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Abstract

Evacuation planning is an important disaster management tool. A large-scale evacuation

of a region by automobile is a difficult task, especially as demand is often greater than

supply. This is made more difficult as the imbalance of supply and demand actually reduces

supply due to congestion. Currently, most of the emphasis in evacuation planning is on

supply management. The purpose of this dissertation is to introduce and study sophisticated

demand management tools, specifically, staging and routing of evacuees. These tools can

be used to produce evacuation strategies that reduce or eliminate congestion. A strategic

planning model is introduced that accounts for evacuation dynamics and the non-linearities

in travel times associated with congestion, yet is tractable and can be applied to large-scale

networks. Objective functions of potential interest in evacuation planning are introduced

and studied in the context of this model. Insights into the use of staging and routing in

evacuation management are delineated and solution techniques are developed. Two different

strategic approaches are studied in the context of this model. The first strategic approach

is to control the evacuation at a disaggregate level, where customized staging and routing

plans are produced for each individual or family unit. The second strategic approach is to

control the evacuation at a more aggregate level, where evacuation plans are developed for a

larger group of evacuees, based on pre-defined geographic areas. In both approaches, shelter

requirements and preferences can also be considered. Computational experience using these

two strategic approaches, and their respective solution techniques, is provided using a real

network pertaining to Virginia Beach, Virginia, in order to demonstrate the efficacy of the

proposed methodologies.
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Chapter 1

Introduction

1.1 Motivation and Background

Evacuation is often the only viable option when disasters, such as hurricanes, floods, fires, or

nuclear incidents, occur. This is especially true if the disaster cannot easily be averted. Some

of these evacuations are large-scale events, affecting potentially millions of people (especially

evacuations in response to hurricanes, which can affect large geographic regions including

densely populated coastal areas, or when large metropolitan areas are involved). In the

United States, a majority of large-scale evacuations are accomplished by automobile, which

is often the only transportation option available to a majority of evacuees. Unfortunately,

when evacuating a metropolitan or densely populated coastal area by automobile, the number

of evacuees can easily overwhelm the available roadways. The imbalance between evacuation

supply (roadway capacity) and demand (the population trying to evacuate) leads to traffic

congestion and gridlock, which in turn aggravates the imbalance by effectively decreasing

supply. Besides being quite inconvenient and increasing the time required to complete an

evacuation, gridlock can potentially be very dangerous; it can discourage people from evac-

uating threatened areas and leave evacuees extremely vulnerable if they are trapped on

the roadway when the disaster strikes. This problem is only likely to increase as popu-

lations grow while roadway capacities remain fairly static. Currently, most metropolitan

areas experience congestion on a daily basis due to imbalances between supply and com-

muter demand, let alone the higher demands that evacuations can generate. To evacuate

metropolitan and densely populated coastal areas in a timely manner, the roadways must be
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used efficiently, which implies avoiding congestion, i.e., somehow balancing supply and de-

mand. This requires proper strategies for evacuation management. We categorize evacuation

management strategies into two distinct classes; 1) supply management strategies, which try

to manage/modify the roadway infrastructure to make it more efficient for evacuation, and;

2) demand management strategies, which try to organize/manage the evacuee population

to improve the evacuation process. In practice, supply management tools are much more

prevalent; demand management tools are far less understood. In this dissertation, we study

two demand management tools, namely “staging,” which refers to determining when defined

groups should start evacuating, and “routing,” which refers to determining the specific route

each group should use to evacuate.

To provide context, in this dissertation we study hurricane evacuations. Despite this,

the work can be applied to any extensive regional evacuation, and to a lesser extent, to

the evacuation of large buildings or facilities as well. We note that special considerations

might be appropriate for a specific type of disaster, based on characteristics such as advanced

warning, risk, and extent that the population to be evacuated has to treated or cared for

after/during the evacuation. Important characteristics of hurricane evacuations are their

large-scale, the ability to obtain advanced warning, and a fairly defined region where they

are likely to strike. Currently, hurricane evacuations are also occurring with an increased

frequency. The well-defined prone regions (the Atlantic and Gulf coasts) and increased

frequency of hurricanes insures that planning for hurricane evacuations is mandatory and of

current interest to policy makers. Next we offer some examples of hurricanes, their impacts,

and the success of current evacuation planning strategies.

In 1900, before the technology to predict hurricanes was available, and hence before

evacuation was a viable option, a hurricane killed at least 8,000 people in Galveston, Texas,

while leveling 12 city blocks, nearly three-quarter of the city at that time. In 1938 a hurricane

struck Long Island, destroying more than 8,000 homes and 6,000 boats, while causing 60

deaths and extensive flooding in the New England area. In 1957, a hurricane hit the low-

lying areas of coastal Louisiana causing 390 deaths. It was thought that evacuees still had

one day left to evacuate the area due to forecasting errors. In 1999 Hurricane Floyd caused

hurricane warnings from South Florida to Massachusetts. An estimated two million people

were evacuated. In 2004 Hurricane Ivan threatened New Orleans (among many other places).

The following is from the New Orleans City Business newspaper, September 27, 2004: “State
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officials claim the evacuation process worked during Hurricane Ivan but they admit it needs

major improvements. Governor Kathleen Babineaux Blanco ordered a review of state plans

for emergency readiness in the wake of massive traffic problems during the evacuation. In

many reported instances, it took more than 10 hours to make the 90-minute trip from New

Orleans to Baton Rouge [a distance of about 85 miles].” Contra-flow, which increases the

supply out of the endangered area by reversing the flow on selected roadway segments, was

the major component of the evacuation plan for New Orleans. In 2005, some two million plus

people were evacuated from the Galveston and Houston areas due to Hurricane Rita. Despite

contra-flow measures, this evacuation caused massive gridlock, with traffic jams 100 miles

long, which in turn caused fuel shortages leaving many evacuees without fuel on the highway,

all in hot, humid weather. Around 60 fatalities were connected with this evacuation.

Although current strategies are effective, as we can see from the above descriptions of

recent evacuations, more needs to be done to improve the evacuation process. Current

strategies mainly rely on supply management, the most important supply management tool

being contra-flow, i.e., the reversal of flow on selected roadway segments to increase road-

way capacity out of the endangered area. While contra-flow is effective, it does present

challenges, and has limitations. Contra-flow can require extensive modifications of traffic

flow, often affecting roadways in multiple jurisdictions, thus it can have a large impact on

commerce and traffic in areas not directly impacted by the hurricane. Contra-flow lanes can

rarely be used to their full capacity due to loading and unloading issues. Lanes that can be

converted by contra-flow are also sometimes limited based on the need to allow emergency

equipment/personnel and buses to enter the evacuation area to assist in disaster management

and to evacuate that portion of the population without access to vehicles or ability to drive.

Other supply management tools, often used in conjunction with contra-flow, are modifying

traffic flows at select intersections and removal of tolling apparatus. Currently, evacuation

demand management tools are quite rudimentary; they mainly consist of issuing evacuation

orders (with a level of severity) to affected areas, while trying to limit unnecessary evacu-

ation from unaffected areas, the designation of evacuation routes, and the identification of

evacuation shelters. There is an interest in more advanced demand management strategies,

such as staging, which refers to temporally spreading demand by determining when different

evacuee groups should start their evacuation, as opposed to a single, blanket order for the

whole, at-risk, population. In fact, the evacuation plan for the coastal areas of Virginia
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and the New Orleans area incorporate some simple staging strategies, which are based on

risk considerations (low-lying and coastal areas first, more inland areas last). These staging

schemes are not necessarily scientifically determined, and they might not have a large impact

on congestion. The underlying philosophy seems to be that if the disaster strikes before the

evacuation is complete, at least the evacuees from higher risk areas have been evacuated.

The manner in which staging should be implemented is not well understood. Implemented

correctly, we believe a staging strategy for a hurricane evacuation should not need to be

based on risk, as it is desirable to complete the evacuation for all at-risk populations before

any risk is incurred. Instead the evacuation should be based on an optimal usage of the road-

ways; the goal is to manage the evacuation demand so as not to overwhelm the roadways,

thus avoiding congestion and its unwanted reduction in effective supply, thus improving the

evacuation process.

One of the main goals of this research is to produce a body of academic work, using an-

alytical models, that allows for a better understanding of evacuation demand management

strategies, specifically those strategies based on staging and routing. In order to accomplish

this goal, this dissertation presents a novel modeling framework that combines two areas of

research, dynamic traffic assignment (DTA) and evacuation planning. This unique frame-

work has the following features: 1) traffic congestion on a segment of roadway is modeled

using a well-founded traffic flow model, which implicitly takes into account the non-linearities

in travel time caused by congestion; 2) the network effects of congestion are modeled, i.e.,

how congestion on one segment of roadway impacts other road segments; 3) the dynamics

of how an evacuation unfolds through time are modeled; 4) evacuation shelters both with

and without capacity limitations are modeled (a mix of shelter types is common in practice;

shelters without limits on capacity often refer to regions outside the affected area, and per-

haps not an actual physical shelter; and, 5) evacuee shelter preferences and requirements are

considered.

Within the context of this model, we accomplish the following: 1) different objective func-

tions, appropriate for the modeling of evacuations, are studied; 2) the benefits of evacuation

strategies based on staging and routing are studied and insights developed; 3) the impact

of shelter capacity limits are examined; 4) the benefits of different levels of planning detail

are examined; and finally, 5) this methodology is tested on a large-scale, realistic network,

based on Virginia Beach, Virginia, an area that is potentially at risk for a hurricane strike,
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which actively plans for hurricane evacuations.

Evacuation management is a very complex and rich problem. There are many aspects

that are beyond the scope of this dissertation, especially those involving stochasticity. Hu-

man behavior and compliance issues are very important aspects of evacuation management,

especially when we are considering incorporating demand management strategies. Human

behavior also induces a high level of stochasticity usually found in this problem. We believe

this is partially due to the lack of demand management; evacuees are usually given fairly

open-ended instructions, e.g., evacuate the area as soon as possible. If the area is inhabited

by two million people, this leads to many possible scenarios. In this research, we model only

limited evacuee behavior, and assume a somewhat idealized response to the evacuation plan.

While for the most part, evacuees do behave well during an evacuation, further study will

be needed to determine behavior parameters given the more complex plans and higher level

of organization that demand management requires. These parameters, in turn, will have

to be incorporated into planning models. We also do not study how best to package and

disseminate evacuation plans or enforce them.

This dissertation is organized as follows. In the remainder of this chapter we review

the relevant literature. In Chapter 2 we define the model notation, present the general

constraint set (which later models will utilize) and various objective functions useful for

evacuation planning. Then we discuss the modeling of traffic flow and congestion in more

detail. In Chapter 3 we study planning at the most disaggregate level, including the impact

of the various objective functions considered on solution time and other properties of the

evacuation strategy, and include some managerial insights gleaned from this research, along

with solution strategies. In Chapter 4 we study more aggregate evacuation strategies, and

discuss solution approaches to this difficult combinatorial problem. In Chapter 5 we present

a case study using the city of Virginia Beach, Virginia. Finally, Chapter 6 concludes the

dissertation and discusses future research into this interesting and complex problem.

1.2 Literature Review

In this section we examine the evacuation literature in detail and the dynamic traffic assign-

ment (DTA) literature briefly. We begin with papers that offer a general understanding of

the regional evacuation problem. We follow this with a brief review of papers that discuss
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some behavioral aspects of evacuation. Next, we describe related models in the literature

beginning with simulation models and followed by analytical models of regional evacuations.

Next, we review the literature of a closely related topic, namely the evacuation of buildings

and facilities. We concentrate on papers that use network based models to study build-

ing and facility evacuation, as this line of research has many similarities with our modeling

paradigm. To complete the evacuation literature, we discuss existing work on staging in evac-

uation, which consists of only two simulation papers. Next, we briefly review the literature

on dynamic traffic assignment problems.

The following papers contribute to an understanding of regional evacuations in general.

For example, in an article on evacuation issues, Wolshon and Meehan (2003) discuss demand

management, but in the context of limiting evacuees from areas where evacuation is not

required, thus easing the burden on the transportation system. Urbina and Wolshon (2003)

discuss current evacuation management policies, which are mainly concerned with supply

management. Petruccelli (2003) discusses evacuation after a seismic incident. The article

mentions coordinated (i.e., staged) evacuations to ease demand on the system, but just as an

aside. Wolshon, Catarella-Michel, and Lambert (2006) along with Wolshon (2006) discuss

the evacuation of Louisiana due to Hurricane Katrina, while Litman (2006) investigates

evacuation problems caused by both Hurricanes Katrina and Rita. In these papers, any

discussion of staging is minor, or non-existent. Most of the focus is on supply management.

A considerable amount of the literature describes modeling aspects of evacuee behavior,

most of which does not directly impact this dissertation. Murray-Tuite and Mahmassani

(2003) studied trip-chaining behavior during an evacuation. In a hurricane preparedness

study for the city of Virginia Beach, Hobeika, Radwan, and Jamei (1985) use a sigmoidal or S-

shaped loading curve to describe aggregate evacuee behavior in respect to evacuee departure

time decisions. Several other studies used similar curves, see for instance Lewis, 1985. The

US Army Corps of Engineers (http://chps.sam.usace.army.mil/USHESdata/heshome.htm)

performs hurricane evacuation assessment studies for various hurricanes (Opal and Hugo,

for instance). Most loading curves constructed in their studies are roughly ‘S’-shaped. In

Fu and Wilmot (2003) a sequential logit model is used to model evacuation demand. While

this logit model produces a more complex loading curve, overall it has a rough ‘S’ shape.

The following is a brief review of papers that use simulation for analysis, or describe sim-

ulation systems for evacuation management. Sheffi, Mahmassani, and Powell (1982) discuss
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the NETVAC simulation model, which focuses on determining the network clearance time

for an evacuation. Evacuees choose routes based on a good knowledge of the network under

normal circumstances. This routing can then be modified en route based on the current

traffic conditions. Hobeika, Kim, and Beckwith (1994) discuss the TEDSS system, a deci-

sion support tool for evacuation planning. Hobeika and Kim (1998) discuss the simulation

module of TEDSS, called MASSVAC. An evacuation is simulated using MASSVAC to com-

pare two traffic routing strategies; specifically a user equilibrium traffic assignment and an

assignment using Dial’s algorithm. Their results suggest that the user equilibrium assign-

ment produces a faster evacuation. Tufekci (1995) presents a conceptual framework for an

evacuation decision support system. Pidd, deSilva, and Eglese (1996) review an evacuation

planning tool, CEMPS, which integrates a microscopic simulator with a GIS.

The number of analytical papers on regional evacuations is quite small. Sherali, Carter,

and Hobeika (1991) examine the combined shelter location and traffic routing problem using

a static network model. This type of static representation does not model the dynamics of an

evacuation, which is especially important when capacitated shelters are considered, or when

the network impact of congestion is significant. Consequently, this analysis was combined

with a specialized evacuation simulation to address some of these issues. Church and Cova

(2000) present a model for assessing evacuation risk by finding small neighborhoods (i.e., a

cluster of nodes) having a high population compared to the exit capacity. Cova and Johnson

(2003) present a static network model for determining the shortest paths for all evacuees,

while eliminating cross traffic at intersections (a potentially large cause of delay, especially

in an urban area) and by constraining the number of traffic merges. Each arc is given a

travel time that is unaffected by congestion.

Related to our topic is the modeling of facility and building evacuation using a network

approach (for a more complete review see Hamacher and Tjandra, 2001). Chalmet, Francis,

and Saunders (1982) model the evacuation of a building using a dynamic transshipment

model where each arc has a constant capacity and a travel time. The travel time across

the arc is assumed to be independent of the flow on the arc. Jarvis and Ratliff (1982) show

that for the dynamic transshipment problem, the flow that maximizes the output for each

time interval also minimizes the number of time intervals needed to transship all material

(in other words, complete the evacuation), and also minimizes the average time for all flow

to arrive at the sink. The arc transit times remain constant. Hamacher and Tufekci (1987)
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discuss this class of evacuation models along with multiple cost types for each arc and

lexicographic minimum cost flows. This allows the consideration of multiple hierarchical

objectives. Choi, Hamacher, and Tufekci (1988) investigate evacuations using a dynamic,

time expanded, network flow model with side constraints that limit the capacity of an arc

(the number of evacuees the arc can tranship in one time interval), based on the number

of evacuees at the arc’s entrance node. This models the effect of crowding (i.e., congestion)

on flow. While the authors cite research that shows that the flow/density relationship is

unimodal for pedestrians, they have modeled it as an upward sloping linear function, which

is unrealistic as it does not model the negative effects of congestion. The authors cite a

technical report where a piece-wise linear approximation is used to model the flow/density

relationship (much as we shall do), but only one room is examined, and the goal is to

determine its maximum capacity, given a desired evacuation time. Hoppe and Tardos (2000)

examine the transshipment problem on a dynamic network with multiple sources and sinks,

where each arc has a capacity and a travel time. The objective is to determine the quickest

transshipment scheme. They develop polynomial-time algorithms for solving this problem.

Smith (1991) models the evacuation of a facility using a state-dependent network queuing

model.

Next, we discuss two papers that explore staging in evacuation. Chen and Zhan (2004)

is one of the first studies of staging in evacuation. Using an agent-based simulation, sev-

eral staged evacuation strategies are compared to a non-staged evacuation on three different

network topographies. Routing of evacuees is based on the shortest path under normal

circumstances, thus specialized evacuation routing is not considered. They find that some

staged evacuation strategies outperform the simultaneous evacuation strategy when popula-

tion densities are high and a generic grid network is used. This is not the case on a generic

ring network, or on a more realistic network based on the city of San Marcos, Texas. On

these networks, the simultaneous evacuation strategy outperforms all staging strategies un-

der all population densities. However, as this approach is purely simulation-based, only a

limited number of staging strategies are tested, and it is difficult to ascertain if these are

particularly good strategies. Sbayti and Mahmassani (2006) also look at staging to improve

the evacuation process. In this study a zone, which is a small portion of a larger network,

is evacuated. A simultaneous evacuation is compared to a staged evacuation. It is assumed

that the traffic flow in the larger network as a whole is unaffected by the evacuation (at least
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as far as demand and routing are concerned) except for those travelers going to the affected

zone; these travelers cancel their trip, or return to their origins if they have already begun

their trip. The evacuees from the zone are sent to a specified shelter. They use an iterative

bi-level formulation, where the upper problem determines routes and the lower-problem de-

termines how to load the network. Neither staging paper discusses in great detail what a

simultaneous evacuation actually entails. Do all evacuees leave as quickly as they can given

the roadway capacities (as implied), which might be fairly unrealistic, or is a loading curve

used?

We now briefly discuss some dynamic traffic assignment (DTA) literature. There is a

vast extent of DTA literature; here we mention some salient papers that study analytical

models based on mathematical programming. For a more detailed review we refer the reader

to Peeta and Ziliaskopoulos (2001). One of the first DTA papers was by Merchant and

Nemhauser (1978), in which traffic flow is propagated using an exit function for each arc.

Ziliaskopoulos (2000) introduces a linear programming cell transmission model. Carey, Ge,

and McCartney (2003) and Carey and McCartney (2004) study exit-flow and travel-time

models for each arc. These DTA papers, like most, use either a system optimal or user

equilibrium based objective, or some variation of these objectives.

9



Chapter 2

General Modeling Framework

2.1 Introduction

In this chapter, we present the general modeling framework used throughout this dissertation.

In Section 2.2 we present some general modeling notation. We note that additional notation is

introduced throughout this dissertation, as needed, for specific analysis. Next, in Section 2.3,

we introduce the general constraint set for the Regional Evacuation Model (REM). This

constraint set represents the rules that govern traffic flow, along with some evacuation-

specific constraints, e.g., capacity constraints on shelters. In Section 2.4, we introduce a

series of objective functions that are of interest in evacuation planning. In Section 2.5 we

introduce and discuss the main traffic flow model used in this work. Finally, in Section 2.6 we

introduce a test network that is used throughout this dissertation, along with two evacuation

scenarios, each based on the test network, but with varying parameters for several entities

such as population density.

2.2 Modeling Notation

Consider a network (N, A), where N and A respectively denote the set of nodes and arcs.

Set N is composed of the following disjoint sets: the set of origins V ⊂ N , the set of junc-

tions W ⊂ N , and the set of shelters Y ⊂ N . Furthermore, by appropriately augmenting

the network if necessary, we assume, without loss of generality, that each origin k ∈ V has

only outgoing arcs, and each shelter j ∈ Y has only incoming arcs. Each origin repre-
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sents a geographic zone with a known number of evacuees. These evacuees can potentially

be classified into different types, represented by the set Z, based on their shelter prefer-

ences/requirements. For instance, in a hurricane evacuation, one evacuee type might include

those that prefer to leave the evacuation area and find their own shelters, e.g. with families,

friends, or in hotels, while another evacuee type might include those that require space in

hurricane shelters. Other possible evacuee types include those that require medical care,

perhaps representing the movement of patients from one hospital to another, or those hav-

ing other special needs and requiring correspondingly equipped shelters, be it with medical

staff, or a reliable source of electricity (provided by generators) to run medical equipment,

or even the ability to handle pets. On this network, we define the following(several groups

of these notation shall be used in different models in late sections):

Parameters and Sets:

P : set of evacuation paths in the network (N, A)

Z : set of evacuee types based on shelter preferences/requirements

T : number of intervals, of equal duration (typically one minute), in the

planning horizon

F : last interval to start an evacuation for any origin and still complete the

evacuation

Dk,z : number of evacuees of type z from origin k, ∀k ∈ V z ∈ Z

D : total number of evacuees, that is, D =
∑

k∈V

∑
z∈Z Dk,z

ht,k,z
f : evacuees of type z that exit origin k in interval t if that node begins

evacuation in interval f , ∀k ∈ V , t = 1, · · · , T, f = 1, · · · , F

Ci,z : capacity of shelter i for evacuees of type z, ∀i ∈ Y, z ∈ Z

vij(.) : cost function for arc (i, j), ∀(i, j) ∈ A

qmax
ij : maximum flow on arc (i, j), ∀(i, j) ∈ A

kmax
ij : maximum evacuee density on arc (i, j), ∀(i, j) ∈ A (also referred to

as jam density)

umax
ij : maximum speed on arc (i, j), ∀(i, j) ∈ A (also referred to as free-flow speed)

P k,z : set of evacuation paths from origin k to shelters having type z capacity,

∀k ∈ V, z ∈ Z

P t,k,z : set of time indexed paths from set P k,z that reach shelter in interval t,
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∀k ∈ V, z ∈ Z, t = 1, · · · , F

δl
ij : binary indicator parameter, which is 1 if arc (i, j) is on path l, and 0 otherwise,

∀(i, j) ∈ A, k ∈ V, z ∈ Z, l ∈ Pk,z

Variables:

at
ij : number of evacuees that enter arc (i, j) in interval t, ∀(i, j) ∈ A, t = 1, · · · , T

bt
ij : number of evacuees that exit arc (i, j) in interval t, ∀(i, j) ∈ A, t = 1, · · · , T

xt
ij : number of evacuees on arc (i, j) at the beginning of interval t,

∀(i, j) ∈ A, t = 1, · · · , T

at,k,z
ij : number of evacuees of type z from origin k that enter arc (i, j) in interval t,

∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T

bt,k,z
ij : number of evacuees of type z from origin k that exit arc (i, j) in interval t,

∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T

xt,k,z
ij : number of evacuees of type z from origin k on arc (i, j) at the beginning

of interval t, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T

γk,z
f : binary indicator variable, which is 1 if evacuees of type z start the evacuation

of origin k in interval f , and 0 otherwise, ∀k ∈ V, z ∈ Z, f = 1, · · · , F

λk,z
ij : binary indicator variable, which is 1 if arc (i, j) is part of the evacuation route for

evacuees of type z and origin k, and 0 otherwise, ∀(i, j) ∈ A, k ∈ V, z ∈ Z

ρl : binary indicator variable, which is 1 if evacuation path l is utilized,

and 0 otherwise, ∀k ∈ V, z ∈ Z, l ∈ P k,z

Et : binary indicator variable, which is 1 if the evacuation is ongoing in time interval t,

and 0 otherwise, t = 1, · · · , T .

In the next section we introduce our modeling assumptions and constraints, along with

some terminology.

2.3 Constraint Set of the Regional Evacuation Model

We now formulate a model for prescribing an evacuation plan, based on the staging and

routing of evacuees and the allocation of evacuees to shelters, in order to accomplish various

objectives such as minimizing the number of time intervals needed to complete the evacu-
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ation, minimizing the average evacuation time, or maximizing the number of evacuees to

reach shelter during each interval. While the proposed model is a dynamic network flow

model, and as such, does not represent discrete evacuees, it conceptually provides control of

when specified numbers of evacuees start evacuating, which shelters they choose, and what

routes they travel. The modeling assumptions include the following:

1. The network represents the road network of interest. Each origin node k ∈ V represents

a zonal centroid; hence, some details of the network are subsumed by these nodes. The

zones can be determined to allow for various levels of network detail.

2. The term evacuee and vehicle will be used synonymously throughout this work since we

are studying the automobile-centric evacuation, i.e., the evacuation of a region using

private vehicles. In actuality, the number of evacuees and vehicles will be related by a

vehicle occupancy rate.

3. Without loss of generality, we assume that each arc (i, j) can be traversed in a single

time interval at the arc’s maximum speed, umax
ij . Note that any network with arcs

having travel times that are integral functions of the length of the time interval used

can be transformed into this type of network by introducing dummy nodes.

4. The number of evacuees on arc (i, j) at the beginning of the first time interval,

x1
ij, ∀(i, j) ∈ A, is a given parameter. Here we assume that x1

ij ≡ 0, ∀(i, j) ∈ A.

This assumption can easily be relaxed with some minor modifications to the formula-

tion.

5. The traffic flow parameters for arc (i, j), qmax
ij , kmax

ij , and umax
ij are scaled to the arc and

time interval length, i.e., qmax
ij is the maximum flow on each arc in a single interval, kmax

ij

is the maximum number of vehicles each arc can hold, and umax
ij is, by Assumption 3,

equal to one arc length per time interval.

We now present the mathematical formulation of the constraint set of the REM. This

represents the rules that govern the flow of traffic flow, specify the number of evacuees in each

geographic zone, and their composition with regards to shelter preferences/requirements,

and the shelter capacities. These constraints represent a minimal set of restrictions for the

evacuation problem. Further constraints will be added, as needed, to delineate different

classes of evacuation strategies.
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Model 2.1 Constraint Set of the REM

xt+1,k,z
ij − xt,k,z

ij − at,k,z
ij + bt,k,z

ij = 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z,

t = 1, · · · , T − 1 (2.1)
∑

j:(j,i)∈A

bt,k,z
ji −

∑

j:(i,j)∈A

at,k,z
ij = 0, ∀i ∈ W, k ∈ V, z ∈ Z, t = 1, · · · , T (2.2)

T∑
t=1

∑

j:(k,j)∈A

at,k,z
kj −Dk,z = 0, ∀k ∈ V, z ∈ Z (2.3)

∑

k∈V

∑
z∈Z

at,k,z
ij ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (2.4)

∑

k∈V

∑
z∈Z

bt,k,z
ij ≤

∑

k∈V

∑
z∈Z

xt,k,z
ij , ∀(i, j) ∈ A, t = 1, · · · , T (2.5)

∑

k∈V

∑
z∈Z

bt,k,z
ij ≤ (kmax

ij −
∑

k∈V

∑
z∈Z

xt,k,z
ij )qmax

ij /(kmax
ij − qmax

ij ),

∀(i, j) ∈ A, t = 1, · · · , T (2.6)

bt,k,z
ij ≤ xt,k,z

ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (2.7)

T∑
t=1

∑

i:(i,j)∈A

∑

k∈V

bt,k,z
ij − Cj,z ≤ 0, ∀j ∈ Y, z ∈ Z (2.8)

at,k,z
ij , bt,k,z

ij , xt,k,z
ij ≥ 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T . (2.9)

Equation (2.1) defines the state of the system in time interval t + 1 based on the state

and flows from time interval t. Equation (2.2) represents flow conservation across each junc-

tion i ∈ W . Equation (2.3) insures the complete evacuation of all evacuees of type z from

each origin k, ∀k ∈ V, z ∈ Z. Equation (2.4) limits the flow entering an arc to the arc’s

maximum flow, qmax
ij . This is justified because if a flow rate higher than this maximum flow

entered the arc, it would quickly be reduced due to a high local density at the entrance of

the arc. Equations (2.5), (2.6), and (2.7) represent the Pipes traffic flow relationship (see

Section 2.5) that defines each arc’s exit-flow limits. The Pipes relationship is a dual-regime

model: Equation (2.5) represents uncongested flow, while Equation (2.6) represents the con-

gested regime. Both regimes have a linear flow-density relationship, which implies a constant

speed over the uncongested regime, and a speed that decreases in a non-linear fashion (as

density increases) in the congested regime. This traffic-flow relationship limits the number of

evacuees on arc (i, j) to kmax
ij , because if

∑
k∈V

∑
z∈Z xt,k,z

ij > kmax
ij then

∑
k∈V

∑
z∈Z bt,k,z

ij < 0,

which is prohibited by Equation (2.9), and it also limits the flow,
∑

k∈V

∑
z∈Z bt,k,z

ij , from arc
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(i, j) to qmax
ij and insures that

∑
k∈V

∑
z∈Z bt,k,z

ij ≤ ∑
k∈V

∑
z∈Z xt,k,z

ij via Equations (2.5) and

(2.6). Equation (2.7) also insures that the flow on any arc has the correct composition, with

regard to evacuee type and origin. The Pipes relationship is an attractive choice for this

type of strategic model, because it provides a good representation of traffic flow while being

analytically tractable, as we discuss in more detail in Section 2.5. While Equations (2.4)-

(2.7) do not replicate traffic flow with a high fidelity, we believe they are appropriate for a

strategic evacuation planning model. Equation (2.8) preserves the capacity of Cj,z for each

shelter j ∈ Y , for each evacuee type z ∈ Z. Equation (2.9) enforces logical non-negativity

restrictions.

Model 2.1 represents our general framework. Modifications and additions can be made to

this general REM to account for different assumptions on evacuee behavior and the level of

control a central evacuation authority can utilize in an evacuation. Specifically, in Chapter ??

we assume a homogeneous population (the set Z only contains one type of evacuee) and

disaggregate control of the evacuation by the managing authority. In Chapter ?? we assume

the population is, to some degree, heterogeneous (the set Z contains multiple evacuee types),

and the central evacuation authority has a more aggregate level of control.

Next, we introduce some terminology that is used throughout this dissertation.

1. Congestion: Arc (i, j) experiences congestion when the traffic density reaches a point

where the excessive density begins to reduce the exit-flow limit (i.e., the bound on

bt
ij). Considering the Pipes model, this occurs when the exit-flow limit is defined by

Equation (2.6).

2. Holding-Back: Arc (i, j) experiences holding-back if both the Equations (2.5) and

(2.6) hold as strict inequalities, i.e., if the exit flow bt
ij is less than the exit-flow limit,

and if this is not caused by the characteristics or state of the desired downstream

arc (or arcs) (j, k). For example, if arc (i, j) is congested and we have qmax
jk = bt

ij <

(kmax
ij − xt

ij)q
max
ij /(kmax

ij − qmax
ij ) for some (j, k) ∈ A, then this does not constitute

holding-back. Carey (1987) provides a good discussion of holding-back, and under

what conditions an optimal solution to the particular DTA formulation studied, in

that paper, will not have holding-back. In Carey’s model, holding-back occurs when

flow out of an arc is less than the arc’s exit-flow limit. In the real road network this

holding-back behavior would not normally occur, i.e., it would require special traffic
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control measures, and thus, it usually represents an unrealistic, undesirable property

of a solution. In our model, holding-back is somewhat more complex. This is due

to an additional constraint, and the use of the Pipes relationships. The constraint,

Equation (2.4), limits the flow into an arc to the maximum flow allowed on that arc,

i.e., at
ij ≤ qmax

ij , while the Pipes relationship limits the maximum number of evacuees

an arc can hold (to the jam density, kmax
ij ). Either of these can cause the exit flow to be

less than the exit-flow limit, for the adjacent, upstream arc, but this is not considered

holding-back; it is just a consequences of the characteristics or state of the network.

This adds realism to the formulation.

3. Critical Arc-Interval: Arc (i, j) for time interval t is a critical arc-interval if arc (i, j)

cannot possibly experience congestion or holding-back in the interval t in an optimal

strategy.

4. Bottleneck Arc-Interval: Arc (i, j) for time interval t is a bottleneck arc-interval if

increasing the maximum possible flow, i.e., qmax
ij (perhaps in conjunction with adjacent

arcs), can improve the optimal solution.

The REM (Model 2.1) bears some similarities with mathematical programming formu-

lations of multi-period dynamic traffic assignment (DTA) models, as introduced by Mer-

chant and Nemhauser (1978) and widely studied thereafter (see, for instance, Peeta and

Ziliaskopoulos, 2001). Peeta and Ziliaskopoulos (2001) describe two main limitations typi-

cally inherent in these mathematical programming formulations: 1) insuring first-in first-out

(FIFO) arc flows, and 2) holding-back of traffic flows, which refers to delaying an arc’s flow,

in favor of another arc’s flow, for an unrealistically long time, when they both use a common

downstream arc. We discuss these issues as part of our analysis in the subsequent chapters.

Next, we present the objective functions that are of interest for evacuation planning.

2.4 Objective Functions

In this section we present the alternative objective functions considered, and any additional

constraints required in conjunction with a particular objective function. This is an important

area of research because the objective function plays a critical role in determining the form

of the evacuation strategy and, as we shall see, different objective functions can produce
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strategies with equivalent results, while some are easier to optimize than others. Most of

these objectives do not require a constraint to drive them towards an optimal solution; but

a constraint of the type
∑T

t=1

∑
j∈Y

∑
i:(i,j)∈A bt

ij =
∑

k∈V

∑
z∈Z Dk,z can be used to insure

that an incomplete evacuation will be infeasible (if the time-window represented by T is not

long enough, for instance).

Objective (I): Minimize the number of time intervals (i.e., the total duration) it takes to

complete the evacuation, that is,

Minimize

T∑
t=1

Et,

where the following additional constraints are required:

Et ≥ (D −
t−1∑

f=1

∑
j∈Y

∑

i:(i,j)∈A

bf
ij)/D, t = 1, · · · , T , (2.10)

Et ∈ {0, 1}, t = 1, · · · , T. (2.11)

Equation (2.10) determines if the evacuation is complete, at which point the variable Et can

equal zero; otherwise, this binary variable must equal one, and Equation (2.11) represents

the binary restrictions on the Et-variables. Note that Objective (I) minimizes the maximum

evacuation time experienced by any evacuee.

Objective (II): Minimize the average evacuation time, that is,

Minimize

T∑
t=1

∑
j∈Y

∑

i:(i,j)∈A

tbt
ij/D. (2.12)

This is the average time it takes evacuees to reach shelter after the evacuation order is given.

Objective (III): Maximize, lexicographically, the number of evacuees who reach shelter in

each time interval, that is,

Lexmax{
∑
j∈Y

∑

i:(i,j)∈A

bt
ij, t = 1, · · · , T}. (2.13)
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Objective (IV): Minimize the total travel cost, that is,

Minimize

T∑
t=1

∑

(i,j)∈A

vij(x
t
ij),

where the following additional constraint is required:

T∑
t=1

∑
j∈Y

∑

i:(i,j)∈A

bt
ij =

∑

k∈V

∑
z∈Z

Dk,z. (2.14)

This is a common objective in DTA models, generally known as a system optimal assignment.

For an evacuation, this can be thought of as minimizing the total travel time, in which case

the function vij(.) simply represents the number of evacuees on the arc in time interval t

multiplied by the length of the time interval. Equation (2.14) is needed to insure a complete

evacuation, if feasible, within the time horizon represented by T .

Objective (V): Minimize an additive risk function, that is,

Minimize

T∑
t=1

[
∑

k∈V

Rt
k(

∑
z∈Z

Dk,z −
t−1∑

f=1

∑

j:(k,j)∈A

af
kj) +

∑

(i,j)∈A

Rt
ijx

t
ij], (2.15)

where Rt
k ≥ 0 is the risk incurred by evacuees at origin k at the start of time interval t,

∀k ∈ V, t = 1, · · · , T , and Rt
ij ≥ 0 is the risk incurred by evacuees on arc (i, j) at the start

of time interval t, ∀(i, j) ∈ A, t = 1, · · · , T .

Two special cases of Objective (V) will also be of interest:

Objective (V.a): Minimize an additive space-constant risk, i.e., the risk is constant across

the network during each time interval:

Minimize

T∑
t=1

[
∑

k∈V

Rt(
∑
z∈Z

Dk,z −
t−1∑

f=1

∑

j:(k,j)∈A

af
ij) +

∑

(i,j)∈A

Rtxt
ij], (2.16)

where Rt ≥ 0, t = 1, · · · , T . Thus, we modify Equation (2.15) by setting Rt
k = Rt, ∀k ∈

V, t = 1, · · · , T and Rt
ij = Rt, ∀(i, j) ∈ A, t = 1, · · · , T .

Objective (V.b): Minimize an additive space- and time-constant risk, that is,

Minimize

T∑
t=1

[
∑

k∈V

R(
∑
z∈Z

Dk,z −
t−1∑

f=1

∑

j:(k,j)∈A

af
ij) +

∑

(i,j)∈A

Rxt
ij], (2.17)
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where R ≥ 0. Thus, we modify Equation (2.15) by setting Rt
k = R, ∀k ∈ V, t = 1, · · · , T

and Rt
ij = R, ∀(i, j) ∈ A, t = 1, · · · , T .

Remark 1 Objective (V.a) has many alternative forms besides Equation (2.16). One such

form is as follows:

Minimize

T∑
t=1

Rt(D −
∑
j∈Y

∑

i:(i,j)∈A

t−1∑

f=1

bf
ij), (2.18)

where each evacuee not in a shelter at the beginning of interval t incurs a risk of Rt. We

can also formulate this objective as the following maximization:

Maximize

T∑
t=1

Rt

t−1∑

f=1

∑
j∈Y

∑

i:(i,j)∈A

bf
ij, (2.19)

by eliminating the constant term
∑T

t=1 RtD in Equation (2.18).

An important characteristic of a hurricane is that it can be tracked and land-fall can be

predicted. Because of this advanced warning, regions can start evacuating well in advanced

of land-fall. Despite this, authorities are still interested in objectives such as Objective

(I), which minimizes the duration of the evacuation, because the accuracy of the forecasted

land-fall and intensity increases as the hurricane approaches. Thus, delaying a hurricane

evacuation order can be useful to avoid a false alarm and to better demarcate a proper evac-

uation area. Delaying an evacuation order can also be less disruptive on regional commerce,

and the population to be evacuated. We hypothesis that evacuees will respond better to a

later evacuation order as they weigh the disruption of an evacuation against the risk. Ob-

jectives (II), which minimizes the average time to evacuate, and (III), which maximizes the

number of additional evacuees that reach shelter in each interval, are also viable strategic ap-

proaches considered in the evacuation literature (perhaps with slightly different formulations;

see Chalmet, Francis, and Saunders, 1982 and Jarvis and Ratliff, 1982). Objective (IV) can

be used to produce an evacuation plan that reduces the sum of travel times for the evacuees,

given a pre-specified overall duration. Objectives (V.a) and (V.b), the two structured risk

objectives, do not necessarily model actual risks; instead, they are of interest because of

their special properties, which we discuss in Section 3.3. Objective (V), which allows for a

less structured risk, is better suited to disasters that occur without much warning, where
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risk is present from the start. An example of this is a catastrophic incident at a nuclear

power plant. Currently, a typical goal is to evacuate an arbitrary 10-mile radius around the

incident in the quickest fashion (see, for instance, Hobeika, Kim, and Beckwith, 1994). An

alternative is to evacuate those areas most impacted first, in which case, risk considerations

are vital. While it is certainly true that different areas will experience different risks in a

hurricane, for example, an area susceptible to a flood surge is far more dangerous than an

area situated on higher ground. With advanced warning, the goal should be to evacuate the

population before the actual risk manifests, making Objective (V) less relevant in this case.

A more detailed study of risk is an interesting area of potential future research.

2.5 Traffic Flow Relationships

The Pipes relationship is used in a number of well-known, high-fidelity, traffic micro-simulators

(such as CORSIM and VISSIM, see Rakha and Crowther, 2003). Other traffic flow mod-

els have non-linear flow/density relationships, which, if used, would make the REM less

tractable. For example, the Greenshields relationship, another well-known traffic flow model,

has a linear speed/density relationship, which yields a non-linear flow/density relationship.

To calibrate the Pipes relationship for a segment of roadway, three well-known traffic pa-

rameters are used: the maximum flow qmax
ij , the maximum traffic density kmax

ij (also known

as the jam density), and the maximum speed umax
ij (also known as the free-flow speed). The

relationship between flow, density, and speed are shown graphically in Figure 2.1 for a seg-

ment of roadway with unscaled parameters qmax = 1500 veh/hr, kmax = 100 veh/km, and

umax = 60 km/hr.

Equation (2.5), which is represented by the positively sloped line in the flow versus

density graph (see Figure 2.1), models the uncongested regime. Equation (2.6), on the other

hand, is represented by the negatively sloped line and models the congested regime. As the

speed/density graph in Figure 2.1 depicts, the linear flow/density relationship produces a

non-linear speed/density relationship. Hence, the time spent on an arc is also non-linear

with congestion.

For an evacuation-related example, consider the following link performance function:

Tij = (lij/u
max
ij )[1 + α(xij/q

max
ij )β],
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Flow and Speed as a Function of Density
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Figure 2.1: The Pipes traffic-flow relationship.

Time to Traverse Arc vs. Density

0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100
density (veh/km)

ti
m

e
 (

h
r) Pipes

BPR

Greenshields

Figure 2.2: Comparison of travel times on an arc using the Pipes relationship and the BPR

function.

which was developed by the U.S. Bureau of Public Roads (BPR) to model congestion in a

steady-state evacuation model. Here, Tij is the time to traverse arc (i, j), and α and β are

non-negative parameters. We have removed the t superscript from the xt
ij variable due to the

21



steady-state nature of the BPR model. In Figure 2.2, we compare the Pipes model using the

same arc characteristics as displayed in Figure 2.1 with the BPR link performance function

using typical values of α = 0.15 and β = 4.0, and with the Greenshields relationship, a

non-linear, concave function (similar to exit-flow functions often used in the DTA literature;

see for instance...). As Figure 2.2 displays, both relationships yield non-linear travel times

as traffic density increases. This complicates the solution to the model as the non-linearities

are explicit in the mathematical formulation (e.g., see Sherali, Carter, and Hobeika, 1991).

On the other hand, in the REM, the non-linearities in Figure 2.2 are a consequence of linear

flow/density constraints, making the problem easier to solve. We are therefore able to handle

larger sized problems that further consider time dynamic features, which is a great advantage

for evacuation planning purposes.

2.6 Test Problems

To better understand the REM, and the related models we examine later, we use a small

network, depicted in Figure 2.3, for an initial analysis of the various models. Two scenarios

are presented on this network. In both scenarios, evacuees can be categorized based on their

shelter preferences (represented by the set Z); those seeking shelter in a local, capacitated,

shelter (Y1 and Y2), and those that prefer to leave the area and find their own accommo-

dations (represented by the uncapacitated shelter Y3). In this network, the time horizon is

divided into 1 minute time intervals.

Scenario 1: Each arc has a maximum flow of qmax
ij = 50 vehicles per interval and a maximum

density of 200 vehicles. Local shelter Y1 has a capacity of 300 and Y2 has a capacity of

500. Each origin has 125 evacuees, 50 of whom prefer a local shelter (Y1 or Y2). Each

origin and evacuee type (based on shelter preference) has a five-interval loading curve (when

applicable). For this test instance, we used a time horizon of T = 25 intervals.

Scenario 2: Each arc has a maximum flow of qmax
ij = 100 vehicles per interval and a

maximum density of 400 vehicles. Both local shelters, Y1 and Y2, have capacities of 1000.

Each origin has 1000 evacuees, 200 of whom prefer a local shelter (Y1 or Y2). Each origin and

evacuee group (based on shelter preference) has a 50-interval loading curve (when applicable).

For this test instance, we used a time horizon of T = 100 intervals.
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Figure 2.3: Illustrative network.
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Chapter 3

Disaggregated Control Strategies

3.1 Introduction

In this chapter we study the Disaggregated Regional Evacuation Model (D-REM), which

produces disaggregated control strategies, i.e., strategies that control the evacuation at a

disaggregated level. Despite being a dynamic network flow model, which does not represent

discrete evacuees, the D-REM conceptually produces strategies that control when individual

evacuees start evacuating, which shelter, given their preferences/requirement, they are sent

to, and what routes they travel. As such, strategies of this nature would have to be conveyed

to each individual, or household, as a customized evacuation plan. While at first this might

seem difficult, with the current advances in communications, this scenario could be quite

feasible. For example, airlines are developing tools to automatically send messages to pas-

sengers when flights are delayed or canceled, using landline phones, cell-phones, e-mail, or

text messaging. Internet mapping and routing tools, such as those offered by MapQuest or

Google, could be adapted to provide customized evacuation routes. While the dissemination

of such customized evacuation plans is not the focus of this research, dissemination, along

with the impact of such plans on evacuee behavior, are interesting areas of potential future

research. In Section 3.2 we present the constraint set for the D-REM. To delineate a strategy

at this disaggregate level, the D-REM only requires one additional constraint beyond those

present in the REM. The extra constraint insures evacuee groups evacuate from the proper

origin. We also discuss how to greatly simplify the computational effort by producing an

optimal flow at a higher level of aggregation, and then recovering the final, disaggregated
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evacuation plan using another model. Section 3.2.1 discusses how the constraint set of the

D-REM impacts staging. In Section 3.3 we present the analytical results derived for the

D-REM, while in Section 3.4 we present some insights derived from our analysis. In Sec-

tion 3.5 we present solution methodologies for the D-REM with Objective (I), which is a

mixed-integer program (MIP), making it more difficult to solve. Finally, in Section 3.6 we

provide some preliminary analysis into the D-REM when traffic flow is modeled using a

concave, non-linear traffic flow relationship.

3.2 Model Formulation

The constraint set of the D-REM is identical to the REM constraint set with one additional

constraint, namely Equation (3.9), which insures that evacuees from each evacuee group

originate from the correct origin. We refer to any model using this constraint set as the

D-REM with flow-tracking, as we also present a simplified version without flow-tracking.
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Model 3.1 Constraint Set of the D-REM with Flow-Tracking

xt+1,k,z
ij − xt,k,z

ij − at,k,z
ij + bt,k,z

ij = 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z,

t = 1, · · · , T − 1 (3.1)
∑

j:(j,i)∈A

bt,k,z
ji −

∑

j:(i,j)∈A

at,k,z
ij = 0, ∀i ∈ W, k ∈ V, z ∈ Z, t = 1, · · · , T (3.2)

T∑
t=1

∑

j:(k,j)∈A

at,k,z
kj −Dk,z = 0, ∀k ∈ V, z ∈ Z (3.3)

∑

k∈V

∑
z∈Z

at,k,z
ij ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (3.4)

∑

k∈V

∑
z∈Z

bt,k,z
ij ≤

∑

k∈V

∑
z∈Z

xt,k,z
ij , ∀(i, j) ∈ A, t = 1, · · · , T (3.5)

∑

k∈V

∑
z∈Z

bt,k,z
ij ≤ (kmax

ij −
∑

k∈V

∑
z∈Z

xt,k,z
ij )qmax

ij /(kmax
ij − qmax

ij ),

∀(i, j) ∈ A, t = 1, · · · , T (3.6)

bt,k,z
ij ≤ xt,k,z

ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (3.7)

T∑
t=1

∑

i:(i,j)∈A

∑

k∈V

bt,k,z
ij − Cj,z ≤ 0, ∀j ∈ Y, z ∈ Z (3.8)

at,k,z
ij = 0,∀i ∈ V, j : (i, j) ∈ A, k ∈ V, k 6= i, z ∈ Z, t = 1, · · · , T (3.9)

at,k,z
ij , bt,k,z

ij , xt,k,z
ij ≥ 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T . (3.10)

As the model has complete freedom to stage and route the evacuees, as well as to select

shelter locations (given the preferences/requirements), we do not actually have to track

evacuees by their origin to produce an optimal evacuation flow; we only need to track flows

based on shelter preferences/requirements, and hence can produce optimal flows at a higher

level of aggregation. Because of this, we are able to simplify the D-REM by removing the

origin label from the various variables. The simplified constraint set is as follows:
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Model 3.2 Constraint Set of the D-REM without Flow-Tracking

xt+1,z
ij − xt,z

ij − at,z
ij + bt,z

ij = 0, ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T − 1 (3.11)
∑

j:(j,i)∈A

bt,z
ji −

∑

j:(i,j)∈A

at,z
ij = 0, ∀i ∈ W, z ∈ Z, t = 1, · · · , T (3.12)

T∑
t=1

∑

j:(k,j)∈A

at,z
kj −Dk,z = 0, ∀k ∈ V, z ∈ Z (3.13)

∑
z∈Z

at,z
ij ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (3.14)

∑
z∈Z

bt,z
ij ≤

∑
z∈Z

xt,z
ij , ∀(i, j) ∈ A, t = 1, · · · , T (3.15)

∑
z∈Z

bt,z
ij ≤ (kmax

ij −
∑
z∈Z

xt,z
ij )qmax

ij /(kmax
ij − qmax

ij ), ∀(i, j) ∈ A, t = 1, · · · , T (3.16)

bt,z
ij ≤ xt,z

ij , ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T (3.17)

T∑
t=1

∑

i:(i,j)∈A

bt,z
ij − Cj,z ≤ 0, ∀j ∈ Y, z ∈ Z (3.18)

at,z
ij , bt,z

ij , xt,z
ij ≥ 0, ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T . (3.19)

Equation (3.11) links the time intervals by defining the state of the system in time

interval t + 1 based on the state and flows from time interval t. Equation (3.12) represents

flow conservation across each junction i, ∀i ∈ W . Equation (3.13) insures the complete

evacuation of each origin k, ∀k ∈ V . Equation (3.14) limits the flow entering an arc to the

arc’s maximum flow, qmax
ij . This is justified because if a flow rate higher than this maximum

flow entered the arc, it would quickly be reduced due to a high local density at the entrance

of the arc. Equations (3.15), (3.16), and (3.17) define the exit-flow limits for arc (i, j) using

the Pipes traffic flow relationship (see Section 2.5). Equation (3.18) defines the capacity

limits of shelter j, ∀j ∈ Y . Finally, Equation (3.19) represent the logical non-negativity

constraints.

By not tracking the flow of each evacuee group, and only labeling flows based on shelter

preferences/requirements, we drastically simplify the formulation and the time required by

the solver to find an optimal solution. To illustrate this we use the test scenarios from

Section 2.6. Table 3.1 presents the results from the two test scenarios using the D-REM

with flow-tracking, while Table 3.2 presents the same, but using Model 3.2, the D-REM

without flow-tracking. The results in both tables are from solving each model with respect
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to Objective (II), which minimizes the average evacuation time. We use this objective,

instead of Objective (I), to simplify the analysis; Objective (I) transforms each model into

a MIP, due to the binary Et-variables, which is more difficult to solve, as we discuss in later

sections.

Table 3.1: Results for the D-REM with flow-tracking

Scenario Obj. Evac. Run Cont. Binary Constraints Dual B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters

1 9.886 19 3.375 12,258 0 12,145 4,653 0

2 32.300 67 19,451.9 55,309 0 54,670 710,440 0

Table 3.2: Results for the simplified D-REM without flow-tracking.

Scenario Obj. Evac. Run Cont. Binary Constraints Dual B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters

1 9.886 19 0.438 2,861 0 3,790 1,105 0

2 32.300 67 60.2 12,161 0 16,164 30,128 0

Note that the AMPL pre-processor eliminates some variables and constraints from the

formulation, the numbers reported in these (and all subsequent) tables are from AMPL

after preprocessing. The large differences in run times between Tables 3.1 and 3.2 illustrate

that by eliminating the tracking of flow by origin, we greatly reduce the time needed to

produce an optimal solution. Of course, without flow-tracking, Model 3.2 does not produce

an evacuation plan that specifies paths for each evacuee. To recover an evacuation plan from

the more aggregated flows produced by the D-REM, Model 3.2, we can use the following

model.

28



Model 3.3 Evacuation Plan Recovery Model

Minimize

T∑
t=1

∑

k∈V

∑
z∈Z

∑

(i,j)∈A

at,k,z
ij (3.20)

subject to

xt+1,k,z
ij − xt,k,z

ij − at,k,z
ij + bt,k,z

ij = 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T − 1(3.21)
∑

j:(j,i)∈A

bt,k,z
ji −

∑

j:(i,j)∈A

at,k,z
ij = 0, ∀i ∈ W, k ∈ V, z ∈ Z, t = 1, · · · , T (3.22)

∑

k∈V

at,k,z
ij = at,z

ij , ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T (3.23)

∑

k∈V

bt,k,z
ij = bt,z

ij , ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T (3.24)

∑

k∈V

xt,k,z
ij = xt,z

ij , ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T (3.25)

at,k,z
ij = 0,∀i ∈ V, j : (i, j) ∈ A, k ∈ V, k 6= i, z ∈ Z, t = 1, · · · , T (3.26)

at,k,z
ij , bt,k,z

ij , xt,k,z
ij ≥ 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T. (3.27)

Model 3.3 has an objective function that minimizes the summation of the at,k,z
ij variables.

In this model, the three flow variables from Model 3.2, at,z
ij , bt,z

ij , and xt,z
ij , are parameters.

Thus, because of Equation (3.23), the objective is pre-determined, and is just used to produce

an evacuation plan from the output of Model 3.2. In this dissertation we do not study in

any depth the possible interactions between this model and the D-REM, Model 3.2.

Equation (3.21) defines the state of the system in time interval t + 1 based on the state

and flows from time interval t. Equation (3.22) represents flow conservation across each

junction i ∈ W . These constraints insure the same conservation of flow as in Model 3.1.

Equations (3.23), (3.24), and (3.25) insure that the flow for the individual evacuee groups

conforms to the more aggregate flows produced by Model 3.2. As such, at,z
ij , bt,z

ij , and xt,z
ij ,

while variables in Model 3.2, are parameters in this model. Equation (3.26) insures that

evacuees originate from the correct origin, based on their evacuee group. Equation (3.27)

represents the logical non-negativity constraints.

As Table 3.3 illustrates, Model 3.3 can be solved quite quickly. By dividing the problem,

represented by Model 3.1 (the D-REM with flow-tracking), into two sub-problems we can

dramatically decrease the required solution time. To illustrate, consider Scenario 2. To

produce an evacuation plan, the solver required 19,451 seconds, or about 5.4 hours, with
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Model 3.1. In contrast, the solver required only 60.2 seconds to produce the optimal flows at

a more aggregate level with Model 3.2, and then less than a second for Model 3.3 to recover

the more detailed evacuation plan from these aggregate flows.

Table 3.3: Results for the Evacuation Plan Recovery Model, Model 3.3.

Scenario Obj. Run Cont. Binary Constraints Dual B/B

Value Time Vars. Vars. Simplex

(sec.)

1 5,225 0.078 1,086 0 945 194 0

2 51,200 0.203 5,519 0 4,865 969 0

In the remainder of this chapter, when we refer to the D-REM, we refer to Model 3.2.

Next, we discuss staging and the D-REM.

3.2.1 Staging

After an evacuation order is given, evacuees depart based on a complex decision process that

is not well understood. When viewed at an aggregate level, this behavior can be described

by a network loading function; a function that specifies the cumulative number of evacuees

that start their evacuation on or before a specified time interval. While this function emerges

from the decisions of many different individuals, it tends to have a characteristic shape, often

described as an ‘S-shaped’ curve (see the literature review in Section 1.2). This aggregate

behavior is important; if all the evacuees left at once, directly after the evacuation order,

the congestion and gridlock would be much worse. Despite rational evacuee behavior (see,

for instance, Quarantelli, 1980), and a characteristic loading curve that temporally spreads

demand, without staging, the number of evacuees can easily overwhelm the available supply

causing congestion and gridlock (as demonstrated in numerous real evacuations). This is

partly due to the evacuee’s lack of information, as well as the lack of coordination between

evacuees. An evacuation plan with staging modifies this characteristic loading function,

supplying the needed coordination between evacuees.

The D-REM automatically accommodates staging because it does not enforce any par-

ticular form of a priori network loading. All the D-REM requires is the complete evacuation
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of each origin k, ∀k ∈ V , through Equation (3.13), and thus the model is free to determine

when evacuees depart. Each of the objective functions discussed earlier in Section 2.4 will

impose staging as a natural part of the optimization process. This is because the D-REM

allows congestion, which can severely impact the performance of many of the objectives, and

staging can reduce or completely eliminate congestion, depending on the objective considered

and the characteristics of the system.

When staging is used in conjunction with routing, it affects how the model routes evac-

uees. If the D-REM were modified to include a constraint that requires network loading based

on a pre-defined characteristic network loading function, the model would often produce so-

lutions that, in an attempt to optimize the various objective functions, have unacceptable,

circuitous routes and holding-back of traffic flows. The model would produce this undesir-

able routing plan to minimize the congestion on the bottleneck arcs. Thus, staging allows

us to have a less constrained routing environment without the negative, unrealistic impacts.

Without staging, the routing would have to be more constrained, perhaps permitting only

pre-specified routes. Holding-back would also have to be eliminated somehow. These prob-

lems also occur in DTA models, but they are usually more pronounced in an evacuation

setting, as more vehicles are being routed to fewer destinations, creating more potential for

congestion.

In the next section we will analyze the D-REM in conjunction with the various objective

functions discussed in Section 2.4.

3.3 Analysis

In the following we analyze Model 3.2 with the various objective functions introduced in

Section 2.4. Specifically, we first define some terminology and additional notation that is

useful in our study. We then characterize various properties of the model and the objective

functions, including a comparison of the Objectives (I), (II), (III), (V.a), and (V.b).

3.3.1 Terminology and Additional Notation

To assist in our study of the evacuation problem, we first give an alternate definition for a

bottleneck arc-interval that applies to the D-REM:
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Bottleneck Arc-Interval: Arc (i, j) for time interval t is a bottleneck arc-interval if inflow

must be at its maximum possible value, i.e., at
ij = qmax

ij , in every optimal strategy.

We note that this definition does not invalidate the earlier definition; the D-REM just

allows for a more rigorous definition. Next we will introduce the additional notation used in

our analysis.

Additional Notation:

st : number of evacuees reaching shelter in interval t in a feasible solution,

where st =
∑

j∈Y

∑
i:(i,j)∈A bt

ij, t = 1, · · · , T

n : the last interval of a feasible evacuation, i.e., the duration of the evacuation

Lt,k,z : number of evacuees of type z, from origin k, using paths in the set P t,k,z,

reaching shelter in interval t, in a feasible solution, ∀k ∈ V, z ∈ Z, t = 1, · · · , T .

In addition, when we refer to an optimal solution to Objective (l), l ∈ {I, II, III, IV, V,

V.a, V.b}, we append l to the subscript, i.e., st
l , nl, Lt,k,z

l , etc.

3.3.2 Results

In this section we study the various objective functions in more detail and discuss how and

when they are related, and their impact on the evacuation strategy. First, we introduce a

model related to the D-REM, where the arc exit-flows are bounded by a constant equal to

the maximum possible flow, qmax
ij .

32



Model 3.4 Constraint Set of the Evacuation Model with Constant Exit-Flow

Limits

at,z
ij − bt+1,z

ij = 0, ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T − 1 (3.28)
∑

j:(j,i)∈A

bt,z
ji −

∑

j:(i,j)∈A

at,z
ij = 0, ∀i ∈ W, z ∈ Z, t = 1, · · · , T (3.29)

T∑
t=1

∑

j:(k,j)∈A

at,z
kj −Dk,z = 0, ∀k ∈ V, z ∈ Z (3.30)

at
ij ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (3.31)

T∑
t=1

∑

i:(i,j)∈A

bt,z
ij − Ci,z ≤ 0, ∀j ∈ Y, z ∈ Z (3.32)

at,z
ij , bt,z

ij ≥ 0, ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T (3.33)

at
ij ≥ 0, ∀(i, j) ∈ A, t = 1, · · · , T. (3.34)

In this formulation, we have kept both the flow variables at,z
ij and bt,z

ij for continuity

with Model 3.2, although from Equation (3.28), only one is needed. Furthermore, we have

removed the variables xt,z
ij , which essentially removes the possibility of an arc holding evacuees

for more than one time interval. This will not affect the optimal solution to Model 3.4, as

the exit-flow limits are constant, not a function of xt,z
ij .

Proposition 1 Considering Objectives (I), (II), (III), (IV), (V.a), or (V.b), an optimal

solution to Model 3.4, which has constant exit-flow limits on each arc, is also an optimal

solution to Model 3.2, which has variable exit-flow limits.

Proof: First observe that the optimal solution to Model 3.4 considering Objectives (I), (II),

(III), (IV), (V.a), or (V.b) provides a feasible solution for the D-REM. This is because the

constant exit-flow limit for each arc in Model 3.4 is set to the maximum variable exit-flow

limit for the corresponding arc in the D-REM, and evacuees in the D-REM can clear each

arc in each interval. [If this were not the case, i.e., if it took more than a single interval

to traverse the arc in the uncongested regime, then the flows from Model 3.4 would not be

feasible for the D-REM.] The proof then follows because adding a congested regime does

not change the location or capacity of the bottleneck arc-intervals, i.e., the min-cut in the

network, and thus no better solution for the D-REM can be found.
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We note that Proposition 1 is wholly dependent on staging: Without staging, the char-

acteristic network loading would undoubtedly cause congestion, making the solution to the

D-REM infeasible for Model 3.4. Proposition 1 does not necessarily hold for Objective (V),

as an optimal solution to this objective might require congestion. The following corollaries

are direct consequences of Proposition 1.

Corollary 3.3.1 There exists an optimal solution for Objectives (I), (II), (III), (IV), (V.a),

or (V.b) that does not experience congestion or holding-back.

Of course there can be multiple optimal solutions if there are multiple ways to supply the

bottleneck arc-intervals optimally. This allows for optimal solutions that can have congestion

and/or holding-back, but only on certain arcs, as defined in the next corollary.

Corollary 3.3.2 An optimal solution can have congestion and/or holding-back on the arcs

upstream of the bottleneck arc-intervals, but not on the bottleneck arc-intervals or the critical

arc-intervals (arcs downstream from the bottleneck arcs).

Corollary 3.3.3 If qmax
ij , ∀(i, j) ∈ A, are integral, then there exists an optimal solution for

Objectives (I), (II), (III), (IV), (V.a) or (V.b) having integer flows.

Figure 3.1 compares a small static network with a space-time version for T = 4, which

only includes the reachable arcs. Each arc has a capacity of 20 vehicles per interval, except

arc (W3, Y 1), which has a capacity of 30 vehicles per interval. The space-time network does

not have an arc from W1 to W2 in Interval 1, as it is not feasible to reach W2 in Interval 1.

The min-cut arcs in Figure 3.1 are bold. In this example, given enough evacuees, the

min-cut arcs would all be bottleneck arc-intervals.

Proposition 2 In an optimal solution to the D-REM with Objectives (I), (II), (III), (IV),

(V.a), or (V.b), the bottleneck arc-intervals are always part of some min-cut of the space-

time version of the network (N,A) for Model 3.4, which only includes arcs that are reachable

by evacuees in a feasible solution.

Proof: The min-cut limits the number of evacuees that can reach shelter in any interval.

By definition, any arcs upstream of some min-cut, that are not themselves part of a min-cut,
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Figure 3.1: A small static network (a) and its space-time equivalent (b).

have higher capacity. The same is true of arcs downstream of a min-cut. By our definition, a

bottleneck arc-interval is an arc that must have at
ij = qmax

ij in every possible optimal strategy.

For Objectives (I), (II), (III), (IV), (V.a), or (V.b), which do not require congestion in an

optimal solution, only arcs in a min-cut will necessarily have at
ij = qmax

ij . While an arc that

is not part of a min-cut can have at
ij = qmax

ij in an optimal solution, other optimal solutions

exist where, for this arc, at
ij < qmax

ij , as there exists some excess capacity that can be utilized

on another arc.

Remark 2 The min-cut in a space-time network with only reachable arcs does not neces-

sarily correspond with the min-cut of the static network.

The average evacuation time, i.e., the average time for an evacuee to reach shelter, is also

an important objective to consider. Next, we present an equivalence result for this objective.

Proposition 3 Objective (II) and Objective (V.b) are equivalent with respect to the D-REM;

both yield an evacuation strategy that minimizes the average evacuation time.
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Proof: In a feasible evacuation we have D =
∑

j∈Y

∑
i:(i,j)∈A

∑T
t=1 bt

ij. Substituting for D

in Equation (2.18), which is valid for Objective (V.b) if Rt ≡ R, ∀t = 1, · · · , T , yields:

R

T∑
t=1

(
∑
j∈Y

∑

i:(i,j)∈A

T∑

f=1

bf
ij −

∑
j∈Y

∑

i:(i,j)∈A

t−1∑

f=1

bf
ij) = R

T∑
t=1

∑
j∈Y

∑

i:(i,j)∈A

T∑

f=t

bf
ij,

which can be simplified, using st =
∑

j∈Y

∑
i:(i,j)∈A bt

ij, as follows:

R

T∑
t=1

T∑

f=t

sf = R

T∑
t=1

tst.

Observing that the average evacuation time is given by
∑T

t=1 tst/D and that D and R are

constants, the proof follows.

Proposition 4 Solving Model 3.2 with Objective (I) and without Equation (2.11), i.e., re-

laxing the binary constraint on the variables Et, yields an evacuation strategy that minimizes

the average evacuation time.

Proof: We can write, similar to the proof of Proposition 3,

D −
∑
j∈Y

∑

i:(i,j)∈A

t−1∑

f=1

bf
ij =

T∑

f=t

sf , t = 1, · · · , T.

Using this relationship in Equation (2.10) yields:

Et ≥
T∑

f=t

sf/D, t = 1, · · · , T.

As Objective (I) is a minimization, in an optimal solution to Objective (I), without Equa-

tion (2.10), we have
T∑

t=1

Et =
T∑

t=1

T∑

f=t

sf/D =
T∑

t=1

tst/D,

thus completing the proof.

In this case, Et can be thought of as the percent of demand that has not reached shelter in

time interval t. Thus, Propositions 3 and 4 establish the equivalence between a special case

of Objective (I), Objective (II), and Objective (V.b) in minimizing the average evacuation

time.
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Objectives (I), (II), and (III) each represent an evacuation characteristic that we might

want to optimize, namely, minimizing the duration of the evacuation, minimizing the average

evacuation time, and maximizing the number of remaining evacuees that reach shelter in

each interval, respectively. We next derive relationships between these objectives. First, we

compare the duration, n, of an evacuation based on the solution generated for each of these

objectives. Our main result on this relationship is given in the following proposition.

Proposition 5 For all optimal solutions to the D-REM with Objectives (I), (II), and (III),

we have nI ≤ nII ≤ nIII .

In the following, we first discuss some further properties of an optimal solution to

Model 3.2 with Objectives (II) and (III) that are useful for the proof of Proposition 5.

Then, we provide the proof of Proposition 5.

Proposition 6 Consider an optimal solution for Objective (II) given by st
II , t = 1, · · · , nII .

In this optimal solution each path in P t,k,z, ∀k ∈ V, z ∈ Z, t = 1, · · · , nII , must have a

bottleneck arc-interval, unless for origin k we have
∑T

f=t+1 Lf,k,z
II = 0, i.e., unless origin k

has no more evacuees of type z, or
∑nII

f=1

∑
i:(i,j)∈A bf,z

ij,II = Cj,z, i.e., all the capacity of the

shelter j (the destination of a particular path P t,k,z) with capacity for type z evacuees is used

in the evacuation.

Proof: The proof follows by contradiction. If a path in P t,k,z, ∀k ∈ V, z ∈ Z, t = 1, · · · , nII ,

does not have a bottleneck arc-interval, then, by definition, it is not fully utilized and can

transport more evacuees to a shelter in interval t. If origin k of this path has more evacuees

of type z, i.e.,
∑T

f=t+1 Lf,k,z
II > 0, then all the capacity of shelter j for evacuees of type z

must be utilized, i.e.,
∑nII

f=1

∑
i:(i,j)∈A bf,z

ij,II = Cj,z. Else, if all the capacity of shelter j is not

utilized, then origin k must have no more evacuees. If neither of these conditions holds true,

then the solution st
II cannot be optimal for Objective (II).

Proposition 7 Consider an optimal solution for Objective (III) given by st
III , t = 1, · · · , nIII .

In this optimal solution each path in P t,k,z, ∀k ∈ V, z ∈ Z, t = 1, · · · , nIII , must have a bot-

tleneck arc-interval, unless
∑T

f=t+1 Lf,k,z
III = 0, i.e., unless all evacuees of type z from origin

k take paths that arrive to shelters in interval t or earlier, or
∑t

f=1

∑
i:(i,j)∈A bf,z

ij,III = Cj,z,

i.e, shelter j (the destination of a particular path P t,k,z) with capacity for type z evacuees,

has no remaining capacity.
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Proof: The proof is identical to that of Proposition 6.

The following corollary is a direct consequence of Propositions 6 and 7.

Corollary 3.3.4 Consider an optimal solution for Objective (l), l ∈ {II, III}, given by

st
l , t = 1, · · · , nl. To increase sb

l , while maintaining a feasible flow, sa
l must decrease for

some a < b.

In an optimal solution for Objective (III) given by st
III , t = 1, · · · , nIII , st

III is constrained

by the paths in P t,k,z, ∀k ∈ V, z ∈ Z. From Proposition 7, the number of evacuees on each

path in P t
iz is limited by: 1) bottleneck arcs on the path, i.e., the min-cut of the network, 2)

the remaining capacity of shelter j for evacuees of type z, and, 3) the number of remaining

evacuees at origin k. Corollary 3.3.4 implies that at least two groups of evacuees must be

re-routed from an optimal solution for Objective (III) to reduce the average evacuation time

and yield a feasible solution.

Proposition 8 Consider an optimal solution for Objective (l), l ∈ {II, III}. Each evacuee

traverses only one arc in each min-cut.

Proof: Consider a space-time version of the network (N, A), which consists of only those

arcs that are reachable in a feasible solution. While this network might contain multiple

min-cuts, each evacuee, in an optimal solution for Objective (l), l ∈ {II, III}, goes through

each min-cut only once. If an evacuee went through a min-cut twice, then the following

could also occur; the evacuee could leave the origin later, and only use the arc in the min-cut

having a higher time interval number, allowing another evacuee to utilize the other arc in

the min-cut, which can only improve the solution.

In the following proposition we show that we cannot reduce the average evacuation time,

from an optimal solution for Objective (III), by improving the utilization of the bottleneck

arcs, independent of shelter capacity limitations.

Proposition 9 Consider an optimal solution for Objective (III) in a network where all

shelters are uncapacitated. We cannot re-route evacuees to yield a feasible solution having a

lower average evacuation time.
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Proof: Consider an optimal solution for Objective (III) given by st
III , t = 1, · · · , nIII . We

will show that any re-routing scheme that reduces the average evacuation time is infeasible.

As shelters are uncapacitated, a re-routing scheme must decrease the average evacuation

time by an improved use of the bottleneck arcs (or min-cut; see Propositions 1, 2, and 8).

As a single re-routing cannot reduce the average evacuation time, we will have to examine

a scheme consisting of a series of interdependent re-routings, i.e., consecutive re-routings

where each successive re-routing makes use of the vacancy in a bottleneck arc produced by

the previous re-routing. We can, without loss of generality, assume that each re-routing in

the series involves only one evacuee. All independent schemes must begin by re-routing an

evacuee to a path, without bottleneck arcs, that reaches a shelter in a later interval. First,

we examine a scheme consisting of two re-routings, then we generalize this to all complex

re-routing schemes.

We re-route an evacuee from a path p ∈ P a
kz to a path in P b

kz, where a < b, opening

the bottleneck arcs on path p. Each of these bottleneck arcs can potentially be used by

another evacuee on another path. Consider one such path, path q ∈ P c
lz, where a < c. If

path q exists, then there also exists a path q′ ∈ P a
lz, consisting of the arcs from path q before

the bottleneck arc, the arcs from path p after the bottleneck arc, and of course, the shared

bottleneck arc. Assume that we re-route one evacuee from a path in P d
lz to path q. Since, this

evacuee could also be re-routed to path q′, we have that b ≥ d, else the original optimality

for Objective (III) is contradicted. To improve the average evacuation time, we must have

b− a < d− c, which cannot occur if b ≥ d.

More complex re-routing schemes are also accommodated by the above analysis. For

instance, if another re-routing were possible, using a bottleneck arc vacancy from when

we re-routed an evacuee from the path in P d
lz, then the only re-routing of an evacuee to

an earlier interval using that bottleneck arc must be from a path in P f
kz, where d < f <

b, k ∈ V , which cannot decrease the average evacuation time from the original solution for

Objective (III). The possibility of using path q′ (in the above analysis) imposes a restriction

on all subsequent re-routing; they cannot decrease the average evacuation time without

contradicting the optimality of the original solution to Objective (III).

Of course, independent re-routing schemes (i.e., not using bottleneck arc capacity made

available in another re-routing scheme) can be analyzed separately.
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Alternate Proof: Consider an optimal solution for Objective (III) given by st
III , t =

1, · · · , nIII , and an optimal solution for Objective (II) given by st
II , t = 1, · · · , nII , for a

network with uncapacitated shelters. Suppose that the average evacuation time for Ob-

jective (III) is more than that for Objective (II). Then for some interval t we must have

st
III > st

II . Let t′ be the first such interval, i.e., st
III = st

II , t = 1, · · · , t′ − 1 and st′
III > st′

II .

This implies that a bottleneck arc in a path in P f
kz, ∀k ∈ V, z ∈ Z, f ≤ t′ in the solution

for Objective III, is not a bottleneck arc in any path in P f
kz, ∀k ∈ V, z ∈ Z, f ≤ t′ in the

solution for Objective II. From Proposition 6, in the solution for Objective (II), we know that

any origin k ∈ V that has a path containing this arc must be evacuated by interval t′, and

thus this arc cannot be further utilized after interval t′. The bottleneck arcs in the solution

for Objective (III) correspond to the min-cut of the network. If shelters are uncapacitated,

the min-cut is the limiting factor in the evacuation, and a solution for Objective (II) that

does not fully utilize the min-cut cannot be optimal. We can see this is true because the

D-REM with Objective (II) and uncapacitated shelters can be modeled as a minimum cost

network flow problem.

Using these results, we can now prove Proposition 5 and establish that the number of

intervals required to complete an evacuation for an optimal strategy based on Objective (II),

i.e., minimizing the average evacuation time, is less than or equal to that for Objective (III).

Proof of Proposition 5: The first inequality, nI ≤ nII , follows from the definition of

Objective (I). To prove the second inequality, nII ≤ nIII , we show that an optimal solution

for Objective (III) cannot be modified closer to optimality for Objective (II) to produce a

feasible solution having a lower average evacuation time and a longer duration, n.

From Proposition 9, modifying the utilization of the bottleneck arcs in an optimal solu-

tion for Objective (III) cannot lower the average evacuation time. Thus, we must consider

modifying the utilization of the capacitated shelters. As a single re-routing cannot reduce

the average evacuation time, we will have to examine a scheme consisting of a series of in-

terdependent re-routings. We can, without loss of generality, assume that each re-routing in

the series involves only one evacuee. All schemes must begin by re-routing an evacuee from a

full, capacitated shelter, to a different shelter in a later interval. First, we examine a scheme

consisting of two re-routings, then we generalize this to all complex re-routing schemes.
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We re-route an evacuee from shelter j, which is full, to another shelter such that we

decrease sa
III and increase sb

III . This allows another evacuee to be re-routed to shelter j such

that we increase sc
III and decrease snIII

III . To maintain a feasible solution we must have a < b

and a < c, else the original optimality for Objective (III) is contradicted. To improve the

average evacuation time, we must have b− a < nIII − c. Together, these imply that b < nIII

and c < nIII .

Suppose re-routing an evacuee reduces st and opens a space in a capacitated shelter. The

earliest that this space can be used is interval t, else the original optimality of Objective (III)

is contradicted. Thus, if the first re-routing, in which we decrease sa
III and increase sb

III ,

allows not just one subsequent re-routing, but instead a series of re-routings, each interde-

pendent, using the shelter space vacated by the prior re-routing, the net effect on the average

is, at best, nIII − c, where the last evacuee is re-routed from interval nIII . Thus, no matter

how complex the scheme, it cannot increase n and decrease the average evacuation time.

Of course, independent re-routing schemes (i.e., not using shelter capacity made available

by another re-routing scheme) can be analyzed separately.

The following example shows that strict inequalities in Proposition 5 are possible.

W2 W3W1

V2

Y2

Y1

V1

Figure 3.2: A small network with capacitated shelters.

Example 1 Consider the network depicted in Figure 3.2, where nodes V1 and V2 are the

origin nodes, each with one evacuee, nodes W1, W2, and W3 are junction nodes, and nodes
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Y1 and Y2 are shelters, each with a capacity of one. Each arc can be traversed in one time

interval. Each arc and origin node has a risk value R = 1.

In this simple example there are two possible strategies. In the first strategy, the evacuee

from V1 uses shelter Y1, while the evacuee from V2 uses Y2. In the second strategy, the

evacuee from V2 uses shelter Y1 and the evacuee from V1 uses shelter Y2. The first strategy

completes the evacuation in time interval four, minimizing Objective (I), but does not max-

imize the number of evacuees that find shelter in the third interval, a necessary condition

of Objective (III)1. The second strategy completes the evacuation in time interval five, thus

not minimizing Objective (I), but being optimal for Objective (III). Both strategies incur

equal risks, and thus both are optimal for Objective (II), i.e., both minimize the average

evacuation time for an evacuee.

Next, we will show that for the special case where all shelters are uncapacitated, we

have nI = nII = nIII = nV.a = nV.b, and furthermore, that the evacuation strategy for

Objective (III) will always minimize the average evacuation time. While many shelters are

capacitated, the notion of uncapacitated shelters makes sense for certain broadly defined

shelters, such as any area outside the region to be evacuated, or an expandable shelter (e.g.,

with tents).

Proposition 10 When all shelters are uncapacitated, i.e., Cj,z = ∞, ∀j ∈ Y, z ∈ Z, the

optimal solutions for Objectives (II), (III), (V.a), and (V.b) are equivalent, and are also

optimal for Objective (I). However, the optimal solution for Objective (I) does not necessarily

optimize Objectives (II), (III), (V.a), or (V.b).

Proof: Consider an optimal solution for Objective (III) given by st
III , t = 1, · · · , nIII . As

shelter capacity is not a limiting factor on the value of any st
III , from Proposition 9 we

know that the optimal solutions for Objectives (III) and (II), and thus Objective (V.b), are

equivalent. The same logic from the proof of Proposition 9 can be applied to show that

Objective (V.a) is also equivalent, and that all these solutions are optimal for Objective (I).

If, in any of these solutions, some path p ∈ P l
kz, l ∈ {II, III, V.a, V.b} does not have a

bottleneck arc, then snl
l can increase without affecting the optimality of the solution with

regard to Objective (I), while rendering the new solution sub-optimal for Objectives (II),

1Note that we start at interval t = 1, not t = 0.
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(III), (V.a), and (V.b). Thus, the optimal solution for Objective (I) does not necessarily

optimize Objectives (II), (III), (V.a), or (V.b).

We note here that Jarvis and Ratliff (1982) produce a result similar to Proposition 10,

also for the special case where all shelters are uncapacitated, but for a model that does not

allow for the possibility of congestion, i.e., a model with only constant exit-flow limits. In

particular, they equate the optimal solutions for the two following objectives to each other,

and also show that they are optimal for Objective (I):

Minimize

T∑
t=1

∑
j∈Y

∑

i:(i,j)∈A

ctbt
ij, (3.35)

where ct > 0, t = 1, · · · , T , and c1 < c2 < · · · < cT , and

Maximize

t∑

f=1

∑
j∈Y

∑

i:(i,j)∈A

bf
ij, t = 1, · · · , T. (3.36)

In the following we show the relationship between Equation (3.35) and Objective (V.a).

Proposition 11 For Equation (3.35), with ct > 0, t = 1, · · · , T , and c1 < c2 < · · · < cT ,

there exists an equivalent constant risk scheme for Objective (V.a) where Rt > 0, t =

1, · · · , T , that is, Equation (3.35) is a special case of Objective (V.a).

Proof: Substituting D =
∑T

t=1

∑
j∈Y

∑
i:(i,j)∈A bt

ij, which holds for any feasible evacuation,

in Equation (2.18), we can write Objective (V.a) as follows:

T∑
t=1

Rt(
T∑

f=t

∑
i∈Y

∑

j:(j,i)∈A

bf
ji) =

T∑
t=1

∑
i∈Y

∑

j:(j,i)∈A

bt
ji(

t∑

f=1

Rf ).

Then, setting R1 = c1 and Rt = ct − ct−1 for t = 2, · · · , T , establishes the result.

As we shall discuss later, the risk approach allows for solutions that can take into account

special properties of the network, which Equation (3.35) cannot.

Equation (3.36) is related to Objective (III), but as Example 1 shows, it is not equivalent,

that is, an optimal solution for Objective (III) might be mutually exclusive of a solution that

optimizes Equation (3.36) for some t (e.g., for t = 4 in Example 1). Moreover, Objective (III)

is more flexible since there always exists a lexicographic maximum of st, t = 1, · · · , T .
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Unless all shelters are uncapacitated, an optimal solution for Objective (V.a) is generally

not optimal for Objective (I). We can show that a special case of Objective (V.a), with

a more restrictive risk structure, will always optimize Objective (I), even with capacitated

shelters. This is certain only if the risk structure insures that the smallest possible decrease

in risk from re-routing evacuees from interval n to an earlier interval is greater than the

largest possible increase in risk due to any other re-routing of evacuees required to perform

the first re-routing. This observation leads to the following result.

Proposition 12 An optimal solution for Objective (V.a) with the following risk structure,

t−1∑

f=1

Rf < Rt, t = 2, · · · , T,

where Rt > 0, t = 1 · · · , T , is also optimal for Objective (I).

Proof: Consider a feasible evacuation plan given by st, t = 1, · · · , n, and assume that to

decrease sn at least two re-routings must occur. Observe that re-routing evacuees from sn

to sn−1 decreases the risk by Rn per evacuee, which is the smallest possible decrease. The

greatest possible increase in risk occurs when evacuees are re-routed from s1 to sn−1, which

will increase the risk by
∑n−1

f=2 Rf per evacuee. If the decrease in risk is more than the increase,

then re-routing will occur. This risk scheme conforms with the concept of minimizing the

maximum time any evacuee is in the system, another interpretation of Objective (I). All

feasible re-routing schemes can be represented by the simple re-routing scheme discussed

here.

Next we will show that another variant of Objective (V.a) can also optimize Objec-

tive (III). Once again, we are interested in the more general case where some shelters are

capacitated. Here we slightly modify the risks, by allowing the risk in the first interval to

be a very small negative number.

Proposition 13 An optimal solution for Objective (V.a) with the following risk structure,

Rt >

T∑

f=t+1

Rf , t = 2, · · · , T − 1,

where R1 = 0 and Rt > 0, t = 2, · · · , T , is also optimal for Objective (III).
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Proof: Consider a feasible evacuation plan given by st, t = 1, · · · , n. Without loss of

generality, assume the plan already lexicographically maximizes sf , f = 1, · · · , t − 2, and

that to increase st−1 at least two re-routings must occur. Re-routing evacuees from st to st−1

yields the smallest decrease in risk, which is Rt per evacuee. Re-routing evacuees from st

to sT produces the largest increase in risk, which is
∑T

f=t+1 Rf per evacuee. If the decrease

in risk is more than the increase, then re-routing will occur. All feasible re-routing schemes

can be represented by the simple re-routing scheme discussed here.

Both Propositions 12 and 13 use risks to optimally assign evacuees to the capacitated

shelters, given the two objective functions.

Remark 3 An optimal solution for Objective (V) does not necessarily yield an optimal so-

lution for Objectives (I), (II),(III), (IV), (V.a), or (V.b).

For instance, assigning an extremely high risk to the arcs entering a particular shelter will

produce a solution in which this shelter is not used, to the detriment of the other objectives.

Remark 4 An optimal solution for Objective (IV), a commonly used objective in DTA mod-

els, does not necessarily yield an optimal solution for Objectives (I), (II), (III), (V.a), or

(V.b).

With the power to stage and route evacuees, an optimal solution to Objective (IV)

would only make use of the least-cost paths between origins and shelters, with no incentive

to maximize flow or complete the evacuation in a timely manner.

In summary, Objective (I) minimizes the duration of the evacuation. Objectives (II) and

(V.b) minimize the average evacuation time, and each has an evacuation duration that is less

than or equal to the duration of Objective (III), which maximizes the number of remaining

(unevacuated) evacuees to reach shelter in each interval.

Objective (V.a) is quite versatile: With specialized risk structures, it can minimize the

evacuation duration, considering both capacitated and uncapacitated shelters, minimize the

average risk, and maximize the number of remaining (unevacuated) evacuees to reach shelter

in each interval, i.e., Objective (V.a) can optimize Objectives (I), (II), and (III). Besides

this, with certain modifications to the constant risk assumption, it can produce strategies

that minimize the duration of an evacuation given certain constraints on the use of the
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network. For example, if some arcs are deemed unsafe after a certain time, the risk on

these arcs can be set to extremely high values, thus forcing a minimum time evacuation that

avoids the unsafe arcs. Similarly, if certain neighborhoods become unsafe earlier than others,

these neighborhoods can be given extremely high risk values when unsafe, thus producing a

minimum time evacuation strategy, given that certain neighborhoods must be evacuated by

certain times.

3.4 Insights

In this section we provide certain additional insights using a series of simple examples. These

insights mainly concern how different network topologies can impact strategies and interact

with the various objective functions.

Insight 1: Even if shelters are uncapacitated, it is not always optimal for evacuees to use

their nearest shelter; as shown by Example 2 below.

V2 W2 W3 Y2

W1V1 Y1

Figure 3.3: A small network with uncapacitated shelters.

Example 2 Consider the network depicted in Figure 3.3, where nodes V 1 and V2 are

origins having 80 evacuees each, nodes W1, W2, and W3 are junctions, and nodes Y1 and

Y2 are uncapacitated shelters. Furthermore, each arc has an exit-flow function governed by

the Pipes relationship, with a maximum flow of qmax
ij = 20 vehicles per interval. The strategy

that will evacuate the network in the fewest number of intervals is to send the evacuees from

V1 to shelter Y1 and from V2 to shelter Y2, despite shelter Y1 being the shelter nearest

origin node V2.

In Example 2 the bottleneck status of arc (W1, Y1) is the factor that results in sending

evacuees to a more distant shelter. Without proper planning and management, if evacuees
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select the closest shelter this bottleneck will force arcs (V1, W1) and (V2, W1) to become

congested, increasing the time required to complete the evacuation.

Insight 2: When shelters share a common bottleneck arc and the shelter closer to the

bottleneck arc is capacitated (with less capacity than the number of evacuees), the evacuees

sent to the closer shelter might need to leave last, as Example 3 illustrates.

Y1

V1 W1 W2 Y2

Figure 3.4: A small network with both capacitated and uncapacitated shelters.

Example 3 Consider the network depicted in Figure 3.4, where node V1 is an origin having

60 evacuees, nodes W1 and W2 are junctions, and nodes Y1 and Y2 are shelters, where Y1

has a capacity of 20 and Y2 is uncapacitated. Furthermore, each arc has an exit-flow function

governed by the Pipes relationship, with a maximum flow of qmax
ij = 20 vehicles per interval.

Sending the last 20 evacuees from V1 to shelter Y1 completes the evacuation in the fewest

number of intervals; any other strategy increases the number of intervals required to complete

the evacuation.

Insight 3: Shelters should be located such that they do not share a bottleneck arc.

As bottleneck arcs play an important strategic (and operational) role, it is of utmost

importance to identify them. Arcs that experienced congestion in a previous, non-staged

evacuation might not always identify the bottleneck arcs, which leads to the following insight.

Insight 4: Congestion in a non-staged evacuation does not have to be adjacent to a bottle-

neck arc, as Example 4 illustrates.

Example 4 Consider the network depicted in Figure 3.5, where nodes V1, V2, V3, and

V4 are origins having large numbers of evacuees, nodes W1, W2, and W3 are junctions,
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W3V3

W1

W2 Y1

V1

V2

V4

Figure 3.5: A network example of strategy dependent congestion.

and node Y1 is a shelter. Furthermore, each arc has an exit-flow function governed by the

Pipes relationship, with a maximum flow of qmax
ij = 20 vehicles per interval. Arc (W3, Y1)

represents the min-cut in this network and is a bottleneck arc for all intervals t with flow,

when staging is used in this example, i.e., an optimal strategy with staging must insure

that this arc maintains a maximum flow of qmax
ij = 20 vehicles per interval, if possible. In

an unstaged evacuation, where each origin’s characteristic network loading function is such

that evacuees leave each origin at a rate of 15 evacuees per interval, congestion will form on

arcs (V1, W1), (V2, W1), (V3, W2), and (V4, W2). This congestion is not adjacent to the

bottleneck arc, hence, on reviewing the evacuation, one might suppose that arcs (W1, W3)

and (W2, W3) are the bottleneck arcs. An optimal staged strategy that controls the release

of evacuees will insure that the bottleneck arc (W3, Y1) is fully utilized at its maximum

flow limit. The output of Model 3.4 with the Objectives (I), (V.a), (V.b), or (III) would

automatically accomplish this goal for this network.

Example 4 shows that congestion is not just a property of the network, and specifically

the location of the bottleneck arcs, but is also strategy-dependent. The next two insights

deal with Objective (V) and how risk can impact the evacuation strategy.

Insight 5: With Objective (V), risk boundaries and bottleneck arcs interact to govern

congestion in an optimal solution, as Example 5 illustrates.
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Figure 3.6: Interaction of risk levels and bottleneck arcs.

Example 5 Consider the portion of a network depicted in Figure 3.6, where nodes V1

and V2 are origins in a high risk area with 80 evacuees each, and nodes W1, W2, W3, and

W4 are junctions. Furthermore, each arc has an exit-flow function governed by the Pipes

relationship, with a maximum flow of qmax
ij = 20 vehicles per interval. If nodes V1 and

V2, along with arcs (V1,W1) and (V2, W2), are given high enough risks compared to arcs

(W1,W3) and (W2,W3), then congestion will form on arcs (W1,W3) and (W2,W3), while if

these arcs are also given a high risk, no congestion will form.

Insight 6: Considering Objective (V), high risk areas do not necessarily evacuate first in

an optimal solution.

W1

V2

V1

V3

W2 W3

Figure 3.7: Evacuation of high risk areas.

Example 6 Consider the portion of a network depicted in Figure 3.7, where nodes V1,

V2, and V3 are origins having 80 evacuees each. Furthermore, V1 and V2 have high risks

compared to the other nodes depicted in the network. Each arc has an exit-flow function

governed by the Pipes relationship, with a maximum flow of qmax
ij = 20 vehicles per interval,

except arc (W2,W3), which has a maximum flow of qmax
ij = 30 vehicles per interval. The

optimal solution for Objective (V) will send evacuees from node V3 continuously (despite
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its lower risk), until all evacuees are gone, while it will only allow 20 evacuees per interval to

escape nodes V1 and V2 combined. Note that an optimal solution would release 20 evacuees

from node V3 in the first interval, and 10 evacuees in all subsequent intervals.

3.5 Solution Approaches

As the D-REM is motivated by large-scale regional evacuations, the networks used in practice

might be quite large. Furthermore, with Objective (I), the model is a zero-one mixed-

integer program (MIP), which is generally difficult to solve to optimality for large networks.

Therefore, in this section we first discuss solution techniques for the D-REM, Objective (I).

First, we observe that the D-REM is a linear program (LP), except for the binary vector E,

which has a special structure at optimality (consecutive ones up to some interval t, followed

by zeroes), and for each such hypothesized t value, the resulting feasibility problem is an LP.

To exploit this structure, it is useful to determine a lower bound (denoted LB) on the

duration of the evacuation, that is, LB ≤ nI . The lower bound in Proposition 14 is deter-

mined by dividing the total number of evacuees by the sum of the maximum possible flows

into each shelter, and rounded upwards if fractional (denoted d.e)

Proposition 14 LB = dD/
∑

j∈Y

∑
i:(i,j)∈A qmax

ij e.

Proof: The proof follows as
∑

j∈Y

∑
i:(i,j)∈A qmax

ij ≥ st, t = 1, · · · , T , in any feasible solution.

Clearly, the tightness of this lower-bound is highly dependent on the underlying network

structure. Next, we present solution techniques for determining an optimal strategy for

Model 3.2 with Objective (I).

Solution Technique 1: Solve the D-REM with Objective (I) in its original form as an

MIP.

Solution Technique 2: The following algorithm utilizes the special structure of the binary

vector E discussed above, and makes use of the lower and upper bounds on nI developed in

Propositions 5 and 14.

1. Determine a lower bound, LB, on nI using Proposition 14.
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2. Determine an upper bound, UB, on nI by solving the D-REM with Objective (II) (as

an LP - see Proposition 5).

3. Perform a bisection search on the discrete values in [LB, UB], solving the feasibility

problem at each iteration as an LP.

This problem can be solved in polynomial time having complexity O(n3Llog(UB − LB)),

where n is the number of variables in the problem, L is the number of binary bits required

to store the data (see Bazaraa, Jarvis, and Sherali, 2005, for example).

Solution Technique 3: The following algorithm utilizes the special risk structure from

Proposition 12.

1. Determine a lower bound, LB, on nI using Proposition 14.

2. Set Rt = 0, t = 1, · · · , LB. Set Rt, t = LB, · · · , T , based on the risk scheme from

Proposition 12.

3. Solve Model 3.2 with Objective (V.a) and the given risk structure.

This problem can be solved in polynomial time, using a single LP, having complexity

O(n3L). In practice, if the lower bound is too far from the optimal solution, appropriate

fractional risk values that satisfy Proposition 12 should be selected to control their growth

from a computational viewpoint. For example, the choice Rt = 2t−LBε, t = LB, · · · , T ,

satisfies this relationship, where 0 < ε ≤ 1 can be appropriately chosen, depending on T .

If the range between the lower bound and T is much larger that 40 intervals, then we can

revert to Solution Technique 2 (possibly, using this in concert with Solution Technique 3 as

suitable).

Each of these solution techniques can be improved using Proposition 1, allowing us to

substitute Model 3.4 for the D-REM, which simplifies the underlying LP and improves the

form of the optimal solution by eliminating solutions having congestion and holding-back

characteristics. The problem based on all the other objectives are easily solvable as they are

LPs, and Objectives (II), (III), (V.a),and (V.b) can utilize Model 3.4 to further simplify the

problem.

In Chapter 5, we present computational results on applying these solution techniques to

a large-scale, realistic network.
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3.6 Generic Non-Linear Flow Relationship

Often in the DTA literature, the exit-flow from an arc is modeled as a non-linear function.

In this section, we consider an exit-flow function gij(x
t
ij), for arc (i, j), ∀(i, j) ∈ A, that has

a non-linear, concave traffic flow/density relationship. We assume that the function gij(x
t
ij)

has the following properties:

1. gij(x
t
ij = 0) = 0.

2. gij(x
t
ij = kmax

ij lij) = 0.

3. gij(x
t
ij) ≤ xt

ij.

4. g′ij(x
t
ij = 0) = 1.

5. xqmax
ij > qmax

ij , where xqmax
ij is the number of evacuees on arc (i, j) such that the flow is

maximized.

Property 4 stems from the assumption that vehicles can traverse an arc in a single time

interval at the free-flow speed (umax
ij ). Properties 1 and 4, along with the assumption of

concavity, imply Property 3, since gij(x
t
ij) ≤ gij(0) + xt

ijg
′
ij(0) = xt

ij. Property 5 insures

the uncongested regime is not linear, in which case, the function would act like the Pipes

relationship, as discussed in Section 2.5.

An example of a well-known traffic-flow relationship, which adheres to these five proper-

ties, is the Greenshields relationship, which is defined as follows:

gij(x
t
ij) = umax

ij xt
ij/lij − (umax

ij /kmax
ij )(xt

ij/lij)
2. (3.37)

Figure 3.8 shows the relationships between flow, density, and speed for the Greenshields

relationship.

We see from the Greenshields relationship that gij(x
t
ij = 0) = 0 and gij(x

t
ij = kmax

ij lij) = 0.

The derivative of gij(x
t
ij) with respect to xt

ij is:

g′ij(x
t
ij) = dgij/dxt

ij = umax
ij /lij − 2umax

ij xt
ij/k

max
ij l2ij.

Note that the maximum flow, qmax
ij , where the derivative is equal to zero, occurs at a density of

kmax
ij /2 and a speed of umax

ij /2. This represents the transition point from an uncongested to a

52



Flow and Speed as a Function of Density
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Figure 3.8: The Greenshields traffic flow relationship.

congested regime. The derivative evaluated at xt
ij = 0 yields umax

ij /lij. Under the assumption

that any arc (i, j) can be traversed in a single time interval, we see that umax
ij /lij = 1. As

this relationship in concave, the slope of the flow/density curve is decreasing in xt
ij. Thus,

with the Greenshields relationship and our assumptions, the flow out of arc (i, j) is always

less than or equal to the number of evacuees on the arc, i.e., gij(x
t
ij) ≤ xt

ij.

In the remainder of this section, we show some preliminary results for the D-REM,

with this type of non-linear exit-flow function. To study this model, we examine the KKT

conditions. To do this, we use Objective (II). This is done to avoid the binary variables

required by Objective (I). We also eliminate evacuee type from the D-REM to simplify this

complex model. The formulation, along with the dual variables, is as follows:
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Model 3.5 D-REM, KKT Format

Maximize

T∑
t=1

∑
j∈Y

∑

i:(i,j)∈A

(T − t)bt
ij (3.38)

subject to

v1t
ij : −xt+1

ij + xt
ij − bt

ij + at
ij = 0, ∀(i, j) ∈ A, t = 1, · · · , T − 1 (3.39)

v2t
i : −

∑

j:(j,i)∈A

bt
ji +

∑

j:(i,j)∈A

at
ij = 0, ∀i ∈ W, t = 1, · · · , T (3.40)

v3i : −
T∑

t=1

∑

j:(i,j)∈A

at
ij + Di = 0, ∀i ∈ V (3.41)

u1t
ij : at

ij − qmax
ij ≤ 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.42)

u2t
ij : bt

ij − gij(x
t
ij) ≤ 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.43)

u3i :
T∑

t=1

∑

j:(j,i)∈A

bt
ji − Ci ≤ 0, ∀i ∈ Y (3.44)

u4t
ij : −at

ij ≤ 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.45)

u5t
ij : −bt

ij ≤ 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.46)

u6t
ij : −xt

ij ≤ 0, ∀(i, j) ∈ A, t = 1, · · · , T . (3.47)

The objective in Equation (3.38) is equivalent to Equation (2.12), which we repeat here,

Minimize

T∑
t=1

∑
j∈Y

∑

i:(i,j)∈A

tbt
ij.

Proposition 15 Solving Model 3.4, which has constant exit-flow limits, for Objectives (I),

(II), or (III), where the constant exit-flow limits equal the maximum variable exit-flow limits

(qmax
ij ) from Model 3.5, yields a lower bound on the solution to Model 3.5 for each of the

respective objectives.

Proof: Based on Property 3 of the exit-flow function, gij(x
t
ij), and Equation (3.43), we can

see that with variable exit-flow limits, the outflow from each arc is always less than or equal

to the outflow from the constant exit-flow limit problem. The proof thus follows.

Proposition 16 Propositions 5-10, which describe the relationship between Objectives (I),

(II), and (III) for the D-REM, are also valid for Model 3.5.
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Proof: The proofs to Propositions 5-10 do not depend on the form of the variable exit-flow

function, and are thus valid for the convex functions utilized in Model 3.5.

The KKT necessary conditions are as follows:

Model 3.6 KKT Necessary Conditions

at
ij : v1t

ij − v3i + u1t
ij − u4t

ij = 0, ∀i ∈ V, ∀j : (i, j) ∈ A, t = 1, · · · , T (3.48)

at
ij : v1t

ij + v2t
i + u1t

ij − u4t
ij = 0, ∀i ∈ W, ∀j : (i, j) ∈ A, t = 1, · · · , T (3.49)

bt
ij : −v1t

ij − v2t
j + u2t

ij − u5t
ij = 0, ∀j ∈ W, ∀i : (i, j) ∈ A, t = 1, · · · , T (3.50)

bt
ij : −v1t

ij + u2t
ij + u3j − u5t

ij = (T − t), ∀j ∈ Y, ∀i : (i, j) ∈ A, t = 1, · · · , T(3.51)

xt
ij : −v1t−1

ij + v1t
ij − u2t

ijg
′
ij(x

t
ij)− u6t

ij = 0, ∀(i, j) ∈ A, t = 2, · · · , T (3.52)

u1t
ij(a

t
ij − qmax

ij ) = 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.53)

u2t
ij(b

t
ij − gij(x

t
ij)) = 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.54)

u3i(
T∑

t=1

∑

j:(j,i)∈A

bt
ji − Ci) = 0, ∀i ∈ Y (3.55)

u4t
ij(−at

ij) = 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.56)

u5t
ij(−bt

ij) = 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.57)

u6t
ij(−xt

ij) = 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.58)

u1t
ij, u2t

ij, u4t
ij, u5t

ij, u6t
ij ≥ 0, ∀(i, j) ∈ A, t = 1, · · · , T (3.59)

u3i ≥ 0, ∀i ∈ Y. (3.60)

Note: x1
ij,∀(i, j) ∈ A, is a parameter, not a decision variable.

Proposition 17 Consider an arbitrary arc (i, j) which is uncongested in interval t, that is

xt
ij ≤ xqmax

ij . Arc (i, j) cannot become congested as long as bf
ij = gij(x

f
ij), ∀f ≥ t, that is, as

long as the outflow is unobstructed.

Proof: If xt
ij ≤ xqmax

ij and bt
ij = gij(x

t
ij) for arc (i, j) then, from Equation (3.39), we have

xt+1
ij ≤ xt

ij − gij(x
t
ij) + qmax

ij because at
ij ≤ qmax

ij (see Equation (3.42)). From the concavity

of gij and Property 4, we have that qmax
ij = gij(x

qmax
ij ) ≤ gij(x

t
ij) + g′ij(x

t
ij)(x

qmax
ij − xt

ij) =

gij(x
t
ij) + xqmax

ij − xt
ij. Hence, xt+1

ij ≤ xt
ij − gij(x

t
ij) + qmax

ij ≤ xqmax
ij .
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Corollary 3.6.1 If bt
ij = qmax

ij and bt−1
ij = gij(x

t−1
ij ) for arc (i, j), then we have at−1

ij = qmax
ij ,

that is, the flow into arc (i, j) in interval t− 1 is equal to the maximum possible flow.

We define arc (i, j) as an exit arc if j is a shelter, that is, j ∈ Y . As an exit arc has

no downstream obstructions to flow, holding-back is simply defined as bt
ij < gij(x

t
ij). The

following propositions discuss properties of exit arcs in an optimal solution.

Proposition 18 For an exit arc (i, j) in an optimal solution, there is no holding-back, that

is, bt
ij = gij(x

t
ij).

Proof: For Objective (II), the sooner that evacuees on an exit arc enter shelter j, the lower

the average evacuation time. This is because holding-back in interval t, i.e., bt
ij < gij(x

t
ij),

will not increase total flow into the shelter in intervals t and later, as flow is governed by a

concave function. In other words, the slope of gij(x
t
ij) is decreasing as xt

ij increases.

Proposition 19 For an exit arc (i, j) in an optimal solution, flow will never enter the con-

gested regime, that is, xt
ij ≤ xqmax

ij (which is equivalent to xt
ij ≤ kmax

ij lij/2 for the Greenshields

relationship) and thus 0 ≤ g′ij(x
t
ij) ≤ 1.

Proof: This follows from Propositions 17 and 18.

Proposition 20 For an exit arc (i, j) in an optimal solution, the following relationship

holds: v1t−1
ij ≤ v1t

ij, t = 2, · · · , T .

Proof: From Equation (3.52) we have, v1t−1
ij = v1t

ij − u2t
ijg

′
ij − u6t

ij. As u2t
ij ≥ 0 and

u6t
ij ≥ 0, and by Proposition 19, g′ij ≥ 0, the result follows.

Proposition 21 For an exit arc (i, j) in an optimal solution, if xt
ij > 0 then u2t−1

ij > 0.

Proof: From Equation (3.51) we have:

v1t
ij = −(T − t) + u2t

ij + u3j − u5t
ij

v1t−1
ij = −(T − (t− 1)) + u2t−1

ij + u3j − u5t−1
ij .

Substituting for v1t
ij and v1t−1

ij in Equation (3.52) yields:

(T − (t− 1))− u2t−1
ij − u3j + u5t−1

ij − (T − t) + u2t
ij + u3j − u5t

ij − u2t
ijg

′
ij(x

t
ij)− u6t

ij = 0.
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As xt
ij > 0, we get bt

ij > 0 by Proposition 18, and thus u5t
ij and u6t

ij are zero from Equa-

tions (3.57) and (3.58). Canceling and re-arranging terms yields:

u2t−1
ij = 1 + u5t−1

ij + u2t
ij(1− g′ij(x

t
ij)).

As u5t−1
ij ≥ 0, u2t

ij ≥ 0, and 0 ≤ g′ij(x
t
ij) ≤ 1, we see that u2t−1

ij > 0.

Proposition 22 For an exit arc (i, j) in an optimal solution, whenever shelter capacity is

not an issue, i.e., u3j = 0, we have v1t
ij ≤ 0, t = 1, · · · , T − 1.

Proof: For any optimal solution, it is possible to have a last time interval T where xt
ij = 0.

For time interval T , from Equation (3.51) we have:

v1T
ij − u2T

ij = −u5T
ij ≤ 0, (3.61)

as u3j = 0 and u5T
ij ≥ 0. From Property 4, g′ij(x

T
ij = 0) = 1. Combining Equations (3.52)

and (3.61) yields v1T−1
ij = v1T

ij − u2T
ij − u6T

ij = −u5T
ij − u6T

ij ≤ 0 as u6T
ij ≥ 0. Then from

Proposition 20 the result follows.

We define l as the first time interval, and m as the last time interval, in a series of intervals

where xt
ij > 0, ∀(i, j) ∈ A, t = l, · · · ,m. We also define m′ as the last interval (the first

interval being l−1), in a series of intervals where at
ij > 0, ∀(i, j) ∈ A, t = l−1, · · · ,m′. Unless

stated otherwise, these variables are in reference to an exit arc. We know, by definition, that

m′ ≤ m− 1. Most of the above propositions are in support of the following result:

Proposition 23 For an exit arc (i, j) in an optimal solution, v1t−2
ij < v1t−1

ij for t = l, · · · ,m,

unless for some t− 1 ≥ l, the flow into shelter j is equal to the maximum possible flow, i.e.,

bt−1
ij = gij(x

t−1
ij ) = qmax

ij , in which case v1t−2
ij = v1t−1

ij .

Proof: From Proposition 21 we have u2t−1
ij > 0, for t = l, · · · ,m. From Equation (3.52)

we have v1t−2
ij = v1t−1

ij − u2t−1
ij g′ij(x

t−1
ij ) − u6t−1

ij . From Equation (3.59) we have u6t−1
ij ≥ 0

and from Proposition 19 we have g′ij(x
t−1
ij ) ≥ 0. Thus, unless g′ij(x

t−1
ij ) = 0, we have that

v1t−2
ij < v1t−1

ij . Only when the concave exit-flow function, gij(x
t−1
ij ), is maximized does

g′ij(x
t−1
ij ) = 0, i.e., when bt−1

ij = gij(x
t−1
ij = xqmax

ij ) = qmax
ij . When this occurs we have

u6t−1
ij = 0 because xt−1

ij = xqmax
ij > 0, thus the exception, v1t−2

ij = v1t−1
ij .
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Note that for t = l we have v1l−2
ij < v1l−1

ij since, by definition, xl−1
ij = 0, and thus we have

g′ij(x
l−1
ij ) = 1 from Property 4. Also note that by Corollary 3.6.1 and Proposition 18, that

for bt−1
ij = gij(x

t−1
ij = xqmax

ij ) = qmax
ij to occur we must have at−2

ij = qmax
ij , and thus the exit

arc in interval t− 2 is a candidate bottleneck arc-interval. Next, we examine some network

properties of an optimal solution.

Proposition 24 Consider any pair of adjacent arcs (i, j) and (j, k). In an optimal solution

if v1t−1
jk < v1t

jk, at
jk > 0, xt

jk > 0, and bt
ij > 0, then u2t−1

ij > 0, except possibly when

at−1
jk = qmax

jk , i.e., when arc (j, k) is a bottleneck arc in interval t− 1.

Proof: Combining Equations (3.49) and (3.50) for any pair of adjacent arcs (i, j) and (j, k),

based on the common v2t
j variable, yields:

v1t
ij = v1t

jk + u1t
jk − u4t

jk + u2t
ij − u5t

ij, ∀t = 1, · · · , T. (3.62)

Substituting for the v1t
ij and v1t−1

ij variables in Equation (3.52) for arc (i, j), based on

Equation (3.62), and rearranging, yields:

u2t−1
ij = v1t

jk − v1t−1
jk + u2t

ij(1− g′ij(x
t
ij)) + u4t−1

jk + u5t−1
ij + u1t

jk − u1t−1
jk , (3.63)

as u4t
jk = u5t

ij = u6t
ij = 0 from Equations (3.45)-(3.47) because at

jk, b
t
ij, x

t
ij > 0.

If, v1t−1
jk < v1t

jk, as stated in the proposition, then v1t
jk − v1t−1

jk > 0. Furthermore, from

Property 4 and the concavity of the exit-flow function, gij, we have u2t
ij(1−g′ij(x

t
ij)) ≥ 0. The

remaining variables on the left-hand side of Equation (3.63) are non-negative by definition,

with only the last term, u1t−1
jk , subtracted. Thus, we have u2t−1

ij > 0, unless u1t−1
jk > 0, which

implies that arc (j, k) is a bottleneck arc in interval t−1, i.e., at−1
jk = qmax

jk by Equation (3.53).

Proposition 25 The pattern established for an exit arc (j, k) of v1t−1
jk < v1t

jk for intervals

t = l, · · · ,m′ (see Proposition 23) will propagate upstream to adjacent arc (i, j), following

the flow in reverse, i.e., when bt
ij > 0, unless the propagation is inhibited by a bottleneck

arc-interval.

Proof: Consider an exit arc (j, k) and adjacent arc (i, j) in intervals t = l, · · · , m′ (refer-

enced to the exit arc). For the intervals considered we have at
jk > 0 and xt

jk > 0. From
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Proposition 23 we have v1t−1
jk < v1t

jk, unless g′jk = 0, i.e., gjk(x
t
jk) = qmax

jk . From Proposi-

tion 24 we have u2t−1
ij > 0 for all intervals t = l, · · · ,m′ when v1t−1

jk < v1t
jk and bt

ij > 0,

unless u1t−1
jk > 0. Both bt

jk = gjk(x
t
jk) = qmax

jk and u1t−1
jk > 0 imply that at−1

jk = qmax
jk and

hence that arc (j, k) is a bottleneck in interval t−1 (see the proof for Proposition 23). When

u2t−1
ij > 0, then v1t−2

ij < v1t−1
ij unless g′ij = 0, i.e., gij(x

t
ij) = qmax

ij . Following the same logic,

the propagation continues upstream, following the flow, unless inhibited by a bottleneck arc

interval.

Proposition 26 In an optimal solution, any arc (i, j) that is downstream of a bottleneck

arc-interval must have bt
ij = gij(x

t
ij); thus there is no holding-back on an arc unless it is

upstream of a bottleneck arc-interval.

Proof: From Proposition 18 we know that bt
ij = gij(x

t
ij) for an exit arc. The propagation

mechanism from Proposition 25 is based on the propagation of non-zero u2 variables up-

stream, against the flow. Thus, u2t
ij > 0 (and from Equation (3.54), bt

ij = gij(x
t
ij)) for any

arc (i, j) upstream of the exit arc, unless a bottleneck arc-interval inhibits the propagation,

i.e., any arc (i, j) that is downstream of a bottleneck arc-interval must have bt
ij = gij(x

t
ij).

Proposition 27 In an optimal solution, any arc (i, j) that is downstream of a bottleneck

arc-interval must not be congested, i.e., xt
ij ≤ xqmax

ij .

Proof: By Proposition 26 any arc (i, j) that is downstream of a bottleneck arc-interval must

have bt
ij = gij(x

t
ij). By Proposition 17 these arcs cannot become congested.

Propositions 26 and 27 make intuitive sense; arcs downstream of a bottleneck arc-interval

should not delay evacuees due to holding-back or congestion.

Proposition 28 In an optimal solution, all evacuees must flow through a bottleneck arc-

interval, with the possible exception of those evacuees leaving origin i in the last interval

having a positive flow from node i.

Proof: From Proposition 25, if no bottleneck arc-intervals intervene, for each interval t with

flow from node i, i ∈ V , onto entrance arc (i, j) in interval t we have v1t−1
ij < v1t

ij. If arc

(i, j) has more than a single interval t with v1t−1
ij < v1t

ij, then we must use u1t
ij to satisfy

Equation (3.48), except for possibly one interval in which v3i can be used, as by definition
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u4t
ij = 0, thus at

ij = qmax
ij , making arc (i, j) a bottleneck in interval t. Furthermore, as

u1t
ij ≥ 0 and is added to v1t

ij, we have v1t
ij ≤ 0. Thus, v3i can only be used in the last

interval t having a positive flow, as this interval will have the smallest v1t
ij value.

Next, we examine a network consisting of sequential arcs, such as the two arc network

depicted in Figure 3.9.

321

Figure 3.9: A network composed of two sequential arcs.

Proposition 29 Consider a network composed of F sequential nodes, labeled from 1 to F ,

where Node 1 is the origin, Node F is the shelter, qmax
ij ≤ qmax

jk , i = 1, · · · , F−2, j = i+1, k =

j+1, and all arcs are initially empty, i.e., x1
ij = 0, ∀(i, j) ∈ A. For this network, the optimal

solution takes the following form; for Arc (1,2), we have at
12 = min[qmax

12 , O1−
∑t−1

f=1 af
12], t =

1, · · · , T , for any pair of adjacent arcs (i, j) and (j, k), we have at
jk = bt

ij = gij(x
t
ij), and for

all arcs xt+1
ij =

∑t
f=1 af

ij −
∑t

f=1 bf
ij, t = 1, · · · , T − 1 and bt

ij = gij(x
t
ij), t = 1, · · · , T .

Proof: From Proposition 18 we know that holding-back will not occur on the exit arc

(F − 1, F ), i.e., bt
F−1,F = gF−1,F (xt

F−1,F ), t = 1, · · · , T , and from Proposition 19 the exit arc

will not enter the congested regime. For the uncongested regime, the slope of the exit-flow

function is non-negative; thus, to maximize flow into the shelter, flow into arc (F − 1, F )

should be maximized. As qmax
F−2,F−1 ≤ qmax

F−1,F , to maximize the flow into arc (F − 1, F )

we have at
F−1,F = bt

F−2,F−1 = gF−2,F−1(x
t
F−2,F−1). As holding-back does not occur on arc

(F−2, F−1), by Proposition 17, congestion also does not occur, and as qmax
F−3,F−2 ≤ qmax

F−2,F−1,

to maximize flow onto arc (F−2, F−1), and thus maximize flow onto arc (F−1, F ), we have

at
F−2,F−1 = bt

F−3,F−2 = gF−3,F−2(x
t
F−3,F−2). This same logic continues along all upstream

arcs; thus, bt
ij = gij(x

t
ij),∀(i, j) ∈ A, t = 1, · · · , T . To maximize flow onto the first arc, Arc

(1, 2), we have at
12 = min[qmax

12 , O1 −
∑t−1

f=1 af
12], t = 1, · · · , T . From Equation (3.52), then,

we have xt+1
ij =

∑t
f=1 af

ij −
∑t

f=1 bf
ij, t = 1, · · · , T − 1.
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Corollary 3.6.2 For the network defined in Proposition 29, Arc (1, 2), the initial arc, is a

bottleneck arc until demand is exhausted. Furthermore, the remaining arcs are critical, and

by definition will experience no congestion or holding-back in the optimal solution.

Now we will examine another sequential network where a bottle-neck forms on an arc

downstream of the initial arc.

Proposition 30 Consider a network composed of F sequential nodes, labeled from 1 to F ,

where Node 1 is the origin, Node F is the shelter, qmax
d,d+1 < qmax

12 ≤ qmax
ij , i = 2, · · · , F −1, j =

i + 1, i 6= d, j 6= d + 1, and all arcs are initially empty, i.e., x1
ij = 0,∀(i, j) ∈ A. For

this network, there are two possibilities. First, arc (d, d + 1) might never reach bottleneck

status, in which case, Arc (1,2) is the bottleneck arc-interval and the optimal solution takes

the following form; for Arc (1,2), we have at
12 = min[qmax

12 , O1 −
∑t−1

f=1 af
12], t = 1, · · · , T ,

for any pair of adjacent arcs (i, j) and (j, k), we have at
jk = bt

ij = gij(x
t
ij), and for all arcs

xt+1
ij =

∑t
f=1 af

ij −
∑t

f=1 bf
ij, t = 1, · · · , T − 1 and bt

ij = gij(x
t
ij), t = 1, · · · , T . Another

possibility is that arc (d, d + 1) is a bottleneck in some interval τ , in which case, we have

at
12 = min[qmax

12 , O1 −
∑t−1

f=1 af
12], t = 1, · · · , T .

Proof: From Proposition 18 we know that holding-back will not occur on the exit arc

(F − 1, F ), i.e., bt
F−1,F = gF−1,F (xt

F−1,F ), t = 1, · · · , T , and from Proposition 19 the exit arc

will not enter the congested regime. For the uncongested regime, the slope of the exit-flow

function is non-negative; thus, to maximize flow into the shelter, flow into arc (F − 1, F )

should be maximized. As qmax
F−2,F−1 ≤ qmax

F−1,F , to maximize the flow into arc (F − 1, F )

we have at
F−1,F = bt

F−2,F−1 = gF−2,F−1(x
t
F−2,F−1). As holding-back does not occur on arc

(F−2, F−1), by Proposition 17 congestion also does not occur, and as qmax
F−3,F−2 ≤ qmax

F−2,F−1,

to maximize flow onto arc (F−2, F−1), and thus maximize flow onto arc (F−1, F ), we have

at
F−2,F−1 = bt

F−3,F−2 = gF−3,F−2(x
t
F−3,F−2). This same logic continues along all upstream

arcs; thus, bt
ij = gij(x

t
ij),∀(i, j) ∈ A, t = 1, · · · , T . To maximize flow onto the first arc, Arc

(1, 2), we have at
12 = min[qmax

12 , O1 −
∑t−1

f=1 af
12], t = 1, · · · , T . From Equation (3.52), then,

we have xt+1
ij =

∑t
f=1 af

ij −
∑t

f=1 bf
ij, t = 1, · · · , T − 1.

Corollary 3.6.3 For the network defined in Proposition 29, Arc (1,2), the initial arc, is a

bottleneck arc until demand is exhausted. Furthermore, the remaining arcs arc critical, and

by definition, will experience no congestion or holding-back in an optimal solution.
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Figure 3.10 displays an optimal solution and KKT dual variables for a sequential network

composed of two identical arcs. Both arcs have qmax
ij = 25. The first arc, in intervals 1

through 4, is a bottleneck. As Figure 3.10 illustrates, the KKT variables in Figure 3.10

conform to Propositions 17-28 proven in this section.

  arc 1         

prd a x b g' v1 v2 u1 u2 u4 u5 u6 

1 25.00 0.00 0.00 1.00 -6.95 12.49 2.44 6.47 0.00 0.93 4.05

2 25.00 25.00 18.75 0.50 -5.68 8.23 1.17 2.55 0.00 0.00 0.00

3 25.00 31.25 21.48 0.38 -4.93 6.94 0.41 2.01 0.00 0.00 0.00

4 25.00 34.77 22.68 0.30 -4.51 5.87 0.00 1.36 0.00 0.00 0.00

5 0.00 37.09 23.33 0.26 -4.32 5.05 0.00 0.73 0.19 0.00 0.00

6 0.00 13.75 11.86 0.72 -3.83 4.50 0.00 0.67 0.68 0.00 0.00

7 0.00 1.89 1.86 0.96 -3.00 3.87 0.00 0.87 1.51 0.00 0.00

8 0.00 0.04 0.04 1.00 -2.98 3.00 0.00 0.02 1.53 0.00 0.00

9 0.00 0.00 0.00 1.00 -2.97 2.98 0.00 0.01 1.54 0.00 0.00

10 0.00 0.00 0.00 1.00 -2.97 2.85 0.00 0.00 1.54 0.12 0.00

11 0.00 0.00 0.00 1.00 -2.22 2.76 0.00 0.57 2.29 0.03 0.17

12 0.00 0.00 0.00 1.00 1.88 1.42 0.00 3.30 6.39 0.00 0.80

Total 100.00  100.00  v3 -4.51      

 arc 2            

prd a x b g' v1 u1 u2 u4 u5 u6 

1 0.00 0.00 0.00 1.00 -11.04 0.00 4.92 1.45 4.97 9.27 

2 18.75 0.00 0.00 1.00 -8.23 0.00 2.46 0.00 0.68 0.36 

3 21.48 18.75 15.23 0.63 -6.94 0.00 2.06 0.00 0.00 0.00 

4 22.68 25.00 18.75 0.50 -5.87 0.00 2.13 0.00 0.00 0.00 

5 23.33 28.93 20.56 0.42 -5.05 0.00 1.95 0.00 0.00 0.00 

6 11.86 31.70 21.65 0.37 -4.50 0.00 1.50 0.00 0.00 0.00 

7 1.86 21.91 17.11 0.56 -3.87 0.00 1.13 0.00 0.00 0.00 

8 0.04 6.66 6.21 0.87 -3.00 0.00 1.00 0.00 0.00 0.00 

9 0.00 0.48 0.48 0.99 -2.96 0.00 0.04 0.01 0.00 0.00 

10 0.00 0.00 0.00 1.00 -2.28 0.00 0.28 0.57 0.57 0.40 

11 0.00 0.00 0.00 1.00 -1.61 0.00 0.37 1.15 0.98 0.30 

12 0.00 0.00 0.00 1.00 3.09 0.00 3.73 4.51 0.64 0.97 

Total 100.00  100.00   u3 0    

Figure 3.10: Solution and KKT dual variables for two arc network.
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Chapter 4

Aggregated Control Strategies

4.1 Introduction

In this chapter we study the Aggregated Regional Evacuation Model (A-REM), which pro-

duces aggregated control strategies, i.e., strategies where staging and routing directions are

specified for groups of evacuees. Specifically, the aggregation we consider is based on groups

of evacuee types (derived from evacuee shelter requirements or preferences) and origins. We

refer to each such aggregated composition as an evacuee group, i.e., every combination of

origin k ∈ V and evacuee type z ∈ Z constitutes an evacuee group. Thus, evacuee groups

represent the level of control, as opposed to individuals as in the D-REM. Each evacuee

group is potentially given a unique evacuation start time and route. When a large number

of evacuees is given a common evacuation time, it is not expected that they all leave at the

same time. Instead a network loading curve is used to describe their aggregate departure

behavior. This loading curve represents the statistical effect of many individual evacuees

determining their evacuation time after an evacuation order is given (see Section 4.2 for

more details).

The rational behind a more aggregate strategy is that it is easier and less expensive

to implement and disseminate (a detailed verification of these issues is beyond the scope

of this work). In fact, these types of strategies are now being implemented. Consider

the state of Virginia. Figure 4.1, from the Virginia Department of Transportation web

page (http://www.virginiadot.org/comtravel/hurricane-evac-hro.asp), delineates the evacu-

ation staging zones and strategy. In this case, coastal Virginia is divided into two zones,
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termed Phase I (in orange) and Phase II (in yellow). The Phase I evacuation is to occur

between 24 to 14 hours prior to the onset of tropical storm force winds, while the Phase II

evacuation begins 14 hours prior to the onset of tropical storm force winds. This strategy is

based on evacuating those at greater risk first.

Figure 4.1: Staging zones, Phase I and II, for the evacuation of coastal Virginia, including

Virginia Beach.

While not illustrated in Figure 4.1, each phase is further divided into smaller zones (for

a total of nine zones, between the two phases), each of which is given a specific evacuation

route. In the remainder of this chapter, we discuss a methodology for determining these types

of evacuation plans. In the next section, we introduce various formulations to model the A-

REM and provide some related results. In Section 4.3 we explore solution methodologies for

this problem.
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4.2 Model Formulation

Some of the additional assumptions, beyond those specified for the REM (see Section 2.3),

inherent in the Aggregated Regional Evacuation Model (A-REM) include:

1. The evacuee loading curve for each evacuee group is known with certainty.

2. If any evacuee group were evacuated in isolation, congestion would not form on any

viable path.

3. There is enough specialized capacity for all evacuees of type z ∈ Z.

4. The shape of the loading curve and the total number of evacuees is not a function of

evacuation start times for each evacuee group.

The A-REM can be formulated in one of two basic ways: either as an arc-based model,

or as a path-based model. We discuss the issues involved with both formulations in later

sections. First, we introduce the constraint set for the arc-based formulation, and after

discussing this constraint set, we show how it can be modified to produce the path-based

formulation. We then introduce a specialized variant of the A-REM, which can also be

either arc- or path-based, and discuss some advantages of this formulation. We term this

the No-Holding A-REM. All these formulations can be used in conjunction with the various

objective functions discussed in Section 2.4. The constraint set of the arc-based A-REM is

as follows:
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Model 4.1 Constraint Set of the Arc-Based A-REM

xt+1,k,z
ij − xt,k,z

ij − at,k,z
ij + bt,k,z

ij = 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T − 1(4.1)
∑

i:(i,j)∈A

bt,k,z
ij −

∑

i:(j,i)∈A

at,k,z
ji = 0, ∀j ∈ W, k ∈ V, z ∈ Z, t = 1, · · · , T (4.2)

F∑

f=1

γk,z
f = 1, ∀k ∈ V, z ∈ Z (4.3)

∑

j:(k,j)∈A

at,k,z
kj =

F∑

f=1

γk,z
f ht,k,z

f , ∀k ∈ V, z ∈ Z, t = 1, · · · , T (4.4)

∑

j:(k,j)∈A

λk,z
kj = 1, ∀k ∈ V, z ∈ Z (4.5)

∑

i:(j,i)∈A

λk,z
ji =

∑

i:(i,j)∈A

λk,z
ij , ∀j ∈ W, k ∈ V, z ∈ Z (4.6)

∑

i:(i,j)∈A

λk,z
ij ≤ 1, ∀j ∈ W, k ∈ V, z ∈ Z (4.7)

∑
j∈Y

∑

i:(i,j)∈A

λk,z
ij = 1, ∀ k ∈ V, z ∈ Z (4.8)

at,k,z
ij ≤ λk,z

ij qmax
ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (4.9)

∑

k∈V

∑
z∈Z

at,k,z
ij ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (4.10)

∑

k∈V

∑
z∈Z

bt,k,z
ij ≤ xt

ij, ∀(i, j) ∈ A, t = 1, · · · , T (4.11)

∑

k∈V

∑
z∈Z

bt,k,z
ij ≤ (kmax

ij −
∑

k∈V

∑
z∈Z

xt,k,z
ij )qmax

ij /(kmax
ij − qmax

ij ),

∀(i, j) ∈ A, t = 1, · · · , T (4.12)

bt,k,z
ij ≤ xt,k,z

ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (4.13)

T∑
t=1

∑

i:(i,j)∈A

∑

k∈V

bt,k,z
ij − Cj,z ≤ 0, ∀j ∈ Y, z ∈ Z (4.14)

at,k,z
ij , bt,k,z

ij , xt,k,z
ij ≥ 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (4.15)

γk,z
f ∈ {0, 1}, ∀k ∈ V, z ∈ Z, f = 1, · · · , F (4.16)

λk,z
ij ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ V, z ∈ Z. (4.17)

Equation (4.1) defines the state of the system in time interval t+1 based on the state and

flows from time interval t. Equation (4.2) represents flow conservation across each junction

j ∈ W . Equations (4.3) and (4.4) define the network loading for each origin k ∈ V , i.e.,
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the rate of flow of evacuees out of each origin. Equation (4.3) establishes a start interval for

the evacuation of each evacuee group, while Equation (4.4) defines the characteristic loading

curve for each evacuee group. This curve, which represents the aggregate loading behavior

of the evacuee group, is a cumulative curve defining the total number of evacuees that have

entered the network, by a given time interval. Research suggests that this curve is usually

S-shaped. Given an evacuation start time, f , and an evacuee group defined by indexes k

and z, the parameters ht,k,z
f represent a discretized version of the evacuee group’s loading

curve, that is, they denote how many evacuees of type z leave origin k in interval t given

an evacuation start time f . For convenience, we assume that this relationship is described

by a parabolic curve, which, when integrated, produces a cumulative loading curve that

is S-shaped, as desired. Figure 4.2 displays the S-shaped curve, and the discrete number

of evacuees loaded in each interval, for a loading curve (that is used in Scenario 2, see

Section 2.6). The parabolic function, a1t2 + a2t + a3, has three parameters: a1, a2, and a3.

The first two can be expresses as a function of the loading curve’s duration, which we denote

as dk,z, i.e., a1 = −6/(dk,z)3 and a2 = 6/(dk,z)2, while the third, a3, is always zero. Using

this parabolic functional assumption simply provides an easy way to describe the loading

curve - we do not make use of any special properties of this curve, beyond that it insures that

all evacuees in the evacuee group have left the origin by interval f +dk,z. Another functional

form is used in Hobeika, Radwan, and Jamei (1985); the loading curve is described using

an exponential function, 1/(1 + exp(−α(t− β))), where α is a parameter that influences the

‘steepness’ of the curve and β represents the number of time intervals required to load half

the evacuees. This exponential function also produces appropriately shaped curves, but the

duration of the loading curve is not required to be 2β, as it is influenced by the α parameter.

The parameter F , in Equation (4.4), is based on the final interval in which an evacuee group

can start evacuating, and potentially finish by interval T , the last interval in the planning

horizon.

Equations (4.5)-(4.9) insure that each evacuee group, of type z from origin k, utilizes only

one evacuation route to a single shelter. Equations (4.5) and (4.6) insure that the model will

choose only one path, and thus only one shelter. Equation (4.7) insures that the evacuation

route will contain no loops. The concept of one path and shelter for each evacuee type/origin

is to produce a simplified evacuation strategy, which is presumably easier to manage and

convey to the populous. This formulation works well if shelters are uncapacitated, but if
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Loading Curves
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Figure 4.2: A loading curve that requires 50 intervals to completely evacuate an origin with

800 evacuees.

a shelter type is capacitated, a feasible solution might not exist, or the capacity might be

poorly utilized with this constraint. Equation (4.8) requires each such path to terminate at

exactly one shelter, and Equation (4.9) determines if an arc is used by an evacuee group.

Equation (4.10) limits the total flow entering an arc to the arc’s maximum flow, qmax
ij .

This is justified because if a flow rate higher than this maximum flow entered the arc, it would

quickly be reduced due to a high local density at the entrance of the arc. Equations (4.11),

(4.12), and (4.13) represent the Pipes traffic flow relationship (see Section 2.5) that defines

each arc’s exit-flow limits. Equation (4.14) sets the capacity of each shelter j ∈ Y , for each

evacuee type z ∈ Z, to Cj,z. Equations (4.15)-(4.17) enforce the logical non-negativity and

binary restrictions.
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We can re-formulate the arc-based A-REM as a path-based model by replacing Equa-

tions (4.5)-(4.9) and (4.17) with the following equations:

∑

l∈P k,z

ρl = 1, ∀k ∈ V, z ∈ Z (4.18)

at,k,z
ij ≤

∑

l∈P k,z

ρlδl
ijq

max
ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (4.19)

ρl ∈ {0, 1}, ∀k ∈ V, z ∈ Z, l ∈ P k,z. (4.20)

There are various ways the path reformulation can be used to determine evacuation

strategies, including complete a priori enumeration of all possible paths (or possible paths

that meet a certain criteria). Of course, this is not always very desirable (or feasible) for

a large, complex network. Next, we introduce the No-Holding variation of the A-REM, of

which we make extensive use throughout this chapter.

No-Holding Variant of the A-REM

This variant of the A-REM produces strategies where evacuees that enter an arc in inter-

val t always exit the arc in interval t+1, i.e., all evacuees must traverse each arc in one time

interval, and thus the arcs do not hold evacuees. One advantage of this requirement is that

difficulties associated with FIFO and holding-back are non-existent. No-holding strategies of

this type are highly dependent on modeling Assumption 2. Thus, the characteristic loading

curve should not specify that more evacuees exit an origin than the smallest qmax
ij on any

viable path. This can always be accomplished by sizing the zones (represented by an origin)

considering the network structure. In support of this assumption, in most road networks, the

capacity tends to increase from local neighborhood streets (most of which are subsumed by

the origin nodes) to arterioles, to major arteries, and finally to highways. We also note that

based on the Pipes traffic flow model, the No-Holding variant always produces strategies

without congestion. The following constraint set, in conjunction with any of the objective

functions (see Section 2.4) represents the no-holding strategy of this type.
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Model 4.2 Constraint Set of the Arc-Based No-Holding Variant

at,k,z
ij − bt+1,k,z

ij = 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, (4.21)
∑

i:(i,j)∈A

bt,k,z
ij −

∑

i:(j,i)∈A

at,k,z
ji = 0, ∀j ∈ W, k ∈ V, z ∈ Z, t = 1, · · · , T (4.22)

F∑

f=1

γk,z
f = 1, ∀k ∈ V, z ∈ Z (4.23)

∑

j:(k,j)∈A

at,k,z
kj =

F∑

f=1

γk,z
f ht,k,z

f , ∀k ∈ V, z ∈ Z, t = 1, · · · , T (4.24)

∑

j:(k,j)∈A

λk,z
kj = 1, ∀k ∈ V, z ∈ Z (4.25)

∑

i:(j,i)∈A

λk,z
ji =

∑

i:(i,j)∈A

λk,z
ij , ∀j ∈ W, k ∈ V, z ∈ Z (4.26)

∑

i:(i,j)∈A

λk,z
ij ≤ 1, ∀j ∈ W, k ∈ V, z ∈ Z (4.27)

∑
j∈Y

∑

i:(i,j)∈A

λk,z
ij = 1, ∀ k ∈ V, z ∈ Z (4.28)

at,k,z
ij ≤ λk,z

ij qmax
ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (4.29)

∑

k∈V

∑
z∈Z

at,k,z
ij ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (4.30)

T∑
t=1

∑

i:(i,j)∈A

∑

k∈V

bt,k,z
ij − Cj,z ≤ 0, ∀j ∈ Y, z ∈ Z (4.31)

at,k,z
ij , bt,k,z

ij ≥ 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (4.32)

γk,z
f ∈ {0, 1}, ∀k ∈ V, z ∈ Z, f = 1, · · · , F (4.33)

λk,z
ij ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ V, z ∈ Z. (4.34)

The arc-based A-REM constraint set was modified to produce the No-Holding variant as

follows:

1. Replace Equation (4.1) with at,k,z
ij = bt+1,k,z

ij .

2. Remove Equations (4.11), (4.12), and (4.13).

3. Remove xt,k,z
ij from Equation (4.15).

4. Replace the x1,k,z
ij = 0 assumption with b1,k,z

ij = 0.

70



The path-based formulation is as follows:

Model 4.3 Constraint Set of the Path-Based No-Holding Variant

at,k,z
ij − bt+1,k,z

ij = 0, ∀(i, j) ∈ A, z ∈ Z, (4.35)
∑

i:(i,j)∈A

bt,k,z
ij −

∑

i:(j,i)∈A

at,k,z
ji = 0, ∀j ∈ W, k ∈ V, z ∈ Z, t = 1, · · · , T (4.36)

F∑

f=1

γk,z
f = 1, ∀k ∈ V, z ∈ Z (4.37)

∑

j:(k,j)∈A

at,k,z
kj =

F∑

f=1

γk,z
f ht,k,z

f , ∀k ∈ V, z ∈ Z, t = 1, · · · , T (4.38)

∑

l∈P k,z

ρl = 1, ∀k ∈ V, z ∈ Z (4.39)

at,k,z
ij ≤

∑

l∈P k,z

ρlδl
ijq

max
ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (4.40)

∑

k∈V

∑
z∈Z

at,k,z
ij ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (4.41)

T∑
t=1

∑

i:(i,j)∈A

∑

k∈V

bt,k,z
ij − Cj,z ≤ 0, ∀j ∈ Y, z ∈ Z (4.42)

at,k,z
ij , bt,k,z

ij ≥ 0, ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T (4.43)

γk,z
f ∈ {0, 1}, ∀k ∈ V, z ∈ Z, f = 1, · · · , F (4.44)

ρl ∈ {0, 1}, ∀k ∈ V, z ∈ Z, l ∈ P k,z. (4.45)

In the next section, we present some preliminary results.

4.2.1 Results

In this section, we provide some preliminary numerical results comparing the arc-based and

path-based formulations of the A-REM and the No-Holding variant. Next, we discuss a

problematic issue related with the A-REM formulation, and then we present some results

concerning the objective functions (see Section 2.4) and the No-Holding A-REM.

Table 4.1 displays the results for Model 4.1 (the arc-based A-REM) with Objective (II)

in conjunction with Scenario 1 presented in Section 2.6. Objective (II) is used to avoid the

complications inherent in the formulation using Objective (I), as presented in Section 2.4.
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Here, B/B denotes the number of branch-and-bound nodes enumerated. Table 4.1 illustrates

that, even for relatively small networks, the run time to optimize the A-REM can be quite

large. In fact, for Scenario 2, we had to abort the run due to time considerations.

Table 4.1: Results for Model 4.1: the arc-based A-REM.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters

1 10.781 20 2,252.1 15,949 494 20,278 98,918 2

As the network underlying the scenarios described in Section 2.6 is fairly simple, we

can easily enumerate all possible paths. The network has 25 possible evacuation routes,

excluding paths with loops, and origins V3-V7 each have only one viable route for Type

1 evacuees, i.e., those evacuees going to shelter Y3). Table 4.2 displays the results for the

path-based A-REM. We note that the solution times are much lower for the path-based

formulation and that the AMPL pre-solver eliminates many more variables and constraints

for this formulation.

Table 4.2: Results for the path-based A-REM.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 10.781 20 106.9 8,036 300 11,098 19,476 6

2 39.767 73 28,406.2 36,169 720 49,496 1,169,994 12

As a comparison, we refer to Table 3.1 (see Section 3.2), which displays the results from

the D-REM for these scenarios, when flow-tracking and shelter preferences are included.

We note that the A-REM requires flow-tracking. The simplification of eliminating flow-

tracking (i.e., not tracking evacuees by origin) used in the D-REM to produce more aggregate

flows that are still optimal, does not work for the A-REM because of the more restrictive
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routing assumption. The more restrictive staging and routing assumption inherent in the

A-REM also make it more difficult to optimize because they require binary variables in the

formulation of the constraint set. The longer times required to solve the A-REM illustrate

the increased difficulty of this model.

Table 4.3 presents the results for Model 4.2 with Objective (II). Once again, we aborted

the Scenario 2 run due to time considerations. Table 4.4 shows the results from Model 4.3,

the path-based No-Holding variant, with Objective (II).

Table 4.3: Results for Model 4.2: the arc-based No-Holding variant.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 23 1,014.2 9,423 494 12,562 908,015 39,712

Table 4.4: Results for Model 4.3: the path-based No-Holding variant.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 23 120.5 5,403 300 7,527 646,901 27,742

2 44.471 95 2,141.9 24,378 720 33,619 1,441,210 53,545

It is interesting to compare the results of the arc-based A-REM (see Table 4.1) and the

No-Holding variant of this model (see Table 4.3). We focus on Scenario 1, because a solution

was found for all formulations for this scenario. The solver required 2,252 seconds and two

branch-and-bound nodes to optimize the arc-based A-REM; in contrast, it required 1,014

seconds and 39,712 branch-and-bound nodes to optimize the No-Holding variant. The A-

REM produces a lower objective value than the No-Holding variant. This is to be expected,

as the A-REM is less constrained. The interesting statistic we want to focus on is the

difference in the number of a branch-and-bound nodes required to find an optimal solution
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for each model. The number of branch-and-bound nodes required by the No-Holding variant

is considerably greater than that required by the A-REM. This difference is symptomatic of

a problem inherent in the A-REM.

The constraint set of the A-REM allows the solver too much latitude in finding an

optimal solution; the constraint set can govern the traffic flow in an unrealistic manner, with

holding-back and FIFO violations. This is, in fact, a common problem in most analytical

DTA models, which we were able to surmount in the D-REM, but not in the A-REM, due

to its combinatorial nature. Often, the solver is able to find an optimal solution to the A-

REM with very few branch-and-bound nodes by utilizing the flexibility in the constraint set

(usually by specifying large amounts of holding-back). Thus, it is often possible for a near-

simultaneous evacuation to behave like a more complex staging strategy by forcing unrealistic

traffic behavior. The solver only branches once it determines that it cannot optimize the

problem by exploiting this flexibility in the constraints. In contrast, the No-Holding variant

does not allow this flexibility, thus requiring more branch-and-bound nodes, but yielding

traffic flows that are more realistic. To illustrate, we again consider Scenario 1. In the

strategy from the A-REM, all evacuee groups, save one, begin their evacuation in the first

interval, but many evacuees are held on the initial arc of their evacuation route for multiple

intervals - essentially, parked. In contrast, only six evacuee groups begin their evacuation in

the first interval with the No-Holding variant, and eight evacuee groups start evacuating in

later intervals.

In fact, the traffic flows should be completely specified for a deterministic model of this

type, where we assume no special optimization of the supply, once the staging and routing

strategies are determined. This is the case for the No-Holding variant, but at the cost of pro-

ducing a sub-optimal solution considering all possible realistic traffic flows. Unfortunately,

an analytical model that completely specifies the traffic flows in a realistic manner, without

the extra constraints inherent in the No-Holding variant, which is yet tractable, has not been

developed in the vast DTA literature. A low fidelity simulation could be used to quickly de-

scribe the traffic flow, and in fact, this is one strategy currently being studied in the DTA

literature and has been implemented in practice, see Peeta and Ziliaskopoulos (2001). This

simulation methodology works fairly well for developing system optimal or user equilibrium

type flows, which are amendable to various convergent algorithms. Unfortunately, this sim-

ulation methodology does not work well for the present evacuation problem because of the
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problem’s combinatorial nature that limits the evacuee groups to a single path and start-

time. We also note that a model such as the No-Holding variant is not useful for DTA type

problems because it requires staging, which is not a normal feature in DTA models.

While the No-Holding variant produces sub-optimal strategies, when compared to a hypo-

thetical model that is less constrained (i.e., one that does not have a no-holding requirement),

it does insure realistic traffic flows. We believe this sub-optimality is not an important issue

in the context of the hurricane evacuation problem. We can consider strategies from the

No-Holding variant as being conservative, which might be advisable, given the stochastic

nature of this problem.

Unlike the disaggregate case, there exists another model that combines elements of the

A-REM and the No-Holding variant; this is a model where holding is allowed, but congestion

is not. A model of this type produces strategies where the number of evacuees on an arc

never enter the congested regime. This model is produced by modifying the A-REM by

replacing Equation (4.12) with xt,k,z
ij ≤ qmax

ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t ∈ 1, · · · , T .

Table 4.5 presents the results for this model using Scenario 1. However, the structure of this

model still shares the problems inherent in the A-REM.

Table 4.5: Results for the No-Congestion variant of the A-REM.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 10.790 20 571.3 19,863 574 24,560 61,241 11

Due to these issues discussed above, in the remainder of this chapter we study the No-

Holding variants of the A-REM. Also, in the remainder of this chapter we study these models

in conjunction with Objective (II), to allow continuity with the above results. Nevertheless,

we first discuss results pertaining to some of the other objectives. While Objective (I), which

is to minimize the evacuation’s duration, adds to the complexity of the solution for the A-

REM (and the D-REM, see Section 3.5), it is much simplified for the No-Holding A-REM.

Consider the following proposition.
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Proposition 31 The number of intervals until an evacuee group is completely evacuated

is the number of intervals before the evacuation starts plus the number of intervals in the

duration of the loading curve plus the number of arcs in the evacuation path.

Proof: The number of intervals before the evacuation starts plus the number of intervals in

the duration of the loading curve represents the interval in which the last evacuee from the

evacuee group leaves the origin, and thus is on the first arc in the evacuation path. As each

arc requires one interval to traverse, this last evacuee reaches shelter in as many intervals as

there are arcs in the evacuation path.

Corollary 4.2.1 Given a route, the travel time for each evacuee group, that is the time

(number of intervals) from when the first evacuees (from the evacuee group) enter the network

until the last evacuee enters shelter, is fixed, and equal to the duration of the loading curve

plus the number of arcs in the evacuation path.

Objective (I), as originally formulated in Section 2.4, utilizes a set of binary variables.

We repeat the original formulation and extra constraints, as follows, for reference:

Minimize

T∑
t=1

Et,

where the following additional constraints are required:

Et ≥ (D −
t−1∑

f=1

∑
j∈Y

∑

i:(i,j)∈A

bf
ij)/D, t = 1, · · · , T,

Et ∈ {0, 1}, t = 1, · · · , T.

For Model 4.2, the arc-based No-Holding variant, we can greatly simplify Objective (I)

as follows:

Minimize L

where the following additional constraint is required:

L ≥
F∑

f=1

fγk,z
f + dk,z +

∑

(i,j)∈A

λk,z
ij , ∀k ∈ V, z ∈ Z,
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where dk,z is the duration of the loading curve for evacuee group (k, z). Similarly, for

Model 4.3, the path-based No-Holding variant, we can express Objective (I) as follows:

Minimize L

where the following additional constraint is required:

L ≥
F∑

f=1

fγk,z
f + dk,z +

∑

l∈P k,z

ρlkl, ∀k ∈ V, z ∈ Z,

where kl is the length of path l, which is a known quantity, and thus a parameter. Both

formulations of Objective (I) do not require an extra set of binary variables; thus, this

objective is not any more difficult to handle than the other objectives, unlike in the case of

the D-REM.

In Section 3.3 we showed that for the D-REM, the Objectives (II) and (III) have identical

solutions when shelters do not have capacity limitations, and furthermore, that optimal solu-

tions to these objectives are also optimal with respect to Objective (I) (see Proposition 10).

This is not the case with the No-Holding A-REM, as we illustrate with the following example

using the network in Figure 4.3.

W3

Y1W1 W2

V2

V1

Y2W4

Figure 4.3: An illustrative network where shelters have unlimited capacity.

Example 7 Consider the network depicted in Figure 4.3, where nodes V1 and V2 are the

origins, each with one evacuee group having a loading curve duration of three intervals; nodes

W1, W2, W3 and W4 are junctions, and nodes Y1 and Y2 are shelters having unlimited

capacities. The capacity of each arc and the loading curves are such that only one evacuee

group can be on an arc in each time interval.
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In this example there are three possible strategies. In the first strategy, the evacuees

from V1 use shelter Y1, while the evacuees from V2 use Y2. In the second strategy, the

evacuees from V1 use shelter Y1, followed by the evacuees from V2, who also use shelter

Y1. Finally, in the third strategy, the evacuees from V2 use shelter Y1, followed by the

evacuees from V1, who also use shelter Y1. The first strategy completes the evacuation in

six time intervals, minimizing Objective (I), but does not maximize the number of evacuees

that find shelter in the third interval, a necessary condition of Objective (III)1. The first

strategy also minimizes the average evacuation time. The third strategy completes the

evacuation in eight time intervals; thus it does not minimize Objective (I), but it is optimal

for Objective (III), as evacuees reach shelter by interval three. The third strategy is also

non-optimal for Objective (II). The second strategy is sub-optimal for all three objectives.

4.3 Solution Methodologies

In Section 4.2.1 we solved, or attempted to solve, the arc-based and path-based No-Holding

A-REM for the two test scenarios discussed in Section 2.6. These are all mixed-integer

programs of a highly combinatorial nature, and as such, are very difficult to solve. To solve

these problems, the solver, CPLEX, uses a sophisticated branch-and-bound cut technique.

In this section we discuss various techniques to improve the search for an optimal solution.

Two simple strategic simplifications, that improve solution times by reducing the size of

the combinatorial problem, are as follows:

1. Determine Evacuation Start Times Based on a Larger Time Unit: In this dissertation

a time interval of one minute is commonly used. This is done mainly to model the

network and traffic flow in an appropriate manner. We could examine strategies where

the evacuation start times are based on some larger unit, e.g., evacuation start times

are considered at every 10-interval durations . This will reduce the number of binary

variables needed to determine evacuation start times.

2. Single Origin-Level Evacuation Start-Time: The A-REM allows each evacuee type

z ∈ Z from each origin k ∈ V to have an individual evacuation start-time. In the

present strategy, the model is reformulated to only allow a single evacuation start-time

1Note that we start at interval t = 1, not t = 0.
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for each origin k ∈ V , that is, all evacuee types start evacuating at the same time

if they share a common origin. In our test case, with two evacuee types, this should

reduce the binary variables attributed to start-times by half.

The first strategy certainly seems realistic; making these decisions at minute-intervals

is unrealistic and overestimates the accuracy of the model. The second strategy might be

appropriate, depending on circumstances.

Next, we examine another method to further reduce the size of the combinatorial problem.

4.3.1 Elimination of Sub-Optimal Staging Strategies

Consider Scenario 1 (see Section 2.6), which has seven origins, two evacuee types (and thus

7(2) = 14 evacuee groups), and 20 possible starting intervals for each of the 14 evacuee

groups. This leads to 2014 = 1.6384x1018 possible staging strategies. In this section we

discuss how to reduce the number of possible staging strategies by eliminating cases that we

can prove are sub-optimal, thus improving the branch-and-bound search. First, we provide

the following proposition.

Proposition 32 Consider a staging strategy S, represented by the vector ~S, which consists

of starting times for each evacuee group. Assume that z∗ is an optimal solution value for

strategy S for Objective (II). Now consider an alternative strategy, represented by the vector

~S ′ (i.e., strategy S ′), where ~S ′ is obtained by adding a vector of ones, ~1, multiplied by positive

integer scalar µ to vector ~S, that is, ~S ′ = ~S + µ~1. Assume that a feasible solution exists for

this strategy, let z′ be the optimal solution value for strategy S ′. For Objectives (II) we always

have z∗ < z′, and thus strategy S ′ is always sub-optimal. If there is no feasible solution for

strategy S, then there is no feasible solution for strategy S ′. This also holds for Objective (I).

Proof: An optimal solution for strategy S ′ is identical to that for strategy S, except that

all evacuation start-times are increased by a constant µ intervals. This is true, because

increasing all evacuation start-times by a constant does not change any of the temporal

or spatial interactions between evacuee groups, i.e., translating strategy S forward in time,

thus forming strategy S ′, does not allow for any modification of flows to improve strategy

S ′ that could not also be applied to strategy S. Thus, for Objectives (I) or (II), z∗ < z′, as
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strategy S ′ carries the added burden to both objectives of starting later, and thus strategy

S ′ is sub-optimal. Likewise, if S is infeasible, then so is S ′.

From Proposition 32, any staging strategy, represented by vector ~S ′, is a sub-optimal

strategy if we can subtract a vector of ones, ~1, multiplied by positive integer scalar µ, i.e.,

~S ′ − µ~1, and obtain a valid strategy.

Corollary 4.3.1 Any strategy that does not have at least one evacuee group starting to

evacuate in interval 1 (i.e., the first interval) is sub-optimal.

Considering again the Scenario 1 example, of the 2014 = 1.6384x1018 possible strategies,

1914 = 7.990x1017 of these strategies do not have an evacuee group starting their evacuation

in the first interval, and are thus sub-optimal. This leaves 8.3939x1017 strategies, which

represents a 48.8% reduction in the number of strategies to be considered. In general, the

number of sub-optimal strategies we can eliminate is (F − 1)n, where F is the number of

possible start intervals and n is the number of evacuee groups.

In order to eliminate the sub-optimal strategies, the following constraint, which insures

that at least one evacuee group starts evacuating in interval 1, can be added to any of the

models:

∑

k∈V

∑
z∈Z

γk,z
1 ≥ 1. (4.46)

We test this constraint using Model 4.2, the arc-based No-Holding variant.

Table 4.6: Results for Model 4.2 (the arc-based No-Holding A-REM) with Constraint (4.46).

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 23 630.7 13,849 546 17,877 556,823 25,517

Comparing Tables 4.6 and 4.3, we see that adding (4.46) to the No-Holding variant of

the arc-based A-REM yields a 35.7% reduction in the number of branch-and-bound nodes

(B/B) and a 37.9% reduction in the required solution time.
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Table 4.7: Results for Model 4.3 (the the path-based No-Holding variant) with Con-

straint (4.46).

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 23 86.0 5,403 300 7,528 453,580 20,467

Comparing Tables 4.7 and 4.4, we see that adding (4.46) to the path-based No-Holding

variant yields a 26.2% reduction in the number of branch-and-bound nodes (B/B) and a

28.6% reduction in the solution time. The reductions in branch-and-bound nodes and solu-

tion times for both the arc- and path-based formulations are less than the 48.8% reduction

in the number of strategies to be considered because the branch-and-bound algorithm is de-

signed to eliminate many solutions without having to exhaustively enumerate all solutions.

Undoubtedly some of the sub-optimal strategies we eliminate using Constraint (4.46) are

independently eliminated when a particular branch is eliminated from consideration.

The number of possible strategies eliminated is a function of the number of evacuee

groups and start-intervals. The surface in Figure 4.4 shows how the dominant strategies, as

a percentage of possible strategies, varies with these parameters. Next, we present another

proposition relating staging strategies for the No-Holding A-REM.

Proposition 33 Consider Objective (I) or (II). Given a fixed routing strategy P that spec-

ifies a route for each evacuee group, consider two staging strategies S and S ′, where strategy

S ′ specifies an evacuation start-time for each evacuee group that is greater than or equal to

the corresponding start-times in strategy S. Assume the following: (1) S 6= S ′; (2) a feasible

solution exists for the combined S and P strategy having an objective value of z; and, (3)

a feasible solution exists for the combined S ′ and P strategy having an objective value of z′.

Then, we have z < z′, and thus strategy S ′ is sub-optimal, when both strategies are used in

conjunction with routing strategy P .

Proof: The following logic holds for Objectives (I) and (II). Given a fixed route for each

evacuee group (specified by a routing strategy P ), consider the solution for strategy S. If
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Figure 4.4: Sub-optimal strategies, as a percentage of possible strategies, as a function of

the number of evacuee groups and start-intervals.

this solution is feasible, then there are only two possible outcomes of delaying any number

of evacuation start-times (thus producing strategy S ′): (1) Strategy S ′ with P is feasible,

whereas z < z′; or, (2) Strategy S ′ with P is infeasible. Thus strategy S ′ is sub-optimal.

Next, we propose a lower bound on the number of evacuee groups that start evacuating in

the first interval in an optimal solution. This lower bound is dependent on the characteristics

of the network (e.g., bottleneck capacities) and the characteristics of the evacuee groups (e.g.,

the maximum number of evacuees entering the network in any interval, based on the loading

curves).

Proposition 34 Consider the following process:

1. Order the evacuee groups, k ∈ V, z ∈ Z, into a descending list, based on the maximum

number of evacuees that can enter the network in any one interval, denoted as hk,z,max,

where hk,z,max = max{ht,k,z
1 , t = 1, · · · , T}.

2. Determine the capacity of the network’s static bottlenecks, i.e., those arcs that form a

min-cut on the static (not time-expanded) network, denoted as Bmax.
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3. From the top of the list, sum the hk,z,max-values until this summation just exceeds Bmax.

The number of terms in the summation minus one yields a lower bound on the number

of evacuee groups starting their evacuation in the first interval.

Proof: By Proposition 33, any solution can be improved if we can feasibly start the evacu-

ation of a particular evacuee group earlier, using the same path (or a shorter path). Those

evacuee groups first using the bottleneck arcs should therefore start evacuation in the first

interval. A lower bound on the number of such evacuee groups can be computed by assuming

that the groups having the largest single-interval flows are the stated potential groups, and

the largest single-interval flows all arrive at the bottleneck at the same interval.

For example, in Scenario 1, the maximum number of evacuees from a single evacuee group

that can exit an origin in any interval is 22.1 (based on the network loading curve). With

a qmax
ij = 50 vehicles per interval for every arc (i, j) in the network, and the location of the

shelters, we can see that at least four evacuee groups should start their evacuation in the

first interval in an optimal solution. Modifying Equation (4.46) so that at least four evacuee

groups must start in the first interval reduces the number of strategies to be considered by

99.6% (for a total of 6.8374x1015 strategies to be considered) of the 1.6384x1018 possible

strategies.

To determine the number of strategies that we can disregard when we know at least

s evacuee groups must start in the first interval, we subtract
∑s−1

k=1

(
n
k

)
(F − 1)(n−k) from

the number of possible strategies. Each term in the summation represents the number of

strategies with exactly k evacuee groups starting in the first interval, where
(

n
k

)
is the number

of possible combinations of k evacuee groups out of the total n evacuating in the first interval,

and (F − 1)(n−k) represents the number of possible strategies given each combination.

In the two test scenarios, the duration of the loading curve (how many intervals between

the start of the evacuation and the last evacuee leaving the origin) for each evacuee group was

identical within the scenario. In this case, we determined F by subtracting the duration from

T . In cases where the durations differ, we will need a specific F -value for each evacuee group,

based on the duration of each group’s loading curve. We can also reduce the F -parameters

for each origin group, i.e., define F k,z, by determining the shortest path from each group’s

origin to the closest shelter of the appropriate type. For example, considering Scenario 1

again, Table 4.8 shows the lengths of the shortest paths (in fact for both scenarios, as the
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underlying network structure is identical). Using these shortest paths, we can produce a set

of individual F -parameters, which yields 1.4565x1016 possible strategies, or just 0.889% of

the original 1.6384x1018 possible strategies. This strategy can be more refined in the path-

based formulation; in this case, we can determine the appropriate F -parameter for each path

based on its actual length.

Table 4.8: Shortest paths to the nearest shelters of the appropriate type.

type/origin V1 V2 V3 V4 V5 V6 V7

Z1 7 6 9 8 8 2 6

Z2 6 5 4 3 2 2 5

4.3.2 Reformulation Techniques

In this section, various reformulations for the arc-based No-Holding variant are tested to

gauge their impact on solution times.

Add Total Flow Constraint: To tighten the formulation, the following extra constraint

was added:
∑
i∈V

∑

j:(i,j)∈A

T∑
t=1

∑

k∈V

∑
z∈Z

at,k,z
ij ≤ D.

Table 4.9: Solution results for case of adding a total flow constraint.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 23 557.3 9,423 494 12,563 694,549 34,889

This constraint limits the total flow from all origins to the population to be evacuated.

Incorporating this constraint reduces the required solution time from 1,014 seconds to 557

seconds; a 45% reduction in solution time. The No-Holding A-REM prohibits evacuees from

starting their evacuation from the wrong origin through an interplay of various constraints.
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Adding this constraint simplifies this interplay, thus focusing the solver on a smaller solution

space. With this in mind, we next study a constraint that does this more explicitly.

Explicitly Forbid Flow from Wrong Origin: To tighten the formulation, we explicitly

constrain the system so that only evacuees from origin k can start their evacuation from

origin k by adding the following constraint:

λk,z
ij = 0,∀i ∈ V, j : (i, j) ∈ A, k ∈ V , k 6= i, z ∈ Z.

Table 4.10: Solution results for case where flow from the wrong origin is explicitly forbidden.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 23 236.4 6,109 428 8,751 762,473 31,715

Adding this extra constraint reduces the solution time by 77% in Scenario 1, from 1,014

seconds without this constraint to 236 seconds with this constraint. This improved perfor-

mance is based on a reduction in the number of branch-and-bound nodes required by the

solver to obtain a solution, in the original formulation 39,712 branch-and-bound nodes were

required, with this additional constraint, only 31,715 were needed.

Use a Single Flow Variable per Arc-Interval: As mentioned when the No-Holding

A-REM was introduced, the use of both flow variables at,k,z
ij and bt,k,z

ij is just a convention so

that the formulation of the No-Holding variant does not differ too much from the A-REM.

Here, we eliminate the bt,k,z
ij variables, under the premise that fewer variables will improve

solution efficiency.

We gain a modest decrease in solution time, from 1,014 seconds to 863 seconds, but

inexplicably, an increase in branch-and-bound nodes and simplex iterations.

In the next section, we provide some major re-formulations of this model.

4.3.3 Expedients for the Branch-and-Bound Algorithm

The branch-and-bound algorithm works by solving linear relaxations of the integer program

with the integer variables either relaxed, or further constrained (which is much simplified
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Table 4.11: Solution results with a single flow variable.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 22 863.8 4,798 494 7,927 2,049,368 64,659

in our case, as all integer variables are binary, so when branching on a particular integer

variable, one branch is fixed at 1 and the other to 0). As discussed in Section 4.3.1, we

can simplify this process, and thus improve solution times, if we can eliminate branches a

priori, which, in effect, potentially reduces the number of linear relaxations that must be

solved. Another technique we can use to improve solution times is to reduce the solution

time required for each LP relaxation. In the following we discuss how this can be done.

Consider the first linear relaxation that the branch-and-bound algorithm will perform,

where no binary variables are fixed. Instead of solving the linear relaxation of the No-Holding

A-REM (Model 4.2), we solve the following specialized relaxed formulation:

Model 4.4 Constraint Set of the λ Relaxed No-Holding A-REM

at,z
ij − bt+1,z

ij = 0, ∀(i, j) ∈ A, z ∈ Z, (4.47)
∑

i:(i,j)∈A

bt,z
ij −

∑

i:(j,i)∈A

at,z
ji = 0, ∀j ∈ W, z ∈ Z, t = 1, · · · , T (4.48)

F∑

f=1

γk,z
f = 1, ∀k ∈ V, z ∈ Z (4.49)

∑

j:(k,j)∈A

at,z
kj =

F∑

f=1

γk,z
f ht,k,z

f , ∀k ∈ V, z ∈ Z, t = 1, · · · , T (4.50)

∑
z∈Z

at,z
ij ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (4.51)

T∑
t=1

∑

i:(i,j)∈A

bt,z
ij − Cj,z ≤ 0, ∀j ∈ Y, z ∈ Z (4.52)

at,z
ij , bt,z

ij ≥ 0, ∀(i, j) ∈ A, z ∈ Z, t = 1, · · · , T (4.53)

1 ≥ γk,z
f ≥ 0, ∀k ∈ V, z ∈ Z, f = 1, · · · , F . (4.54)
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In Model 4.4, we have eliminated the path variables, λ, along with all constraints con-

taining λ, as well as the origin superscript, i.e., k ∈ V , from the flow variables, a and b. Note

that both the linear relaxations of Models 4.2 and 4.4 differ from the D-REM in that the

number of evacuees that leave an origin in each interval is still constrained by the loading

curve; evacuees can only evacuate based on convex combinations of the loading curve through

time, due to Equations (4.49) and (4.50) and the corresponding equations of Model 4.2. As

an example of this difference, if we specify that a certain number of evacuees leave in interval

t, we have also made at least a partial decision on the number of evacuees that should leave

in interval t + 1, which is not the case for the D-REM. Table 4.12 compares the results of

Model 4.4 with the linear relaxation of Model 4.2 for the first linear relaxation performed in

the branch-and-bound algorithm.

Table 4.12: Results for the initial linear relaxation of Models 4.2 and 4.4.

Scenario Obj. Evac. Run Cont. Binary Constraints Dual

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 (Model 4.2) 10.863 21 15.8 9,917 0 12,562 13,813

1 (Model 4.4) 10.857 20 0.141 2,075 0 2,054 439

2 (Model 4.2) 40.931 89 69.0 70,291 0 70,291 26,526

2 (Model 4.4) 40.931 89 4.297 9,120 0 9,725 4,197

As Table 4.12 illustrates, Model 4.4 can be solved much quicker. In Model 4.2 only

Equations (4.25)-(4.29) and (4.34) contain the λ-variables, and of these, only Equation (4.29),

which we repeat below, directly limits flow.

at,k,z
ij ≤ λk,z

ij qmax
ij , ∀(i, j) ∈ A, k ∈ V, z ∈ Z, t = 1, · · · , T.

In Model 4.2 this represents a use/no use decision. The limit on flow, represented by qmax
ij

can actually be modified, replacing qmax
ij with a very large number, M . In this way, we can

see that this constraint does not limit flow in the relaxed version; even a very small value of

λk,z
ij when multiplied by M , will not impede the flow. In Table 4.12, note that the optimal

objective values for Scenario 1 differ for the two models. Here we explain why this occurs
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(sometimes), and then discuss the ramifications. This difference is able to occur due to the

simplicity of the network, and is caused by an interaction between the network loading and

the path variables in the formulation of Model 4.2. If an origin and a shelter are connected

by two paths, where the second path is simply the first with a loop added, then Model 4.2

is not able to utilize the loop to improve the objective function, while Model 4.4 can. To

illustrate this, consider the simple network in Figure 4.5. The linear relaxation of Model 4.2

(as well as the discrete version) only produces strategies that send evacuees from origin V1

on path V1-W1-Y1. Model 4.4 can produce a strategy that sends some evacuees on the

following path V1-W1-W2-W1-Y1, which can allow a better utilization of arc (W1, Y1),

despite this being an unrealistic strategy from the evacuee point of view. This is because

Equation (4.25) insures that λV 1,z
V 1,W1 = 1, while Equation (4.26) insures that any looping

violates Equation (4.27). In a more complicated network, where multiple, independent,

paths occur, each path can have a λ < 1, which will allow the looping to occur. So, in most

realistic networks, this difference does not occur.

W1

Y1

W2

V1

V2

Figure 4.5: A simple network to illustrate potential looping issues.

Whenever we branch on a start-time variable, γ, we can use this specialized lambda-

relaxation. If we branch on a path variable, λ, we only need the origin superscript for the

flow variables for the origin corresponding to the λ-variable; the rest can be untracked (i.e.,

k-superscripts removed). If we have already branched on the start-time variable for an origin

(for all types), then the flow variables become parameters for the branched arcs.

For Model 4.4, as with all the different variants of the No-Holding A-REM, we can

eliminate the b-variables; Equation (4.47) indicates that once we determine the a-variables,

the b-variables are also known. Instead of examining this minor change in Model 4.4 (we
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explored this for the No-Holding A-REM in Section 4.3.2), we now examine an arc-based

model having only binary variables (except for those variables associated with a particular

objective function).

Model 4.5 Constraint Set of Arc-Based Binary No-Holding A-REM

∑

(k,j)∈A

F∑

f=1

λk,z
kj,f = 1, ∀k ∈ V, z ∈ Z (4.55)

F∑

f=1

λk,z
ij,f ≤ 1, ∀(i, j) ∈ A, k ∈ V, z ∈ Z (4.56)

∑

i:(i,j)∈A

λk,z
ij,f =

∑

i:(j,i)∈A

λk,z
ji,f+1, ∀j ∈ W, f = 1, · · · , F − 1, k ∈ V, z ∈ Z (4.57)

∑
j∈Y

∑

(i,j)∈A

F∑

f=1

λk,z
ij,f = 1, ∀k ∈ V, z ∈ Z (4.58)

∑

k∈V

∑
z∈Z

F∑

f=1

λk,z
ij,fh

t,k,z
f ≤ qmax

ij , ∀(i, j) ∈ A, t = 1, · · · , T (4.59)

T∑
t=1

∑

i:(i,j)∈A

∑

k∈V

F∑

f=1

λk,z
ij,fh

t,k,z
f ≤ Cj,z, ∀j ∈ Y, z ∈ Z (4.60)

λk,z
ij,f ∈ {0, 1}, ∀(i, j) ∈ A, f = 1, · · · , F, k ∈ V, z ∈ Z. (4.61)

In Model 4.5 we have eliminated the γ-binary variables (which determine start-times) and

have integrated the evacuation start-time decision into the λ-variables. With this change,

we have a potential start-time for each arc, for each evacuee group. Thus, λk,z
ij,f is one if arc

(i, j) is used by evacuees of type z from origin k for the first time in interval f , and zero

otherwise. We assume λk,z
ij,f = 0,∀i ∈ V, j : (i, j) ∈ A, f = 1, · · · , F, k ∈ V, z ∈ Z, i 6= k

and that λk,z
ij,1 = 0, ∀i ∈ W, (i, j) ∈ A, k ∈ V, z ∈ Z. Equations (4.55)-(4.58) specify

the path-building rules, and insure that each evacuee group has one evacuation path and

evacuation start-time. Equation (4.59) limits the number of evacuees on an arc in each time

interval, based on the characteristics of the arc, while Equation (4.60) specifies the capacity

of each shelter for each evacuee type. Finally, Equation (4.61) is the binary constraint.

Next, we examine the differences between Models 4.4 and 4.5, within the context of the

branch-and-bound algorithm.

It is more difficult to implement a branch-and-bound search using Model 4.4 than Model 4.5,

as some specialized interaction is required between Model 4.4 and the branch-and-bound
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search algorithm; Model 4.4 must be reformulated if branching is to occur on a path (λ-)

variable. There is a considerable difference in these two formulations with regards to the

variables required. Model 4.4 (and the No-Holding A-REM) requires fewer binary variables

than Model 4.5, but many more continuous variables. For Scenario 1, Model 4.4 requires

only 560 binary variables, 280 (n|A|) arc (λ-) variables and 280 (nF ) evacuation start-time

(γ-) variables, while Model 4.5 requires 5,600 binary variables (nF |A|), where n, the number

of evacuee groups, is 14, F , the number of possible start intervals, is 20, and |A|, the number

of arcs, is 20. Despite the difference in the number of binary variables, the binary variables

from both models specify the same number of strategies.

When solving a linear relaxation, Model 4.4 has the least number of variables, followed

by Model 4.5, and finally the No-Holding A-REM. Thus, in general, using the dual simplex

option, we might expect the linear relaxation of Model 4.4 to take less time to solve than

that of Model 4.5, which in turn should require less time than the No-Holding A-REM.

Comparing the results for the required solution times in Tables 4.13 and 4.12 illustrates this

is so for the two test problems considered.

Table 4.13: Results for the initial linear relaxation of Model 4.5.

Scenario Obj. Evac. Run Cont. Binary Constraints Dual B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.166 22 0.172 2,894 0 2,640 297 0

2 44.024 94 17.3 8,069 0 7,705 5,313 0

Despite requiring more time to solve each linear relaxation, Model 4.5 has the considerable

advantage of providing a tighter relaxation. Comparing the results from Table 4.13 with

Table 4.12 for Scenario 1, we see that the initial linear relaxation of Model 4.5 has an

objective value of 11.166, compared to 10.857 for Model 4.4 (the optimal solution for this

scenario is 11.543). A tighter relaxation can lead to a significant decrease in the number

of branch-and-bound nodes required to reach an optimal solution. Once again examining

Scenario 1, (see Table 4.14) Model 4.5 requires 2,906 branch-and-bound (B/B) nodes, while

Model 4.2 (see Table 4.3) requires 39,712 branch-and-bound nodes (note, Model 4.4 should
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require roughly the same number of branch-and-bound nodes as Model 4.2). The decrease

in the number of branch-and-bound nodes should give Model 4.5 a speed advantage over

Model 4.4.

Table 4.14: Results for Model 4.5, the all binary reformulation.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 23 28.4 22 2,646 2,458 88,910 2,906

2 44.471 96 364.5 98 8,086 7,808 149,928 3,358

Model 4.5 produces a tighter linear relaxation due to its more constrained solution space.

Equation (4.52) of Model 4.4 offers much more leeway to route evacuees, once they have

left their origin, than Equation (4.52) of Model 4.5. In Model 4.5 a given value for a

λ-variable constrains the flow, which must be some fraction (determined by the relaxed

λ-value) of the total flow. Furthermore, once this fraction is determined, it is constant

through time, and through the network, although various flows can diverge and converge.

As Table 4.14 illustrates, with this new formulation, we are easily able to find solutions to

both test scenarios.

Path-Based No-Holding A-REM: The path-based No-Holding A-REM can also be re-

formulated to eliminate all non-binary variables, thus greatly simplifying each linear relax-

ation within the branch-and-bound algorithm. This model is as follows:

Model 4.6 Constraint Set of Path-Based Binary No-Holding A-REM

∑

l∈P k,z

F l∑

f=1

ρl
f = 1, ∀k ∈ V, z ∈ Z (4.62)

∑

k∈V

∑
z∈Z

∑

l∈P k,z

F l∑

f=1

δl
ijρ

l
fh

t−βl
ij ,k,z

f ≤ qmax
ij , ∀(i, j) ∈ A, t = 1, · · · , T (4.63)

T∑
t=1

∑

i:(i,j)∈A

∑

k∈V

∑

l∈P k,z

F l∑

f=1

δl
ijρ

l
fh

t−βl
ij ,k,z

f ≤ Cj,z, ∀j ∈ Y, z ∈ Z (4.64)

ρl
f ∈ {0, 1}, ∀l ∈ P k,z, f = 1, · · · , F l, (4.65)
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where all undefined h-values are assumed to be zero. Equation (4.62) limits each evacuee

group (i.e., origin and evacuee type) to a single evacuation path and evacuation start-time,

as specified by the binary variable ρ. Here ρl
f = 1 if path l ∈ P k,z is used by evacuee group

k, z starting in interval f = 1, · · · , F l. Equation (4.63) limits the number of evacuees on

any arc-interval to the maximum that arc can transport in a single interval (the no-holding

assumption). The binary parameter δl
ij simply indicates if arc (i, j) is on path l, while the

parameter βl
ij indicates the order of the arcs on path l. If arc (i, j) is the first arc on path

l, or is not on path l, then βl
ij = 0. If arc (i, j) is the second arc on path l, then βl

ij = 1,

and in general if arc (i, j) is the nth arc on path l then βl
ij = n − 1. In the No-Holding

variant, the evacuees that enter the first arc of a path in interval t will enter the second arc

in interval t + 1 and so on. Thus the βl
ij-parameter determines the correct ht,k,z

f that defines

the number of evacuees, of the specified evacuee group, that are on arc (i, j) based on its

order in path l and the evacuation start-time. Thus, the variable that represents flow into

an arc in Model 4.3, at,k,z
ij , can be represented as follows:

at,k,z
ij =

∑

l∈P k,z

F∑

f=1

δl
ijρ

l
fh

t−βl
ij ,k,z

f .

This, with Equation (4.41), leads to Equation (4.63). Equation (4.64) enforces shelter ca-

pacity limitations, while Equation (4.65) enforces the binary restrictions.

Table 4.15: Results for Model 4.6.

Scenario Obj. Evac. Run Cont. Binary Constraints MIP B/B

Value Duration Time Vars. Vars. Simplex

(sec.) Iters.

1 11.543 23 3.5 23 500 506 19,845 1,653

2 44.471 89 85.9 98 1085 1787 35,945 4,977

Table 4.15 illustrates the solution speed advantage of this formulation. The solver, with

the original arc-based formulation of the No-Holding variant, requires 1,014 seconds to solve

Scenario 1. Compare this with to 3.5 for Model 4.6. We can see that the number of branch-

and-bound nodes has also been drastically reduced, from 39,712 to 1,653. For Scenario 2,
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the solver requires 2,141 seconds with the original path-based No-Holding A-REM, while the

solver only requires 85.9 seconds with this formulation.

In the next chapter we explore using the D-REM and A-REM on a large, realistic network.
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Chapter 5

Computational Experience Using a

Real Network

In this chapter we study the D-REM and the No-Holding A-REM in a realistic setting.

To accomplish this, we utilize a much more realistic and complicated test scenario based on

Virginia Beach, Virginia. The goal of this chapter is to test the computational effort required

on a large, complex network. Our goal here is not to develop realistic evacuation strategies;

this would require much more effort, and include extensive testing of various assumptions,

along with detailed simulation studies.

The static Virginia Beach network (i.e., not time-expanded), as modeled in this chap-

ter, consists of 840 arcs, 83 origins, which are defined using the 2000 census tract data,

288 junctions, and nine shelters, three of which are uncapacitated (they represent safe, in-

land regions), and the remaining six shelters being local municipal buildings (mainly public

schools) that can shelter 1000 evacuees each. Figure 5.1 displays a map of Virginia Beach,

including major routes and shelter locations. As stated earlier, evacuees and vehicles are

synonymous. In this study there are approximately 215,000 vehicles, which is based on a

vehicle occupancy rate of two passengers per vehicle. Here we do not include evacuee shelter

preferences. All computational results were obtained using CPLEX Version 9.0 on an Intel

2.4GHz Xeon workstation with 1.5 GB RAM.

Disaggregated Regional Evacuation Model (D-REM)

Here we study the D-REM (Model 3.2) with Objective (I). We focus on this objective as it

is the most difficult to optimize; it is the only objective that is formulated as an MIP. For
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capacitated shelters

uncapacitated shelters

Figure 5.1: A map of Virginia Beach, including major routes and shelters.

the Virginia Beach data set, the overall size of the problem is around 1,500,000 constraints,

1,000,000 continuous variables and non-negativity constraints, and 400 binary variables.

Using Proposition 14 we found a lower bound for the staged evacuation to be 345 minutes.

Solving the D-REM with Objective (I), the minimum duration required to complete this

evacuation turns out to be 351 intervals (i.e., minutes). Figure 5.1 displays the solution

times for the various solution techniques delineated in Section 3.5.

Table 5.1: Time required to solve the D-REM with Objective (I) using various solution

techniques.

# LPs Solution Time

Solution Technique 1 N/A no solution found due to memory limitations

Solution Technique 2 4 100 h

Solution Technique 3 1 25 h

It is interesting to note that for this particular network configuration, Objective (I) and

Objective (II) yield strategies having identical evacuation durations (recall that the problem

was solved with Objective (II) to compute an upper bound on the solution for Objective (I)).
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This indicates that the six capacitated shelters only influence the evacuation time due to their

capacities, not their location. Locating the shelters in such a way that Objectives (I) and (II)

yield different evacuation durations is possible. However, note that Virginia Beach is fairly

compact (see Figure 5.1), with the arcs leading to the three uncapacitated shelters acting as

bottlenecks (see Figure 5.1) , and the capacitated shelters, in this example, accommodate

relatively few evacuees. Almost all evacuees originate in the upper portion of the Virginia

Beach area. Thus, the time to get any evacuee to a shelter is controlled more by the

bottlenecks to the uncapacitated shelters than the distances that need to be traveled. In

other words, no particular origin forces the evacuation to take 351 minutes; rather it is the

consequence of the volume. Figure 5.2 displays the percent of evacuees sheltered by the

end of each interval. For the first four intervals, no evacuee reaches a shelter; then the

number of sheltered evacuees increases fairly quickly until all shelters are filled, establishing

a fairly high exit rate. Once the capacitated shelters reach their capacity limits, the curve

settles on a new, slightly lower, exit rate until the evacuation is complete. If there were

more capacitated shelters, or if the network had a different, less compact shape with a lower

population density (such as the Outer Banks in North Carolina or the Keys in Florida), the

location of the capacitated shelters might have had more impact.
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Figure 5.2: The percent of evacuees sheltered by the end of each interval.

Whereas it would be useful to compare these results with non-staged strategies, this is

not easy to accomplish. We would have to model the characteristic loading of the network

and enforce a sensible routing scheme as well as control the holding-back of traffic. While it

might be argued that the staging and routing in this model is too idealized, it does represent
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an optimal strategy against which other staged evacuation strategies can be measured.

Aggregated Regional Evacuation Model (A-REM)

Here we study issues related to the A-REM on a large-scale network. This is an extremely

difficult problem due to its combinatorial nature. There are also many issues regarding

parameter selection, which can have a large impact on the problem’s complexity.

In the following we describe some of the issues encountered while trying to determine

an optimal evacuation strategy for the Virginia Beach network. First, due to the size of

the network, and the large time envelope considered, we determined that the arc-based

model (Model 4.5) could not be solved in a reasonable amount of time. Because of this, we

concentrate on the path-based model (Model 4.6). A complete enumeration of the possible

paths would be quite difficult, and would also produce such a large scale problem that a

solution could not be found in a reasonable amount of time. Besides, only a certain subset

of possible paths should be considered, i.e., those that are ‘reasonable’ from an evacuee’s

point of view. With this in mind, we generate an initial set of paths. This set is composed

of the shortest paths between each origin and each of the three uncapacitated shelters. This

yields three paths for each origin, for a total of 249 paths. We then determined a duration

for each loading curve, based on the minimum duration necessary to insure that all paths

are viable. This yielded an average duration of approximately 125 intervals. With these

paths and loading curves defined, we produced a rough upper bound of 900 intervals (based

on bottleneck-capacity estimates and maximum flows for each evacuee group). We then

attempted a first run; unfortunately, the problem was too large, the solver could not even

begin optimization, having failed in the pre-processor. Consequently, we lowered the number

of path from each origin to one, while balancing the number of paths going to each of the

three shelters. This run also experienced memory problems. To circumvent these memory

problems, we used a few different techniques:

1. Eliminate arcs that are not on paths currently considered; these arcs need not be

considered.

2. Eliminate arcs that are part of only one path. These arcs do not constraint the solution

by Assumption 2 (see Section 4.2). Note, this does not affect the duration required to

evacuate any evacuee group, as we know the order of the arcs on each path, and thus

compensate for any missing arcs.

97



3. Solve the problem using smaller time intervals, codifying the solution from earlier in-

tervals, and modifying the problem accordingly, e.g., modifying arc-interval capacities.

Using these strategies, we were able to produce a feasible solution that required 847

intervals to complete the evacuation. This is by no means an optimal solution. Overcoming

this memory issue required a great deal of customized manipulation of the data and the

formulation. It is also a problem that is a function of the computer hardware available for

this research; computers with more memory are readily available in the market. Despite this,

for the current problem, the processing power is the real issue. Consider Table 5.2, which

displays the solution time for the Virginia Beach network, as discussed above, for various

planning horizons (T-values). Note that all these solutions are for incomplete evacuations.

As Table 5.2 illustrates, the time required to solve the problem increases exponentially,

despite using various strategies discussed in Section 4.3. As 37,222 seconds, or 10.3 hours,

were required to solve the problem with a planning horizon of 220 minutes, we can easily see

that a planning horizon of 850 is prohibitive.

Table 5.2: Timing results for Model 4.6 with various planning horizons.

T-Value Run Time (sec.)

160 1.047

180 268.7

200 718.7

220 37,222.9

240 memory limitations

More work is required to produce an optimal solution for problems of this size, and more

aggregation (i.e., larger groups) might need to be considered. However, from a practical

point of view, this might not be required. The evacuation time of 847 intervals, or 14.1

hours, might be reduced in an optimal solution, but the difference might well be within

the range of error for a problem of this type. The current solution, though sub-optimal,

represents a very reasonable evacuation strategy. In Hobeika, Radwan, and Jamei (1985), a

more detailed study of the evacuation of Virginia Beach, evacuation times were estimated to

be between 13 and 55 hours, depending on prevalent conditions, all of which were based on
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much fewer vehicles than we use in this study (this is mainly a function of the population

growth from 1985 to 2000).
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Chapter 6

Conclusions and Future Research

In this dissertation we have studied the strategic evacuation planning problem for large-

scale, regional evacuations. The proposed evacuation strategies are based on crucial demand

management tools, namely, staging and routing. Staging is not much studied in the litera-

ture or used in practice, and as such, is an important area of research. Where routing has

been researched more, when it is used in conjunction with staging, it must be re-examined

because staging is the dominant tool and has the greatest impact on the evacuation. Cur-

rently, evacuation planners mostly depend on supply management tools, but as evident from

recent hurricane evacuations, which were plagued with gridlock and congestion, these supply

management tools are often not enough. The situation is likely to worsen, because, even if

managed well, the supply is limited, and not likely to increase significantly. On the other

hand, demand is likely to increase, as populations grow and continue to shift to urban and

coastal areas.

We have studied two unique models that combine aspects of evacuation and dynamic

traffic assignment models. Within this framework, we have explored various objective func-

tions that represent characteristics of interest to an evacuation planner, and have presented

properties of these objectives and shown how they are related. These objective functions

represent various characteristics of an evacuation that are desirable to optimize, such as the

duration of the evacuation, the average evacuation time, or the risk involved.

The timely evacuation of a major urban region is a highly complex undertaking and

requires more research to develop appropriate strategies. In the following, we suggest several

possibilities for future research.
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1. Study risk in more detail, perhaps in the context of various types of spontaneous

disasters.

2. Explore the following issues: What is the impact of evacuee behavior on the evacuation

strategy? How closely do evacuees follow the plan? Do families use one vehicle, or all

available vehicles? How many evacuees want to make use of a designated shelter, and

how many just want to leave the area (staying with friends, family or in a hotel)?

3. Study how stochastic elements can impact the evacuation strategy, and ways to produce

more robust strategies.

4. Study combining staging and routing with supply management strategies such as

contra-flow.

5. Examine strategies when not all evacuees have vehicles. For instance, if a certain

percentage of the population must be evacuated by bus, what is the best evacuation

strategy?

6. Research how staging impacts loading curves and evacuee decisions, along with the

impact of education. Econometric models used to study other travel behavior might

be appropriate to model this decision process. With a solid modeling foundation of

this behavior, we could study how to influence evacuees to depart in a staged manner.

7. Test strategies using a more detailed simulation approach. This can help determine

the impact of assumptions made in the modeling process.

8. Explore more effective solution strategies for the A-REM, possibly including decom-

position procedures, column generation, and heuristic procedures.

This is an important area of research, which is largely unstudied. As our preliminary

results seem to indicate, staging can have a large impact on the quality and success of an

evacuation.
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