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This paper explores the use of learning as a practical tool in problem
solvinp. The idea that learning should and eventually will be a vital component
of most Artificial Intelligence programs is pursued.

Current techniques in learning systems are compared. A detailed discussion
of the problems of representing, modifying, and creating heuristics is given.
Seme of the questions asked (and answered) in the paper arei (1) how does the
choice of representation affect the potential for learning?, (2) what techniques
have been used to date and how do they compare?, i.e. first-order predicate
calculus vs. production rules vs. Winston's representation, and (3) exactly how
are heuristics modified in the existing systems and what do these techniques

have in common? A discussion of the credit assignment problem as it relates

to learning under the various schemes of representation is also presented.



1.0 INTRODUCTION

This paper 1s concerned with encouraging the use of learning as a
problem solving tool in heuristic programs. We try to accomplish this:
(1) by pointing out what has been accomplished, (2) by discussing what
the major problems are, and (3) by showing how the problems can be
approached.

The utility of heuristic programs depends to a large extent on the
adequacy of the heuristics employed. We discuss three current techniques
for representing heuristics that have been employed in successful, non-
trivial program environments: (1) Waterman's production rules in playing
draw poker[21}, (2) Claybrook's first-order predicate calculus in factoring
multivariate polynomials £23, and (3) Winston's representation in scene

analysis §223.

2.0 PAST AND PRESENT ACCOMPLISHMENTS IN LEARNING

Except for a few learning programs, moSt learning programs to date,
e.g. Michie and Ross' GT {9], $lagle and Farrell's MULTTPLE[18}, etc., have
been associated with simple problem domains. Notable exceptions are Samuel's
checker program{}f}, Waterman's poker programf[21]}, Claybrook's multivariate
polynomial factorization program, and Winston's scene analysis program{27]}.
We feel that further advances in learning techniques could have been developed
more readily had learning been implemented in more complex domains., We are not
trying to reduce the importance of early research efforts, for they have provided
us with a wealth of information.

Most learning programs have used some form of generalized learning {}Q]
versus rote learning{l0}. The early learning programs {9),{17},{18]} implemented

generalized learning by optimizing weights associated with problem variables

S
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in linear evaluation functions. Samuel's program not only uses rote learning
and generalized learning, but it also uses book learning as part of a training
effort. Another type of learning that has received considerable use is
concept learning [6), {20}, [27). Towster[20] provides several methods for
programming concept-formation. Winston's program for learning structual
deseriptions from children's toys can recognize concepts and learn concepts to
be recognized.

We have not tried to make an extensive survey of learning programs for they
are well described elsewhere [4},[14},[19}. One fact that prevails throughout
any study of learning efforts 1is that few of these learning techniques have
been employed in solving practical problems for which algorithmic solutions do
not exist or are very costly. Sammet E6] discusses several important problem
areas in computer science where heuristic techniques could and should be employed.

it is interesting that Nilsson in his book{14} wanted to include a chapter
discussing problem-solving methods using machine-learning teehniques, but he
concluded that the subject was not yet well enough developed to be included in

a textbook.

3.0 MAJOR PROBLEMS WITH LEARNTNG

Since this paper encourages the use of learning in heuristic programs
not only should we describe some of the major problems associated with learning,
but also some of the reasons why people have failed to use learning.
There are several reasons why learning has not been utilized by problem
solvers:
1. WNot enough is known about learning by the human problem solver to

use it,
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2. The implementation of learning schemes, even simple ones, appears
to be a formidable task; and in some instances it is.

3. There is always the possibility that the program will not learn or
improve with experience, and thus not improve the efficiency of
operation of the program.

4. The human problem solver may want to solve his problem as quickly
as possible and is not interested in learning or its benefits.

5. There is a certain amount of overhead associated with learning,

i.e. the process of analyzing solution attempts and modifying
heuristics requires computer time,
Another purpose of this paper is to help remove some of the above problems.

The major problems associated directly with the actual use and implementation

of learning techniques include:

1. Selection of a powerful representation of heuristics (requirements of
a representation are given in Section 4.0),

2. Solution of the credit-assignment problem for modification and creation
of heuristies,

3. Developing a training sequence appropriate for starting the learning
process,

4. Determination of features of the problem enviromment on which to key
the learning process,

5. Selection of the type of learning scheme to be used.

6. TFvaluation of the learning effort (this is closely associated with the
credit-assignment problem).

Some of the problems listed above need a closer look. The selection of a

representation of heuristics and solution of the credit-assignment problem are

discussed in detail in Section 4.0, The training sequence for a learning
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program must be selected carefully for it influences the program's ability to
learn and the rate of learning. Winston {22} argues the importance of a good
training sequence and says that the sequence should be prepared by good teachers.
His framework for learning suggests a unity between learning from examples,
learning by imitation, and learning by being told. The training sequence can
include samples for each type of learnming. Winston also stresses the importance
of the near miss. A near miss is a sample in a training sequence quite like the
concept to be learned but which differs from that concept in only a few
significant points at most. The near misses convey essential points much more
directly that repetitive exposure to ordinary examples. Concept learning
schemes normally require a careful selection of samples for a training sequence.

Claybrook [273 provides several examples from his multivariate polynomial
factorization program, POLYFACT, that illustrate how the training sequence of
polynomials can affect the factorization time of subsequently factored polynomials.
Although the factorization times in POLYFACT are influenced by the training
sequence of polynomials, the selection of samples is not as critical as it can be
in other problem spaces and other learning programs. The reader should realize
that the relative importance of a good training sequence is determined not only
by the learning scheme used, but also by the representation of the heuristics
and the characteristics of the problem environment.

Human beings tend to learn to solve a particular class of problems by
keying on significant features of the problem class. The features are used to
determine the approach taken in solving the problem. Unfortunately, there is no
automatic way of extracting the significant features associated with a particular
problem. The game of chess is a problem area where the features to key on for

making a next move are extremely important. The human must almost always select

‘the features to use in the learning process. The learning program can usually

indicate which features are important for learning and 'bad" features can
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be removed from consideration. Sometimes the developers of learning programs
believe that a large number of features will give better learning results:
however, experience has shown Y17}, Ti18} that this is usually a misconception.
Proper selection of a few 'good" features will normally lead to good learning
results, For example, only four features are used for term selection in
POLYFACT and only seven or eight features are used for possibility selection.
Waterman's state subvector for draw poker has only seven elements.

Selection of the type of learning, e.g. rote learning, generalized learning,
or concept learning, is determined by characteristics of the problem environment,
Rote learning has been used by Samuel with great success, His checker program
stores records of board positions and when a move is to be made the previous
board positions are interrogated to determine the proper move to make.

An obvious disadvantage of rote learning is that large amounts of memory may

be required to store the history. This is especially true if a large number

of decisions are possible. As an example consider the number of possible board
positions in chess or checkers. Another problem with rote learning is that time
must be spent in retrieving and matching previous records with the current
situation. Samuel has a sophiscated scheme for retrieving board positions.

A concept is a classification rule. Concept learning schemes also use
features to classify objects. Concept learning schemes use past experience to
classify an instance of an object as either positive or negative. This type of
learning can also require excessive amounts of memory to store the past history.
Concept learning techniques do not always satisfy the requirements Ffor learning
in a particular problem area. For example, Claybrook E?] used concept learning
to try to determine the best possibilities (terms) to select during the creation
of a factor in a polynomial., The results of this effort clearly demonstrated
the shortcomings of concept learning inm this particular situation. The reason

for this is that '"good" and "bad" possibilities have many features in common,
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and it is difficult to classify one instance as positive and another as
negative, What was required and eventually used was a generalized learning
technique that was able to disecriminate among the possibilities and rank them
according to their apparent merit in creating a factor of a polynomial.

Most learning programs use generalized learning schemes (concept learning
is actually a form of generalized learning) since they normally make use of
previous experience without maintaining individual records of previous solution
attempts, Waterman and Claybrook use generalized learning in their programs,
but their modifications to heuristics involve much more than modifying weights
in linear evaluation functions.

Since many learning programs [9}, Y17} are heuristic search programs, the
methods for evaluating learning are associated with tree or graph measurements,
e.g, measuring the bushiness (penetrance [8}) of the search tree or the path
length from the start node to the goal node, These are gross measurements of
learning. In a learning program such as POLYFACT, the learning in each area
in the program, where learning occurs, should be evaluated individually with
respect to the sense of direction that guides improvement through learning.

Tt is the evaluation of learning that is used to determine modifications to

heuristics.

4,0 TPROBLEMS OF REPRESENTING, MODIFYING, AND CREATTNG HEURISTICS

This section addresses itself to the problems of modifying and creating
heuristics using three representations: Waterman's production rules, Claybrook's
first-order predicate calculus, and Winston's representation. First we discuss
how the choice of representation affects the potential for learning. Then for
each individual representation we describe: (1) the representation technique,

(2) how the heuristics are created and modified, and (3) the credit-assigament
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problem as it relates to learning under the representation. Finally, we
compare the three techniques with respect to what they have in common and
their power of representation.

For specific results associated with each of the three learning programs
discussed in this section, we refer the reader to each author's dissertation

in the 1list of references,

4.1 Choice of Representation

Since the representation of heuristics is probably the key to the success
of any learning program, this prompts several considerations (or reguirements)
for selecting a representation:

1. The heuristics must be capable of representing complex actions in

geveral problem areas.

2. The creation, modification, and execution of heuristics should be

relatively simple tasks.

3. An appealing property of a representation scheme is that it conserve

storage,

4. The representation should allow at least a partial solution of the

credit-assignment problem -

5. The heuristiecs should be modular, i.e. the representation should

allow the construction of heuristies from distinguishable components,

6. The representation should allow heuristics to be referenced as

individuals or as members of designated sets of heuristics.

7. The heuristics should permit dynamic manipulation during program

execution,

8. The final consideration is the flexibility of the representaticn, i.e.
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the ability to interchange the components that comprise the heuristics
in the event that heuristics are changed by the designer.
The reader may want to keep these considerations in mind while reading the rest
of this section.

Some of the requirements require a brief explanation, The first consideration
is motivated by the realization that many of the actions performed in complex
learning programs such as POLYFACT require a comprehensive analysis of the problem
situation, i.e, several criteria must be considered, often simultaneously, to
assure that all prior conditions are satisfied before performing an action. Also, the
first consideration suggests that we have a general representation that can be
used in a learning system for solving various problems.

The second consideration does not necessarily imply that the decisions
related to the actual creation and modification of heuristics be simple; however,
once these decisions are reached for particular heuristics, the procedureé should
be mechanical in nature and relatively simple to execute, The third and fifth
considerations are complementary. If the heuristics are medular, they can be
represented in an encoded form to conserve storage. This is especially important
in programs that use classification mechanisms for implementing localized learning.
By localized learning, we mean that each classification has a set of learned
heuristics for solving that particular class of problem.

Solution of the credit-assignment problem is included because of its
importance to learning mechanisms. Representation of heuristics must enable the
assigning of credit for success or failure among the many heuristics of potential
use in solving a particular problem.

Dynamic manipulation, e.g. creating and modifying heuristics during program
execution, is an absolute minimum requirement for a representation. The execution

process performed on the heuristics must allow for dynamic changes in heuristics,
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For this reason the execution procedures should execute the heuristics by using
an interpretive process (LISP 1.5 and SNOBOL IV processors are interpreters

and are therefore convenient languages for writing learning programs).

4.2 Waterman's Production-Rule Representation

Waterman's main interest is in devising machine-learning techniques that can
be applied to the problem of learning heuristics. He sees the problem of
implementing the machine-learning of heuristics as two subproblems:
1, Devise a method of representing heuristics that facilitates dynamic
manipulation by the program using them.
2. Develop techniques by which a program can create, evaluate, and
modify its own heuristics.
Waterman implemented his learning scheme, using a production rule
representation for heuristics, in a draw poker playing program, He chose draw
poker because it is a nontrivial game in which players do not have access to enough of

the existing game information to perform effective minimaxing.

4,2.1 Representation of Heuristics

Waterman says that a good representation should:
(1) permit separation of the heuristics from the main body of the program,
(2) provide identification of individual heuristics and an indication of
how they are interrelated, and
(3) be compatible with generalized schemes.
Two definitions are required for the following discussion:
Heuristic Rule. A heuristic that directly specifies an action to be taken,

Heuristic Definition. A heuristic that defines a term.
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As a program is executed, it goes through a succession of states as the
value of its program variables are changed. A state vector & is used to
indicate the current values of the program variables. When a block of code is
executed, the effect on the state vector of can be described by e =f (ef), where

o' is the resulting state vector and f represents a block of code. A heuristic
is represented as a rule of the form S—% T where S is the current state vector
and T is the vector containing the mapped components. The rule can be thought
of as a specification of how a state vector can lead to other state vectors.
An example® is
ol = (A, B, C) =% (g] (¢), g (R), 83 ()).

The function g, changes the value of A to gq (®{), B becomes g3 (), and C becomes
g3 (=), The items A, B, and C represent sets of values and not individual values.
Thus, a single state vector such as (A, B, C) represents a number of states instead
of a single state, thereby reducing the total number of heuristics required.

A rule of the type Sp~® S, where Sy is a situation defined by wvector
variables and Sé is the definition of the resulting situation. Production rules

of this form are called action rules. A heuristic definition can be represented

by a production rule of the type Z —» Z', where Z is a value of a state vector
variable and Z' is either:
1. a value of a state vector variable and an associated predicate
{called a backward form rule), or
2. a computational rule for combining variables of the state vector
(called a forward form rule).
An example of a backward form rule is D1 —>» D, D>20, meaning that D is considered
a member of the set D1 if the current value of D is greater than 20. An example
of a forward form rule is X -» K1 * A, meaning that X is defined by the

arithmetic expression K1 * A,

% The examples in this section are taken from Waterman {21}.
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The state vector has three types of variables: (1) bookkeeping variables,
which provide a record of past experiences; (2) function variables, which
represent arithmetic expressions containg state vector variables: and (3)
dynamic variables, which either directly influence the decisions of the program
or change in value as a direct result of these decisions. Only dynamic variables
are used in the descriptions which represent the left parts of action rules,
but both dynamic and function variables are used in the right parts of these rules.
The bookkeeping variables are used in the definitions of the forward form rules.

To gain insight into decision making through the use of Waterman's
production rules we consider the following example from his paper. Let the
subvector €3 be the following:

@:(A, B, C) = {(a, b, c).

A, B, and C are dynamic variables with the current values of a, b, ¢, respectively.
Consider the following simple heuristics:

1, If A is an Al, then add X to the value of B.

2., If A is an A2 and C is a Cl, then subtract Y from the value of C,

3. If B is a Bl, then add Y to the value of C.

4. A is an Al when A 2> 25,

5. A ds an A2 when A < 25,

6, B is a Bl when B > 1.

7. B is a B2 when B > 4,

8. C is a Cl when C = 5,

9. X increases as D increases.

10. Y increases as E decreases,
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The corresponding production rules are:

1.

9.

10.

Also needed are

il.

12.

13,

(A1, ¥, *¥)—m (%, X + b, *), action rule
(A2, *, CL)=>(*, *, ¢ - Y), action rule,
(%, Bl, ®¥)y-3p (*, *, Y + ¢), action rule,

Al-= A, A =25,
A2 A, A <25,
Bl-» B, B >1,
B2-%»B, B> 4,
Cl=»C, C =35,

=K1 * D,

Y—=>K2 - (K3 * E),

A=» a, a € {?et
B=»b, b € {set

C=c, c g {set

D and ¥ are bookkeeping variables,

in the left side of an action rule

backward form rule.
backward form rule,
backward form rule,
backward form rule.
backward form rule.
forward form rule.

forward form rule.

the following rules, one for each element of the subvector:

of allowable values for A}, backward form rule,
of allowable values for B}, backward form rule.
of allowable values for C}} backward form rule,
and X and Y are function variables. A star (*)

indicates that the variable in question is

irrelevant with regard to that particular situation description. A star (¥*) in

the right hand side of an action rule indicates that the value ¢f the variable in

question remains unchanged. Thus,

the action rule

(A1, *, ®)=2(*, X + b, *) means, if variable A has the

symbolic value Al, then increment value of B by X.

Decision making by the program is done in two steps:

1.

Each element of the current program subvector is matched against all

right sides of the backward form (bf) rules. When a match occurs (the

predicate is satisfied), the corresponding left side of that bf rule is

matched against all right

sides of bf rules, etc. until no more matches

can be found, The resulting set of symbols defines a symbolie subvector.
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9. The symbolic subvector derived in (1) is matched against all left sides
of the action rules, going top_to bottom, and when the first match
is found the values of the program subvector are modified as described
by the right side of the matched rule,

To illustrate decision making consider the following example:
LeF the subvector have the values a = 4, b =5, ¢ = 6, the constants
have values K1 = 1, K2 = 20, K3 = 3, and let the bookkeeping variables
have the valués D =-7 and E = 8. Then_@= {4,5,6),
Step 1 is started by comparing a = 4 with each bf rule predicate, the
predicate being satisfied only if it contains the symbol a and is true
when a is set equal to 4. Thus a = 4 is found to match rule 11 and no

others. Next A = & is compared to the right hand side of all bf rule

predicates and is found to match only rule 5. Finally A2 = 4 is
compared with all bf predicates and since it matches none of them the
search terminates leaving A2 as the final symbolic value. Elements b
and c are processgd in the same manner and the symbolic subvector that
results is ( (A2), (81, B2), (C) ). This subvector is a description of
all situations in which variable A has the symbolic value A2, the
variable B has either the symbolic value Bl or B2, and the variable

C has the symbolic value C,

Step 2 now consists in comparing the symbolic subvector ( (A2), (B1l, B2),
(C) ) with the left side of each action rule until a match is found.

In this case a mateh occurs at rule 3. The program subvector is then
set to the values specified in the right side of rule 3. Hence the new
B equals (4,5, (20 - (3 % 8)) + 6) or (4,5,2). The program makes one
external decision for each search cycle. Thys in a game-playing task

the program would execute one search cycle each time it made a ''move'.
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The subvector Waterman used for the game of draw poker is composed of the
dynamic variables of the state vector and has the form:

B = (VDHAND, POT, LASTBET, BLUFFO, POTBET, ORP, O0STYLE),
where VDHAND is the value of the program's haﬁd, POT is the amouht of money.in
the pot, LASTBET is the amount of money last bet, BLUFFO is a measure of the
probability that the opponent can be bluffed, POTBET is the ratio of the money
in the pot to the amoﬁnt.last bet, ORP is the number of cards replaced by the

opponent, and OSTYLE is a measure of conservative style by the opponent.

4,2.2 Program Creation and Modification of Heuristics

To create heuristics (either by modifying ekisting ones or hypothesizing
new ones), Waterman uses three pieces of information:

1. a good decision for the situwation,

2. the subvector variables relevant to making this decision, and

3. the reason the'decision is being made,.

This data is called the training information. Item (1) above is called the

acceptability information, item (2) is called the relevancy information, and

item (3) is called the justification information, The training informafion
igs either supplied by a trainer or obtained by tﬁe program during execution,
The training information ﬁrovides data for the.cdnstruction.of a2 new action
tule, The acceptability information supplies the right part of the action
rule, and the relevancy and justification information supplies the left part.

When the existing action rules lead t¢ a poor decision, they are corrected
by incorporating the training infdrmation into the production rules. Either an
existing action rule (target rule) is modified to catch the symbolic subvector, or
if a rule appropriate for modification does not exist, the training rule is

inserted in the action rule list immediately above the error causing rule.
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An action rule is appropriate for modification if it has the same form as the
training rule. Two action rules have the same form only if (1) their right
parts are identical, (2) their lefﬁ parts have corresponding *'s, and (3)
their left parts have symbolic values which correspond to the degree that they
are both defined by the same lo_g'i.cal operator,

An example (taken from Waterman [2]}) illustrates how an action rule can be
modified to catch the symbolie subvectér. Tﬁe training information is: (1) a
good decision to add 2 to the value of B, (2) the variables relevant to this
decision are A and C, (3) the decision is being made because the current value
of A is small and the current value. of C is large, The program subvector is
(5, 3, 13). The training rule (acz_tion rule) created from the training
information, and the associated backward form rule are:

(Al, *, C1 )= ( %, b+ 2, * ),
Al —= A, A<
Cl—->C, C»l2
The existing production. rules are:

1. (AL, %, C2)=> (%, b 42, ¥).

2. (Al, Bl, *) —s (%, ®* a + 3)

3. (A2, *, C3)~—» (%, b+ 2, %),

4, (AL, ¥, *¥) =» (¥, *, a+ 5)

5, Al —» A, A€bh.
6. A2 —3 A, A®S,
7. Bl ~3 B, B>8,
8. Cl—=>C, C>12,
9. C2 -»C, C<€5.
10. €3 ~» (¢, C>13,

Rule 3 is the only action rule which has the same form as the training rule

(Al, *, C1)~» (¥, b + 2, *). The symbolic subvector obtained through parsing is
ym
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( (AL, A2), (B), (Cl) ), which catches on rule 4, Rule 4 leads to an
unacceptable decision (the only acceptable decisions are those supplied by the
training information ). Rule 3 leads to an acceptable decision and has the
same form as the training rule; thus, it is used as the target rule., The left
hand side of the training rule, (Al, *, Cl), matches the left side of rule 3
except for C3. If C3 in rule 3 is replaced by a symboelic value representing

a set large enough to include the current value of state vector variabié c,

the symbolic subvector obtained through parsing will catch on rule 3.
Therefore C3 is replaced by Cl, changing rule,3 to (A2, *, Cl)—> (%, b+ 2, %),

Waterman gives the following training procedure outline:

1. Parse the program subvector to obtain the symbolic subvector. Then
drop this symbolic subvecror through the action rules to obtain a
decision, If the trainer indicates that the decision is acceptable,
then stop; otherwise, go to step 2.

2. Obtain the training information from the trainer and use it to construct
the training rule. If this information changes the symbolic subvector,
then go to step 3; otherwise, go to step 4.

3. Drop the new symbolic subvector_through the action rules to obtain a
decision. If the decision is thé one sought by the acceptability
information, then stop; otherwise, go to step 4,

4, locate the error-causing rule, the action rule responsible for the
unacceptable decision made in step 1 or step 3,

5, Search the action rules above the error-causing rule for a target rule,
a rule which has the same form as the training rule and is suitable for
modification to catch the symbolic subvector. If such a rule is found,
modify it to catch the symbolic subvector and 8o to step 3; otherwise

go to step 6.
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6. Search the action rules below the error-causing rule for a target
rule, If (1) such a rule is found, (2) the error-causing rule is
suitable for modification to pass the symbolic subvector, and (3)
the rules between the error-causing rule and the target rule either
pass the symbolic subvector or are suitable for modification to pass
it, then modify the target rule to catch the subvector, the error-
causing rule to pass the subvector, and the rules between these two to
pass the subvector, and go to step 3; otherwise go to step 7.

7. Place the training rule immediately above the error-causing rule in the

list of action rules and stop.

The learning in Waterman's program is in two forms: (1) learning with
explicit training, or (2) learning without explicit training (implicit training).
When the program learns without explicit training, the program itself must
develop the training information during the course of game play. The accept-
ability information for implicit trainimg can be obtained through logical
deduction., This process uses:

1. the rules of the game,

2. statements {(or axioms) about the game, and

3. general statements about techniques used in game playing.
The result is a set of logical statements from which new statements can be deduced
using deductive inference rules, The reader is referred to Waterman's paper for
an example of an actual deduction.

The justification information for implicit training can be obtained from a
decision matrix that is game-dependent and is given to the program before learning
starts. Each row of the matrix stands for a game decision, and each column stands

for a subvector variable, Each entry E;; in the matrix is an expression whose

i
value is an attribute of the subvector variable j,

The relevancy information for implicit training is obtained through the

generation and testing of hypothesis concerning the relevance of subvector
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variables, Reasonable hypotheses are solved for in the following way:

1. TLet the initial hypothesis for each rule be that all subvector
variables are relevarmt.

2. Hypothesis testing then consists in noting whether or not a
particular training rule, placed in the set of action rules by
step 7 of the training procedure, catches the symbolic subvector
when the action advocated by the rule is determined to be the
correct decision,

3. 1If the rule does not catch the subvector, the relevancy hypothesis
for that rule is changed. As many variables in the left part of the
rule are made irrelevant as is necessary to make the rule general

enough to catch the subvector.

4.2,3 Program Evaluation of Heuristics

Program manipulation of heuristics requires facing two major problems:

1. evaluation of existing heuristics in terms of their usefulness to the

program, and

2, creation of new heuristics, by both modifying old ones and hypothesizing

new ones.

To make a decision via production rules for a problem (1), a symbolic
subvector representing the game situation is compared te all left parts of the
list of action rules, going top to bottom until a match is found, The action
rule which defines the deecision, that is, one whose left part matches the
symbolic subvector, is easily located. After the decision is evaluated, the
¢redit or blame can be assigned to the action rule, and to those above it,

which defined the decision. Here blame is assigned to action rules leading to
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poor decisions, while action rules leading to good or acceptable decisions
are ignored. Assigning blame to an action rule consists in modifying the

rule enough to avoid a repetition of the mistake or poor decision just made.

4.3 Claybrook's First-Order Predicate-Calculus Representation

Complete details of this representation can be Found in Claybrook CZ),
T3. This representation is implemented in a learning program that per forms
the nmon-trivial task of determining the symbolic factorization of multivariate
polynomials with integral coefficients and an arbitrary number of variables and

terms. The author agrees with Waterman that the representation of heuristics

determines directly or indirectly how well a program can learn. The representation

in the learning program,POLYFACT, was chosen because of the expressive power of
the predicate calculus., We were primarily concerned with using learning to

improve the efficiency of operation of POLYFACT.

4.3.1 Representation of Heuristics

The notation is identical to that of first-order predicate calculus except
for a minor difference invelving domain specification for the assignment of
values. In the jmplementation of the predicate calculus notation, a heuristic
can have one of two general forms:

(1) NAME (DOMAIN{) (DOMAINZ}--»(DOMAINk) ( (ANTECEDENT, C CONSEQUENT 1)

0..-0 (ANTECEDENT, G CONSEQUENTR)) $, or
(2) NAME ( (ANTECEDENT; C CONSEQUENT{) O (ANTECEDENT 5 C CONSEQUENT5)
Q-++0 (ANTECEDENT, C CONSEQUENTn))$
In either of the above forms, the same antecedent or comsequent can occur

several times; but the same antecedent-consequent pair should occur but once.

T
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The first form has a non-null domain; whereas, the second has a null domain.
One of the functions of the non-null domain is to specify an ordered set from
which the values for the variable (indicated in the domain field)} are taken.
Some of the variables in the antecedent-consequent pairs can be free, i.e.
their values are specified elsewhere. Each bound variable must appear as an
argument in at least one antecedent or consequent, i.e, each variable specified
in a domain must appear as an argument in at least one of a predicate, a function,
or a consequent. The domain as defined in this paper corresponds to the
quantifiers in predicéte caleulus notation; however, in predicate calculus
notation the domain is not included as a part of the quantifier. The order of
domain precedence is identical to that of the quantifiers,

Each antecedent is a single predicate or a logical combination of predicates
connected by conjunction ('A' = AND) and/or disjunction ('0' = OR) operators.
Each predicate is a logical function and can be referenced with arguments that
are constants, variables, or functions., 'C' is the conditional operator, and
the consequent is always the name of a routine (or procedure) that is executed
when the corresponding antecedent is satisfied.

To illustrate the representation of heuristics in the predicate caleulus
notation, we use an example taken from the term selection heuristics in POLYFACT:

HI1.1 (E T IN IPIRSO) ((N HI(GII(T), MINDEG) C FIX123)) $,

This heuristic consists of the components:

HI.1 is the NAME of the heuristic,

(E T IN IPTRSO) is the DOMAIN of the heuristic,

N is the negation operator,

H1 is a predicate that is "TRUE' if GI1{T)

equals MINDEG,

GI1 is a function whose value is the degree
of term T,

T is a bound variable
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MINDEG is a constant function, i.e. a function
whose value is constant during the exe-
cution of the heuristic,

C is the conditional operator, and
FIX123 is a CONSEQUENT.

Internally, the predicate calculus heuristics are represented as linked
lists with each individual atom stored in a separate cell in the 1list.

The heuristics are executed by an interpreter., During execution, the
predicate calculus form is translated into reverse Polish notation, Then the
reverse Polish string is executed with references to predicates and consequences
causing the execution of the corresponding procedures.

The heuristics that contain non-null domains select elements from the sets
given in the domains. In the selection of elements from a set, a heuristic can
consider all elements in the set. In this case, the domains have the form:

(E T IN IPTRSO ),
where the E indicates that all elements (T) in the set IPTRSO are selected
during the execution of the particular heuristic. A heuristic with a non-null
domain can also consider elements from a set until an antecedent is satisfied.
The corresponding consequent is then executed and activation of this heuristic
is terminated. This type of domain is represented as:

(EA T IN IPTRSO),
where EA indicates that some (possibly all) elements in the set IPTRSCQ are
selected.

A heuristic with multiple domains is executed by selecting elements from
the innermost domains first, This execution has the same effect as nested loops

in programming languages.



Page 22

4.3.2 Program Modification and Creation

First we explain how the creation and modification process works, and then
we describe the training procedure for POLYFACT. The reader saw in Section £.2.2
that during periods of implicit training in Waterman's program, his program
employs a decision matrix (created by a human prior to implicit learning).

The learning scheme in POLYFACT uses a set of tables to specify relationships
between predicates, consequents, and domains., The tables are pre-compiled by
hand and read from input cards and stored in the tables,

The consequent-predicate table gives the correspondence between each consequent

and the predicates that can be used to form an antecedent-consequent pair.

The consequent-domain type table specifies the correspondence between each

consequent and the sets from which values for a variable are selected, Each
bound variable must be an argument in a predicate (within an antecedent) or

consequent. The domain type-variable-set table defines the variable-set pair

associated with a domain type. The domain is determined by the variable and the
set from which the values of the variable are taken. The purpose of this table
is to prevent heuristics with a given type of domain from using predicates and
consequents associated with another type of domain. In addition this table
could prevent the creation of heuristics which have a certain mixture of domains,

The reader should note that a domain 1s a set of values (represented in
POLYFACT as a linked list of values), a predicate is a logical function
(represented in POLYFACT as a logical procedure), and a consequent is an action
to be taken (represented in POLYFACT as a procedure).

The heuristics in POLYFACT can be maintained either in first-order predicate
caleculus notation or in a combination of first-order predicate calculus notation

and an encoding of the predicate caleulus notation. As we deseribe thé learning
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associated with term and possibility selection we will deseribe how the
predicate calculus is encoded,

The learning (through the modification of heuristics) associated with
term selection is as follows. After a successful factorization attempt is
completed, the number of possibilities (factors of a term) in each term of the
polynomial is determined., The features of the term(s) with minimum number of
possibilities have their frequency count(s) increased. Fach feature has a
predicate associated with it. The predicate is true if the term has the particular
feature and false if it does not have the feature (features used are degree of
term, number of variables in term, etc.}. The frequency counts associated with
each feature are examined to determine whether or not the set of heuristics for
term selection need to be modified. The heuristics are ordered to impart the
importance of features for "good" term selection. If two or more features
have identical frequency counts, then they are of equal importance in selecting
a term, Thus, in predicate calculus notation this would result in an antecedent
having two predicates (corresponding to the two features) connected by'OR',

Since POLYFACT uses a classification technique to implement localized
learning for term selection,the term selection heuristics are not maintained in
predicate calculus notation (because of the amount of storage space required),
Instead, the term selection heuristic are encoded into a small ordered list of
words, Each feature is represented by a particular bit in the word. The presence
of a '1' in that bit indicates the presence of the corresponding predicate in
the heuristic, Tn this way a single word describes the entire heuristic.

Not only does this encoding save considerable Storage space, but it is much
easier to modify heuristics using a numeric representation than the symbolie
representation of predicate calculus. Prior to execution the selected heuristics

are expanded into predicate calculus notation for interpretation,
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The possibilities (terms) that can be selected as terms in a factor of a
polynomial are ranked according to their probable merit, During a factorization
attempt, the highest ranked possibilities are selected. After a polynomial has
been factored, each term in the factors is examined to determine its set of
characteristic features. A binary vector is created with nonzero entries
indicating the features present, Then a heuristic is created (unless one already
exists) using as predicates those that correspond to the features present.

To facilitate the construction of this set of heuristics, a matrix is
maintained providing a history of the features of terms that have appeared
in factors of previous polynomials. After the vector of features has been
created for a term, it is compared with each row in the matrix to determine if
the vector is already present. If so, the frequency count for the matching row
is incremented (the frequency count is kept as an augmented column in the matrix).
If the vector is not in the matrix, it is added and the corresponding heuristic
is created,

When these heuristics are used to rank terms, the satisfied antecedent's
(if there is a satisfied antecedent) frequency count becomes the rank of the
term. These heuristics are maintained in predicate calculus notation and also in
the encoded matrix form. The matrix form is convenient for determining the
need for modifications. All classes of polynomials use the same possibility
selection heuristics. Modifications range from adding a predicate to an
existing antecedent to adding an entire antecedent-consequent pair.

Heuristics can be created and modified during the training period or later
when no explicit information is given POLYFACT, During the training period,
polynomials are input to POLYFACT along with information giving the number of
terms in each of the two factors. In this training period the polynomials are
classified and heuristics are created for term selection and possibility selection.

Polynomials in the training sequence do influence the factorization times of
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subsequently factored polynomials, but similiar locking polynomials have so
varied characteristics that it is difficult to select a good training sequence.
However, after the training period is over, if the polynomials have many
characteristics in commom then the program adjusts the heuristics to reflect
this. During the non-training period no helpful information is given to

POLYFACT. Also learning can be turned off completely at any time,

4.3.3 Program Evaluation of Heuristics

Assigning credit or blame to a heuristic in POLYFACT is a much simpler
task than in Waterman's program, and the capability to reference heuristics
individually by name provides the ability to do this.

Credit ié given a heuristic by increasing the frequency count associated
with the heuristic, Blame is not so easy to interpret. Blame can be interpreted
when the term selection heuristics do not select the "best'" term to initiate
the factorization process, and when the possibility selection heuristics do not
rank the possibilities so that only the highest ranked ones appear in the factors
of a successfully factored polynomial.

Evaluation of heuristics can result in re-ordering heuristics, adding
predicates to antecedents, etc. Term selection heuristics can be modified on
either successful or unsuccessful factorization attempts, but possibility

selection heuristics can only be altered after successful attempts.

4.4 Winston's Representation

Before we discuss Winston's learning system (or more properly his language
and notation for describing scenes), we describe, in general terms, what his

system does. Winston's program analyzes scenes consisting of the simple objects
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found in a child's toy box. The description of a scene is in terms of the
objects that make up the scene,

Generation of a scene description begins with a drawing of the three-
dimensional scene. The drawing is communicated to the machine using a
program together with a special pen whose position on a tablet can be read by
the machine directly, Then a program classifies and labels the vertexes.

The program then creates names for all of the regions in the scene.

Descriptions of scenes are stored so that they can be easily retrieved,
Each object in a scene is naturally thought of in terms of relationships to other
objects and to descriptive concepts like small, Square, etc, Thus, Winston uses
networks to store the scene description. The network resides in the data base
in the form of list structures. For example, in Fig. 2 the nodes represent
objects and the pointers represent relations between objects,

The descriptions permit one to compare and contrast scenes through programs
that compare and contrast descriptions by retrieving the descriptions from the
network, The descriptions should be similar or dissimilar to the same degree
that the scenes they represent seem similar to dissimilar to human intuition.
After two scenes are described and corresponding parts related by a matching
program, differences in the deseriptions must be found, categorized, and them-
selves described, ILater sections describe how the matching of scenes is used ro
modify the models of scenes.

Identification of scenes iscarried out as follows: compare the description

of some scene to be identified with a repertoire of models or stored concepts,

There is a method of evaluating the comparisons between the unknown and the models
8o that some mateh can be defined, The identification process in Winston's
program is a major problem area. It is comparable to determining whether or not

two graphs are isomorphic.
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The next two sections provide more details for the construction of

models (or concepts) and the language used to describe the models,

4.4.1 Representation of Models

It is difficult to talk about Winston's learning system with respect to
his representation of heuristies, Qe Stores learned information in a network
(model) described by a language expressing relations between objects in a scene,
The model represents (or is) the concept. During the building of a model of a
scene such as that in Fig. 3, Winston's program is creating a concept to
classify a scene.

There is gz slight difference between a description of a particular scene
and a model of a concept. A model is like an ordinary description in that it
carries information about various parts of a configuration, But a model also
exhibits and indicates those relations and properties that must and must not be
in evidence in any example of the concept involved,

In order to develop the representation of models, we use the pedestal
training sequence in Fig. 1. Then we describe a pedestal description and a
model in Fig, 2 and Fig. 3, respectively (these examples are taken from
Winston{?@}). The first etep 1s to show the machine a sample of the concept ta
be learned. The rest of the samples are near misses (a near miss is a sample in
4 training sequence like the concept to be learmed hut differs from that concept
in only a few significant points). The near misses simply refine the description
of the pedestal to the point where it ig a model of the pedestal,

The second sample in Fig, 1 is a near miss due to the absence of the
supported-by relation (a description of how the relations in a scene are
determined is given in the next section). The other samples strength the other
relations in the description and finally turn the pedestal description in Fig. 2

into the model in Fig. 3. The training sequence in Fig. 1 is revisited in the
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next section on creation and modification of models,
This section was intended to give a brief view of the representation of a
model. We mentioned earlier that the model is represented internally as a

network using list structures,

4.4,2 Creation and Modification of Models

We have already discussed the difference between a scene description and
a model. In this section we deseribe in detail how a model is created and
modified during a training sequence. We use the pedestal training sequence in
Fig., 1. Before we become specific on the development of the model in Fig, 3,
perhaps we should consider a more general description of model development.

The model building bprogram starts with a description of some example of the
concept fo be learned. This description is the first model of the concept.
Fig. 4 illustrates the development of a model sequence where there is only one
difference between the current model and the description of a new sample.
Each new sample leads to a new model. Winston's program compares the description
of the sample to the current model to determine any difference(s). We did

First Model

Sample 1

Second Model
Sample 2

Third Model
Sample 3

Fourth Model
Fig. 4 Model Development with Only One Differencea
not point this out in Section 4.4, but during the development of the description
of a scene, each scene is analyzed to determine the relations that objects in the
scene have., A separate program existe for detecting each relation, i.e. a heuristic

program exists specifically for detecting the existence of the SUPPORTED-BY

relation, the IN-FRONT-OF relation, ete.
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Several differences may occur between the current model and a new sample,
Then several branches may occur and we have a tree of nodes as given in Fig. 5.
The alternative branches come about by the program selecting one branch at each

First Model

Second Models
Third Models
Fourth Models
Fig. 5 Model Development with Several Differences,
point for further development. The path leading from the top of the tree down to
the current model is called the main lire. The main line changes course when a
particular sequence of branch selections leads to untenable situations.

The program has to deal with alternatives to the main line of model
development, Main line assumptions may lead to contradictions which in turn cause
the model building program to retreat up the tree and attempt model development
along other branches.

If the differences have multiple interpretations or more than two differences
occur, the number of possibilities can explode. The machine must decide which
interpretation of which differences are most likely to cause the near miss.

The machine first forms two lists: a primary list and a secondary list. Each
interpretation eventually ends up in one list or the other. Some interpretations
can never make the primary list because they are unable to explain why a given
sample is a near miss., All of these interpretations go immediately to the
secondary list,

The next way to sort differences is by level. This assumes only that the
differences nearer the origin of the comparision deseription are the more
important. The program determines the depth of the remaining nodes which are
nearest the origin of the comparison description. All those candidates found at

greater depth are placed on the gecondary list,
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The primary difference list allows the program to form a theory of why
the near miss misses and what to do. This theory (or hypothesis) specifies
one difference as the single cause of the miss and specifies which interpretation
of that difference is assumed. The differences at the same level are ranked
according to type. Then the one with the highest rank is chosen as the cause
of the near miss. Winston (29 provides a tahble specifying,a priori, differences
and their possible interpretations,

Now we return to our discussion of the pedestal training sequence and model
in Fig. 1 and Fig, 3. Reviewing very briefly, the model building program begins
with a description of the concept to be learned (in Fig. 1). The second sample
in Fig., 1 is a near miss because the supported~by relation is missing. Thus, the
machine can only conclude that the supported-by relation 1is necessary and a new
model is developed with a must-be-supported-by relation., We see there is only a
single difference between the second sample and the current model. Samples three
through five strengthen the fact that the support is standing and the supported
object is a lying board. In particular, sample four strengths the relation that
the supported object is a board and sample five strengthens the fact that the
beard must be lying. 1In samples four and five there is only a single difference,

The strengthening of the relations in Fig. 2 by the training sequence in
Fig. 1 results in the pedestal model in Fig. 3.

The reader should be able to detect a note of importance to the development
of a training sequence for model building, Winston gtresses the importance of
a good teacher both in human learning and machine learning. He says that in the

past history of machine learning the use of a teacher was considered cheating,

and machines were expected to self organize themselves, Winston's training
sequence sample selection is probably more critical than the training sequence
selection in Waterman's program, and it certainly is more eritical than in

Claybrook's POLYFACT.
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The subsection on program evaluation of heuristics for Winston's system
is omitted since this material is duscussed above in the development of models.,
This omission brings up an interesting point - some learning systems can be

subdivided into very clear cut subdivisions, while others cannot,

4.5 Common Characteristics of the Three Techniques for
Representing Heuristics

One characteristic common to all three techniques is that a powerful
language isused for each representation. This is an especially important point
because the early learning programs lacked powerful languages for heuristic
representation, and it is the author's contention that this is the reason for
the lack of significant advances in learning during the 1960's, Another point,
historical in nature, is that all three techniques were developed in the early
1970's (i.e. all three dissertations were completed during this period),

Another common characteristic is that all three techniques were emp loved
in complex problem Spaces versus simple game problem spaces,

Each representation language is separated from the program code, i.e. the

heuristics in each program are separated from the program code, thus allowing

them to be manipulated dynamically. Also the representations are modular in
nature allowing the heuristics to be easily created and manipulated, Although
the approach in each case differs, each technique uses a form of generalized
learning, Credit assignment occurs in each technique and is discussed in the
next section,

All three techniques for representing heuristics have most or all of the
requirements of heuristics listed in Section 4.1, The reader may want to scan
this list again and consider each representation as he does s0.

Another thing common to ail three techniques (and also common to all other

previously implemented learning systems) is that a change in problem environment
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during learning) and in some cases providing the learning System, a priori,

with rules or other information about the problem area. 1In Waterman's poker
program, rules of the game are supplied and also a precompiled decision matrix is
supplied, Claybrook supplies tables for controlling the construction of
heuristics, and Winston provides tables listing one or more interpretations

for each difference in scene descriptions. At the present time, it ig nearly,

if not completely, impossible to develop a learning system that can operate on
various problem areas without some information being supplied to the system by
the user. 1In Section 5.0 we discuss how to organize a learning system so as to
reduce the effort in moving from one problem domain to another,

The last comparison of the three representation techniques is with respect
to their power of representation, The predicate calculus and production rule
representation languages appear to be the more powerful languages for
representing complex actions. The network model approach is a natural approach
to representation but it requires efficient retrieval and matching procedures to
be practical, Winston acknowledges these two problems in his dissertation and has
no "good" solution to them, Barrow {1} has made progress in structure matching,

The production rule system of Waterman appears to be the most complete
system for machine learning of heuristics, Claybrook's system needs more
development in the area of automatic generation of heuristics, Waterman's
system also has the advantage that it is probably better documented in the

literature than the other two systems,

4.6 Credit Assignment

The author feels that credit assignment in Waterman's representation is the

most sophiscated and advanced; however, the reader should remember that this was




Page 35

one of the main thrusts of his research, while Claybrook and Winston
were more interested in studying a particular problem area,

It is not easy to discuss credit assignment with respect to Winston's
language so we will begin by discussing credit assignment as it relates to
learning under Claybroock's representation, followed by Waterman's representation,
and finally Winston's representation,

The program POLYFACT has an anal?sis procedure that analyzes each

the learning, One thing that evefy learning Program must have to handle the

credit assignment problem is some senge of direction for directing learning,

Either the user provides this seﬁse of direction, as in POLYFACT, or the program
can possibly learn it. 1In POLYFACT assigning_credit to a feature that minimizes
the search space for a factor of the polynomial actually guides and produces the
learning. Credit is also given to "good" heuristiecs by ordering them according
to their importance (importance with respect to the gense of direction).
Waterman's technique for generating heuristics places more emphasis on
credit assignment than the other representation techniques, His work deals more
directly with machine learning of heuriétics and determining which-heuristic is
responsible for a '"had" rlay in poker., We hasten to point out here another
common characteristic not discussed in the pfevious section -- the heuristics
in each of these three learning systems are placed into some order by the
learning mechanism; thus, Providing another reason for having heuristics that
can be referenced individually.  Credit assignment in Waterman's program can
cause a production rule to be modified or cause Inclusion of a new rule into the
set of ordered heuristics, Section 4,2.3 provides a discussion of how his program

assigns credit to heuristics,
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Credit assignment in Winston's learning system occurs during model
building. Relations can be reinforced by attaching must to a relation,
The near misses in the training sequence are used to indicate those relations
and properties that must and must not be in any example of the concept. Thus
credit is assigned by reinforcing those relations thatr classify the examples

either as positive or negative instances of the concept,

5.0 APPROACHING THE PROBLEMS TN LEARNING SYSTEMS

Sinece the major thrust of this paper is to encourage learning as a problem
solving tool, we need to describe how some of the problems mentioned above can
be approached. What the author proboses is the development of a learning system
composed of components, in program form, that can be reused over and over in
different problem spaces with 1itt1e or no changes to the components. Some of
the problems such as supplying particular information, in the form of rules, ete,,
for each problem domain still remain since current technology has not been
developed to the point that a program can extract this information without help.
We are not going to repeat our discussion on the importance of heuristic
Tepresentation because we feel this has heen adequately covered in Section 4.0.
That discussion should provide the reader with enough information to select z
representation of heuristics, Seetion 3.0 introduces the reader to problems
in learning and how to handle some of them,

Most of the components of the learning system outlined below are in all
three learning programs discussed in this paper. We believe a reusable learning
system should be composed of the following components or have the following
characteristics:

L. A classification mechanism capable of classifying objects into

classes so that heuristics appropriate to each class can be applied,
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2. Localized learning associated with each class of objects in the
classification mechanism so thatr global learning is not used.

3. A method for representing powerful heuristics that can be created,
modified, and executed dynamically.

4, A technique for encoding heuristics to conserve storage,

5. A simple procedure for referencing an individual heuristic (or
a set of heuristics) and executing'it (or them).

6. At least one type of learning mechanism, e.g, generalized learning
and/or concept learning (preferably both types),

7. A procedure for allowing the learning mechanism(s) to direct the
creation and modification of heuristies,

8. A procedure(s) capable of analyzing the results of a problem solution
attempt to determine if any heuristics should be modified,

Of the components listed above probably only (8) would need to be modified -

from one application to the next,

system. Three representations for heuristics were discussed in detail. A brief
comparison of these techniques show that they have most of the important
requirements of heuristics in common. Of considerable interest is the
departure from the simple linear evaluation_function approach in the early 1960's
to the more powerful languages approach in the early 1970's,

Section 5,0 provides an outline of a learning system of reusable components,
Learning programs, in general, are large and time consuming to develop, Thus,

a possible approach to using learning is to reuse components without modifying
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them when moving to different application areas., Of course some programming
effort, dependent on the application, is seill required, but the main

components of the learning System remain unchanged.
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