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Constraints on New Physics from Various Neutrino Experiments

Alexey Pronin

(ABSTRACT)

In this thesis we consider a number of past, present, and future neutrino experiments designed
to test physics beyond the Standard Model. First, we analyze potential new physics explanations
of the NuTeV anomaly and check their compatibility with the most recent experimental data. The
models we consider are: gauged Lµ−Lτ , gauged B− 3Lµ, and S1, ~S3, V1, ~V3 leptoquarks. We find
that only the triplet leptoquark models can explain NuTeV and be compatible with the data from
other experiments at the same time, and only if the components of the triplet have different masses.
Then, we analyze the prospects of discovery of heavy Majorana neutrinos (neutrissimos) suggested
by the Okamura model at the LHC. We find that these particles, if produced, will live short enough
to decay inside of the detector, while long enough to lead to a narrow peak in the invariant mass
spectrum of the decay products. We estimate the typical masses of the neutrissimos to be in
the TeV range. However, studies exist that have shown that if their masses are larger than about
150 GeV then the production cross-section is too small to lead to an observable event rate. Thus, we
conclude that it will not be possible to detect the neutrissimo at the LHC unless its mass is smaller
that about 150 GeV which corresponds to a very small region close to the edge of the parameter
space of the Okamura model. Nevertheless, we argue that the signature of the neutrissimo may be
detectable in other neutrino experiments which may be carried out in the future. As examples, we
consider the NuSOnG experiment, which is a fixed target neutrino scattering experiment proposed
at Fermilab, and a hypothetical long-baseline neutrino oscillation experiment in which the Fermilab
NUMI beam is aimed at the Hyper-Kamiokande detector in Japan. In addition to the sensitivity to
neutrissimos, we analyze the capabilities of these experiments to constraint the coupling constants
and masses of new particles in various models of new physics suggested in the literature. The
models we consider are: neutrissimo models, models with generation distinguishing Z ′s such as
topcolor assisted technicolor, models containing various types of leptoquarks, R-parity violating
SUSY, and extended Higgs sector models. In several cases, we find that the limits thus obtained
could be competitive with those expected from direct searches at the LHC. In the event that any
of the particles discussed here are discovered at the LHC, then the observation, or non-observation,
of these particles in the NuSOnG and Fermilab→Hyper-Kamiokande experiments could help in
identifying what type of particle had been observed.
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Chapter 1

Introduction

The Standard Model (SM) of elementary particles embodies our current knowledge of elementary
particles and their interactions. It has been very successful in explaining experimental data for
more than thirty years. Apart from the discovery of non-zero neutrino masses in the late 90’s,
no significant deviations from the SM predictions have been found so far. However, there are
many reasons to believe that the SM is not the ultimate theory of Nature because it does not
provide answers to many important questions. For instance, the SM does not tell us what flavor
is and why Nature contains three different generations of quarks and leptons, why there is mixing
between different flavors and what causes the mixing, why neutrino masses and mixing angles
demonstrate significant deviations from the pattern observed in the quark sector, what the origin
of the matter-antimatter asymmetry of the Universe is, etc. The situation is two-fold: on the one
hand, one has a theory whose agreement with experiment is simply amazing and beats all world
records; on the other hand, without experimental hints, it is not clear where one should look for
physics beyond the SM. In this thesis I will present my view on this matter and show a number
of examples illustrating how one can interpret the outcomes of various experiments in terms of
new physics and how one can constrain possible new physics scenarios using experimental data. I
will consider the constraints on different models of new physics derived from 1) the existing data
(NuTeV, LEP, Tevatron), 2) potential constraints from the data which will soon be available (LHC),
and 3) potential constraints form the data which could become available in the future (NuSOnG,
Fermilab→HyperK). In this introduction, I briefly review each of these cases and point the reader
to the parts of the thesis containing more detailed explanation and discussion.

1.1 Existing data

The question of great importance is: What type of new physics should one expect? Many proposals,
such as SUSY, Technicolor, Extra Dimensions models, take the naturalness problem as a starting
point and suggest their own solution to this problem in terms of new physics. However, there are no
well-defined criteria of naturalness and it is often just a matter of opinion which theory is natural
and which is not. Moreover, none of these proposals are based on experimental data. This is why,
in my opinion, a better place to look for possible new physics may be the few known experimental
anomalies, that is, experimental data which do not quite agree with the SM. The examples of such
anomalies are:
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1. The Neutrinos at the Tevatron (NuTeV) [1] experiment at Fermilab has measured the ratio
of neutral to charged current events in muon (anti)neutrino-nucleon scattering. It has found
that this ratio is smaller than the SM prediction. In particular, the value of the parameter
g2

L (to be introduced in Chapter 2) measured in the NuTeV experiment is 3σ below its SM
value. This disagreement is often referred to as the NuTeV anomaly. Although, the NuTeV
result is controversial and currently in the process of being reanalyzed it still remains a distinct
possibility that the observed disagreement with the SM value of g2

L is due to the presence of
new physics. In Chapter 2 we give a number of examples of models of new physics suggested
in the literature to explain the NuTeV result.

2. The invisible widths of the Z, measured at the CERN collider LEP and the SLAC Linear
Collider [2] is also known to be 2σ below the SM prediction.

3. In addition to that, the branching fractions of W , B(W → eν̄e), B(W → µν̄µ), B(W → τ ν̄τ ),
measured at CERN [3], were found to be different from each other, whereas according to the
SM they all must be the same. In particular, the ratios B(W → τ ν̄τ )/B(W → eν̄e) and
B(W → τ ν̄τ )/B(W → µν̄µ) differ from unity by more than 2σ. The branching fractions
of W into electrons and muons perfectly agree. It should be pointed out, though, that this
LEP2 result disagrees with low energy data on lepton universality extracted from π, µ, and τ
decays [4], making it difficult to interpret.

It is interesting to note that all the experiments in this list involve neutrino interactions. This
suggests that if any of these anomalies are genuine and due to the existence of new physics, then
their explanations could reveal the mechanism responsible for the generation of the masses and
mixing angles in the neutrino as well as in the quark sector. Thus, it is very important to know
which models are capable of explaining these anomalies, how viable they are in light of the most
recent experimental data, and whether the new physics proposed by these models can be seen at the
LHC or in some other experiments. Thus, in Chapter 2 we present a list of possible explanations of
the NuTeV anomaly in terms of various new physics scenarios suggested in the literature. The list
includes gauged Lµ−Lτ , gauged B− 3Lµ, and various types of leptoquarks. Then we will consider
constraints on these models coming form the existing experiments (LEP, Tevatron, etc.).

1.2 Soon to be available data

Although many possible extensions of the SM have been suggested during the past decades, all
of them are fine-tuned to reproduce the SM predictions at the energy scales accessible in modern
particle physics experiments. To confirm the existence of physics beyond the SM and, moreover, to
see which one of the suggested models of new physics, if any, is correct, one has to explore higher
energy scales. Fortunately, the Large Hadronic Collider (LHC) built exactly for this purpose is
coming online in 2008. The LHC will probe the energy scale at which the SM is expected either
to fail and reveal some features of a more fundamental theory of Nature or to demonstrate the SM
features which have not yet been observed experimentally such as the existence of Higgs particles.
In either case, I believe that it is going to be a great time for both theoretical and experimental
high energy physics.

In order to illustrate how we can use the LHC data to constrain possible new physics scenario,
we consider an example of so-called neutrissimo models [5] which was suggested in the literature to
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explain the NuTeV anomaly. The explanation relies on the observation that both the NuTeV result
and the decay rate of the Z are smaller than the SM prediction. This suggests that the coupling
of the neutrino to the Z is suppressed with respect to the SM. It was argued in Ref. [6] that such
suppression can occur naturally in models in which the right handed neutrinos are added to the SM
content if we judiciously choose the form of the mass texture and allow mixing between different
generations. Ref. [5] shows an explicit example, called the Okamura model, which demonstrates how
this idea can be implemented in practice. Such a model contains both light and heavy Majorana
neutrino mass eigenstates obtained by diagonalization of the mass texture. The typical masses of
the heavy Majorana states, called neutrissimos, are of order a few TeV in this model. The basic idea
is that there was simply not enough energy to produce the neutrissimos in the NuTeV experiment
and it led to the suppression of the Z-neutrino couplings.

If neutrissimos exist then, having their masses in the TeV range, they could be produced at
the LHC. The question is: Will we be able to detect them or not? We address this question in
Chapter 3 of the thesis which also contains more detailed description of the neutrissimo models.
The consideration given in Chapter 3 is based on our work presented in Ref. [7].

1.3 Future Experiments

Evidence for neutrissimos can also be searched for in other experiments including those which may
be performd in the future. For example, a new experiment called NuSOnG (Neutrino Scattering on
Glass) is being planned at Fermilab. (See our recent paper [8].) If approved, it will check the NuTeV
result, repeating the measurements of the muon (anti)neutrino-nucleon scattering with event sta-
tistics two orders of magnitude higher than that of NuTeV. As a result, NuSOnG is projected to
halve the experimental error on g2

L (to be introduced in Chapter 2) as compared to NuTeV. In
addition, the NuSOnG experiment will also measure the muon neutrino-electron scattering cross
section to an accuracy of 0.7% using inverse muon beta decay to normalize the neutrino flux. Dif-
ferent explanations of the NuTeV result will affect the neutrino-electron scattering differently, so
NuSOnG can, in principle, distinguish among them. The consideration of this possibility is given
in the beginning of Chapter 4.

In chapter 5 we consider a Long Baseline neutrino oscillation experiment (LBL) which could be
carried out in the future. The LBL neutrino oscillation experiments are also sensitive to the physics
beyond the SM through matter effects and will be complementary to the LHC. The consideration
given in chapter 5 is based on our work presented in Ref. [9], in which we consider a hypothetical
experiment in which a muon neutrino beam prepared at Fermilab is sent to the planned Hyper-
Kamiokande detector in Japan. It was shown in the first paper of Ref. [10] that such an experiment
is capable of constraining neutral current universality violation to better than 1 percent after 5 years
of data taking. We analyzed how various physics beyond the SM can modify the matter effects in
this experiment. We considered models with generation distinguishing Z ′s such as topcolor assisted
technicolor, models containing various types of leptoquarks, R-parity violating SUSY, and extended
Higgs sector models.
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1.4 Notation

In this section we summarize the notation which we extensively use in the first and the third
chapters of this thesis.

The exchange of the Z boson between the neutrino ν and fermion f 6= ν leads to the effective
interaction

L = −
√

2GF

[
ν̄γµ

(
gν

V − gν
Aγ5

)
ν
][
f̄γµ

(
gf

V − gf
Aγ5

)
f
]

= −
√

2GF

[
gν

L ν̄γµ(1− γ5)ν + gν
R ν̄γµ(1 + γ5)ν

]
×
[
gf

L f̄γ
µ(1− γ5)f + gf

R f̄γ
µ(1 + γ5)f

]
, (1.1)

where the Standard Model values of the couplings are:

gν
L =

√
ρ

(
+

1

2

)
,

gν
R = 0 ,

gf
L =

√
ρ
(
If
3 −Qf sin2 θW

)
,

gf
R =

√
ρ
(
−Qf sin2 θW

)
, (1.2)

or equivalently,

gν
V = gν

L + gν
R =

√
ρ

(
+

1

2

)
,

gν
A = gν

L − gν
R =

√
ρ

(
+

1

2

)
,

gf
V = gf

L + gf
R =

√
ρ
(
If
3 − 2Qf sin2 θW

)
,

gf
A = gf

L − gf
R =

√
ρ
(
If
3

)
. (1.3)

Here, If
3 and Qf are the weak isospin and electromagnetic charge of fermion f , respectively. At

tree level in the SM, the ρ-parameter is one. If we assume that gν
R = 0 even in the presence of new

physics, then Eq. (1.1) can be written as

L = −
√

2GF

[
ν̄γµPLν

][
gνf

V f̄γµf − gνf
A f̄γµγ5f

]
= −2

√
2GF

[
ν̄γµPLν

][
gνf

L f̄γµPLf + gνf
R f̄γµPRf

]
, (1.4)

where

gνf
V = 2gν

Lg
f
V = ρ

(
If
3 − 2Qf sin2 θW

)
,

gνf
A = 2gν

Lg
f
A = ρ

(
If
3

)
,

gνf
L = 2gν

Lg
f
L = ρ

(
If
3 −Qf sin2 θW

)
,

gνf
R = 2gν

Lg
f
R = ρ

(
−Qf sin2 θW

)
. (1.5)
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Chapter 2

The NuTeV anomaly and its
explanations

In this chapter we give an example of an existing experiment the result of which disagrees with
the SM. We discuss various interpretations of this disagreement in terms of new physics scenarios
which have been suggested in the literature and analyze the viability of these interpretations in
light of the most recent experimental data.

2.1 The NuTeV anomaly

The Neutrinos at the Tevatron (NuTeV) experiment [1] has measured the ratios of the neutral to
charged current events in muon (anti-)neutrino-nucleon scattering. For the isoscalar target1 used
in the experiment these ratios are related to the left- and right-handed coupling of the Z-boson to
quarks as follows.

Rν =
σ(νµN → νµX)

σ(νµN → µ−X)
= g2

L + rg2
R, (2.1)

Rν̄ =
σ(ν̄µN → ν̄µX)

σ(ν̄µN → µ+X)
= g2

L +
g2

R

r
, (2.2)

where

r ≡ σ(ν̄µN → µ+X)

σ(νµN → µ−X)
∼ 1

2
. (2.3)

The parameters g2
L and g2

R are

g2
L = (gνu

L )2 + (gνd
L )2, (2.4)

g2
R = (gνu

R )2 + (gνd
R )2. (2.5)

A somewhat simplified derivation of Eqs. (2.1)-(2.2) is given in Appendix A. See Ref. [11] for a
more thorough discussion.

1‘The isoscalar target’ means that the target contains equal amount of the protons and neutrons or, alternatively, u and d quarks.
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NuTeV has determined the parameters g2
L and g2

R to be

g2
L = 0.30005± 0.00137, (2.6)

g2
R = 0.03076± 0.00110. (2.7)

The SM prediction of these parameters based on a global fit to non-NuTeV data given in Ref. [1] is(
g2

L

)
SM

= 0.3042, (2.8)(
g2

R

)
SM

= 0.0301 (2.9)

which differs from the NuTeV result by 3σ in g2
L. This disagreement is often refereed to as ‘the

NuTeV anomaly’. In principal, it is possible to fit the SM to the NuTeV result but in this case the
preferred range of the Higgs mass is mH > 660 GeV (90% CL) [12] which is well above the value
of mH ∼ 90 GeV preferred by the non-NuTeV global fit [13].

Although the NuTeV result remains controversial and is currently in the process of being rean-
alyzed, several reasonable explanations of this result have been suggested in the literature. First
of all, we must consider the explanations of NuTeV which lies within the SM framework. This
mainly includes theoretical uncertainties due to Quantum Chromodynamics (QCD) effects which
might be comparable to or larger than the quoted experimental uncertainty of the NuTeV result.
For instance, several groups are evaluating uncertainties coming from next-to-leading (NLO) QCD
corrections [14], NLO electroweak corrections [15], and parton distribution functions (especially as
involves assumptions about sea-quark asymmetries) [16]. These uncertainties are found to be large
and could potentially be responsible for the entire NuTeV anomaly and their actual impact on the
result of NuTeV awaits a reanalysis of the NuTeV data.

On the other hand, it still remains a distinct possibility that the NuTeV anomaly is genuine and
its explanation lies in physics beyond the SM. Several possible explanation of the NuTeV anomaly
in terms of new physics have been suggested in the literature [17, 6]. This includes models with

gauged Lµ − Lτ , gauged B − 3Lµ, S1, ~S3, V1, ~V3 leptoquarks, and TeV scale heavy Majorana
neutrinos. However, it is important to realize that all these explanations of NuTeV were suggested
several years ago. Now we have more experimental data available to us and thus have to update
the experimental constraints on these models and reanalyze their compatibility with the NuTeV
result. Thus, in this chapter we present a list of models capable of explaining NuTeV and reanalyze
the viability of these explanations of NuTeV in light of the most recent experimental data.

2.2 Lµ − Lτ gauge boson

The NuTeV anomaly [1] can be partially explained if one accepts the existence of the new gauge
symmetry Lµ−Lτ [18, 19, 20], where Lµ and Lτ are the muon and tau lepton numbers respectively.
The model in which this idea can be realized was presented by Ma and Roy in Ref. [21]. This
model postulates the existence of the anomaly-free gauge symmetry U(1)X . The gauge boson X
associated with this symmetry couples to (νµ, µ)L, µR with charge +1 and to (ντ , τ)L, τR with
charge −1, but not to any other fermion. The model also postulates the existence of the usual
Standard Model (SM) Higgs doublet Φ = (φ+, φ0) with charge 0 and two additional Higgs doublets
η1,2 = (η+

1,2, η
0
1,2) with charges ±1 under U(1)X . After spontaneous symmetry breaking the fields
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Φ, η1,2 get VEV’s: v0 ≡ 〈φ0〉, v1,2 ≡ 〈η0
1,2〉. This generates mixing between the new X boson and

the usual SM Z boson leading to the mass term of the form:

LZX =
1

2
(Zµ, Xµ) · M2

ZX ·
(
Zµ

Xµ

)
, (2.10)

where

M2
ZX ≡

[
2g2

X(v2
1 + v2

2) gXgZ(v2
1 − v2

2)
gXgZ(v2

1 − v2
2) (g2

Z/2)(v2
0 + v2

1 + v2
2)

]
. (2.11)

gX is the X boson gauge coupling constant and gZ =
√
g2 + g′2 = g/cW at tree level. (g and g′ are

the usual SM gauge couplings and cW = cos θW .)
Under the assumption that v1 ' v2, so that the X − Z mixing is small, the mass matrix given

by Eq. (2.11) has the following eigenvalues:

M2
Z '

1

2
g2

Z(v2
0 + 2v2

1), M2
X ' 4g2

Xv
2
1, (2.12)

and the X − Z mixing angle is given by

sin θ ' gXgZ(v2
1 − v2

2)

M2
X −M2

Z

. (2.13)

This means that the interaction eigenstates (Zµ, Xµ) are related to the mass eigenstates
(
Zm

µ , X
m
µ

)
through the following formulas:

Zµ = cos θ · Zm
µ + sin θ ·Xm

µ ,

Xµ = − sin θ · Zm
µ + cos θ ·Xm

µ . (2.14)

In the SM the low energy effective interactions of νµ and νµ with quarks and electrons can be
described by the effective Lagrangian of the form

LSM
eff = − g2

Z

M2
Z

· 1

4
·
[
νµγ

µ
(
gν

V − gν
Aγ5

)
νµ

]
·
[
f̄γµ

(
gf

V − gf
Aγ5

)
f
]
, (2.15)

where f = {u, d, e} and

g2
Z = 4

√
2GµM

2
Z . (2.16)

The X −Z mixing modifies the effective interaction Eq. (2.15) since now one needs to take into
account the Zm

µ and Xm
µ exchange diagrams shown in Fig. 2.1. As a result, the effective strength

of this interaction changes from g2
Z/M

2
Z to

g2
Z

(
cos2 θ

M2
Z

+
sin2 θ

M2
X

)
− 2gXgZ sin θ cos θ

(
1

M2
Z

− 1

M2
X

)
' g2

Z

M2
Z

[
1 +

2gX

gZ

(
M2

Z

M2
X

− 1

)
sin θ

]
≡ g2

Z

M2
Z

ρµ. (2.17)

The first term on the top line of Eq.(2.17) corresponds to the diagrams shown in Figs. 2.1a and
2.1b while the last term represents contributions of the diagrams in Figs. 2.1c and 2.1d.
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νµ (νµ) νµ (νµ)

f f

Zm

µ

cos θ

cos θ

(a)

νµ (νµ) νµ (νµ)

f f

Xm

µ

sin θ

sin θ

(b)

νµ (νµ) νµ (νµ)

f f

Zm

µ

− sin θ

cos θ

(c)

νµ (νµ) νµ (νµ)

f f

Xm

µ

cos θ

sin θ

(d)

1

Figure 2.1: Zm
µ and Xm

µ exchange diagrams contributing to the νµ(νµ)− f scattering.

Note that the form of the expression for the effective strength in Eq. (2.17) does not depend
on the details of the Higgs sector of the model. The only assumption we made in deriving this
expression is the existence of mixing between Z and X given by Eq. (2.14).

In sections 2.2.1 through 2.2.4 we reproduce the analysis by Ma and Roy [21, 22], updating
those parts affected by new data. In section 2.2.5 we improve the analysis of Ma and Roy [21,
22] by considering the effects of mixing and the Z vertex corrections simultaneously. Finally, in
section 2.2.6 we consider the constraints on the X mass and coupling coming from the most recent
W decay data [3].

2.2.1 Z decay: Z → µ+µ−X → µ+µ−µ+µ−

If the X boson exists then it can be searched for in the products of the Z decay. The Z can decay
into µ+, µ−, and X with consecutive decay of the latter into muon-antimuon pair. Thus, LEP I
data on Z decay into the four-muon final state [23] establish a lower bound on MX as a function
of gX . In addition to that, Eq. (2.12) implies

g2
X =

M2
X

4M2
Z

g2
Z

− 2v2
0

. (2.18)

Therefore

gX >
gZMX

2MZ

. (2.19)

These essentially rule out MX < 60 GeV. For details see the paper by Ma and Roy [21, 22].
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2.2.2 Precision measurements of Z couplings: gτ
V − gµ

V

Another constraint on the Lµ−Lτ model comes from the precision measurement of Z couplings [25].
The presence of the Z −X mixing modifies the way the Z interacts with the leptons of the second
and third generations. The effective couplings relevant for further consideration are

e : ge
V =

√
ρ

(
−1

2
+ 2 sin2 θW

)
, (2.20)

µ : gµ
V =

√
ρ

(
−1

2
+ 2 sin2 θW

)
− 2

(
gX

gZ

)
sin θ, (2.21)

τ : gτ
V =

√
ρ

(
−1

2
+ 2 sin2 θW

)
+ 2

(
gX

gZ

)
sin θ. (2.22)

Ref. [26] reports the following values for ge
V , gµ

V and gτ
V

ge
V = −0.03816± 0.00047, (2.23)

gµ
V = −0.0367± 0.0023, (2.24)

gτ
V = −0.0366± 0.0010. (2.25)

Adding errors in quadrature, one obtains

gτ
V − gµ

V = 4(gX/gZ) sin θ = 0.0001± 0.0025 (2.26)

2 · (gτ
V − ge

V ) = 4(gX/gZ) sin θ = 2 · (0.00157± 0.00111). (2.27)

The 2σ bound on this combination is

−Amin ≤ 4(gX/gZ) sin θ ≤ Amax, (2.28)

where Amax ≡ .0051 and Amin ≡ .0012. The upper bound Amax is derived from Eq. (2.26) and the
lower bound Amin from Eq. (2.27) above.

On the other hand, Eq. (2.17) implies that

4(gX/gZ) sin θ = 2(ρµ − 1)

(
M2

X

M2
Z −M2

X

)
. (2.29)

In order to explain the NuTeV anomaly one needs to have ρµ < 1 to suppress the number of the
neutral current events. Thus, combining Eqs. (2.28) and (2.29) one can obtain bounds on the MX

as a function of ρµ. The result is the following.

1. MX > MZ .

• If ρµ > 1− Amax

2
' 0.9974 then there exists the lower bound given by

MX >
MZ√

1− 2(1− ρµ)

Amax

; (2.30)
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Figure 2.2: Upper and lower bounds on the MX as a function of ρµ.

• If ρµ < 0.9974 it is not possible to satisfy the LEP constraint with positive M2
X in this

case.

2. MX < MZ . Then the upper bound is given by

MX <
MZ√

1 +
2(1− ρµ)

Amin

. (2.31)

To illustrate this result we choose ρµ = 0.9976, the value used by Ma and Roy in Ref. [21] to
reduce the disagreement between the NuTeV results and theoretical predictions to 1.6σ level. Then
using Eq’s (2.30) and (2.31) one obtains the following 2σ bounds on MX :

MX < 42 GeV or MX > 367 GeV. (2.32)

As we already mentioned above, the result of the NuTeV experiment is controversial and in the
process of being reanalyzed. Thus, we do not want to commit ourselves to some particular value
for ρµ. Fig. 2.2 shows the upper (red curve) and the lower (blue curve) bounds on MX as functions
of ρµ. As ρ approaches unity these curves converge to the same value of MX = MZ . The vertical
black line corresponds to ρµ = 0.9974. The horizontal dashed line represents the 60 GeV lower
bound from the searches of Z decay into µ+µ−X (see Sec. 2.2.1). The regions between the red and
blue curves, and below the 60 GeV line are excluded.

2.2.3 Universality of the Z couplings: Z → e+e− and Z → µ+µ−

In the presence of the X boson the universality of the Z boson coupling to e+e−, µ+µ−, and τ+τ−

would be violated since the latter ones couple to X and have an extra one-loop radiative correction
to the vertex diagram, ∆Γ. The corresponding process is shown in Fig. 2.3. This extra correction
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Figure 2.3: Correction to the Z vertex due to the X exchange between the final state leptons.

can be found in [24, 22]2 and the result is

∆Γ

Γ
= − g2

X

4π2

{
7

4
+ δ +

(
δ +

3

2

)
ln δ

+ (1 + δ)2

[
Li2

(
δ

1 + δ

)
+

1

2
ln2

(
δ

1 + δ

)
− π2

6

]}
, (2.33)

where δ ≡M2
X/M

2
Z , and

Li2(x) ≡ −
x∫

0

dt

t
ln(1− t) (2.34)

is the Spence function. The measured Z partial widths are [25]

Γe = 83.91± 0.12, Γµ = 83.99± 0.18. (2.35)

This implies that
∆Γ

Γ
= 0.0009± 0.0026. (2.36)

1.96σ bound on this ratio (corresponding to 95% CL) is

∆Γ/Γ < 0.006. (2.37)

2.2.4 Combined constraints

Now we are in the position to construct the combined constraints on the possible values of gX and
MX in the Lµ − Lτ model. In order to do that we need to choose some particular value for ρµ and

2Formula for the ∆Γ/Γ in Ref. [22] contains a typo.
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Figure 2.4: Combining constraints on the Lµ − Lτ model.

plot together all constraints obtained so far. We take ρµ = 0.9976, the value used by Ma and Roy
in Ref. [21]. The resulting combined plot is shown in Fig. 2.4.

The dash-dotted red line corresponds to the bound given by the inequality Eq. (2.19). It excludes
the gray region below this line. Two vertical solid black lines represent the bounds on the X boson
mass given by Eq. (2.32).The yellow region between this two lines is not compatible with the results
of the precision measurements of the Z vector couplings. Solid red line is the upper bound on gX

coming from the universality of the Z coupling to the e+e− and µ+µ−. It is obtained by combining
the results of Eq’s (2.33) and (2.37). The purple region above this curve is excluded. Finally, the
vertical dashed red line represents the LEP-I constraint on the mass and coupling of the X boson
from Z → µµX decay presented in Sec. 2.2.1. The values of MX smaller than this bound (blue
region) are not compatible with the LEP-I measurements. We see that for the chosen value of ρµ the
42 GeV constraint from the precision measurements of the Z vector couplings lies below the LEP-I
constraint. On the other hand, Fig. 2.2 shows that it would lie above the the LEP-I constraint for
the values of ρµ larger than 0.9992 which is indistinguishable from unity in the NuTeV experiment.

Combining these constraints together we see that the only allowed region of the parameter
space is the one shown in white. The X boson mass in this region is greater than 367 GeV and the
corresponding values of the coupling constant gX are greater than one. This means that the theory
approaches the non-perturbative region and the one loop analysis becomes less and less reliable.
One should point it out that such large values of the coupling constant can lead to the dangerous
effects for the model in question. For example, such a large coupling could lead to forming a stable
bound state of µ+ and µ− which has not been observed experimentally.

2.2.5 Constraining Z −X mixing and radiative corrections simultaneously

The analysis of the previous sections was essentially the repetition and update of the analysis
performd by Ma and Roy in Ref. [21, 22]. Ma and Roy derive the constraints on the masses and
couplings of the X boson using two sets of experimental data:

12



• the measurements of the Z effective couplings to leptons, and

• the measurements of the Z partial decay widths to charged lepton pairs.

We point out that there are some problems with Ma and Roy’s analysis. First of all, the two
sets of measurements are not completely independent since the measurements of the Z partial
widths were used to find the value of the Z effective couplings to leptons. And second, Ma and
Roy do not consider all corrections simultaneously. They derive constraints on the X mass using
the measurements of the Z effective couplings and considering corrections coming from Z − X
mixing. Then they derive constraints on the possible values of the X mass and coupling using
the measurements of the Z partial decay widths and considering the radiative corrections to the
Z vertex due to the X exchange. Thus, in each case they only consider one effect at a time. But,
in principal, we can have both effects at the same time: the radiative corrections to the Z vertex
due to the X exchange affects the values of the Z effective couplings to leptons and Z −X mixing
affects the values of the Z partial decay widths to charged leptons. Thus, in this section we improve
the analysis by considering both of these effects simultaneously.

But before we proceed, let us figure out the shift of the vectorial and axial effective couplings of
the mu and tau leptons to the Z and clean up typos in some formulas of Ma and Roy’s paper [21].

Neutrinos

For the electron neutrino case the effective couplings gνe
V and gνe

A remain the same as in the SM.

gνe
V = gνe

A =
√
ρ · Iνe

3 =
√
ρ

(
+

1

2

)
. (2.38)

For the muon neutrino case3 the SM Lagrangian is

LSM = gZ · gνµ

L · (ν̄µγ
αPLνµ) · Zα =

gZ

2
·
[
g

νµ

V · (ν̄µγ
ανµ)− g

νµ

A ·
(
ν̄µγ

αγ5νµ

)]
· Zα. (2.39)

In this case g
νµ

V = g
νµ

A = g
νµ

L .
The X couples to the muon neutrino and the interaction Lagrangian is4:

LX = gX · (ν̄µγ
ανµ) ·Xα. (2.40)

Now, we should take into account thatX is a linear combination of the Z and Z ′ (mass eigenstates5):

Xα = − sin θ · Zα + cos θ · Z ′
α. (2.41)

Using Eqs. (2.40) and (2.41) we find that the additional with respect to the SM interaction
Lagrangian is

δL = −gX sin θ · (ν̄µγ
ανµ) =

gZ

2
·
(
−2

gX

gZ

sin θ

)
· (ν̄µγ

ανµ) · Zα. (2.42)

3In the tau neutrino case the consideration is exactly the same. The only difference is in the overall sign of the shift due to Z −X
mixing.

4We assume that right handed neutrinos do not exist. In our notation νµ is the purely left-handed muon neutrino.
5Strictly speaking Z is also a mixture of mass eigenstates but it is irrelevant for what follows.
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We rewrite this equation as

δL =
gZ

2
·
(
−2

gX

gZ

sin θ

)
·(ν̄µγ

αPLνµ)·Zα =
gZ

2
·
(
−gX

gZ

sin θ

)
·
[
(ν̄µγ

ανµ)−
(
ν̄µγ

αγ5νµ

)]
·Zα. (2.43)

Then both g
νµ

V and g
νµ

A of the SM are shifted by the same amount6

δg
νµ

V = δg
νµ

A = −gX

gZ

sin θ, (2.44)

which differs by a factor of 1/2 from the value obtained by Ma and Roy in [21].

Charged leptons

For the purpose of completeness let us also figure out the shift of the vectorial and axial couplings
to the Z due to Z −X mixing for charged leptons. For electrons the effective couplings ge

V and ge
A

remain the same as in the SM. Namely,

ge
V =

√
ρ

(
−1

2
+ 2 sin2 θW

)
, ge

A =
√
ρ

(
−1

2

)
. (2.45)

For muons7 the SM Lagrangian is

LSM = gZ · [gµ
L · (µ̄γ

αPLµ) + gµ
R · (µ̄γ

αPRµ)] ·Zα =
gZ

2
·
[
gµ

V · (µ̄γ
αµ)− gµ

A ·
(
µ̄γαγ5µ

)]
·Zα, (2.46)

where gµ
V = gµ

L + gµ
R and gµ

A = gµ
L − gµ

R.
The X-muon interaction Lagrangian is:

LX = gX · (µ̄γαµ) ·Xα. (2.47)

Taking into account the mixing given by Eq. (2.7) we obtain

δL = −gX sin θ · (µ̄γαµ) · Zα =
gZ

2
·
(
−2

gX

gZ

sin θ

)
· (µ̄γαµ) · Zα. (2.48)

So, comparing Eqs. (2.46) and (2.48), we observe that the Z − X mixing generates a shift of the
vectorial effective coupling and does not change the value of the axial effective coupling:

δgµ
V = −2

gX

gZ

sin θ, δgµ
A = 0, (2.49)

which is in agreement with the result obtained by Ma and Roy in Ref. [21].

Fit results

Thus, we see that the presence of the Z −X mixing and the radiative correction to the Z vertex
due to X exchange between the external leptons modify the way the Z interacts with the leptons

6Note that for the purely left-handed muon neutrino δg
νµ

A and δg
νµ

V must be equal to each other.
7In the tau lepton case the consideration is exactly the same. The only difference is in the overall sign of the shift due to Z − X

mixing.
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Parameter Central value Standard deviation
δs2 -0.0006962 0.002140
δρ 0.0007324 0.0010725
δM -0.0007420 0.0009443
δV -0.0008905 0.0006408

Table 2.1: The values of δρ, δV , and δM extracted from the χ2 fit.

of the second and third generations. Effective couplings become

e : ge
V =

√
ρ

(
−1

2
+ 2 sin2 θW

)
, ge

A =
√
ρ

(
−1

2

)
, (2.50)

µ : gµ
V =

√
ρ

(
−1

2
+ 2 sin2 θW

)
(1 + δV ) + δM , gµ

A =
√
ρ

(
−1

2

)
(1 + δV ) , (2.51)

τ : gτ
V =

√
ρ

(
−1

2
+ 2 sin2 θW

)
(1 + δV )− δM , gτ

A =
√
ρ

(
−1

2

)
(1 + δV ) (2.52)

for charged leptons and

νe : gνe
V =

√
ρ

(
+

1

2

)
, gνe

A =
√
ρ

(
+

1

2

)
, (2.53)

νµ : g
νµ

V =
√
ρ · 1

2
(1 + δV ) +

δM
2
, g

νµ

A =
√
ρ · 1

2
(1 + δV ) +

δM
2
, (2.54)

ντ : gντ
V =

√
ρ · 1

2
(1 + δV )− δM

2
, gντ

A =
√
ρ · 1

2
(1 + δV )− δM

2
(2.55)

for neutrinos. δV and δM are the vertex and mixing corrections, respectively, in the Lµ−Lτ model.
Their values are found to be:

δV = − g2
X

8π2

{
7

4
+ δ +

(
δ +

3

2

)
ln δ

+ (1 + δ)2

[
Li2

(
δ

1 + δ

)
+

1

2
ln2

(
δ

1 + δ

)
− π2

6

]}
, (2.56)

δM = −2

(
gX

gZ

)
sin θ, (2.57)

where δ ≡M2
X/M

2
Z and the Spence function Li2(x) is given by Eq. (2.34).

The measured by LEP values of the effective couplings of leptons to the Z are listed in Table 2.2.
To do the fit to the SM values we have to take into account radiative corrections other than that
included in δV . There are two types of radiative correction we must consider: the SM corrections,
and the extra corrections appearing in the Lµ−Lτ model. The SM corrections shift the value of the
ρ parameter from unity and change the value of the sin2 θW from its tree level value. We calculate
these corrections using ZFITTER [27].
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j Parameter Average Correlations
gν

A ge
A gµ

A gτ
A ge

V gµ
V gτ

V

1 gν
A ≡ gν

V +0.5003± 0.0012 1.00
2 ge

A −0.50111± 0.00035 −0.75 1.00
3 gµ

A −0.50120± 0.00054 0.39 −0.13 1.00
4 gτ

A −0.50204± 0.00064 0.37 −0.12 0.35 1.00
5 ge

V −0.03816± 0.00047 −0.10 0.01 −0.01 −0.03 1.00
6 gµ

V −0.0367± 0.0023 0.02 0.00 −0.30 0.01 −0.10 1.00
7 gτ

V −0.0366± 0.0010 0.02 −0.01 0.01 −0.07 −0.02 0.01 1.00

i 1 2 3 4 5 6 7

Table 2.2: Results on the effective coupling constants for leptons [26].

The Lµ−Lτ model contains at least two extra Higgs fields. These extra fields contribute to the
Z vacuum polarization and this also affects the values of ρ and sin2 θW . We will call these extra
corrections specific to the Lµ − Lτ model δρ and δs2 respectively. In addition to that we also have
extra corrections due to mixing, δM , and the extra vertex corrections, δV .

Using the data of Table 2.2 we can fit the parameters δs2, δρ, δV , and δM to the observed values
of gf

V,A (f = {ν, e, µ, τ}). The results of the χ2 fit8 are listed in Table 2.1.
Now we can use the fitted values of δM and δV to improve the analysis of Ma and Roy given in

Ref. [21]

Constraints from δM

From Eqs. (2.29) and (2.57) we see that the parameter δM is equal to

δM = −(1− ρµ) · M2
X

M2
X −M2

Z

. (2.58)

This means that

ρµ = 1 + δM

[
1−

(
MZ

MX

)2
]
. (2.59)

Fig. 2.5 shows how ρµ depends on the MX where we used the value of δM from the fit.
Allowing 2σ deviation of the δM from its central value we obtain

−Amin ≤ −
M2

X

M2
X −M2

Z

≤ Amax (2.60)

where

Amin = − δ̄M − 2σδM

1− ρµ

, (2.61)

Amax =
δ̄M + 2σδM

1− ρµ

. (2.62)

8For the details on how we made this fit see Appendix C.
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Figure 2.5: ρµ dependence on the MX for the fitted value of δM .

Here δ̄M and σδM
are the central value and the standard deviation of the δM , respectively. Their

values are given in Table 2.1.
In order to find the constraints on the allowed values of MX we need to consider two cases:

MX > MZ and MX < MZ .

1. If MX > MZ then −M2
X/(M

2
X−M2

Z) is always negative. So, the inequality with Amax is always
satisfied. The inequality with Amin gives

Amin ≥
M2

X

M2
X −M2

Z

. (2.63)

We observe that the left-hand side is smaller than one while the right-hand side is always
greater than one for the case in question. So, this inequality cannot be satisfied. Therefore,
this model cannot explain NuTeV if MX > MZ .

2. If MX < MZ then Eq. (2.60) becomes

−Amin ≤
M2

X

M2
Z −M2

X

≤ Amax. (2.64)

TheM2
X/(M

2
Z−M2

X) is always positive. Therefore the inequality with Amin is trivially satisfied.
The inequality with Amax can be solved for MX . The result is

MX <
MZ√

1 +
1

Amax

. (2.65)

Now, let us determine what value of ρµ
9 we need to bring the NuTeV result within one σ

agreement with the SM predictions. The value of the g2
L measured by NuTeV is(

g2
L

)
NuTeV

= 0.30005± 0.00137. (2.66)

9See Eq. (2.17)
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The SM prediction is (
g2

L

)
SM

= 0.3042. (2.67)

Therefore, the value of ρµ we need is

ρµ =

√
0.30005 + 0.00137

0.3042
≈ 0.9954. (2.68)

If we now plug this value of ρµ into Eq. (2.65) we obtain the following upper bound on the values
of the X mass:

MX < 40.8GeV. (2.69)

This upper bound is obviously smaller than the 60 GeV lower bound on the X mass obtained
in section 2.2.1. Thus we see that the Lµ − Lτ model cannot explain the entire NuTeV anomaly
without conflicting with the LEP data.

It was argued by Ma and Roy in Ref. [21] that the Lµ − Lτ model can explain at least a part
of the NuTeV anomaly and bring the disagreement between the SM prediction and the measured
value of the g2

L at the 1.6σ level. We can try to do the same thing using the data we obtained
from the fit. The value of ρµ needed to bring the NuTeV result within 1.6σ agreement with the
SM predictions is

ρµ =

√
0.30005 + 1.6 · 0.00137

0.3042
≈ 0.9968. (2.70)

With this value of ρµ the upper bound on the X mass moves up a little bit and becomes

MX < 46.7 GeV (2.71)

which is still smaller than the 60 GeV lower bound on the X mass obtained in section 2.2.1. Thus,
we see that the Lµ − Lτ model is not a viable candidate for explaining the NuTeV anomaly even
partially because such an explanation conflicts with the LEP data.

Constraints from δV

Now, let us consider constraints on gX and MX from the fitted value of δV .

δV = − g2
X

8π2
· f(MX) , (2.72)

where

f(MX) =
7

4
+ δ +

(
δ +

3

2

)
ln δ + (1 + δ)2

[
Li2

(
δ

1 + δ

)
+

1

2
ln2

(
δ

1 + δ

)
− π2

6

]
(2.73)

as can be seen from Eq. (2.56). δ ≡ M2
X/M

2
Z as before. Allowing 2σ deviation from the central

value of the δV we obtain

−Amin ≤ −
g2

X

8π2
· f(MX) ≤ Amax , (2.74)

where

Amin = −(−0.0008905− 2 · 0.0006408) = 0.002172, (2.75)

Amax = −0.0008905 + 2 · 0.0006408 = 0.0003911. (2.76)
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Figure 2.6: Constraints on the gX and MX of the Lµ − Lτ model from the fit.

f(MX) is negative for sufficiently large MX . Therefore, we only have to consider the inequality
with Amax. It implies that

gX ≤

√
8π2Amax

−f(MX)
. (2.77)

Combined constraints

The combined constraints are plotted in Fig. 2.6. The figure also include constraints obtained in
Section 2.2.1. The ruled out regions are shown in different colors.

The dash-dotted red line corresponds to the bound given by the inequality Eq. (2.19). The
region below this line is excluded. The vertical solid black line represents the bounds on the X
boson mass given by Eq. (2.71).The region to the left of this line (red) is excluded by the result of
the fit to the SM observables. Solid red line is the upper bound on gX coming from the result of the
fit for the parameter δV and given by Eq. (2.77). The region above this curve is excluded. Finally,
the vertical dashed red line represents the 60 GeV LEP-I constraint on the mass and coupling of
the X boson from Z → µµX decay discussed in Sec. 2.2.1. The values of MX smaller than this
bound (blue region) are not compatible with the LEP-I measurements.

We observe from the figure that it does not contain any white (allowed) region at all. Thus, we
conclude that the fit to the SM observables completely rules out the possibility that the Lµ − Lτ

model can explain NuTeV and at the same time be compatible with the results of the precision
measurements.

2.2.6 W decay width

Another independent set of constraints on the Lµ−Lτ model comes from the preliminary measure-
ments of the W partial width. Ref. [3] reports the following results for the branching ratios of W
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Figure 2.7: Constraints from the W branching ratios data.

into leptons of different flavor:

B(W → µν̄µ)/B(W → eν̄e) = 0.994± 0.020, (2.78)

B(W → τ ν̄τ )/B(W → eν̄e) = 1.074± 0.029, (2.79)

B(W → τ ν̄τ )/B(W → µν̄µ) = 1.080± 0.028. (2.80)

It is not difficult to express the ratio ∆Γ/Γ in terms of the branching ratios given above. In the
Lµ − Lτ model both µ and τ channel give extra corrections to the W decay vertex. So, we can
write

∆Γ

Γ
= B(W → µν̄µ)/B(W → eν̄e)− 1 = −0.006± 0.020, (2.81)

∆Γ

Γ
= B(W → τ ν̄τ )/B(W → eν̄e)− 1 = +0.074± 0.029. (2.82)

The first equation above implies the following 95% CL (1.96σ) upper bound on the possible values
of ∆Γ/Γ

∆Γ

Γ
≤ 0.033. (2.83)

The second equation above implies both upper and lower 95% CL bounds on the possible values of
∆Γ/Γ given by

0.017 ≤ ∆Γ

Γ
≤ 0.131. (2.84)

The analytic expression for the ∆Γ/Γ ratio is given by essentially the same formula as for the
Z decay case Eq. (2.33) in which MZ is replaced with the W mass MW . We derive this formula
in Appendix B. The constraints given by Eqs. (2.83) and (2.84) are presented graphically in
Fig. 2.7. The red solid line represents the upper bound given by Eq. (2.83). The dashed green line
corresponds to the upper and the dash-dotted blue line to the lower bounds of Eq. (2.84). The
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excluded regions are shown in different colors. The only allowed region of the parameter space
is the white region between the solid red and the dash-dotted blue line. One observes that the
values of the coupling constant in this region are larger than one and approaches the perturbative
bound of αX(≡ g2

X/4π) = 1 or gX =
√

4π (the dotted black horizontal line) as the value of the MX

increases.
In addition to that, in the Lµ − Lτ model both µ and τ contributes equally to the W decay

vertex. This implies that in this model the branching ratios in the numerator and the denominator
of Eq. (2.80) must be equal to each other and their ratio must be equal to unity. But it is not
compatible with the experimental data. In fact, if one takes the W decay data seriously, this
possibility is ruled out at more than 99% CL (2.58σ = 0.072) as can be easily seen from the right
hand side of Eq. (2.80).

So, we conclude that the W decay data also greatly disfavor this model.

2.3 B − 3Lµ gauge boson

We next consider the gauged B − 3Lµ model, where B is the baryon number and Lµ is the muon
number. The gauge boson of this model couples to the quarks of all generations and to leptons of
the second generation. To satisfy the anomaly cancellation condition we must also add an extra
right-handed neutrino to the particle content of the SM.

It was suggested by Davidson et al. in Ref. [17] to use the B − 3Lµ gauge boson as a possible
explanation of the NuTeV anomaly. Thus, in this section we analyze how the existence of such a
particle would affect the NuTeV result.

The SM effective Lagrangian describing the 4-Fermi neutral current interaction between muon
neutrino and quarks has the form10:

LSM = −2
√

2 ·GF ·
[
gνu

L · (uLγ
αuL) + gνu

R · (uRγ
αuR) + gνd

L · (dLγ
αdL) + gνd

R · (dRγ
αdR)

]
· (νµγανµ).

(2.85)
In the framework of the B − 3Lµ model one generates an additional contribution to the effective
Lagrangian (2.85) given by11

LB−3Lµ = − g2
Z′

M2
Z′
· 1

3
· (−3) · (uγαu+ dγαd) · (νµγανµ)

=
g2

Z′

M2
Z′
· (uLγ

αuL + uRγ
αuR + dLγ

αdL + dRγ
αdR) · (νµγανµ). (2.86)

Adding (2.85) and (2.86) together one obtains

LSM + LB−3Lµ = −2
√

2 ·GF · [g̃νu
L · (uLγ

αuL) + g̃νu
R · (uRγ

αuR)

+ g̃νd
L · (dLγ

αdL) + g̃νd
R · (dRγ

αdR)] · (νµγανµ), (2.87)

where g̃νq
P ≡ gνq

P − δg, P = {L,R}, q = {u, d} and

δg ≡ g2
Z′

M2
Z′
· (2
√

2 ·GF )−1. (2.88)

10see for instance the expression on the bottom of p. 2 in the paper by Davidson et al. [17]
11see for example a similar Eq. (33) in [9]
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Squaring g̃νu
L and g̃νd

L gives

(g̃νu
L )2 = (gνu

L )2 − 2gνu
L δg + δg2, (2.89)(

g̃νd
L

)2
=
(
gνd

L

)2 − 2gνd
L δg + δg2. (2.90)

The NuTeV experiment measured the following quantity:

(g̃L)2 = (g̃νu
L )2 +

(
g̃νd

L

)2
= g2

L − δg(2gνu
L + 2gνd

L − 2δg) = g2
L + ∆, (2.91)

where

∆ ≡ −δg(2gνu
L + 2gνd

L − 2δg). (2.92)

Plugging gνu
L = ρ

(
1
2
− 2

3
s2

W

)
and gνd

L = ρ
(
−1

2
+ 1

3
s2

W

)
into the expression above yields

∆ = −δg · (1− 4

3
s2

W − 1 +
2

3
s2

W − 2δg) = δg · (2δg +
2

3
s2

W ), (2.93)

where we set ρ = 1. Thus, one observes that in the model with the B − 3Lµ gauge boson the SM
value g2

L is shifted by the positive value of ∆ making g̃2
L bigger then g2

L. But the NuTeV experiment
saw the opposite: the measured value(

g̃2
L

)
NuTeV

= 0.30005± 0.00137 (2.94)

was smaller then the SM prediction of (
g2

L

)
SM

= 0.3042. (2.95)

Thus, we conclude that the claim made by Davidson et al. in Ref. [17] that the B − 3Lµ gauge
boson can explain the NuTeV anomaly is wrong.

2.4 Leptoquark

Leptoquarks are particles carrying both baryon number B, and lepton number L. They occur in
various extensions of the SM such as Grand Unification Theories (GUT’s) or Extended Technicolor
(ETC). In GUT models, the quarks and leptons are placed in the same multiplet of the GUT group.
The massive gauge bosons which correspond to the broken generators of the GUT group which
change quarks into leptons, and vice versa, are vector leptoquarks. In ETC models, the technicolor
interaction will bind the techniquarks and the technileptons into scalar or vector bound states.
These leptoquark states couple to the ordinary quarks and leptons through ETC interactions.

The interactions of leptoquarks with ordinary matter can be described in a model-independent
fashion by an effective low-energy Lagrangian as discussed in Ref. [28]. Assuming the fermionic
content of the SM, the most general dimensionless SU(3)C × SU(2)L × U(1)Y invariant couplings
of scalar and vector leptoquarks satisfying baryon and lepton number conservation is given by:

L = LF=2 + LF=0 , (2.96)
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where

LF=2 =
[
g1L qc

Liτ2`L + g1R uc
ReR

]
S1 + g̃1R

[
dc

ReR

]
S̃1

+g3L

[
qc
Liτ2~τ`L

]
~S3

+
[
g2L dc

Rγ
µ`L + g2R qc

Lγ
µeR

]
V2µ + g̃2L

[
uc

Rγ
µ`L

]
Ṽ2µ + h.c. , (2.97)

LF=0 =
[
h2L uR`L + h2R qLiτ2eR

]
S2 + h̃2L

[
dR`L

]
S̃2

+
[
h1L qLγ

µ`L + h1R dRγ
µeR

]
V1µ + h̃1R

[
uRγ

µeR

]
Ṽ1µ

+h3L

[
qL~τγ

µ`L

]
~V3µ + h.c. (2.98)

Here, the scalar and vector leptoquark fields are denoted by S and V , respectively, their subscripts
indicating the dimension of their SU(2)L representation. The same index is attached to their
respective coupling constants, the g’s and h’s, with the extra subscript L orR indicating the chirality
of the lepton involved in the interaction. For simplicity, color, weak isospin, and generation indices
have been suppressed. The leptoquarks S1, S̃1, ~S3, V2, Ṽ2 carry fermion number F = 3B + L = −2,
while the leptoquarks S2, S̃2, V1, Ṽ1, ~V3 have F = 0.

Rewriting the fermion doublets and the leptoquark multiplets in terms of the individual com-
ponent fields, Eqs. (2.97) and (2.98) are expanded as follows:

LF=2 =
[
g1L(uc

LeL − dc
LνL) + g1R(uc

ReR)
]
S0

1 + g̃1R

[
dc

ReR

]
S̃0

1

+
[
g2L(dc

Rγ
µeL) + g2R(dc

Lγ
µeR)

]
V +

2µ +
[
g2L(dc

Rγ
µνL) + g2R(uc

Lγ
µeR)

]
V −

2µ

+g̃2L

[
(uc

Rγ
µeL)Ṽ +

2µ + (uc
Rγ

µνL)Ṽ −
2µ

]
+g3L

[
−
√

2(dc
LeL)S+

3 − (uc
LeL + dc

LνL)S0
3 +

√
2(uc

LνL)S−3

]
+ h.c. , (2.99)

LF=0 =
[
h2L(uReL) + h2R(uLeR)

]
S+

2 +
[
h2L(uRνL)− h2R(dLeR)

]
S−2

+h̃2L

[
(dReL)S̃+

2 + (dRνL)S̃−2

]
+
[
h1L(uLγ

µνL + dLγ
µeL) + h1R(dRγ

µeR)
]
V 0

1µ + h̃1R

[
uRγ

µeR

]
Ṽ 0

1µ

+h3L

[√
2(uLγ

µeL)V +
3µ + (uLγ

µνL − dLγ
µeL)V 0

3µ +
√

2(dLγ
µνL)V −

3µ

]
+ h.c. (2.100)

Superscripts indicate the weak isospin of each field, not the electromagnetic charge. For fields
with subscript 1, the superscript 0 is redundant and may be dropped. The quantum numbers and
couplings of the various leptoquarks fields are summarized in Table 2.3. Note that the scalar S̃1

and the vector Ṽ1µ do not couple to the neutrinos, so they are irrelevant to our discussion and will
not be considered further. The isospin plus components of the remaining leptoquarks, namely S+

2 ,
S̃+

2 , S+
3 , V +

2µ, Ṽ +
2µ, and V +

3µ, do not couple to the neutrinos either, but we will keep them in our
Lagrangian since their coupling constants are common with the other components that do couple,
and are important in understanding how the couplings are constrained by neutrinoless experiments.
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Leptoquark Spin F SU(3)C I3 Y Qem Allowed Couplings
S1 S0

1 0 −2 3̄ 0 1
3

1
3 g1L(uc

LeL − dc
LνL), g1R(uc

ReR)
S̃1 S̃0

1 0 −2 3̄ 0 4
3

4
3 g̃1R(dc

ReR)
V2µ V +

2µ 1 −2 3̄ + 1
2

5
6

4
3 g2L(dc

RγµeL), g2R(dc
LγµeR)

V −
2µ − 1

2
1
3 g2L(dc

RγµνL), g2R(uc
LγµeR)

Ṽ2µ Ṽ +
2µ 1 −2 3̄ + 1

2 − 1
6

1
3 g̃2L(uc

RγµeL)
Ṽ −

2µ − 1
2 − 2

3 g̃2L(uc
RγµνL)

~S3 S+
3 0 −2 3̄ +1 1

3
4
3 −

√
2g3L(dc

LeL)
S0

3 0 1
3 −g3L(uc

LeL + dc
LνL)

S−3 −1 − 2
3

√
2g3L(uc

LνL)
S2 S+

2 0 0 3 + 1
2

7
6

5
3 h2L(uReL), h2R(uLeR)

S−2 − 1
2

2
3 h2L(uRνL),−h2R(dLeR)

S̃2 S̃+
2 0 0 3 + 1

2
1
6

2
3 h̃2L(dReL)

S̃−2 − 1
2 − 1

3 h̃2L(dRνL)
V1µ V 0

1µ 1 0 3 0 2
3

2
3 h1L(uLγµνL + dLγµeL), h1R(dRγµeR)

Ṽ1µ Ṽ 0
1µ 1 0 3 0 5

3
5
3 h̃1R(uRγµeR)

~V3µ V +
3µ 1 0 3 +1 2

3
5
3

√
2h3L(uLγµeL)

V 0
3µ 0 2

3 h3L(uLγµνL − dLγµeL)
V −

3µ −1 − 1
3

√
2h3L(dLγµνL)

Table 2.3: Quantum numbers of scalar and vector leptoquarks with SU(3)C × SU(2)L × U(1)Y invariant couplings
to quark-lepton pairs (Qem = I3 + Y ).

Since the leptoquarks must distinguish among different generation fermions to contribute to
quark-muon (anti-)neutrino scattering we generalize their interactions by allowing the coupling
constants to depend on the generations of the quarks and leptons that couple to each leptoquark:

LF=2 =
[
gij
1L(uc

iLejL − dc
iLνjL) + gij

1R(uc
iRejR)

]
S0

1

+
[
gij
2L(dc

iRγ
µejL) + gij

2R(dc
iLγ

µejR)
]
V +

2µ +
[
gij
2L(dc

iRγ
µνjL) + gij

2R(uc
iLγ

µejR)
]
V −

2µ

+g̃ij
2L

[
(uc

iRγ
µejL)Ṽ +

2µ + (uc
iRγ

µνjL)Ṽ −
2µ

]
+gij

3L

[
−
√

2(dc
iLejL)S+

3 − (uc
iLejL + dc

iLνjL)S0
3 +

√
2(uc

iLνjL)S−3

]
+ h.c. , (2.101)

LF=0 =
[
hij

2L(uiRejL) + hij
2R(uiLejR)

]
S+

2 +
[
hij

2L(uiRνjL)− hij
2R(diLejR)

]
S−2

+h̃ij
2L

[
(diRejL)S̃+

2 + (diRνjL)S̃−2

]
+
[
hij

1L(uiLγ
µνjL + diLγ

µejL) + hij
1R(diRγ

µejR)
]
V 0

1µ

+hij
3L

[√
2(uiLγ

µejL)V +
3µ + (uiLγ

µνjL − diLγ
µejL)V 0

3µ +
√

2(diLγ
µνjL)V −

3µ

]
+ h.c.

(2.102)

Here, i is the quark generation number, and j is the lepton generation number. Summation
over repeated indices is assumed. The interactions that contribute to quark-muon (anti-)neutrino
scattering are those with indices (ij) = (12).
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It is often assumed in the literature that generation non-diagonal couplings are absent to account
for the non-observation of flavor changing neutral currents and lepton flavor violation. However,
the constraints from such rare processes are always on products of different (ij)-couplings and not
on the individual non-diagonal couplings by themselves. For instance, non-observation of the decay
KL → ēµ constrains the product of (12) and (21) couplings, but not the (12) and (21) couplings
separately, which allows one of them to be sizable if the other is small. Constraints on the individual
(12) and (13) couplings actually come from precision measurements of flavor conserving processes,
such as Rπ = Γ(π → µνµ)/Γ(π → eνe) which constrains the square of the (12) coupling, and those
constraints are not yet that strong [29, 30].

In order to affect the result of the NuTeV experiment the leptoquark must couple to the (anti-
)neutrino of the second generation and the first generation quarks. The main result of the NuTeV
experiment was that the measured value of the parameter g2

L disagreed with the SM prediction.
Thus, we are most interested in the leptoquarks which couple to the left-handed u and d quarks
because the presence of such interaction will obviously affect the value of g2

L.
We follow the notation given in Ref. [9]. There are four types of leptoquarks which couple to

the muon (anti-)neutrino and the left-handed u and d quarks. They are:

1. S1 leptoquark. It has spin 0, I3 = 0, Y = 1/3, and Qem = 1/3 (Qem = I3 + Y ). The
corresponding Lagrangian has the form:

L =
[
g12
1L ·

(
uc

LµL − dc
Lνµ

)
+ g12

1R ·
(
uc

RµR

)]
· S1 + h.c. (2.103)

2. ~S3 leptoquark. It has spin 0, I3 = {+1, 0,−1}, Y = 1/3, and Qem = {4/3, 1/3,−2/3}. The
Lagrangian has the form:

L = g12
3L ·

[
−
√

2 ·
(
dc

LµL

)
· S+

3 −
(
uc

LµL + dc
Lνµ

)
· S0

3 +
√

2 ·
(
uc

Lνµ

)
· S−3

]
+ h.c. (2.104)

3. V1 leptoquark. It has spin 1, I3 = 0, Y = 2/3, and Qem = 2/3. The Lagrangian is

L =
[
h12

1L ·
(
uLγ

ανµ + dLγ
αµL

)
+ h12

1R ·
(
dRγ

αµR

)]
· V1α + h.c. (2.105)

4. ~V3 leptoquark. It has spin 1, I3 = {+1, 0,−1}, Y = 2/3, and Qem = {5/3, 2/3,−1/3}. The
Lagrangian is

L = h12
3L ·

[√
2 · (uLγ

αµL) · V +
3α +

(
uLγ

ανµ − dLγ
αµL

)
· V 0

3α +
√

2 ·
(
dLγ

ανµ

)
· V −

3α

]
+ h.c.

(2.106)

The νµ-quark effective Lagrangian of the SM at tree level is

LSM = −2
√

2GF ·
[
(νµγ

αµL)(dLγαuL) + h.c.
]

−2
√

2GF ·
[
gνu

L (uLγ
αuL) + gνu

R (uRγ
αuR) + gνd

L (dLγ
αdL) + gνd

R (dRγ
αdR)

]
(νµγανµ).

(2.107)
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The leptoquarks listed above induce extra contributions to both neutral and charged current
parts of the SM effective Lagrangian12:

L(n)
eff = −2

√
2GF ·

[
εdL

µµ · (νµγ
ανµ)(dγαPLd) + εuL

µµ · (νµγ
ανµ)(uγαPLu)

]
, (2.108)

L(c)
eff = −2

√
2GF · εc · (µγαPLνµ)(uγαPLd) + h.c., (2.109)

where εdL
µµ, εuL

µµ, and εc are the effective couplings whose values depend on the type of leptoquark.

In the presence of L(n)
eff the parameters gνd,u

L change: gνd,u
L → g̃νd,u

L = gνd,u
L + εd,uL

µµ . By definition

g2
L = (gνu

L )2 + (gνd
L )2. Therefore, in the leading order the change of the g2

L due to the leptoquark
contribution to the neutral current part of the effective SM Lagrangian is

(δg2
L)(n) = 2(gνd

L ε
dL
µµ + gνu

L εuL
µµ). (2.110)

Now, let us find the change of the g2
L due to the leptoquark contribution to the charged current

part. The following ratio was measured in the NuTeV experiment:

Rν =
σ(νN → νX)

σ(νN → µX)
= g2

L + rg2
R. (2.111)

In the presence of L(c)
eff the denominator of the expression above gets reduced by the factor of

(1 + εc)
2. This means that

(g2
L)SM + r(g2

R)SM

(1 + εc)2
= (g2

L)NuTeV + r(g2
R)NuTeV. (2.112)

Since (1 + εc)
−2 ≈ 1 − 2εc, one gets (g2

L)NuTeV = (g2
L)SM − 2g2

Lεc. Therefore, the change of the g2
L

due to the leptoquark contribution to the charged current part of the effective SM Lagrangian is

(δg2
L)(c) = −2g2

Lεc. (2.113)

Similarly, the change of the g2
R due to the leptoquark contribution to the charged current part of

the effective SM Lagrangian is
(δg2

R)(c) = −2g2
Rεc. (2.114)

Note that for the leptoquarks we are considering gνd
R and gνu

R will not be affected simply because
the muon neutrino does not couple to right-handed quarks as can be seen from Eq’s (2.103-2.106).
Therefore, g2

R will only be shifted by the amount given by Eq. (2.114).
Combining Eq’s (2.110) and (2.113) we find that the total change of the g2

L is

δg2
L = 2(gνd

L ε
dL
µµ + gνu

L εuL
µµ − g2

Lεc). (2.115)

We want to emphasize that the g2
L in the expression above is the SM value of this parameter.

12 Using the terminology and logic of Ref. [17] we are only considering left-handed ‘vector’ operators. In the presence of leptoquarks,
‘scalar’ and ‘tensor’ operators can also be generated. ‘Tensor’ operators can in principle explain NuTeV by increasing the value of the
charged current. However, they always appear in pairs with the ‘scalar’ operators so that the effective couplings of these two types
of operators have the same orders of magnitude. It was found in Ref [17] (pp. 14-15) that 1) the scalar operator itself cannot explain
NuTeV because the value of the coupling required for that is inconsistent with the measurement of Rπ , and 2) if some ‘tensor’ operator
has the value of the effective coupling needed to explain NuTeV then the corresponding ‘scalar’ operator overcontributes to the value of
Rπ . Thus, we exclude ‘tensor’ and ‘scalar’ operators from the scope of our consideration.
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Process (ij) LQ Assumptions 95% CL bound Reference
pp̄ → LQLQX → (jν)(jν)X (∗∗) S β = 0(a) 117 GeV CDF [31]
pp̄ → LQLQX → (jν)(jν)X (∗∗) S β = 0 135 GeV D0 [32]
pp̄ → LQLQX → (jµ)(jµ)X (∗2) S β = 0.5 208 GeV CDF [33]
pp̄ → LQLQX → (jµ)(jν)X
pp̄ → LQLQX → (jµ)(jµ)X (∗2) S β = 0.5 204 GeV D0 [34]
pp̄ → LQLQX → (jµ)(jν)X
pp̄ → LQµX → (jµ)µX (∗2) S β = 0.5, λ = 1(b) 226 GeV(c) D0 [35]

Table 2.4: Direct search limits on the Leptoquark mass from the Tevatron. (a)β is the assumed branching fraction
B(LQ → q`) = 1 − B(LQ → qν), and (b)λ is the Yukawa coupling of the Leptoquark with the quark-lepton pair.
(c)Combined bound with the pair production data.

2.4.1 Constraints on the Leptoquark Couplings and Masses

Limits on leptoquark masses from direct searches at the Tevatron are listed in Table 2.4. Bounds
from LEP and LEP II are weaker due to their smaller center of mass energies. Since the NuTeV
experiment is only sensitive to leptoquarks with (ij) = (12) coupling, we only quote limits which
apply to leptoquarks with only this particular coupling, that is, leptoquarks that decay into a first
generation quark, and a second generation lepton. Though it is usually stated in collider analyses
that leptoquarks are assumed to decay into a quark-lepton pair of one particular generation, it is
often the case that the jets coming from the quarks are not flavor tagged. Analyses that look for
the leptoquark in the quark-neutrino decay channel are of course blind to the flavor of the neutrino.
Therefore, the bounds listed apply to leptoquarks with generation non-diagonal couplings also.

As can be seen from Table 2.4, the mass bounds from the Tevatron are typically around 200 GeV
and are mostly independent of the leptoquark-quark-lepton coupling λ. This independence is due
to the dominance of the strong interaction processes, qq̄ annihilation and gluon fusion, in the
leptoquark pair-production cross sections, and the fact that heavy leptoquarks decay without a
displaced vertex even for very small values of λ: the decay widths of scalar and vector leptoquarks
with leptoquark-quark-lepton coupling λ are given by λ2MLQ/16π and λ2MLQ/24π, respectively,
which correspond to lifetimes of O(10−21) seconds for MLQ = O(102) GeV, and λ = O(10−2).

Bounds on leptoquarks with (ij) = (12) couplings can also be obtained from bounds on contact
interactions of the form

L = ± 4π

(Λ±
qµ)2

(q̄γµPXq) (µ̄γµPLµ) , (2.116)

where X = L or R, and q = u or d. For instance, at energies much lower than the leptoquark mass,
the exchange of the S1 leptoquark leads to the interaction [9]

LS1 = +
|g12

1L|2

2M2
S1

(ūγµPLu) (µ̄γµPLµ) . (2.117)

The remaining cases are listed in Table 2.5. The 95% CL lower bounds on the Λ±
q`’s from CDF

can be found in Ref. [36]13, and the cases relevant to our discussion are listed in Table 2.6. These
bounds translate into bounds on the leptoquark masses and couplings listed in the third column of
Table 2.5.

13See also discussion in Ref. [9].
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LQ Induced Interaction CDF 95% CL [36] Bounds from Rπ

S1 +
|g12

1L|2

2M2
S1

(ūγµPLu) (µ̄γµPLµ)
|g12

1L|2

M2
S1

≤ 2.2 TeV−2 |g12
1L|2

M2
S1

≤ 0.37 TeV−2

~S3 +
|g12

3L|2

2M2
S3

(
ūγµPLu + 2 d̄γµPLd

)
(µ̄γµPLµ) —

|g12
3L|2

M2
S0

3

≤ 0.08 TeV−2

V1 −|h
12
1L|2

M2
V1

(
d̄γµPLd

)
(µ̄γµPLµ)

|h12
1L|2

M2
V1

≤ 4.3 TeV−2 |h12
1L|2

M2
V1

≤ 0.18 TeV−2

~V3 −|h
12
3L|2

M2
V1

(
2 ūγµPLu + d̄γµPLd

)
(µ̄γµPLµ) —

|h12
3L|2

M2
V 0

3

≤ 0.04 TeV−2

Table 2.5: The quark-muon interactions induced by leptoquark exchange, the bounds from CDF [36], and the bounds
from the measurement of Rπ. Only the couplings that also contribute to NuTeV are listed. Analysis of the Tevatron
Run II data is expected to improve the CDF bound by a factor of four.

(qµ) chirality Λ+
uµ (TeV) Λ−

uµ (TeV) Λ+
dµ (TeV) Λ−

dµ (TeV)
(LL) 3.4 4.1 2.3 1.7

Table 2.6: The 95% CL lower bound on the compositeness scale from CDF [36]. Results from D0 [37] do not provide
limits for cases where the muons couple to only u or d, but we expect the bounds to be in the range 4 ∼ 7 TeV.

The presence of L(c)
eff given by Eq. (2.109) changes the value of Rπ as follows [38, 39, 29].

Rπ ≡
B(π → eν̄e)

B(π → µν̄µ)
= RSM

π · (1− 2εc) , (2.118)

where RSM
π is the SM value of this ratio14. This provides us with another important source of

constraints on the possible values of the squared coupling-to-mass ratios for the leptoquarks. These
constraints were considered in Ref. [29, 30]15. However, the theoretical and experimental values of
Rπ have been improved over the last years. Thus, we update the analysis. The theoretical value of
the Rπ is [40]

Rth
π = (1.2354± 0.0002)× 10−4. (2.119)

The experimental value of the Rπ is [25]

Rexp
π = (1.230± 0.004)× 10−4. (2.120)

Now, it is not difficult to obtain the 2σ constraints on the possible values of the squared coupling-
to-mass ratios for the different types of leptoquark. We make use of Eqs. (2.130), (2.140), (2.152),
(2.155) given below which relate these ratios to the values of εc for each particular type of lepto-
quark. The bounds obtained in such a way are summarized in the last column of Table 2.5.

Comparing the last two columns of Table 2.5 we observe that the CDF bounds are significantly
weaker than those derived from the Rπ measurement. However, it should be noted that the results
of Ref. [36] are from Tevatron Run I, and we can expect the Run II results to improve these bounds.
Indeed, Ref. [37] from D0 analyzes the Run II data for contact interactions of the form

L = ± 4π

(Λ±)2

(
ūγµPXu+ d̄γµPXd

)
(µ̄γµPLµ) , X = L or R , (2.121)

14Here we make an assumption that there exists only one type of leptoquark contributing to the value of Rπ and ignore possible
‘scalar’ and ‘tensor’ operators in the effective Lagrangian as discussed in footnote 12.

15See also the part discussing leptoquarks in Ref. [17].
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and places 95% CL lower bounds on the Λ±’s in the 4 ∼ 7 TeV range. While these are not exactly
the interactions induced by leptoquarks, we can nevertheless expect that the bounds on the Λ±

qµ’s
will be in a similar range, and thereby conclude that the Run II data will roughly double the lower
bounds from Run I. This means that the Run II bounds on the squared coupling-to-mass ratios for
different types of leptoquarks will be about four times smaller than those of Run I shown in the
third column of Table 2.5. If this estimates are correct then even the Run II Tevatron bounds are
going to be weaker than bounds derived from the Rπ measurements. Thus, in the further analysis
we will concentrate our attention on the latter.

2.4.2 S1 leptoquark

The relevant terms of the Lagrangian are

L = g12
1L · (uc

LµL − dc
Lνµ) · S1 + h.c. (2.122)

One can construct the effective Lagrangian correcting the neutral current part of the effective
SM Lagrangian by considering the process νµ, dL → S1 → νµ, dL. The matrix element associated
with it is

iM = (−i)2|g12
1L|2 · 〈νµ, d| (dcPLνµ) · i

−M2
S1

· (νµPRd
c) |νµ, d〉 . (2.123)

Using Fierz rearrangement

(νµPRd
c)(dcPLνµ) = −1

2
(νµγ

αPLνµ)(dcγαPRd
c) =

1

2
(νµγ

αPLνµ)(dγαPLd) (2.124)

we obtain

iM = i
|g12

1L|2

2M2
S1

〈νµ| νµγ
ανµ |νµ〉 〈d| dγαPLd |d〉 . (2.125)

Therefore, the effective Lagrangian we are looking for is

L(n,d)
eff =

|g12
1L|2

2M2
S1

(νµγ
ανµ)(dγαPLd). (2.126)

Thus,

εdL
µµ = − 1

2
√

2GF

· |g
12
1L|2

2M2
S1

, εuL
µµ = 0. (2.127)

Similarly, one can calculate the leptoquark correction to the charged current part of the effective
SM Lagrangian by considering the process νµ, dL → S1 → µ, uL.

iM = −i |g
12
1L|2

2M2
S1

〈µ|µγαPLνµ |νµ〉 〈u|uγαPLd |d〉 . (2.128)

The effective Lagrangian is

L(c)
eff = −|g

12
1L|2

2M2
S1

(µγαPLνµ)(uγαPLd) + h.c. (2.129)
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The h.c. term comes from the inverse process µ, uL → S1 → νµ, dL. Eq. (2.129) implies that

εc =
1

2
√

2GF

· |g
12
1L|2

2M2
S1

= −εdL
µµ. (2.130)

Thus, using the result given by Eq. (2.115) one obtains that the total change of the g2
L in the

presence of the S1 leptoquark is

δg2
L = 2[gνd

L ε
dL
µµ − g2

Lεc] = −2εc(g
νd
L + g2

L). (2.131)

Numerically, gνd
L = ρ

(
−1

2
+ 1

3
s2

w

)
, s2

w = 0.23113, g2
L = 0.3042. Therefore, setting ρ = 1, the tree

level value, we obtain
δg2

L ≈ +0.24 · εc ≥ 0, (2.132)

because εc ≥ 0 according to Eq. (2.130). Thus, we see that the S1 leptoquark cannot explain the
NuTeV anomaly because it generates the shift of g2

L which is positive rather than negative.

2.4.3 ~S3 leptoquark

The relevant terms of the Lagrangian are

L = g12
3L ·

[
−
(
uc

LµL + dc
Lνµ

)
· S0

3 +
√

2
(
uc

Lνµ

)
· S−3

]
+ h.c. (2.133)

Corrections to the neutral current part of the effective SM are generated through two different
processes. They are

1. The processes νµ, dL → S0
3 → νµ, dL. The matrix element associated with these processes is

iM = (−i)2|g12
3L|2 · 〈νµ, d| (dcPLνµ) · i

−M2
S0

3

· (νµPRd
c) |νµ, d〉 . (2.134)

Therefore, the corresponding effective Lagrangian is

L(n,d)
eff =

|g12
3L|2

2M2
S0

3

(νµγ
ανµ)(dγαPLd). (2.135)

Thus,

εdL
µµ = − 1

2
√

2GF

· |g
12
3L|2

2M2
S0

3

. (2.136)

2. The processes νµ, uL → S−3 → νµ, uL. Similarly to the previous case

L(n,u)
eff =

|g12
3L|2

M2
S−3

(νµγ
ανµ)(uγαPLu). (2.137)

Thus,

εuL
µµ = − 1

2
√

2GF

· |g
12
3L|2

M2
S−3

. (2.138)
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The correction to the charged current part of the effective SM Lagrangian can be calculated by
considering the process νµ, dL → S1 → µ, uL. It is clear that in this case

L(c)
eff =

|g12
3L|2

2M2
S0

3

(µγαPLνµ)(uγαPLd) + h.c. (2.139)

This implies that

εc = − 1

2
√

2GF

· |g
12
3L|2

2M2
S0

3

= εdL
µµ. (2.140)

In order to find the total shift of the g2
L, let us consider two cases:

1. ‘Degenerate’ case: assume that the masses of all three components of the triplet are the same.
In this case εuL

µµ = 2εdL
µµ = 2εc. The total shift of the g2

L is

δg2
L = 2(−εc)(−gνd

L − 2gνu
L + g2

L) = 2(−εc)(−1 +
4

3
s2

W +
1

2
− 1

3
s2

W + g2
L) (2.141)

= 2(−εc)(−
1

2
+ s2

W + g2
L) = 2(−εc)(−0.5 + 0.23113 + 0.3042) ≈ +0.07 · (−εc) ≥ 0,

because εc ≤ 0 according to Eq. (2.140), and we set ρ = 1. Thus, we see that the degenerate
~S3 leptoquark cannot explain the NuTeV anomaly because it generates the shift of g2

L which
is positive rather than negative.

2. ‘Non-degenerate’ case: assume that the masses of the components of the triplet are non-
degenerate. In this case εdL

µµ = εc but εuL
µµ is an independent parameter. In order to explain

NuTeV we need

δg2
L = (g2

L)NuTeV − (g2
L)SM = 2[εuL

µµg
νu
L + εc(g

νd
L − g2

L)]. (2.142)

Therefore

δg2
L = − |g12

3L|2

2
√

2GF

·

(
2gνu

L

M2
S−3

+
gνd

L − g2
L

M2
S0

3

)
. (2.143)

This means that
2gνu

L

M2
S−3

=
g2

L − gνd
L

M2
S0

3

− 2
√

2GF
δg2

L

|g12
3L|2

(2.144)

or

MS−3
=
√

2gνu
L ·

(
g2

L − gνd
L

M2
S0

3

− 2
√

2GF
δg2

L

|g12
3L|2

)−1/2

. (2.145)

We see that for a given MS0
3

and negative δg2
L there always exists the mass MS−3

such that

Eq. (2.143) is satisfied. Thus, the ~S3 leptoquark can in principle explain the NuTeV anomaly.

The shift of the g2
R is given by Eq. (2.114):

(δg2
R) = −2g2

Rεc (2.146)

where εc is determined by Eq. (2.140).

31



0 1000 2000 3000 4000
0

200

400

600

800

1000

1200

1400

M
S3

0 , GeV

M
S 3-

,G
eV

Figure 2.8: MS−3
dependence on MS0
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Fig. 2.8 illustrates the result above for

(g2
L)NuTeV = 0.30005, (2.147)

the central values of the NuTeV result cited in [1]16, and (g2
L)SM = 0.3042. The graph shows

how the mass of the S−3 component of the triplet required to explain NuTeV depends on the
mass of the S0

3 component for three different choices of coupling. The vertical cutoffs are due
to the lower bound on the mass of the S0

3 component derived from the bound on the squared
coupling-to-mass ratio given in the last column of Table 2.5.

2.4.4 V1 leptoquark

The relevant interactions are

L = h12
1L · (uLγ

ανµ + dLγ
αµL) · V1α + h.c. (2.148)

The correction to the neutral current part of the effective SM Lagrangian is generated by the
process νµ, uL → νµ, uL proceeding through the exchange of V1 in the t-channel. The matrix element
associated with it is

iM = (i)2|h12
1L|2 · 〈νµ, u| (uγαPLνµ) · −igαβ

−M2
V1

· (νµγ
βPLu) |νµ, u〉 . (2.149)

Using Fierz rearrangement

(νµγ
αPLu) · (uγαPLνµ) = +(νµγ

αPLνµ) · (uγαPLu) (2.150)

we obtain

L(n,u)
eff = −|h

12
1L|2

M2
V1

(νµγ
ανµ)(uγαPLu). (2.151)

16The NuTeV data are in the process of being reanalyzed. Thus this number can change in the future.
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Thus,

εuL
µµ =

1

2
√

2GF

· |h
12
1L|2

M2
V1

, εdL
µµ = 0. (2.152)

The calculations of the correction to the charged current part of the effective SM Lagrangian
are exactly the same and εc = εuL

µµ. Thus, using the result given by Eq. (2.115) one obtains that

the total change of the g2
L in the presence of the V1 leptoquark is

δg2
L = 2[gνu

L εuL
µµ − g2

Lεc] = 2εc(g
νu
L − g2

L) = 2εc

(
1

2
− 2

3
s2

W − 0.3042

)
≈ 0.08 · εc ≥ 0, (2.153)

where, again, we set ρ = 1. Thus, we see that the V1 leptoquark cannot explain the NuTeV anomaly
because it generates the shift of g2

L which is positive rather than negative.

2.4.5 ~V3 type leptoquark

The relevant terms of the Lagrangian are

L = h12
3L ·

[(
uLγ

ανµ − dLγ
αµL

)
· V 0

3α +
√

2
(
dLγ

ανµ

)
· V −

3α

]
+ h.c. (2.154)

This case is completely analogous to the case of V1 leptoquark. The εdL
µµ, εuL

µµ, and εc are

εuL
µµ = −εc =

1

2
√

2GF

· |h
12
3L|2

M2
V 0
3

, (2.155)

εdL
µµ =

1

2
√

2GF

· 2|h12
3L|2

M2
V −
3

. (2.156)

In order to find the total shift of the g2
L, let us consider two cases:

1. ‘Degenerate’ case: assume that the masses of all three components of the triplet are the same.
In this case εuL

µµ = εdL
µµ/2 = −εc. The total shift of the g2

L is

δg2
L = 2(−εc)(2g

νd
L + gνu

L + g2
L) = 2(−εc)

(
1

2
− 2

3
s2

W − 1 +
2

3
s2

W + g2
L

)
≈ −0.4 · (−εc) ≤ 0,

(2.157)

because εc ≤ 0 according to Eq. (2.155). Thus, we see that the presence of the degenerate ~V3

leptoquark makes g2
L smaller which is exactly what was observed in the NuTeV experiment.

Unfortunately, the value of εc needed to explain NuTeV conflicts with the measurements of
Rπ. Indeed, according to the bound shown in last column of Table 2.5 and Eq. (2.155), the
value of the (−εc) is limited from above as

−εc <
1

2
√

2GF

· 0.04 · (1000)−2 GeV−2 ≈ 0.001. (2.158)

This means that the value of g2
L can at most be reduced by −0.4 × 0.001 = −4 × 10−4 while

in order to explain NuTeV we need to make the value of this parameter smaller by

(g2
L)NuTeV − (g2

L)SM = 0.30005− 0.3042 ≈ −4 · 10−3 (2.159)
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which is ten times bigger. Thus, we conclude that the ~V3 triplet leptoquark which components
are mass degenerate can only explain a tiny fraction of the NuTeV anomaly.

2. ‘Non-degenerate’ case: assume that the masses of the components of the triplet are non-
degenerate. In this case εuL

µµ = −εc but εdL
µµ is an independent parameter. In order to explain

NuTeV we need

δg2
L = 2[εdL

µµg
νd
L + (−εc)(g

νu
L + g2

L)] = 2 · |h
12
3L|2

2
√

2GF

·

(
2gνd

L

M2
V −
3

+
gνu

L + g2
L

M2
V 0
3

)
. (2.160)

This means that
2gνd

L

M2
V −
3

=
√

2GF
δg2

L

|h12
3L|2

− g2
L + gνu

L

M2
V 0
3

(2.161)

or

MV −
3

=
√
−2gνd

L ·

(
g2

L + gνu
L

M2
V 0
3

−
√

2GF
δg2

L

|h12
3L|2

)−1/2

. (2.162)

We see that for a given MV 0
3

and negative δg2
L there always exists the mass MV −

3
such that the

Eq. (2.143) is satisfied. Thus, the ~V3 leptoquark can in principle explain the NuTeV anomaly.

Fig. 2.9 illustrates the result above for the value of (g2
L)NuTeV given by Eq. (2.147). The graph

shows how the mass of the V −
3 component of the triplet required to explain NuTeV depends

on the mass of the V 0
3 component for three different choices of coupling. The vertical cutoffs

are due to the lower bound on the mass of the V 0
3 component which is derived from the bound

on the squared coupling-to-mass ratio given in the last column of Table 2.5.

In the both ‘degenerate’ and ‘non-degenerate’ cases the shift of the g2
R is equal to

(δg2
R) = −2g2

Rεc (2.163)
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where εc is determined by Eq. (2.155).
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Chapter 3

Neutrissimo Models

In this chapter we give an example of what we can learn about new physics from the experimental
data soon to be available to us. We consider a special class of models containing TeV scale heavy
Majorana neutrinos mixing with the regular SM neutrinos and analyze whether or not it will be
possible to detect these heavy Majorana neutrinos at the LHC.

3.1 Introduction.

Several models of neutrino mass have been suggested in the literature in which the neutrinos
acquire masses through a seesaw [43] type mass texture, but the Majorana masses of the right-
handed neutrinos are at the TeV scale instead of the GUT scale of ∼ 1016 GeV [5, 44, 45, 46, 47].
The smallness of the neutrino masses in those models is achieved either by the reduction of the
rank of the mass matrix through a judicious choice of mass texture [5, 44], or by the suppression
of the Dirac masses through an extended Higgs sector [45, 46, 47].

In such models, the heavy, mostly-right-handed mass eigenstates typically have masses of a
few TeV, placing them within reach of the CERN Large Hadron Collider (LHC) or future e+e−

linear colliders. If created, the particles will decay into a light neutrino+Higgs through the Yukawa
interaction responsible for the Dirac masses, or into a light neutrino+Z or a charged lepton+W
through the small admixture of the left-handed neutrino state. This last decay mode is particularly
interesting since the decay products can be all visible. Of course, whether such a decay, and thus
the particle, can be observed at colliders or not depends on whether the lifetime of the particle is
short enough for it to decay inside the detector, and if that is the case, whether the width is small
enough so that a narrow peak is discernible in the invariant mass of its decay products.

In this chapter, we calculate the lifetimes of the heavy, mostly-right-handed states of the model
proposed by Okamura et al. in Ref. [5]. The original motivation of the model was to explain the
NuTeV anomaly [1, 17], one possible solution of which requires largish mixing (θ2 ∼ 0.003) between
the light and heavy (�MZ) neutrino states [6]. Denoting the left- and right-handed neutrino states
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by ν and ξ, respectively, the Okamura texture is given by

[
νc

1 νc
2 νc

3 ξ1 ξ2 ξ3

]


0 0 0 αm βm γm
0 0 0 αm βm γm
0 0 0 αm βm γm
αm αm αm αM 0 0
βm βm βm 0 βM 0
γm γm γm 0 0 γM




ν1

ν2

ν3

ξc
1

ξc
2

ξc
3

 , (3.1)

where the dimensionless parameters α, β, and γ are in general complex and assumed to satisfy the
relation

α+ β + γ = 0 . (3.2)

This condition reduces the rank of the above mass matrix to three, leading automatically to three
massless neutrino states. Though the actual light, mostly left-handed neutrino states in nature are
not completely massless, this model suffices as a first approximation. We fix the normalization of
the three complex parameters α, β, and γ to

|α|2 + |β|2 + |γ|2 = 3 . (3.3)

The dimensionful parameters m and M can be taken to be real and they set the scale of the Dirac
and Majorana masses, respectively. The solution to the NuTeV anomaly requires their ratio to be
[1, 5]

m

M
∼ 0.03 . (3.4)

If the gauge singlet states ξi (i = 1, 2, 3) couple to other particles only through the Yukawa interac-
tions which generate the Dirac submatrix of Eq. (3.1), then any permutation of the three complex
parameters α, β and γ leads to the exact same model since we will have the freedom to relabel the
three gauge singlet states without affecting any physics. In those cases, there exist a 3! = 6 fold
redundancy in the parameter space spanned by α, β, and γ. This will be assumed in the following.

If we set M = 0 in Eq. (3.1), we obtain
0 0 0 αm βm γm
0 0 0 αm βm γm
0 0 0 αm βm γm
αm αm αm 0 0 0
βm βm βm 0 0 0
γm γm γm 0 0 0

 (3.5)

which is manifestly rank 2. The non-zero eigenvalues of this matrix are1

±m
√

3 (|α|2 + |β|2 + |γ|2) = ±3m . (3.6)

Therefore, this mass texture leads to four massless and two massive Majorana fermions. Pairing up
the Majorana fermions with the same mass and opposite CP, we can reduce the set to one massive
and two massless Dirac fermions [48]. If we assume that the up-type quarks share the same Dirac
mass texture as the neutrinos, as would be the case in the Pati-Salam model [49], we obtain one

1A factor of
√

3 is missing from Eq. (65) of Ref. [5].
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massive quark which can be identified with the t, and two massless quarks which can be identified
with the u and the c. To produce the t quark mass, we need

m ∼ 60 GeV , (3.7)

which together with Eq. (3.4) implies
M ∼ 2 TeV . (3.8)

Fixing m and M to these values, the parameter space of the Okamura model is given by the values
of α, β, and γ which satisfy Eqs. (3.2) and (3.3).

In the following, we introduce a convenient graphical representation of the parameter space for
the Okamura model, and calculate the masses and lifetimes of the three heavy mass eigenstates
over it. We find that except for the vicinity of three isolated points at the ‘edge’ of the parameter
space, the three masses are always in the TeV range, and the lifetimes are typically in the range
of 10−26 to 10−24 seconds. In terms of the widths, these correspond to the range of 0.7 ∼ 70 GeV,
which are fairly narrow compared to the masses.

3.2 The Parameter Space of the Okamura Model

We begin by noting that for the three complex parameters α, β, and γ to sum to zero, Eq. (3.2), they
must form a closed triangle when summed tip-to-tail as vectors in the complex plane. Without
loss of generality, we can set the phase of α to zero. This can always be achieved by changing
the overall phase of α, β and γ, and does not affect any physical result. Therefore, the triangle
formed by α, β, and γ can be assumed to have its base along the positive real axis. We define the
“orientation” of this triangle as the direction of the vectorial cross product α×β. If the orientation
of the triangle is � (out of the complex plane), then β is in the upper complex plane while γ is
in the lower complex plane. If the orientation of the triangle is ⊗ (into the complex plane), then
β is in the lower complex plane while γ is in the upper complex plane (see Fig. 3.1). Then, it is
easy to see that specifying the lengths of the three sides |α|, |β|, and |γ|, and the orientation of the
triangle is equivalent to specifying the three complex numbers α, β, and γ.

Furthermore, we need not consider both orientations since the two cases can be transformed
into each other by a simple interchange of the lengths of β and γ, and a relabeling of the singlet
neutrino fields. As discussed previously, this does not affect any physical result either. Therefore,
we will always take the triangle to be in the � orientation. This choice also reduces the redundancy
of the parameter space from 3! = 6 to 3 since we have used up the freedom to interchange β and γ
to fix the orientation.

This consideration shows that specifying the three lengths |α|, |β|, and |γ| suffices to uniquely
determine the Okamura texture, with cyclic permutations of the three lengths leading to the same
model. (This residual redundancy comes from our freedom to choose which of the three lengths
to call |α|.) The question then, is, how can we specify those three lengths so they satisfy the
normalization condition Eq. (3.3), and also the triangle inequalities:

|β|+ |γ| ≥ |α| , |α|+ |β| ≥ |γ| , |α|+ |γ| ≥ |β| , (3.9)

so they form a closed triangle? To this end, we utilize the fact that the sum of distances from
any point inside a triangle to its three sides is constant: any point inside an equilateral triangle
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Figure 3.1: The three complex numbers α, β and γ satisfying α + β + γ = 0 form a close triangle. For each choice
of the three lengths |α|, |β|, and |γ|, there are two possible orientations of the triangle (� and ⊗) which are related
by complex conjugation (1st and 2nd columns). However, the ⊗ case is equivalent to the � case with the lengths
|β| and |γ| interchanged (2nd and 3rd columns).

of height three will have distances to the three sides which add up to three. If we identify these
distances with |α|2, |β|2, and |γ|2, we can use the position of the point to specify the three lengths.
Requiring the square-roots of these distances to satisfy the triangle inequality constrains the point
to be inside a unit circle which inscribes the triangle. Therefore, for every point inside the unit
circle, we can associate a corresponding parameter set for the Okamura texture (see Fig. 3.2).

If we specify the position of a point inside the unit circle with its polar coordinate (r, θ), where
0 ≤ r ≤ 1, θ ∈ [−π, π), the corresponding values of |α|, |β|, and |γ| are:

|α| =
√

1 + r sin θ , |β| =

√
1 + r sin

(
θ − 2π

3

)
, |γ| =

√
1 + r sin

(
θ +

2π

3

)
. (3.10)

The phases of the three numbers are:

argα = 0 ,

arg β = π − cos−1 1/2 + r sin(θ − π/3)√
[ 1 + r sin θ ][ 1 + r sin(θ − 2π/3) ]

,

arg γ = −π + cos−1 1/2 + r sin(θ + π/3)√
[ 1 + r sin θ ][ 1 + r sin(θ + 2π/3) ]

. (3.11)
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FIG. 2: The distanes from any point inside an equilateral triangle of height three to its three sidesadd up to three. We an use these distanes to speify j�j2, j�j2, and jj2. The triangle inequalityis satis�ed for points inside the unit irle whih insribes the triangle.j�j+ jj � j�j ; j�j+ j�j � jj ; j�j+ jj � j�j ; (9)so they form a losed triangle? To this end, we utilize the fat that the sum of distanesfrom any point inside a triangle to its three sides is onstant: any point inside an equilateraltriangle of height three will have distanes to the three sides whih add up to three. Ifwe identify these distanes with j�j2, j�j2, and jj2, we an use the position of the pointto speify the three lengths. Requiring the square-roots of these distanes to satisfy thetriangle inequality onstrains the point to be inside a unit irle whih insribes the triangle.Therefore, for every point inside the unit irle, we an assoiate a orresponding parameterset for the Okamura texture (see Fig. 2).If we speify the position of a point inside the unit irle with its polar oordinate (r; �),where 0 � r � 1, � 2 [��; �), the orresponding values of j�j, j�j, and jj are:j�j = p1 + r sin � ; j�j =s1 + r sin�� � 2�3 � ; jj =s1 + r sin�� + 2�3 � : (10)6

Figure 3.2: The distances from any point inside an equilateral triangle of height three to its three sides add up to
three. We can use these distances to specify |α|2, |β|2, and |γ|2. The triangle inequality is satisfied for points inside
the unit circle which inscribes the triangle.

In Fig. 3.3, we plot the dependence of arg β and arg γ on the position of the point inside the unit
circle.

A cyclic permutation of α, β, and γ which leaves the physics invariant up to an overall phase
corresponds to the transformation θ → θ + 2π/3 (120◦ rotations). This means that we expect the
same symmetry to be present in the mass spectrum and the values of heavy neutrino decay widths
and lifetimes. This can be used as a useful check of our calculations.

3.3 The Lagrangian

To calculate the lifetimes of the heavy neutral states, we must first specify their interactions. We
denote the left-handed charged lepton fields with `, and the left- and right-handed neutrino fields
with ν and ξ, respectively:

` =

 `1
`2
`3

 , ν =

 ν1

ν2

ν3

 , ξ =

 ξ1
ξ2
ξ3

 . (3.12)

The right-handed neutrino fields, ξi (i = 1, 2, 3), are gauge singlets. The components of the Higgs
doublet are denoted

H =

[
φ+

φ0

]
. (3.13)
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Figure 3.3: Contour lines and density plots for arg β (left) and arg γ (middle). The distances between two consecutive
equipotential lines are ∆ arg β = ∆ arg γ = 0.05π. The color scheme is shown on the right.

Then, the Lagrangian which governs the interaction of the neutrinos is

L = LW,Z + LH + LM , (3.14)

where

LW,Z =
g√
2

(
`γµν

)
W−

µ +
g√
2

(νγµ`)W+
µ +

g

2 cos θW

(νγµν)Zµ ,

LH = −ξ λ
(
φ0ν − φ+`

)
+ h.c. ,

LM = −1

2
ξM ξc + h.c. . (3.15)

We neglect the Yukawa interactions which give rise to the charged lepton masses: the charged
leptons are treated as massless as well as the light neutrino states. In the Okamura model, the
Yukawa matrix λ and the Majorana mass matrix M are given by

λ =

√
2m

v

 α α α
β β β
γ γ γ

 , M = M

 α 0 0
0 β 0
0 0 γ

 . (3.16)

After the neutral Higgs develops a VEV,〈
φ0
〉

=
〈
φ0∗〉 =

v√
2
, (3.17)

the Yukawa matrix λ leads to the Dirac mass matrix of the neutrinos:

D =
v√
2
λ = m

 α α α
β β β
γ γ γ

 . (3.18)

The Goldstone bosons are absorbed into the W and the Z, φ0 → 1/
√

2(h + v) as usual, and the
resulting Lagrangian is:

L =
g√
2

(
`γµν

)
W−

µ +
g√
2

(νγµ`)W+
µ +

g

2 cos θW

(νγµν)Zµ
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−ξD ν − 1√
2

(
ξ λ ν

)
h− 1

2
ξM ξc + h.c. (3.19)

The neutrino mass terms can be written as

ξD ν +
1

2
ξM ξc + h.c.

=
1

2

(
ξD ν + νcDT ξc + ξM ξc

)
+ h.c.

=
1

2

[
νc ξ

] [ 0 DT

D M

] [
ν
ξc

]
+ h.c. (3.20)

This mass matrix is diagonalized with a unitary transformation involving the ν and ξc fields:[
ν
ξc

]
= U

[
η
χ

]
, (3.21)

so that[
νc ξ

] [ 0 DT

D M

] [
ν
ξc

]
=
[
ηc χc

]
UT

[
0 DT

D M

]
U

[
η
χ

]
=
[
ηc χc

]
Mdiag

[
η
χ

]
,

(3.22)
with Mdiag = diag(0, 0, 0,M1,M2,M3). The η and χ fields are the left-handed mass eigenfields with
η being the light (massless) states, and χ being the heavy states. Decomposing the 6× 6 matrix U
into four 3× 3 matrices as

U =

[
Uνη Uνχ

Uξη Uξχ

]
, (3.23)

we can write

ν = Uνη η + Uνχ χ ,
ξ = U∗

ξηη
c + U∗

ξχχ
c , (3.24)

(Because the η fields are exactly massless and degenerate in our model, the matrices Uνη and Uξη

are not uniquely determined. However, this does not affect our final results. Note also, that though
U is unitary, its four 3× 3 submatrices are non-unitary in general.) The relevant interaction terms
in the Lagrangian involving the χ fields are then:

g

2 cos θW

(νγµν)Zµ → g

2 cos θW

[
η
(
U †

νηUνχ

)
γµ χ+ χ

(
U †

νχUνη

)
γµ η

]
Zµ ,

g√
2

(
`γµν

)
W−

µ → g√
2

(
` Uνχγ

µ χ
)
W−

µ ,

1√
2

(
ξ λ ν

)
h → 1√

2

[
ηc
(
UT

ξηλUνχ

)
χ+ χc

(
UT

ξχλUνη

)
η
]
h , (3.25)

plus the Hermitian conjugates of the later two lines. Introducing the Majorana fields

n = η + ηc , N = χ+ χc , (3.26)

(note that these fields do not have definite lepton number) we can write

η = PLn , ηc = PRn , χ = PLN , χc = PRN , (3.27)
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and the relevant interaction Lagrangian in terms of these fields becomes

L =
g

2 cos θW

[
n (AγµPL − A∗γµPR)N

]
Zµ

+
g√
2

(
`BγµPLN

)
W−

µ − g√
2

(
`cB∗γµPRN

)
W+

µ

−n
(
ChPL + C∗h̃PR

)
N , (3.28)

where

A ≡ U †
νηUνχ , B ≡ Uνχ , C ≡ 1√

2

(
UT

νηλ
TUξχ + UT

ξηλUνχ

)
. (3.29)

We have used the generic relations [50]

ψ1OPR,L ψ2 = ψc
2O

TPR,L ψ
c
1 , ψ1Oγ

µPR,L ψ2 = −ψc
2O

TγµPL,R ψ
c
1 , (3.30)

(O is a matrix which carries flavor indices only), and the fact that nc = n and N c = N by
construction, to rearrange the terms in Eq. (3.28) in such a way that all the N -fields stand at the
rightmost position of each term to facilitate the extraction of the N -decay matrix elements.

3.4 LifetimesN `�W+ N `+W� N nZ N nhFIG. 4: The 2-body deay proesses of the heavy neutrino N .Now, straightforward alulations allow us to write down the partial deay widths foreah hannel of deay (the indies i and j below run from 1 to 3):�(Ni ! njZ) = p2GF jAjij216� M3i �1 � m2ZM2i �2�1 + 2m2ZM2i � ;�(Ni ! `+j W�) = �(Ni ! `�j W+) = p2GF jBjij216� M3i �1 � m2WM2i �2�1 + 2m2WM2i � ;�(Ni ! njh) = jCjij216� Mi�1� m2hM2i �2 : (31)The �rst two lines an be ompared with the results of Djouadi in Ref. [13℄. At �rst sight,these expressions may seem to imply that the N ! nh hannel is suppressed with respet tothe other two sine its partial width grows linearly with the massMi, while for the N ! nZand N ! `W hannels the widths grow as M3i . However, the interations of the heavyMajorana neutrino N with the gauge bosons are suppressed beause only a small frationof N is the left-handed neutrino �. Sine most of N is the right-handed neutrino �, no suhsuppression exists for its interation with the Higgs h. Numerially, it turns out that allthree hannels of deay must be taken into aount.V. RESULTSNow we have everything at hand to alulate the lifetimes of the heavy neutrinos in theOkamura model. The parameter spae of the model is represented by the interior of a unitirle as disussed in setion II. For eah point inside the unit irle, we an alulate theOkamura texture using Eqs. (1), (7), (8), (10), and (11), diagonalize it to obtain the massesand mixings [14℄, and alulate the deay widths and lifetimes of the heavy neutrinos usingEq. (31). As the Higgs mass, we take mH = 200 GeV. (The hoie of the Higgs mass haslittle e�et on our result as long as mH �Mi.)11

Figure 3.4: The 2-body decay processes of the heavy neutrino N .

From Eq. (3.28), we can immediately derive the amplitudes for the two-body decay processed
of the heavy neutrinos, Ni (i = 1, 2, 3), shown in Fig. 3.4. If the Ni were lighter than the W , Z,
or h, then we will need to consider three-body decay processes mediated by these particles, but it
turns out that except for small neighborhoods around isolated points in the parameter space of the
model, they are always heavier. It therefore suffices to consider only the two-body decay modes.

Now, straightforward calculations allow us to write down the partial decay widths for each
channel of decay (the indices i and j below run from 1 to 3):

Γ(Ni → njZ) =

√
2GF |Aji|2

16π
M3

i

(
1− M2

Z

M2
i

)2(
1 + 2

M2
Z

M2
i

)
,

Γ(Ni → `+j W
−) = Γ(Ni → `−j W

+) =

√
2GF |Bji|2

16π
M3

i

(
1− M2

W

M2
i

)2(
1 + 2

M2
W

M2
i

)
,
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Figure 3.5: (a), (b), (c) density and contour plots for masses M1, M2, and M3 of the lightest N1, medium heavy
N2 and heaviest N3 heavy neutrino respectively (TeV). The distances between two consecutive equipotential lines
are ∆M1 = 0.1 TeV, ∆M2 = ∆M3 = 0.05 TeV; (d) the vicinity of the point where M1 approaches zero (r = 1,
θ = −π/2); ∆ M1 = 0.025 TeV; (e) mass color coding.

Γ(Ni → njh) =
|Cji|2

16π
Mi

(
1− m2

h

M2
i

)2

, (3.31)

where MZ , MW , and mh are the masses of the Z boson, W boson, and Higgs, respectively. The first
two lines can be compared with the results of Djouadi in Ref. [51]. We give a detailed derivation
of these formulas in Appendix D.

At first sight, these expressions may seem to imply that the N → nh channel is suppressed
with respect to the other two since its partial width grows linearly with the mass Mi, while for the
N → nZ and N → `W channels the widths grow as M3

i . However, the interactions of the heavy
Majorana neutrino N with the gauge bosons are suppressed because only a small fraction of N is
the left-handed neutrino ν. Since most of N is the right-handed neutrino ξ, no such suppression
exists for its interaction with the Higgs h. Numerically, it turns out that all three channels of decay
must be taken into account.

3.5 Results

Now we have everything at hand to calculate the lifetimes of the heavy neutrinos in the Okamura
model. The parameter space of the model is represented by the interior of a unit circle as discussed
in section 3.2. For each point inside the unit circle, we can calculate the Okamura texture using
Eqs. (3.1), (3.7), (3.8), (3.10), and (3.11), diagonalize it to obtain the masses and mixings [52],
and calculate the decay widths and lifetimes of the heavy neutrinos using Eq. (3.31). As the Higgs

45



-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

5

10

15
20

0

0

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

16

26

36

46

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

45

60

75

(a) (b) (c)

-0.02 -0.01 0 0.01 0.02
-0.02

-0.01

0

0.01

0.02

0

5
10

15

20

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

(d) (e)

Figure 3.6: (a), (b), (c) density and contour plots for widths Γ1, Γ2, and Γ3 of the lightest N1, medium heavy N2

and heaviest N3 heavy neutrino respectively (GeV). The distances between two consecutive equipotential lines are
∆Γ1 = 1 GeV, ∆Γ2 = 2 GeV, ∆Γ3 = 3 GeV; (d) the detailed picture of the central part of Γ1; ∆Γ1 = 1 GeV; (e)
width color coding.

mass, we take mH = 200 GeV. (The choice of the Higgs mass has little effect on our result as long
as mH �Mi.)

The resulting contour and density plots for masses, decay widths, and lifetimes of the heavy
neutrinos N1, N2 and N3 are presented in Figs. 3.5–3.7. First, note that the graphs are symmetric
under rotations by multiples of 2π/3 as anticipated in section 3.2. Next, from Fig. 3.5, we can easily
see that the values of the heavy neutrino masses are larger than the W , Z, or Higgs thresholds
for most of the parameter space, justifying our use of two-body decay amplitudes. The mass of
N1 becomes smaller than these thresholds only in the vicinity of three isolated points at r = 1,
θ = −π/2 + 2πk/3 (k = 0, 1, 2), as illustrated in Fig. 3.5d. As was shown in Ref. [5], at these three
points one of the N -fields is completely massless while the other two have degenerate mass. The
lightest N particle is completely stable at these points with zero decay width and infinite lifetime.
However, the existence of such a light (less than W and Z thresholds) N particle is already ruled
out experimentally by L3 [53] so we need not consider these points further.

It was also shown in Ref. [5] that at the center of the circle one heavy neutrino completely
decouples from the light neutrino states (and therefore from the rest of the Standard Model par-
ticles) while the other two heavy states have degenerate masses. This decoupling can be seen in
Fig. 3.6d and Fig. 3.7d where at the center of the circle the decay width of the lightest heavy
neutrino is zero and the lifetime is infinite. A similar decoupling occurs at the points where r = 1
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Figure 3.7: (a), (b), (c) density and contour plots for lifetimes τ1, τ2, and τ3 of the lightest N1, medium heavy N2

and heaviest N3 heavy neutrino respectively (10−26 sec). The distances between two consecutive equipotential lines
are ∆τ1 = 1 × 10−26 sec for τ1 < 10 × 10−26 sec and for τ1 > 10 × 10−26 sec equipotential lines corresponding to
τ1 = 20×10−26, 40×10−26 and 200×10−26 sec are presented, ∆τ2 = 0.2×10−26 sec, ∆τ3 = 0.1×10−26 sec; (d) the
detailed picture of the central part of τ1; ∆τ1 = 10× 10−26 sec for τ1 < 100× 10−26 sec and ∆τ1 = 100× 10−26 sec
for τ1 > 100× 10−26 sec; (e) lifetime color coding.

and θ = −5π/6 + 2πk/3, k = 0, 1, 2.

Except for the vicinity of these points, the lifetimes of the N particles are typically in the
range of 10−26 to 10−24 seconds (see Fig. 3.7). Assuming that the particles are non-relativistic,
the maximum distance they can travel from their production points before decay is in the range of
10−17 to 10−15 meters. If produced at colliders, they will decay inside the detector. On the other
hand, the width-to-mass ratios of the particles are in the range of 0.1 to 3 percent as shown in
Fig. 3.8. Therefore, the invariant mass spectrum of the decay products can be expected to show a
very narrow peak.

3.6 Observability at the LHC

In this section we consider the prospects of discovery of the heavy Majorana neutrinos at the LHC.
This question has attracted ever-increasing attention over the past decades and was extensively
discussed in the literature by many authors [54, 56, 57, 58, 59, 60]. The unambiguous proof of the
existence of a Majorana neutrino would be an observation of a lepton number violating process.
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Figure 3.8: (a), (b), (c) density and contour plots for the widths-to-mass ratios of the lightest N1, medium heavy
N2 and heaviest N3 heavy neutrinos respectively. The distances between two consecutive equipotential lines is 0.001
for all plots; (d) mass-to-width ratio color coding.

For example, in Ref. [54], Dicus, Karatas, and Roy consider the production of like-sign electrons,
a lepton number violating process, as the signature of the heavy mostly-right-handed Majorana
neutrino N : this can occur through the t- and u-channel exchange of N between two like-sign W ’s
radiated from the protons as shown in Fig. 3.9). Dicus, Karatas, and Roy estimated the cross-
section of this process to be in the range of 0.01 to 0.03 fb for the neutrissimo mass from 150 to
2000 GeV. This corresponds to the event rate of 1 to 3 events per year for the LHC luminosity of
100 fb−1/year. They used the following value of the mixing matrix element defined by Eq. (3.29):

|B11|2 = 0.043. (3.32)

The typical value of |B11|2 calculated for the Okamura model is around 0.001 and it stays practically
constant for the entire parameter space. We observe that this value is more that one order of
magnitude smaller than that given by Eq. (3.32). This means that the corresponding cross-section
and event rate for the Okamura model are more than two orders of magnitude smaller that than
that obtained by Dicus, Karatas, and Roy. The number of expected events at the LHC is extremely
small, of order 10−2 per year, which makes it impossible to discover the neutrissimo at the LHC
through this process. Thus, though we have found that the heavy neutral particles in the Okamura
model have lifetimes in the range that allows for their observation at colliders, the analysis by
Dicus, Karatas, and Roy suggests that they are impossible to observe at the LHC through the
process we just considered.

In principle, the neutrissimo can be looked for in another process at the LHC. For instance, it
can be produced in resonance through the process shown in Fig. 3.10 if it is kinematically accessible,
i.e. if the neutrissimo mass is smaller than

√
s. The resonant production will have a substantially
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Figure 3.9: Feynman diagrams for ∆L = 2 processes induced by a t-channel Majorana neutrino N in qq̄′ collisions.
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Figure 3.10: Feynman diagrams for ∆L = 2 processes induced by an s-channel Majorana neutrino N in qq̄′ collisions.

enhanced event rate [56, 57, 58, 59, 60]. In addition, it was suggested by Han and Zhang in Ref. [59]
to look for like-sign dimuons µ±µ±, easier for detection than electrons in hadronic collisions, as the
best signature for a heavy Majorana neutrino at both Tevatron and LHC energies. The final state
W boson decays hadronically and there is no neutrino involved in the final state. This allows
for the unambiguous identification of ∆L = 2 processes. Han and Zhang approximate the signal
cross-section as

σ(pp̄→ µ±µ±W±) ≈ σ(pp̄→ µ±N)B(N → µ±W±) ≡ Sµµσ0, (3.33)

where Sµµ is the “effective mixing parameter” of N with muons, defined in our notation as

Sµµ =
|B21|4
3∑

i=1

|Bi1|2
, (3.34)

and σ0 is a “bare cross-section”, essentially independent of the mixing parameters when the heavy
neutrino decay width is narrow.
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Figure 3.11: The value of the Sµµ parameter for the region of the parameter space where the mass of N1 is smaller
than 400 GeV.

Figs. 4a and 4b in the paper by Han and Zhang [59] illustrate the result they obtain. Fig. 4a
shows the bare cross-section σ0 as a function of the neutrissimo mass and Fig. 4b shows the graph
corresponding to the 2σ upper bound that the LHC will be able to place on the values of the
parameter Sµµ and neutrissimo mass. The region of the (Sµµ,mN) parameter space2 above the
bound will be excluded if the LHC does not find the neutrissimos.

If we fix the value of Sµµ then from Fig. 4b of Han and Zhang’s paper we can obtain the value
of mass that saturates the bound and using Fig. 4a we can find the value of the bare cross-section
σ0 that corresponds to this mass. Then, using Eq. (3.33) we can calculate the cross-section of
the process corresponding to the chosen value of mixing and the value of the mass saturating the
bound. Multiplying this cross-section by an integrated luminosity of the LHC we can convert
it to the expected number of events. Han and Zhang find that for the integrated luminosity of
100 fb−1/year the heavy Majorana neutrino mass range with significant detection sensitivity, that
is, the expected number of events if at least 1 ∼ 10 events per year, is from 10 to 400 GeV. Our
Fig. 3.5 shows that only the N1 neutrissimo has a region of the parameter space corresponding to
such a low value of mass. This region is shown in Fig. 3.5d. Thus, we only consider N1 contribution
in Eq. (3.34).

In order to apply the result of Han and Zhang to the Okamura model, we need to know the
value of the effective mixing parameter Sµµ in this model. Fig. 3.11 shows the density plot for the
value of Sµµ in the Okamura model. We see that Sµµ stays practically constant in the region of
interest and has the value of about 2× 10−4. Fig. 4b from Han and Zhang’s paper shows that for
this value of the effective mixing parameter the LHC will only be able to constrain the mass of the
N1 to about 150 GeV level. Thus, we conclude that it will not be possible to detect the neutrissimo
of the Okamura model at the LHC unless its mass is smaller than about 150 GeV. Such a small
value of mass corresponds to a very small region close to the edge of the parameter space of the
Okamura model.

This result might seem to be discouraging but we want to point out that the neutrissimos can be
looked for in other experiments. In addition to the searches at hadronic colliders, we can also search
for the neutrissimo in the e−p scattering, e+e− annihilation processes, and e−γ collisions. For a
recent review see Ref. [60]. Another place where we can look for the signatures of the neutrissimos
is the high statistics neutrino experiments which provide us with a unique opportunity to probe
the neutrino sector of the SM at a high level of precision. In the next chapter we give an example
of such an experiment, called NuSOnG.

Finally, if the gauge group is extended to SU(2)L × SU(2)R × U(1)B−L, then the N ’s can be

2mN stands for the neutrissimo mass as in the Han and Zhang’s paper.
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copiously produced through the WR and Z ′, as discussed in Refs. [62, 63, 64]. The question of
whether the Okamura texture can be embedded into such a gauge structure will be left to future
work.
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Chapter 4

NuSOnG

In this chapter we give an example of an experiment which can be carried out in the future and
discuss what we can learn about possible extensions of the SM which this experiment will be able
to probe.

4.1 Introduction

NuSOnG (Neutrino Scattering On Glass) is a fixed target muon neutrino scattering experiment
which is currently being planned at the Fermi National Acceleration Laboratory [55, 8]. If approved,
it will repeat the NuTeV measurements of the quark-muon (anti-)neutrino scattering to acquire
two orders of magnitude improved statistics and, as a result, NuSOnG is projected to halve the
experimental error on g2

L and g2
R as compared to NuTeV. NuSOnG will also measure the muon

neutrino-electron elastic scattering (ES) cross section σ(νµ + e− → νµ + e−) to an accuracy of 0.7%
using inverse muon beta decay (IMB) σ(νµ + e− → νe + µ−) to normalize the neutrino flux.

NuSOnG will be sensitive to new physics that modifies neutrino-quark and neutrino-electron
scattering. In this chapter, we analyze this possibility. First, we explain our assumptions about
NuSOnG. Then we parametrize possible new physics scenarios in terms of Non-Standard Inter-
actions (NSI) of the neutrinos and investigate the bounds that the NuSOnG experiment will be
capable of imposing on the parameters of NSI. In another type of new physics scenario which
NuSOnG will be able to probe, the neutrinos mix with gauge sterile states. This mixing occurs
naturally in the neutrissimo models discussed in Chapter 3 and it leads to a suppression of the
neutrino-gauge coupling. Thus we also derive NuSOnG bounds on neutrino mixing parameters in
this type of new physics scenario. Finally, we consider a list of concrete models that NuSOnG
will be able to constrain and derive the NuSOnG bounds on mass-to-coupling ratios in these mod-
els. The list of models we consider includes generation distinguishing Z ′ models, extended Higgs
models, R-parity violating SUSY and generation non-diagonal leptoquarks1.

1We want to point out that our analysis of the NuSOnG capabilities is still on-going and we might be able to say more in the future.

53



4.1.1 Assumptions on νµe and ν̄µe ES

NuSOnG expects about 75k νµe ES events, and about 7k ν̄µe ES events. The statistical errors in
each are therefore

1√
75000

= 0.4% ,
1√
7000

= 1.2% . (4.1)

Preliminary Monte Carlo studies suggest that the systematic error of the measurement will be
about 0.6% [8]. Adding this error to the above in quadrature, we find√

(0.004)2 + (0.006)2 = 0.007 ,√
(0.012)2 + (0.006)2 = 0.013 . (4.2)

So we are going to assume that NuSOnG will measure σ(νµe) to a precision of 0.7%, and σ(ν̄µe) to
1.3%. That is:

ενe ≡
∆σνe

σνe

= ±0.007 ,

εν̄e ≡
∆σν̄e

σν̄e

= ±0.013 . (4.3)

We will neglect any correlations between the two (though part of the systematic errors are probably
correlated). For the sake of comparison with New Physics models, it is convenient to recast this
into limits on the coupling constants. This requires some preparation:

The differential cross sections are given by:

dσ(νµe) =
G2

FmeEν

2π

[
(gνe

V + gνe
A )2 dT

Eν

+ (gνe
V − gνe

A )2

(
1− T

Eν

)2
dT

Eν

]

=
2G2

FmeEν

π

[
(gνe

L )2 dT

Eν

+ (gνe
R )2

(
1− T

Eν

)2
dT

Eν

]
,

dσ(ν̄µe) =
G2

FmeEν

2π

[
(gνe

V − gνe
A )2 dT

Eν

+ (gνe
V + gνe

A )2

(
1− T

Eν

)2
dT

Eν

]

=
2G2

FmeEν

π

[
(gνe

R )2 dT

Eν

+ (gνe
L )2

(
1− T

Eν

)2
dT

Eν

]
, (4.4)

where T is the kinetic energy of the recoil electron and Eν is the neutrino energy. If we introduce
the variable y = T/Eν , then

dσ(νµe)

dy
=

G2
FmeEν

2π

[
(gνe

V + gνe
A )2 + (gνe

V − gνe
A )2 (1− y)2

]
=

2G2
FmeEν

π

[
(gνe

L )2 + (gνe
R )2 (1− y)2

]
,

dσ(ν̄µe)

dy
=

G2
FmeEν

2π

[
(gνe

V − gνe
A )2 + (gνe

V + gνe
A )2 (1− y)2

]
=

2G2
FmeEν

π

[
(gνe

R )2 + (gνe
L )2 (1− y)2

]
. (4.5)
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Integrating over the region 0 ≤ y ≤ 1, we obtain the total cross sections which are

σ(νµe) =
G2

FmeEν

2π

[
(gνe

V + gνe
A )2 +

1

3
(gνe

V − gνe
A )2

]
=

2G2
FmeEν

π

[
(gνe

L )2 +
1

3
(gνe

R )2

]
,

σ(ν̄µe) =
G2

FmeEν

2π

[
1

3
(gνe

V + gνe
A )2 + (gνe

V − gνe
A )2

]
=

2G2
FmeEν

π

[
(gνe

R )2 +
1

3
(gνe

L )2

]
. (4.6)

Note that

(gνe
V + gνe

A )2 = (2gνe
L )2 = ρ2

(
−1 + 2 sin2 θW

)2
= ρ2

(
1− 4 sin2 θW + 4 sin4 θW

)
,

(gνe
V − gνe

A )2 = (2gνe
R )2 = ρ2

(
2 sin2 θW

)2
= ρ2

(
4 sin4 θW

)
. (4.7)

Therefore,

σ(νµe) =
G2

FmeEν

2π
ρ2

[
1− 4 sin2 θW +

16

3
sin4 θW

]
,

σ(ν̄µe) =
G2

FmeEν

2π

ρ2

3

[
1− 4 sin2 θW + 16 sin4 θW

]
, (4.8)

and

Re =
σ(νµe)

σ(ν̄µe)
= 3

1− 4 sin2 θW + 16
3

sin4 θW

1− 4 sin2 θW + 16 sin4 θW

. (4.9)

From Eq. (4.6), we can see that if both total cross sections σ(νµe) and σ(ν̄µe) are measured,
we can constrain the pair (gνe

V , g
νe
A ), or equivalently, the pair (gνe

L , g
νe
R ). On the other hand, from

Eq. (4.5), we can see that if the neutrino beam were mono-energetic, measuring the T dependence
of the neutrino cross section alone will allow us to disentangle gνe

L and gνe
R without the anti-neutrino

cross section. This is the strategy proposed in Ref. [65] to measure the NSI (Non-Standard Inter-
actions) of the electron-neutrino using the 7Be Solar neutrinos and the Borexino detector. In the
case of NuSOnG, the νµ beam is not mono-energetic, so the differential cross section will be a
convolution of the νµ energy spectrum and Eq. (4.5).

In Appendix E we explain how measurements of σ(νµ e) and σ(νµ e) translate into constraints
on gνe

V and gνe
A . For ενe = 0.007 and εν̄e = 0.013, we find

∆gνe
V = 0.0036 ,

∆gνe
A = 0.0019 ,

Corr(gνe
V , g

νe
A ) = −0.57 , (4.10)

where we have used ρ = 1, sin2 θW = 0.2315 as inputs. For comparison, the World Average
according to the PDG [25] (dominated by CHARM II) is:

gνe
V = −0.040± 0.015 ,
gνe

A = −0.507± 0.014 ,
Corr(gνe

V , g
νe
A ) = −0.05 . (4.11)

So the errors are expected to improve dramatically.
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4.1.2 Assumptions on νµN and ν̄µN DIS

The ratios of charged-current to neutral current cross sections in neutrino Deep Inelastic Scattering
(DIS) are derived in Appendix A and given by

Rν =
σν

NC

σν
CC

= g2
L + r g2

R ,

Rν̄ =
σν̄

NC

σν̄
CC

= g2
L +

1

r
g2

R ,

r =
σν̄

CC

σν
CC

, (4.12)

where

g2
L = (gνu

L )2 + (gνd
L )2 = (2gν

Lg
u
L)2 + (2gν

Lg
d
L)2 = ρ2

(
1

2
− sin2 θW +

5

9
sin4 θW

)
,

g2
R = (gνu

R )2 + (gνd
R )2 = (2gν

Lg
u
R)2 + (2gν

Lg
d
R)2 = ρ2

(
5

9
sin4 θW

)
. (4.13)

The NuTeV result in terms of g2
L and g2

R was

g2
L = 0.30005± 0.00137 ,
g2

R = 0.03076± 0.00110 ,
Corr(g2

L, g
2
R) = −0.017 . (4.14)

The World average according to the PDG is

g2
L = 0.3004± 0.0012 ,
g2

R = 0.0311± 0.0010 ,
Corr(g2

L, g
2
R) = −0.11 . (4.15)

We will assume that NuSOnG will be able to halve the errors on NuTeV:

∆g2
L = 0.0007 ,

∆g2
R = 0.0006 , (4.16)

with negligible correlation (since the correlation in NuTeV was only −0.017).

4.2 Constraints on New Physics Section

Here, we consider the constraints on new physics that will be placed by NuSOnG if it agrees with
the SM.

If new particles are heavier that the center of mass energy of NuSOnG they cannot be produced
at resonance in neutrino-quark or neutrino-electron collisions. Nevertheless, these new particles
can shift the values of observables from SM predictions through radiative corrections. The precise
measurements of these observables can either constrain the parameter space of new physics models
contributing to the shifts or detect new physics at mass scales well above the energies of the
colliding particles. In this way the precision neutrino scattering measurements at NuSOnG will
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place TeV-scale indirect constraints on many models of new physics, or perhaps detect new physics
by measuring deviations from SM predictions. The new physics effects can be parametrized by a
small number of effective operators. The parameters of these operators can be fit to NuSOnG data.
Although the particular set of the effective operators we use depends on our assumptions about new
physics, this approach gives a parameterization of new physics which is largely model-independent.

We first parameterize new physics using the oblique parameters ST , which is appropriate when
the important effects of new physics appear in vacuum polarizations of gauge bosons. We next
assume new physics effects manifest as higher-dimensional operators made of SM fermion fields.
We separately consider the possibility that the gauge couplings to neutrinos are modified. Realistic
models usually introduce several new operators with relations among the coefficients; we consider
several examples.

4.2.1 Oblique Correction Analysis

For models of new physics in which the dominant loop corrections are vacuum polarization correc-
tions to the SU(2)L × U(1)Y gauge boson propagators (“oblique” corrections), the STU [66, 67]
parameterization provides a convenient framework in which to describe the effects of new physics
on precision electroweak data. Differences between the predictions of a new physics model and
those of a reference Standard Model (with a specified Higgs boson and top quark mass) can be
expressed as nonzero values of the oblique correction parameters S, T and U . T and U are sensitive
to new physics that violates isospin, while S is sensitive to isospin-conserving physics. Predictions
of a Standard Model with Higgs or top masses different from the reference Standard Model may
also be subsumed into shifts in S and T . (The U parameter is often omitted in the fit because only
W mass depends on this parameter, so including both W mass and the U parameter in the fit does
not affect the limits on S and T .) Within a specific model of new physics the shift on the ST plot
away from the SM will be calculable [68].

Figure 4.1: The impact of NuSOnG on the limits of S and T . The reference SM is mt = 170.9 GeV, and mH =
115 GeV. 1σ bands due to NuSOnG observables are shown against the 90% contour from LEP/SLD. The central
ellipses are the 68% and 90% confidence limit contours with NuSOnG included.
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The constraints on S and T from the full set of precision electroweak data strongly restrict the
models of new physics which are viable. The strongest constraints are from LEP/SLD, which give
a current bound of

S = −0.02± 0.11 ,
T = +0.06± 0.13 ,

Corr(S, T ) = 0.91. (4.17)

The ES and DIS measurements from NuSOnG provide four distinct and complementary probes of
S and T , as shown in Fig. 4.1. If the target precision is achieved, and assuming the NuSOnG agree
with SM predictions, NuSOnG will further reduce the errors on S and T from the LEP/SLD values
to

S = −0.05± 0.09 ,
T = +0.02± 0.10 ,

Corr(S, T ) = 0.87 . (4.18)

The ∼ 25% reduction in the errors is primarily due to the improved measurement of g2
L.

4.2.2 Non-Standard Interactions

NuSOnG will probe new physics that modifies neutrino-quark and neutrino-electron scattering. If
the masses associated to the new degrees of freedom are much larger than the center of mass energy
(s = 2meEbeam . 0.5 GeV2) then modifications to these processes are well-described by higher-
dimensional effective operators. In the context of neutrino reactions, these operators are also
referred to as non-standard interactions (NSI’s). In a model-independent effective Lagrangian ap-
proach these effective operators are added to the SM effective Lagrangian with arbitrary coefficients.
Expressions for experimental observables can be computed using the new effective Lagrangian, and
the arbitrary coefficients can then be constrained by fitting to data. Typically, bounds on the mag-
nitude of the coefficients are obtained using only one or a few of the available effective operators.
This approach simplifies the analysis and gives an indication of the scale of constraints, although
we must be mindful of relationships among different operators that will be imposed by specific
assumptions regarding the underlying physics.

To assess the sensitivity of NuSOnG to “heavy” new physics in neutral current processes, we
introduce the following effective Lagrangian for neutrino-fermion interactions [69, 70, 71]:

LNSI = −
√

2GF

[
ν̄αγσPLνβ

][
εfV

αβ f̄γ
σf − εfA

αβ f̄γ
σγ5f

]
= −2

√
2GF

[
ν̄αγσPLνβ

][
εfL

αβ f̄γ
σPLf + εfR

αβ f̄γ
σPRf

]
. (4.19)

where α, β = e, µ, τ and L,R represent left-chiral and right-chiral fermion fields. If α 6= β, then
the α↔ β terms must be Hermitian conjugates of each other, i.e. εβα = ε∗αβ. NuSOnG is sensitive
to the β = µ couplings. This effective Lagrangian is appropriate for parameterizing corrections to
neutral current processes; an analysis of corrections to charged-current processes requires a different
set of four-fermion operators.

Assuming εαβ = 0 for α 6= β we need consider only the terms εf∗
µµ (∗ = V,A, L,R). If we rewrite

Eq. (1.1) as
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L = −
√

2GF

[
ν̄γµPLν

][
gνf

V f̄γµf − gνf
A f̄γµγ5f

]
= −2

√
2GF

[
ν̄γµPLν

][
gνf

L f̄γµPLf + gνf
R f̄γµPRf

]
, (4.20)

where

gνf
V = 2gν

Lg
f
V = ρ

(
If
3 − 2Qf sin2 θW

)
,

gνf
A = 2gν

Lg
f
A = ρ

(
If
3

)
,

gνf
L = 2gν

Lg
f
L = ρ

(
If
3 −Qf sin2 θW

)
,

gνf
R = 2gν

Lg
f
R = ρ

(
−Qf sin2 θW

)
, (4.21)

then we see that adding Eq. (4.19) to the SM Lagrangian will simply shift the effective couplings:

gνf
V −→ g̃νf

V = gνf
V + εfV

µµ ,

gνf
A −→ g̃νf

A = gνf
A + εfA

µµ ,

gνf
L −→ g̃νf

L = gνf
L + εfL

µµ ,

gνf
R −→ g̃νf

R = gνf
R + εfR

µµ . (4.22)

Consequently, errors on the gνf
P ’s translate directly into errors on the εfP

µµ ’s, P = V,A or P = L,R.

Neutrino-lepton NSI

The world average value for neutrino-electron effective couplings, dominated by CHARM II, is

gνe
V = −0.040± 0.015 ,
gνe

A = −0.507± 0.014 ,
Corr(gνe

V , g
νe
A ) = −0.05 . (4.23)

The current 1σ bounds from CHARM II, Eq. (4.23) translates to |εeP
µµ| < 0.01, (P = L,R) with

a correlation of 0.07 [69]. At the current precision goals, NuSOnG’s νµe and νµe will significantly
reduce the uncertainties on these NSI’s, to

|εeV
µµ | < 0.0036 ,

|εeA
µµ| < 0.0019 ,

Corr(εeV
µµ , ε

eA
µµ) = −0.57 , (4.24)

or in terms of the chiral couplings,

|εeL
µµ| < 0.0015 ,

|εeR
µµ| < 0.0025 ,

Corr(εeL
µµ, ε

eR
µµ) = 0.64 . (4.25)

Neutrino-Quark NSI

We next consider the f = u, d case. The change in the parameters g2
L and g2

R due to the NSI’s is

∆g2
L = 2gνu

L εuL
µµ + 2gνd

L ε
dL
µµ
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≈ +0.69 εuL
µµ − 0.85 εdL

µµ ,

∆g2
R = 2gνu

R εuR
µµ + 2gνd

R ε
dR
µµ

≈ −0.31 εuR
µµ + 0.15 εdR

µµ , (4.26)

so only these linear combinations are constrained. The bounds from NuTeV (rescaled to 1σ bounds
from ref. [69]) are:

εuL
µµ = −0.0053± 0.0020 ,

εdL
µµ = +0.0043± 0.0016 ,

|εuR
µµ | < 0.0035 ,

|εdR
µµ | < 0.0073 . (4.27)

These bounds are obtained by setting only one of the parameters be non-zero at a time. If NuSOnG
reduces the errors on the NuTeV measurement of g2

L and g2
R by a factor of 2, the 1σ bounds on the

NSI parameters are similarly reduced:

|εuL
µµ| < 0.001 ,

|εdL
µµ| < 0.0008 ,

|εuR
µµ | < 0.002 ,

|εdR
µµ | < 0.004 . (4.28)

We note that neutrino-quark scattering will also be sensitive to NSIs which correct CC interac-
tions. These interactions are not included in Eq. (4.19). If they are important, as is the case in
some of the scenarios we treat later, a new analysis is necessary and the bounds above cannot be
used. This is to be contrasted to the neutrino–lepton case, discussed in the previous subsection.

4.2.3 Neutrissimos, Neutrino Mixing and Gauge Couplings

In those classes of models which include moderately heavy electroweak gauge singlet (“neutrissimo”)
states, with masses above 45 GeV, the mixing of the SU(2)L-active neutrinos and the sterile states
may lead to a suppression of the neutrino-gauge couplings. The resulting pattern of modified
interactions is distinct from those of the previous section since they will also induce correlated
shifts to the charged-current coupling. For example, Ref. [5] presents models with one sterile state
per active neutrino flavor and intergenerational mixing among neutrinos. In these models the flavor
eigenstates are linear combinations of mass eigenstates, and those mass eigenstates too heavy to be
produced in final states result in an effective suppression of the neutrino-gauge boson coupling. This
suppression may be flavor-dependent depending on the structure of the neutrino mixing matrix.
If the mass matrix contains Majorana terms, such models permit both lepton flavor violation and
lepton universality violation.

Neutrinos couple to the W and the Z through interactions described by:

L =
g√
2
W−

µ
¯̀
Lγ

µν`L +
g√
2
W+

µ ν̄`Lγ
µ`L +

e

2sW cW
Zµ ν̄`Lγ

µν`L , (4.29)

where ` = e, µ, τ . If the neutrinos mix with gauge singlet states so that the SU(2)L interaction
eigenstate is a superposition of mass eigenstates ν`,light and ν`,heavy

ν`L = ν`,light cos θ` + ν`,heavy sin θ` , (4.30)
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Figure 4.2: Potential constraint on εe and εµ from NuSOnG (see Eq. (4.33)). This is a two-dimensional projection
of a 4 parameter fit with S, T , εe and εµ. The green ellipse is the 90% CL contour of a fit to all the charge current
particle decay data + LEP/SLD.

then the interaction of the light states is given by

L =

(
g√
2
W−

µ
¯̀
Lγ

µν`,light +
g√
2
W+

µ ν̄`,lightγ
µ`L

)
cos θ`

+

(
e

2sW cW
Zµ ν̄`,lightγ

µν`,light

)
cos2 θ` . (4.31)

Defining

ε` ≡ 1− cos2 θ` (4.32)

the shift in the Lagrangian due to this mixing is

δL = −
(
g√
2
W−

µ
¯̀
Lγ

µν` +
g√
2
W+

µ ν̄`γ
µ`L

)
ε`
2
−
(

e

2sW cW
Zµ ν̄`γ

µν`

)
ε` , (4.33)

where we have dropped the subscript “light” from the neutrino fields.
Lepton universality data from W decays and from charged current π, τ and K decays [4] con-

straint differences ε`i
− ε`j

. LEP/SLD and other precision electroweak data will imposed additional
constraints on ε` in combination with the oblique parameters, as will NuSOnG. A fit to all the
charge current decay data and LEP/SLD with S, T , εe and εµ yields

S = −0.05± 0.11 ,
T = −0.44± 0.28 ,
εe = 0.0049± 0.0022 ,
εµ = 0.0023± 0.0021 . (4.34)

The correlations are shown in table 4.1.
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S T εe εµ

S 1.00 0.53 −0.09 −0.09
T 1.00 −0.73 −0.71
εe 1.00 0.33
εµ 1.00

Table 4.1: Correlation among the fit parameters in a fit to charged current decay and LEP/SLD data.

If we now included hypothetical data from NuSOnG, assuming NuSOnG achieves its precision
goals and measures central values consistent with the Standard Model, we see the constraints on
εµ and εe are substantially improved. In this case, the fit yields

S = 0.00± 0.10 ,
T = −0.11± 0.12 ,
εe = 0.0030± 0.0017 ,
εµ = 0.0001± 0.0012. , (4.35)

with correlations given in Table 4.2.

S T εe εµ

S 1.00 0.51 0.15 0.39
T 1.00 −0.58 0.09
εe 1.00 −0.29
εµ 1.00

Table 4.2: Correlation among the fit parameters in a fit to charge current decay, LEP/SLD, and possible NuSOnG
data.

Fig. 4.2 shows the two dimensional cross section in the εe-εµ plane of the four dimensional fit.
The likelihood contours are 2D projections. Though not obvious from the figure, it is NuSOnG’s
improved measurement of g2

L which contributes the most to strengthening the bounds on the ε`.
In models of this class lepton flavor violating decays such as µ→ eγ impose additional constraints

on products ε`i
ε`j

. For example, the strong constraint from µ→ eγ implies εeεµ ≈ 0. This type of
model has been proposed as a solution to the NuTeV anomaly. If we take take only one of εe or εµ
to be nonzero (to respect the constraint from µ → eγ), the NuTeV value of g2

L is accommodated
in the fit by best-fit values of ε that are large and positive and best-fit values of T are large and
negative (consistent with a heavy Higgs).

4.2.4 Sensitivity in the Case of Specific Theoretical Models

We next consider the constraints imposed by the proposed NuSOnG measurements on explicit
models of beyond the SM physics. An explicit model provides relations among effective operators
which give stronger and sometimes better-motivated constraints on new physics than is obtained
from bounds obtained by considering effective operators one by one, but at the expense of the
generality of the conclusions. Many models can be analyzed using the effective Lagrangian of
Eq. (4.19), but others introduce new operators and must be treated individually. The list of
models considered is not exhaustive, but rather illustrates the new physics reach of NuSOnG.
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Generation distinguishing Z ′

The existence of the Z ′s which distinguish among generations can affect neutrino scattering. These
will be probed by NuSOnG at the TeV scale [18, 19, 20, 72, 73, 74]. Few models of this class,
namely gauged B − 3Lµ and gauged Lµ − Lτ , were at one time suggested as possible explanations
of the NuTeV anomaly [17], however, we have shown in Chapter 2 that they cannot serve this
purpose. Nevertheless, they remain interesting examples to consider.

• In the gauged B − 3Lµ the Z ′ modifies νµN DIS. The exchange of the Z ′ between the νµ and
the quarks induces operators with coefficients

εuL
µµ = εuR

µµ = εdL
µµ = εdR

µµ

= − 1

2
√

2GF

g2
Z′

M2
Z′

≡ εB−3Lµ , (4.36)

which shift g2
L and g2

R by

∆g2
L = ∆g2

R = −2s2
W

3
εB−3Lµ . (4.37)

It should be noted that since εB−3Lµ is negative, this shows that both g2
L and g2

R will be shifted
positive. This, in fact, excludes gauged B − 3Lµ as an explanation of the NuTeV anomaly.
With this said, a NuSOnG measurement of g2

L and g2
R that improves on NuTeV errors by a

factor of 2 yields a 2σ bound
MZ′

gZ′
> 2.2 TeV . (4.38)

which is comparable and complementary to the existing bound from D0 of 1.9 TeV (see Eq. (36)
in Ref. [9]), and thus interesting to consider.

• As another example, consider gauged Le−Lµ. The Z ′ in such a model will affect νµe and ν̄µe
ES through a direct exchange of the Z ′ between the neutrino and the electron. The effective
Lagrangian of the Z ′ exchange interaction is

LLe−Lµ = +
g2

Z′

M2
Z′

(ν̄µLγσνµL) (ēγσe) . (4.39)

Comparison with Eq. (4.19) tells us that effectively, we have the following NSI’s:

εeV
µµ = − 1√

2GF

g2
Z′

M2
Z′
, εeA

µµ = 0 . (4.40)

Taking into account the large correlation in Eq. (4.24), the 1σ bound on εeV
µµ when εeA

µµ = 0 is

|εeV
µµ | < 0.0030 . (4.41)

This translates into the 95% (2σ) bound given by

MZ′

gZ′
> 3.2 TeV . (4.42)

The existing bound for this ratio from LEP/LEP2 is 4.1 TeV [9] so NuSOnG will not be able
to improve this particular bound.
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Extended Higgs Models

In the Zee [75] and Babu-Zee [76] models, an isosinglet scalar h+ with hypercharge Y = +1 is
introduced, which couples to left-handed lepton doublets as

Lh = λab

(
`TaLC iσ2 `bL

)
h+ + h.c. = λab

(
`caL iσ2 `bL

)
h+ + h.c. , (4.43)

where (ab) are flavor indices: a, b = e, µ, τ . The hypercharge assignment prohibits the h± fields
from having a similar interaction with the quarks. Due to SU(2) gauge invariance, the couplings

λab are antisymmetric: λab = −λba. This interaction is analogous to the R-parity violating L̂L̂Ê
coupling with h± playing the role of the slepton.

Expanding Eq. (4.43), we obtain

L = 2
[
λeµ

(
νc

eLµL − νc
µLeL

)
+ λeτ

(
νc

eLτL − νc
τLeL

)
+ λµτ

(
νc

µLτL − νc
τLµL

) ]
h+ + h.c. (4.44)

The only terms relevant for NuSOnG is

−2λeµ

(
νc

µL eL

)
h+ + h.c. (4.45)

The exchange of an h induces the following interaction:

LBabu/Zee = +
4|λeµ|2

M2
h

(
νc

µLeL

) (
eLν

c
µ

)
= +

2|λeµ|2

M2
h

(νµLγσνµL) (eLγ
σeL) , (4.46)

which leads to

εeL
µµ = − 1√

2GF

|λeµ|2

M2
h

, εeR
µµ = 0 . (4.47)

Again, taking into account the large correlation seen in Eq. (4.25), the 1σ bound on εeL
µµ when

εeR
µµ = 0 is

|εeL
µµ| < 0.0011 , (4.48)

which translates into the 2σ (95%) bound given by:

Mh

|λeµ|
> 5.2 TeV , (4.49)

which is competitive with the current bound from τ -decay of 5.4 TeV.

R-parity Violating SUSY

Assuming the particle content of the Minimal Supersymmetric Standard Model (MSSM), the most
general R-parity violating superpotential (involving only tri-linear couplings) has the form [77]

W 6R =
1

2
λijkL̂iL̂jÊk + λ′ijkL̂iQ̂jD̂k +

1

2
λ′′ijkÛiD̂jD̂k , (4.50)

where L̂i, Êi, Q̂i, D̂i, and Ûi are the left-handed MSSM superfields defined in the usual fashion, and
the subscripts i, j, k = 1, 2, 3 are the generation indices. (Note, however, that in some references,

such as Ref. [78], the isospin singlet superfields Êi, D̂i, and Ûi are defined to be right-handed, so
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the corresponding left-handed fields in Eq. (4.50) appear with a superscript c indicating charge-
conjugation.) SU(2)L gauge invariance requires the couplings λijk to be antisymmetric in the first
two indices:

λijk = −λjik , (4.51)

whereas SU(3) gauge invariance requires the couplings λ′′ijk to be antisymmetric in the latter two:

λ′′ijk = −λ′′ikj . (4.52)

These conditions reduce the number of R-parity violating couplings in Eq. (4.50) to 45 (9 λijk, 27

λ′ijk, and 9 λ′′ijk). The purely baryonic operator ÛiD̂jD̂k is irrelevant to our discussion on NuSOnG so
we will not consider the λ′′ijk couplings further. We also neglect possible bilinear R-parity violating
couplings which have the effect of mixing the neutrinos with the neutral higgsino.

• The L̂L̂Ê part of the R-parity violating Lagrangian, Eq. (4.50), expressed in terms of the
component fields is

LLLE = λijk

[
ν̃iLekRejL + ẽjLekRνiL + ẽ∗kRν

c
iLejL

]
+ h.c. (4.53)

The second and third terms of this Lagrangian, together with their hermitian conjugates,
contribute to νµe ES at NuSOnG. Since λijk is antisymmetric under i ↔ j, it follows that
i 6= j. The exchange of sleptons induce the following interaction:

LLLE = +
3∑

k=1

|λ21k|2

M2
ẽkR

(
νc

µLeL

) (
eLν

c
µL

)
+
∑
j=1,3

|λ2j1|2

M2
ẽjL

(νµLeR) (eRνµL)

= +
3∑

k=1

|λ21k|2

2M2
ẽkR

(νµLγσνµL) (eLγ
σeL)−

∑
j=1,3

|λ2j1|2

2M2
ẽjL

(νµLγσνµL) (eRγ
σeR) ,

(4.54)

Therefore,

εeL
µµ = − 1

4
√

2GF

3∑
k=1

|λ21k|2

M2
ẽkR

, εeR
µµ = +

1

4
√

2GF

∑
j=1,3

|λ2j1|2

M2
ẽjL

. (4.55)

There are four different couplings involved in these expressions, namely: λ211, λ212, λ213, and
λ231. If we look at the contribution of each coupling separately, we find

εeL
µµ = − 1

4
√

2GF

|λ211|2

M2
ẽ1R

, εeR
µµ = +

1

4
√

2GF

|λ211|2

M2
ẽ1L

,

εeL
µµ = − 1

4
√

2GF

|λ212|2

M2
ẽ2R

, εeR
µµ = 0 ,

εeL
µµ = − 1

4
√

2GF

|λ213|2

M2
ẽ3R

, εeR
µµ = 0 ,

εeL
µµ = 0 , εeR

µµ = +
1

4
√

2GF

|λ231|2

M2
ẽ3L

.

(4.56)
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Coupling 95% NuSOnG bound current 95% bound
|λ121| 0.03 0.05 (Vud)
|λ122| 0.04 0.05 (Vud)
|λ123| 0.04 0.05 (Vud)
|λ231| 0.05 0.07 (τ decay)
|λ′211| 0.05 0.06 (π decay)
|λ′212| 0.06 0.06 (π decay)
|λ′213| 0.06 0.06 (π decay)
|λ′221| 0.07 0.21 (D meson decay)
|λ′231| 0.07 0.45 (Z → µ+µ−)

Table 4.3: Potential bounds on the R-parity violating LLE (top) and LQD (bottom) couplings from NuSOnG,
assuming that only one coupling is non-zero at a time for each set. All squark and slepton masses are set to
100 GeV. To obtain limits for different masses, rescale by

(
M

100 GeV

)
. Current bounds are from Ref. [78].

If either εeL
µµ or εeR

µµ is restricted to zero, the bound on the other will be

εeL
µµ < 0.0011 , if εeR

µµ = 0 ,
εeR

µµ < 0.0019 , if εeL
µµ = 0 .

(4.57)

These bounds on the epsilons, as well as that obtained in Eq. (4.25), can be converted into
bounds on the mass to coupling constant ratios using Eq. (4.56). However, in the case of
R-parity violation, it is customary to fix the sparticle masses to 100 GeV and express the
bound as a bound on the coupling constants. This is due to the fact that if the sparticles
exist, they will be discovered through non-R-parity-violating interactions and their masses
will be measured/constrained independently. As an example, consider the λ211 coupling. Both
εeL

µµ and εeR
µµ depend on the value of this coupling as apparent from the first line of Eq. (4.56).

If we set the masses of the left handed and right handed selectrons equal to each other then
the right hand sides of the equations on the first line of Eq. (4.56) will depend on only one
parameter, mass-to-coupling ratio of the selectron. Using the potential NuSOnG bounds on
the values of εeL

µµ and εeR
µµ given by Eq. (4.25) and performing one parameter fit we obtain the

following bound on the mass-to-coupling ratio for the selectrons:

Mẽ1

|λ211|
> 3.3 TeV , (4.58)

where Mẽ1 is the mass of the right and left handed selectrons. Setting Mẽ1 = 100 GeV we
obtain the following bound on the value of |λ211|

|λ211| < 0.03 . (4.59)

The bounds on the other couplings can be obtained in a similar fashion and the results are
tabulated in Table 4.3. They can be compared to current bounds Ref. [78]. NuSOnG improves
all of these bounds.

• The L̂Q̂D̂ part of the R-parity violating Lagrangian expressed in terms of the component fields
is

LLQD = λ′ijk

[
ν̃iLdkRdjL + d̃jLdkRνiL + d̃∗kRν

c
iLdjL
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−
(
ẽiLdkRujL + ũjLdkReiL + d̃∗kRe

c
iLujL

)]
+ h.c. (4.60)

The second and third terms of this Lagrangian, together with their hermitian conjugates,
contribute to NC νµN DIS at NuSOnG. In addition, the third and sixth terms contribute to
CC νµN DIS through an s-channel sdown. The induced effective interactions are:

LLQD =
3∑

j=1

|λ′2j1|2

M2
d̃jL

(
dRνµL

)(
νµLdR

)
+

3∑
k=1

|λ′21k|2

M2
d̃kR

(
νc

µLdL

)(
dLν

c
µL

)
−

3∑
k=1

|λ′21k|2

M2
d̃kR

[(
νc

µLdL

)(
uLµ

c
)

+ h.c.
]

= −
3∑

j=1

|λ′2j1|2

2M2
d̃jL

(
νµLγσνµL

)(
dRγ

σdR

)
+

3∑
k=1

|λ′21k|2

2M2
d̃kR

(
νµLγσνµL

)(
dLγ

σdL

)
−

3∑
k=1

|λ′21k|2

2M2
d̃kR

[(
µLγσνµL

)(
uLγ

σdL

)
+ h.c.

]
. (4.61)

The NSI parameters are

εdL
µµ = − 1

4
√

2GF

3∑
k=1

|λ′21k|2

M2
d̃kR

,

εdR
µµ = − 1

4
√

2GF

3∑
j=1

|λ′2j1|2

M2
d̃jL

,

εc = +
1

4
√

2GF

3∑
k=1

|λ′21k|2

M2
d̃kR

= −εdL
µµ , (4.62)

where we have introduced the parameter εc to account for the non-standard charged current
coupling:

−2
√

2GF εc

[(
µLγσνµL

)(
uLγ

σdL

)
+ h.c.

]
. (4.63)

There are five couplings contributing to the ε’s, namely λ′211, λ
′
212, λ

′
213, λ

′
221, and λ′231. If we

write out their contributions separately, we find

εdL
µµ = − 1

4
√

2GF

|λ′211|2

M2
d̃1R

, εdR
µµ = − 1

4
√

2GF

|λ′211|2

M2
d̃1L

,

εdL
µµ = − 1

4
√

2GF

|λ′212|2

M2
d̃2R

, εdR
µµ = 0 ,

εdL
µµ = − 1

4
√

2GF

|λ′213|2

M2
d̃3R

, εdR
µµ = 0 ,

εdL
µµ = 0 , εdR

µµ = − 1

4
√

2GF

|λ′221|2

M2
d̃2L

,

εdL
µµ = 0 , εdR

µµ = − 1

4
√

2GF

|λ′231|2

M2
d̃3L

.

(4.64)
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The shifts in g2
L and g2

R are:

δg2
L = 2

(
gνd

L + g2
L

)
εdL

µµ ,

δg2
R = 2g2

Rε
dL
µµ + 2gνd

R ε
dR
µµ . (4.65)

If either εdL
µµ or εdR

µµ is restricted to zero, the bound on the other will be

|εdL
µµ| < 0.0027 , if εdR

µµ = 0 ,
|εdR

µµ | < 0.0039 , if εdL
µµ = 0 .

(4.66)

We can convert these bounds on the epsilons into bounds on the couplings in the same way
as we did before for the LLE case2. The potential 2σ bounds on the R-parity violating LQD
couplings are shown in Table 4.3. These bounds are presented for masses of 100 GeV. To
obtain limits for different masses, one simply rescales by

(
M

100GeV

)
. We see that NuSOnG’s

measurements are competitive with π decay bounds, and improves the current bounds on the
221 and 231 couplings by factors of 3 and 5, respectively.

Generation Non-Diagonal Leptoquarks

We reviewed leptoquarks in Chapter 2 and the leptoquark Lagrangian is given by Eq. (2.102).
Leptoquarks effects can be seen at NuSOnG through νµN DIS. The interactions that contribute to
νµN DIS are those with indices (ij) = (12). Note that the νµ-electron cross-section, which is also
going to be measured by NuSOnG, will not be affected by the leptoquarks because the scattering
process does not involve quarks. This can be used to distinguish between different explanations of
the NuTeV anomaly.

Since leptoquark exchange can interfere with both W and Z exchange processes, we cannot use
the limits on NSI’s given by Eq. (4.25) as is. In the following, we calculate the shifts in g2

L and g2
R

induced by the exchange of these leptoquarks.

• S1:

S0
1 contributes to both NC and CC νµN DIS. The contribution of the g12

1R coupling of S0
1 to the

CC process is suppressed, however, since it requires a chirality flip to interfere with the SM
process of W exchange in the t-channel. The effective interactions induced by S1 are therefore:

LS1 = +
|g12

1L|2

M2
S1

(
dc

LνµL

)(
νµLd

c
L

)
− |g12

1L|2

M2
S1

[(
µLu

c
L

)(
dc

LνµL

)
+ h.c.

]
= +

|g12
1L|2

2M2
S1

(
νµLγσνµL

)(
dLγ

σdL

)
− |g12

1L|2

2M2
S1

[(
µLγσνµL

)(
uLγ

σdL

)
+ h.c.

]
. (4.67)

The effective NSI’s are:

εdL
µµ = −εc = − 1

4
√

2GF

|g12
1L|2

M2
S1

, εdR
µµ = εuL

µµ = εuR
µµ = 0 . (4.68)

The shifts in g2
L and g2

R are

δg2
L = 2

(
gνd

L + g2
L

)
εdL

µµ ,

2See the discussion following Eq. (4.57)
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δg2
R = 2g2

R ε
dL
µµ . (4.69)

The bounds of Eq. (4.16) lead to
|εdL

µµ| < 0.0027 , (4.70)

which translates to the 95% bound of

|g12
1L|2 < 0.0036

(
MS1

100 GeV

)2

, (4.71)

or
MS1

|g12
1L|

> 1.7 TeV . (4.72)

• ~S3:

S0
3 , and S−3 contribute to NC νµN DIS in the s-channel. S0

3 also contribute to CC νµN DIS.

The effective interactions induced by ~S3 are therefore:

LS3 = +
|g12

3L|2

M2
S0

3

(
dc

LνµL

)(
νµLd

c
L

)
+ 2

|g12
3L|2

M2
S−3

(
uc

LνµL

)(
νµLu

c
L

)
+
|g12

3L|2

M2
S0

3

[(
µLu

c
L

)(
dc

LνµL

)
+ h.c.

]
= +

|g12
3L|2

2M2
S0

3

(
νµLγσνµL

)(
dLγ

σdL

)
+
|g12

3L|2

M2
S−3

(
νµLγσνµL

)(
uLγ

σuL

)
+
|g12

3L|2

2M2
S0

3

[(
µLγσνµL

)(
uLγ

σdL

)
+ h.c.

]
, (4.73)

The effective NSI’s are:

εuL
µµ = − 1

2
√

2GF

|g12
3L|2

M2
S−3

, εuR
µµ = 0 ,

εc = εdL
µµ = − 1

4
√

2GF

|g12
3L|2

M2
S0

3

, εdR
µµ = 0 , (4.74)

and the shifts in g2
L and g2

R are

δg2
L = 2(gνd

L − g2
L)εdL

µµ + 2gνu
L εuL

µµ ,

δg2
R = −2g2

R ε
dL
µµ . (4.75)

If we assume degeneracy of the masses of leptoquarks in the same iso-multiplet, MS0
3

= MS−3
≡

MS3 , then

εuL
µµ = 2εdL

µµ = − 1

2
√

2GF

|g12
3L|2

M2
S3

, , (4.76)

and

δg2
L = 2(gνd

L − g2
L + 2gνu

L )εdL
µµ ,
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δg2
R = −2g2

R ε
dL
µµ . (4.77)

The bounds in Eq. (4.16) then lead to the bound

|εdL
µµ| < 0.0077 , (4.78)

which translates to the 95% bound of

|g12
3L|2 < 0.010

(
MS3

100 GeV

)2

, (4.79)

or
MS3

|g12
3L|

> 1.0 TeV . (4.80)

• S2.

S2 contributes to both NC and CC processes, but the CC process is suppressed. The contri-
bution to the NC process is

LS2 =
|h12

2L|2

M2
S−2

(
νµLuR

)(
uRνµL

)
= −|h

12
2L|2

2M2
S−2

(
νµLγσνµL

)(
uRγ

σuR

)
. (4.81)

Therefore,

εuR
µµ = +

1

2
√

2GF

|h12
2L|2

M2
S−2

, (4.82)

and all other ε’s are zero. The shifts in g2
L and g2

R are

δg2
L = 0 , δg2

R = 2gνu
R εuR

µµ , (4.83)

leading to the constraint
|εuR

µµ | < 0.0019 , (4.84)

which at 2σ translates to

|h12
2L|2 < 0.0013

(
MS−2

100 GeV

)2

, (4.85)

or
MS−2

|h12
2L|

> 2.8 TeV . (4.86)

• S̃2:

The contribution of S̃−2 to the NC process is

LS̃2
=

|h̃12
2L|2

M2
S̃−2

(
νµLdR

)(
dRνµL

)
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= −|h̃
12
2L|2

2M2
S̃−2

(
νµLγσνµL

)(
dRγ

σdR

)
. (4.87)

Therefore,

εdR
µµ = +

1

2
√

2GF

|h̃12
2L|2

M2
S̃−2

, (4.88)

and all other ε’s are zero. The shifts in g2
L and g2

R are

δg2
L = 0 , δg2

R = 2gνd
R εdR

µµ , (4.89)

leading to the constraint
|εdR

µµ | < 0.0039 , (4.90)

which at 2σ translates to

|h̃12
2L|2 < 0.0026

(
MS̃−2

100 GeV

)2

. (4.91)

or
MS̃−2

|h̃12
2L|

> 2.0 TeV , (4.92)

• V1:

V1 exchange leads to the effective interaction given by (after a Fierz transformation):

LV1 = −|h
12
1L|2

M2
V1

(
νµLγσνµL

)(
uLγ

σuL

)
− |h12

1L|2

M2
V1

[(
µLγσνµL

)(
uLγ

σdL

)
+ h.c.

]
. (4.93)

Therefore,

εuL
µµ = εc = +

1

2
√

2GF

|h12
1L|2

M2
V1

, (4.94)

and g2
L and g2

R are shifted by

δg2
L = 2(gνu

L − g2
L)εuL

µµ ,

δg2
R = −2g2

R ε
uL
µµ , (4.95)

leading to the constraint
|εuL

µµ| < 0.0060 , (4.96)

which at 2σ gives

|h12
1L|2 < 0.0040

(
MV1

100 GeV

)2

, (4.97)

or
MV1

|h12
1L|

> 1.6 TeV . (4.98)

71



• ~V3:

The exchange of ~V3 leads to the following effective interactions (after a Fierz transformation):

LV3 = −|h
12
3L|2

M2
V 0
3

(
νµLγσνµL

)(
uLγ

σuL

)
− 2

|h12
3L|2

M2
V −
3

(
νµLγσνµL

)(
dLγ

σdL

)
+
|h12

3L|2

M2
V 0
3

[(
µLγσνµL

)(
uLγ

σdL

)
+ h.c.

]
. (4.99)

Therefore,

εuL
µµ = −εc = +

1

2
√

2GF

|h12
3L|2

M2
V 0
3

, εdL
µµ = +

1√
2GF

|h12
3L|2

M2
V −
3

, (4.100)

with the other ε’s zero. The shifts in g2
L and g2

R are

δg2
L = 2(gνu

L + g2
L)εuL

µµ + 2gνd
L εdL

µµ ,

δg2
R = 2g2

R ε
uL
µµ . (4.101)

Assuming degeneracy of the masses, MV 0
3

= MV −
3
≡MV3 , we have

εdL
µµ = 2εuL

µµ = +
1√
2GF

|h12
3L|2

M2
V3

, (4.102)

and

δg2
L = 2(gνu

L + g2
L + 2gνd

L )εuL
µµ ,

δg2
R = 2g2

R ε
uL
µµ , (4.103)

leading to the constraint
|εuL

µµ| < 0.0017 , (4.104)

which at 2σ gives

|h12
3L|2 < 0.0011

(
MV3

100 GeV

)2

, (4.105)

or
MV3

|h12
3L|

> 3.0 TeV . (4.106)

• V2:

The exchange of the V2 can affect both NC and CC processes, but the CC process is suppresses,
so we will only consider the NC process. The effective interaction is

LV2 = −|g
12
2L|2

M2
V −
2

(
νµLγσd

c
R

)(
dc

Rγ
σνµL

)
= +

|g12
2L|2

M2
V −
2

(
νµLγσνµL

)(
dRγ

σdR

)
. (4.107)

Therefore,

εdR
µµ = − 1

2
√

2GF

|g12
2L|2

M2
V −
2

, (4.108)
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with all other ε’s equal to zero. The shifts in δg2
L and δg2

R are

δg2
L = 0 , δg2

R = 2gνd
R εdR

µµ , (4.109)

leading to the constraint
|εdR

µµ | < 0.0039 , (4.110)

which at 2σ translates to

|g12
2L|2 < 0.0026

(
MV −

2

100 GeV

)
, (4.111)

or
MV −

2

|g12
2L|

> 2.0 TeV . (4.112)

• Ṽ2:

The exchange of Ṽ2 leads to the effective interaction

LṼ2
= −|g̃

12
2L|2

M2
Ṽ −
2

(
νµLγσu

c
R

)(
uc

Rγ
σνµL

)
= +

|g̃12
2L|2

M2
Ṽ −
2

(
νµLγσνµL

)(
uRγ

σuR

)
. (4.113)

Therefore,

εuR
µµ = − 1

2
√

2GF

|g̃12
2L|2

M2
Ṽ −
2

, (4.114)

with all other ε’s equal to zero. The shifts in δg2
L and δg2

R are

δg2
L = 0 , δg2

R = 2gνu
R εuR

µµ , (4.115)

leading to the constraint
|εdR

µµ | < 0.0019 , (4.116)

which at 2σ translates to

|g̃12
2L|2 < 0.0013

(
MṼ −

2

100 GeV

)2

, (4.117)

or
MṼ −

2

|g̃12
2L|

> 2.8 TeV . (4.118)

Assuming degenerate masses within each iso-multiplet, the shifts in g2
L and g2

R can be written
generically as

δg2
L = CL

|λ12
LQ|2/M2

LQ

g2/M2
W

=
CL

4
√

2GF

|λ12
LQ|2

M2
LQ

,

δg2
R = CR

|λ12
LQ|2/M2

LQ

g2/M2
W

=
CR

4
√

2GF

|λ12
LQ|2

M2
LQ

, (4.119)
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where λ12
LQ denotes the (ij) = (12) coupling of the leptoquark and MLQ is its mass. CL, and CR are

constants that depend on the type leptoquark. In table 4.4 we list what they are, and in figure 4.3
we plot the dependence of δg2

L and δg2
R on the ratio |λLQ|2/M2

LQ. Table 4.4 also lists the projected

NuSOnG bounds on the coupling constants. Existing bounds on S1, ~S3, V1, and ~V3 couplings from
Rπ = B(π → eν)/B(π → µν) are already much stronger, but could be circumvented for ~S3 and ~V3

if the masses within the multiplet are allowed to be non-degenerate.

LQ CL CR |λ12
LQ|2 NuSOnG 95% bound 95% bound from Rπ

S1 s2
(

4
3 −

10
9 s2

)
− 10

9 s4 |g12
1L|2 0.0036 0.0037

~S3 + 10
9 s4 + 10

9 s4 |g12
3L|2 0.010 0.0008

S2 0 − 8
3s2 |h12

2L|2 0.0013 N/A
S̃2 0 + 4

3s2 |h̃12
2L|2 0.0026 N/A

V1 s2
(

4
3 −

20
9 s2

)
− 20

9 s4 |h12
1L|2 0.0040 0.0018

~V3 −4s2
(
1− 5

9s2
)

+ 20
9 s4 |h12

3L|2 0.0011 0.0004
V2 0 − 4

3s2 |g12
2L|2 0.0026 N/A

Ṽ2 0 + 8
3s2 |g̃12

2L|2 0.0013 N/A

Table 4.4: Potential and existing 95% bounds on the leptoquark couplings squared when the leptoquark masses are
set to 100 GeV. To obtain the limits for different leptoquark masses, multiply by (MLQ/100 GeV)2. Existing bounds
on the S1, ~S3, V1, and ~V3 couplings from Rπ = B(π → eν)/B(π → µν) are also shown.
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Figure 4.3: Shifts in g2
L and g2

R due to leptoquarks. Horizontal lines indicate the projected 1σ limits of NuSOnG.

4.2.5 A New NuSOnG Anomaly? g2
R 6= (g2

R)SM

Table 4.4 does not provide bounds on the leptoquarks S2, S̃2, V2, and Ṽ2 from Rπ since their
exchange do not interfere with the W exchange process. Current bounds on these leptoquarks are
fairly weak [29]. Furthermore, their presence can affect the value of g2

R, but not the value of g2
L, as

is evident from the values of CL and CR listed in Table 4.4 and Fig. 4.3. Therefore, we can envision
a scenario, given that a concrete model that makes it possible exists, in which NuSOnG finds that
g2

R is shifted away from its SM value, while g2
L is not. The mass to coupling ratios required to

produce significant shifts in g2
R are listed in Table 4.5. If a deviation as large as 3σ is observed, the
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Figure 4.4: Expected S-T plot if a 6σ deviation is seen in g2
L which is due to a non-zero gauge suppression parameter

εµ. All four observables g2
L, g2

R, σ(νµe), and σ(ν̄µe) are shifted away from their SM values. Unfortunately, the
expected errors in g2

R and σ(ν̄µe) are too large for this shift to be seen. Seeing the shift in σ(νµe) may also be
difficult.

1σ band on the ST plot for g2
R will be so displaced from the origin (i.e. the SM) that it will be off

screen at the scale shown in Figs. 4.4 through 4.6.

deviation from SM S2 S̃2 V2 Ṽ2

+6σ N/A 1.1 TeV N/A 1.6 TeV
+3σ N/A 1.6 TeV N/A 2.3 TeV
−3σ 2.3 TeV N/A 1.6 TeV N/A
−6σ 1.6 TeV N/A 1.1 TeV N/A

2σ NuTeV bound >2.5 TeV >1.3 TeV >1.7 TeV >1.8 TeV

Table 4.5: The values of MLQ/|λ12
LQ| required for the leptoquarks S2, S̃2, V2, Ṽ2 to shift the value of g2

R by ±3σ
and ±6σ. For comparison, the 2σ lower bound from NuTeV is also listed, though the reanalysis could change the
bounds significantly. The NuTeV bounds are asymmetric for positive and negative shifts in g2

R due to the fact that
the NuTeV central value is about 0.6σ above the SM value.

75



Figure 4.5: Expected S-T plot if a 6σ deviation is seen in g2
L which is due to a non-zero gauge suppression parameter

εe. The νµN DIS observables g2
L and g2

R will be shifted away from their SM values, but not the νµe ES observables
σ(νµe) and σ(ν̄µe). However, the expected error in g2

R is too large for this shift to be seen.

Figure 4.6: Expected S-T plot if a 6σ deviation is seen in g2
L which is due to triplet leptoquarks with large mass

splitting. Only g2
L is shifted from its SM value.
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Chapter 5

Fermilab→Hyper-Kamiokande
experiment

The Long Baseline (LBL) neutrino oscillation experiments are also sensitive to the physics beyond
the SM through matter effects and will be complementary to the LHC. Thus, in this chapter we
give an example of a LBL experiment which can be performd in the future and discuss what we
can learn about possible extensions of the SM which this experiment will be able to probe.

5.1 Introduction

When considering matter effects on neutrino oscillation, it is customary to consider only the W -
exchange interaction of the νe with the electrons in matter. However, if new interactions beyond
the Standard Model (SM) that distinguish among the three generations of neutrinos exist, they can
lead to extra matter effects via radiative corrections to the Zνν vertex, which effectively violate
neutral current universality, or via the direct exchange of new particles between the neutrinos and
matter particles [79].

Many models of physics beyond the SM introduce interactions which distinguish among genera-
tions: gauged Lα −Lβ [18, 19] and gauged B − αLe − βLµ − γLτ [72, 73, 74, 80] models introduce
Z ′s and Higgs sectors which distinguish among the three generations of leptons; topcolor assisted
technicolor treats the third generation differently from the first two to explain the large top mass
[81, 82]; R-parity violating couplings in supersymmetric models couple fermions/sfermions from
different generations [77, 78, 83].

The effective Hamiltonian that governs neutrino oscillation in the presence of neutral-current
lepton universality violation, or new physics that couples to the different generations differently, is
given by [10]

H = Ũ

 λ1 0 0
0 λ2 0
0 0 λ3

 Ũ † = U

 0 0 0
0 δm2

21 0
0 0 δm2

31

U † +

 a 0 0
0 0 0
0 0 0

+

 be 0 0
0 bµ 0
0 0 bτ

 . (5.1)

In this expression, U is the MNS matrix [84],

a = 2EVCC , VCC =
√

2GFNe = Ne
g2

4M2
W

, (5.2)
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is the usual matter effect due to W -exchange between νe and the electrons [85], and be, bµ, bτ are
the extra matter effects which we assume to be flavor diagonal and non-equal. The matter effect
terms in this Hamiltonian can always be written as a 0 0

0 0 0
0 0 0

+

 be 0 0
0 bµ 0
0 0 bτ



=



(
a+ be −

bµ + bτ
2

)
0 0

0

(
bµ − bτ

2

)
0

0 0 −
(
bµ − bτ

2

)

+

(
bµ + bτ

2

) 1 0 0
0 1 0
0 0 1

 . (5.3)

The unit matrix term does not contribute to neutrino oscillation so it can be dropped. We define
the parameter ξ as

bτ − bµ
a

= ξ . (5.4)

Then, the effective Hamiltonian can be written as

H = Ũ

 λ1 0 0
0 λ2 0
0 0 λ3

 Ũ † = U

 0 0 0
0 δm2

21 0
0 0 δm2

31

U † + a

 1 0 0
0 −ξ/2 0
0 0 +ξ/2

 , (5.5)

where we have absorbed the extra b-terms in the (1, 1) element into a.
The extra ξ-dependent contribution in Eq. (5.5) can manifest itself when a > |δm2

31| (i.e. E &
10 GeV for typical matter densities in the Earth) in the νµ and ν̄µ survival probabilities as [10]

P (νµ → νµ) ≈ 1− sin2

(
2θ23 −

aξ

δm2
31

)
sin2 ∆

2
,

P (ν̄µ → ν̄µ) ≈ 1− sin2

(
2θ23 +

aξ

δm2
31

)
sin2 ∆

2
, (5.6)

where

∆ ≈ ∆31c
2
13 −∆21c

2
12 , ∆ij =

δm2
ij

2E
L , cij = cos θij , (5.7)

and the CP violating phase δ has been set to zero. As is evident from these expressions, the small
shift due to ξ will be invisible if the value of sin2 2θ23 is too close to one. However, if the value
of sin2 2θ23 is as low as sin2 2θ23 = 0.92 (the current 90% lower bound [86]), and if ξ is as large
as ξ = 0.025 (the central value from CHARM/CHARM II [87]), then the shift in the survival
probability at the first oscillation dip can be as large as ∼ 40%. If the Fermilab-NUMI beam in
its high-energy mode [88] were aimed at a declination angle of 46◦ toward the planned Hyper-
Kamiokande detector [89] in Kamioka, Japan (baseline 9120 km), such a shift would be visible
after just one year of data taking, assuming a Mega-ton fiducial volume and 100% efficiency. The
absence of any shift after 5 years of data taking would constrain ξ to [10]

|ξ| ≤ ξ0 ≡ 0.005 , (5.8)
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at the 99% confidence level.
In this chapter, we look at how this potential limit on ξ would translate into constraints on

new physics, in particular, on the couplings and masses of new particles. As mentioned above, the
models must be those that distinguish among different generations. We consider the following four
classes of models:

1. Models with a generation distinguishing Z ′ boson. This class includes gauged Le−Lµ, gauged
Le − Lτ , gauged B − αLe − βLµ − γLτ , and topcolor assisted technicolor.

2. Models with leptoquarks (scalar and vector). This class includes various Grand Unification
Theory (GUT) models and extended technicolor (ETC).

3. The Supersymmetric Standard Model with R-parity violation.

4. Extended Higgs models. This class includes the Babu model, the Zee model, and various
models with triplet Higgs, as well as the generation distinguishing Z ′ models listed above.

These classes will be discussed one by one in sections 5.2 through 5.5. The constraints on these
models will be compared with existing ones from LEP/SLD, the Tevatron, and other low energy
experiments, and with those expected from direct searches for the new particles at the LHC.

5.2 Models with an extra Z ′ boson

Z ′ generically refers to any electrically neutral gauge boson corresponding to a flavor-diagonal
generator of some new gauge group. Here, we are interested in models in which the Z ′ couples
differently to different generations. The models we will consider are (A) gauged Le−Lµ and Le−Lτ ,
(B) gauged B − αLe − βLµ − γLτ , with α+ β + γ = 3, and (C) topcolor assisted technicolor.

5.2.1 Gauged Le − Lµ and Le − Lτ

νµ νµ

e e

Z ′

−igZ′

+igZ′

(a)

ντ ντ

e e

Z ′

−igZ′

+igZ′

(b)

FIG. 1: Diagrams that contribute to neutrino oscillation matter effects in (a) the gauged Le − Lµ

model, and (b) the gauged Le − Lτ model.

with these symmetries are recently receiving renewed attention in attempts to explain the

large mixing angles observed in the neutrino sector [20]. Of these, gauged Le−Lµ and Le−Lτ

affect neutrino oscillation in matter. These models necessarily possess a Higgs sector which

also distinguishes among different lepton generations [21], but we will only consider the effect

of the the extra gauge boson in this section and relegate the effect of the Higgs sector to a

more generic discussion in section V.

The interaction Lagrangian for gauged Le − Lℓ (ℓ = µ or τ) is given by

L = gZ′

(

eγµe− ℓγµℓ + νeLγµνeL − νℓLγµνℓL

)

Z ′
µ . (9)

The diagrams that affect neutrino propagation in matter are shown in Fig. 1. (The exchange

of the Z ′ between the νe and the electrons do not lead to new matter effects.) The forward

scattering amplitude of the left-handed neutrino νℓL (ℓ = µ, τ) is

iM = (igZ′)(−igZ′) 〈νℓL| νℓLγµνℓL |νℓL〉
(

igµν

M2
Z′

)

〈e| eγνe |e〉 . (10)

The electrons in matter are non-relativistic, so only the time-like components of the currents

need to be considered. Replacing 〈e| eγ0e |e〉 = 〈e| e†e |e〉 with Ne, the number density of

electrons in matter, and 〈νℓL| νℓLγ0νℓL |νℓL〉 = 〈νℓL| ν†ℓLνℓL |νℓL〉 with φ†
νℓ

φνℓ
, where φνℓ

is the

wave function of the left-handed neutrino νℓL, we obtain

iM = i
g2

Z′

M2
Z′

(

φ†
νℓ

φνℓ

)

Ne ≡ −iVνℓ

(

φ†
νℓ

φνℓ

)

. (11)

Therefore, the effective potential felt by the neutrinos as they traverse matter can be iden-

tified as

Vνℓ
= − g2

Z′

M2
Z′

Ne . (12)

5

Figure 5.1: Diagrams that contribute to neutrino oscillation matter effects in (a) the gauged Le − Lµ model, and
(b) the gauged Le − Lτ model.

In Ref. [18, 19], it was pointed out that the charges Le−Lµ, Le−Lτ , and Lµ−Lτ are anomaly
free within the particle content of the Standard Model, and therefore can be gauged. Models with
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these symmetries are recently receiving renewed attention in attempts to explain the large mixing
angles observed in the neutrino sector [20]. Of these, gauged Le − Lµ and Le − Lτ affect neutrino
oscillation in matter. These models necessarily possess a Higgs sector which also distinguishes
among different lepton generations [90], but we will only consider the effect of the the extra gauge
boson in this section and relegate the effect of the Higgs sector to a more generic discussion in
section 5.5.

The interaction Lagrangian for gauged Le − L` (` = µ or τ) is given by

L = gZ′
(
eγµe− `γµ`+ νeLγ

µνeL − ν`Lγ
µν`L

)
Z ′

µ . (5.9)

The diagrams that affect neutrino propagation in matter are shown in Fig. 5.1. (The exchange of
the Z ′ between the νe and the electrons do not lead to new matter effects.) The forward scattering
amplitude of the left-handed neutrino ν`L (` = µ, τ) is

iM = (igZ′)(−igZ′) 〈ν`L| ν`Lγ
µν`L |ν`L〉

(
igµν

M2
Z′

)
〈e| eγνe |e〉 . (5.10)

The electrons in matter are non-relativistic, so only the time-like components of the currents need
to be considered. Replacing 〈e| eγ0e |e〉 = 〈e| e†e |e〉 with Ne, the number density of electrons in

matter, and 〈ν`L| ν`Lγ
0ν`L |ν`L〉 = 〈ν`L| ν†`Lν`L |ν`L〉 with φ†ν`

φν`
, where φν`

is the wave function of
the left-handed neutrino ν`L, we obtain

iM = i
g2

Z′

M2
Z′

(
φ†ν`
φν`

)
Ne ≡ −iVν`

(
φ†ν`
φν`

)
. (5.11)

Therefore, the effective potential felt by the neutrinos as they traverse matter can be identified as

Vν`
= − g2

Z′

M2
Z′
Ne . (5.12)

The effective ξ’s for the Le − Lµ and Le − Lτ cases are

ξLe−Lµ = −
Vνµ

VCC

= +4
(g2

Z′/M2
Z′)

(g2/M2
W )

= +
1√
2GF

(
gZ′

MZ′

)2

,

ξLe−Lτ = +
Vντ

VCC

= −4
(g2

Z′/M2
Z′)

(g2/M2
W )

= − 1√
2GF

(
gZ′

MZ′

)2

. (5.13)

Ignoring potential contributions from the Higgs sector, a bound on ξ of |ξ| ≤ ξ0 = 0.005 from
Eq. (5.8) translates into:

MZ′

gZ′
≥

√
1√

2GF ξ0
≈ 3500 GeV , (5.14)

for both the Le − Lµ and Le − Lτ cases.
The Z ′ in gauged Le − L` (` = µ, τ) cannot be sought for at the LHC since they only couple to

leptons. However, they can be produced in e+e− collisions and subsequently decay into e+e− or `+`−

pairs, and stringent constraints already exist from LEP/LEP2. The exchange of the Z ′ induces the
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Λ− (TeV) from Λ+ (TeV) from Λ+ (TeV) from
e+e− → e+e− e+e− → µ+µ− e+e− → τ+τ− Reference

L3 10.1 14.4 7.6 [91]
OPAL 10.6 12.7 8.6 [92]

DELPHI 13.9 12.2 15.8 [93]
ALEPH 12.5 10.5 12.8 [94]

Table 5.1: The 95% confidence level lower bounds on the compositeness scale Λ± (TeV) from leptonic LEP/LEP2
data. Dividing by

√
4π converts these limits to those on (MZ′/gz′).

following effective four-fermion interactions, relevant to e+e− colliders, among the charged leptons
at energies far below the Z ′ mass:

L = − g2
Z′

2M2
Z′

(eγµe) (eγµe) +
g2

Z′

M2
Z′

(eγµe)
(
`γµ`

)
. (5.15)

The LEP collaborations fit their data to

L = − 4π

2Λ2
−

(eγµe) (eγµe) +
4π

Λ2
+

(eγµe)
(
`γµ`

)
, (5.16)

with the 95% confidence limits on Λ± shown in Table 5.1. The strongest constraint for the Le−Lµ

case comes from the e+e− → µ+µ− channel of L3, which translates to

MZ′

gZ′
≥ 4.1 TeV , (5.17)

while that for the Le−Lτ case comes from the e+e− → τ+τ− channel of DELPHI, which translates
to

MZ′

gZ′
≥ 4.5 TeV . (5.18)

Though these are the 95% confidence limits while that given in Eq. (5.14) is the 99% limit, it
is clear that the bound on ξ will not lead to any improvement of already existing bounds from
LEP/LEP2.

5.2.2 Gauged B − (αLe + βLµ + γLτ )

In Refs. [72, 73, 74, 80], extensions of the SM gauge group to SU(3)C × SU(2)L × U(1)Y × U(1)X

with X = B − (αLe + βLµ + γLτ ) were considered. Again, the motivation was to explain the
observed pattern of neutrino masses and mixings. The cases (α, β, γ) = (0, 0, 3), (3, 0, 0), and
(0, 3

2
, 3

2
) were considered, respectively, in Refs. [72], [73], and [74]. In all cases, the condition

α+ β + γ = 3 (5.19)

is required for anomaly cancellation within the SM plus right-handed neutrinos1. When α 6= β 6= γ,
the U(1)X gauge boson, i.e. the Z ′, couples to the three lepton generations differently, and can lead
to extra neutrino oscillation matter effects. As in the gauged Le−L` case, the Higgs sectors of these

1Only the right-handed neutrinos with non-zero X charge need to be included for anomaly cancellation.
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νℓ νℓ

f f

Z ′

+igZ′Xνℓ

+igZ′Xf

(a)

ντ ντ

f f

Z ′

+ i
2 g′ cot θ1

−ig′Yf tan θ1

(b)

FIG. 2: Diagrams that contribute to neutrino oscillation matter effects in (a) the gauged X =

B − αLe − βLµ − γLτ model, ℓ = {e, µ, τ}, f = {u, d, e}, and (b) topcolor assisted technicolor,

f = {uL, uR, dL, dR, eL, eR}.

while that for the Le − Lτ case comes from the e+e− → τ+τ− channel of DELPHI, which

translates to
MZ′

gZ′

≥ 4.5 TeV . (18)

Though these are the 95% confidence limits while that given in Eq. (14) is the 99% limit,

it is clear that the bound on ξ will not lead to any improvement of already existing bounds

from LEP/LEP2.

B. Gauged B − (αLe + βLµ + γLτ )

In Refs. [6, 7, 8, 9], extensions of the SM gauge group to SU(3)C×SU(2)L×U(1)Y×U(1)X

with X = B− (αLe +βLµ +γLτ ) were considered. Again, the motivation was to explain the

observed pattern of neutrino masses and mixings. The cases (α, β, γ) = (0, 0, 3), (3, 0, 0),

and (0, 3
2
, 3

2
) were considered, respectively, in Refs. [6], [7], and [8]. In all cases, the condition

α + β + γ = 3 (19)

is required for anomaly cancellation within the SM plus right-handed neutrinos1. When

α 6= β 6= γ, the U(1)X gauge boson, i.e. the Z ′, couples to the three lepton generations

differently, and can lead to extra neutrino oscillation matter effects. As in the gauged

Le−Lℓ case, the Higgs sectors of these models also necessarily distinguish among the lepton

generations, but we relegate the discussion of their effects to section V.

1 Only the right-handed neutrinos with non-zero X charge need to be included for anomaly cancellation.
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Figure 5.2: Diagrams that contribute to neutrino oscillation matter effects in (a) the gauged X = B−αLe−βLµ−γLτ

model, ` = {e, µ, τ}, f = {u, d, e}, and (b) topcolor assisted technicolor, f = {uL, uR, dL, dR, eL, eR}.

models also necessarily distinguish among the lepton generations, but we relegate the discussion of
their effects to section 5.5.

For generic values of (α, β, γ), the Z ′ couples to the quarks and leptons as

LZ′ = gZ′J
µ
XZ

′
µ , (5.20)

where

Jµ
X =

∑
f

Xf (f̄γ
µf)

=
1

3

∑
q

( q̄γµq )− α ( ēγµe+ νeγ
µνe )− β ( µ̄γµµ+ νµγ

µνµ )− γ ( τ̄ γµτ + ντγ
µντ ) .

(5.21)

The forward scattering amplitude of the left-handed neutrino ν`L (` = e, µ, τ) on matter fermion
F (F = p, n, e) due to Z ′-exchange (cf. Fig. 5.2a) is

iMF = (+igZ′Xν`
)(+igZ′) 〈ν`L| ν`γ

µν` |ν`L〉
(
igµν

M2
Z′

)
〈F | Jν

X |F 〉 . (5.22)

Again, we can assume that the matter fermions are non-relativistic, so that only the time-like
components of the currents need be considered. Then, we can make the replacements

〈e| J0
X |e〉 = −α 〈e| e†e |e〉 → −αNe ,

〈p| J0
X |p〉 =

1

3
〈p|
(
u†u+ d†d

)
|p〉 → 1

3
(2Np +Np) = Np ,

〈n| J0
X |n〉 =

1

3
〈n|
(
u†u+ d†d

)
|n〉 → 1

3
(Nn + 2Nn) = Nn , (5.23)

and

〈ν`L| ν`γ
0ν` |ν`L〉 = 〈ν`L|

(
ν†`Lν`L + ν†`Rν`R

)
|ν`L〉 = 〈ν`L| ν†`Lν`L |ν`L〉 → φ†ν`

φν`
, (5.24)
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which gives us

iMF = −iXν`

g2
Z′

M2
Z′

(
φ†ν`
φν`

)
(XFNF ) , (5.25)

where we have defined Xp = Xn = 1. Summing over F = p, n, e, we find:

iM = i
∑

F=p,n,e

MF

= −iXν`

g2
Z′

M2
Z′

(
φ†ν`
φν`

)
( Np +Nn − αNe ) = −i Vν`

(
φ†ν`
φν`

)
,

(5.26)

where

Vν`
≡ +Xν`

g2
Z′

M2
Z′

(Nn +Np − αNe) (5.27)

can be identified as the effective potential experienced by the left-handed neutrino ν`L as it travels
through matter. Since the Earth is electrically neutral and is mostly composed of lighter elements,
we can make the approximation Nn ≈ Np = Ne ≡ N , in which case

Vν`
≈ −Xν`

g2
Z′

M2
Z′

(α− 2)N . (5.28)

The effective ξ is then

ξ(α,β,γ) =
Vντ − Vνµ

VCC

= −4(α− 2)(β − γ)
(gZ′/MZ′)2

(g/MW )2
. (5.29)

When α = 2, the contribution of the matter electrons is canceled by those of the matter nucleons
and ξ(2,β,γ) vanishes, regardless of the values of β and γ. When β = γ, the matter effects on νµ and
ντ will be the same, again resulting in ξ(α,β,β) = 0, regardless of the value of α.

In Fig. 5.3, we plot the dependence of ξZ′ on the Z ′ mass for selected values of gZ′ for the case
α = β = 0, γ = 3, namely, the Z ′ couples to B − 3Lτ . In this case

ξ(0,0,3) = −24
(gZ′/MZ′)2

(g/MW )2
= − 6√

2GF

(
gZ′

MZ′

)2

. (5.30)

Ignoring the possible contribution of the Higgs sector, a bound on ξ of |ξ| ≤ ξ0 = 0.005 from
Eq. (5.8) translates into:

MZ′

gZ′
≥

√
6√

2GF ξ0
≈ 8500 GeV . (5.31)

More generically, the bound on the Z ′ mass is

MZ′

gZ′
≥

√
|(α− 2)(β − γ)|√

2GF ξ0
≈
√
|(α− 2)(β − γ)| × (3500 GeV) . (5.32)

This bound is plotted in Fig. 5.4 as a function of β for three different values of gZ′ , and two
different values of α. The value of γ is fixed by the anomaly cancellation condition, Eq. (5.19), to
γ = 3− α− β. The region of the (β,MZ′) parameter space below each curve will be excluded.
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Ignoring the possible contribution of the Higgs sector, a bound on ξ of |ξ| ≤ ξ0 = 0.005 from

Eq. (8) translates into:

MZ′
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≥
√

6√
2GF ξ0

≈ 8500 GeV . (31)
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FIG. 3: ξZ′ dependence on the Z ′ mass for the special case α = β = 0, γ = 3.
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Figure 5.3: ξZ′ dependence on the Z ′ mass for the special case α = β = 0, γ = 3.

2σ (95%) limit from 95% limit from limit from
(α, β, γ) gZ′ LEP/SLD [80] CDF [95]/D0 [37] |ξ| ≤ ξ0 (99%)
(0, 0, 3) 0.65 580 GeV ∼ 1 TeV 5500 GeV

0.35 220 GeV ∼ 0.6 TeV 3000 GeV(
0, 3

2 , 3
2

)
0.65 500 GeV 880 GeV —
0.35 — 470 GeV —

Table 5.2: Current and possible lower bounds on the Z ′ mass in gauged B − αL3 − βLµ − γLτ models.

Let us now look at existing bounds. We limit our attention to the α = 0 case, i.e. the Z ′

couples to B − βLµ − γLτ , with β + γ = 3. In this case, the Z ′ can be produced in pp̄ collisions
and subsequently decay into µ+µ− or τ+τ− pairs. The exchange of the Z ′ in this case leads to the
following four-fermion interactions, relevant to pp̄ colliders, between the charged leptons and the
light quarks at energies way below the Z ′ mass:

L = +
βg2

Z′

3M2
Z′

(
ūγµu+ d̄γµd

)
(µ̄γµµ) +

γg2
Z′

3M2
Z′

(
ūγµu+ d̄γµd

)
(τ̄ γµτ) . (5.33)

D0 has searched for the contact interaction

L = +
4π

Λ2
+

(
ūγµu+ d̄γµd

)
(µ̄γµµ) (5.34)

in its dimuon production data [37] and has set a 95% confidence level limit of

Λ+ ≥ 6.88 TeV . (5.35)

This translates into
MZ′

gZ′
≥
√
|β| × (1.1 TeV) . (5.36)
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2σ (95%) limit from 95% limit from limit from

(α, β, γ) gZ′ LEP/SLD [9] CDF [28]/D0 [27] |ξ| ≤ ξ0 (99%)

(0, 0, 3) 0.65 580 GeV ∼ 1 TeV 5500 GeV

0.35 220 GeV ∼ 0.6 TeV 3000 GeV
(

0, 3
2 , 3

2

)

0.65 500 GeV 880 GeV —

0.35 — 470 GeV —

TABLE II: Current and possible lower bounds on the Z ′ mass in gauged B − αL3 − βLµ − γLτ

models.

More generically, the bound on the Z ′ mass is

MZ′

gZ′

≥
√

|(α− 2)(β − γ)|√
2GF ξ0

≈
√

|(α− 2)(β − γ)| × (3500 GeV) . (32)

This bound is plotted in Fig. 4 as a function of β for three different values of gZ′, and two

different values of α. The value of γ is fixed by the anomaly cancellation condition, Eq. (19),

to γ = 3 − α − β. The region of the (β, MZ′) parameter space below each curve will be

excluded.

Let us now look at existing bounds. We limit our attention to the α = 0 case, i.e. the

Z ′ couples to B − βLµ − γLτ , with β + γ = 3. In this case, the Z ′ can be produced in pp̄

10

Figure 5.4: Lower bounds on Z ′ mass.

CDF has searched for the production of a Z ′ followed by its decay into τ+τ− pairs [95] and has set
a 95% confidence level lower bound of

MZ′ ≥ 400 GeV (5.37)

for a sequential Z ′ (i.e. a Z ′ with the exact same couplings to the fermions as the SM Z). Rescaling
to account for the difference in couplings, we estimate

MZ′

gZ′
&
√
|γ| × (1 TeV) . (5.38)

Limits on this model also exist from a global analysis of loop effects in LEP/SLD data [80], but they
are weaker than the direct search limits from the Tevatron. In Table 5.2, we compare the bounds
from LEP/SLD, CDF/D0, and the potential bounds from a measurement of ξ for two choices of
(α, β, γ), and two choices for the value of gZ′ . For the (α, β, γ) = (0, 0, 3) case, we can expect a
significant improvement over current bounds.

The sensitivity of the LHC to Z ′s has been analyzed assuming Z ′ decay into e+e− or µ+µ−

pairs, or 2 jets [41]. For a sequential Z ′, the LHC is sensitive to masses as heavy as 5 TeV with
100 fb−1 of integrated luminosity. The Z ′ of the (α, β, γ) = (0, 0, 3) model, however, decays mostly
into τ+τ−, which will not provide as clean a signal as decays into the lighter charged lepton pairs.
Ref. [96] estimates that if gZ′ ∼ g′ ≈ 0.35, then the LHC reach will be up to about 1 TeV with
100 fb−1. If this estimate is correct, the potential bound on MZ′ from neutrino oscillation may be
better than that from the LHC. A complete detector analysis may show that the actual reach of
the LHC is somewhat higher, but even then we can expect the neutrino oscillation bound to be
competitive with the LHC bound for the (0, 0, 3) model.

5.2.3 Topcolor Assisted Technicolor

Another example of a model with a Z ′ which distinguishes among different generations is topcolor
assisted technicolor [81, 82]. Models of this class are hybrids of topcolor and technicolor: the
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SU(3)s SU(3)w U(1)s U(1)w SU(2)L

(t, b)L 3 1
1
6

0 2

(t, b)R 3 1
(

2
3
,−1

3

)
0 1

(ντ , τ−)L 1 1 −1
2

0 2

τ−R 1 1 −1 0 1

(c, s)L, (u, d)L 1 3 0
1
6

2

(c, s)R, (u, d)R 1 3 0
(

2
3
,−1

3

)
1

(νµ, µ−)L, (νe, e
−)L 1 1 0 −1

2
2

µ−R, e−R 1 1 0 −1 1

Table 5.3: Charge assignments of the ordinary fermions. The U(1) charges are equal to the SM hypercharges
normalized to Qem = I3 + Y .

topcolor interactions generate the large top-mass (and a fraction of the W and Z masses), while
the technicolor interactions generate (the majority of ) the W and Z masses. The models include
a Z ′ in the topcolor sector, the interactions of which helps the top to condense, but prevents the
bottom from doing so also. To extract the interactions of this Z ′ relevant to our discussion, we
need to look at the model in some detail.

Though there are several different versions of topcolor assisted technicolor, we consider here the
simplest in which the quarks and leptons transform under the gauge group

SU(3)s × SU(3)w × U(1)s × U(1)w × SU(2)L (5.39)

with coupling constants g3s, g3w, g1s, g1w, and g. It is assumed that g3s � g3w and g1s � g1w.
SU(2)L is the usual weak-isospin gauge group of the SM with coupling constant g. The charge
assignments of the three generation of ordinary fermions under these gauge groups are given in
Table 5.3. Note that each generation must transform non-trivially under only one of the SU(3)’s
and one of the U(1)’s, and that those charges are the same as that of the SM color, and hypercharge
Y (normalized to Qem = I3 + Y ). This ensures anomaly cancellation.

At scale Λ ∼ 1 TeV, technicolor, which is included in the model to generate the W and Z masses,
is assumed to become strong and generate a condensate (of something which is left unspecified)
which breaks the two SU(3)’s and the two U(1)’s to their diagonal subgroups:

SU(3)s × SU(3)w → SU(3)c , U(1)s × U(1)w → U(1)Y , (5.40)

which we identify with the usual SM color and hypercharge groups. The massless unbroken SU(3)
gauge bosons (the gluons Ga

µ) and the massive broken SU(3) gauge bosons (the so called colorons
Ca

µ) are related to the original SU(3)s × SU(3)w gauge fields Xa
sµ and Xa

wµ by

Cµ = Xsµ cos θ3 −Xwµ sin θ3

Gµ = Xsµ sin θ3 +Xwµ cos θ3 (5.41)

where we have suppressed the color indices, and

tan θ3 =
g3w

g3s

. (5.42)
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The currents to which the gluons and colorons couple to are:

g3sJ
µ
3sXsµ + g3wJ

µ
3wXwµ = g3 (cot θ3J

µ
3s − tan θ3J

µ
3w)Cµ + g3 (Jµ

3s + Jµ
3w)Gµ , (5.43)

where
1

g2
3

=
1

g2
3s

+
1

g2
3w

. (5.44)

Since the quarks carry only one of the SU(3) charges, we can identify

Jµ
3 = Jµ

3s + Jµ
3w (5.45)

as the QCD color current, and g3 as the QCD coupling constant.
Similarly, the massless unbroken U(1) gauge boson Bµ and the massive broken U(1) gauge boson

Z ′
µ are related to the original U(1)s × U(1)w gauge fields Ysµ and Ywµ by

Z ′
µ = Ysµ cos θ1 − Ywµ sin θ1

Bµ = Ysµ sin θ1 + Ywµ cos θ1 (5.46)

where
tan θ1 =

g1w

g1s

. (5.47)

The currents to which the Bµ and Z ′
µ couple to are:

g1sJ
µ
1sYsµ + g1wJ

µ
1wYwµ = g1 (cot θ1J

µ
1s − tan θ1J

µ
1w)Z ′

µ + g1 (Jµ
1s + Jµ

1w)Bµ , (5.48)

where
1

g2
1

=
1

g2
1s

+
1

g2
1w

. (5.49)

Again, since the fermions carry only one of the U(1) charges, we can identify

Jµ
1 = Jµ

1s + Jµ
1w (5.50)

as the SM hypercharge current, and g1 as the SM hypercharge coupling constant g′. Note that the
interactions of the colorons and the Z ′ with the third generation fermions are strong, while their
interactions with the first and second generation fermions are weak. This results in the formation
of a top-condensate which accounts for the large mass of the top quark.2

Therefore, the interaction of the Z ′ in this model with the quarks and leptons is given by

L = g′ (cot θ1J
µ
1s − tan θ1J

µ
1w)Z ′

µ , (5.51)

where g′ is the SM hypercharge coupling, and

Jµ
1s =

1

6

(
t̄Lγ

µtL + b̄Lγ
µbL
)

+
2

3
t̄Rγ

µtR −
1

3
b̄Rγ

µbR −
1

2
(τ̄Lγ

µτL + ν̄τLγ
µντL)− τ̄Rγ

µτR ,

Jµ
1w =

1

6
(c̄Lγ

µcL + s̄Lγ
µsL) +

2

3
c̄Rγ

µcR −
1

3
s̄Rγ

µsR −
1

2
(µ̄Lγ

µµL + ν̄µLγ
µνµL)− µ̄Rγ

µµR

+
1

6

(
ūLγ

µuL + d̄Lγ
µdL

)
+

2

3
ūRγ

µuR −
1

3
d̄Rγ

µdR −
1

2
(ēLγ

µeL + ν̄eLγ
µνeL)− ēRγ

µeR .

2The Z′-exchange interaction in the tt̄ channel is attractive, but that in the bb̄ channel is repulsive. This repulsion is assumed to be
strong enough to counter the attraction due to the colorons and prevent the bottom from condensing.
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FIG. 5: ξTT dependence on the Z ′ mass in the top color assisted technicolor model.

The exchange of the Z ′ leads to the current-current interaction

1

2
(cot θ1J1s − tan θ1J1w) (cot θ1J1s − tan θ1J1w) , (53)

the J1sJ1s part of which does not contribute to neutrino oscillations on the Earth, while the

J1wJ1w part is suppressed relative to the J1wJ1s part by a factor of tan2 θ1 ≪ 1. Therefore,

we only need to consider the J1sJ1w interaction which only affects the propagation of ντL

(cf. Fig. 2b). The forward scattering amplitude of ντL against fermion F = p, n, e is given

by

iM = (−ig′ cot θ1)(+ig′ tan θ1) 〈ντL|
(

−1

2
ντγ

µPLντ

)

|ντL〉
igµν

M2
Z′

×〈F |
[

uγν

(

1

6
PL +

2

3
PR

)

u + dγν

(

1

6
PL −

1

3
PR

)

d + eγν

(

−1

2
PL − PR

)

e

]

|F 〉

→ − ig′2

2M2
Z′

(

φ†
ντ

φντ

)

[

1

2

(

1

6
+

2

3

)

(2Np + Nn) +
1

2

(

1

6
− 1

3

)

(Np + 2Nn) +
1

2

(

−1

2
− 1

)

Ne

]

= − ig′2

2M2
Z′

(

φ†
ντ

φντ

)

(

3

4
Np +

1

4
Nn −

3

4
Ne

)

= − ig′2

8M2
Z′

(

φ†
ντ

φντ

)

Nn

≈ −i

(

g′2

M2
Z′

)

N

8

(

φ†
ντ

φντ

)

= −iVντ

(

φ†
ντ

φντ

)

. (54)

Note that the angle θ1 has vanished from this expression and the only unknown parameter

here is the Z ′ mass.

The effective potentials felt by the different neutrino flavors are

Vνe
= Vνµ

= 0 , Vντ
= +

N

8

g′2

M2
Z′

, (55)
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Figure 5.5: ξTT dependence on the Z ′ mass in the top color assisted technicolor model.
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The exchange of the Z ′ leads to the current-current interaction

1

2
(cot θ1J1s − tan θ1J1w) (cot θ1J1s − tan θ1J1w) , (5.53)

the J1sJ1s part of which does not contribute to neutrino oscillations on the Earth, while the J1wJ1w

part is suppressed relative to the J1wJ1s part by a factor of tan2 θ1 � 1. Therefore, we only need
to consider the J1sJ1w interaction which only affects the propagation of ντL (cf. Fig. 5.2b). The
forward scattering amplitude of ντL against fermion F = p, n, e is given by

iM = (−ig′ cot θ1)(+ig
′ tan θ1) 〈ντL|

(
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)
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igµν

M2
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(
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6
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3
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)
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(
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6
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3
PR

)
d+ eγν
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2
PL − PR

)
e

]
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2M2
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(
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) [1
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(
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+
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2M2
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(
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)(3
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Np +
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Nn −
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= − ig′2

8M2
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(
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M2
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φντ

)
= −iVντ

(
φ†ντ

φντ

)
. (5.54)

Note that the angle θ1 has vanished from this expression and the only unknown parameter here is
the Z ′ mass.

The effective potentials felt by the different neutrino flavors are

Vνe = Vνµ = 0 , Vντ = +
N

8

g′2

M2
Z′
, (5.55)
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and the effective ξ is

ξTT =
Vντ − Vνµ

VCC

=
1

2

(g′/MZ′)2

(g/MW )2
=

1

2
tan2 θW

M2
W

M2
Z′

=
1

2
sin2 θW

M2
Z

M2
Z′
. (5.56)

The dependence of ξTT on the Z ′ mass is shown in Fig. 5.5. The limit |ξTT | ≤ ξ0 = 0.005 in this
case translates to:

MZ′ ≥MZ

√
sin2 θW

2ξ0
≈ 440 GeV . (5.57)

This potential limit from the measurement of ξ is much weaker than what is already available
from precision electroweak data [82], or from the direct search for pp̄ → Z ′X → τ+τ−X at CDF
mentioned earlier [95].

5.3 Generation Non-Diagonal Leptoquarks

The review of the leptoquarks was presented in Chapter 2. Since the leptoquarks must distinguish
among different generation fermions to contribute to neutrino oscillation matter effects, the lepto-
quark Lagrangian is given by Eq. (2.102). The interactions that contribute to neutrino oscillation
matter effects are those with indices (ij) = (12) and (ij) = (13).

In the following, we calculate the effective value of ξ induced by the exchange of these lepto-
quarks. The leptoquark fields are naturally grouped into pairs from the way they couple to the
quarks and leptons: (S1, ~S3), (S2, S̃2), (V2, Ṽ2), and (V1, ~V3). We treat each of these pairs in turn,
and then discuss the potential bounds on the leptoquark couplings and masses.

5.3.1 S1 and ~S3 leptoquarks
A. S1 and ~S3 leptoquarks

νj(k) d(p)

d(p) νj(k)

S0
α

p + k

−i g1j
αL −i g1j∗

αL

(a) α = 1, 3

νj(k) u(p)

u(p) νj(k)

S−
3

p + k

i
√

2 g1j
3L i

√
2 g1j∗

3L

(b)

FIG. 6: Diagrams contributing to neutrino oscillation matter effects from the exchange of (a)

S0
1 or the isospin 0 component of ~S3, and (b) the isospin −1 component of ~S3. The EM charge

Qem = I3 + Y for S0
1 and S0

3 are +1
3 , while that for S−

3 is −2
3 .

The (ij) = (12) and (13) interactions of the leptoquarks S1 and ~S3 are, respectively,

L = −g12
1L(dc

LνµL)S1 − g13
1L(dc

LντL)S1 + h.c. , (65)

and

L = g12
3L

[

−(dc
LνµL)S0

3 +
√

2(uc
LνµL)S−

3

]

+ g13
3L

[

−(dc
LντL)S0

3 +
√

2(uc
LντL)S−

3

]

+ h.c.

(66)

The interactions described by Eqs. (65) and (66) can be written in a common general form

as

L = λ (qcPL ν)S + λ∗(νPR qc)S̄ , (67)

where q = u or d. The Feynman diagrams contributing to neutrino oscillation matter

effects are shown in Fig. 6. At momenta much smaller than the mass of the leptoquark, the

corresponding matrix element is

iM = (−i)2|λ|2 〈ν, q| (νPR qc)

( −i

M2
S

)

(qcPL ν) |ν, q〉 . (68)

Using the Fiertz rearrangement

(νPR qc) (qcPL ν) = −1

2
(νγµPL ν) (qcγµPR qc) = +

1

2
(νγµPL ν) (qγµPL q) , (69)

we obtain

iM =
i|λ|2
2M2

S

〈ν| νγµPLν |ν〉 〈q| qγµPLq |q〉 → i
|λ|2
4M2

S

Nq

(

φ†
νφν

)

= −iVν

(

φ†
νφν

)

, (70)

20

Figure 5.6: Diagrams contributing to neutrino oscillation matter effects from the exchange of (a) S0
1 or the isospin

0 component of ~S3, and (b) the isospin −1 component of ~S3. The EM charge Qem = I3 + Y for S0
1 and S0

3 are +1
3 ,

while that for S−3 is − 2
3 .

The (ij) = (12) and (13) interactions of the leptoquarks S1 and ~S3 are, respectively,

L = −g12
1L(dc

LνµL)S1 − g13
1L(dc

LντL)S1 + h.c. , (5.58)
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and

L = g12
3L

[
−(dc

LνµL)S0
3 +

√
2(uc

LνµL)S−3

]
+ g13

3L

[
−(dc

LντL)S0
3 +

√
2(uc

LντL)S−3

]
+ h.c.

(5.59)

The interactions described by Eqs. (5.58) and (5.59) can be written in a common general form as

L = λ (qcPL ν)S + λ∗(νPR q
c)S̄ , (5.60)

where q = u or d. The Feynman diagrams contributing to neutrino oscillation matter effects are
shown in Fig. 5.6. At momenta much smaller than the mass of the leptoquark, the corresponding
matrix element is

iM = (−i)2|λ|2 〈ν, q| (νPR q
c)

(
−i
M2

S

)
(qcPL ν) |ν, q〉 . (5.61)

Using the Fierz rearrangement

(νPR q
c) (qcPL ν) = −1

2
(νγµPL ν) (qcγµPR q

c) = +
1

2
(νγµPL ν) (qγµPL q) , (5.62)

we obtain

iM =
i|λ|2

2M2
S

〈ν| νγµPLν |ν〉 〈q| qγµPLq |q〉 → i
|λ|2

4M2
S

Nq

(
φ†νφν

)
= −iVν

(
φ†νφν

)
, (5.63)

where

Vν ≡ −
Nq

4

|λ|2

M2
S

. (5.64)

Applying this expression to the S1 case, the effective potential for the neutrino of generation number
j is:

Vνj
= −Nd

4

∣∣g1j
1L

∣∣2
M2

S1

= −(Np + 2Nn)

4

∣∣g1j
1L

∣∣2
M2

S1

≈ −3N

4

∣∣g1j
1L

∣∣2
M2

S1

, (5.65)

The effective ξ is then

ξS1 =
Vν3 − Vν2

VCC

= +3
( |g12

1L|
2 − |g13

1L|
2

)/M2
S1

g2/M2
W

. (5.66)

For the ~S3 case, the effective potential is

Vνj
= −Nd

4

|g1j
3L|2

M2
S0

3

− Nu

2

|g1j
3L|2

M2
S−3

= −|g1j
3L|

2

[
(Np + 2Nn)

4M2
S0

3

− (2Np +Nn)

2M2
S−3

]

≈ −3N

4

∣∣g1j
3L

∣∣2( 1

M2
S0

3

+
2

M2
S−3

)
, (5.67)
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FIG. 7: Diagrams contributing to neutrino oscillation matter effects from the exchange of (a) S−
2 ,

and (b) S̃−
2 . The EM charge Qem = I3 + Y for S−

2 is +2
3 , while that for S̃−

2 is −1
3 .

for S̃−
2 leptoquarks. Both (77) and (78) can be written in a common general form as

L = λ (qPL ν)S + λ∗(νPR q)S̄ , (79)

where q = u or d. The Feynman diagram contributing to neutrino oscillation matter effects

is shown in Fig. 7a. For momenta much smaller than the mass of the leptoquark, the

corresponding matrix element is

iM = (−i)2|λ|2 〈ν, q| (νPR q)

( −i

M2
S

)

(qPL ν) |ν, q〉 . (80)

Using the Fiertz identity given in Eq. (69) again, we obtain

iM = −i
|λ|2
2M2

S

〈ν| νγµPL ν |ν〉 〈q| qγµPR q |q〉 → −i
|λ|2
4M2

S

Nq

(

φ†
νφν

)

= −iVν

(

φ†
νφν

)

, (81)

where

Vν = +
Nq

4

|λ|2
M2

S

. (82)

Applying this expression to the S−
2 case, the effective potential for the neutrino of generation

number j is

Vνj
= +

Nu

4

∣

∣h1j
2L

∣

∣

2

M2
S−

2

= +
(2Np + Nn)

4

∣

∣h1j
2L

∣

∣

2

M2
S−

2

≈ +
3N

4

∣

∣h1j
2L

∣

∣

2

M2
S−

2

, (83)

and the effective ξ is

ξS−

2

=
Vν3

− Vν2

VCC

= −3
( |h12

2L|
2 − |h13

2L|
2

)/M2
S−

2

g2/M2
W

. (84)

22

Figure 5.7: Diagrams contributing to neutrino oscillation matter effects from the exchange of (a) S−2 , and (b) S̃−2 .
The EM charge Qem = I3 + Y for S−2 is +2

3 , while that for S̃−2 is − 1
3 .

and the effective ξ is

ξ~S3
=

Vν3 − Vν2

VCC

= +3
|g12

3L|
2 − |g13

3L|
2

g2/M2
W

(
1

M2
S0

3

+
2

M2
S−3

)
. (5.68)

In the case of degenerate mass, MS0
3

= MS−3
≡MS3 , we have

ξ~S3
= +9

( |g12
3L|

2 − |g13
3L|

2
)/M2

S3

g2/M2
W

. (5.69)

5.3.2 S2 and S̃2 leptoquarks

The relevant interactions are

L = h12
2L(uRνµL)S−2 + h13

2L(uRντL)S−2 + h.c. (5.70)

for S−2 and

L = h̃12
2L(dRνµL)S̃−2 + h̃13

2L(dRντL)S̃−2 + h.c. (5.71)

for S̃−2 leptoquarks. Both (5.70) and (5.71) can be written in a common general form as

L = λ (qPL ν)S + λ∗(νPR q)S̄ , (5.72)

where q = u or d. The Feynman diagram contributing to neutrino oscillation matter effects is
shown in Fig. 5.7a. For momenta much smaller than the mass of the leptoquark, the corresponding
matrix element is

iM = (−i)2|λ|2 〈ν, q| (νPR q)

(
−i
M2

S

)
(qPL ν) |ν, q〉 . (5.73)

Using the Fierz identity given in Eq. (5.62) again, we obtain

iM = −i |λ|
2

2M2
S

〈ν| νγµPL ν |ν〉 〈q| qγµPR q |q〉 → −i |λ|
2

4M2
S

Nq

(
φ†νφν

)
= −iVν

(
φ†νφν

)
, (5.74)
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where

Vν = +
Nq

4

|λ|2

M2
S

. (5.75)

Applying this expression to the S−2 case, the effective potential for the neutrino of generation
number j is

Vνj
= +

Nu

4

∣∣h1j
2L

∣∣2
M2

S−2

= +
(2Np +Nn)

4

∣∣h1j
2L

∣∣2
M2

S−2

≈ +
3N

4

∣∣h1j
2L

∣∣2
M2

S−2

, (5.76)

and the effective ξ is

ξS−2 =
Vν3 − Vν2

VCC

= −3
( |h12

2L|
2 − |h13

2L|
2

)/M2
S−2

g2/M2
W

. (5.77)

The effective potential for the S̃−2 case is

Vνj
= +

Nd

4

|h̃1j
2L|2

M2
S̃−2

= +
(Np + 2Nn)

4

|h̃1j
2L|2

M2
S̃−2

≈ +
3N

4

|h̃1j
2L|2

M2
S̃−2

, (5.78)

and the effective ξ is

ξS̃−2 =
Vν3 − Vν2

VCC

= −3
( |h̃12

2L|2 − |h̃13
2L|2 )/M2

S̃−2

g2/M2
W

. (5.79)

5.3.3 V2 and Ṽ2

The effective potential for the S̃−
2 case is

Vνj
= +

Nd

4

|h̃1j
2L|2

M2
S̃−

2

= +
(Np + 2Nn)

4

|h̃1j
2L|2

M2
S̃−

2

≈ +
3N

4

|h̃1j
2L|2

M2
S̃−

2

, (85)

and the effective ξ is

ξS̃−

2

=
Vν3

− Vν2

VCC

= −3
( |h̃12

2L|2 − |h̃13
2L|2 )/M2

S̃−

2

g2/M2
W

. (86)

C. V2 and Ṽ2

νj(k) d(p)

d(p) νj(k)
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2

−p− k

+i g1j
2L +i g1j

2L

(a)

νj(k) u(p)

u(p) νj(k)

Ṽ −
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−p− k

+i g1j
2L +i g1j

2L

(b)

FIG. 8: Diagrams contributing to neutrino oscillation matter effects from the exchange of (a) V −
2 ,

and (b) Ṽ −
2 . The EM charge Qem = I3 + Y for V −

2 is +1
3 , while that for Ṽ −

2 is −2
3 .

The relevant interactions for V −
2 are

L = g12
2L(dc

RγµνµL)V −
2µ + g13

2L(dc
RγµντL)V −

2µ + h.c. (87)

and those for Ṽ −
2 are

L = g̃12
2L(uc

RγµνµL)Ṽ −
2µ + g̃13

2L(uc
RγµντL)Ṽ −

2µ + h.c. (88)

Both (87) and (88) can be written in a common general form as

L = λ (qcγµPL ν)Vµ + λ∗(νγµPL qc)V̄µ . (89)

The Feynman diagrams contributing to neutrino oscillation matter effects are shown in

Fig. 8. For momenta much smaller than the mass of the leptoquark the corresponding

matrix element is

iM = (−i)2|λ|2 〈ν, q| (νγµPL qc)

(

i

M2
V

)

(qcγµPL ν) |ν, q〉 . (90)
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Figure 5.8: Diagrams contributing to neutrino oscillation matter effects from the exchange of (a) V −
2 , and (b) Ṽ −

2 .
The EM charge Qem = I3 + Y for V −

2 is +1
3 , while that for Ṽ −

2 is − 2
3 .

The relevant interactions for V −
2 are

L = g12
2L(dc

Rγ
µνµL)V −

2µ + g13
2L(dc

Rγ
µντL)V −

2µ + h.c. (5.80)

and those for Ṽ −
2 are

L = g̃12
2L(uc

Rγ
µνµL)Ṽ −

2µ + g̃13
2L(uc

Rγ
µντL)Ṽ −

2µ + h.c. (5.81)
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Both (5.80) and (5.81) can be written in a common general form as

L = λ (qcγµPL ν)Vµ + λ∗(νγµPL q
c)V̄µ . (5.82)

The Feynman diagrams contributing to neutrino oscillation matter effects are shown in Fig. 5.8.
For momenta much smaller than the mass of the leptoquark the corresponding matrix element is

iM = (−i)2|λ|2 〈ν, q| (νγµPL q
c)

(
i

M2
V

)
(qcγµPL ν) |ν, q〉 . (5.83)

Using the Fierz rearrangement

(νγµPL q
c) (qcγµPL ν) = (νγµPL ν) (qcγµPL q

c) = − (νγµPL ν) (qγµPR q) , (5.84)

we obtain

iM = i
|λ|2

M2
V

〈ν| νγµPL ν |ν〉 〈q| qγµPR q |q〉 → i
|λ|2

2M2
V

Nq

(
φ†νφν

)
= −iVν

(
φ†νφν

)
, (5.85)

where

Vν ≡ −
Nq

2

|λ|2

M2
V

. (5.86)

Applying this to the V −
2 case, the effective potential for the neutrino of generation number j is

Vνj
= −Nd

2

∣∣g1j
2L

∣∣2
M2

V −
2

= −(Np + 2Nn)

2

∣∣g1j
2L

∣∣2
M2

V −
2

≈ −3N

2

∣∣g1j
2L

∣∣2
M2

V −
2

. (5.87)

The effective ξ is

ξV −
2

=
Vν3 − Vν2

VCC

= +6
( |g12

2L|
2 − |g13

2L|
2

)/M2
V −
2

g2/M2
W

. (5.88)

The effective potential for the Ṽ −
2 case is

Vνj
= −Nu

2

|g̃12
2L|

2

M2
Ṽ −
2

= −(2Np +Nn)

2

|g̃12
2L|

2

M2
Ṽ −
2

≈ −Nu

2

|g̃12
2L|

2

M2
Ṽ −
2

. (5.89)

The effective ξ is

ξṼ −
2

=
Vν3 − Vν2

VCC

= +6
( |g̃12

2L|
2 − |g̃13

2L|
2

)/M2
Ṽ −
2

g2/M2
W

. (5.90)

5.3.4 V1 and ~V3 leptoquarks

The relevant interactions for V1 are

L = h12
1L(uLγ

µνµL)V1µ + h13
1L(uLγ

µντL)V1µ + h.c. (5.91)

and those for ~V3 are

L = h12
3L

[
(uLγ

µνµL)V 0
3µ +

√
2(dLγ

µνµL)V −
3µ

]
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FIG. 9: Diagrams contributing to neutrino oscillation matter effects from the exchange of (a)

V 0
1 or the isospin 0 component of ~V3, and (b) the isospin −1 component of ~V3. The EM charges

Qem = I3 + Y for V 0
1 and V 0

3 are +2
3 , while that for V −

3 is −1
3 .

The interactions described by Eqs. (98) and (99) can be written in a common general form

as

L = λ (qγµPL ν)V + λ∗(νγµPL q)V̄ . (100)

The Feynman diagrams contributing to neutrino oscillation matter effects are shown in

Fig. 9. For momenta much smaller than the mass of the leptoquark the corresponding

matrix element is

iM = (−i)2|λ|2 〈ν, q| (νγµPL q)

(

i

M2
V

)

(qγµPL ν) |ν, q〉 . (101)

Using the Fiertz identity given in Eq. (91) again, we find

iM = −i
|λ|2
M2

V

〈ν| νγµPL ν |ν〉 〈q| qγµPL q |q〉 → −i
|λ|2
2M2

V

Nq

(

φ†
νφν

)

= −iVν

(

φ†
νφν

)

, (102)

where

Vν ≡ +
Nq

2

|λ|2
M2

V

. (103)

Applying this result to the V1 case, effective potential is

Vνj
= +

Nu

2

∣

∣h1j
1L

∣

∣

2

(MV1
)2 = +

(2Np + Nn)

2

∣

∣h1j
1L

∣

∣

2

(MV1
)2 ≈ +

3N

2

∣

∣h1j
1L

∣

∣

2

(MV1
)2 . (104)

The effective ξ is

ξV1
=

Vν3
− Vν2

VCC

= −6
( |h12

1L|
2 − |h13

1L|
2

)/M2
V1

g2/M2
W

. (105)
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Figure 5.9: Diagrams contributing to neutrino oscillation matter effects from the exchange of (a) V 0
1 or the isospin

0 component of ~V3, and (b) the isospin −1 component of ~V3. The EM charges Qem = I3 + Y for V 0
1 and V 0

3 are +2
3 ,

while that for V −
3 is − 1

3 .

+h13
3L

[
(uLγ

µντL)V 0
3µ +

√
2(dLγ

µντL)V −
3µ

]
+ h.c. (5.92)

The interactions described by Eqs. (5.91) and (5.92) can be written in a common general form as

L = λ (qγµPL ν)V + λ∗(νγµPL q)V̄ . (5.93)

The Feynman diagrams contributing to neutrino oscillation matter effects are shown in Fig. 5.9.
For momenta much smaller than the mass of the leptoquark the corresponding matrix element is

iM = (−i)2|λ|2 〈ν, q| (νγµPL q)

(
i

M2
V

)
(qγµPL ν) |ν, q〉 . (5.94)

Using the Fierz identity given in Eq. (5.84) again, we find

iM = −i |λ|
2

M2
V

〈ν| νγµPL ν |ν〉 〈q| qγµPL q |q〉 → −i |λ|
2

2M2
V

Nq

(
φ†νφν

)
= −iVν

(
φ†νφν

)
, (5.95)

where

Vν ≡ +
Nq

2

|λ|2

M2
V

. (5.96)

Applying this result to the V1 case, effective potential is

Vνj
= +

Nu

2

∣∣h1j
1L

∣∣2
(MV1)

2 = +
(2Np +Nn)

2

∣∣h1j
1L

∣∣2
(MV1)

2 ≈ +
3N

2

∣∣h1j
1L

∣∣2
(MV1)

2 . (5.97)

The effective ξ is

ξV1 =
Vν3 − Vν2

VCC

= −6
( |h12

1L|
2 − |h13

1L|
2

)/M2
V1

g2/M2
W

. (5.98)
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LQ CLQ δλ2
LQ upper bound from |ξ| ≤ ξ0 current bounds from Ref. [30]

S1 +3 |g12
1L|2 − |g13

1L|2 1.1× 10−3 (g12
1L)2 ≤ 3.7× 10−3 (Rπ)

(g13
1L)2 ≤ 0.7 (τ → πν)

~S3 +9 |g12
3L|2 − |g13

3L|2 3.7× 10−4 (g12
3L)2 ≤ 8× 10−4 (Rπ)

(g13
3L)2 ≤ 0.7 (τ → πν)

S2 −3 |h12
2L|2 − |h13

2L|2 1.1× 10−3 (h12
2L)2 ≤ 1 (µN → µX)

S̃2 −3 |h̃12
2L|2 − |h̃13

2L|2 1.1× 10−3 (h̃12
2L)2 ≤ 2 (µN → µX)

V2 +6 |g12
2L|2 − |g13

2L|2 5.5× 10−4 (g12
2L)2 ≤ 1 (µN → µX)

Ṽ2 +6 |g̃12
2L|2 − |g̃13

2L|2 5.5× 10−4 (g̃12
2L)2 ≤ 5 (µN → µX)

V1 −6 |h12
1L|2 − |h13

1L|2 5.5× 10−4 (h12
1L)2 ≤ 1.8× 10−3 (Rπ)

(h13
1L)2 ≤ 0.1 (D → µν)

~V3 −18 |h12
3L|2 − |h13

3L|2 1.8× 10−4 (h12
3L)2 ≤ 4× 10−4 (Rπ)

(h13
3L)2 ≤ 0.1 (D → µν)

Table 5.4: Constraints on the leptoquark couplings with all the leptoquark masses set to 100 GeV. To obtain the
bounds for a different leptoquark mass MLQ, simply rescale these numbers with the factor (MLQ/100 GeV)2.

The effective potential for the ~V3 case is

Vνj
= +

Nu

2

∣∣h1j
3L

∣∣2
M2

V 0
3

+Nd

∣∣h1j
3L

∣∣2
M2

V −
3

= +
∣∣h1j

3L

∣∣2 [(2Np +Nn)

2M2
V 0
3

+
(Np + 2Nn)

M2
V −
3

]

≈ +
3N

2

∣∣h1j
3L

∣∣2( 1

M2
V 0
3

+
2

M2
V −
3

)
. (5.99)

The effective ξ is

ξ~V3
=

Vν3 − Vν2

VCC

= −6
|h12

3L|
2 − |h13

3L|
2

g2/M2
W

(
1

M2
V 0
3

+
2

M2
V −
3

)
. (5.100)

In the case of degenerate mass, MV 0
3

= MV −
3
≡MV3 , we have

ξ~V3
= −18

( |h12
3L|

2 − |h13
3L|

2
)/M2

V3

g2/M2
W

. (5.101)

5.3.5 Constraints on the Leptoquark Couplings and Masses

Assuming3 a common mass for leptoquarks in the same SU(2)L weak-isospin multiplet, the effective
ξ due to the exchange of any particular type of leptoquark can be written in the form

ξLQ = CLQ

δλ2
LQ/M

2
LQ

g2/M2
W

=
CLQ

4
√

2GF

(
δλ2

LQ

M2
LQ

)
. (5.102)

3The consideration given in this section overlaps to some extend with the consideration of section 2.4.1 .
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The effective potential for the ~V3 case is

Vνj
= +

Nu

2

∣

∣h1j
3L

∣

∣

2

M2
V 0

3

+ Nd

∣

∣h1j
3L

∣

∣

2

M2
V −

3

= +
∣

∣h1j
3L

∣

∣

2

[

(2Np + Nn)

2M2
V 0

3

+
(Np + 2Nn)

M2
V −

3

]

≈ +
3N

2

∣

∣h1j
3L

∣

∣

2

(

1

M2
V 0

3

+
2

M2
V −

3

)

. (106)

The effective ξ is

ξ~V3
=

Vν3
− Vν2

VCC

= −6
|h12

3L|
2 − |h13

3L|
2

g2/M2
W

(

1

M2
V 0

3

+
2

M2
V −

3

)

. (107)

In the case of degenerate mass, MV 0

3
= MV −

3

≡ MV3
, we have

ξ~V3
= −18

( |h12
3L|

2 − |h13
3L|

2
)/M2

V3

g2/M2
W

. (108)
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FIG. 10: ξLQ dependence on the leptoquark mass for
√

∆λ2
LQ = 0.5. (a) S1; (b) V2, Ṽ2; (c) ~S3;

(d) S2, S̃2; (e) V1; (f) ~V3.
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Figure 5.10: ξLQ dependence on the leptoquark mass for
√

∆λ2
LQ = 0.5. (a) S1; (b) V2, Ṽ2; (c) ~S3; (d) S2, S̃2; (e)

V1; (f) ~V3.

Process (ij) LQ Assumptions 95% CL bound Reference
pp̄ → LQLQX → (jν)(jν)X (∗∗) S β = 0(a) 117 GeV CDF [31]
pp̄ → LQLQX → (jν)(jν)X (∗∗) S β = 0 135 GeV D0 [32]
pp̄ → LQLQX → (jµ)(jµ)X (∗2) S β = 0.5 208 GeV CDF [33]
pp̄ → LQLQX → (jµ)(jν)X
pp̄ → LQLQX → (jµ)(jµ)X (∗2) S β = 0.5 204 GeV D0 [34]
pp̄ → LQLQX → (jµ)(jν)X
pp̄ → LQµX → (jµ)µX (∗2) S β = 0.5, λ = 1(b) 226 GeV(c) D0 [35]
pp̄ → LQLQX → (jτ)(jτ)X (∗3) V minimal coupling [97] 251 GeV CDF [98]

Table 5.5: Direct search limits on the Leptoquark mass from the Tevatron. (a)β is the assumed branching fraction
B(LQ → q`) = 1 − B(LQ → qν), and (b)λ is the Yukawa coupling of the Leptoquark with the quark-lepton pair.
(c)Combined bound with the pair production data.

Here, CLQ is a constant prefactor, and δλ2
LQ represents

δλ2
LQ = |λ12

LQ|2 − |λ13
LQ|2 , (5.103)

where λij
LQ is a generic coupling constant. The values of CLQ and δλ2

LQ for the different types of
leptoquark are listed in the first two columns of Table 5.4. In Fig. 5.10, we show how ξLQ depend

on the leptoquark mass MLQ for the choice
√
δλ2

LQ = 0.5, where we have assumed δλ2
LQ > 0. To

obtain the picture for the case when δλ2
LQ < 0, the vertical axis of the graph should be flipped.

The constraint |ξLQ| ≤ ξ0 translates into:

MLQ ≥MW

√
|δλ2

LQ|
g2

√
|CLQ|
ξ0

=

√
|CLQ||δλ2

LQ|
4
√

2GF ξ0
≈
√
|CLQ||δλ2

LQ| × (1700 GeV) . (5.104)

The resulting bounds are shown in Fig. 5.11, where the regions of the (MLQ,
√
|δλ2

LQ|) parameter

space below each of the lines will be excluded. One can also fix the leptoquark mass and obtain
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FIG. 11: Lower bounds on the leptorquark masses. (a) S1, S2, S̃2; (b) V1, V2, Ṽ2; (c) ~S3; (d) ~V3.

Process (ij) LQ Assumptions 95% CL bound Reference

pp̄ → LQLQX → (jν)(jν)X (∗∗) S β = 0(a) 117 GeV CDF [34]

pp̄ → LQLQX → (jν)(jν)X (∗∗) S β = 0 135 GeV D0 [35]

pp̄ → LQLQX → (jµ)(jµ)X (∗2) S β = 0.5 208 GeV CDF [36]

pp̄ → LQLQX → (jµ)(jν)X

pp̄ → LQLQX → (jµ)(jµ)X (∗2) S β = 0.5 204 GeV D0 [37]

pp̄ → LQLQX → (jµ)(jν)X

pp̄ → LQµ X → (jµ)µ X (∗2) S β = 0.5, λ = 1(b) 226 GeV(c) D0 [38]

pp̄ → LQLQX → (jτ)(jτ)X (∗3) V minimal coupling [40] 251 GeV CDF [39]

TABLE VI: Direct search limits on the Leptoquark mass from the Tevatron. (a)β is the assumed

branching fraction B(LQ → qℓ) = 1 − B(LQ → qν), and (b)λ is the Yukawa coupling of the

Leptoquark with the quark-lepton pair. (c)Combined bound with the pair production data.

should be flipped. The constraint |ξLQ| ≤ ξ0 translates into:

MLQ ≥ MW

√

|δλ2
LQ|

g2

√

|CLQ|
ξ0

=

√

|CLQ||δλ2
LQ|

4
√

2GF ξ0

≈
√

|CLQ||δλ2
LQ| × (1700 GeV) . (111)

The resulting bounds are shown in Fig. 11, where the regions of the (MLQ,
√

|δλ2
LQ|) param-

eter space below each of the lines will be excluded. One can also fix the leptoquark mass
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Figure 5.11: Lower bounds on the leptoquark masses. (a) S1, S2, S̃2; (b) V1, V2, Ṽ2; (c) ~S3; (d) ~V3.

upper bounds on the leptoquark couplings:

|δλ2
LQ| ≤

(
4
√

2GF ξ0
|CLQ|

)
M2

LQ =
3.3× 10−3

|CLQ|

(
MLQ

100 GeV

)2

. (5.105)

The values whenMLQ = 100 GeV are listed in the third column of Table 5.4. The bounds for a differ-
ent choice of leptoquark mass MLQ can be obtained by multiplying by a factor of (MLQ/100GeV)2.
This result can be compared with various indirect bounds from rare processes which are listed in
the last column of Table 5.44. As can be seen, the limits from |ξ| ≤ ξ0 can significantly improve
existing bounds.

Limits on leptoquark masses from direct searches at the Tevatron are listed in Table 5.5. Bounds
from LEP and LEP II are weaker due to their smaller center of mass energies. Since neutrino
oscillation is only sensitive to leptoquarks with (ij) = (12) and/or (ij) = (13) couplings, we only
quote limits which apply to leptoquarks with only those particular couplings, that is, leptoquarks
that decay into a first generation quark, and either a second or third generation lepton. Though
it is usually stated in collider analyses that leptoquarks are assumed to decay into a quark-lepton
pair of one particular generation, it is often the case that the jets coming from the quarks are not
flavor tagged. Analyses that look for the leptoquark in the quark-neutrino decay channel are of
course blind to the flavor of the neutrino. Therefore, the bounds listed apply to leptoquarks with
generation non-diagonal couplings also.

As can be seen from Table 5.5, the mass bounds from the Tevatron are typically around 200 GeV
and are mostly independent of the leptoquark-quark-lepton coupling λ. This independence is due
to the dominance of the strong interaction processes, qq̄ annihilation and gluon fusion, in the
leptoquark pair-production cross sections, and the fact that heavy leptoquarks decay without a
displaced vertex even for very small values of λ: the decay widths of scalar and vector leptoquarks

4We updated the limits of Ref. [30] extracted from the measured value of Rπ .

97



with leptoquark-quark-lepton coupling λ are given by λ2MLQ/16π and λ2MLQ/24π, respectively,
which correspond to lifetimes of O(10−21) seconds for MLQ = O(102) GeV, and λ = O(10−2).
In contrast, the potential bound on MLQ from neutrino oscillation, Eq. (5.104), depends on the

coupling
√
|CLQ||δλ2

LQ|, but can be expected to be stronger than the existing ones for
√
|CLQ||δλ2

LQ|
as small as 0.1.

Bounds on leptoquarks with (ij) = (12) couplings can also be obtained from bounds on contact
interactions of the form

L = ± 4π

(Λ±
qµ)2

(q̄γµPXq) (µ̄γµPLµ) , (5.106)

where X = L or R, and q = u or d. For instance, at energies much lower than the leptoquark mass,
the exchange of the S1 leptoquark leads to the interaction

LS1 = +
|g12

1L|2

2M2
S1

(ūγµPLu) (µ̄γµPLµ) . (5.107)

The remaining cases are listed in Table 5.6. The 95% CL lower bounds on the Λ±
q`’s from CDF

can be found in Ref. [36], and the cases relevant to our discussion are listed in Table 5.7. These
bounds translate into bounds on the leptoquark masses and couplings listed in Table 5.6. Clearly,
the potential bounds from |ξ| < ξ0, also listed in Table 5.6, are much stronger. It should be
noted, though, that the results of Ref. [36] are from Tevatron Run I, and we can expect the Run
II results to improve these bounds. Indeed, Ref. [37] from D0 analyzes the Run II data for contact
interactions of the form

L = ± 4π

(Λ±)2

(
ūγµPXu+ d̄γµPXd

)
(µ̄γµPLµ) , X = L or R , (5.108)

and places 95% CL lower bounds on the Λ±’s in the 4 ∼ 7 TeV range. While these are not exactly
the interactions induced by leptoquarks, we can nevertheless expect that the bounds on the Λ±

qµ’s
will be in a similar range, and thereby conclude that the Run II data will roughly double the lower
bounds from Run I. Even then, Table 5.6 indicates that the potential bounds from |ξ| < ξ0 will be
much stronger.

The prospects for leptoquark discovery at the LHC are discussed in Refs. [41, 42]. At the LHC,
leptoquarks can be pair-produced via gluon fusion and quark-antiquark annihilation, or singly-
produced with an accompanying lepton via quark-gluon fusion. The pair-production cross section
is dominated by gluon fusion, which does not involve the leptoquark-quark-lepton coupling λ, and
is therefore independent of the details assumed for the leptoquark interactions. Once produced,
each leptoquark will decay into a lepton plus jet, regardless of whether the coupling is generation
diagonal or not. The leptoquark width in this decay depends on λ, but it is too narrow compared
to the calorimeter resolution for the λ-dependence to be of relevance in the analyses. Therefore,
though the analyses of Refs. [41, 42] assume specific values of λ and generation diagonal couplings,
we expect their conclusions to apply equally well to different λ-values and generation non-diagonal
cases: for β = B(LQ → q`) = 0.5, the expected sensitivity is up to MLQ ≈ 1 TeV with 30−1 fb of
data [42]. Again, in contrast, the the potential bound from neutrino oscillation, Eq. (5.104), depends

on the coupling
√
|CLQ||δλ2

LQ|. If
√
|CLQ||δλ2

LQ| = O(1), then Eq. (5.104) will be competitive with

the expected LHC bound.
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LQ Induced Interaction CDF 95% CL [36] |ξ| < ξ0

S1 +
|g12

1L|2

2M2
S1

(ūγµPLu) (µ̄γµPLµ)
MS1

|g12
1L|

≥ 0.68 TeV
MS1√
δg2

1L

≥ 3.0 TeV

S2 −|h
12
2L|2

2M2
S2

(ūγµPRu) (µ̄γµPLµ)
MS2

|h12
2L|

≥ 0.72 TeV
MS2√
δh2

2L

≥ 3.0 TeV

S̃2 −|h̃
12
2L|2

2M2
S̃2

(
d̄γµPRd

)
(µ̄γµPLµ)

MS̃2

|h̃12
2L|

≥ 0.38 TeV
MS̃2√
δh̃2

2L

≥ 3.0 TeV

S3 +
|g12

3L|2

2M2
S3

(
ūγµPLu + 2 d̄γµPLd

)
(µ̄γµPLµ) —

MS̃3√
δg̃2

3L

≥ 5.2 TeV

V1 −|h
12
1L|2

M2
V1

(
d̄γµPLd

)
(µ̄γµPLµ)

MV1

|h12
1L|

≥ 0.48 TeV
MV1√
δh2

1L

≥ 4.3 TeV

V2 +
|g12

2L|2

M2
V2

(
d̄γµPRd

)
(µ̄γµPLµ)

MV2

|g12
2L|

≥ 0.56 TeV
MV2√
δg2

2L

≥ 4.3 TeV

Ṽ2 +
|g̃12

2L|2

M2
Ṽ2

(ūγµPRu) (µ̄γµPLµ)
MṼ2

|g̃12
2L|

≥ 0.85 TeV
MṼ2√
δg̃2

2L

≥ 4.3 TeV

V3 −|h
12
3L|2

M2
V1

(
2 ūγµPLu + d̄γµPLd

)
(µ̄γµPLµ) —

MṼ3√
δh̃2

3L

≥ 7.4 TeV

Table 5.6: The quark-muon interactions induced by leptoquark exchange, and the bounds from CDF [36] compared
with potential bounds from neutrino oscillations. Only the couplings that also contribute to neutrino oscillation are
listed. Analysis of the Tevatron Run II data is expected to improve the CDF bound by a factor of two.

(qµ) chirality Λ+
uµ (TeV) Λ−

uµ (TeV) Λ+
dµ (TeV) Λ−

dµ (TeV)
(LL) 3.4 4.1 2.3 1.7
(RL) 3.0 3.6 2.0 1.9

Table 5.7: The 95% CL lower bound on the compositeness scale from CDF [36]. Results from D0 [37] do not provide
limits for cases where the muons couple to only u or d, but we expect the bounds to be in the range 4 ∼ 7 TeV.

5.4 SUSY Standard Model with R-parity Violation

Let us next consider contributions from R-parity violating couplings. Assuming the particle content
of the Minimal Supersymmetric Standard Model (MSSM), the most general R-parity violating
superpotential (involving only tri-linear couplings) has the form [77]

W 6R =
1

2
λijkL̂iL̂jÊk + λ′ijkL̂iQ̂jD̂k +

1

2
λ′′ijkÛiD̂jD̂k , (5.109)

where L̂i, Êi, Q̂i, D̂i, and Ûi are the left-handed MSSM superfields defined in the usual fashion, and
the subscripts i, j, k = 1, 2, 3 are the generation indices. (Note, however, that in some references,

such as Ref. [78], the isospin singlet superfields Êi, D̂i, and Ûi are defined to be right-handed, so
the corresponding left-handed fields in Eq. (5.109) appear with a superscript c indicating charge-
conjugation.) SU(2)L gauge invariance requires the couplings λijk to be antisymmetric in the first
two indices:

λijk = −λjik , (5.110)

whereas SU(3) gauge invariance requires the couplings λ′′ijk to be antisymmetric in the latter two:

λ′′ijk = −λ′′ikj . (5.111)
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These conditions reduce the number of R-parity violating couplings in Eq. (5.109) to 45 (9 λijk, 27

λ′ijk, and 9 λ′′ijk). The purely baryonic operator ÛiD̂jD̂k is irrelevant to our discussion on neutrino
oscillation so we will not consider the λ′′ijk couplings further. We also neglect possible bilinear R-
parity violating couplings which have the effect of mixing the neutrinos with the neutral higgsino;
their effect on neutrino oscillation has been discussed extensively by many authors [78, 99, 100].

5.4.1 L̂L̂Ê couplings

νi(k) e(p)

e(p) νi(k)

ẽjR

p + k

+i λi1j +i λi1j

νi(k) e(p)

e(p) νi(k)

ẽjL p− k

+i λij1

+i λij1

FIG. 12: LLE interactions that contribute to neutrino oscillation matter effects..

shown in Fig 12. Since λijk is antisymmetric under i ↔ j, it follows that i 6= j. Calculations

similar to those for the scalar leptoquarks yield

Vẽ(νi) =
Ne

4

(

∑

j 6=i

|λij1|2
M2

ẽjL

−
∑

j

|λi1j|2
M2

ẽjR

)

, (120)

or if we write everything out explicitly:

Vẽ(ν2) =
Ne

4

( |λ211|2
M2

ẽ1L

+
|λ231|2
M2

ẽ3L

− |λ211|2
M2

ẽ1R

− |λ212|2
M2

ẽ2R

− |λ213|2
M2

ẽ3R

)

,

Vẽ(ν3) =
Ne

4

( |λ311|2
M2

ẽ1L

+
|λ321|2
M2

ẽ2L

− |λ311|2
M2

ẽ1R

− |λ312|2
M2

ẽ2R

− |λ313|2
M2

ẽ3R

)

. (121)

The effective ξ is

ξẽ =
Vẽ(ν3)− Vẽ(ν2)

VCC

=
1

g2/M2
W

(

−
∑

j=1,3

|λ2j1|2
M2

ẽjL

−
∑

j=1,2

|λ3j1|2
M2

ẽjL

+

3
∑

j=1

|λ21j |2 − |λ31j |2
M2

ẽjR

)

=
1

g2/M2
W

[

(

|λ211|2 − |λ311|2
)

(

1

M2
ẽ1R

− 1

M2
ẽ1L

)

+ |λ231|2
(

1

M2
ẽ2L

− 1

M2
ẽ3L

)

+
|λ212|2 − |λ312|2

M2
ẽ2R

+
|λ213|2 − |λ313|2

M2
ẽ3R

]

. (122)

For degenerate s-electron masses MẽjL
= MẽjR

≡ Mẽj
, we have

ξẽ =
1

g2/M2
W

(

|λ231|2 + |λ122|2 − |λ132|2
M2

ẽ2

− |λ231|2 − |λ123|2 + |λ133|2
M2

ẽ3

)

, (123)

where we have used λijk = −λjik to reorder the indices.
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Figure 5.12: LLE interactions that contribute to neutrino oscillation matter effects..

The L̂L̂Ê part of the R-parity violating Lagrangian, Eq. (5.109), expressed in terms of the
component fields is

LLLE = λijk

[
ν̃iLekRejL + ẽjLekRνiL + ẽ∗kRν

c
iLejL

]
+ h.c. (5.112)

The second and third terms of this Lagrangian, together with their hermitian conjugates, contribute
to neutrino oscillation matter effects. The corresponding Feynman diagrams are shown in Fig 5.12.
Since λijk is antisymmetric under i↔ j, it follows that i 6= j. Calculations similar to those for the
scalar leptoquarks yield

Vẽ(νi) =
Ne

4

(∑
j 6=i

|λij1|2

M2
ẽjL

−
∑

j

|λi1j|2

M2
ẽjR

)
, (5.113)

or if we write everything out explicitly:

Vẽ(ν2) =
Ne

4

(
|λ211|2

M2
ẽ1L

+
|λ231|2

M2
ẽ3L

− |λ211|2

M2
ẽ1R

− |λ212|2

M2
ẽ2R

− |λ213|2

M2
ẽ3R

)
,

Vẽ(ν3) =
Ne

4

(
|λ311|2

M2
ẽ1L

+
|λ321|2

M2
ẽ2L

− |λ311|2

M2
ẽ1R

− |λ312|2

M2
ẽ2R

− |λ313|2

M2
ẽ3R

)
. (5.114)

The effective ξ is

ξẽ =
Vẽ(ν3)− Vẽ(ν2)

VCC

=
1

g2/M2
W

(
−
∑
j=1,3

|λ2j1|2

M2
ẽjL

−
∑
j=1,2

|λ3j1|2

M2
ẽjL

+
3∑

j=1

|λ21j|2 − |λ31j|2

M2
ẽjR

)
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=
1

g2/M2
W

[(
|λ211|2 − |λ311|2

)( 1

M2
ẽ1R

− 1

M2
ẽ1L

)
+ |λ231|2

(
1

M2
ẽ2L

− 1

M2
ẽ3L

)
+
|λ212|2 − |λ312|2

M2
ẽ2R

+
|λ213|2 − |λ313|2

M2
ẽ3R

]
. (5.115)

For degenerate s-electron masses MẽjL
= MẽjR

≡Mẽj
, we have

ξẽ =
1

g2/M2
W

(
|λ231|2 + |λ122|2 − |λ132|2

M2
ẽ2

− |λ231|2 − |λ123|2 + |λ133|2

M2
ẽ3

)
, (5.116)

where we have used λijk = −λjik to reorder the indices.

5.4.2 L̂Q̂D̂ couplings
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FIG. 13: LQD interactions that contribute to neutrino oscillation matter effects..

B. L̂Q̂D̂ couplings

The L̂Q̂D̂ part of the R-parity violating Lagrangian expressed in terms of the component

fields is

LLQD = λ′
ijk

[

ν̃iLdkRdjL + d̃jLdkRνiL + d̃∗kRνc
iLdjL

−
(

ẽiLdkRujL + ũjLdkReiL + d̃∗kRec
iLujL

)]

+ h.c. (124)

The second and third terms of this Lagrangian, together with their hermitian conjugates,

contribute to neutrino oscillation matter effects. The corresponding Feynman diagrams are

shown in Fig 13. Calculations similar to those for the scalar leptoquarks lead to the following

effective potential for neutrino flavor νi:

Vd̃(νi) =

3
∑

j=1

Np + 2Nn

4

(

∣

∣λ′
ij1

∣

∣

2

Md̃2

jL

−
∣

∣λ′
i1j

∣

∣

2

Md̃2

jR

)

≈
3
∑

j=1

3N

4

(

∣

∣λ′
ij1

∣

∣

2

Md̃2

jL

−
∣

∣λ′
i1j

∣

∣

2

Md̃2

jR

)

. (125)

The effective ξ is

ξd̃ =
Vd̃(ν3)− Vd̃(ν2)

VCC

= −3

3
∑

j=1

(

∣

∣λ′
2j1

∣

∣

2 −
∣

∣λ′
3j1

∣

∣

2
)

/M2
d̃jL
−
(

∣

∣λ′
21j

∣

∣

2 −
∣

∣λ′
31j

∣

∣

2
)

/M2
d̃jR

g2/M2
W

. (126)

For degenerate d-squark masses Md̃jL
= Md̃jR

≡ Md̃j
, we have

ξd̃ = −3

3
∑

j=1

(

∣

∣λ′
2j1

∣

∣

2 −
∣

∣λ′
3j1

∣

∣

2
+
∣

∣λ′
21j

∣

∣

2 −
∣

∣λ′
31j

∣

∣

2
)

/M2
d̃j

g2/M2
W

. (127)
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Figure 5.13: LQD interactions that contribute to neutrino oscillation matter effects..

The L̂Q̂D̂ part of the R-parity violating Lagrangian expressed in terms of the component fields
is

LLQD = λ′ijk

[
ν̃iLdkRdjL + d̃jLdkRνiL + d̃∗kRν

c
iLdjL

−
(
ẽiLdkRujL + ũjLdkReiL + d̃∗kRe

c
iLujL

)]
+ h.c. (5.117)

The second and third terms of this Lagrangian, together with their hermitian conjugates, contribute
to neutrino oscillation matter effects. The corresponding Feynman diagrams are shown in Fig 5.13.
Calculations similar to those for the scalar leptoquarks lead to the following effective potential for
neutrino flavor νi:

Vd̃(νi) =
3∑

j=1

Np + 2Nn

4

(∣∣λ′ij1∣∣2
Md̃2

jL

−
∣∣λ′i1j

∣∣2
Md̃2

jR

)
≈

3∑
j=1

3N

4

(∣∣λ′ij1∣∣2
Md̃2

jL

−
∣∣λ′i1j

∣∣2
Md̃2

jR

)
. (5.118)

The effective ξ is

ξd̃ =
Vd̃(ν3)− Vd̃(ν2)

VCC
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µ̃,d̃,h

on the smuon, sdown, and h± masses for
√

δλ2
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L̂L̂Ê R-parity violating interaction; (b) L̂Q̂D̂ R-parity violating interaction; and (c) the Zee/Babu-

Zee models.

C. Constraints on the R-parity Violating Couplings and Squark/Slepton Masses

To illustrate our result for R-parity violating interactions, we simplify the analysis by

assuming that only the λ122 and λ132 couplings are non-zero for the L̂L̂Ê case, and only the

λ′
211 and λ′

311 couplings are non-zero for the L̂Q̂D̂ case. Under these assumptions, only the

smuon, ẽ2 = µ̃, contributes in the first case, and only the sdown, d̃1 = d̃, contributes in the

latter. The corresponding ξ’s are

ξµ̃ = +
δλ2

µ̃/M
2
µ̃

(g/MW )2
= +

1

4
√

2GF

(

δλ2
µ̃

M2
µ̃

)

,

ξd̃ = −6
δλ2

d̃
/M2

d̃

(g/MW )2
= − 6

4
√

2GF

(

δλ2
d̃

M2
d̃

)

, (128)

where

δλ2
µ̃ ≡ |λ122|2 − |λ132|2 ,

δλ2
d̃
≡ |λ′

211|2 − |λ′
311|2 . (129)

Fig. 14 shows how ξµ̃ and ξd̃ depend on masses of the smuon and the sdown for a specific

choice of couplings:
√

δλ2
µ̃ =

√

δλ2
d̃

= 0.5 (we have assumed δλ2
d̃

and δλ2
µ̃ to be positive).

The bound |ξ| ≤ ξ0 = 0.005 translates into:

Mµ̃ ≥
√

|δλ2
µ̃|
√

1

4
√

2GF ξ0

≈
√

|δλ2
µ̃| × (1700 GeV) ,
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Figure 5.14: Dependence of ξµ̃,d̃,h on the smuon, sdown, and h± masses for
√

δλ2
µ̃,d̃,h

= 0.5 in the (a) L̂L̂Ê R-parity

violating interaction; (b) L̂Q̂D̂ R-parity violating interaction; and (c) the Zee/Babu-Zee models.

= −3
3∑

j=1

(∣∣λ′2j1

∣∣2 − ∣∣λ′3j1

∣∣2) /M2
d̃jL
−
(∣∣λ′21j

∣∣2 − ∣∣λ′31j

∣∣2) /M2
d̃jR

g2/M2
W

. (5.119)

For degenerate d-squark masses Md̃jL
= Md̃jR

≡Md̃j
, we have

ξd̃ = −3
3∑

j=1

(∣∣λ′2j1

∣∣2 − ∣∣λ′3j1

∣∣2 +
∣∣λ′21j

∣∣2 − ∣∣λ′31j

∣∣2) /M2
d̃j

g2/M2
W

. (5.120)

5.4.3 Constraints on the R-parity Violating Couplings and Squark/Slepton Masses

To illustrate our result for R-parity violating interactions, we simplify the analysis by assuming that
only the λ122 and λ132 couplings are non-zero for the L̂L̂Ê case, and only the λ′211 and λ′311 couplings

are non-zero for the L̂Q̂D̂ case. Under these assumptions, only the smuon, ẽ2 = µ̃, contributes in
the first case, and only the sdown, d̃1 = d̃, contributes in the latter. The corresponding ξ’s are

ξµ̃ = +
δλ2

µ̃/M
2
µ̃

(g/MW )2
= +

1

4
√

2GF

(
δλ2

µ̃

M2
µ̃

)
,

ξd̃ = −6
δλ2

d̃
/M2

d̃

(g/MW )2
= − 6

4
√

2GF

(
δλ2

d̃

M2
d̃

)
, (5.121)

where

δλ2
µ̃ ≡ |λ122|2 − |λ132|2 ,

δλ2
d̃
≡ |λ′211|2 − |λ′311|2 . (5.122)
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FIG. 15: Lower bounds on (a) the smuon mass in the L̂L̂Ê R-parity violating interaction model,

(b) the sdown mass in the L̂Q̂D̂ R-parity violating interaction model, and (c) the h± mass in the

Zee/Babu-Zee models, respectively.

Md̃ ≥
√

|δλ2
d̃
|
√

6

4
√

2GF ξ0

≈
√

|δλ2
d̃
| × (4300 GeV) . (130)

The resulting graphs for the lower mass bounds are shown in Fig. 15. The regions of the
(

Mµ̃,
√

|δλ2
µ̃|
)

and
(

Md̃,
√

|δλ2
d̃
|
)

parameter spaces below each of the lines are excluded.

One can also fix the smuon and sdown masses and obtain upper bounds on the R-parity

violating couplings:

√

|δλ2
µ̃| ≤

√

4
√

2GF ξ0 Mµ̃ = (0.057)

(

Mµ̃

100 GeV

)

,

√

|δλ2
d̃
| ≤

√

4
√

2GF ξ0

6
Md̃ = (0.023)

(

Md̃

100 GeV

)

. (131)

These relations are actually more useful than Eq. (130) since if the smuon and sdown exist,

their masses will be measured/constrained by searches for their pair-production at the LHC,

independently of the size of possible R-parity violating couplings.

Current bounds on R-parity violating couplings come from a variety of sources [14, 15].

The current indirect bounds of the four couplings under consideration from low-energy ex-

periments are listed in Table IX. Comparison with Eq. (131) shows that the bounds on

λ122 and λ132 are already fairly tight, and neutrino oscillation will do little to improve them.

On the other hand, the bounds on λ′
211 and λ′

311 can potentially be improved by factors of

roughly 2.5 and 5, respectively.
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Figure 5.15: Lower bounds on (a) the smuon mass in the L̂L̂Ê R-parity violating interaction model, (b) the sdown
mass in the L̂Q̂D̂ R-parity violating interaction model, and (c) the h± mass in the Zee/Babu-Zee models, respectively.

Fig. 5.14 shows how ξµ̃ and ξd̃ depend on masses of the smuon and the sdown for a specific choice

of couplings:
√
δλ2

µ̃ =
√
δλ2

d̃
= 0.5 (we have assumed δλ2

d̃
and δλ2

µ̃ to be positive). The bound

|ξ| ≤ ξ0 = 0.005 translates into:

Mµ̃ ≥
√
|δλ2

µ̃|

√
1

4
√

2GF ξ0
≈
√
|δλ2

µ̃| × (1700 GeV) ,

Md̃ ≥
√
|δλ2

d̃
|

√
6

4
√

2GF ξ0
≈
√
|δλ2

d̃
| × (4300 GeV) . (5.123)

The resulting graphs for the lower mass bounds are shown in Fig. 5.15. The regions of the(
Mµ̃,

√
|δλ2

µ̃|
)

and
(
Md̃,

√
|δλ2

d̃
|
)

parameter spaces below each of the lines are excluded. One

can also fix the smuon and sdown masses and obtain upper bounds on the R-parity violating
couplings: √

|δλ2
µ̃| ≤

√
4
√

2GF ξ0 Mµ̃ = (0.057)

(
Mµ̃

100 GeV

)
,

√
|δλ2

d̃
| ≤

√
4
√

2GF ξ0
6

Md̃ = (0.023)

(
Md̃

100 GeV

)
. (5.124)

These relations are actually more useful than Eq. (5.123) since if the smuon and sdown exist, their
masses will be measured/constrained by searches for their pair-production at the LHC, indepen-
dently of the size of possible R-parity violating couplings.

Current bounds on R-parity violating couplings come from a variety of sources [78, 83]. The
current indirect bounds of the four couplings under consideration from low-energy experiments are
listed in Table 5.8. Comparison with Eq. (5.124) shows that the bounds on λ122 and λ132 are already
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Coupling Current 2σ Bound Observable/Process

|λ122| 0.05
(

Mµ̃R

100 GeV

)
Vud from nuclear β decay/muon decay

|λ132| 0.07
(

Mµ̃R

100 GeV

)
Rτ =

Γ(τ− → e−ν̄eντ )
Γ(τ− → µ−ν̄µντ )

|λ122λ
∗
132| (2.2× 10−3)

(
Mν̃R

100 GeV

)2

τ → 3µ

|λ′211| 0.06
(

Md̃R

100 GeV

)
Rπ =

Γ(π− → e−ν̄e)
Γ(π− → µ−ν̄µ)

|λ′311| 0.12
(

Md̃R

100 GeV

)
Rτπ =

Γ(τ− → π−ντ )
Γ(π− → µ−νµ)

Table 5.8: Current 2σ bounds on R-parity violating couplings from Ref. [78]. These bounds assume that each
coupling is non-zero only one at a time.

fairly tight, and neutrino oscillation will do little to improve them. On the other hand, the bounds
on λ′211 and λ′311 can potentially be improved by factors of roughly 2.5 and 5, respectively.

Bounds on R-parity violating couplings from ep and pp̄ colliders come from searches for s-channel
resonant production of sparticles. The bounds from the ep collider HERA necessarily involve the
couplings λ′1jk since the squark must couple to the first generation lepton (electron or positron)
[101, 102, 103, 104] so we will not discuss them here. The bound from the Tevatron comes from the
analysis of D0 which looked for the R-parity violating processes dū→ µ̃ or dd̄→ ν̃µ, which occur if
λ′211 6= 0, followed by the decay of the slepton via the R-parity conserving processes µ̃ → χ̃0

1,2,3,4 µ

or ν̃µ → χ̃±1,2 µ [105]. The neutralinos and charginos produced in these processes cascade decay
down to the χ̃0

1 (the assumed lightest supersymmetric particle, or LSP) which decays via a virtual
smuon, muon-sneutrino, or squark though the R-parity violating λ′211 coupling again into a muon
and two jets, giving 2 muons in the final state. The bound on the value of λ′211 from this analysis
depends in a complicated manner on all the masses of the particles involved in the processes. If one
uses a minimal supergravity (mSUGRA) framework [106] with tan β = 5, µ < 0, and A0 = 0, then
the 95% bound is λ′211 ≤ 0.1 assuming Mµ̃ = 363 GeV [105]. A similar bound would result from
Eq. (5.124) if Md̃ = 460 GeV. However, since squarks are generically much heavier than sleptons
[106], the existing D0 bound is effectively stronger than the potential bound from |ξ| ≤ ξ0.

5.5 Extended Higgs Models

Most models, including the Standard Model (SM) and its various extensions, possess Higgs sectors
which distinguish among the different generation fermions. The models discussed in section 5.2 are
necessarily so, and so are the Zee [75] and Babu-Zee [76] models of neutrino mass, as well as various
triplet Higgs models [107]. As representative cases, we consider the effect of the singlet Higgs in the
Zee and Babu-Zee models, and that of a triplet Higgs with hypercharge Y = +1 (Qem = I3 + Y ).
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FIG. 16: Diagrams which generate the Majorana masses and mixings of the neutrino in the (a)

Zee [50] and (b) Babu-Zee [51] models.

V. EXTENDED HIGGS MODELS

Most models, including the Standard Model (SM) and its various extensions, possess

Higgs sectors which distinguish among the different generation fermions. The models dis-

cussed in section II are necessarily so, and so are the Zee [50] and Babu-Zee [51] models

of neutrino mass, as well as various triplet Higgs models [52]. As representative cases, we

consider the effect of the singlet Higgs in the Zee and Babu-Zee models, and that of a triplet

Higgs with hypercharge Y = +1 (Qem = I3 + Y ).

A. Singlet Higgs in the Zee and Babu-Zee Models

In the Zee [50] and Babu-Zee [51] models, an isosinglet scalar h+ with hypercharge Y = +1

is introduced, which couples to left-handed lepton doublets as

Lh = λab

(

ℓT
aLC iσ2 ℓbL

)

h+ + h.c. = λab

(

ℓc
aL iσ2 ℓbL

)

h+ + h.c. , (132)

where (ab) are flavor indices: a, b = e, µ, τ . The hypercharge assignment prohibits the h±

fields from having a similar interaction with the quarks. Due to SU(2) gauge invariance, the

couplings λab are antisymmetric: λab = −λba. This interaction is analogous to the R-parity

violating L̂L̂Ê coupling with h± playing the role of the slepton.

In the Zee model [50], in addition to the h±, two or more SU(2) doublets φα (α = 1, 2, · · · )
with hypercharge Y = −1

2
are introduced which couple to the h± via

Lφφh = Mαβ

(

φT
α iτ2 φβ

)

h+ + h.c. , (133)
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Figure 5.16: Diagrams which generate the Majorana masses and mixings of the neutrino in the (a) Zee [75] and (b)
Babu-Zee [76] models.

5.5.1 Singlet Higgs in the Zee and Babu-Zee Models

In the Zee [75] and Babu-Zee [76] models, an isosinglet scalar h+ with hypercharge Y = +1 is
introduced, which couples to left-handed lepton doublets as

Lh = λab

(
`TaLC iσ2 `bL

)
h+ + h.c. = λab

(
`caL iσ2 `bL

)
h+ + h.c. , (5.125)

where (ab) are flavor indices: a, b = e, µ, τ . The hypercharge assignment prohibits the h± fields
from having a similar interaction with the quarks. Due to SU(2) gauge invariance, the couplings

λab are antisymmetric: λab = −λba. This interaction is analogous to the R-parity violating L̂L̂Ê
coupling with h± playing the role of the slepton.

In the Zee model [75], in addition to the h±, two or more SU(2) doublets φα (α = 1, 2, · · · ) with
hypercharge Y = −1

2
are introduced which couple to the h± via

Lφφh = Mαβ

(
φT

α iτ2 φβ

)
h+ + h.c. , (5.126)

and to the fermions in the usual fashion. The couplings Mαβ are antisymmetric, just like λab,
which necessitates the introduction of more than one doublet. In this model, Majorana masses and
mixings of the neutrinos are generated at one-loop as shown in Fig. 5.16a. The extra doublets can
also contribute to neutrino oscillation depending on their Yukawa couplings to the leptons, but we
will assume that their effect is negligible compared to that of the h±.

In the Babu-Zee model [76], in addition to the h±, another isosinglet scalar k++ with hypercharge
Y = +2 is introduced which couples to the right-handed leptons and h± via

Lk = λ′ab

(
ec

aR ebR

)
k++ −M h+h+k−− + h.c. , (5.127)

where λ′ab = λ′ba. In this model, Majorana masses and mixings of the neutrinos are generated at
the two-loop level as shown in Fig. 5.16b. In this case, the extra scalar, k, does not contribute to
neutrino oscillation.

Expanding Eq. (5.125), we obtain

L = 2
[
λeµ

(
νc

eLµL − νc
µLeL

)
+ λeτ

(
νc

eLτL − νc
τLeL

)
+ λµτ

(
νc

µLτL − νc
τLµL

) ]
h+ + h.c. (5.128)

Keeping only the terms that are relevant for neutrino oscillation matter effects, we have

−2
(
λeµ νc

µL eL + λeτ νc
τL eL

)
h+ + h.c. (5.129)
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FIG. 17: Contribution to neutrino oscillation matter effects from a singly-charged Higgs in the

Zee, Babu-Zee, and Y = 1 Triplet Higgs models.

or

Mh ≥
√

|δλ2
h|√

2GF ξ0

≈
√

|δλ2
h| × (3500 GeV) . (140)

This result is represented graphically in Fig. 15. The region of the (Mh,
√

|δλ2
h|) parameter

space below the constructed line would be excluded.

A constraint on the exact same combination of the couplings and mass of the h± as

above exists from τ decay data: The measured value of the τ− → ντe
−ν̄e branching fraction

imposes the constraint [53]
∣

∣

∣

∣

δλ2
h

M2
h

∣

∣

∣

∣

≤ (3.4× 10−8) GeV−2 , (141)

which is clearly stronger than Eq. (139).

B. Triplet Higgs with Y = +1

We denote the components of an isotriplet Higgs with hypercharge Y = +1 as










∆++

∆+

∆0











. (142)

It is customary to write this in 2× 2 matrix form:

∆ ≡ 1√
2

[

∆0

(

σ1 − iσ2√
2

)

+ ∆+σ3 + ∆++

(

σ1 + iσ2√
2

)]

=





∆+/
√

2 ∆++

∆0 −∆+/
√

2



 .

(143)

The coupling of ∆ to the leptons is then

L∆ =
√

2λ′
ab

(

ℓT
aLC iσ2 ∆ ℓbL

)

+ h.c. =
√

2λ′
ab

(

ℓc
aL iσ2 ∆ ℓbL

)

+ h.c. (144)
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Figure 5.17: Contribution to neutrino oscillation matter effects from a singly-charged Higgs in the Zee, Babu-Zee,
and Y = 1 Triplet Higgs models.

The corresponding Feynman diagram is shown in Fig. 5.17.
Calculations similar to those for the S1 leptoquark yield

Vνµ = −N |λeµ|2

M2
h

, Vντ = −N |λeτ |2

M2
h

, (5.130)

and

ξh =
Vντ − Vνµ

VCC

= 4
(|λeµ|2 − |λeτ |2)/M2

h

(g/MW )2
= +

1√
2GF

(
δλ2

h

M2
h

)
, (5.131)

where we have defined δλ2
h ≡ |λeµ|2 − |λeτ |2. The dependence of ξh on the h± mass is plotted in

Fig. 5.14 for the case
√
δλ2

h = 0.5, where we have assumed δλ2
h > 0. The bound |ξ| ≤ ξ0 = 0.005

translates into ∣∣∣∣δλ2
h

M2
h

∣∣∣∣ ≤ √
2GF ξ0 = (8.2× 10−8) GeV−2 , (5.132)

or

Mh ≥

√
|δλ2

h|√
2GF ξ0

≈
√
|δλ2

h| × (3500 GeV) . (5.133)

This result is represented graphically in Fig. 5.15. The region of the (Mh,
√
|δλ2

h|) parameter space
below the constructed line would be excluded.

A constraint on the exact same combination of the couplings and mass of the h± as above
exists from τ decay data: The measured value of the τ− → ντe

−ν̄e branching fraction imposes the
constraint [108] ∣∣∣∣δλ2

h

M2
h

∣∣∣∣ ≤ (3.4× 10−8) GeV−2 , (5.134)

which is clearly stronger than Eq. (5.132).

5.5.2 Triplet Higgs with Y = +1

We denote the components of an isotriplet Higgs with hypercharge Y = +1 as ∆++

∆+

∆0

 . (5.135)
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It is customary to write this in 2× 2 matrix form:

∆ ≡ 1√
2

[
∆0

(
σ1 − iσ2√

2

)
+ ∆+σ3 + ∆++

(
σ1 + iσ2√

2

)]
=

[
∆+/

√
2 ∆++

∆0 −∆+/
√

2

]
. (5.136)

The coupling of ∆ to the leptons is then

L∆ =
√

2λ′ab

(
`TaLC iσ2 ∆ `bL

)
+ h.c. =

√
2λ′ab

(
`caL iσ2 ∆ `bL

)
+ h.c. (5.137)

This time, the couplings are symmetric in the flavor indices λ′ab = λ′ba, and the factor of
√

2 is
thrown in for latter convenience. Expanding out, we find

L∆ = λ′ab

[√
2
(
νc

aLνbL

)
∆0 −

(
νc

aLebL + ec
aLνbL

)
∆+ −

√
2
(
ec

aLebL

)
∆++

]
+ h.c. (5.138)

and the terms relevant to neutrino oscillation in matter are:

−2
(
λ′ee ν

c
eL eL + λ′eµ ν

c
µL eL + λ′eτ ν

c
τL eL

)
∆+ + h.c. (5.139)

Of these, the λ′ee term does not affect ξ, while the other terms are precisely the same as those listed
in Eq. (5.129). So without further calculations, we can conclude that all the results of the previous
subsection apply in this case also.
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Chapter 6

Summary

We have considered several neutrino experiments and analyzed the constraints they can impose on
various models of new physics. In the last chapter we summarize our results.

6.1 NuTeV

We considered several explanations of the NuTeV anomaly suggested in the literature: gauged
Lµ − Lτ , gauged B − 3Lµ, and S1, ~S3, V1, and ~V3 leptoquark models. We found that the Lµ − Lτ

model cannot explain NuTeV and be consistent with the most recent LEP data at the same time.
The B − 3Lµ model cannot explain the NuTeV anomaly at all because in this model the value of
g2

L is larger than the SM prediction while NuTeV observed the suppression of this parameter with
respect to its SM value. The same can be said of the S1, V1 leptoquark models, and the SU(2)

triplet ~S3 leptoquark model with degenerate masses. In all these models g2
L acquires a positive

rather than a negative shift with respect to its SM value. The mass-degenerate ~V3 leptoquark shifts
the value of g2

L in the negative direction. However, the size of the shift needed to explain the NuTeV
anomaly requires the value of the mass-to-coupling ratio which is incompatible with the measured
value of Rπ.

However, we found that the ~S3 and ~V3 leptoquark models with the mass-non-degenerate com-
ponents of the SU(2) triplet are capable of explaining the NuTeV anomaly. In these models, the
parameter g2

L acquires a negative shift and the size of this shift can be adjusted to the value needed
to explain NuTeV without contradicting experimental data.

6.2 Neutrissimo Lifetime

Neutrissimo models presented in Chapter 3 were also suggested as potential candidates for explain-
ing the NuTeV anomaly [5, 6]. The models of this type are still phenomenologically viable and
predict the existence of the mostly-right-handed heavy Majorana neutrino states, called neutris-
simos, which have their masses in a few TeV range. The values of the masses suggest that these
particles can be produced at the LHC energies. Thus, in Chapter 3, we addressed the question of
whether or not these states can actually be observed at the LHC. We calculated the mass spectrum,
decay widths and lifetimes of the neutrissimos that appear in the model proposed by Okamura et al.
in Ref. [5]. We mapped the parameter space of the Okamura model to the interior of a unit circle,
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and represented the results of our calculations as density-contour plots over it. We showed that for
the phenomenologically viable region of the model’s parameter space, the neutrissimos have masses
of a few TeV, and are short-lived with the typical lifetimes from 10−26 to 10−24 seconds. Assuming
that the particles are non-relativistic, the maximum distance they can travel from their production
points before decay is in the range of 10−17 to 10−15 meters. Therefore, if produced at colliders
they will decay inside the detector. At the same time, the decay widths are very small comparing
to the masses. The typical width-to-mass ratio is in the range of 0.1 to 3 percent. Therefore, the
invariant mass spectrum of the decay products can be expected to show a very narrow peak.

Since the neutrissimo is a Majorana particle, the signature of its production at the LHC would
involve lepton number violation, e.g., the production of like-sign leptons. Our analysis showed that
if the neutrissimo mass is smaller than around 150 GeV than it can be seen at the LHC. If it is
heavier that 150 GeV that the number of expected events is too small to lead to an observable
event rate. This suggests that we should also try to look for the signatures of these particles in
some other experiments involving neutrinos. One such experiment, called NuSOnG, was considered
by us in Chapter 4.

6.3 NuSOnG

NuSOnG is an experiment which can search for new physics from keV through TeV energy scales.
This thesis has focused mainly on the Terascale physics which can be accessed through this new
high statistics neutrino scattering experiment.

We considered several models of new physics which NuSOnG will be able to constrain. The
models we considered are: the neutrissimo models, generation distinguishing Z ′ models, such as
gauged B − 3Lµ and gauged Le − Lµ models, extended Higgs models, R-parity violating SUSY
models and various types of generation non-diagonal leptoquarks.

We found that NuSOnG’s improved measurement of g2
L would substantially improve the con-

straints on εµ and εe, the parameters which deviation from unity would signal a violation of the
lepton universality. The deviation of these parameters from unity is an intrinsic feature of the
neutrissimo models, considered in chapter 3. Thus, if NuSOnG does not see the signature of the
neutrissimos it would be able to put constraints on this type of new physics models or, conversely,
if the neutrissimos exist NuSOnG would see the suppression of the number of the neutral current
events in the quark-neutrino scattering with respect to the number predicted by the SM1.

We saw that the NuSOnG potential lower bound on the mass-to-coupling ratio of the Z ′ appear-
ing in the gauged B − 3Lµ model is comparable and complementary to the existing bound from
D0. On the other hand, the NuSOnG lower bound on the mass-to-coupling ratio of the Z ′ of the
Le − Lµ model is found to be weaker that the existing bound from LEP/LEP2 measurements, so
NuSOnG will not be able to improve this particular bound.

The R-parity violating interactions that NuSOnG is able to constrain come from the L̂L̂Ê and
L̂Q̂D̂ parts of the R-parity violating MSSM Lagrangian. In the L̂L̂Ê case the NuSOnG potential
bounds on the couplings are slightly better than currently existing bounds. In the L̂Q̂D̂ case the
NuSOnG potential bounds on the couplings are either competitive with currently existing bounds
or by a factor of 3 or 5 stronger. The result of our analysis is summarized in Table 4.3 of Chapter 4.

1This would be exactly the same as the anomaly observed by the NuTeV experiment.

110



Model Stronger than existing bounds? Competitive with LHC?
Gauged Le − Lµ and Le − Lτ No —
Gauged B − 3Lτ Yes Yes
Topcolor Assisted Technicolor No —
Leptoquarks Yes Yes∗

R-parity violation No —
Zee, Babu-Zee, Triplet Higgs No —

Table 6.1: The result of our survey. The potential bound from the Fermilab→Hyper-Kamiokande experiment is
compared with existing bounds, and the expected bounds from the LHC. If the existing bound is already stronger,
no comparison with the LHC bound is made. ∗The leptoquark bound will be competitive with the LHC, provided
that

√
|CLQ||δλ2

LQ| = O(1).

We also considered several types of leptoquarks which can affect the result of the NuSOnG
experiment. We found that existing bounds on S1, ~S3, V1, and ~V3 leptoquark couplings from
Rπ = B(π → eν)/B(π → µν) are already much stronger than potential bounds from NuSOnG.

However, these bounds can be circumvented for ~S3 and ~V3 if the masses within the multiplets are
allowed to be non-degenerate.

For S2, S̃2, V2, and Ṽ2 leptoquarks the existing bounds are fairly weak and NuSOnG is able to
significantly improve them. If any of these particles exist, NuSOnG could see the shift in the value
of g2

R, but not in the value of g2
L. This would opposite to what was observed by NuTeV.

6.4 Fermilab→Hyper-Kamiokande

We also surveyed the potential constraints on various models of new physics which could be obtained
from a hypothetical Fermilab→Hyper-Kamiokande, or similar type of experiment. We saw that
the experiment of this type will be able to place constraints on the couplings and masses of new
particles that are exchanged between the neutrinos and matter fermions.

Table 6.1 summarizes our result. Of the models surveyed, the potential bound on gauged B−3Lτ

can be expected to be stronger than the expected bound from the LHC. Bounds on generation

non-diagonal leptoquarks can be competitive if
√
|CLQ||δλ2

LQ| = O(1). For these cases, neutrino

oscillation can be used as an independent check in the event that such new physics is discovered at
the LHC.

All the other models are already well constrained by existing experiments, either indirectly by
low-energy precision measurements, or by direct searches at colliders. Generically, the couplings
and masses of new particles that couple only to leptons are well constrained by lepton universality,
while their contribution to neutrino oscillation tend to be suppressed since they only interact with
the electrons in matter. This tends to render the existing bound stronger than the potential bound
from the Fermilab→Hyper-Kamiokande experiment.

Topcolor assisted technicolor, and R-parity violating LQD couplings involve interactions with
the quarks in matter, but they too belong to the list of already well-constrained models. For the Z ′

in topcolor assisted technicolor, the proton and electron contributions to neutrino oscillation cancel,
just as for the Standard Model Z, and the coupling is also fixed to a small value, which results
in a weak bound from the Fermilab→Hyper-Kamiokande experiment. For the LQD coupling,
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restriction to minimal supergravity provided an extra constraint which strengthened the existing
bound.

The fact that only a limited number of models (at least among those we surveyed) can be well
constrained by the Fermilab→Hyper-Kamiokande experiment means, conversely, that if a non-zero
effect2 is observed in neutrino oscillation, the list of possible new physics that could lead to such an
effect is also limited. This could, in principle, help distinguish among possible new physics which
have the same type of signature (e.g. a leptoquark which may, or may not be generation diagonal)
at the LHC.

6.5 Future prospects

In addition to the projects presented in this thesis, I have calculated CP asymmetries in the neu-
trissimo and MSSM chargino decays to see if they can explain the matter-antimatter asymmetry
of the universe, and am also working on producing a list of possible interpretations of the W decay
anomaly. In the immediate future, I plan to continue analyzing data coming from different ele-
mentary particle experiments, especially those involving neutrinos: Borexino, MiniBooNE, LENS,
NuSOnG, just to name a few, and paying very close attention to the news from the LHC.

In the long term, I plan to continue doing my research in high energy physics. More data will
be available as time passes and more experiments will be performd. For example, the International
Linear Collider (ILC), if built, will provide us with another excellent opportunity to probe physics
beyond the SM. And I strongly believe that no matter how many secrets of Nature we reveal in the
future, there will always be things which puzzle us, things which are yet to be discovered, analyzed,
and explained.

2Non-zero ξ in our notation.
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Appendix A

Ratios of the neutral to charged current
events

In this Appendix, I will give a somewhat simplified version of the derivation of Eqs. (2.1)-(2.2).
The derivation is based on the materials of the lecture presented by Prof. Takeuchi at the 1991
Nagoya Spring School on Dynamical Symmetry Breaking [109].

The amplitudes for the neutral current processes νµ(k)u(p) → νµ(k′)u(p′) and ν̄µ(k)u(p) →
ν̄µ(k′)u(p′), where p, p′, k, k′ are the momenta of the particles, are given by:

Mνu→νu =
GF√

2
ρ
[
ū(k′)γµ(1− γ5)u(k)

][
ū(p′){gu

Lγ
µ(1− γ5) + gu

Rγ
µ(1 + γ5)}u(p)

]
(A.1)

Mν̄u→ν̄u =
GF√

2
ρ
[
v̄(k)γµ(1− γ5)v(k

′)
][
ū(p′){gu

Lγ
µ(1− γ5) + gu

Rγ
µ(1 + γ5)}u(p)

]
(A.2)

Neglecting the u-quark mass, we find

|Mνu→νu|2 = 128G2
Fρ

2
[
(gu

L)2(p · k)2 + (gu
R)2(p · k′)2

]
, (A.3)

|Mν̄u→ν̄u|2 = 128G2
Fρ

2
[
(gu

L)2(p · k′)2 + (gu
R)2(p · k)2

]
. (A.4)

Similarly,

|Mνd→νd|2 = 128G2
Fρ

2
[
(gd

L)2(p · k)2 + (gd
R)2(p · k′)2

]
, (A.5)

|Mν̄d→ν̄d|2 = 128G2
Fρ

2
[
(gd

L)2(p · k′)2 + (gd
R)2(p · k)2

]
. (A.6)

On the other hand, the amplitudes for the charged current processes νµ(k)d(p) → µ−(k′)u(p′)
and ν̄µ(k)u(p) → µ+(k′)d(p′) are given by

Mνd→µ−u =
GF√

2

[
ū(k′)γµ(1− γ5)u(k)

][
ū(p′)γµ(1− γ5)u(p)

]
, (A.7)

Mν̄u→µ+d =
GF√

2

[
v̄(k)γµ(1− γ5)v(k

′)
][
ū(p′)γµ(1− γ5)u(p)

]
, (A.8)
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from which we find

|Mνd→µ−u|2 = 128G2
F (p · k)2, (A.9)

|Mν̄u→µ+d|2 = 128G2
F (p · k′)2. (A.10)

If we denote the probability of finding a u-quark with momentum p inside the target as fu(p),
and the same for the d-quark as fd(p), then the contributions to the deep inelastic cross sections
from the scattering between νµ or ν̄µ with momentum k and quarks with momentum p would be:

dσ(νµN → νµX) ∝ ρ2
[
(gu

L)2(p · k)2 + (gu
R)2(p · k′)2

]
fu(p)dp

+ ρ2
[
(gd

L)2(p · k)2 + (gd
R)2(p · k′)2

]
fd(p)dp, (A.11)

dσ(ν̄µN → ν̄µX) ∝ ρ2
[
(gu

L)2(p · k′)2 + (gu
R)2(p · k)2

]
fu(p)dp

+ ρ2
[
(gd

L)2(p · k′)2 + (gd
R)2(p · k)2

]
fd(p), dp (A.12)

dσ(νµN → µ−X) ∝ (p · k)2fd(p)dp, (A.13)

dσ(ν̄µN → µ+X) ∝ (p · k′)2fu(p)dp. (A.14)

When the target is an isoscalar, it will contain the same number of u-quarks and d-quarks.
Therefore, we can expect

fu(p) = fd(p) ≡ f(p).

Then,

dσ(νµN → νµX) ∝ g2
L(p · k)2f(p)dp+ g2

R(p · k′)2f(p)dp, (A.15)

dσ(ν̄µN → ν̄µX) ∝ g2
L(p · k′)2f(p)dp+ g2

R(p · k)2f(p)dp, (A.16)

dσ(νµN → µ−X) ∝ (p · k)2f(p)dp, (A.17)

dσ(ν̄µN → µ+X) ∝ (p · k′)2f(p)dp, (A.18)

where

g2
L = ρ2

[
(gu

L)2 + (gd
L)2
]
, (A.19)

g2
R = ρ2

[
(gu

R)2 + (gd
R)2
]
. (A.20)

Eqs. (A.15)-(A.18) imply

σ(νµN → νµX) = g2
Lσ(νµN → µ−X) + g2

Rσ(ν̄µN → µ+X), (A.21)

σ(ν̄µN → ν̄µX) = g2
Lσ(ν̄µN → µ+X) + g2

Rσ(νµN → µ−X), (A.22)
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or

Rν = g2
L + r g2

R, (A.23)

Rν̄ = g2
L +

g2
R

r
. (A.24)
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Appendix B

Calculation of the W vertex corrections
in the Lµ − Lτ model

In this Appendix we show how we calculate radiative corrections to the W vertex in the Lµ − Lτ

model. The corresponding Feynman diagram is shown in Fig. B.1. We consider only the situation
when W− decays into the anti-neutrino and charged lepton of the second generation. For ντ and τ
in the final state the consideration and the final result are exactly the same.

B.1 Matrix element

The relevant terms of the interaction Lagrangian are

L1(x) =
g√
2
µ̄(x)γµPLνµ(x)Wµ(x), (B.1)

L2(y) = gX µ̄(y)γνµ(y)Xν(y), (B.2)

L3(z) = gX ν̄µ(z)γγPLνµ(z)Xγ(z). (B.3)

Applying Feynman rules to this process we obtain the expression for the amplitude

iM =
gg2

X√
2
· ū(p2)Γ

µPLv(p1)εµ(p3), (B.4)

where

Γµ =

∫
ddq

(2π)d
γν 6q+ 6p3

(q + p3)2 + iε
γµ 6q
q2 + iε

γν
1

(q + p1)2 −M2
X + iε

. (B.5)

The 4-momentum assignment is shown in Fig. B.1. d is the space-time dimension. Introducing

Aµ′µν′ ≡ γνγµ′γµγν′γν = −2γν′γµγµ′ + (4− d)γµ′γµγν′ , (B.6)

we can write

Γµ =

∫
ddq

(2π)d

Aµ′µν′(q + p3)µ′qν′

q2(q + p3)2[(q + p1)2 −M2
X ]
. (B.7)
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Figure B.1: Correction to the W vertex due to the X exchange between the final state leptons.

Using Feynman’s formula

1

q2(q + p3)2[(q + p1)2 −M2
X ]

=

1∫
0

dxdydz δ(x+ y + z − 1) · 2

D3
, (B.8)

where

D = xq2 + y(q + p3)
2 + z[(q + p1)−M2

X ], (B.9)

we write

Γµ = 2

1∫
0

dxdydz δ(x+ y + z − 1) · Aµ′µν′Bµ′ν′ , (B.10)

where

Bµ′ν′ =

∫
ddq

(2π)d
· (q + p3)µ′qµ′

D3
. (B.11)

Next, we can expand D as

D = q2(x+ y + z) + 2(q, yp3 + zp1) + yM2
W − zM2

X = l2 −∆, (B.12)

where1

lµ = qµ + ypµ
3 + zpµ

1 , (B.13)

∆ = M2
W (y2 − y + yz + zδ), (B.14)

δ ≡ M2
X

M2
W

. (B.15)

1We used 2(p1, p3) = 2(p1, p2) = M2
W .
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Bµν becomes

Bµν =

∫
ddl

(2π)4
· (lµ − ypµ

3 − zpµ
1 + pµ

3)(lν − ypν
3 − zpν

1)

(l2 −∆)3
. (B.16)

Only even powers of lµ give non-zero contributions. Thus,

Bµν =

∫
ddl

(2π)4
· l

µlν + (ypµ
3 + zpµ

1)(ypν
3 + zpν

1)− pµ
3(ypν

3 + zpν
1)

(l2 −∆)3
. (B.17)

Symmetry of the integral allows us to replace

lµlν → 1

d
· l2 · gµν .

We can simplify the expression for Γµ making use of Dirac equations:

ū(p2) 6p2 = 0, 6p1v(p1) = 0. (B.18)

In order to do that we have to commute all 6 p2’s to the left-most and all 6 p1’s to the right-most
positions. We also make use of the identity

γµγνγµ = −(d− 2)γν . (B.19)

The independent of l2 part of the numerator Eq. (B.17) is

(yp3µ + zp1µ)(yp3ν + zp1ν)− p3µ(yp3ν + zp1ν) = [(y − 1)(p1µ + p2µ) + zp1µ][y(p1ν + p2ν) + zp1ν ]

= [p1µ(y + z − 1) + (y − 1)p2µ][(y + z)p1ν + yp2ν ] = p1µp1ν(y + z − 1)(y + z) + y(y − 1)p2µp2ν

+p1µp2νy(y + z − 1) + (y − 1)(y + z)p2µp1ν .

The contribution of the first two term in the expression above vanishes when we take into account
Dirac equations (B.18). Thus,

Aµ′µν′Bµ′ν′ =

∫
ddl

(2π)d
[−2γν′γµγµ′ + (4− d)γµ′γµγν′ ]

× gµ′ν′l
2/d+ p1µ′p2ν′y(y + z − 1) + p1ν′p2µ′(y − 1)(y + z)

(l2 −∆)3

=

∫
ddl

(2π)d

1

(l2 −∆)3

{
l2

d
[2(d− 2)γµ − (4− d)(d− 2)γµ]

+(4− d)y(y + z − 1) 6p1γ
µ 6p2 − 2 6p1γ

µ 6p2(y − 1)(y + z)

}

=

∫
ddl

(2π)d

γµl2(d− 2)2/d+ [(4− d)y(y + z − 1)− 2(y − 1)(y + z)] 6p1γ
µ 6p2

(l2 −∆)3
.
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The second term in the numerator of the expression above gives a finite contribution to the total
integral. It does not need to be regularized by dimensional regularization, so we take d = 4 for this
term. Then

Aµ′µν′Bµ′ν′ =

∫
ddl

(2π)d

γµrl2 + 2(1− y)(y + z) 6p1γ
µ 6p2

(l2 −∆)3
,

where we introduced
r = (d− 2)2/d. (B.20)

In 6p1γ
µ 6p2 we can either commute 6p1 to the right or 6p2 to the left.

γαγµγβ = γα
(
2gµβ − γβγµ

)
= 2gµβγα − γαγβγµ.

The first term in the expression above gives zero acting on v(p1). The second term is

−
(
2gαβ − γβγα

)
γµ.

And again the second term in the parenthesis gives zero acting on ū(p2). Thus

γαγµγβ → −2gαβγµ,

or
6p1γ

µ 6p2 → −2(p1, p2)γ
µ = −M2

Wγ
µ.

Putting all together we find that

Γµ = 2

1∫
0

dxdydz δ(x+ y + z − 1)

∫
ddl

(2π)d
· rl

2 − 2(1− y)(y + z)M2
W

(l2 −∆)3
· γµ ≡ iFγµ, (B.21)

where

F = −2i

1∫
0

dxdydz δ(x+ y + z − 1)

∫
ddl

(2π)d
· rl

2 − 2(1− y)(y + z)M2
W

(l2 −∆)3
. (B.22)

The expressions for the matrix element (B.4) and its conjugated become

iM =
igg2

X√
2
ū(p2)Fγ

µPLv(p1)εµ(p3), (B.23)

−iM † = −igg
2
X√
2
v̄(p1)F

∗γνPLu(p2)ε
∗
ν(p3). (B.24)

B.2 ∆Γ/Γ

We also have to consider the tree level process shown in Fig. B.2. The tree-level matrix element Mt

can be obtained by considering the part of the interaction Lagrangian given by Eq. (B.1). Applying
standard Feynman rules we find that

iMt = i
g√
2
ū(p2)γ

µPLv(p1)εµ(p3), (B.25)
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Figure B.2: The tree level W vertex.

and
−iM †

t = −i g√
2
v̄(p1)γ

µPLu(p2)εµ(p3). (B.26)

The 4-momentum assignment is clear from Fig. B.2. The matrix elementM for the vertex correction
due to the X exchange was calculated in the previous section and given by Eq. (B.23). The total
matrix element is Mtot = Mt + M . Squaring it and summing over the spins of the final state
particles we obtain to the leading order:

|Mtot|2 = |Mt|2 +M †Mt +MM †
t . (B.27)

We denote ∆Γ the correction to the W vertex due to the X exchange and Γ is the tree level W
decay width2. For two-body decay processes the phase space factor is just a constant which cancels
in the ratio ∆Γ/Γ, so we do not have to worry about it. Up to the irrelevant constant factor

Γ ∼ |Mt|2, ∆Γ ∼M †Mt +MM †
t , (B.28)

and
∆Γ

Γ
=
M †Mt +MM †

t

|Mt|2
. (B.29)

Calculation of |Mt|2

Let us calculate |Mt|2 first. The tree level matrix element and its conjugated are given by Eqs. (B.25)
and (B.26).

|Mt|2 =
g2

2
Tr (6p1γ

νPL 6p2γ
µPL)

∑
pol’s

εµ(p3)ε
∗
ν(p3)

=
g2

2
Tr (γµ1γνγµ2γ

µPL) p1µ1p2µ2

(
−gµν +

p3µp3ν

M2
W

)
,

because ∑
pol’s

εµ(p3)ε
∗
ν(p3) = −gµν +

p3µp3ν

M2
W

. (B.30)

2It should not be confused with the Γ we used in the previous section. From now on Γ is the tree level W decay width.
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We know that

Tr (γµ1γνγµ2γµ) = 4 (gµ1νgµ2µ − gµ1µ2gµν + gµ1µgµ2ν) , (B.31)

Tr (γµ1γνγµ2γµγ5) = −4iεµ1νµ2µ. (B.32)

εµ1νµ2µ term does not contribute to the final result because it is contracted with the symmetric
tensor given by the right-hand side of Eq. (B.30). So, we do not have to worry about it. Thus,

|Mt|2 = g2

[
pν

1p
µ
2 − (p1, p2)g

µν + pµ
1p

ν
2

](
−gµν +

p3µp3ν

M2
W

)

= −g2

{
(p1, p2)− 4(p1, p2) + (p1, p2)−

1

M2
W

[2(p2, p3)(p1, p3)− (p1, p2)p
2
3]

}

= g2(p1, p2) +
2g2

M2
W

(p1, p3)(p2, p3).

Using the conservation of the total 4-momentum and taking p2
1 = p2

2 = 0 we find

(p1, p3) = (p1, p1 + p2) = p2
1 + (p1, p2) = (p1, p2),

(p2, p3) = (p2, p1 + p2) = p2
2 + (p1, p2) = (p1, p2).

To find (p1, p2) we consider

p2
3 = M2

W = (p1 + p2)
2 = p2

1 + p2
2 + 2(p1, p2).

Therefore,

(p1, p2) =
M2

W

2
. (B.33)

The square of the matrix element becomes

|Mt|2 = g2(p1, p2)

[
1 + 2

(p1, p2)

M2
W

]
,

or, using Eq. (B.33), we can rewrite it as

|Mt|2 = g2M2
W . (B.34)

Calculation of
∆Γ
Γ

The matrix elements M and Mt are given by Eqs. (B.23) and (B.25), respectively. It is not difficult

to see that the calculation of M †Mt + MM †
t are very similar to the calculation of |Mt|2. We can

immediately write down the result

M †Mt = g2g2
XFM

2
W , (B.35)

MM †
t = g2g2

XF
∗M2

W , (B.36)
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and
M †Mt +MM †

t = |Mt|2g2
X2 ReF.

Finally,
∆Γ

Γ
= g2

X2 ReF. (B.37)

Therefore, we need to calculate ReF .

B.3 Calculation of the real part of F

The expression for F is given by Eq. (B.22). We can rewrite is as follows.

F = −2i

1∫
0

dxdydz δ(x+ y + z − 1)
[
I1 − I2 ·M2

W 2(1− y)(y + z)
]
, (B.38)

where

I1 =

∫
ddl

(2π)d
· rl2

(l2 −∆)3
, (B.39)

I2 =

∫
ddl

(2π)d
· 1

(l2 −∆)3
, (B.40)

r =
(d− 2)2

d
. (B.41)

Using standard formulas we get3

I2 =
(−1)3i

(4π)d/2
· Γ(3− 2)

Γ(3)
·
(

1

∆

)3−2

= − i

(4π)2
· Γ(1)

Γ(3)
· 1

∆
.

Taking into account that Γ(1) = 0! = 1 and Γ(3) = 2! = 2 we obtain

I2 = − i

2(4π)2
· 1

∆
. (B.42)

Similarly,

I1 =
(−1)2i

(4π)d/2
· d
2
r
Γ(3− 1− d

2
)

Γ(3)
·
(

1

∆

)2− d
2

= i
d

4
·
Γ(2− d

2
)

(4π)d/2
·
(

1

∆

)2− d
2

· (d− 2)2

d
. (B.43)

Introducing a small parameter ε satisfying d = 4− 2ε we find that

2− d

2
= 2− (2− ε) = ε,

and
(d− 2)2 = (2− 2ε)2 = 4(1− ε)2 ≈ 4(1− 2ε).

3Γ’s in the expressions for the integrals I1 and I2 stand for Gamma-functions, not the decay width.
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Therefore

I1 =
i

(4π)2
· Γ(ε)(4π)ε∆−ε(1− 2ε). (B.44)

Using standard expansion formulas

Γ(ε) ≈ 1

ε
− γ +O(ε) , (B.45)

(4π)ε = eε ln 4π ≈ 1 + ε ln 4π +O(ε) , (B.46)

∆−ε = e−ε ln∆ ≈ 1− ε ln ∆ +O(ε) , (B.47)

we find

I1 =
i

(4π)2

[
1

ε
+ ln 4π − ln

∆

µ2
− 2− γ +O(ε)

]
, (B.48)

where we introduced a mass scale parameter µ. The final answer must be independent of this
parameter.

The expression for F becomes

F =
2

(4π)2

1∫
0

dxdydz δ(x+ y+ z− 1)

[
1

ε
+ ln 4π − ln

∆

µ2
− 2− γ +

(1− y)(y + z)

∆
·M2

W

]
. (B.49)

Recall that ∆ = M2
W (y2 − y + yz + zδ), where δ = M2

X/M
2
W . Introducing integrals

G1 ≡
1∫

0

dxdydz δ(x+ y + z − 1)
(1− y)(y + z)

y2 − y(1− z) + zδ
(B.50)

=

1∫
0

dy

1−y∫
0

dz
(1− y)(y + z)

y2 − y(1− z) + zδ
,

G2 ≡
1∫

0

dy

1−y∫
0

dz ln
∆

M2
W

=

1∫
0

dy

1−y∫
0

dz ln(y2 − y + yz + zδ) (B.51)

=

1∫
0

dy

1−y∫
0

dz ln [(y + δ)z − y(1− y)] , (B.52)

and calculating

∫
dxdydz δ(x+ y + z − 1) =

1∫
0

dy

1−y∫
0

dz =

1∫
0

dy(1− y) =
1

2
, (B.53)

124



p q p

q − p
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Figure B.3: The X contribution to the self-energy.

we rewrite our expression for F as

2F =
1

4π2

{
1

2

[
1

ε
− γ − 2 + ln 4π

]
− 1

2
ln
M2

W

µ2
+G1 −G2

}
(B.54)

We will not present here the details of calculations of the two dimensional integrals G1 and G2.
The calculations are straightforward, though, a bit tedious. The result is

G1 −G2 = 1− δ − (δ + 2) ln δ − (1 + δ)2

[
Li2

(
δ

1 + δ

)
+

1

2
ln2 δ − π2

6

]
, (B.55)

where Li2 is the Spence function defined in the main text by Eq. (2.34). Introducing parameter E
defined as

E ≡ 1

ε
− γ + ln 4π , (B.56)

we obtain the following expression for the real part of F :

ReF =
1

16π2

{
E − 2− ln

M2
W

µ2
− 2

[
1 + δ + (δ + 2) ln δ + (1 + δ)2

(
Li2

(
δ

1 + δ

)
+

1

2
ln2 δ − π2

6

)]}
.

(B.57)

B.4 Contribution from the renormalization of the wave functions

Note that our Eq. (B.57) for ReF contains a part which blows up in the limit ε → 0. To make it
finite we need to take into account contribution from the renormalization of the wave functions of
the final state fermions. In order to do that we need to calculate the X contribution to the fermion
self-energy. The corresponding Feynman diagram and our 4-momentum assignment are shown in
Fig. B.3.

The Lagrangian is
L = gX ·

(
¯̀γν`

)
·Xν , (B.58)

where ` = {µ, νµ}. The contribution of the X to the fermion self-energy is

−iΣ(6p) = (igX)2

∫
ddq

(2π)d
· γµ · i 6q

q2 + iε
· γν · igµν

(q − p)2 −M2
X + iε

Using Eq. (B.19) we can rewrite it as

−iΣ(6p) = g2
X(d− 2)γµBµ , (B.59)

125



where

Bµ =

∫
ddq

(2π)d
· qµ
q2[(q − p)2 −M2

X ]
. (B.60)

Feynman’s formula

1

AB
=

1∫
0

dx
1

xA+ (1− x)B
(B.61)

applied to Bµ gives

Bµ =

1∫
0

dx

∫
ddq

(2π)d
· qµ
D
, (B.62)

where (remember that p2 = 0)

D = (1− x)q2 + x[q2 − 2(q, p)−M2
X ] = l2 −∆ , ∆ ≡ xM2

X .

Thus

Bµ =

1∫
0

dx · xpµ

∫
ddq

(2π)d
· 1

(l2 −∆)2
, (B.63)

and −iΣ(6p) becomes

−iΣ(6p) = g2
X(d− 2) 6p

1∫
0

dx · x
∫

ddq

(2π)d
· 1

(l2 −∆)2
. (B.64)

We can use the following formula to perform d-dimensional integration∫
ddq

(2π)d
· 1

(l2 −∆)2
=

(−1)2i

(4π)d/2)
·
Γ(2− d

2
)

Γ(2)

(
1

∆

)2− d
2

=
i

(4π)2
· (4π)ε · Γ(ε) ·∆−ε . (B.65)

Expanding ε dependent terms to the leading order in ε and performing one-dimensional integration
over x we obtain

Σ(6p) = − g2
X

16π2
· 6p ·

[
E − ln

M2
W

µ2
− ln δ − 1

2

]
, (B.66)

where E is defined by Eq. (B.56).

B.5 Putting all together

The self-energy corrections change the propagator of the external fermion. For massless fermions
the propagator becomes

i
Z2

6p
,

where

Z2 = 1 +
d

d6p
Σ(6p) ≡ 1 + δZ2 . (B.67)
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The square of the matrix element acquires an extra contribution which is equal to

iMt (iMtδZ2)
† + (iMtδZ2) (iMt)

† = |Mt|2 · 2 Re δZ2 ,

where Mt is the tree level matrix element calculated above. The expression for ∆Γ/Γ becomes

∆Γ

Γ
= g2

X · 2 Re(F + δZ2) . (B.68)

Thus, putting all together we find that

∆Γ

Γ
= − g2

X

4π2
·
{

7

4
+ δ +

(
δ +

3

2

)
ln δ + (1 + δ)2

[
Li2

(
δ

1 + δ

)
+

1

2
ln2 δ − π2

6

]}
. (B.69)
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Appendix C

Minimum χ2 fit in the Lµ − Lτ model

In this Appendix we explain how we made the minimum χ2 fit in the Lµ − Lτ model the result of
which we used in section 2.2.5.

The values of the ρ parameter and sin2 θW ≡ s2 are shifted by the SM correction and by the
corrections specific to the Lµ−Lτ model. We denote the SM corrections to the tree level values of
the ρ parameter and s2 by δρSM and δs2

SM, respectively. We also denote the corresponding Lµ−Lτ

model corrections to ρ and s2 by δρ and δs2.
The effective Z couplings are1

e : ge
V =

√
ρ

(
−1

2
+ 2s2

∗

)
, ge

A =
√
ρ

(
−1

2

)
, (C.1)

µ : gµ
V =

√
ρ

(
−1

2
+ 2s2

∗

)
(1 + δV ) + δM , gµ

A =
√
ρ

(
−1

2

)
(1 + δV ) , (C.2)

τ : gτ
V =

√
ρ

(
−1

2
+ 2s2

∗

)
(1 + δV )− δM , gτ

A =
√
ρ

(
−1

2

)
(1 + δV ) (C.3)

for charged leptons and

νe : gνe
V =

√
ρ

(
+

1

2

)
, gνe

A =
√
ρ

(
+

1

2

)
, (C.4)

νµ : g
νµ

V =
√
ρ ·
(

+
1

2

)
· (1 + δV ) +

δM
2
, g

νµ

A =
√
ρ ·
(

+
1

2

)
· (1 + δV ) +

δM
2
, (C.5)

ντ : gντ
V =

√
ρ ·
(

+
1

2

)
· (1 + δV )− δM

2
, gντ

A =
√
ρ ·
(

+
1

2

)
· (1 + δV )− δM

2
. (C.6)

s2
∗ is the corrected value of the sin2 θW . The

√
ρ and s2

∗ are

√
ρ =

√
1 + δρSM + δρ ≈ 1 +

1

2
δρSM +

1

2
δρ, (C.7)

s2
∗ = s2 + δs2

SM + δs2. (C.8)
1See Eqs. (2.50) through (2.55).
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The result of plugging these expressions in Eq. (C.1) should be equal to the experimentally measured
value of ge

V :

[ge
V ]exp =

(
1 +

1

2
δρSM +

1

2
δρ

)(
−1

2
+ 2s2 + 2δs2

SM + 2δs2

)

=

(
−1

2
+ 2s2

)1 +
2δs2

SM

−1

2
+ 2s2

(1 +
1

2
δρSM

)1 +
1

2
δρ+

2δs2

−1

2
+ 2s2



= [ge
V ]ZF

1 +
1

2
δρ+

2δs2

−1

2
+ 2s2

 ,

where

[ge
V ]ZF ≡

(
−1

2
+ 2s2

)1 +
1

2
δρSM +

2δs2
SM

−1

2
+ 2s2


is the SM prediction for ge

V which includes one-loop corrections. We calculate the values of [ge
V ]ZF

using the ZFITTER program package. We can do analogous calculations for the effective couplings
of the other charged leptons. The result is

[ge
V ]exp = [ge

V ]ZF

1 +
1

2
δρ+

2δs2

−1

2
+ 2s2

 , (C.9)

[ge
A]exp = [ge

A]ZF

(
1 +

1

2
δρ

)
, (C.10)

[gµ
V ]exp = [gµ

V ]ZF

1 +
1

2
δρ+

2δs2

−1

2
+ 2s2

+
δM

−1

2
+ 2s2

+ δV

 , (C.11)

[gµ
A]exp = [gµ

A]ZF

(
1 +

1

2
δρ+ δV

)
, (C.12)

[gτ
V ]exp = [gτ

V ]ZF

1 +
1

2
δρ+

2δs2

−1

2
+ 2s2

− δM

−1

2
+ 2s2

+ δV

 , (C.13)

[gτ
A]exp = [gτ

A]ZF

(
1 +

1

2
δρ+ δV

)
, (C.14)

Now, let us consider the effective couplings for the neutrinos. The LEP collaboration extracted
the value of gν

A = gν
V from the measurement of the Z invisible width. So, gν

A is actually the average
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value of the effective neutrino couplings given by Eqs. (C.4)-(C.6). The value of this parameter is
cited in Table 2.2 of section 2.2.5. Thus, using Eqs. (C.4)-(C.6) we find

[gν
A]exp = [gν

V ]exp =
√
ρ

(
+

1

2

)
· 1

3
(3 + 2δV ) .

Expanding the
√
ρ as in Eq. (C.7) and factoring out the SM contribution we obtain

[gν
A]exp = [gν

A]ZF

(
1 +

1

2
ρ+

2

3
δV

)
. (C.15)

Now we have everything at hand to construct the χ2 function. First of all, we introduce the
vector:

XT = (x1, x2, x3, x4, x5, x6, x7), (C.16)

where

xi =
xth

i − xexp
i

σi

, i = 1, . . . , 7. (C.17)

xth
i are given by the functions of δs2, δρ, δV , and δM appearing on the right-hand sides of Eqs. (C.9)-

(C.15) and xexp
i are the central values of the effective couplings appearing on the left-hand sides of

these equations. σj are the standard deviations of the experimental values2. We are treating xth
i

as true values.
The χ2 function is

χ2 = −1

2
·XTAX, (C.18)

where A is the matrix which can be found from the following relationship

〈xi · xj〉 = Cov(xexp
i , xexp

j )/ (σiσj) = rij =
(
A−1

)
ij
. (C.19)

rij are the correlation coefficients. They can be found in Table 2.2. The matrix A is found to be

A =



3.3484 2.3177 −0.8600 −0.6544 0.2527 −0.2924 −0.0730
2.3177 2.6293 −0.4817 −0.3691 0.1719 −0.1696 −0.0359

−0.8600 −0.4817 1.5104 −0.2757 −0.0278 0.4706 −0.0273
−0.6544 −0.3691 −0.2757 1.3015 −0.0321 −0.0869 0.1035

0.2527 0.1719 −0.0278 −0.0321 1.0316 0.0899 0.0144
−0.2924 −0.1696 0.4706 −0.0869 0.0899 1.1571 −0.0164
−0.0730 −0.0359 −0.0273 0.1035 0.0144 −0.0164 1.0091


. (C.20)

The values of δs2, δρ, δV , and δM minimizing the χ2 function are listed in the second column of
Table 2.1.

To find the standard deviations and correlation coefficients we need to reinterpret the constructed
χ2 in terms of new variables (ξi − ξ0

i ), i = 1, . . . , 4, where

ξ1 = δs2, ξ2 = δρ, ξ3 = δV , ξ4 = δV , (C.21)

2The central values, standard deviations, and correlation coefficients are listed in Table 2.2. Our assignment for indices i and j can
also be seen from the table.
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and ξ0
i are the central values listed in the second column of Table 2.1. In terms of these new variable

the χ2 becomes

χ2 = −1

2
·

4∑
i=1

4∑
j=1

(
ξi − ξ0

i

)
bij
(
ξj − ξ0

j

)
. (C.22)

Matrix B is

B =


2.38852× 107 −550217. −122638. −1.44191× 106

−550217. 980177. 515371. −22792.3
−122638. 515371. 2.71172× 106 −89745.8

−1.44191× 106 −22792.3 −89745.8 1.21361× 106

 . (C.23)

Inverse of this matrix is the variance-covariance matrix for δs2, δρ, δV , and δM :

B−1 =


0.45809 · 10−7 0.27716 · 10−7 −0.13807 · 10−8 0.54845 · 10−7

0.27716 · 10−7 0.11503 · 10−5 −0.21609 · 10−6 0.38554 · 10−7

−0.13807 · 10−8 −0.21609 · 10−6 0.41059 · 10−6 0.24664 · 10−7

0.54845 · 10−7 0.38554 · 10−7 0.24664 · 10−7 0.89170 · 10−6

 , (C.24)

and the correlation matrix is

Corr =


1 0.12074 −0.01007 0.27136

0.12074 1 −0.31443 0.03807
−0.01007 −0.31443 1 0.04076

0.27136 0.03807 0.04076 1

 . (C.25)

Thus, the central values of δs2, δρ, δV , and δM and the corresponding standard deviations are given
in Table 2.1, and the correlation coefficients are listed in Eq. (C.25). The combination has a χ2/dof
of 5.10/3.
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Appendix D

Calculation of the neutrissimo lifetime

In this Appendix we calculate the 2-body decay widths of the neutrissimo for all three decay
channels: N → n+ Z, N → l +W , N → n+ h.

D.1 Ni → nj + Z

Only the first term of the Lagrangian given by Eq. (3.28) is relevant for these processes. This term
is

L =
g

2 cos θW

[
n̄j

(
Ajiγ

µPL −
(
Aji
)∗
γµPR

)
Ni

]
Zµ. (D.1)

We find it convenient to introduce the following notation:

aji ≡ g

2 cos θW

(
Aji
)∗

(D.2)

Then, the interaction Lagrangian becomes

L = n̄ (a∗γµPL − aγµPR)NZµ, (D.3)

where we dropped indices i and j. We will reintroduce them at the final stage of our calculations.
Feynman diagram corresponding to the process in question is the third diagram in Fig. 3.4. The

matrix element and its conjugated are

iM = ia∗εµ(k)ūn(q)γµPLuN(p)− iaεµ(k)ūn(q)γµPRuN(p), (D.4)

−iM † = −iaε∗ν(k)ūN(p)γνPLun(q) + ia∗ε∗ν(k)ūN(p)γνPRun(q), (D.5)

where p, q, and k are momenta of N , n, and Z, respectively. Squaring the matrix element and
summing over spins and polarizations of the final state particles we obtain

|M̄ |2 ≡
∑

spins, pol’s

MM † = |a|2
(∑

pol’s

εµ(k)ε∗ν(k)

)∑
spins

{Tr [ūn(q)γµPLuN(p)ūN(p)γνPLun(q)]

− Tr [ūn(q)γµPRuN(p)ūN(p)γνPLun(q)] + Tr [ūn(q)γµPRuN(p)ūN(p)γνPRun(q)]

− Tr [ūn(q)γµPLuN(p)ūN(p)γνPRun(q)]} . (D.6)
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Now let us make use of the following relationships:∑
spins

uN(p)ūN(p) = 6p+M, (D.7)∑
spins

un(q)ūn(q) = 6q, (D.8)

∑
pol’s

εµ(k)ε∗ν(k) = −gµν +
kµkν

M2
Z

, (D.9)

where M and MZ are the neutrissimo and Z boson masses, respectively1. The masses of the light
neutrinos n are negligibly small.

Now we can write

Tr [ūn(q)γµPR,LuN(p)ūN(p)γνPL,Run(q)] = Tr [ 6qγµPR,L (6p+M) γνPL,R]

= Tr [PL,R 6qγµPR,L (6p+M) γν ] = Tr [ 6qγµPL,RPR,L (6p+M) γν ] = 0. (D.10)

Thus, we see that the second and the third terms in Eq. (D.6) are equal to zero.

|M̄ |2 = |a|2 Tr

[
6qγµPL (6p+M) γνPL+ 6qγµPR (6p+M) γνPR

](
kµkν

M2
Z

− gµν

)
= |a|2

(
kµkν

M2
Z

− gµν

)
Tr [ 6qγµ 6pγν ] , (D.11)

because PL + PR = I.

|M̄ |2 = |a|2
(
kµkν

M2
Z

− gµν

)
qαpβ Tr

(
γαγµγβγν

)
. (D.12)

Tr
(
γαγµγβγν

)
= 4

(
gαµgβν − gαβgµν + gανgβµ

)
. (D.13)

|M̄ |2 = |a|2
(
kµkν

M2
Z

− gµν

)
4 (qµpν − (p, q)gµν + qνpµ)

= 4|a|2
[
(k, q)(k, p)− (p, q)k2 + (k, q)(k, p)

M2
Z

− (p, q) + 4(p, q)− (p, q)

]
, (D.14)

where we used gµνgµν = 4.

|M̄ |2 = 4|a|2
[
2(k, q)(k, p)− (p, q)M2

Z

M2
Z

+ 2(p, q)

]
= 4|a|2 2(k, q)(k, p) + (p, q)M2

Z

M2
Z

. (D.15)

1The neutrissimo mass M should not be confused with our notation for the matrix element. We hope that the distinction between
them is self-obvious.
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Let us now find the scalar products in the expression above. Note that

p2 = M2 = (q + k)2 = q2 + k2 + 2(k, q) = M2
Z + 2(k, q).

Therefore,

(k, q) =
M2 −M2

Z

2
. (D.16)

Using the conservation of the total momentum we can write

(p, q) = (q + k, q) = q2 + (k, q).

This means that

(p, q) =
M2 −M2

Z

2
. (D.17)

Similarly,

(k, p) = (k, p+ k) = (k, q) + k2 =
M2 −M2

Z

2
+M2

Z =
M2 +M2

Z

2
.

Using these results we can rewrite Eq. (D.15) as follows.

|M̄ |2 = 4|a|2M
2 −M2

Z

2M2
Z

(
M2 + 2M2

Z

)
,

or, finally,

|M̄ |2 = 2|a|2M
4

M2
Z

(
1− M2

Z

M2

)(
1 + 2

M2
Z

M2

)
. (D.18)

D.2 Ni → `∓j +W±

Only the second and the third terms of the Lagrangian given by Eq. (3.28) are relevant for these
processes. They are

L =
g√
2

(
¯̀
jB

jiγµPLNi

)
W−

µ − g√
2

(
¯̀c
j

(
Bji
)∗
γµPRNi

)
W+

µ . (D.19)

Recall that

¯̀ =

∫
d3~k

(2π)3 2E~k

∑
s

[
b†s(k)ūs(k)e

ikx + ds(k)v̄s(k)e
−ikx

]
, (D.20)

¯̀c =

∫
d3~k

(2π)3 2E~k

∑
s

[
bs(k)v̄s(k)e

−ikx + d†s(k)ūs(k)e
ikx
]
. (D.21)

We find it convenient to introduce the following notation:

bji ≡ g√
2
Bji. (D.22)
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• Let us consider the process Ni → `+ + W− generated by the second term of the Lagrangian
(D.19). The corresponding Feynman diagram is the second diagram in Fig. 3.4. The La-
grangian is

L = −b∗
(
¯̀cγµPRN

)
W+

µ . (D.23)

where we dropped the indices i and j. We will reinstate them in the very end of our calcula-
tions.

The matrix element and its conjugated are

iM = −ib∗εµ(k)ūl(q)γ
µPRuN(p), (D.24)

−iM † = ibε∗ν(k)ūN(p)γνPRul(q), (D.25)

where p, q, and k are momenta of the neutrissimo, lepton, and W boson, respectively.

|M̄ |2 = |b|2
(
kµkν

M2
Z

− gµν

)
Tr [ 6qγµPR (6p+M) γνPR] . (D.26)

Note that

qαpβ Tr
(
γαγµγβγνγ5

)
∼ qαpβε

αµβν . (D.27)

The antisymmetric tensor is contracted with the symmetric tensor (kµkν)/M
2
Z − gµν . The

resulting combination is obviously zero. Thus, we only have to consider

|M̄ |2 =
|b|2

2

(
kµkν

M2
Z

− gµν

)
qαpβ Tr

(
γαγµγβγν

)
= 2|b|2

(
kµkν

M2
Z

− gµν

)
(qµpν − (p, q)gµν + qνpµ),

(D.28)
where we make use of Eq. (D.13). But we already calculated a similar combination in part D.1.
Thus, we can easily write down the result which is

|M̄ |2 = |b|2 M
4

M2
W

(
1− M2

W

M2

)(
1 + 2

M2
W

M2

)
. (D.29)

• The process Ni → `− +W+ generated by the first term of the Lagrangian (D.19) corresponds
to the first Feynman diagram in Fig. 3.4. The Lagrangian is

L = b
(
¯̀γµPLN

)
W−

µ . (D.30)

It is not difficult to see that in this case calculations are exactly the same as in the Ni →
`+ +W− case. We will not repeat them here. It should be clear that the final result for |M̄ |2
is given by the same Eq. (D.29).

D.3 Ni → nj + h

Only the last term of the Lagrangian given by Eq. (3.28) is relevant for this process. It is

L = −n̄j

[
CjihPL +

(
Cjih̃PR

)∗]
Ni. (D.31)
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The corresponding Feynman diagram is the last diagram shown in Fig. 3.4. Dropping indices i and
j, we find that the matrix element for this process and its conjugated are

iM = −iūn(q) (CPL + C∗PR)uN(p), (D.32)

−iM † = iūN(p) (C∗PL + CPR)un(q). (D.33)

Therefore,

|M̄ |2 = Tr [(6p+M)(C∗PR + CPL) 6q(CPL + C∗PR)]

= |C|2 {Tr[( 6p+M) 6qPL] + Tr[( 6p+M) 6qPR]} = |C|2 Tr( 6p 6q) (D.34)

= 4|C|2(p, q). (D.35)

Using the conservation of the total 4-momentum we can write

(p, q) =
M2 −m2

h

2
, (D.36)

which is analogous to the result given by Eq. (D.17). Thus, finally, we can rewrite the expression
for the square of the matrix element as

|M̄ |2 = 2|C|2(M2 −m2
h). (D.37)

D.4 Integration over the phase space

Now we need to calculate phase space factors associated with the processes we have just considered.
We consider a general case when N with the 4-momentum p decays into a two-particle state. One
particle in the final state is assumed to be massive with the 4-momentum k and the other is assumed
to be massless and with the 4-momentum q. The final formula will be applicable to all processes
we considered above.

The differential decay width is

dΓ =
1

2s+ 1

1

2E
|M̄ |2(2π)4δ4(p− q − k)

d3~q

2E1(2π)3

d3~k

2E2(2π)3
, (D.38)

where s = 1/2 is the spin of the neutrissimo, E, E1, and E2 and the energies of the neutrissimo,
massless and massive particles, respectively. At the rest frame of the neutrissimo E = M . Thus,

dΓ =
1

2
· |M̄ |2

2M
· 1

4(2π)2
· δ4(p− q − k) · d

3~q

E1

· d
3~k

E2

. (D.39)

Now we have to integrate over all possible ~q and ~k. In order to do that let us consider

D ≡
∫
δ4(p− q − k) · d

3~q

E1

· d
3~k

E2

=

∫
δ(M − E1 − E2) ·

d3~q

E1E2

. (D.40)

Note that
d3~q = |~q|2d|~q|dΩ, (D.41)
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where dΩ is the element of the solid angle. By examining Eqs. (D.18), (D.29), and (D.37) we
can easily convince ourselves that |M̄ |2’s do not have any angular dependence in the case we are
interested in. Thus, the solid angle part can be integrated out giving us an extra factor of 4π.

At the rest frame of the neutrissimo ~q + ~k = 0 which means that |~q| = |~k|. Then

E2
1 − |~q|2 = 0, E2 − |~q|2 = m2,

where m = {MZ ,MW ,mh} depending on the decay channel. Differentiating these equations we get

2E1dE1 = 2E2dE2 = 2|~q|d|~q|,

or

dE1 =
|~q|d|~q|
E1

, dE2 =
|~q|d|~q|
E2

.

Therefore,

d(E1 + E2) =

(
1

E1

+
1

E2

)
|~q|d|~q| = E1 + E2

E1E2

|~q|d|~q|.

This means that

d|~q| = E1E2

E1 + E2

· d(E1 + E2)

|~q|
. (D.42)

We will see below that |~q| is a constant. Thus, we can write

D = 4π

∫
δ[M − (E1 + E2)] ·

|~q|2

E1E2

· E1E2

E1 + E2

· d(E1 + E2)

|~q|
,

or

D =
4π|~q|
M

. (D.43)

Now we can calculate the total decay width.

Γ =

∫
dΓ =

1

2
· 1

2M
|M̄ |2 1

(2π)2

1

4
D =

|M̄ |2

16M

1

4π2

4π|~q|
M

,

or

Γ =
|M̄ |2

16πM2
|~q|. (D.44)

What is |~q|? Using the conservation of the total 4-momentum we find that

(p, q) =
M2 −m2

2
,

which is analogous to the result given by Eq. (D.17). On the other hand, at the rest frame of the
neutrissimo

(p, q) = ME1 = M |~q|,
where we used E2

1 − |~q|2 = 0. Thus,

|~q| = M

2

(
1− m2

M2

)
. (D.45)
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The total decay width becomes

Γ =
|M̄ |2

32πM
·
(

1− m2

M2

)
. (D.46)

Now we can put our results together. Using our formulas for |M̄ |2’s given by Eqs. (D.18), (D.29),
and (D.37) and Eq. (D.46) we find the expressions for the decay widths

Γ(N → nZ) =
|a|2

16π
· M

3

M2
Z

·
(

1− M2
Z

M2

)2(
1 + 2

M2
Z

M2

)
,

Γ(N → `+W−) = Γ(N → `−W+) =
|b|2

32π
· M

3

M2
W

·
(

1− M2
W

M2

)2

·
(

1 + 2
M2

W

M2

)
,

Γ(N → nh) =
|C|2

16π
·M

(
1− m2

h

M2

)2

. (D.47)

Recall that
a =

g

2 cos θW

A∗, b =
g√
2
B.

Therefore,

Γ(N → nZ) =
g2|A|2

64π cos2 θW

· M
3

M2
Z

·
(

1− M2
Z

M2

)2(
1 + 2

M2
Z

M2

)
,

Γ(N → `+W−) = Γ(N → `−W+) =
g2|B|2

64π
· M

3

M2
W

·
(

1− M2
W

M2

)2

·
(

1 + 2
M2

W

M2

)
,

Γ(N → nh) =
|C|2

16π
·M

(
1− m2

h

M2

)2

. (D.48)

Now, making use of the well-known relationships

cos θW =
MW

MZ

, g2 =
√

2GF · 4M2
W ,

and reinstating the indices i and j we obtain the expressions for the decay widths given by Eq. (3.31).
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Appendix E

Errors on the effective couplings in the
NuSOnG analysis

In this Appendix we show how measurements of σ(νµ e) and σ(νµ e) translate into constraints on
gνe

V and gνe
A . From Eq. (4.6), we find

δσνµe

σνµe

=
2gνe

V + gνe
A

(gνe
V )2 + gνe

V g
νe
A + (gνe

A )2
δgνe

V +
gνe

V + 2gνe
A

(gνe
V )2 + gνe

V g
νe
A + (gνe

A )2
δgνe

A ,

δσνµe

σνµe

=
2gνe

V − gνe
A

(gνe
V )2 − gνe

V g
νe
A + (gνe

A )2
δgνe

V − gνe
V − 2gνe

A

(gνe
V )2 − gνe

V g
νe
A + (gνe

A )2
δgνe

A . (E.1)

To simplify the notation, let us make the replacements gνe
V → V , and gνe

A → A. Then,

δσνµe

σνµe

=

(
2V + A

V 2 + V A+ A2

)
δV +

(
V + 2A

V 2 + V A+ A2

)
δA ,

δσνµe

σνµe

=

(
2V − A

V 2 − V A+ A2

)
δV −

(
V − 2A

V 2 − V A+ A2

)
δA . (E.2)

Inverting this relation, we find

δV =
(V 2 + V A+ A2)(V − 2A)

4(V 2 − A2)

δσνµe

σνµe

+
(V 2 − V A+ A2)(V + 2A)

4(V 2 − A2)

δσνµe

σνµe

,

δA =
(V 2 + V A+ A2)(2V − A)

4(V 2 − A2)

δσνµe

σνµe

− (V 2 − V A+ A2)(2V + A)

4(V 2 − A2)

δσνµe

σνµe

. (E.3)

To simplify the notation further, let us write the fractional errors of σνµe and σνµe as ενe and εν̄e,
respectively. Assuming that the measurements of σνµe and σνµe are uncorrelated (for the sake of
simplicity), we find

〈δV δV 〉 =
(V 2 + V A+ A2)2(V − 2A)2

16(V 2 − A2)2
ε2νe +

(V 2 − V A+ A2)2(V + 2A)2

16(V 2 − A2)2
ε2ν̄e ,

〈δAδA〉 =
(V 2 + V A+ A2)2(2V − A)2

16(V 2 − A2)2
ε2νe +

(V 2 − V A+ A2)2(2V + A)2

16(V 2 − A2)2
ε2ν̄e ,

〈δV δA〉 =
(V 2 + V A+ A2)2(V − 2A)(2V − A)

16(V 2 − A2)2
ε2νe
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−(V 2 − V A+ A2)2(V + 2A)(2V + A)

16(V 2 − A2)2
ε2ν̄e .

(E.4)

Therefore, the errors of V and A are

∆V =

√
(V 2 + V A+ A2)2(V − 2A)2

16(V 2 − A2)2
ε2νe +

(V 2 − V A+ A2)2(V + 2A)2

16(V 2 − A2)2
ε2ν̄e ,

∆A =

√
(V 2 + V A+ A2)2(2V − A)2

16(V 2 − A2)2
ε2νe +

(V 2 − V A+ A2)2(2V + A)2

16(V 2 − A2)2
ε2ν̄e ,

(E.5)

and the correlation coefficient between them is

Corr(V,A)

=
1

16(V 2 − A2)2∆V ∆A

[
(V 2 + V A+ A2)2(V − 2A)(2V − A)ε2νe

−(V 2 − V A+ A2)2(V + 2A)(2V + A)ε2ν̄e

]
(E.6)
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