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Correlation Between Computed Equilibrium Secondary Structure
Free Energy and siRNA Efficiency

Puranjoy Bhattachrjee

Abstract

We have explored correlations between the measured efficiency of the RNAi process and
several computed signatures that characterize equilibrium secondary structure of the partic-
ipating mRNA, siRNA, and their complexes. A previously published data set of 609 exper-
imental points was used for the analysis. While virtually no correlation with the computed
structural signatures are observed for individual data points, several clear trends emerge
when the data is averaged over 10 bins of N ∼ 60 data points per bin.

The strongest trend is a positive linear (r2 = 0.87) correlation between ln(remaining mRNA)
and ∆Gms, the combined free energy cost of unraveling the siRNA and creating the break
in the mRNA secondary structure at the complementary target strand region. At the same
time, the free energy change ∆Gtotal of the entire process mRNA + siRNA → (mRNA −
siRNA)complex is not correlated with RNAi efficiency, even after averaging. These general
findings appear to be robust to details of the computational protocols. The correlation be-
tween computed ∆Gms and experimentally observed RNAi efficiency can be used to enhance
the ability of a machine learning algorithm based on a support vector machine (SVM) to
predict effective siRNA sequences for a given target mRNA. Specifically, we observe modest,
3 to 7%, but consistent improvement in the positive predictive value (PPV) when the SVM
training set is pre- or post-filtered according to a ∆Gms threshold.
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Chapter 1

Introduction

1.1 The RNAi phenomenon

Since the discovery of RNA interference (RNAi) in the nematode worm Caenorhabditis el-

egans ,1 there has been tremendous interest in its mechanism. RNA interference is induced
by double stranded RNA (dsRNA).2 In cells, the dsRNA is cut into 19-23 nucleotide long
pieces by Dicer, a ribonuclease-like enzyme.3 These pieces are called short interfering RNAs
(siRNAs). RNA Induced Silencing Complex (RISC) takes the antisense strand of the siRNA,
which hybridizes with the complementary sequence in the target mRNA.4 Upon addition of
ATP, the complex is activated and the region complementary to the siRNA is cleaved, thus
causing the gene knockdown. Researchers have found numerous uses of RNAi. For example,
it is being used to understand the signalling pathways in mammalian cell systems.5 Simi-
larly, microRNAs and siRNAs have been used to silence genes in plants.6 Fig. 1.1 shows the
process.

RNAi has numerous uses, yet one of its serious drawbacks is that not all siRNAs work equally
well at gene silencing. Different siRNAs, complementary to different regions in the same
mRNA, can have drastically different silencing efficiencies. This has led to intense research
on the RNAi mechanism, with a view to designing better and more effective siRNAs. Some
designers focussed on sequence characteristics of the siRNA, e.g, absence of the nucleotide
G at position 13. Sequence-centric designs such as these do not account for the possible
influence of protein binding, mRNA target region accessibility, structure of the siRNA, and
other parameters. The design of siRNAs will improve as the role of these features are
understood better. Conversely, demonstrable influence of these features on RNA interference
can provide valuable hints regarding the RNAi machinery and improve our understanding
of the same.
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Figure 1.1: General schematics of RNA interference. Dicer cleaves dsRNA into 19-23 nu-
cleotide long siRNAs, which are loaded onto RISC. The siRNA antisense strand then binds to
the target mRNA which is subsequently degraded. Adapted by permission from Macmillan
Publishers Ltd: Nature Insight Review. Gregory J. Hannon, “RNA interference”, Nature,
Volume 418, July, 2002. Pages 244–251.4

1.2 Motivation

Direct experiments on a short fragment of a single mRNA7 demonstrated that the efficiency
of the RISC complex (RNAi efficiency) may depend critically on the accessibility of the
mRNA target region for binding of the antisense siRNA. The mechanistic explanation for
the observed dependence was very appealing in its simplicity: if and only if the secondary
structure of the mRNA is such that the target region for the siRNA is “open”, the siRNA can
readily bind leading to successful cleavage of the target mRNA. Later, this picture received
further support from Schubert et. al.,8 who found a high correlation between free energies
of local mRNA target structures and silencing efficiency for a set of 9 specially designed
mRNAs ranging in length from 955 to 984 nucleotides. However, the high direct correlation
between the accessibility of the target region and siRNA efifciency observed earlier for several
specific targets was not observed in a systematic study by Lu and Mathews,9 who used 3084
siRNA-mRNA pairs for the analysis using hybridization thermodynamics. In fact, none
of the carefully chosen thermodynamic signatures, such as free energy of formation of the
siRNA-mRNA complex or free energy of disruption of the target mRNA region, were found
to correlate appreciably with the RNAi efficiency: all such correlations were very weak. This
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raised the question: Why have secondary structure signatures of RNAi reaction components
coupled via equilibrium thermodynamics not been able to predict the silencing efficiencies of
siRNAs? Is it because of deficiencies in the thermodynamic modelling of the RNAi reaction?
Or is there a “biological” reason to it, e.g., infusion of energy (an unknown amount of) from
ATP hyrdrolysis that throws the thermodynamic model off? Is there a newer way to use
“physics” to analyze RNA interference? These are the questions we will investigate in this
work. The very thermodynamic signatures that we are interested in are shown in Fig. 1.2.

siRNA unfolded

F
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y

siRNA

mRNA target region forced
single stranded

target region

mRNA

mRNA−siRNA complex

∆GsiRNA

∆GmRNA

∆Gcomplex

Figure 1.2: Energy diagram of formation of mRNA-siRNA complex. The complex is formed
from the constituent mRNA and the siRNA. Here, ∆GmRNA is the free energy required to
create a break in the mRNA secondary structure at the target strand region. ∆GsiRNA is the
free energy of formation of single-stranded siRNA. ∆Gcomplex is the free energy of formation
of the siRNA-mRNA complex. Computational details are in the “Methods” section.

1.3 Background

Effective utilization of RNA interference hinges on the ability to select effective siRNAs for
a given mRNA target sequence. This involves two related computational challenges: a)
given an mRNA sequence, being able to choose the best or a amall set of most efficient
siRNAs, and b) given an mRNA and an siRNA, being able to predict the silencing activity
of the mRNA-siRNA pair. Various factors are known to influence the efficiency of an siRNA.
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Some researchers have focussed on the siRNA sequence and its secondary structure. Patzel
et. al.10 found that siRNAs that produce unstructured guide-RNAs improve interference
efficiency. Holen et. al.11 looked at the effect of mutations in siRNAs on RNAi efficiency and
found that wobble mutations at the ends lead to lesser degradation of RNAi efficiency than
mutations in the central part of the antisense strand. Liao et. al.12 studied the effectiveness
of siRNAs with high G/C contents and suggested that the accessibility to target sequences
influences the efficiency of siRNA. Ameres et. al.13 found that the 5′ part of the siRNA
effects the stability of the association between RISC and the target mRNA. Heilersig et.
al.14 showed that size and sequence of inverted repeats sequences had an effect on silencing
efficiency. Ichihara et. al.15 showed that the siRNA duplex must be unstable for better
silencing activity.

Other researches have looked at the effects of the target mRNA in the process. Schubert
et. al.8 studied correlation between the local RNA target structure and silencing efficiency.
Target RNA accessibility has been found to be important.16,17 Westerhout and Berkhout18

studied the impact of target mRNA structures and found an accessible 3’-end to be a very
important factor for RNAi-mediated inhibition. Gredell et. al.19 found that mRNA target
regions that were unpaired at the 5’-end or the 3’-end were silenced more strongly than
target regions unpaired in the center or those paired throughout the target strand. Shao
et. al.20 suggested the effects of target structure on RISC assembly and target recognition.
However, there has been a debate whether to focus on the sequence or the structure of the
target mRNA strand and the siRNA.21,22 Russell et. al.23 have found that silencing could
be effected by temperature. Lu and Mathews9 account for the differences in equilibrium
consideration when designing siRNAs and antisense oligodeoxynucleotides.

The ability to investigate the influence of RNA secondary structure on the outcomes of
RNAi depend critically on the availability of accuracte secondary structure prediction meth-
ods. There are various methods to determine the structure of RNAs and their associated
free energies. Mfold24 and Vienna25 determine optimal secondary structure by searching for
low free energy conformations, the free energy depends on various thermodynamic and aux-
iliary parameters.26,27 MC-Fold and MC-Sym28 use sequence data to infer RNA structure.
Harmanci et. al.29 use probabilistic alignment constraints in their Dynalign code. There
are web servers such as RNAbor30 and RNA2D3D31 that utilize sequence and secondary
structure characteristics to provide more information. RNAbor computes statistics related
to δ-neighbors which can be used to study structural neighbors of intermediate, biologically
active structures among other things. RNA2D3D computes first-order approximation of a
3-dimansional conformation consistent with sequence and secondary structure information.

With the availability of these tools, researchers tried to predict the sequences of siRNAs
suitable for a particular mRNA. Jiang et. al.32 used a random forest regression model along
with database searching to design siRNAs. There are web servers like RNA-Workbench33

and OligoWalk34 that give a selection of efficient siRNAs. Gong et. al.35 surveyed the fea-
tures associated with high RNAi effectiveness and suggest a set of design rules. Reynolds
et. al.36 proposed an algorithm incorporating eight characteristics associated with siRNA
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functionality, as did Amarzguioui and Prydz.37 Linear models that combine the basic fea-
tures of siRNA sequences for siRNA efficiency prediction have been proposed.38 Tools using
support vector machines have been used to account for thermodynamic, accessibility, and
dinucleotide factors.39,40

1.4 Roadmap of the study

In Chapter 2, we present our highly simplified model of the RNAi reaction based on equi-
librium thermodynamics. We discuss how the secondary structures of the mRNA and the
siRNA would effect the reaction, and what conclusions can be drawn from them. We also
discuss support vector machine (SVM) and how they fit in our study.

In Chapter 3, we describe the datasets used for our experiments. We also describe the
calculations of free energies in more detail and present our statistical analysis. siRNAs can
be classified as functionally efficient and functionally inefficient based on some efficiency
threshold. We describe the feature space–the set of attributes related to siRNA and mRNA
that determine the efficiency of the siRNA–and the performance metrics for the SVM.

We present our findings and conclusions in Chapter 4 regarding thermodynamic free energy
signatures and RNAi efficiency. We perform additional calculations to test the robustness
of our model and to determine if the conclusions are robust to computational details. One
of the key constraints we have is the length of the mRNA region relevant in our model. We
describe our analysis at determining if the conclusions are related to it. The dataset we
use is collected from different experiments described in the literature, and we further ana-
lyze whether differences in experimental protocol could possibly influence the result or not.
Finally, we present our efforts at determining if using minimum free energy conformations
for mRNA and siRNA secondary structure as opposed to a combination of all the possible
conformations have any influence on the results.

We also describe our computations related to SVM. We divide the dataset into two subsets
in different ratios and use the sets to train and test the SVM. Based on the results of these
calculations, we choose a suitable ratio for training set and test set and perform further anal-
ysis using different combinations of features in an attempt to improve the SVM performance.
Finally, we attempt to incorporate our knowledge of the significance of thermodynamic free
energies in addition to including them in the feature space to further improve the predictive
performance of the SVM, by pre-filtering the training set and post-filtering the test set.

We conclude with a summary of our findings in Chapter 5.
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Chapter 2

The Approach

2.1 Model Based on Equilibrim Thermodynamics

Various studies have implicated target site accessibility in determining RNAi efficiency. Tar-
get site accessibility is a key factor in determining if the siRNA can attach to the mRNA.
In addition, the secondary structure of the siRNA itself may be a factor in determining
siRNA efficiency. The logic is that if the siRNA has a very stable secondary structure in
the equilibrium, it will require more energy to unravel it, and hence the probability of the
siRNA to attach to the target site will decrease.

One way to quantify the accessibility of the target site of the mRNA and the ease of unrav-
eling of siRNA is to look at their thermodynamic Gibbs free energies of formation compared
to that of their respective native states. Fig 1.2 shows the reactions that are involved in
the formation of the mRNA-siRNA complex free in solution. Here we neglect the possible
formation of mRNA-mRNA and siRNA-siRNA dimers.

As shown in Fig. 1.2, the mRNA and siRNA are initially in their folded states in the solution.
For the reaction to progress, the secondary structure of the target site of the mRNA has to
break. The free energy cost for this is ∆GmRNA. The siRNA also has to unravel before the
siRNA can participate in the reaction. The free energy change involved in this is ∆GsiRNA.
The mRNA-siRNA complex formation results in lowering of the free energy and the free
energy of formation of the complex is ∆Gcomplex [For computational details, see Chapter 3].

Within our model (Fig. 1.2), the overall free energy change involved in the formation of the
mRNA–siRNA complex is thus,

∆Gtotal = ∆Gcomplex - ∆GmRNA - ∆GsiRNA (2.1)

According to statistical physics, the relative probability of formation of the mRNA-siRNA
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complex

P = Ae−
∆Gtotal

kT (2.2)

where k is the Boltzmann constant and T is the absolute temperature.

We assume that the more the siRNA-mRNA complex is formed, the more of mRNA is
degraded. Suppose now that the RNAi efficiency is proportional to P. Then, the more
negative is the sum of ∆GmRNA and ∆GsiRNA, the more the formation of the mRNA-siRNA
complex will be hindered; on the other hand, a more negative ∆Gcomplex favors the formation
of the complex, and thus presumably favors the RNAi efficiency. A more negative ∆Gtotal

would then indicate a higher RNAi efficiency.

Taking natural logarithm on both sides of Equation 2.2, we get

ln(P ) = −
∆Gtotal

kT
+ ln(A) (2.3)

The more of mRNA is degraded, the less is the remaining level of mRNA in the experiment.

ln(remaining mRNA) = −
∆Gtotal

kT
+ ln(A) (2.4)

With ln(A) and kT=0.59 kcal/mol being constant, we expect to see a linear correlation trend
in a plot of ln(remaining mRNA) vs ∆G.

This expectation is based on at least two critical assumptions: 1) The thermodynamic
equilibrium is reached during the RNAi process. 2) The oversimplified “free in solution”
diagram in Fig. 1.2 is at least partially relevant to the in vivo RNAi reaction shown in Fig.
1.1.

2.2 Support Vector Machine

Support vector machine (SVM) is a classification technique in machine learning with roots
in statistical learning theory.41 They construct the decision bounday using a subset of the
training set, called the support vectors. SVM is particularly useful in binary classification
in high-dimensional space, and thus fits our problem because we have a number of siRNA
and mRNA attributes that contribute to determining the RNAi efficiency for an siRNA and
a target mRNA.

An SVM implementation usually performs as a linear classifier for a separable case where
it constructs a maximum-margin hyperplane as a decision boundary to cleanly separate the
two classes of data points by optimizing for the margin between the decision boundary and
the nearest points in the two classes. In non-separable cases, it may be possible to construct

7



a hyperplane that cleanly separates the classes but has a low-margin, called the problem of
over-fitting. To avoid over-fitting and thus reducing the margin for classification error, SVMs
can be extended by incorporating slack variables42 into the constraints of the separable
maximum-margin optimization problem. It can also be extended to a non-linear classifier by
mapping the original attributes in a non-linear separation to a different set of transformed
attributes so that the data points are separated by a hyperplane in the transformed attribute
space. SVMs use a kernel trick43 to perform calculations in the original attribute space
that would be computationally expensive in the transformed attribute space.

8



Chapter 3

Methods

3.1 Experimental Dataset Used

For our computational experiments, we use a slightly smaller version of the original dataset
Shabalina et. al44 that has been used by others in the field for similar purposes.45 The
original dataset collects 653 results from RNAi experiments reported in literature. The mR-
NAs reported belong to Homo sapiens (human), Mus musculus (house mouse), Streptomyces

alboniger (bacteria), and artificial mRNA sequences. We exclude 44 data points from Har-
borth et.al.46 Some of the siRNAs in the Harborth et.al.46 dataset are used to target more
than one mRNA. Also, the siRNA concentrations reported by Harborth et.al. are much
lower than those used in the rest of the Shabalina dataset (private communication with Dr.
Thomas Tuschl, one of the authors of the paper.). To avoid possible irregularities, we restrict
our dataset to the remaining 609 data points of the original Shabalina dataset.

In the subset that we use, the mRNAs vary in size from 556 nucleotides to 11242 nucleotides.
They exhibit a range of RNAi activity, with the efficiency ranging from 0% to 100%. Table
3.1 shows the length distribution of the mRNAs.

RNAi efficiency is represented in the dataset as the percentage of mRNA remaining after
the interference reaction has taken place. In the dataset, some efficiency values are at 0%,
which were set to the lowest non-zero activity value of 0.06% found in the set. Similarly, at
the other end of the spectrum of RNAi activity, values which are greater than 100% are set
to 100%.

If an mRNA mentioned in the dataset has since been replaced by updated versions in Gen-
Bank (http://www.ncbi.nlm.nih.gov/Genbank/), we use the updated version if it retains
the target regions complementary to the original siRNAs that have been used in the original
reported experiment. All the siRNAs used in the experiments in the dataset are 19 nt long.
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mRNA Length Number of mRNA Number of siRNA-mRNA pair

0-1000 7 132
1000-2000 7 71
2000-3000 13 126
3000-4000 10 73
4000-5000 2 13
5000-6000 5 143
7000-8000 3 15
8000-9000 2 10

11000-12000 2 26

Table 3.1: Length distribution of mRNAs in the dataset

3.2 Prediction of Secondary Structure and Free En-

ergy

In this section, we describe how the components of free energy in the simplistic thermody-
namic model of RNAi reaction as shown in Fig. 1.2 are calculated. We use Mfold,24 a tool
based on dynamic programming that predicts equilibrium secondary structures and related
free energies of nucleic acids. It produces multiple possible secondary structures and associ-
ated free energies. For details about the energies considered for our calculations, see Section
3.3. The various default parameters are

LC–sequence type (default linear)

T–temperature (default 37 deg C, the normal human body temperature)

P–percent of suboptimality to consider for suboptimal structures (default 5)

NA CONC–Na+ molar concentration (default 1.0)

MG CONC–Mg++ molar concentration (default 0.0)

W–window parameter (default - set by sequence length, 2 for sequence length less than
100nt, 5 for 200nt, 15 for 800nt, 25 for 8000nt). Mfold calculates more structures with
similar energies for a smaller window, and fewer structures with different energies for a
larger window.

MAXBP–max base pair distance (default - no limit)

MAX–maximum number of foldings to be computed (default 100)

MAX LP–maximum bulge/interior loop size (default 30)

MAX AS–maximum asymmetry of a bulge/interior loop (default 30)

10
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Figure 3.1: Distribution of siRNA-mRNA pairs by mRNA length. The lengths are plotted
in bins of width 250 nt.

3.2.1 Terminology and Definitions

mRNA Target Strand

The target strand in the mRNA is the region complementary to the siRNA. The antisense
strand of the double-stranded siRNA binds to it, leading to knockdown of the gene (refer Fig.
1.2). It is the same exact length as the siRNA, and therefore varies from 19-23 nucleotides
in length.

mRNA Local Region(L)

The mRNA local region is defined as the target region plus a fixed number of nucleotides
padding on both the 5′ and 3′ ends. The total length of this region is L. Generally, we use the
same number of padding nucleotides on both ends. However, if the target strand is located
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towards one end of an mRNA such that it cannot be centered on the local region, we adjust
the paddings on 5′ and 3′ ends to ensure that L remains the same. If the length of the local
region exceeds the mRNA length, we use the whole mRNA as the local region.

mRNA constraint length (cl)

RNAi reaction involves unraveling of the target strand region of the mRNA prior to the
siRNA binding to it. Unravelling it might force a few nucleotides on either end to be single-
stranded as well. We simulate this by forcing a few nucleotides at either end of the target
strand to be single-stranded. The length of the sequence forced single-stranded at either end
of the target strand is the constraint length (cl).

3.2.2 ∆GmRNA

Determining the minimum energy secondary structure of a long RNA sequence requires sig-
nificant computational expense with the methodology we employ in this work. Therefore,
we calculate free energies only for the local region of the mRNA. Mfold provides parame-
ters START and STOP which indicate the start and end of the sequence fragment under
consideration.

Thus, calculation of free energy of the mRNA break involves the following two steps:

1) Calculation of free energy of the local region L of the mRNA.

2) Calculaiton of free energy of the local region of the mRNA with the constraint that the
target region and constraint length at 5′ and 3′ ends of it are forced to be single stranded
(unfolded).

Subtracting (2) from (1) gives the free energy required to unravel the target region. This
method has been proposed by Lu and Mathews,45 however, they force only the target region
to be single-stranded as opposed to our method, where we force additional number of nu-
cleotides adjacent to the target region to be single-stranded as well. This number is denoted
by cl. Fig. 3.2 illustrates this process.

3.2.3 ∆Gsirna

The siRNA is introduced into the reaction as a double-strand sense-antisense duplex. How-
ever, only the antisense strand of the siRNA hybridizes with the complementary target
strand in the mRNA. Therefore, we consider only the antisense strand of the dsRNA for
our calculations and by siRNA we refer to the antisense strand henceforth. Mfold is used to
calculate the free energy of the siRNA.
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Figure 3.2: Formation of constrained mRNA. L–The length of the local region, which is
the target strand plus an additional number of padding nucleotides at both ends, that is
considered relevant for secondary structure computation. cL–Additional nucleotides at both
end of the target strand that are forced single-stranded as the target strand unravels.

3.2.4 ∆Gms

∆Gms is the sum of ∆GmRNA and ∆GsiRNA, ∆Gms = ∆GmRNA + ∆GsiRNA. We define this
term because it represents the total free energy requirement on the left hand side of the
reaction of complex formation from mRNA and siRNA [see Fig. 1.2]. In the Chapter 4, we
will see how ∆Gms is a significant indicator of RNAi efficiency.

3.2.5 ∆Gcomplex mRNA-siRNA

There is no straightforward way to calculate the free energy of two strands of nucleic acids
pairing up. Here we describe how we calculate the free energy of hybridization of the complex.
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From the mRNA, we take the target region and two nucleotides in addition from the 5′ and
3′ ends. Let us call the nucleotides from the 5′ end XY, and the two at the 3′ end PQ. If the
length of the siRNA is ls, we have ls + 4 nucleotides from the mRNA. Then we attach a 275
poly-A string at the 3′ end, followed by the QP, siRNA, and YX. Thus the whole complex
is as follows XY-mRNA-PQ-(AAA...275 times)-QP-siRNA-YX. We fold this sequence with
appropriate constraints such that only the mRNA target region and the siRNA are free to
pair up, which they will, being exact complements of each other. To the free energy thus
calculated, we add another 3.6Kcal/mol to obtain the free energy of the complex.

We arrive at the number 3.6 Kcal/mol as the energy of the poly-A loop by an experiment
where we increase the size of the loop, and measure the difference in free energy caused
by the loop. It approaches 7.2Kcal/mol asymptotic as the length of the loop increases. At
length 275, the free energy difference is 3.6Kcal/mol. Thus, we determine the computational-
time/accuracy tradeoff acceptable at a poly-A loop of length 275. This is illustrated in Fig.
3.3.

end overhang

mRNA target strand

start overhang reverse start overhang

siRNA strand

reverse end overhang

mRNA−siRNA complex

poly−A loop of length 275

AAAA

Figure 3.3: Schematic representation for free energy computation of siRNA-mRNA complex.
The complex is constructed by combining the target strand, overhangs at either end of the
target strand, a poly-A loop of length 275, the siRNA, and the reverse of the overhangs at
either end of the siRNA strand.
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3.2.6 ∆Gtotal

We obtain ∆Gtotal by subtracting ∆Gms from ∆Gcomplex, ∆Gtotal = ∆Gcomplex − ∆Gms.
The lower the ∆Gtotal value, the thermodynamically better the siRNA-mRNA target strand
combination should be at RNAi activity.

3.3 Statistical Analysis

In this section, we discuss the different representations of thermodynamic free energies that
we use to find the correlation between the free energies and the RNAi efficiency.

For the main result in Section 4.1, we consider a single conformation with the minimum free
energy out of all the possible conformations. The free energies and the natural logarithm of
the corresponding activities, where activity is defined as the percentage of mRNA remaining
after RNAi treatment as compared to the control, are grouped into bins. We sort the siRNA-
mRNA target strand pairs based on the thermodynamic signature under consideration, e.g.,
∆Gms. Sixty-one pairs are put into one bin, to get a total of 10 bins. For each bin, we
calculate the average free energy, and the average efficiency, where efficiency is the logarithm
of the remaining level of mRNA. We plot these averages to obtain the graphs in Fig. 4.2.

For the various calculations discussed in Section 4.2 that use a subset of the full dataset, we
try to bin the siRNA-mRNA target strand pairs there such that we obtain either the same
number of bins or the same number of data points in each bin as in Section 4.1.

For the calculations in Section 4.2.3, we calculate the free energy using Boltzmann average.
The Bolzmann average free energy is

∆GBoltzmann =

∑

i

∆Gie
−

∆Gi

kT

∑

i

e
−

∆Gi

kT

, (3.1)

where the sum is over all possible conformations of the sequence. For our calculations, we
consider a maximum of 100 conformations having free energy within 100% range of the
minimum free energy conformation.
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3.4 Support Vector Machine (SVM)

3.4.1 SVM Implementation

We use the libsvm47 implementation of SVM. The implementation comes with a script
easy.py that finds the proper values of parameters C and γ for the radial-basis kernel used
by default by this implementation. We use this script to run all the SVM computations and
do not manually tune any parameters.

3.4.2 Feature Space

18 of the 28 features used by Lu and Mathews are incorporated in our feature space. They
contain the 15 sequence-position specific features and three computed free energy features
∆GsiRNA, ∆GmRNA, and ∆Gcomplex. In addition, we add two other energy features ∆Gtotal

and ∆Gms. Thus our feature space has 20 features, 15 sequence features and five computed
free energy features. The full feature list is show in Table 3.2.

We train the SVM to classify an siRNA as efficient or inefficient (silencing efficiency greater
than a threshold. We use 70% as the threshold for our calculations unless otherwise specified).
The dataset is divided into a training set and a test set, and the SVM is trained on the
training set and tested on the test set. If the number of data points in the training set is in
x : 1 proportion to the number of testing data points, the calculation is said to be x + 1-fold
cross-validation. Thus, if the dataset is divided in 3 : 1 ratio of training and testing sets, this
would be called 4-fold cross-validation. We conduct 2-fold, 4-fold, and 8-fold cross-validation
calculations.

3.4.3 Performance Metrics

This section explains how we quantify the performance of the SVM at classification of siRNAs
as functionally efficient or inefficient. Those siRNAs that result in silencing efficiency above a
threshold (70% unless otherwise specified) in silencing experiments are classified as efficient,
and the rest are inefficient. Thus, we pursue a binary classification scheme, and denote
efficient as class 1, and inefficient as 0. Let us also denote the siRNAs predicted as
class 1 as Positive and the ones as class 0 as Negative. Thus True Positive(TP) are
the siRNAs which are predicted as positive and are actually positive. False Positive(FP)

are the ones classified as positive but are actually negative. True Negative(TN) are the
siRNAs which are classified as negative and are experimentally determined to be negative.
False Negative(FN) are the ones which are wrongly classified as negative. Using these
numbers, we use the following metrics to determine the performance of the SVM.
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Feature Position on siRNA Sequence Class Name

∆GmRNA N/A ∆G
∆GsiRNA N/A ∆G

∆Gms N/A ∆G
∆Gtotal N/A ∆G

∆Gcomplex N/A ∆G
∆G1 1 Seq
∆G2 2 Seq
∆G13 13 Seq
∆G18 18 Seq

∆∆G1 19 1,19 Seq
A 19 Seq
C 1 Seq

CC 1 Seq
CG 1 Seq
G 1 Seq

GC 1 Seq
GG 1 Seq
U 1 Seq
U 2 Seq

UU 1 Seq

Table 3.2: Feature space used in SVM calculations. The position on the sequence as calcu-
lated from 5’ end of the antisense strand of the siRNA, and the class of the feature are listed.
If it is calculated using equilibrium secondary structure predictions (Mfold), it is classified as
∆G, otherwise it is classified as of class Seq. {All}= Set containing all the features, {∆G}
= {∆GmRNA, ∆GsiRNA, ∆Gms, ∆Gtotal, ∆Gcomplex}, and {Seq}={All} - {∆G}

Accuracy

Accuracy is defined as the percentage of correct predictions of the total number of predictions
made. Thus,

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (3.2)

Positive Predictive Value (PPV)

Positive Predictive value is the percentage of siRNAs predicted efficient that are actually
efficient as proved by silencing experiments. Thus,

PPV =
TP

TP + FP
× 100% (3.3)
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Sensitivity

Sensitivity is the percent of efficient siRNAs that are predicted to be efficient. Thus,

Sensitivity =
TP

TP + FN
× 100% (3.4)

Specificity

Specificity is defined as the percent of inefficient siRNAs that are predicted to be inefficient.
Thus

Specificity =
TN

TN + FP
× 100 (3.5)

Method Improvement Quotient (IQ)

We present this metric to account for the difficulty in improving the performance of a method
as the baseline gets higher. In addition, we want to incorporate the Null model performance
in quantifying the improvement of performance due to methods we test. To illustrate, meth-
ods based purely on random coin flip will have 50% accuracy (by simply “predicting” one
class all the time). Thus, an accuracy of say 55% achieved by a method is not really much
of an improvement over the prediction based on the “Null” model, which is the prediction
performance of a random draw. On the other hand, an improvement to 99% from 90%
provided by a certain method is noteworthy.

Consider PPV as the metric of interest. In the context of a typical RNAi application,
it is worthwhile to present a few good siRNA sequences for further testing as opposed to
predicting just one “best” candidate for a particular mRNA. We now define the Method
Improvement Quotient (IQ) for PPV. Suppose PPV on random prediction is PPVnull (this
equals the percentage of the efficient class in the whole dataset), and PPV for a method in
question is PPVmethod. Then IQ is defined by

IQ =
100 − PPVnull

100 − PPVmethod

. (3.6)

In our dataset, there are 247 out of 609 siRNAs with efficiency greater than the threshold
of 70%, yielding a PPVnull of 40.56%. This is the value of PPVnull we use in future PPV
calculations unless otherwise specified.
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Chapter 4

Results and Discussion

4.1 Correlations between RNAi efficiency and secondary

structure ∆G

Our key goal is to investigate to what extent the efficiency of the RNAi reaction is governed
by the secondary structure of its components. Specifically, we want to see to what extent
the simplistic mechanism shown in Fig. 1.2 holds, which implies that the RNAi can be
described by equilibrium thermodynamics, e.g., Equation 2.4. To this end, we have computed
Gibbs free energies of mRNA, siRNA, and their combinations and compared them with the
corresponding RNAi efficiencies for each of the 609 experimental data points used in this
study [see Chapter 3 for important details]. The result is shown in Fig. 4.1.

The results are in general agreement with those obtained by Lu and Mathews,45 in that
there is no appreciable correlation between the free energies and the efficiency of the RNAi
reaction. It is still possible that there may exist an underlying trend, but it is masked
by a large amount of “noise” arising out of various factors such as methodological errors
or unaccounted for biological properties of the RNAi mechanism. To discern the possible
trend, we average the free energies and corresponding average RNAi efficacies over 10 bins
as discussed in Section 3.3 to obtain the main results of this study, as shown in Fig. 4.2. We
can clearly see that, on average, there is significant correlation between RNAi efficiency and
some of the equilibrium free energies, with the caveat that this correlation is observed only
when the values averaged over bins are considered.

From the plots, we observe that there is good correlation of logarithm of the remaining
level of mRNA in the RNAi experiment with ∆GmRNA and with ∆GsiRNA. The trend of
the correlation is consistent with the simplistic thermodynamic model of RNAi reaction
presented in Fig. 1.2. This is a non-trivial observation because the model does not account
for various possible biological and chemical factors. What is clearly more interesting is the
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Figure 4.1: RNAi efficiency vs computed free energy components of RNAi reaction. See Fig.
1.2. L = 100, cl = 2

higher correlation for the sum of ∆GmRNA and ∆GsiRNA, ∆Gms. This is in agreement with
our model as well, and expected because it takes into account the total free energy cost of
getting the reactants to ready-state for the reaction to progress.

However, another observation that is not quite in agreement with our model is the low
correlation observed for ∆Gtotal, while one would normally expect otherwise because ∆Gtotal

accounts for more factors than ∆Gms. Though we do not have any confirmed explanation
for this, we propose the following speculative explanations:

1) The model assumes equilibrium thermodynamics while it is possible that the reaction
equilibrium has not been reached yet.

2) The model is deficient in that it does not account for other biological, chemical, and
thermodynamic factors. These unaccounted for factors play a significant enough role in the
RNAi reaction that without them the model is fundamentally flawed. However, the fact
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Figure 4.2: RNAi efficiency vs average computed free energy components of RNAi reaction.
The error bars represent the statistical error of the mean. L = 100, cl = 2

that a clear trend emerges when we average over bins indicates the effect of these factors are
probably cancelled out.

3) The computational protocol we employ for our calculations is flawed. However, we dis-
count this after further analysis regarding the robustness of our model to details of the
computational protocol. The results of this analysis are presented in Section 4.2.

4) ∆Gms represents the reaction barrier for RNAi reaction, and consequently the reaction
kinetics, while ∆Gtotal corresponds to the reaction equilibrim. Higher correlation for ∆Gms

possibly indicates a more pronounced effect of reaction kinetics on RNAi activity compared
to that of equilibrium considerations.

5) Some clues may come from the puzzling behavior of ∆Gcomplex. Fig. 4.3(a) shows the
plot for average ∆Gcomplex vs siRNA efficiency. We observe that the trend of the correlation
between ∆Gcomplex is opposite to what we would normally expect from the model in Fig.

21



1.2. Fig. 4.3(b) shows the plot of ∆Gcomplex vs ∆GmRNA. We see that there is a very
high correlation between the two; and this might result in a poor correlation for ∆Gtotal =
∆Gcomplex − ∆GmRNA − ∆GsiRNA because ∆Gcomplex and ∆GmRNA cancel each other out.

The counter-intuitive trend observed in Fig. 4.3(a) could be because siRNA activity prefers
a less stable siRNA-mRNA complex.9 In addition, the high correlation in Fig. 4.3(b) could
also be responsible for this trend.
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Figure 4.3: Behavior of ∆Gcomplex. (a) Correlation between the average experimental effi-
ciency of RNAi and ∆Gcomplex, see Fig. 1.2. The error bars represent the statistical error of
the mean. L = 100, cl = 2. (b) Correlation between average ∆Gcomplex and ∆GmRNA.

As we have discussed earlier, there is a lot of noise in Fig. 4.1. This could be a result of
deficiencies in the thermodynamic model we use. It could also arise from unaccounted for
biological, chemical, and thermodynamic factors. Finally, deficiencies in our computational
protocol could mean that the results we observe are not consistent. In the next section, we
present our efforts to determine the robustness of our model.

4.2 Robustness to Details of the Computational Pro-

tocol

The goal in this section is to explore robustness of our main results to details of the compu-
tational protocol.
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4.2.1 Influence of mRNA length on structure/efficiency correla-
tion

In our model, there are a number of parameters [see Fig. 3.2]. The result of varying some
of them are presented in Table 4.1. We show the square of the correlation between average
free energies and average silencing efficiency for different cl and L values when applied on
the Shabalina dataset. The free energy values are calculated as described in Chapter 3. Fig.
4.2 presents the values in bold in the table as this set of cl=2 and L=100 values gives high
correlation for both ∆GmRNA and ∆Gms.

L cl < ∆Gtotal > < ∆Gms > < ∆GmRNA > < ∆GsiRNA > < ∆Gcomplex >

800 0 0.04 0.88 0.59 0.55 0.86
800 2 0.03 0.73 0.57 0.55 0.86
800 10 0.06 0.71 0.67 0.55 0.86
200 0 0.14 0.77 0.63 0.55 0.86
200 2 0.02 0.76 0.66 0.55 0.86
200 10 0.11 0.76 0.74 0.55 0.86
100 0 0.09 0.72 0.64 0.55 0.86
100 2 0.00 0.87 0.79 0.55 0.86
100 10 0.11 0.87 0.65 0.55 0.86
90 0 0.08 0.67 0.65 0.55 0.86
90 2 0.02 0.82 0.71 0.55 0.86
90 10 0.02 0.69 0.64 0.55 0.86
50 0 0.02 0.78 0.82 0.55 0.86
50 2 0.00 0.85 0.81 0.55 0.86
50 10 0.03 0.89 0.75 0.55 0.86
Average 0.05 0.78 0.69 0.55 0.86

Table 4.1: Correlation between RNAi efficiency and free energy for different L and cl. The
∆G values represent the correlation for the corresponding free energy signature whose value
depends on the parameters L and cl in the first two columns.

Another trend that is apparent is that large values of cl lead to lower correlation. We think
this is because the RNAi machinery does not require extra nucleotides at either end of the
target region to be single-stranded. Even if they do get unpaired, it is possible this does not
effect the silencing efficiency–hence incorporating them as a factor in our calculation leads
to a worsening of the results. Though the correlation is lower, the general trend observed
in the table [Plots not shown] for different L and cl values are still in accordance with our
expectations, i.e., lower ∆Gms values indicate more stable constituents of the reaction and
hence lower RNAi efficiency, and lower ∆Gtotal values indicate more stable siRNA-mRNA
duplex and hence higher RNAi efficiency.

As discussed previously, the noise in the data could have been introduced by deficiencies
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in secondary structure prediction. The accuracy of folding tools such as Mfold is known to
deteriorate for long RNAs. To mitigate this problem, we follow others such as Schubert et.
al.,8 and Lu and Mathews45 and apply the folding algorithm to a local region of length L
that encompasses the 19-nucleotide siRNA target sequence [see Fig. 3.2], and ignore the rest
of the sequence.

However, this strategy is not perfect. One concern about using the local mRNA length is
that it ignores possible effects of the rest of the mRNA on the secondary structure of the
local region. We restrict the folding calculation to the local region on the assumption that
the globally folded structure has the same fold in the local region as in the locally folded one.
However, it is possible that the structure we obtain via the “local folding” is not the correct
one. Thus, the longer the mRNA, the higher the part ignored for a fixed length of local
region calculation, and higher the possibility of error in secondary structure consideration.

If we choose a short subset of mRNAs from our dataset (Fig. 3.1), it reduces the ignored
sequence, and hence increases the probablity that we obtain the correct secondary struc-
ture for the local region. We examine the results of our approach on shorter mRNAs. A
higher correlation than observed in Fig. 4.2 would indicate that the errors indeed arise from
deficiencies in secondary structure calculation.

For this purpose, we choose approximately one-fourth (184) of the total number of siRNA-
mRNA pairs in the our dataset, which correspond to the shortest mRNAs ranging in length
from 570 nt to 1821 nt. We apply our calculations on this subset. Table 4.2 summarizes the
results of this calculation. Fig. 4.4 show the results for ∆Gms and ∆Gtotal for L=100 and
cl=2.

L cl < ∆Gtotal > < ∆Gms > < ∆GmRNA > < ∆GsiRNA > < ∆Gcomplex >

100 0 0.03 0.35 0.21 0.14 0.23
100 2 0.03 0.53 0.23 0.14 0.23
100 10 0.04 0.33 0.08 0.14 0.23
Full 0 0.11 0.27 0.53 0.14 0.23
Full 2 0.13 0.26 0.25 0.14 0.23
Full 10 0.02 0.29 0.07 0.14 0.23

Table 4.2: RNAi efficiency vs free energy for shortest 184 siRNA-mRNA pairs. The ∆G
values represent the correlation for the corresponding free energy signature whose value
depends on L and cl in the first two columns.

We observe no improvements in correlations between structure and efficiency for short mR-
NAs. It could be because the number of data points is small to have large enough number
of bins at the same time with large enough data points in each bin.

To address the concern that choosing only 100 nucleotides for the local region ignores the
possible effects of the rest of the mRNA, we run the calculations for the above 184 mRNA
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(b) r2 = 0.53

Figure 4.4: RNAi efficiency vs free energy for shortest 184 siRNA-mRNA pairs. L = 100.
cl = 2

with the full mRNA as the local region. The results are given in Fig. 4.5.
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Figure 4.5: RNAi efficiency vs free energy for shortest 184 siRNA-mRNA pairs, L = full.
cl=2

We see that accounting for the full mRNA does not improve the results, compared to that
in Fig. 4.4. Although it does not absolutely prove that the methodology is not to blame,
it reduces the chance significantly and we believe the noise is introduced most likely by
biological factors.

We notice that the correlations are indeed worse than those in Fig. 4.2. Thus, we conclude
that deficiencies in secondary structure calculations do exist for large mRNAs. However,
over the local region of 100 nucleotides that we use for our calculations, those deficiencies
do not contribute significantly towards the noise we observe in Fig. 4.1.
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4.2.2 Possible Influence of Variation in Experimental Conditions

The dataset we use has been collected from different experiments. Possible differences in
the way each experiment is set up and conducted may lead to errors if data from different
experiments are merged. Hence, we choose two experiments with the highest number of
siRNA-mRNA entries in the dataset, and perform our calculations separately on these two
subsets with the 10 bins, the same number of bins as in Fig. 4.2. For comparison, we select
the same number of siRNA-mRNA pairs as in the experimental subset of interest at random
from the full dataset, and compute the correlations over 10 runs. The results are shown in
Table 4.3

Set <∆Gtotal> <∆Gms> <∆GmRNA> <∆GsiRNA> <∆Gcomplex>

Khvorova et.
al,48 179 pairs

0.13 0.78 0.55 0.28 0.58

Random Selec-
tion, 179 pairs

0.1 ± 0.1 0.58 ± 0.12 0.34 ± 0.16 0.39 ± 0.2 0.64 ± 0.16

Hsieh et. al,49

103 pairs
0.21 0.26 0.26 0.02 0.02

Random Selec-
tion, 103 pairs

0.08 ± 0.05 0.43 ± 0.2 0.31 ± 0.18 0.31 ± 0.21 0.5 ± 0.19

Table 4.3: RNAi efficiency vs free energy for two largest experimental subsets. For compar-
ison, the same number of siRNA-mRNA pairs as in the dataset are randomly selected and
the correlations calculated over 10 runs.

The Khvorova et. al48 dataset is the largest with 179 siRNA-mRNA pairs. It has 2 mRNAs
of lengths 851 nt and 5010 nt targeted by 89 and 90 siRNAs respectively. Fig. 4.6 shows the
results for this dataset.

We calculate the correlations for the second largest experimental set49 in our dataset. This
dataset comprises 103 siRNA-mRNA pairs for 21 mRNAs. The mRNAs range in length
from 829 nt to 11242 nt. Fig. 4.7 shows the results for this dataset.

We observe slightly higher correlation for ∆Gmsin Fig. 4.6(b), and the others are similar or
worse compared to Fig. 4.2. Thus, analysis within a single experimental set is likely to yield
better results. But for purposes of analyzing the correlation between RNAi efficiency and
computed equilirbrium free energies, our choice of dataset is better because we average over
the particular influence of a single experimental set.

The higher correlations in Fig. 4.6 compared to those in Fig. 4.7 could also arise from
the difference in the number of mRNAs used in the two experiments. Khvorova et. al48

use only two mRNAs for the results of 179 siRNA-mRNA pairs in Fig. 4.6, while Hsieh
et. al49 use 21 mRNAs for 103 pairs in Fig. 4.7. This suggests the possibility that data
from experiments with a single mRNA is consistent with our model; however combining the
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Figure 4.6: RNAi efficiency vs free energy for Khvorova et.al.48 This experimental subset in
our dataset has the highest number of siRNA-mRNA pairs, 179. L = 100, cl = 2
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Figure 4.7: RNAi efficiency vs free energy for Hsieh et. al.49 This experimental subset in
our dataset has the second highest number of siRNA-mRNA pairs, 103. L = 100, cl = 2
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results from different mRNAs could worsen the correlation. In Table 4.4, we present the
correlations between ∆Gms and RNAi efficiency for 5 mRNAs with the highest frequency of
siRNA-mRNA pairs within a single experimental sub-dataset in our dataset. For comparison,
we select the same number of siRNA-mRNA pairs at random from our dataset and calculate
the correlation for ∆Gms.

mRNA No. of targetting siRNAs Correlation Random Selection

U472981 90 0.13 0.07 ± 0.04
M60857 89 0.04 0.06 ± 0.05
J03132 38 0.08 0.07 ± 0.05
U472982 34 0.3 0.14 ± 0.08
U92436 29 0.00 0.09 ± 0.09

Table 4.4: RNAi efficiency vs ∆Gms for mRNAs with highest number of targetting siRNAs.
For comparison, in the column Random Selection, we compute correlations over 10 runs
for the same number of siRNA-mRNA pairs selected at random from our dataset. U47298
occurs twice because it is used in two different experiments. The mRNAs are identified by
their corresponding GenBank accession numbers.

We do not find any worsening of the correlations for random values compared to those
for single mRNAs. It appears the silencing efficiency of an siRNA depends on the target
mRNA. It is conceivable that use of multiple mRNAs leads to weaker correlation. However,
the significantly higher correlation in our earlier results (Fig. 4.2) which combine results
from multiple mRNAs indicate that our conclusions are robust to choice of mRNA.

4.2.3 Use of Single Minimum Energy vs Boltzmann Average En-

ergy

The free energies we have used so far in our calculations are the minimum values, repre-
senting the most stable secondary structure as predicted by Mfold. However, in reality, the
equilibrium comprises multiple secondary structures, their relative abundance in the solu-
tion being in exponential proportion to the stability of the structure. Thus, a more accurate
calculation would take into account the suboptimal structures as well.45 Indeed, the best
calculation would consider all the possible secondary structures. However, such a calculation
is computationally expensive, hence we compromise by taking a Boltzmann weighted average
of all the possible secondary structures with a free energy in the range of 100% deviation
from the minimum free energy, subject to a maximum of 100 possible structures, Equation
3.1. The results are shown in Fig. 4.8.

We observe that the results are very close to those observed in Fig. 4.2. This could be
because the Boltzmann average free energy calculation does not change the free energy values
by much from the minimum free energies. Fig. 4.9 shows the plot for Boltzmann average
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Figure 4.8: RNAi efficiency vs Boltzmann average free energy. L = 100, cl = 2

and minimum ∆Gtotals. There is not much difference between the free energies calculated
using minimum energy values and the ones using average energy values, thus confirming the
results of Fig. 4.8.
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Figure 4.9: Average ∆Gtotal over set of conformations vs minimum energy conformation.

4.3 SVM Based Predictions

In this section, we describe the results of our computational experiments using a support vec-
tor machine (SVM). We performed 2-fold, 4-fold, and 8-fold cross validation calculations on
the dataset described in Section 3.4. To determine the standard deviation, each calculation
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was conducted 10 times with training and testing subsets chosen at random. We calculate
the mean and standard deviation for the following metrics of performance: accuracy, PPV,
sensitivity, specificity, and IQ [See Section 3.4.3 for definitions and further details]. In addi-
tion, to understand the improvement achieved by using SVM over the null model, the null
model results are calculated. The results are given below.

Test/Feature Set Accuracy(%) PPV(%) Sensitivity(%) Specificity(%) IQ

Baseline 60 Indeterminate 0 60 N/A
Null model 50 40 20 50 1
2-fold/{All} 64.5 ± 3.3 59.1 ± 4.2 47.7 ± 5.9 76 ± 6.7 1.5
4-fold/{All} 67.4 ± 4.9 61.1 ± 5.1 50.8 ± 13.4 78.9 ± 6.1 1.5
8-fold/{All} 69.3 ± 5.6 63.9 ± 6.8 56.3 ± 10 78.4 ± 6.2 1.7

Table 4.5: Results of 2-fold, 4-fold, and 8-fold SVM cross validation predictions. The averages
reported are calculated on 10 runs. {} indicates that all of the features of the specified class
were considered.

We obseve that 8-fold cross validation performs the best and yields the most improvement
over the corresponding baseline numbers. However, we notice 4-fold performs only slightly
worse compared to 8-fold, and we choose 4-fold cross validation for further analysis. In
case we further sub-divide the test set in half according to some criteria, we shall still have
enough data points in the test set to yield statistically significant results, as shown for 8-fold
cross-validation.

We should note here that the Null model is distinct from the commonly used baseline model.
In the baseline model, the classifier consistently predicts the most frequent class in the
training set. In our case, the classifier would consistently predict “Functionally inefficient”,
which is Negative according to our definitions in Section 3.4.3. This would lead to TP +
FP = 0, and an indeterminate value for PPV = TP/(TP + FP ). Since PPV is our metric
of interest in this exercise, we use the Null model for comparison.

4.3.1 Further Computational Analysis with SVM

In order to improve the predictive performance, we tried various combinations of the feature
space. Each combination uses 4-fold cross-validation. The results are aggregated over ten
trials. We select different combinations of attributes for feature space. Table 4.6 shows the
results of these calculations.

From the results in Table 4.6 we observe that the SVM does not perform well with only
energy features or with only sequence features. A combination of sequence and energy
features perform better than either only sequence or only energy features. However, these
are still poorer than using all the available features for 4-fold cross validation as shown in
Table 4.5.
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Feature Space Accuracy(%) PPV(%) Sensitivity(%) Specificity(%) IQ

{All} 67.4 ± 4.9 61.1 ± 5.1 50.8 ± 13.4 78.9 ± 6.1 1.5
{Seq} 64.5 ± 3.4 57.8 ± 9.7 45.5 ± 5.8 77.2 ± 8.4 1.4
{∆G} 56.5 ± 3.5 53.5 ± 20.3 * 11.3 ± 8.6 90.1 ± 10.9 1.3
∆Gms 56.4 ± 3.8 32.5 ± 11 * 2.6 ± 4.6 95.9 ± 8.1 0.9
∆Gtotal 59.5 ± 4.5 30.8 ± 21.7 * 0.9 ± 1.5 99.1 ± 1.2 0.9
{Seq} + ∆GmRNA 66.1 ± 3.4 60.2 ± 6.7 51.4 ± 4.3 76.3 ± 5.6 1.5
{Seq} + ∆GsiRNA 66.7 ± 3.8 59.8 ± 6.8 52.2 ± 6.9 76.4 ± 7.5 1.5
{Seq} + ∆Gms 66.5 ± 3.6 58.7 ± 10.3 53.1 ± 3 75.5 ± 6.5 1.4
{Seq} + ∆Gcomplex 64.7 ± 2.3 59.7 ± 5 49.2 ± 6.2 75.8 ± 6.6 1.5
{Seq} + ∆Gtotal 64.9 ± 4 60.8 ± 7.5 49.2 ± 7.1 76.4 ± 7.6 1.5

Table 4.6: 4-fold cross-validation analysis with different feature spaces. Entries marked with
(*) have one or more indeterminate values of PPV among the 10 runs; the averages reported
are calculated on the remaining valid values. {} indicates that all of the features of the
specified class were considered.

What is clear from the results is that energy features do have a role to play in SVM classi-
fication.

4.3.2 Pre-filtering by ∆Gms

We consider improving the SVM performance by pre-filtering the dataset. To this end, we
present in this section the results of our efforts at SVM classification where we pre-filter the
dataset according to ∆Gms and then perform 4-fold cross-validation on the filtered dataset
with different feature spaces.

We sort the dataset according to ∆Gms. We know that the higher the ∆Gms value, the
easier it is to break the secondary structure of the mRNA and siRNA involved in the RNAi
reaction, and hence the more thermodynamically efficient the reaction is. Thus, a higher
∆Gms value indicates a higher RNAi silencing efficiency. Hence, we choose the half with
higher ∆Gms value from the sorted dataset.

To better understand the influence of pre-filtering, we conduct cross-validation exercises
to establish a baseline. For baseline calculations, we randomly divide the dataset in half,
and conduct 4-fold cross-validation analysis on one half. Thus for pre-filtering and baseline
calculations, we have the same number of data points for training the SVM and testing it.
Table 4.7 shows the results of 4-fold cross-validation on the dataset.

From the table, it is evident that pre-filtering by ∆Gms results in small but consistent
improvement of the performance of SVM classification. The improvement ranges from 3
to 7%, depending on the set of features. Note that the PPV calues in Table 4.7 should be
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Filter/Feature
Space

Accuracy(%) PPV(%) Sensitivity(%) Specificity(%) IQ

∆Gms/ {All} 59.74 ± 4.89 60.76 ± 7.56 57.15 ± 8.71 62.71 ± 11.16 1.51
Null/ {All} 64.1 ± 5.0 57.2 ± 8.9 46.6 ± 17.8 76.6 ± 10.6 1.4
∆Gms/ {Seq} 61.7 ± 4.7 61.1 ± 7.4 64.1 ± 13.7 60.5 ± 9.3 1.5
Null/ {Seq} 62.8 ± 7 60.7 ± 6.8 42.4 ± 16.9 78.5 ± 9.5 1.5
∆Gms/{All}-∆Gms 59.7 ± 5 59.5 ± 9.5 62.2 ± 5.5 57.7 ± 11.2 1.5
Null/ {All}-∆Gms 65.4 ± 5.4 55.7 ± 12.2 43.5 ± 14.9 78.8 ± 5.9 1.3
∆Gms/
{Seq}+∆GmRNA

61.6 ± 3.6 59.4 ± 7.0 66.7 ± 6.8 57.2 ± 10.7 1.5

Null/
{Seq}+∆GmRNA

64.9 ± 5.6 59.6 ± 13.1 43.9 ± 9 78.6 ± 10.6 1.5

∆Gms/
{Seq}+∆GsiRNA

64.2 ± 3.6 62.4 ± 5.4 ± 64.2 ± 13 65.1 ± 7.3 1.6

Null/
{Seq}+∆GsiRNA

62.2 ± 5.8 57.8 ± 11.7 42.1 ± 15.5 77.1 ± 11.2 1.4

∆Gms/
{Seq}+∆Gms

63 ± 5.6 65 ± 7 61 ± 11.7 66.2 ± 9 1.7

Null/
{Seq}+∆Gms

63.7 ± 5.7 58.9 ± 7.9 46.7 ± 14.6 75.8 ± 5 1.4

∆Gms/
{Seq}+∆Gcomplex

61.4 ± 3.8 59.7 ± 8.7 63.1 ± 12.9 61.4 ± 11.3 1.5

Null/
{Seq}+∆Gcomplex

64.6 ± 5.5 59.2 ± 12.5 46.9 ± 8 77.7 ± 8.1 1.5

∆Gms/
{Seq}+∆Gtotal

62.4 ± 6.1 59.7 ± 8.7 66.9 ± 7.7 58.4 ± 8.6 1.5

Null/
{Seq}+∆Gtotal

65.4 ± 6.6 58.8 ± 12.9 48.4 ± 6.2 76.5 ± 10.8 1.4

Table 4.7: SVM performance when the dataset is pre-filtered according to ∆Gms. It is
followed by 4-fold cross-validation on the filtered half. For the Null model filter, a random
half of the dataset is chosen for subsequent 4-fold cross-validation ( to ensure the same
number of data points as in ∆Gms pre-filtering). Entries marked with (*) have one or more
indeterminate values of PPV among the 10 runs; the averages reported are calculated on
the remaining valid values. {} indicates that all of the features of the specified class were
considered.
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compared either between themselves, e.g., ∆Gms/{Seq}+∆Gms of 65.0 vs Null/{Seq}+∆Gms

of 58.8 or they should be compared to the corresponding 2-fold numbers. These comparisons
keep sizes of the training sets the same or to at least roughly equal. Although fairly modest,
the improvement of PPV because of pre-filtering results in a notable increase in ± Q. In
addition, we see that adding one of the energy attributes to the sequence attributes in the
feature space leads to better classification performance. This observation proves the concept
that pre-filtering by incorporating prior knowledge of thermodynamic free energy signatures
involved in the RNAi reaction can improve SVM classification performance.

4.3.3 Post-filtering by ∆Gms

In this section, we present the results of our efforts to improve the SVM classification per-
formance by post-filtering the predicted results. To this end, the data points predicted as
efficient by the SVM, but having ∆Gms values lower than the threshold (-8.9 kcal/mol) are
reclassified as inefficient, and the performance of the classification scheme measured. We
arrive at the threshold value by extrapolating from Fig. 4.2(b). Table 4.8 shows the results
of these calculations. Each case is calculated 10 times.

Feature
Space/Filter

Accuracy(%) PPV(%) Sensitivity(%) Specificity(%) IQ

{All}/ ∆Gms 65.7 ± 4.7 63.8 ± 6.4 33.1 ± 7.8 87.5 ± 3.2 1.6
{Seq}/ ∆Gms 64.3 ± 2.8 61.3 ± 11.5 27.1 ± 5.1 88.8 ± 5.8 1.5
{Seq}+∆GmRNA/
∆Gm s

64.5 ± 4.1 62.7 ± 12.1 32.3 ± 6.1 86.6 ± 5 1.6

{Seq}+∆GsiRNA/
∆Gm s

66.6 ± 4 65.9 ± 10.5 33.3 ± 5.2 88.5 ± 4.5 1.7

{Seq}+∆Gms/
∆Gm s

65.9 ± 3.3 62 ± 11 34.9 ± 3 86.1 ± 4.2 1.6

{Seq}+∆Gcomplex/
∆Gm s

64 ± 2.6 64.7 ± 6.2 30.2 ± 5 88.1 ± 3.7 1.7

{Seq}+∆Gtotal/
∆Gms

64.6 ± 3.3 67.2 ± 10.4 32.8 ± 4.6 87.8 ± 5.6 1.8

Table 4.8: SVM performance when the output is post-filtered according to ∆Gms. Predicted
efficient data points with ∆Gms values greater than a threshold are marked inefficient and
the performance of the SVM and post-filter together is determined. Entries marked with (*)
have one or more indeterminate values of PPV among the 10 runs; the averages reported are
calculated on the remaining valid values. {} indicates that all of the features of the specified
class were considered.

We see that post-filtering can improve the result of SVM performance as well. However, it
leads to higher standard deviation than in pre-filtering. This caveat should be considered
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while designing classification models.

4.3.4 ∆Gms as a Stand-alone Predictor of RNAi efficiency

Feature Space Accuracy(%) PPV(%) Sensitivity(%) Specificity(%) IQ

∆Gms 57.5 48.7 59.8 55.9 1.2

Table 4.9: Result of using ∆Gms as a stand-alone predictor of RNAi efficiency. siRNAs
with corresponding ∆Gms values greater than -8.9 kcal/mol are predicted to be functionally
efficient.

In this section, we present the result of using ∆Gms as a stand-alone predictor of RNAi effi-
ciency by predicting the siRNA to be functionally efficient if the corresponding ∆Gms value
is greater than the threshold of -8.9 kcal/mol. We arrive at this threshold by extrapolating
at efficiency of 70% from Fig. 4.2(b). Table 4.9 shows the results of this computation.

There is a small improvement over the Null model by using ∆Gms value as a predictor of
siRNA efficiency. However, it is obvious that ∆Gms alone does not have nearly as much
predictive power as the larger sets of features used here [See Table 4.5 and Table 4.6].

34



Chapter 5

Summary

RNA interference (RNAi) has attracted considerable interest in the research community
for its potential as a viable, non-invasive, and safe technique of gene silencing. Key to
understanding that potential is being able to design highly targeted and efficient siRNAs.
To that end, characteristics of both the siRNA and the target mRNA have been explored
and design criteria suggested. However, first order thermodynamic principles have proved
inadequate in being able to predict reliably the siRNA silencing efficiency for a particular
siRNA-mRNA pair. In this work, we present a very simplistic thermodynamic model of the
RNAi reaction, and explore its effectiveness.

In our model, the antisense strand of the siRNA unravels and the free energy associated is
∆GsiRNA. The free energy required to create the break at the complementary mRNA target
region is ∆GmRNA. The free energy of formation of the mRNA–siRNA complex is ∆Gcomplex.
Thus, the total free energy involved in the reaction is ∆Gtotal = ∆Gcomplex − ∆GmRNA −
∆GsiRNA. We expect the RNAi efficiency to be effected by these thermodynamic free energy
signatures, which are calculated using Mfold, which considers equilibrium thermodynamic
RNA secondary structures to predict free energies of formation of the secondary structures.
Our expectation is that the more the energy required to create a break at the target region
of the mRNA and to unravel the siRNA, the less efficient the RNAi reaction is; and the
more energy released by formation of the siRNA–mRNA complex, the more favorable the
reaction and hence the higher the silencing efficiency of the siRNA.

In addition, we use the libsvm implementation of support vector machine (SVM) to classify
siRNAs as functionally efficient and inefficent using a combination of computed free energy
characteristics and sequence characteristics of both the siRNA and the target mRNA. We
try to improve the predictive performance of SVM by incorporating prior knowledge of the
correlation between thermodynamic free energies and siRNA efficiency by pre- and post-
filtering the datasets used to train and test the SVM.

As observed by others, we find no clear correlation between the free energy of the reaction
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and silencing activity for individual data points. However, when we take the average of the
computed free energies and the silencing efficiency, we find that there is a significant trend
in general agreement with our expectations. The highest correlation is observed between the
sum of ∆GmRNA and ∆GsiRNA, ∆Gms = ∆GmRNA +∆GsiRNA. This represents the total free
energy cost of unraveling the siRNA and creating the break at the complementary mRNA
target strand region.

We conduct additional analysis to test the robustness of the findings to details of the com-
putational protocol. The length of the local region L of influence of the mRNA and cl, the
length of additional nucleotides that are forced single-stranded during the creation of the
break at the mRNA target strand, are varied. We find that the general conclusion of the
findings remain the same.

The strategy of using a smaller local region instead of the full mRNA sequence to compute
free energy is not perfect because it potentially ignores the effect of the rest of the mRNA.
We therefore take approximately a quarter of the data points (184) representing the shortest
mRNAs in our dataset. The logic is that local region folding of short mRNAs will lead to
less of the effects of the rest of the mRNA being ignored, and we could possibly observe
higher correlation. We analyze this theory by varying L and cl for the shortest 184 data
points. However, we do not find any increase in the correlation between the thermodynamic
free energies and siRNA efficiency. Although it is possible the lack of correlation in these
cases is because of lack of enough data points to average over in each bin, the observation
does reduce the possibility of our earlier conclusion being an artifact of the particular choice
of parameters.

In order to rule out possible differences arising from variation in experimental conditions
among the various RNAi experiments from which the dataset is assembled, we perform our
calculations on the two largest experimental subsets in our dataset containing 179 and 103
siRNA-mRNA pairs. In this case as well, we do not observer any increase in the correlation
over our main result suggesting that our conclusion remains valid over possible differences
in experimental conditions.

Finally, all the calculations till now have been done on the minimum free energy conformation
of the secondary structure of the RNA sequences, while, in actual experimental conditions,
RNA sequences fold in various conformations, their abundance in exponential proportion
to the free energies of formation of the various conformations. We analyze our results by
using the Boltzmann weighted average of thermodynamic free energies of formation of the
various components in our model of the RNAi reaction. We find the results remain the
same, largely because of the high correlation observed between the free energies calculated
using Boltzmann average and those calculated using minimum free energy conformation
secondary structures. Thus we conclude that the correlations observed between the free
energies of the various components of RNAi reaction and the siRNA silencing efficiency is
robust to computational details.

We use this knowledge to improve the predictive accuracy of an SVM to classify siRNAs
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as functionally efficient and functionally inefficient. We divide the dataset into training
set and test set in different ratios and conduct computational experiments with the full
set of computed free energy and sequence specific characteristics to find that 4-fold cross
validation provides good performance, at the same time with enough test data points to yield
statistically significant result in case of further sub-division of the dataset in half according
to some criteria. Thus we choose 4-fold cross validation for further analysis. We try various
combinations of features in our feature space.

We try to further improve the performance by incorporating prior knowledge of the influence
of thermodynamic free energies. Thus, we pre-filter the dataset in half according to ∆Gms,
and conduct 4-fold cross-validation on the filtered set. We observe that the SVM performs
modestly better on the filtered dataset compared to the unfiltered set. It yields modest
but consistent improvement on adding computed free energy characteristics to the set of
sequence specific attributes while training and testing the SVM.

We also conduct post-filtering computations where we reclassify the predicted outputs of a
4-fold cross-validation exercise according to a threshold of the corresponding ∆Gms value.
Data points predicted to be functionally efficient but with ∆Gms values lower than the
threshold are reclassified as functionally inefficient and the performance metrics of the SVM
calculated. We observe that post-filtering also yields modest but consistent improvement in
prediction accuracy.

Based on these observations, we conclude that the silencing activity achieved by an siRNA-
mRNA pair is influenced by the thermodynamics of the reaction. However, a lot of “noise”
is introduced into the process. This can result from a number of factors in the reaction that
we have not accounted for, e.g., the activity of Dicer and RISC. One of the reasons is that
the thermodynamic influence of these factors is not well understood. In addition, if some of
the steps of the reaction are achieved by expending energy in the form of ATP, then the basic
thermodynamic model will fail to account for them, and reactions thermodynamically “bad”
could produce excellent results. Of course, it is also possible our knowledge of the RNAi
process remains incomplete, and there are vital factors which are unknown as yet. However,
on average, the reactions behave as expected according to thermodynamic principles.

In spite of these a priori limitations, we are confident the basic thermodynamic model will
help us better understand the interference reaction, and can serve as a useful guide in future
endeavors to predict “good” siRNAs for an mRNA.

In the future, we hope to further improve the performance of machine learning techniques
by incorporating a more rigorous modelling of the RNAi reaction, and by incorporating a
larger feature space of siRNA and mRNA attributes in the feature space. In addition, we
will use a more rigorous Boltzmann average calculation. We also propose to use SVM to
rank the available set of siRNAs in terms of their silencing efficiency rather than trying to
predict their actual efficiency.
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[10] Patzel, V., Rutz, S., Dietrich, I., Köberle, C., Scheffold, A., and Kaufmann, S. H. E.
Design of siRNAs producing unstructured guide-RNAs results in improved RNA inter-
ference efficiency. Nature Biotechnology 23(11):1440–1444, October, 2005.

[11] Holen, T., Moe, S. E., Sorbo, J. G., Meza, T. J., Ottersen, O. P., and Klungland, A.
Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in

vivo. Nucleic Acids Research 33(15):4704–4710, 2005.

38



[12] Liao, J.-Y. Y., Yin, J. Q., Chen, F., Liu, T.-G. G., and Yue, J.-C. C. A study on
the fundamental factors determining the efficacy of siRNAs with high C/G contents.
Cellular and Molecular Biology Letters 13(2):283–302, June, 2008.

[13] Ameres, S. L., Martinez, J., and Schroeder, R. Molecular basis for target RNA recog-
nition and cleavage by human RISC. Cell 130(1):101–112, July, 2007.

[14] Heilersig, H., Loonen, A., Bergervoet, M., Wolters, A., and Visser, R. Post-
transcriptional gene silencing of GBSSI in potato: Effects of size and sequence of the
inverted repeats. Plant Molecular Biology 60:647–662, 2006.

[15] Ichihara, M., Murakumo, Y., Masuda, A., Matsuura, T., Asai, N., Jijiwa, M., Ishida,
M., Shinmi, J., Yatsuya, H., Qiao, S., Takahashi, M., and Ohno, K. Thermodynamic in-
stability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities.
Nucleic Acids Research 35(18):e123, September, 2007.

[16] Pan, W. H. and Clawson, G. A. Identifying accessible sites in RNA: The first step in
designing antisense reagents. Current Medical Chemistry 2006(13):3083–3103, 2006.

[17] Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. The role of site acces-
sibility in microRNA target recognition. Nature Genetics 39(10):1278–1284, October,
2007.

[18] Westerhout, E. M. and Berkhout, B. A systematic analysis of the effect of target RNA
structure on RNA interference. Nucleic Acids Research 35(13):4322–4330, 2007.

[19] Gredell, J. A. A., Berger, A. K. K., and Walton, S. P. P. Impact of target mRNA
structure on siRNA silencing efficiency: A large-scale study. Biotechnology and Bio-
engineering 100(4):744–755, February, 2008.

[20] Shao, Y., Chan, C. Y., Maliyekkel, A., Lawrence, C. E., Roninson, I. B., and Ding, Y.
Effect of target secondary structure on RNAi efficiency. RNA 13:1631–1640, October,
2007.

[21] Kurreck, J. siRNA Efficiency:Structure or Sequence–That Is the Question. Journal of
Biomedicine and Biotechnology 2006:1–7, 2006.

[22] Pei, Y. and Tuschl, T. On the art of identifying effective and specific siRNAs. Nature
Methods 3:670–676, September, 2006.

[23] Russell, P., Walsh, E., Chen, W., Goldwich, A., and Tamm, E. R. The effect of temper-
ature on gene silencing by siRNAs: Implications for silencing in the anterior chamber
of the eye. Experimental Eye Research 82:1011–1016, 2006.

[24] Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic
Acids Research 31(13):3406–3415, 2003.

39



[25] Hofacker, I. L. Vienna RNA secondary structure server. Nucleic Acids Research
31(13):3429–3431, July, 2003.

[26] Mathews, D., Sabina, J., Zuker, M., and Turner, D. Expanded sequence dependence of
thermodynamic parameters improves prediction of RNA secondary structure. Journal
of Molecular Biology 288:911–940, 1999.

[27] Zuker, M. and Stiegler, P. Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research 9:133–148, 1981.

[28] Parisien, M. and Major, F. The MC-Fold and MC-Sym pipeline infers RNA structure
from sequence data. Nature 452(7183):51–55, 2008.

[29] Harmanci, A. O., Sharma, G., and Mathews, D. H. Efficient pairwise RNA structure
prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics
8(1):130, April, 2007.

[30] Freyhult, E., Moulton, V., and Clote, P. RNAbor: A web server for RNA structural
neighbors. Nucleic Acids Research 35:W305–309, 2007.

[31] Martinez, H. M., Maizel, J. V., and Shapiro, B. A. RNA2D3D: A program for Generat-
ing, Viewing, and Comparing 3-Dimensional Models of RNA. Journal of Biomolecular
Structure and Dynamics 25(6):669–683, 2008.

[32] Jiang, P., Wu, H., Da, Y., Sang, F., Wei, J., Sun, X., and Lu, Z. RFRCDB-siRNA:
Improved design of siRNAs by random forest regression model coupled with database
searching. Computer Methods and Programs in Biomedicine 87:230–238, 2007.
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