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A Finite Element, Reduced Order, Frequency Dependent Model of
Viscoelastic Damping

Jason Salmanoff

(ABSTRACT)

This thesis concerns itself with a finite element model of nonproportional viscoelastic
damping and its subsequent reduction.  The Golla-Hughes-McTavish viscoelastic finite
element has been shown to be an effective tool in modeling viscoelastic damping.  Unlike
previous models, it incorporates physical data into the model in the form of a curve fit of
the complex modulus.  This curve fit is expressed by  minioscillators.  The frequency
dependence of the complex modulus is accounted for by the addition of internal, or
dissipation, coordinates.  The dissipation coordinates make the viscoelastic model several
times larger than the original.  The trade off for more accurate modeling of viscoelasticity
is increased model size.

Internally balanced model order reduction  reduces the order of a state space model by
considering the controllability/observability of each state.  By definition, a model is
internally balanced if its controllability and observability grammians are equal and
diagonal.  The grammians serve as a ranking of the controllability/observability of the
states.  The system can then be partitioned into most and least controllable/observable
states; the latter can be statically reduced out of the system.  The resulting model is
smaller, but the transformed coordinates bear little resemblance to the original
coordinates.  A transformation matrix exists that transforms the reduced model back into
original coordinates, and it is a subset of the transformation matrix leading to the
balanced model.  This whole procedure will be referred to as Yae’s method within this
thesis.

By combining GHM and Yae’s method, a finite element code results that models
nonproportional viscoelastic damping of a clamped-free, homogeneous, Euler-Bernoulli
beam, and is of a size comparable to the original elastic finite element model.  The modal
data before reduction compares well with published GHM results, and the modal data
from the reduced model compares well with both.  The error between the impulse
response before and after reduction is negligible.  The limitation of the code is that it
cannot model sandwich beam behavior because it is based on Euler-Bernoulli beam
theory; it can, however, model a purely viscoelastic beam.  The same method, though, can
be applied to more sophisticated beam models. Inaccurate results occur when modes with
frequencies beyond the range covered by the curve fit appear in the model, or when poor
data are used.  For good data, and within the range modeled by the curve fit, the code
gives accurate modal data and good impulse response predictions.
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Chapter 1:  Introduction

The finite element method (FEM) is one of the most powerful numerical methods

available to engineers today.  It allows for an approximate solution of a large range of

problems by breaking the geometric domain of the problem into several smaller elements

and performing calculations at only a few discrete points within each element.

Information from these calculations can be assembled into global matrices, thereby taking

advantage of both matrix theory and modern high speed computing.

In the area of structural mechanics, one of the most challenging problems is the

modeling of viscoelastically damped structures.   The most common, and easiest

computationally, damping model is proportional damping.  The main drawback of this

technique is that damping factors must often be guessed at, and frequently are very

different from actual characteristics of the damped system of interest.  For instance,

proportional damping produces real valued mode shapes, but measurements on structures

with viscoelastic treatments yield complex mode behavior. By using a complex modulus

in the finite element formulation, and incorporating a curve fit of actual viscoelastic data,

the Golla-Hughes-McTavish (GHM) [1],[2] finite element provides a more accurate

model of the response of damped structures.  While it alleviates one problem, it creates

another:  the resulting finite element model is inflated by the addition of extra internal

variables (called dissipation coordinates), which are necessary in obtaining damping

information but have no physical meaning.  In exchange for more accurate damping

information, this model requires more computational time.

The problem of reducing a large model while retaining most of the important

information contained therein is frequently encountered in control theory.  Several

methods have been developed to address this problem, most notably the internally

balanced reduction method [10].  As before, something is lost for something gained:  the

retained states of the reduced model often bear almost no resemblance to the states of the

original model.   By carrying out one more transformation, it can be shown that the

retained states are linear combinations of the original states.  Thus, results from the
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reduced model can be compared directly to the original model.  This model order

reduction technique will be referred to within this thesis as Yae’s method [3], [4].

This thesis will show that by using the GHM viscoelastic finite element in

conjunction with Yae’s method to model the transverse vibrations of a beam, a finite

element model is obtained that is the same size as an elastic finite element model, but

computes damping factors and damped impulse response.  Further, the natural

frequencies and damping coefficients of the viscoelastic finite element model compare

well with theory, and the impulse response obtained from the model agrees closely with

an empirically determined impulse response.

The following is a brief outline of the rest of this thesis:

Chapter 2 will present the finite element theory and model order reduction theory.

Beginning with the Rayleigh-Ritz method, an elastic finite beam element will be derived,

followed by a viscoelastic GHM beam element.  Yae’s method will be explained, and

shown how it applies to the GHM model.

In Chapter 3, verification of the viscoelastic finite element code will be shown by

reproducing published results.  Yae’s method of model order reduction will then be

applied to the model, and the impulse response of a beam before and after reduction will

be compared.  Two different sets of published GHM minioscillators will be used in the

models.

Two other models that attempted to use data from the viscoelastic material

ISD 112 will be discussed, and the reasons for their erroneous results explained, in

Chapter 4.  An interesting observation regarding the choice of states to be kept based on

controllability/observability will also be inspected.

Finally, in Chapter 5, conclusions will be made based on the results, and possible

directions for future work will be given.
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Chapter 2:  Background

The finite element method (FEM) was developed in the 1940’s as a way to

calculate the stresses in the aluminum skin of aircraft wings.  Although derived

independently, the FEM was later shown to be a Rayleigh-Ritz type method.  With the

advent of large memory and high speed digital computers, the FEM has become among

the most popular, and powerful, computational methods used in structural dynamics.

Rather than trying to solve an equation of motion over the entire physical domain of the

problem for the displacement of every single point within the body, the FEM breaks the

domain into several smaller subdomains, called elements.  The displacement  is

calculated at discrete points within  the element; these points are known as nodes. Using

interpolation functions (also called shape functions), the displacement can be

approximated across the entire element.

The finite element method will be used to find the mass and stiffness matrices

from the differential boundary value problem.  These matrices are used to form the

equation of motion. The derivation will begin with the Euler-Bernoulli beam equation.

2.1  The Finite Element Method

The initial-boundary value problem for a homogeneous, isotropic, elastic,

cantilever Euler-Bernoulli beam with a time varying load F(t) at the tip is:
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where E is the Young’s modulus of the beam, I is the moment of inertia, and y(x,t) is the

lateral displacement of the neutral axis of the beam.  Following the procedure of [5], the

differential eigenvalue problem for a beam in free vibration is:
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EIY x mY x′′′′ − =( ) ( )λ 0                                                  (2.1.2)

Y Y Y L Y L( ) ( ) ( ) ( )0 0 0= ′ = ′′ = ′′′ =

where λ=ω2.  (Primes denote total derivatives with respect to x).  In the above equation,

the boundary conditions at x=0 are homogeneous and essential, while the ones at x=L are

natural.

The finite element formulation for the bending vibration of a beam will be

developed from the eigenvalue problem of eq. (2.1.2).  To begin, define a trial function

Φ(x) that is a real valued function over the domain 0<x<L.  Let Φ(x) be a smooth function

such that 0)0()0( =Φ′=Φ .  Multiply eq. (2.1.2) by the trial function and integrate over

the domain.

∫ =−′′′′Φ
L

dxmYYEI
0

0)( λ                                              (2.1.3)

Integrate the first term of eq. (2.1.3) by parts, keeping in mind the boundary conditions,

until Φ and Y are differentiated the same number of times.  This yields:

( )∫ =Φ−′′Φ ′′
L

dxmYYEI
0

0λ                                              (2.1.4)

Since eq. (2.1.4) contains second order derivatives of Φ and Y, both should have

continuous first derivatives across the entire domain, and second derivatives that are

discontinuous at a countable number of points in the domain (i.e. the nodes).  Following

standard finite element modeling (as outlined in [5]), Y(x) is approximated by:

qTxY φ≈)(                                                   (2.1.5)

where q is a vector of generalized elemental nodal displacements such that

q=[ Y1(x)  ′Y x1 ( )  Y2(x) ′Y x2 ( ) . . .]T; Yi(x) is the linear displacement at node i=1,2,. . . and

Yi’ (x) is the angular displacement at node i.   Similarly, the trial function Φ(x) can be

approximated by:

aTx φ≈Φ )(                                                   (2.1.6)

where a is a vector of undetermined coefficients.  Substituting eqs. (2.1.5) and (2.1.6) into

eq. (2.1.4)
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However, eq. (2.1.7) should hold for any choice of constants a.  Keeping this in mind, eq.

(2.1.7) in matrix form becomes:

qq MK λ=                                                                (2.1.8)

where

                                                    ∫ ′′′′=
L

dxxxEIK
0

)()( φφ    (stiffness matrix)

                                                  ∫=
L

dx(x)(x)mM
0

φφ      (mass matrix)

                                                     =λ   approximate eigenvalue

By allowing the global displacement vector q to depend on time, and including

the forcing function vector Q(t), the global finite element equation of motion can be

written:

M K t&& ()q q Q+ =                                                (2.1.9)

 A distinction between global and local (or elemental) functions needs to be made.

When φ is defined over the global domain, it is referred to as a basis function.  It is often

more convenient to work in local coordinates attached to an element and then transform

the results back to the global domain.  When basis functions are restricted to an element,

they are called shape functions.  Note that it is not necessary that shape functions be

defined in local coordinates; it merely makes computations easier.  Figure 1 shows a

typical two node uniform beam element.  Nodes are located at x=(j-1)h and x=jh, where

j=1,2,. . . m  (m being the number of global nodes in the model) and h is the length of an

element.  Figure 2 shows the same element in local coordinates.

Figure 2.  Beam element in ζ  coordinates

ξ  =-1 ξ =+1
ξ

1 2

Y’ j-1
Y’ j

Yj-1 Yj

x=(j-1)h x=jh

Figure 1.  Beam element in x coordinates

x
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The transformation between global and local coordinates x and ξ, respectively, is [5]

ξ =
− −2 2 1x h j

h

( )
 , d

h
dxξ =

2
                                      (2.1.10)

It should be noted that ξ is defined over [-1,1], in general, to make use of Gaussian

integration as needed.

Having obtained a transformation between global and local coordinates,

expressions for the elemental mass and stiffness matrices in local coordinates (denoted by

superscript n) are:
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The shape functions φ(ξ) are given by:
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The functions φ(ξ) are defined so that φ 1 and φ 3 (corresponding to nodal displacements

Y1 and Y2) are equal to one at local nodes 1 and 2, respectively, and are zero at nodes 2

and 1.  The functions φ 2 and φ 4 (corresponding to nodal rotations  ′
1Y and ′

2Y ) have a

slope of one at nodes 1 and 2, and have zero slope at nodes 2 and 1. Moreover, φ 1 and

φ 3 have zero slope at both nodes, and φ 2 and φ 4 have zero displacement at both

nodes.  Applying eq. (2.1.13) to eqs. (2.1.11) and (2.1.12) yields the element stiffness and

mass matrices for a beam:

K n EI

h

h h

h h h h

h h

h h h h

( ) =

−
−

− − −
−



















3

12 6 12 6

6 4 2 6 2 2

12 6 12 6

6 2 2 6 4 2

, M n mh

h h

h h h h

h h

h h h h

() =

−
−
−

− − −



















420

156 22 54 13

22 4 2 13 3 2

54 13 156 22

13 3 2 22 4 2

      (2.1.14)



Chapter 2:  Background 7

Once the element mass and stiffness matrices are computed for each element, they can be

assembled into global stiffness and mass matrices [6].  The vector of nodal displacements

and rotations, and the natural frequencies of the system, can be determined by substituting

eqs. (2.1.14) into eq. (2.1.8) and solving the eigenvalue problem.
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2.2  The  Golla-Hughes-McTavish (GHM) Viscoelastic Finite Element

The GHM element allows for the accurate modeling of viscoelastic damping

within the framework of  traditional elastic finite element analysis.  The method owes its

accuracy to the fact that empirical data for the complex modulus of a given viscoelastic

material are curve fitted and incorporated into the finite element formulation.  However,

this inclusion generates spurious internal variables, or dissipation coordinates, that do not

represent physical displacements.  In the next section, eliminating the dissipation

coordinates while retaining the natural frequency and damping information using Yae’s

model order reduction method will be discussed.  A brief description of a curve fit routine

is included in Appendix D.

Golla & Hughes [1], McTavish & Hughes [2], and Slater [7] begin their

derivations of the viscoelastic finite element model with an elastic model.  In order for

Yae’s model order reduction method to be successfully employed, though, a small

amount of damping must be introduced into the system to assure asymptotic stability as

required by the balancing procedure.  Proportional damping of the form D=cK will be

assumed in the following derivation where c is a constant such that the value of the

damping factor ζ shall be about 0.001 for the first mode. This accounts for air and strain

rate damping.  Equation (2.2.1) below represents the finite element equation of motion for

a proportionally damped elastic beam; it was obtained by adding proportional damping to

eq. (2.1.9).

M t D t K t t&&() &() () ()q q q Q+ + =                                      (2.2.1)

From eq. (2.1.14) it can be seen that the material modulus can be factored from the

stiffness matrix K.  Performing the factorization and transforming the resulting equation

into the Laplace domain yields:

{ }s M sD EK s s2 + + =q Q() ()                                    (2.2.2)

whereK EK=  (E being Young’s modulus from before) and s is the Laplace domain

variable.  To apply eq. (2.2.2) to a viscoelastic material, simply replace the elastic

modulus E with a viscoelastic material modulus.
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For a viscoelastic material, the stress-strain relationship includes  not only the

instantaneous strain, but the strain history as well.  The relationship given in [15] is of the

form:

σ ε ς ε ς
ς

ς() () ( )
( )

t E t E t
d

d
d

t
= + −∫0

                                 (2.2.3)

The Laplace transform of eq. (2.2.3) yields:

[ ] [ ]σ ε ε()
~
() () () ()s E sE s s E h s s= + = +1                           (2.2.4)

By making the substitution s=jω (j= − 1 ) in eq. (2.2.4), the frequency response of σ(s)

can be determined.  The term complex modulus arises from this substitution, since the

modulus can now be factored into real and imaginary parts, corresponding to the storage

modulus and loss modulus of the viscoelastic material, respectively. (Storage and loss

moduli will be discussed in Chapter 3).  Fundamental to the GHM finite element model is

the assumption that the frequency dependent part of the complex modulus, corresponding

to the strain history term in the time domain, can be modeled by the function h(s), and

that h(s) can be represented by the sum of rational polynomials consisting of

minioscillator terms [1], [2]:

∑ ++
+

=
k kk

kk
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ss
sh

δβ
βα

2

2 )(
)(                                                (2.2.5)

where each term in the above summation is referred to as a minioscillator because it can

be represented schematically by adding a fictitious spring-mass-damper system to the

structure being modeled.  For brevity, only one minioscillator term will be considered in

this derivation.

Replacing the elastic modulus E in eq. (2.2.2) with the expression for the complex

modulus found in eq. (2.2.4), the finite element equation of motion for a viscoelastic

beam is obtained:

[ ]{ }s M sD E h s K s s2 1+ + + =() () ()q Q                             (2.2.6)

Introducing the following dissipation coordinates

$( ) ( )z qs
s s

s=
+ +

δ
β δ2

                                        (2.2.7)
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into eq. (2.2.6), and transforming the result back to the time domain yields the equation of

motion, namely,
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In general, the stiffness matrix is positive semidefinite.  This implies that rigid

body modes (i.e. modes with zero valued eigenvalues) could be admitted into the system.

However, as seen in eq. (2.2.8), if K is positive semidefinite, the viscoelastic mass matrix

will also be positive semidefinite.  In finite element formulations, the mass matrix is

positive definite.  To ensure that the viscoelastic mass matrix will be positive definite,

and in keeping with the assumptions of GHM [1], the zero valued eigenvalues must be

removed from K.  It is more convenient to factor the material modulus out of K and find

the eigenvalues and eigenvectors of K  where:

K K R R T= =E E Λ                                          (2.2.9)

In the above equation, Λ  is a diagonal matrix of eigenvalues and R is a matrix whose

columns are the eigenvectors of K .    Then remove the zero valued eigenvalues from Λ

and the corresponding columns in R .  Factor E back into Λ  to obtain the

transformations of eq. (2.2.10).

Λ Λ Λ= = =E , , $R R R Tz z                              (2.2.10)

Applying the transformations to eq. (2.2.8) and premultiplying the bottom row by R T

yields the final form of the viscoelastic equation of motion:
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If N minioscillator terms are used in the curve fit, the viscoelastic mass, stiffness,

and damping matrices will have the following forms:
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           (2.2.12)

The matrices of eqs. (2.2.11) can be repartitioned to facilitate assembly of the global

matrices [1]. During assembly, the spatial coordinates coincident to two neighboring

elements are overlapped in the global matrix, but no such overlapping occurs for the

dissipation coordinates; they remain internal to each element [8].  Note that the size of

each element is increased by the size of z.
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2.3 Yae’s Model Order Reduction Method

Yae’s model order reduction method is based on Moore’s internal balancing

method [10].  Moore defines an internally balanced system as one in which the

controllability and observability grammians are diagonal and equal.  In Yae & Inman [3]

and Yae [4], the model order reduction was taken one step further by applying an

additional transformation that expresses the reduced model in terms of a subset of the

original states.

Eq. (2.3.1) shows the state space representation of the GHM finite element model

from the previous section.
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&x x u= +A B                                                     (2.3.1)

The matrix A is called the state matrix, and B the input matrix.  In keeping with classical

control theory, a third matrix C, called the output matrix, should be defined to indicate

which states are to be measured as output.

y x( ) ( )t C t=                                                     (2.3.2)

Eqs. (2.3.1) and (2.3.2) form the system (A, B, C, x).

To find the transformation matrix that will produce an internally balanced system,

begin by finding the controllability and observability grammians Wc and Wo, respectively;

they are defined as solutions to the Lyapunov stability equation.

AW W A BB

A W W A C C

c c
T T

T
o o

T

+ = −

+ = −
                                             (2.3.3)

Next, take the Cholesky decomposition of Wc.

 W L Lc c c
T=                                                      (2.3.4)

Premultiply Wo by Lc , post multiply by Lc
T, and solve the eigenvalue problem of eq.

(2.3.5).

U L W L UT
c o c

T( ) = Λ2                                             (2.3.5)
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The transformation matrix is given by

P L Uc= −Λ 1 2/                                                    (2.3.6)

The internally balanced model ( $ , $ , $ , $ )A B C x is given as

$& $ $ $

$ $

x x u

y x

= +

=

A B

C
                                                     (2.3.7)

where

$ , $ , $ , $A P AP B P B C CP P= = = =− − −1 1 1x x

Let Wc(P), Wo(P) denote the grammians defined in the balanced coordinate

system.  By the definition of an internally balanced model, Wc(P)= Wo(P)=diag {σ1, σ2, . .

., σ2N}.  The quantities σ i   (i=1,2,. . .,2N; N being the number of degrees of freedom in

the finite element model) are a measure of the controllability and observability of state i.

It is helpful to reorder the states in descending order of controllability and observability,

viz. σ1>σ2>. . .> σ2N.  The internally balanced model of eq. (2.3.7) can then be partitioned

into retained states and reduced states (see eq. (2.3.8)), $ $,x xr d respectively, where

$xr denotes the column vector of those states with significant dynamics (large σ), and $x d

denotes the vector of those states with small σ.  The reduced states will be of relatively

low controllability and observability, and so contribute the least to the system dynamics.
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                     (2.3.8)

The internally balanced reduced order model ( $ , $ , $ , $ )A B Cr r r rx is obtained by

statically reducing eq. (2.3.8).  Rather than just deleting $x d  and taking $Arr  to represent the

system, a static-like reduction formula is performed by setting the input u in eq. (2.3.8)

equal to zero and considering the static equation &$ $ $x x= A .  By setting  $&xd  equal to zero,

solving one of the static set of equations for $x r , and plugging back into the remaining

equation, a state matrix $Ar is found that is a function of the submatrices in eq. (2.3.8),

namely $ $ $ $ $A A A A Ar rr rd dd dr= − −1  [9].  Static-like reduction removes the undesirable states

$x d from the equation but retains their contribution to the dynamics of the system through

the newly formed state matrix $Ar .
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The main advantage of model reduction is that the reduced model is smaller than

the original, which translates into less computational time and power required for the

problem.  What is not readily apparent is the relation between the coordinates of the

reduced model and the original coordinates.  The transformation matrix P expresses the

coordinates of the reduced model as a linear combination of the original coordinates.   In

theory, the model reduction could result in the position states being eliminated, leaving

only the velocity states.  Again, referring to the GHM finite element model, it is desirable

for the dissipation coordinates to be eliminated from the model, and the retained states to

be in  the original coordinates.  To do this the remaining states must be related back to the

original states in order to obtain physically meaningful information about the system’s

natural frequencies and damping factors.

If in the original model of eq. (2.3.1) there are 2N states, and k of those states are

eliminated by model reduction, then the reduced model ( $ , $ , $ , $ )A B Cr r r rx consists of (2N-k)

states.  The k states removed can be considered as a set of constraints (i.e. $x d = 0) applied

to the original system (A, B, C, x).  Thus, any (2N-k) states among the originals, denoted

by },,{
)2(1 kNjj xx

−
K ,  can be chosen to represent (A, B, C, x).   Applying the internally

balanced model order reduction method to the (2N-k) original states will result in the

retained states }ˆ,,ˆ{ )2(1 kNxx −K .  These states are linear combinations of the (2N-k) original

states.  Therefore, a matrix Pr that transforms the reduced model ( $ , $ , $ , $ )A B Cr r r rx  into the

original coordinates can be obtained simply by eliminating the rows and columns of P

pertaining to the reduced states.  The reduced model in original coordinates

(Ar, Br, Cr, x)  is

& ,x x u y xr r r r r rA B C= + =                                        (2.3.9)

where

A P A P B P B C C P Pr r r r r r r r r r r r r= = = =− − −$ , $ , $ , $1 1 1x x

The final transformation into original coordinates is Yae’s method.

In terms of the GHM finite element model, eq. (2.3.9) will yield complex

eigenvalues associated with the displacement and velocity states.  Neither dissipation

states nor their associated eigenvalues will appear in the model since those states will be
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of low controllability/observability and will be chosen for elimination.  The desired

complex eigenvalues will contain information on both damped natural frequencies and

damping factors.
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Chapter 3:  Results

3.1  Introduction

By incorporating the Golla-Hughes-McTavish viscoelastic, nonproportional

damping model and Yae’s reduction method into a cantilever, isotropic, homogeneous,

Euler-Bernoulli  finite element beam model, a MATLAB code was developed that

determines the response of the beam to an impulse forcing function at the tip before and

after model reduction.  Additionally, the difference between the two responses is also

shown.  The real and imaginary parts of the complex stiffness, reproduced using the

GHM curve fit parameters α, β, and δ,  are plotted as well.  Finally, the controllability

and observability grammians in the internally balanced state—Wc(P) and Wo(P),

respectively—are plotted versus the transformed states.  It will be shown in this chapter

that the code is a satisfactory solution to the problem at hand, namely, the inclusion of

viscoelastic effects in a dynamic FEM model using internal variables and model

reduction for accurate time response prediction.  The accuracy of the code will be shown

by reproducing published results (a comparison of which can be seen in Appendix A), as

well as a comparison of the predicted impulse response before and after reduction, their

difference, and the Bode plots before and after reduction.

The results of this chapter are based on four cases using two different sets of curve

fit data.  Two cases used Golla & Hughes' [1] viscoelastic model using four

minioscillators, and the other two cases used the three minioscillator model from

McTavish, Hughes, Soucy, & Graham [8].  For each data set, two FEM meshes were

used:  one consisted of four elements, the other of eight elements.  The impulse responses

of these cases before and after model reduction compared very closely, as did their Bode

plots, except for Case 2.  Also, two other cases were tried, but did not give good results.

These will be discussed in the next chapter.  Beam dimensions, material properties,

characteristic frequencies, and numerical modal data are listed in Appendix B.
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3.2  Test cases

3.2.1  Case 1:  4 Elements, Data Set ghmdat, 4 Minioscillators

The first case run was a cantilever beam using the minioscillator terms from [1];

these parameters are listed in the table below.

Table 1:  Minioscillator Terms from [1]

k= α β δ
1 3.00E-02 4.16E-01 3.16E-02
2 3.00E-02 4.16E+00 3.16E+00
3 3.00E-02 4.16E+01 3.16E+02
4 3.00E-02 4.16E+02 3.16E+04

The objective was to reproduce the modal results in [1] of the four element,

nondimensional, cantilever beam using GHM to model the viscoelastic behavior of the

beam.  A comparison of the numerical data can be seen in Appendix A.  Additionally,

Yae’s method of model reduction was applied, and the response of the beam to an

impulse excitation was determined.  Comparison of the modal data, and of the impulse

responses, before and after model reduction, and comparing both to [1], served as a

benchmark to verify that the code gave reasonable results (see Appendix B for numerical

results).

Figure 3 shows the real and imaginary parts of the complex modulus versus

frequency for the minioscillator terms of Table 1.  The real part of the complex modulus

corresponds to the storage modulus, or the amount of strain energy stored within the

body.  The loss factor, η, is the ratio of the imaginary part of the complex modulus to the

real part.  In physical terms, it is the ratio between the energy dissipated per radian and

the peak potential energy [11].  The loss factor for the complex modulus of figure 3 is

about 2x10-2.  The damping factor ζ is related to the loss factor η by ζ=η/2; this relation

is only valid at resonance.  The damping factor is about 1x10-2 for this complex modulus.

The damping factor can also be calculated from the logarithmic decrement of the
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response [12].  Damping factors obtained from these two methods should compare well,

thus providing a simple sanity check on the code.

It should be mentioned that in [1], no reference is made to a real material, or any

material at all, for that matter, to which the curve fit is made.  As the example problems

worked out in the paper are purely numerical, and no reference to either experiments or

an actual material is made, the author is under the impression that while the minioscillator

terms may be patterned after some unnamed material, the terms themselves are fictitious

and were picked for ease of computation.  Also, in [1], the GHM viscoelastic model used

is purely nondimensional.

The time response of the beam model to an impulse excitation at the tip before

and after reduction is shown in Figure 4.  The top graph shows the response of the

original model, where yv is the tip displacement of the original model; the middle graph

shows the response of the reduced model—yr being the tip displacement of the reduced

model; and the bottom graph shows the difference between the two responses.  Any

difference between yv and yr appears to be negligible.  Also, both impulse responses

appear as expected:  the oscillations are large initially, but decrease exponentially.  The

oscillations appear to die out after 0.12 seconds.

The next figure (Figure 5) shows an overlay of the Bode plot of the original model

and the reduced model.  The two plots agree very well in both gain and phase up until

about 105 rad/s.  The gain plot contains information on both frequency and damping

factor of a given mode.  The natural frequencies are determined from the location of the

peaks, or local maxima, on the x-axis.  The damping factor is determined by the

bandwidth of the peak at the half-power points [6], [12].  The natural frequencies and

damping factors for the first seven modes before and after reduction are in agreement

because the plots match up when overlaid.  This conclusion is further supported by the

fact that the phase plots of the original and reduced model line up closely as well.  After

about 105 rad/s, both the gain and phase plots after reduction diverge significantly from

the plots of the original model.  This is because the curve fit of h(s) to the complex

modulus data was only performed over the frequency range up to 105 rad/s.
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The main feature of the internally balanced reduction method [10], upon which

Yae’s method is based, is that by definition, the controllability and observability

grammians in the balanced realization—Wc(P) and Wo(P) respectively—must be equal

and diagonal.  By sorting these matrices in descending order, a qualitative rank of the

degree of controllability/observability is achieved.  The least controllable/observable

internally balanced states can then be statically reduced out of the model.  In its

application, it is desirable that the most controllable/observable states contain at least all

of the physical states (linear displacement, rotational displacement, linear velocity, and

rotational velocity of all the nodes).  While the dissipation states may not have physical

meaning, they do contribute to the dynamics of the system, as well as to the modal

information, because of the coupling of physical displacements and dissipation

'displacements' in the stiffness matrix in eq. (2.2.11a).  Static-like reduction removes the

dissipation states from the model but still retains most of  the information conveyed by

those states in the form of the new $Ar  matrix.  Figure 6 shows a bar graph of Wc(P),

Wo(P) versus the transformed, or internally balanced, states.  For a four element, four

minioscillator finite element model the first sixteen states will correspond to physical

states when they are transformed back into physical coordinates, while the remaining

sixty-four states will correspond to dissipation states in the original coordinate system.

The bar graph shows that while there are several jumps in controllability/observability, a

significant one occurs between the sixteenth and seventeenth states.  Since this also

corresponds to the threshold between physical and dissipation states in the original

coordinate system, it would seem logical—and justifiable by their rankings in Wc(P) and

Wo(P)—to assign the first sixteen transformed states to the states retained vector $x r , and

assign the remaining states to the states reduced vector $x d .

The first case shows that GHM, coupled with Yae’s model order reduction, is a

viable method of modeling modal parameters of a viscoelastic material, as well as

predicting the response.
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3.2.2  Case 2:  8 Elements, Data Set ghmdat, 4 Minioscillators

The second case used the same GHM data and beam material properties as the

first case, but the finite element model was comprised of eight elements instead of four.

Figure 7 shows the impulse responses before and after reduction, and their difference, for

the eight element model.  As before, the response before and after reduction agrees well.

The oscillations appear to die out around 0.12 seconds.  The amplitude of oscillation is

less in this case than it was for the four element model.  The natural frequencies and

damping factors before and after reduction agree with the dimensionalized theoretical

data from [1].  However, looking at the Bode plot of figure 8 it is apparent that there are

major flaws.  Both the gain and phase plots line up closely up to the first mode at about

5x103, but after that the plots diverge radically. In fact, while the gain plot before

reduction has definite peaks and valleys (or poles and zeros), the gain plot after reduction

has virtually no discernible valleys, and just barely peaks at about the same place as the

prereduction plot.  After the second drop-off in phase, the post reduction phase plot does

not correspond to the phase changes in the prereduction plot. The behavior seen in the

Bode plots could be attributed to the fact that the majority of the natural frequencies lie

outside of the frequency range modeled by the complex modulus (101-104 rad/s).  Further

compounding the problem is the fact that the Golla-Hughes data was contrived to make

numerical modeling easier, as opposed to being empirically determined.  In both this case

and the previous one, the nondimensional, nonphysical complex modulus data, which was

intended only to calculate modal data and not responses, has been dimensionalized and

imbued with physical meaning that it may or may not have.   By doubling the mesh size,

higher modes are incorporated into the model, and since most of the lower frequency

modes are already outside of the range of the GHM model, the addition of more modes

outside of this range could account for the fact that the four element model still gives

good results, but the eight element model does not.

By doubling the number of elements, the number of physical states doubles as

well from sixteen to thirty-two for the eight element model.  In figure 9 it is seen that
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there is a jump in controllability/ observability after the thirty-second state, so this would

make a good cut off point between states kept and states deleted.  In this code, Yae’s

method is treated as a black box in that physical and dissipation states are given as input,

and only physical states are obtained as output.  The input and output states are in the

same physical coordinate system.  However, within the process, several transformations

take place in which the ‘physical’ and ‘dissipation’ states become intermingled, only to be

sorted out at the end.  It is conceivable that the higher frequency modes and the

dissipation states interact adversely to produce the results seen in figure 7. There is

evidence in support of this hypothesis, but further work will have to be carried out to

verify it; the dissipation states, although nonphysical, do affect the dynamics of the

system through their coupling with the physical states in the GHM stiffness matrix.
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3.2.3  Case 3:  4 Elements, Data Set mhsgdat2, 3 Minioscillators

Unlike the previous two cases, the next two cases use the complex modulus for

Hysol epoxy TE 6175 resin with HD 3561 hardener [8].  It has a mass density of 1176

kg/m3 and a zero frequency Young’s modulus of 2.8779 GPa.  The material is also lightly

damped.  The real and imaginary parts of its complex modulus versus frequency can be

seen in figure 10.  The data was empirically collected in the frequency range of 101 and

103 rad/s.  Within this range, the real and imaginary parts are basically constant.  The

minioscillator terms for this data are listed in Table 3.2.2.  The terms listed in [8] are in

(α, 2ζω, ω2) parameters but were converted into (α, β, δ) parameters using the formulas

listed in Appendix D.

Table 2:  Minioscillator Terms from [8]

k= α β δ
1 2.30E-02 1.04E+03 1.70E+04
2 8.11E-03 5.64E+03 4.96E+05
3 2.36E-02 3.84E+04 2.31E+07

In Case 3, four elements were used to model a beam composed purely of Hysol

and its resin.  The impulse responses are given in figure 11; the responses are almost

identical.  The Bode plots in figure 12 also compare very well up to about 5x103 rad/s,

after which they diverge and do not appear to correspond to one another.  In this case, the

point of divergence is well outside of the frequency range modeled, so that could account

for the divergence.  The plot of the internally balanced controllability and observability

grammians versus transformed states is the same for this case as the plot of figure 6.  As

such, sixteen states were kept in the model order reduction.

Case 4:  8 Elements, Data Set mhsgdat2, 3 Minioscillators

The impulse responses and Bode plots of Case 4 (figures 13 & 14) look

remarkably similar to the ones of Case 3.  The impulse responses of Case 4 appear to
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have the same amplitude as the responses of Case 3, and the Bode plots diverge at about

the same frequency.  The only discernible difference is that the Bode plots for Case 4

shows the effects of higher frequency modes which do not appear in Case 3, but this is to

be expected since adding more elements incorporates higher frequency modes into the

model.  Doubling the number of elements does not change the impulse responses or the

lower modes of the system.  This supports the hypothesis that the problems that arose due

to doubling the number of elements for the ghmdat data set are probably due to false

physical interpretation of the numerical nondimensional data, but further tests need to be

conducted to make a conclusive decision.

Thirty-two states were kept in the model reduction, corresponding to the thirty-

two physical states in this model.  See figure 9 for the controllability/observability

grammian plot.
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Figure 3.  Real and imaginary parts of complex stiffness vs. frequency, Case 1.
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Figure 4.  Impulse responses before and after reduction, and their difference, Case 1.
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Figure 5.  Overlay of Bode plots before and after reduction, Case 1.
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Figure 6.  WcP, WoP vs. Internally balanced states, Case 1.
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Figure 7.  Impulse response before and after reduction, and their difference, Case 2.
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Figure 8. Overlay of Bode plots before and after reduction, Case 2.
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Figure 9.  WcP, WoP vs. Internally balanced states, Case 2.
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Figure 10.  Real and imaginary parts of complex stiffness vs. frequency, Case 3.
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Figure 11.  Impulse response before and after reduction, and their difference, Case 3.
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Figure 12.  Overlay of Bode plots before and after reduction, Case 3.
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Figure 13.  Impulse responses before and after reduction, and their difference, Case 4.
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Figure 14.  Overlay of Bode plots before and after reduction, Case 4.
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Chapter 4:  Other Cases

The previous chapter listed results for two different data sets:  ghmdat, taken from

[1]; and mhsgdat2, taken from [8].  Two other data sets were tried in addition, but did not

give satisfactory results.  The main cause of trouble was trying to incorporate data meant

for a more sophisticated model into the homogeneous Euler-Bernoulli beam model.

GHM begins its derivation with an elastic finite element model, and generalizes to

a  viscoelastic one.  It was thought that the GHM finite element model using Euler-

Bernoulli beam theory presented in this thesis could be used as a low order approximation

of a sandwich beam consisting of a base of aluminum, 3M’s ISD 112 damping material

[13] and then another layer of aluminum.  To accurately model this beam, shear stresses

between the layers need to be taken into account.  Shear deformation is the primary

source of damping for this beam; as such, the storage modulus for ISD 112 is listed in

terms of shear modulus.  The model used in this thesis does not take into account the fact

that more than one material is present, nor does it account for shear stress within the

beam.  The finite element model started with an elastic model of an aluminum beam, and

then used ISD 112 properties in the GHM formulation. Physically, this model would

correspond to a material with the stiffness of aluminum and the damping properties of

ISD 112.  The problem is that there is a mismatch between the material properties of

aluminum and those of ISD 112.  The fundamental elastic model of the aluminum beam

uses Young’s modulus of aluminum, which has an order of magnitude of 1011.  The order

of magnitude of the zero-frequency (or elastic) shear modulus of ISD 112 is 106.  For a

single finite element, the parts derived from the elastic model are roughly five orders of

magnitude larger than those derived from GHM.  When the elemental mass matrices are

assembled into a global mass matrix and then inverted to form the state matrix as required

by Yae’s method, the matrix becomes ill conditioned and produces erroneous results.

The physical representation of this is that two separate, distinct materials are being used

in an attempt to model a single material that supposedly has the properties of both, but
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they are distributed evenly throughout the body rather than located in discrete portions of

the body as is the case in a sandwich beam.

The next case was an attempt to reconcile the mismatch between the two

materials.  The storage modulus of ISD 112 was artificially raised to be on the same order

of magnitude as that of aluminum; the real and imaginary parts of the complex modulus

were adjusted so that the loss factor would remain the same.  This would correspond to a

beam made out of a viscoelastic material having about the same stiffness as aluminum.

The loss factor of ISD 112 is around 1.0, so this beam would be overdamped.  If the loss

factor were lowered a couple of orders of magnitude, it would be expected that the beam

would be underdamped and exhibit oscillatory behavior due to an impulse excitation, thus

serving as a verification of the model.  The attempt produced poor results.  Although the

material properties of ISD 112 were made comparable to those of aluminum, the act of

artificially altering the material properties of ISD 112 could have extended the data

beyond its range of validity.  Also, there was still the problem of trying to couple two

properties without taking into consideration the interactions between them through shear

deformations.

An interesting problem arose regarding the choice of states to keep.  Figure 15

shows the controllability/observability of a four element model.  The first sixteen states

should be the physical ones, and from what was seen in the cases of the previous chapter,

it is expected that there would be a significant jump in controllability/observability

between the last state to be kept and the first to be reduced.  Upon inspection, though, the

least controllable/observable physical state is at least as controllable/observable as the

first few most controllable/observable dissipation states.  It didn’t matter whether the first

several dissipation states were kept or not for the four element model, but when the mesh

size was increased to eight elements, the code could not produce a meaningful, albeit

erroneous, impulse response if the first several dissipation states were not included in the

reduced model.  This result suggests that the choice of a cut-off point for the reduced

model should reflect the controllability/observability of the states, and that states with

controllabilities/observabilities above this cut-off must be kept, even if those states

belong to the class of states one desires to eliminate (i.e., dissipation states).
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Also of interest is the fact that this case necessitated the static-like reduction of the

( $, $, $, $)A B C x system.  When eight elements were used to model the system, and before

static-like reduction was applied, the reduced model predicted a constant impulse

response of the order of 10100—a number clearly beyond the tolerance of the computer.

However, after the static-like reduction was applied, the response at least resembled a

typical impulse response, although it was different from the prereduction response.  As

has been mentioned earlier in this thesis, the static-like reduction retains the dynamic

characteristics of the eliminated states.  Clearly, in this case, simply eliminating the

dynamic contributions of the dissipation states throws away significant dynamic

information such that a reasonable (although not necessarily accurate) impulse response is

not possible.  By performing the static like reduction, as well as keeping those dissipation

states that have the same controllability/observability as the physical states with the

smallest values of σ i, a believable impulse response is obtained.
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Figure 15.  WcP, WoP vs. internally balanced states for data set
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Conclusions

The following conclusions can be made based on the results:

1.  The code incorporating GHM viscoelastic modeling and Yae’s model order reduction

method is valid.  The code is able to reproduce published results, and the modal data

and impulse response before and after model order reduction compare closely.  The

resulting reduced model accurately accounts for nonproportional damping effects and

is of a size similar to the original elastic model.

 

2.  The code is limited in what it is capable of accurately modeling.  The code developed

here can model a purely viscoelastic beam, but was not able to model sandwich beam

behavior.  Since GHM and Yae’s method incorporates global mass, stiffness, and

damping matrices, it can be extended to a sandwich beam finite element model.

 

3.  The quality of the results is affected by the curve fit of the complex modulus.  Natural

frequencies outside of the range over which the data is fit produce erroneous results.

The modulus of the original elastic model and that associated with the viscoelastic

properties evenly distributed throughout the beam must be of similar order of

magnitude.

 

4.  Static-like reduction of the dissipation states is preferable to merely deleting them

because static reduction retains some of the dynamic characteristics of those states

whereas deletion does not.

 

5.  The choice of states to keep must be made based on the controllability/observability

of all of the states.  Dissipation states having controllability/observability comparable

to the least controllable/observable physical states need to be kept in the reduced

model because they contribute significantly to the dynamics of the system.
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Appendix A:  Comparison of Viscoelastic FEM Code to Published  Results

Below are tables comparing the results of the viscoelastic code, before model
reduction, to results published by Golla & Hughes [1].  The model is a clamped-free beam of
length 0.3808 m, width 0.0316 m, height 0.0062 m, Young’s modulus 2.10x1011, and
density 10 kg/m3.  The Golla & Hughes results were originally given in nondimensional
form, but were dimensionalized using the beam’s characteristic frequency c; for this model,
c=1788.6 rad/s.

Table 3:  Comparison of Natural frequencies (rad/s)

mode # Golla-Hughes FEM % error
1 6.4927E+03 6.4782E+03 2.2333E-01
2 4.1317E+04 4.0534E+04 1.8951E+00
3 1.1680E+05 1.1248E+05 3.6986E+00
4 2.3252E+05 2.2736E+05 2.2192E+00

Table 4:  Comparison of Damping Factors

mode # Golla-Hughes FEM % error
1 8.6000E-03 8.5960E-03 4.6512E-02
2 8.2700E-03 8.3205E-03 -6.1064E-01
3 8.4200E-03 8.3702E-03 5.9145E-01
4 7.4600E-03 7.5379E-03 -1.0442E+00
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Appendix B:  Numerical Modal Data for Cases 1-4

Case 1

4 elements, data set ghmdat

Beam dimensions:
L=0.3808 m, W=0.0316, H= 0.0062

Material properties:
Eo=2.1000E+11 Pa, ρ=10 kg/m3

Characteristic frequency:
c=1788.6 rad/s

Table 5:  Natural frequencies (rad/s), Case 1  Table 6:  Damping factors, Case 1

original model reduced model
6.8199E+01 6.8199E+01
4.2379E+02 4.2379E+02
1.1743E+03 1.1743E+03
2.3620E+03 2.3620E+03               

original model reduced model
4.3209E-03 4.3372E-03
4.1195E-03 4.1844E-03
2.5038E-03 2.5907E-03
1.3400E-03 1.3937E-03

Case 2

8 elements, data set ghmdat

Beam dimensions:
L=0.3808 m, W=0.0316, H= 0.0062

Material properties:
Eo=2.1000E+11 Pa, ρ=10 kg/m3

Characteristic frequency:
c=1788.6 rad/s



Appendix B 45

Table 7:  Natural frequencies (rad/s), Case 2 Table 8:  Damping factors, Case 2

original model reduced model
6.4853E+03 6.4854E+03
4.0673E+04 4.0673E+04
1.1244E+05 1.1244E+05
2.1635E+05 2.1633E+05
3.4828E+05 3.4821E+05
5.0138E+05 5.0131E+05
6.6238E+05 6.6234E+05
9.4901E+05 9.4900E+05               

original model reduced model
8.5969E-03 8.6305E-03
8.3114E-03 8.4872E-03
8.3696E-03 8.6860E-03
7.7350E-03 8.6056E-03
5.2302E-03 5.9706E-03
3.1244E-03 3.4846E-03
1.8670E-03 1.9784E-03
8.3880E-04 8.8364E-04

Case 3

4 elements, data set mhsgdat

Beam dimensions:
L=0.3808 m, W=0.0316, H= 0.0062

Material properties:
Eo=2.87789E+09 Pa, ρ=1176 kg/m3

Characteristic frequency:
c=19.308 rad/s

Table 9:  Natural frequencies (rad/s) Table 10:  Damping factors

original model reduced model
6.4782E+03 6.4783E+03
4.0534E+04 4.0533E+04
1.1248E+05 1.1248E+05
2.2736E+05 2.2734E+05               

original model reduced model
8.5960E-03 8.6409E-03
8.3205E-03 8.5357E-03
8.3702E-03 8.7782E-03
7.5379E-03 9.3687E-03
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Case 4

8 elements, data set mhsgdat

Beam dimensions:
L=0.3808 m, W=0.0316, H= 0.0062

Material properties:
Eo=2.87789E+09 Pa, ρ=1176 kg/m3

Characteristic frequency:
c=19.308 rad/s

Table 11:  Natural frequencies (rad/s)   Table 12:  Damping factors

original model reduced model
6.4853E+03 6.4854E+03
4.0673E+04 4.0673E+04
1.1244E+05 1.1244E+05
2.1635E+05 2.1633E+05
3.4828E+05 3.4821E+05
5.0138E+05 5.0131E+05
6.6238E+05 6.6234E+05
9.4901E+05 9.4900E+05               

original model reduced model
8.5969E-03 8.6305E-03
8.3114E-03 8.4872E-03
8.3696E-03 8.6860E-03
7.7350E-03 8.6056E-03
5.2302E-03 5.9706E-03
3.1244E-03 3.4846E-03
1.8670E-03 1.9784E-03
8.3880E-04 8.8364E-04
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Appendix C:  Finite Element Code

This appendix contains the finite element code eigtest.m and its associated
functions.  Also contained is the mesh generating script file meshgen.m.  The finite
element code applies the procedures outlined in Chapter 2.  In brief, it begins with the
proportionally damped elastic model of a clamped-free beam, uses them to form the
GHM mass, stiffness, and damping matrices and then casts them in state space form,
internally balances the state matrix, statically reduces out the dissipation states, employs
Yae’s method to transform the resulting model back to physical coordinates, and then
subjects the model to an impulse excitation.

Files:

eigtest.m Main program

meshgen.m Script file that generates 1-D beam meshes

assmblmat.m Function that assembles the elastic element matrices into a
global matrix

vassmblmat2.m Function that assembles the GHM element matrices into a
global matrix

loss.m Given the GHM minioscillator terms, this function
recreates the associated complex modulus and plots its real
and imaginary parts vs. frequency

logdec.m This function calculates the logarithmic decrement of the
impulse response
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                   %
%  eigtest.m                                        %
%                                                   %
%  (c)  Jason Salmanoff  4/97                       %
%                                                   %
%                                                   %
%  This program employs the finite element method   %
%  using Hermitian shape functions and the Golla-   %
%  Hughes-McTavish (GHM) element damping model      %
%  to model the damped response of a clamped-free   %
%  viscoelastic, homogeneous, Euler-Benoulli beam.  %
%                                                   %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%  Material properties

E0=210e9;  % Pa      (Young’s modulus)
rho=10;    % kg/m^3  (density)
%E0=2.8779e9;
%rho=1176;
%---------------------------------------------------------------

%  Load mesh information

if (1==1)
input_file=’mesh’

else
input_file = input(’Input file name? (no extension!!) ’,’s’);

end

eval([’load ’ input_file])

%  Create vector of X coordinates of all the nodes.

X=nloc(:,2);

%  Determine the number of elements and nodes in the mesh

numel=length(con(:,1));
numnode=length(nloc(:,1));

mssg=[num2str(numel),’ element(s) in model’];
disp(’’);
disp(’’);
disp(’’);
disp(mssg);
disp(’’);
disp(’’);
%---------------------------------------------------------------

% Beam geometry
L=(nloc(numnode,2)-nloc(1,2));  % m
W=.0316;  %  m
H=.0062;  %  m

I0=W*H^3/12;     % m^5

% Cross sectional area of beam
Ac=W*H;  % m^2

% Mass of beam
m=rho*Ac*L;
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% Define characteristic frequency
c=(1/L^2)*sqrt(E0*I0/(rho*Ac));

%===============================================================
%===============================================================

%  Predefine the global matrices and load vector
%
%  NOTE:  ’2*numnode’ is used to determine the size of the
%         global matrices because there are 2 degrees of
%         freedom per node.

M=zeros(2*numnode);
K=zeros(2*numnode);

%  Create VISCOELASTIC element matrices using GHM method

%  Select data file for GHM curve fit data
%  (’avosc’=number of available oscillators (i.e. max) )
choice=3;
if(choice==1)
  filename=’minosciii2’;
  avosc=4;
elseif(choice==2)
  filename=’minoscii2’;
  avosc=4;
elseif(choice==3)
  filename=’ghmdat’;
  avosc=4;
elseif(choice==4)
  filename=’origdatii2’;
  avosc=4;
elseif(choice==5)
  filename=’mhsgdat_my_fit_ii2’;
  avosc=3;
elseif(choice==6)
  filename=’mhsgdat_my_fit2’;
  avosc=3;
elseif(choice==7)
  filename=’mhsgdat2’;
  avosc=3;
end

disp(’ ’)
disp(’ ’)
disp(’ ’)
disp([’GHM curve fit data taken from file ’,filename])
disp(’ ’)
disp(’ ’)
disp(’ ’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                         %
%  curve fit data files:                                  %
%  --------------------                                   %
%                                                         %
%  minosciii2     nondimensionalized data for 3M ISD 112  %
%                 damping material, storage modulus       %
%                 scaled to be of similar magnitude to    %
%                 aluminum, loss factor scaled so that    %
%                 oscillations are possible               %
%                                                         %
%  minoscii2      nondimensionalized data for 3M ISD 112  %
%                 damping material, storage modulus       %
%                 scaled to be of similar magnitude to    %
%                 aluminum; system should not oscillate   %
%                 (loss factor is 10 times less than      %
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%                 above)                                  %
%                                                         %
%  ghmdat         curve fit data from Golla-Hughes paper  %
%                                                         %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%  The size of the global VISCOELASTIC matrices is determined
%  determined as follows:
%
%  The element matrices are of size 12X12.  For m=number of
%  elements, the size of the VISCOELASTIC global matrix is given
%  by the relation
%
%                       nv=(2*nmosc+4)*m-2*(m-1)
%
%  In this case, m=numel, nmosc=number of minioscillator terms in
%  the GHM curve fit, ’4’ refers to the size of the originial
%  elastic element matrices (4x4).

q=numel;
numosc=input([’How many minioscillator terms? (’,num2str(avosc),’ max.) >> ’]);
nv=(2*numosc+4)*q-2*(q-1);
ne=4*q-2*(q-1);

[Ksw,w,eta_c]=loss(filename,numosc,c,E0);

real_t0=clock;
comp_t0=cputime;

Mv=zeros(nv);
Kv=zeros(nv);
Dv=zeros(nv);

for NL=1:numel    %  loop over number of elements

  %  Redefine X vector for an element
  %  using the ’con’ matrix.

  Xl=X([con(NL,2) con(NL,3)])’;

  %  Calculate element length and Jacobian
  he=Xl(2)-Xl(1);

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  %
  %  5/11/97
  %
  %  NOTE:  To reduce the amount of error in the calculations,
  %  and to make life easier in general, exact expressions
  %  for Mel and Kel for Hermitian cubic beam elements
  %  were hard coded, rather than using Gaussian integration
  %  to derive the elements within the program.  This is just
  %  -ified by the fact that 1D beam elements are pretty easy
  %  to derive by exact integration.
  %
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

  %  Hard code nondimensional beam element from Golla-Hughes

  chi=sqrt(numel);

  Kel=[ 12*chi^6  6*chi^4 -12*chi^6  6*chi^4
         6*chi^4  4*chi^2  -6*chi^4  2*chi^2
       -12*chi^6 -6*chi^4  12*chi^6 -6*chi^4
         6*chi^4  2*chi^2  -6*chi^4  4*chi^2  ];
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   mu=1/chi;

   Mel=(mu^2/420)*[   156    22*mu^2    54    -13*mu^2
                     22*mu^2  4*mu^2  13*mu^2  -3*mu^4
                       54    13*mu^2   156    -22*mu^2
                    -13*mu^2 -3*mu^4 -22*mu^2   4*mu^4 ];

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   %
   %  5/20/97
   %
   %  NOTE:  To compare results of this code with the results
   %  in the Golla-Hughes paper "Dynamics of Viscoelastic
   %  Structures--A Time-Domain, Finite Element Formulation,"
   %  compute the eigenvalue problem using the
   %  CONSISTENT MASS MATRIX!!!!!!!!!!!!!!!!!!
   %
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   %  Set value for damping coefficient
   c_d=1.5*.0007;  %  NOTE:  this value will give zeta_elastic=.001

   %  Use Golla-Hughes curve fit data
   [Kvel,Mvel,Dvel]=eigtestel(Kel,Mel,numel,0,numosc,filename);

   %..................................................................

   %  Assemble element ELASTIC matrices into global matrices

   M=assmblmat(M,Mel,con(NL,:),’matrix’);
   K=assmblmat(K,Kel,con(NL,:),’matrix’);
   C=c_d*K;

   %  Assemble element VISCOELASTIC matrices into global matrices
   Mv=vassmblmat2(Mv,Mvel,NL,numosc);
   Kv=vassmblmat2(Kv,Kvel,NL,numosc);
   Dv=vassmblmat2(Dv,Dvel,NL,numosc);

end         %  end loop over elements

%---------------------------------------------------------------

%  Apply homogeneous essential b.c. for clamped-free beam
K(1:2,:)=[];
K(:,1:2)=[];

M(1:2,:)=[];
M(:,1:2)=[];

C(1:2,:)=[];
C(:,1:2)=[];

Kv(1:2,:)=[];
Kv(:,1:2)=[];

Mv(1:2,:)=[];
Mv(:,1:2)=[];

Dv(1:2,:)=[];
Dv(:,1:2)=[];
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%---------------------------------------------------------------

%  Find global ELASTIC eigenpairs

Ae=inv(M)*K;
[ve,lamE]=eig(Ae);

%  proportional damping matrix

%  Arrange eigenvalues in ascending order, and adjust
%  ve accordingly

[temp,index]=sort(diag(lamE));
lamE=diag(temp);
ve=ve(:,index);

%  Compute natural frequencies: w=sqrt(lambda)
we=sqrt(diag(lamE));

%  Ignore first two eigenvalues
%wea=we(3:ne);
wea=we;

%  Exact values of natural frequencies
fil=sqrt(E0*I0/(m*L^4));
w1=(1.875^2)*fil;
w2=(4.694^2)*fil;
w3=(7.855^2)*fil;
w4=(10.996^2)*fil;
w5=(14.137^2)*fil;

for mm=6:20
  tt(mm-5)=((2*mm-1)*pi/2)^2*fil;
end

wx=[w1 w2 w3 w4 w5 tt]’;

check=[wea(1:numel) wx(1:numel)];

%  Normalize the eigenvectors w.r.t. the mass matrix
for zz=1:length(lamE)
  cr=ve(:,zz)’*M*ve(:,zz);
  ve(:,zz)=ve(:,zz)/sqrt(cr);
end

%  Check to see if damping factor for ELASTIC model with
%  PROPORTIONAL damping for first mode is about .001
idk=diag( (c_d*ve’*K*ve)/(2*wea(1)) );

%  Since if u is an eigenvector, a*u (a=const) is also
%  an eigenvector, the eigenvectors, can be scaled
%  without affected the solution.
%ve=ve/1000;

%---------------------------------------------------------------
%  Construct state matrix from Mv, Kv, and Dv

Z=zeros(nv-2);
I=eye(nv-2);

Av=[    Z       I
     -Mv\Kv  -Mv\Dv ];

Bv=[    Z
     inv(Mv) ];



Appendix C 53

%  Reorder Av so that q, q_dot are grouped
%  together and z, z_dot are also grouped
%  together

p=2*numosc;

q_s=zeros(1,2*2*numel);
z_s=zeros(1,p*2*numel);

cca=1:(4+2*numosc-2):2*(nv-1);
ccb=cca-1;

count=1;
for ww=1:2*numel
  f=2*ww-1;
  s=2*ww;
  q_s(f:s)=[(p+1)+ccb(count) (p+2)+ccb(count)];
  z_s(p*ww-(p-1):p*ww)=[cca(count):cca(count)+(p-1)];
  count=count+1;
end

rp=[q_s z_s];

%  State matrix
Av=Av(rp,rp);

%  Input matrix
T=eye(size(Av));
Bv=T(rp,:)*Bv;

%  Output matrix
lala=length(q_s)/2;
Cv=zeros(lala,2*(nv-2));
Cv(1:lala,1:lala)=eye(lala);

%  Find the displacement state at the tip
%  by using length(q_s)/2-1 and store in
%  a vector consisting of all zeros, except
%  one ’1’ at the displacement state of
%  the tip

istate=zeros((nv-2),1);
istate(lala-1)=1;

%  The column of the input matrix Bv
%  corresponding to the tip is given
%  by Bv*istate, and the row
%  of the ouput matrix Cv also
%  corresponding to the tip
%  is given by istate’*Cv

%  Compute VISCOELASTIC eigenvalues
[vv,lamV]=eig(Av);

%  Compute damping ratio and natural frequencies
lv=sort(diag(lamV));

%  Sort VISCOELASTIC eigenvalues
lv=sort(lv);

%  The eigenvalues pertaining to modes of
%  vibration of the beam occur in complex
%  conjugate pairs.  So, sort out the
%  complex eigenvalues and get rid of
%  half of them.



Appendix C 54

qq=find(abs(imag(lv))>1.0000);
lva=lv(qq);
pos=[1:2:length(qq)];  % every position eigenvalue
lva=lva(pos);

%  Compute natural frequencies and damping ratios
wv=abs(lva);
zeta=-real(lva)./abs(lva);

%------------------------------------------------
% Yae’s Method
%------------------------------------------------
%  Solve Lyapunov equations for Wo, Wc:
%
%         Av*Wc+Wc*Av’=-Bv*Bv’
%         Av’*Wo+Wo*Av=-Cv’*Cv
%
Wo=lyap(Av’,Cv’*Cv);

Wc=lyap(Av,Bv*Bv’);

%-------------------------------------------

%  Laub’s method
%%%%%%%%%%%%%%%%

%  Find transformation P for balanced state
Lct=chol(Wc);
Lc=Lct’;  % (Lc must be lower triangular)

Lc=fix(Lc*1e4)/1e4;

H2=Lc’*Wo*Lc;

[U,G]=eig(H2);
Gamma=sqrtm(real(G));

P=Lc*U*Gamma^(-.5);

%-------------------------------------------

%  Form state matrices in balanced state
aii=inv(P)*Av*P;
bii=inv(P)*Bv;
cii=Cv*P;

%  Transform Wc, Wo, into balanced state
%  NOTE:  By definition, Wc, Wo must be
%  diagonal and equal in the balanced state
WcP=inv(P)*Wc*(inv(P))’;
WoP=P’*Wo*P;

%  The imaginary parts of WcP, WoP are of order 1e-22
%  (eps=1e-16).  Imaginary parts are negligible, so
%  ignore them.
WcP=real(WcP);
WoP=real(WoP);

%  Check that WcP, WoP are diagonal and equal
test_c=sort([eig(WcP) diag(WcP)]);
test_o=sort([eig(WoP) diag(WoP)]);

test_c=[test_c(:,1) test_c(:,2) test_c(:,1)-test_c(:,2)];
test_o=[test_o(:,1) test_o(:,2) test_o(:,1)-test_o(:,2)];
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WcP=diag(real(WcP));
WoP=diag(real(WoP));

%  Number of most controllable/observable z states to keep
%z_keep=numel+10;
z_keep=1;

%  Perform static reduction on z states
row=size(cii,1);
col=size(bii,2);
elim=length(q_s)+[z_keep:length(z_s)];

[ai,bi,ci,di]=modred(aii,bii,cii,zeros(row,col),elim);

%  Get rid of GHM terms
xt=[1:length(q_s)+z_keep-1];

%  Form transformation matrix Pr from subset of P
Pr=P(xt,xt);

%  Transform balanced state matrices back
%  into physical coordinates
Ar=Pr*ai(xt,xt)*inv(Pr);
Br=Pr*bi(xt,:);
Cr=ci(:,xt)*inv(Pr);

%  Solve eigenvalue problem on reduced state
[vvr,lvrb]=eig(Ar);
lvr=sort(diag(lvrb));

%  Find eigenvalues pertaining to physical data
rr=find(abs(imag(lvr))>1);
lvra=lvr(rr);

%  Since eigenvalues of damped problem occur
%  in complex conjugate pairs, consider only
%  every other eigenvalue
pos=[1:2:length(lvra)];
lvrb=lvra(pos);
wvr=abs(lvrb);
zetar=-real(lvrb)./abs(lvrb);

%-----------------------------------------------------

%  Output

Arr=real(Ar);
Brr=real(Br);

%  Impulse response before reduction
t=[0:.01:300];
[yv,xv,tv]=impulse(Av,Bv*istate,Cv(lala-1,:),0,1,t);

%  Impulse response after reduction, using time vector ’tv’
%  from before to produce response on the same time scale
[yr,xr,tr]=impulse(Arr,Brr*istate,Cr(lala-1,:),0,1,tv);

%  Dimmensional plots
figure(2)
orient tall

subplot(3,1,1),
   plot(tv/c,yv*L)
   xlabel(’Time (sec)’)
   ylabel(’yv’)
   h=axis;
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subplot(3,1,2),
   plot(tr/c,yr*L)
   xlabel(’Time (sec)’)
   ylabel(’yr’)
   axis(h);

subplot(3,1,3),
   plot(tv/c,(yv-yr)*L)
   xlabel(’Time (sec)’)
   ylabel(’yv-yr’)
   axis([h(1) h(2) -h(4) h(4)]);

txt=[num2str(numosc),’ minioscillator(s), ’,num2str(numel),’ element(s),’...
     ’ state ’,num2str(find(istate==1)),’, data set: ’,filename ];

subplot(3,1,1),title([’IMPULSE RESPONSE, ’,txt])

%  Bode plot, before reduction
%  NOTE:  [mag,phase,w]=bode(A,B,C,D) returns
%         ’w’ in Hz, ’phase’ in degrees, and
%         ’mag’ in something other than dB
%
%  Conversions:  w[rad/s]=w[Hz]*2*pi
%                mag[dB]=20*log10(mag)

%  Nondimmensional magnitudes, phases, and frequencies
[mag,phase,w]=bode(Av,Bv*istate,Cv(lala-1,:),0);
[magr,phaser,wr]=bode(Arr,Brr*istate,Cr(lala-1,:),0,1,w);

figure(3)
orient tall
subplot(2,1,1),
   loglog(w*c,mag,’-’,wr*c,magr,’-.’)
   xlabel(’Frequency (rad/s)’)
   ylabel(’Gain’)
   legend(’before reduction’,’after reduction’)
   title([’BODE PLOT, ’,txt])

subplot(2,1,2)
   semilogx(w*c,phase,’-’,wr*c,phaser,’-.’)
   xlabel(’Frequency (rad/s)’)
   ylabel(’Phase (deg.)’)
   legend(’before reduction’,’after reduction’)

figure(4)
orient tall
xstate=1:length(WcP);
[xx,yy]=bar(WcP);
fill(xx,yy,’c’)
hold
[xx2,yy2]=bar(WoP);
fill(xx2,yy2,’b’)
xlabel(’Internally balanced states’)
ylabel(’WcP, WoP’)
title([’WcP,WoP vs. STATE, ’,txt])
h=axis;
axis([0 length(q_s)+10 -.5 40])
grid

real_t=etime(clock,real_t0);
comp_t=cputime-comp_t0;

%  Logarithmic decrement of impulse response ’yv’
x1=max(yv);
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nn=find(yv==min(yv));
mm=find(yv(nn:length(yv))==max(yv(nn:length(yv))));
x2=yv(nn+mm-1);
log_dec=log(x1/x2);



Appendix C 58

%   meshgen.m
%
%  Generate con, nloc matrices for mesh of n beam
%  elements.

L=.3808; % global length of beam  x:[0,L]
%L=1;
n=input(’How many elements? >>’); % number of elements

xcoord=0;

nloc=zeros(n+1,2);
con=zeros(n,3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Define ’nloc’ and ’con’ matrices as follows:
%
%      node #   X-coord
%     [                ]
%nloc=[          ]
%     [                ]
%
%
%     elem. #   n1      n2
%    [                    ]
%con=[       ]
%    [                    ]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for nnd=1:(n+1)
  nloc(nnd,:)=[nnd xcoord];
  xcoord=xcoord+L/n;
end

for nel=1:n
  con(nel,:)=[nel nel nel+1];
end

%%%%%%%% MESH NAME!!!!
NAME=’mesh’;
eval([’save ’ NAME ’ nloc’ ’ con’])
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function[Kvel,Mvel,Dvel]=eigtestel(Kel,Mel,numel,c,numosc,input_file)

%  This function creates the Golla-Hughes-Mctavish
%  viscoelastic element matrices following the
%  procedures of McTavish-Hughes and Golla-Hughes

%input_file=’ghmdat’;
eval([’load ’,input_file]);

alpha=vemp(1:numosc,1);
beta=vemp(1:numosc,2);
delta=vemp(1:numosc,3);

%  Define chi, mu
chi=sqrt(numel);
mu=1/chi;

%  Define transformation matrix R
a=2*sqrt(3)*chi^3;
b=sqrt(3)*chi;

RT=[ 0  chi  0  -chi
     a   b  -a    b  ];

R=RT’;
R1=R(1:2,:);
R2=R(3:4,:);

%  Define nondimensional Kvel, Dvel, Mvel as
%  in Golla-Hughes

K11=Kel(1:2,1:2);
K12=Kel(1:2,3:4);
K22=Kel(3:4,3:4);

M11=Mel(1:2,1:2);
M12=Mel(1:2,3:4);
M22=Mel(3:4,3:4);

phi=1+sum(alpha);

I=eye(2);
Z=zeros(2);

Kvel=zeros(4+2*numosc);
Mvel=zeros(4+2*numosc);
Dvel=zeros(4+2*numosc);

penult=2*numosc+3;  %  penultimate position in row or col
ult=2*numosc+4;     %  ultimate position in row or col

%  Define corners of Kvel, Mvel
Kvel(1:2,1:2)=phi*K11;                %  top left
Kvel(1:2,penult:ult)=phi*K12;         %  top right
Kvel(penult:ult,1:2)=phi*K12’;        %  bottom left
Kvel(penult:ult,penult:ult)=phi*K22;  %  bottom right

Mvel(1:2,1:2)=M11;                %  top left
Mvel(1:2,penult:ult)=M12;         %  top right
Mvel(penult:ult,1:2)=M12’;        %  bottom left
Mvel(penult:ult,penult:ult)=M22;  %  bottom right

%  5/21/97
%
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%  Add proportional damping from elastic model
%  to GHM model.
%  NOTE:  Proportional damping required for
%  stability in Yae’s model order reduction
%  method.

%if (1==1),
%  c=.0001;  % proportional damping factor

  Dvel(1:2,1:2)=c*K11;                %  top left
  Dvel(1:2,penult:ult)=c*K12;         %  top right
  Dvel(penult:ult,1:2)=c*K12’;        %  bottom left
  Dvel(penult:ult,penult:ult)=c*K22;  %  bottom right
end

I=eye(2);
Z=zeros(2);

count=1;

for pos=3:2:2*numosc+1

   %  Bordering rows and col
   Kvel(1:2,pos:pos+1)=alpha(count)*R1;
   Kvel(pos:pos+1,penult:ult)=alpha(count)*R2’;
   Kvel(penult:ult,pos:pos+1)=alpha(count)*R2;
   Kvel(pos:pos+1,1:2)=alpha(count)*R1’;

   %  Block diagonal
   Kvel(pos:pos+1,pos:pos+1)=alpha(count)*I;

   %  Block diagonal
   Mvel(pos:pos+1,pos:pos+1)=alpha(count)/delta(count)*I;

   %  Block diagonal
   Dvel(pos:pos+1,pos:pos+1)=alpha(count)*beta(count)/delta(count)*I;

   count=count+1;

end
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function [A]=assmblmat(A,B,con,type)

%  This function assembles the global stiffness matrix
%  and the global mass matrix.
%
%  For each node there are 2 degrees of freedom.

%  NOTE: In this subroutine, ’con’ is a vector of nodes belonging to a
%  given element; this vector is taken from one of the rows of the
%  connectivity matrix.

%  First, for an element, find all the 1 dof for each node

a=2*con([2:3])-1;

%  Next, find all the 2 dof for each node

b=2*con([2:3]);

%  Create a position vector such that the entries are arranged
%  as follows:  node1, 1dof; node1, 2dof; node2, 1dof; etc.

pos=zeros(1,4);

pos([1 3])=a;
pos([2 4])=b;

%  Finally, add the B matrix to the appropriate positions
%  in the A matrix

if (type==’matrix’),
A(pos,pos)=A(pos,pos)+B;

elseif (type==’vector’),
A(pos,1)=A(pos,1)+B;

end
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function [A]=vassmblmat(A,B,m,nmosc)

%  This function assembles the global VISCOELASTIC
%  stiffness, mass, and damping matrices.
%
%  The size of the element matrices is (2*nmosc+4)X(2*nmosc+4).
%  The size of the global matrices is given
%  by the relation
%
%                  n=(2*nmosc+4)*m-2*(m-1)
%
%  where m=the number of elements.

n=2*nmosc+4;

%  Let ’pos’ be the positions in the global matrix
%  corresponding to the rows and columns of the first
%  element matrix.

pos=[1:n];

%  During the assembly procedure, the last entries in the last
%  two rows and columns of an element matrix and the first two
%  rows and columns of the next element matrix will be added
%  in the global matrix.

vpos=(n-2)*(m-1)+pos;

A(vpos,vpos)=A(vpos,vpos)+B;



Appendix C 63

function[Ksw,w,eta_c]=loss(filename,numosc,c,G0)

%  This function plots the loss factor and
%  storage modulus vs. frequency given
%  the (nondimensional) GHM curve fit terms
%  and the characteristic frequency
%  (to redimensionalize the curve fit terms)

eval([’load ’,filename])

a=vemp(1:numosc,1);
B=vemp(1:numosc,2)*c;
d=vemp(1:numosc,3)*c^2;

num=0;
den=0;

d1=1;

upper=ceil(log10(c));
if(upper>3),
  d2=upper;
elseif(upper<3)
  d2=3;
end

w=logspace(d1,d2,200);
w=w;

term=zeros(length(w),4);

for j=1:nmosc
   for k=1:length(w)

%   num=num+...
%   a(j)*((B(j)^2*w(k)^2+w(k)^4-d(j)*w(k)^2)+i*a(j)*B(j)*d(j)*w(k));

%   den=den+...
%   w(k)^4+B(j)^2*w(k)^2+d(j)^2-2*w(k)^2*d(j);

   term(k,j)=a(j)*(-w(k)^2+B(j)*w(k)*i)/(-w(k)^2+B(j)*w(k)*i+d(j));
   end

end

Ksw=G0*(1+term(:,1)+term(:,2)+term(:,3)+term(:,4));

stor=real(Ksw);
%loss=imag(Ksw)./real(Ksw);
loss=imag(Ksw);

figure(1)
orient tall
txt=[’COMPLEX STIFF. vs. FREQ., ’,’data set ’,filename,’, ’,num2str(numosc),’
minioscillators’];

subplot(2,1,1)
   loglog(w,stor)
   grid
   xlabel(’Frequency (rad/s)’)
%   ylabel(’Storage modulus (Pa)’)
   ylabel(’Real part (Pa)’)
    title(txt)
   h=axis;
   axis([10^d1 10^d2 h(3) h(4)])
   title(txt)
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subplot(2,1,2)
   loglog(w,loss)
   grid
   xlabel(’Frequency (rad/s)’)
%   ylabel(’Loss factor’)
   ylabel(’Imag part (Pa)’)
   h2=axis;
   axis([10^d1 10^d2 h2(3) h2(4)])

%  Determine loss factor at characteristic frequency ’c’
realK=interp1(w,real(Ksw),c);
imagK=interp1(w,imag(Ksw),c);

eta_c=imagK/realK;
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function [delta]=logdec(y)

%  This function computes the logarithmic decrement
%  of a response between the first two crests

%  Find the first local maximum
x1=max(y);

%  Find the first local minimum
nn=find(y==min(y));

%  The second local maximum should occur
%  after the first local minimum, so
%  ignoring all data up to the first
%  local min., the next maximum should
%  be the second one
mm=find(y(nn:length(y))==max(y(nn:length(y))));

x2=y(nn+mm-1);

%  Knowing x1, x2, compute the logarithmic decrement
delta=log(x1/x2);
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Appendix D:  Curve Fit Program

This appendix includes the GHM curve fit program ghmcon.m and all of its function files.
Given an initial guess vector s0 that contains the zero frequency modulus (here denoted
by G0) and the curve fit parameters αk, ζk, and ωk (k=1, 2, 3, . . .), this script file finds a
constrained minimum of the vector s0 using the MATLAB function constr.m.  The finite
element code eigtest.m expects the curve fit parameters αk, βk, and δk, where βk=2 ζk ωk

and δk= ωk
2, in nondimensional form.  Nondimensionalization of the parameters αk, βk,

and δk is carried out using the characteristic frequency c=( G0I/(ρ AL))0.5 (I=moment of
inertia, ρ =density, A=cross sectional area, and L=length of beam) as follows:

$ , $ , $α α β β δ δk k k k k kc c= = = 2

where the hatted variables denote nondimensional variables.

All files were written by M. Lam [14].

Files:

ghmcon.m Main program

fit.m Function that applies constraints from constrai.m to curve fit
parameters and calculates the error e between the actual complex
modulus Ks and the curve fit approximate complex modulus Kns

store.m Calculates the complex stiffness using the curve fit parameters

constrai.m Applies constraints on individual curve fit parameters for the
function MATLAB function constr.m

data1.m Contains data, in vector form, of values of storage modulus and
loss factor at discrete frequencies to be curve fit
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                              %
%  ghmcon.m  (c) Marca Lam                                                     %
%                                                                              %
%  This program curve fits the storage and loss moduli for 3M Scotchdamp       %
%  SJ 2015 ISD 112 viscoelastic material.                                      %
%                                                                              %
%  subprograms:                                                                %
%                                                                              %
%  constr.m * MATLAB file from older version                               %
%  constrai.m * function file with constraints for optimization              %
%  data1.m * data file with GHM data from 3M experimental data            %
%  fit.m * function file which fits the curve
%
%  store.m * function file which calculates the new oscillator equations  %
%  lastry.mat * mat file with last try values                 
%
%                                                                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  NOTE:  vemp=[alpha beta delta] in dimensional form.
%  to nondimensionalize using the characteristic frequency c (from eigvalnd.m),
%  alpha=alpha (its already nondimensional!), beta=beta/c, and delta=delta/c^2
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  This program will try to curve fit what and zhat for mini-oscillator.
%  Ahat will be assumed to be less than 10.

clear all;
i      = sqrt(-1);

% input the data points to be curve fit

data1      %  material data
w = ww;    %  vector of frequencies from ’data1.m’
Ks = Ksw;  %  complex modulus from ’data1.m’

%[Ksw,w,E0]=mhsgdat_gen;
%Ks=Ksw’;  % complex modulus from ’mhsgdat_gen’

%  Ask if want new values or from previous run

a = input(’ Do you want to load the values from the previous run? (y/n) ’,’s’);
%a=’n’;

if strcmp(a,’y’),
  load lastry
else
%  Size of s0 controls how many minioscillator terms are used.

real_t0=clock;

%       G0   a1 z1   w1  a2 z2  w2  a3 z3 w3  a4 z4   w4
%  s0 = [E0   .1 10 10000 .1 1 20000 .1 1 5000 .1 .7 7500]; % .1 1 1000 .1 1
1000];

s0=[E0 .013005 130.37 4 .008110 704.40 4 .012552 3805.86 4];

%s0=[E0 .009 150 4 .008 900 4 .009 5000 4 .009 25000 11];
%s0=[E0*1e-2 .0018 500 100e-3 .18 14000  900e-1 .00018 800000 200e-4 .018 40000
20e2]*1e2;
%s0=[E0 1 90000 50 1.3 140000 50 18 80000 5];
%s0=[E0 20 550000 50];

if(1==0)
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%s0=[E0 .013005 130.37 4 .008110 704.40 4 .012552 3805.86 4];
[e,g,Kns]=fit(s0,w,1,Ks);
subplot(2,1,1)
  loglog(w,real(Ks),’b’,w,real(Kns),’--’)
  legend(’real(Ks)’,’real(Kns)’)
subplot(2,1,2)
  loglog(w,imag(Ks),’b’,w,imag(Kns),’--’)
  legend(’imag(Ks)’,’imag(Kns)’)
stop
end

%  To use more minioscillator terms, add sets of three numbers to
%  s0 above to account for ak,zk,wk k=1,2,. . .,n
%  (ak,zk,wk)=(.1,1,1000) is a good guess
%.1 .5 500 .1 3 300 .1 1 100 .1 3 300 .1 3 300 .1 3 300];

% .1 .5 500];% .1 3 300];% .1 1 100];

  %  Make sure that s0(1) is a good guess.  It should be a little under the
  %  first value.  The program has much more difficulty converging if it is
  %  overestimated.  The other numbers are arbitrary.  s0(1) is the guess, G*,
  %  for the shear modulus G(s) = G*(1+...).
end

for j = 1:length(w)
etact(j) = imag(Ks(j))/real(Ks(j)); %  Compute the actual eta
end

n = (length(s0)-1)/3; %  Find out how many oscillators incl.

vlb = zeros(1,length(s0)); %  Values for upper and lower bound
                                        %    when using constr optimization
%vlb([2 5 8]); % 11]);% 14 17])=1e-3*[1 1 1 1];% 1 1];
vlb([2 5 8])=1e-3*[5 5 5];
vlb([4 7 10])=1e-1*[4 4 4];

for j = 1:n
vlb(3+3*(j-1))=1;
end

vub = []; %  Values for the upper bound
%vub=1e10*ones(1,length(s0));
%vub([4 7 10 13])=[4 4 4 4];

options = [0;1e-10;1e-10]; %  Set options for optimization routine
options(7) = 0;
options(14) = 100; % Total number of iterations taken in each optimization

% routine.  It’s better to run more loops on k than
% to crank up this number.  If the program keeps
% returning close to singular message, then make this
% loop even smaller to reset the optimization more
% frequently.  This often solves the problem.

for k = 1:100      %  Ask if the graph is good enough.  Can rerun
k                %  optimization as many times as necessary times
[e,g,Kns]=fit(s0,w,n,Ks);
%[e,Kns]=fit(s0,w,n,Ks);

  [s,opts]=constr(’fit’,s0,options,vlb,vub,[],w,n,Ks);
  s0 = s;

  Knew = store(s0,n,w); %  Calculate new stiffness matrix

  err = (Ks-Knew)./Ks; %  Error function
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  e = err*err’;

  if e<8e-5; %  Condition to meet in optimization
%  if e<.01;
   break
  end

end

for j = 1:length(w) %  Calculate new eta
  eta(j) = imag(Knew(j))/real(Knew(j));
end

figure(3) %  Plot some figures of data and GHM
subplot(211) %  curve fit
  plot(w,real(Ks),’*’,w,real(Knew),’g’)
  xlabel(’Frequency (rad/s)’)
%  ylabel(’Storage Modulus (Pa)’)
  ylabel(’Real part (Pa)’)
%  title([’Data file ’,datafile])
subplot(212)
%  plot(w,imag(Ks)./real(Ks),’*’,w,imag(Knew)./real(Knew),’g’)
  plot(w,imag(Ks),’*’,w,imag(Knew),’g’)
  xlabel(’Frequency (rad/s)’)
  %ylabel(’Loss Factor’)
  ylabel(’Imag part (Pa)’)

figure(4)
subplot(211)
  loglog(w,real(Ks),’*’,w,real(Knew),’g’)
  xlabel(’Frequency (rad/s)’)
%  ylabel(’Storage Modulus (Pa)’)
  ylabel(’Real part (Pa)’)
subplot(212)
%  loglog(w,imag(Ks)./real(Ks),’*’,w,imag(Knew)./real(Ks),’g’)
  loglog(w,imag(Ks),’*’,w,imag(Knew),’g’)
  xlabel(’Frequency (rad/s)’)
%  ylabel(’Loss Factor’)
  ylabel(’Imag part (Pa)’)

%  Make sure that met conditions, otherwise must rerun program.

e
b=’’;
b=input(’Is the curve fit good enough? (y/n) ’, ’s’)
%b=’y’;
if (b == ’y’)
  save GHMconst w s0

  %  Partition s0 into [G0 a1 z1 w1 a2 z2 w2 . . .]
  ll=length(s0);

  G0=s0(1);

  ak=s0([2:3:ll])’;
  zk=s0([3:3:ll])’;
  wk=s0([4:3:ll])’;

  nmosc=length(ak);

  vemp=[ak 2*zk.*wk wk.^2];

  save  mhsgdat_my_fit_iv G0 vemp nmosc
else
  disp(’ The program must be rerun in order to optimize more.’)
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  save lastry s0
end

real_t=etime(clock,real_t0);
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function [e,g,Kns]=fit(s0,w,n,Ks)

%%%%%%%%%%%%%%%%%%%%%%%%%%
%                        %
%  fit.m  (c) Marca Lam  %
%                        %
%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  This function is used in the constrained optimization function
%  ’constr.m’

i = sqrt(-1);

Kns = store(s0,n,w); %  Calculate GHM stiffness for each
%     optimization cycle

err = (Ks-Kns)./Ks; %  Error function vector

e = err*err’;                   %  Scalar of error

g = constrai(s0,n); %  Constraints
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function K = store(s0,n,w)

%  This function gives the K for a given s0

%Kns = ones(1,length(w));
term=zeros(length(w),n);

K=0;
%Kns=zeros(1,length(w));
Kns=0;
for j = 1:n
  for k = 1:length(w)
%    Kns(j) = Kns(j) + ...
%      s0(2+3*(k-1))*(-w(j)^2+2*s0(3+3*(k-1))*s0(4+3*(k-1))*w(j)*i)/...
%      (-w(j)^2+2*s0(3+3*(k-1))*s0(4+3*(k-1))*w(j)*i+s0(4+3*(k-1))^2);
  a=s0(2+3*(j-1));
  W=s0(3+3*(j-1));
  z=s0(4+3*(j-1));

%  term(k,j)=a*(-w(k)^2+2*z*W*w(k)*i)/(-w(k)^2+2*z*W*w(k)*i+W^2);
  num=a*(-w(k)^2+2*z*W*w(k)*i);
  den=(-w(k)^2+2*z*W*w(k)*i+W^2);
  term(k,j)=num/den;
  end
end

for kk=1:n
  Kns=Kns+term(:,kk);
end

[row,col]=size(Kns);
Kns=reshape(Kns,col,row);
K = s0(1)*(1+Kns);
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function [g] = constrai(s0,n)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                             %
%  constrai.m  (c) Marca Lam  %
%                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Function to find the constraints on ahat’s or what’s

%  I have constrained the ahat’s here to be less that 500.  This is
%  totally arbitrary, but will give more accuracy if allowed to go where
%  it wants to.

for j=1:n
%  g(j) = s0(2+3*(j-1)) - 500;
%  g(j) = 100000 - s0(4+3*(j-1));
   g(j)=s0(4+3*(j-1))-10;
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                          %
%  data1.m  (c) Marca Lam  %
%                          %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%  Input file for VEM Scotchdamp SJ 2015 ISD 112

%  ww=vector of frequencies in Hertz
%  G= vector of storage modulus (Young’s modulus)
%  et=vector of loss factors (eta)

E0=210e9;
G0=5e4;
fudge=E0/G0;

if(1==0)
ww  = 2*pi*[10 20 30 40 50 60 70 80 90 100 200 300 415 500 600 700 800 900 1000
2000 3000 4150];
G  = [3.3 4.7 5.7 6.4 7.1 8 9 9.1 10 11.2 13.7 16.1 22 22.5 24.0 26.7 31.4 32.0
32.8 45.2 51.8 62]*1e5;
et = [.97 1 1.01 1.03 1.06 1.06 1.06 1.06 1.06 1.05 1 .96 .93 .924 .918 .91 .9
.88 .83 .73 .7 .62];

else
ww  = [1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 200 300 415 500 600 700
800 900 1000 2000 3000 4150];
G  = [1.32 1.71 1.82 2.2 2.34 2.5 2.6 3 3.16 3.3 4.7 5.7 6.4 7.1 8 9 9.1 10 11.2
13.7 16.1 22 22.5 24.0 26.7 31.4 32.0 32.8 45.2 51.8 62]*1e5;
et = [.7 .8 .83 .89 .9 .92 .93 .94 .96 .97 1 1.01 1.03 1.06 1.06 1.06 1.06 1.06
1.05 1 .96 .93 .924 .918 .91 .9 .88 .83 .73 .7 .62];
end

G=G*fudge;

vemse=1e-10;
et=et*vemse;

%  Calculation of complex modulus Ksw
for j = 1:length(ww)
%   et(j) = et(j) + 0.1;
   Ksw(j) = G(j).*(1+et(j)*i);
end
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