*Kpc(1); b_pc(i) = bpc(1)/n; M_pc(i) = Mpc(1)/n; 
end 
n2 = 2; 
for i=n+1:n+n2; K_pc(i) = n2*Kpc(2); b_pc(i) = bpc(2)/n2; M_pc(i) = 
Mpc(2)/n2; end 
 
% p_CC 
n = 2; 
for i=1:n; K_cc(i) = n*Kcc(1); b_cc(i) = bcc(1)/n; M_cc(i) = Mcc(1)/n; 
end 
n2 = 2; 
for i=n+1:n+n2; K_cc(i) = n2*Kcc(2); b_cc(i) = bcc(2)/n2; M_cc(i) = 
Mcc(2)/n2; end 
n3 = 2; 
for i=n+n2+1:n+n2+n3; K_cc(i) = n3*Kcc(3); b_cc(i) = bcc(3)/n3; M_cc(i) 
= Mcc(3)/n3; end 
 
% p_PCY 
n = 2; 
for i=1:n; K_pcy(i) = n*Kpcy(1); b_pcy(i) = bpcy(1)/n; M_pcy(i) = 
Mpcy(1)/n; end 
n2 = 2; 
for i=n+1:n+n2; K_pcy(i) = n2*Kpcy(2); b_pcy(i) = bpcy(2)/n2; M_pcy(i) 
= Mpcy(2)/n2; end 
 
% p_SV 
n = 2; 
for i=1:n; K_sv(i) = n*Ksv(1); b_sv(i) = bsv(1)/n; M_sv(i) = Msv(1)/n; 
end 
n2 = 2; 
for i=n+1:n+n2; K_sv(i) = n2*Ksv(2); b_sv(i) = bsv(2)/n2; M_sv(i) = 
Msv(2)/n2; end 
n3 = 2; 
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for i=n+n2+1:n+n2+n3; K_sv(i) = n3*Ksv(3); b_sv(i) = bsv(3)/n3; M_sv(i) 
= Msv(3)/n3; end 
 
% p_SVc 
n = 2; 
for i=1:n; K_svc(i) = n*Ksvc; b_svc(i) = bsvc/n; M_svc(i) = Msvc/n; end 
 
% p_SVc1 
n = 2; 
for i=1:n; K_svc1(i) = n*Ksvc1(1); b_svc1(i) = bsvc1(1)/n; M_svc1(i) = 
Msvc1(1)/n; end 
 
% p_AAC 
n = 2; 
for i=1:n; K_aac(i) = n*Kaac(1); b_aac(i) = baac(1)/n; M_aac(i) = 
Maac(1)/n; end 
n2 = 2; 
for i=n+1:n+n2; K_aac(i) = n2*Kaac(2); b_aac(i) = baac(2)/n2; M_aac(i) 
= Maac(2)/n2; end 
 
% p_ACA 
n = 4; 
for i=1:n; K_aca(i) = n*Kaca; b_aca(i) = baca/n; M_aca(i) = Maca/n; end 
 
% p_ACB 
n = 2; 
for i=1:n; K_acb(i) = n*Kacb(1); b_acb(i) = bacb(1)/n; M_acb(i) = 
Macb(1)/n; end 
n2 = 2; 
for i=n+1:n+n2; K_acb(i) = n2*Kacb(2); b_acb(i) = bacb(2)/n2; M_acb(i) 
= Macb(2)/n2; end 
 
% p_ACBc 
n = 2; 
for i=1:n; K_acbc(i) = n*Kacbc(1); b_acbc(i) = bacbc(1)/n; M_acbc(i) = 
Macbc(1)/n; end 
n2 = 2; 
for i=n+1:n+n2; K_acbc(i) = n2*Kacbc(2); b_acbc(i) = bacbc(2)/n2; 
M_acbc(i) = Macbc(2)/n2; end 
%---------------------------------------------------------------------% 
% For the symmetric system: 
% p_SPA 
n = 4; 
for i=1:n; K_spa(i) = n*Kspa; b_spa(i) = bspa/n; M_spa(i) = Mspa/n; end 
% p_SPB 
n = 4; 
for i=1:n; K_spb(i) = n*Kspb; b_spb(i) = bspb/n; M_spb(i) = Mspb/n; end 
 
% p_SCA 
n = 2; 
for i=1:n; K_sca(i) = n*Ksca(1); b_sca(i) = bsca(1)/n; M_sca(i) = 
Msca(1)/n; end 
n2 = 2; 
for i=n+1:n+n2; K_sca(i) = n2*Ksca(2); b_sca(i) = bsca(2)/n2; M_sca(i) 
= Msca(2)/n2; end 
 
% p_SCB 
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n = 2; 
for i=1:n; K_scb(i) = n*Kscb(1); b_scb(i) = bscb(1)/n; M_scb(i) = Mscb(1)/n; 
end 
n2 = 2; 
for i=n+1:n+n2; K_scb(i) = n2*Kscb(2); b_scb(i) = bscb(2)/n2; M_scb(i) = 
Mscb(2)/n2; end 
 
% p_ELB 
n = 2; 
for i=1:n; K_elb(i) = n*Kelb(1); b_elb(i) = belb(1)/n; M_elb(i) = Melb(1)/n; 
end 
n2 = 2; 
for i=n+1:n+n2; K_elb(i) = n2*Kelb(2); b_elb(i) = belb(2)/n2; M_elb(i) = 
Melb(2)/n2; end 
 
% p_TEE 
n = 2; 
for i=1:n; K_tee(i) = n*Ktee(1); b_tee(i) = btee(1)/n; M_tee(i) = Mtee(1)/n; 
end 
n2 = 2; 
for i=n+1:n+n2; K_tee(i) = n2*Ktee(2); b_tee(i) = btee(2)/n2; M_tee(i) = 
Mtee(2)/n2; end 
 
%---------------------------------------------------------------------% 
% GROUPING DATA FOR FURTHER USE IN thesis_coeff 
 
p_PA  = [ K_pa ; b_pa ; M_pa ]; 
p_PB  = [ K_pb ; b_pb ; M_pb ]; 
p_CPC = [ K_cpc ; b_cpc ; M_cpc ]; 
p_PC  = [ K_pc ; b_pc ; M_pc ]; 
p_CC  = [ K_cc ; b_cc ; M_cc ]; 
p_PCY = [ K_pcy ; b_pcy ; M_pcy ]; 
p_SV  = [ K_sv ; b_sv ; M_sv ]; 
p_SVc = [ K_svc ; b_svc ; M_svc ]; 
p_SVc1 = [ K_svc1 ; b_svc1 ; M_svc1 ]; 
p_SVW = [ Ksvw ; bsvw ; Msvw ]; 
p_AAC = [ K_aac ; b_aac ; M_aac ]; 
p_ACA = [ K_aca ; b_aca ; M_aca ]; 
p_ACB = [ K_acb ; b_acb ; M_acb ]; 
p_ACBc = [K_acbc; b_acbc; M_acbc]; 
p_ACBW = [Kacbw; bacbw; Macbw]; 
 
p_SPA  = [ K_spa ; b_spa ; M_spa ]; 
p_SPB  = [ K_spb ; b_spb ; M_spb ]; 
p_SCA  = [ K_sca ; b_sca ; M_sca ]; 
p_SCB  = [ K_scb ; b_scb ; M_scb ]; 
p_ELB  = [ K_elb ; b_elb ; M_elb ]; 
p_TEE  = [ K_tee ; b_tee ; M_tee ]; 
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