
1

Final Project Report — CS 5604
Information Storage and Retrieval

CLA Team, Fall 2016

December 7, 2016

Blacksburg, VA 24061

CLA Team:

Saurabh Chakravarty

Eric Williamson

{saurabc,ericrw96}@vt.edu

Project Advisor:

Prof. Edward A. Fox

2

Abstract
Content is generated on the web at an exponential rate. The type of content varies from text on a
traditional webpage to text on social media portals (e.g., social network sites and microblogs). One
such example of social media is the microblogging site Twitter. Twitter is known for its high level
of activity during live events natural disasters, and events of global importance.

Improving text classification results on Twitter data would pave the way to categorize the tweets
into human defined real world events. This would allow diverse stakeholder communities to
interactively collect, organize, browse, visualize, analyze, summarize, and explore content and
sources related to crises, disasters, human rights, inequality, population growth, resiliency,
shootings, sustainability, violence, etc.

Challenges with the data in the Twitter universe include that the text length is limited to 160
characters. Because of this limitation, the vocabulary in the Twitter universe has taken its own
form of short abbreviations of sentences, emojis, hashtags, and other non-standard usage of written
language. Consequently, traditional text classification techniques are not effective on tweets.

Sophisticated text processing techniques like cleaning, lemmatizing, and removal of stop words
and special characters will give us clean text which can be further processed to derive richer word
semantic and syntactic relationships using state of the art feature selection techniques like
Word2Vec. Machine learning techniques using word features that capture semantic and context
relationships have been shown to give state of the art classification accuracy.

To check the efficacy of our classifier, we would compare our experimental results with an
association rules (AR) classifier. This classifier composes its rules around the most discriminating
words in the training data. The hierarchy of rules along with an ability to tune to support threshold
makes it an effective classifier for scenarios where short text is involved.

We developed a system where we read the tweets from HBase and write the classification label
back after the classification step. We use domain oriented pre-processing on the tweets and
Word2Vec as the feature selection and transformation technique. We use a multi-class Logistic
Regression algorithm for our classifier.

We are able to achieve an F1 score 0.96 for our classifier for classifying a test set of 320 tweets
across 9 classes. The AR classifier achieved an F1 score of 0.90 on the same data. Our developed
system can classify collections of any size by utilizing a 20 node Hadoop cluster in a parallel
fashion, through Spark.

Our experiments suggest that the high accuracy score for our classifier can be primarily attributed
to the pre-processing and feature selection techniques that we used. Understanding the Twitter
universe vocabulary helped us frame the text cleaning and pre-processing rules used to eliminate
noise from the text. The Word2Vec feature selection technique helps us capture the word contexts
in a low dimensional feature space that results in high classification accuracy and low model
training time. Utilizing the Spark framework to execute our classification pipeline in a distributed
fashion allows us to classify large collections without running into out-of-memory exceptions.

3

Table of Contents
List of Figures ... 6	

List of Tables .. 7	

1	 Introduction ... 8	

2	 Literature Review .. 8	

	 Textbook ... 8	

	 Papers ... 9	

3	 Requirements .. 10	

4	 Design ... 12	

5	 Implementation ... 16	

	 Environment ... 16	

	 Training data .. 16	

	 HBase access .. 17	
	 Cleaning ... 18	

	 Feature selection and transformation ... 19	

	 Association Rules classifier ... 22	

	 Classifier training and prediction ... 22	

	 Emitting probability in a multi-class scenario .. 25	

	 Spark partitioning and caching ... 27	

	 System extensibility .. 28	

	 Scheduled execution of the classification pipeline with a cron job 29	

6	 Experiments .. 30	
	 Cleaning Experiment .. 30	

6.1.1	 Experimental setup .. 30	

6.1.2	 Experimental results .. 31	

	 Association Rules support threshold experiment ... 32	

6.2.1	 Experimental setup .. 32	

	 Word2Vec based Logistic Regression classifier .. 33	

6.3.1	 Experimental setup .. 33	

6.3.2	 Experimental results .. 34	
6.3.3	 Test of significance ... 35	

6.3.4	 Probability Experiment ... 35	

4

6.3.5	 Experimental setup .. 35	

6.3.6	 Experimental results .. 35	

6.3.7	 Inter-classifier mutual agreement ... 37	

	 Runtime Comparison Experiment .. 38	

6.4.1	 Experimental setup .. 38	
6.4.2	 Experimental results .. 39	

7	 Timeline .. 40	

8	 User Manual .. 42	

	 Environment Setup ... 42	

	 Project Layout .. 42	

8.2.1	 Uploaded files ... 42	

8.2.2	 HDFS files .. 44	

	 Generating training data for files ... 45	
8.3.1	 Github training data .. 45	

8.3.2	 HBase training data ... 45	

	 Running the Association Rules classifier ... 46	

	 Running the classifier ... 48	

	 Configuring the cron job .. 50	

9	 Developer Manual ... 52	

	 VTechWorks Inventory .. 52	

	 Source Directory .. 52	
	 Training data .. 53	

	 Parameters for the Association Rules classifier ... 53	

	 HBase Reading ... 54	

9.5.1	 Reading Prediction Data ... 54	

	 Cleaning ... 56	

	 Writing to HBase .. 57	

	 Word2Vec Generation .. 59	

	 Classification .. 60	

	 Probability emission by the classifier ... 62	
	 Spark partitioning and caching ... 63	

10	 Conclusion .. 64	

5

11	 Future Work .. 65	

12	 Acknowledgements ... 66	

13	 References ... 67	

	 	

6

List of Figures
Figure 1: Problem Statement .. 11	
Figure 2: High level architecture .. 12	
Figure 3: High level view ... 13	
Figure 4: Training phase ... 13	
Figure 5: Prediction phase .. 14	
Figure 6: Data pre-processing before classification .. 16	
Figure 7: HadoopRDD usage example ... 17	
Figure 8: Scan usage example ... 18	
Figure 9: Example raw tweet .. 18	
Figure 10: Example cleaned tweet .. 19	
Figure 11: A neural language model for Word2Vec [17] ... 20	
Figure 12: The hidden layer weight matrix [17] ... 21	
Figure 13: Word2Vec usage example ... 21	
Figure 14: Sample output for the code example shown in Figure 13 ... 22	
Figure 15: Logistic Regression training example ... 24	
Figure 16: Logistic Regression prediction example ... 24	
Figure 17: Spark example to generate probabilities for the tweets along with the predictions 26	
Figure 18: Emission of probabilities along with the prediction for a sample tweet 26	
Figure 19: Spark partitioning example ... 27	
Figure 20: Spark caching example .. 28	
Figure 21: Spark jobs being executed in a parallel fashion [19] ... 28	
Figure 22: Class distribution in the experiment sample .. 31	
Figure 23: Accuracy experiment data generation ... 34	
Figure 24: Average classifier accuracy results ... 34	
Figure 25: Probability distribution of predicted tweets .. 36	
Figure 26: Multi-class assignment distribution ... 37	
Figure 27: Formula to compute kappa .. 38	
Figure 28: Performance of the classifiers on different number of tweets 39	
Figure 29: Performance of the classifiers including optimization .. 40	
Figure 30: Repository directory tree ... 42	
Figure 31: HDFS commands .. 44	
Figure 32: Running the AR classifier ... 46	
Figure 33: Results of running the Association Rules classifier .. 47	
Figure 34: Output directory files ... 47	
Figure 35: Association Rules evaluation output ... 48	
Figure 36: Hue interface example ... 49	
Figure 37: HUE timestamp viewing example ... 50	
Figure 38: Parameter placeholder specifications for the cron job [20] ... 51	
Figure 39: Usage examples for the crontab entry [20] ... 51	
Figure 40: Console output for the list of cron jobs ... 51	
Figure 41: Parameterized Asscoaition rule classifier command ... 53	

7

Figure 42: Command to run the classifier ... 54	
Figure 43: Configure scan for HBase reading .. 55	
Figure 44: Batched processing code example ... 55	
Figure 45: Conversion from HBase row to tweet example ... 56	
Figure 46: Cleaning class entry point ... 56	
Figure 47: ‘#’ character removal ... 56	
Figure 48: Stanford NLP example .. 57	
Figure 49: Writing tweets to the database ... 58	
Figure 50: Disposing of the HBaseInteraction object ... 58	
Figure 51: Code for label mapping ... 59	
Figure 52: Code snippet for Word2Vec training .. 59	
Figure 53: Feature transformation for tweet text .. 60	
Figure 54: Implementation code snippet for the classifier .. 60	
Figure 55: Implementation code snippet for generating classifier metrics 61	
Figure 56: Classifier metrics per class .. 61	
Figure 57: Confusion Matrix and overall results for the classifier ... 62	
Figure 58: Use of ClassificationUtility.scala .. 62	
Figure 59: Probability normalization .. 62	
Figure 60: Spark UI example .. 63	
Figure 61: Port forwarding command to configure access to the Spark UI 63	

List of Tables
Table 1 Comparison of classification algorithms ... 23	
Table 2 Training data schema ... 29	
Table 3 Column mapping between training table label and real world event 29	
Table 4 Real World Events ... 31	
Table 5 Cleaning experiment results ... 32	
Table 6 Number of tweets classified by support thresholds ... 33	
Table 7 Comparative experiment results .. 35	
Table 8 Kappa inter-classifier agreement ... 37	
Table 9 Kappa agreement definitions ... 38	
Table 10 Timetable of tasks .. 40	
Table 11 Description of files in base directory ... 43	
Table 12 Description of files in the data directory ... 44	
Table 13 Mapping from label to event .. 45	
Table 14 HBase training data schema ... 46	
Table 15 ClassifyCollection.sh parameters ... 49	
Table 16 src directory files ... 52	
Table 17 data_scripts directory files ... 53	
Table 18 Association rules classifier parameters .. 54	

8

1 Introduction
The goal of the classification team is to take tweet collections and classify them as relevant or non-
relevant to specific classes or topics. We will place these classification results into a database
(HBase) table as a column family for use by the other teams. The classification results will be
indexed by the SOLR team and allow other teams such as the Front End team to use the indexes.
As we are classifying tweets we will be making use of the data from the Collection Management
Tweets (CMT) team. This CMT pipeline takes the raw tweet data and pre-processes it to remove
obvious spam, vulgarities, and unreadable text, and then uploads the processed tweet text to the
database for us to use.

We begin in Section 2 by discussing the relevant information on classification that we have gained
from the course textbook, the past team’s report, and relevant papers. This helped us study the
current state of the art classification techniques for our document collections while also pointing
to a variety of different feature selection and classification methods that we will be able to use. We
then outline the specific problem and requirements for this project team in Section 5.

In Section 4 we discuss our classification system design at a high level, and go into the details of
how it was implemented, as well as the results from our experiments in Section 6. We lay out the
weekly timeline of work done during the semester in Section 7.

We then provide manuals for both users and developers so others can use and expand on this
project after it has been completed. The User Manual is in Section 8 and will guide setting up
Spark and running the classifiers on the sample data given. The Developer Manual in Section 9
goes into detail about the codebase, with specifics on how it can be run on additional datasets, and
how it can be extended by future groups. Sections 10, 11, and 12 describe the conclusion, future
work, and acknowledgements, respectively.

2 Literature Review
 Textbook	

The textbook [1] introduces the classification problem we are trying to solve: Given a document
and a set of classes, what is the subset of those classes that this document belongs to? It also
discusses the different feature selection methodologies for text classification. These features are
then used in the training of the classification methods discussed. The classification methods
described in the book are Support Vector Machine, Naive Bayes, and Vector Space
Classification.	The textbook helps us get a head start into the problem from a breadth perspective
and gives us a platform so we can start studying more recent techniques on feature selection, vector
space representation of words, and classification, from the latest research literature in the area.

9

 Papers
The process of text classification involves extracting features out of the text data and finding an
appropriate vector space representation for it. This is the feature selection stage of the process.
Once the feature representation of a piece of text is obtained, it can be fed into any classification
algorithm like logistic regression or SVM, and be trained. This is the classification stage of the
process. As part of our literature survey, we came across the following feature selection methods.	

1. Chi-squared statistic - This technique [2] draws its discriminative ability through analysis
of the independence between terms and the documents. The key feature of the technique is
that it can reduce the dimensionality of the feature space to ensure a high performance of the
classifier.

2. Mutual Information - This technique [1] is used to measure the global goodness of a term
in feature selection. This technique measures the mutual information between a term and a
class. The sequence of the words is ignored; a bag of words representation is employed.

3. Tf-idf - Term frequency–inverse document frequency is a statistic that measures how
important a word is to a specific document [1]. This value increases as the term appears more
frequently but is scaled by how often the term appears in the entire corpus. This makes terms
that are common throughout the text such as “the” to not be weighted heavily even though it
would appear many times in each specific document.

4. Information Gain - This is another technique to measure the goodness criterion. It measures
the number of bits required for category prediction by knowing the presence or the absence
of a term in the document [1].

5. Word Class Popularity - This technique explores the relative distribution of a feature
among the different classes. The goal of this technique is to identify the features that
discriminate the classes the most. A good discriminant term will have a skewed distribution
across classes. This technique uses the gini coefficient of inequality to analyze the
distribution of a feature across the classes [3].

6. Word2Vec -	 	This	 technique [4, 5] generates the word vectors out of the training corpus
based on the context in which they occur. The context of the word is defined as the word and
its surrounding neighbors. For example, a word might have words preceding it and
succeeding it. The word along with its surrounding neighbors form the context, though the
length of the window in which the neighbors are defined is a parameter that can be tweaked.
Two techniques that identify the context of a work are the CBOW (continuous bag of words)
and the skip-gram method. The skip-gram based technique predicts the surrounding words
given the current word. The CBOW technique predicts the current word given the
surrounding words. A neural network is trained based on these techniques and the trained
hidden layer weights are used to generate the word vectors. Once the word vectors are
generated, the words that are closer in context to each other are close to each other in vector
space based on their cosine distances. This attribute of the word vectors makes them very
useful for text classification. The word vectors based on the skip-gram technique give the
state of the art results [6] for text classification. From a feature selection perspective, since
each word generates a vector, we average all the values in the vector and use that value as

10

the feature value for a given word. The bigger the corpus is, the more effective the word
vectors become from the perspective of text classification.	

The choice of classifier in our case is not that important since we can fairly easily generate a
moderate amount of training data. We started off our experimentation with a simple
implementation of multi-class logistic regression. As part of our literature survey, we came across
the following classification algorithms.

1. Logistic Regression - Logistic regression [1] measures the relationship between the
categorical dependent variable and one or more independent variables by estimating
probabilities using a logistic function, which is the cumulative logistic distribution.

2. Support Vector Machine (SVM) – This is a classifier that will perform linear or nonlinear
classification through a kernel trick [1]. This classifier works by linearly separating the classes
so that each class falls onto one side of the separator. This classifier maximizes the distance
between the separator and the points on either side to identify the separator it will use.

3. Multi-layer Perceptron (MLP) - It is a feedforward artificial neural network [7] model that
maps sets of input data onto a set of appropriate outputs. An MLP consists of multiple layers
of nodes in a directed graph, with each layer fully connected to the next one. It uses the
supervised learning technique named back-propagation to learn the network weights.

4. Naïve Bayes – This classification method is based on applying Bayes Rule under the
assumption of independence. This means it treats each feature as independent of the others
with respect to the class the document will fall into. Despite the assumptions, Naïve Bayes has
been shown to perform well in real world situations [1].

5. Association Rules	-	This technique uses the training data to create association rules for each
class by identifying rules that will lead to a specific class identification [8]. The rules can then
be used by a rule engine to predict the class of new documents. These association rules can
also more quickly predict the classes of documents. The challenge with this classifier is to see
how well it performs on long texts since its efficacy has only been evaluated on short texts.	

3 Requirements
The problem statement for the classification team is as follows:

Given a tweet collection and a set of event classes in the real world, we are to build a classifier
that can classify the tweets into the appropriate event class.

11

Figure 1: Problem Statement

Figure 1 explains the problem pictorially. Essentially, we have a set of collections of tweets that
have been retrieved based on keyword/tag search performed using the Twitter API. These are
shown in the box in the left section of Figure 1. The human defined events or the real-life events
as stated in the goal are shown in the box in the right section of Figure 1. The relationship between
the collection of tweets and the events is many-to-many.

For instance, the tweet collection weather2012 can have tweets related to the hurricanes “Sandy”
and “Isaac” as they occurred in the same year and tweets from this collection can map to either the
“Hurricane Sandy” or “Hurricane Isaac” event on the right. Likewise, for a given event, there can
be many tweets that are associated with the event.

For the task of classification, we make the following assumptions about the collection of tweets:

• Tweets have been extracted and are available in the database (HBase) and some “basic” SPAM
check has been done by the tweet collection management team or by the teams from previous
offerings of this course.

• We provided the SOLR team with accompanying classification labels for tweets in HBase.
Depending on the classification method used we were able to provide the respective probabilities
of the tweet belonging to each of the real-world events we classified it as. The output of the
classification step was written in the database which is used by the SOLR team. We added the
classification label of a tweet to the “real-world-events” column in the “clean-tweet” column
family.

Human-defined eventsTweet collections
based on twitter search

#hurricaneissac

hurricaneissac

hurricane

weather2012

Hurricane Issac

Hurricane Sandy

Blizzard Gordon

12

• Due to the size of the classification team, this semester we only focused on the
classification of tweets. Also, if any tweet contained an embedded hyperlink, we did not
process the contents of the page that the hyperlink points to since our classification
techniques were limited to short text data.

As part of the classification effort, we achieved the three major goals that are described as follows.

1. Develop a classifier that utilizes an effective feature selection and transformation technique
along with a suitable classification algorithm to achieve high classification accuracy and
run-time performance.

2. Develop the solution to be scalable and performant. It should be able to process large
collections (tens of millions of tweets) and persist the classification label in HBase.

3. Develop the solution to be extendable in the future. This includes adding the flexibility to
train the classifier on new classes and also be able to run the classification pipeline as a
scheduled job that can process the new tweets as they are added in HBase.

4 Design

Figure 2: High level architecture

Figure 2 shows the high-level architecture for all the components for the class. The classification
component is shown along with other components that are part of the whole system that the class
built during the semester.

13

Figure 3: High level view

In Figure 3, we have the high level black box view of the classification pipeline and the data
sources that it interacts with. The classification pipeline will access the HBase database to read
the raw tweets from the table ideal-cs5604f16 and write back the classification label to the real-
world-events column in the same table. This column is part of the column family clean-tweet that
was created for storing the classification related columns.

The process of classification has two major phases.

Figure 4: Training phase

1. Training – In this step we read1 the training data from HBase that we generated2 to train a
classifier. As shown in Figure 4, we read the raw tweet from HBase and then performed

1 The reading of the data from HBase can be found in Section 5.3
2 The generation of training data can be found in Section 5.2.

14

some pre-processing on it. We used Word2Vec as the feature selection method for our
classification pipeline. Once we cleaned the tweets, we generated a Word2Vec [5] model
to get the word vectors for each tweet in the training data. After the generation of the word
vector model off the training data, we persisted the Word2Vec model file in HDFS.

In the classifier training phase, we transformed a tweet to a feature array based on the word
vectors that we calculated for each word. We trained the classifier using these features.
Once we trained our classifier, we persisted the model file in HDFS. For our project, we
used the Logistic Regression classifier.

The training pipeline is executed in an offline manner. This means that we generated the
word vector and classifier models beforehand to ensure that this step is not repeated during
run-time. All the software artifacts(models) generated out of this phase that are persisted
in HDFS were used later in the prediction phase which runs online.

Figure 5: Prediction phase

2. Prediction – This phase of the pipeline runs online periodically as a timer-based job3 in
Linux. We used the cron utility in Linux to configure the job to be run once every 4 hours.
As part of the prediction phase shown in Figure 5, a block of tweets is read from the table
ideal-cs5604f16 in HBase and labelled by the classifier. This label is written back to the
same table in HBase. The Word2Vec and Logistic Regression models are loaded from
HDFS in the beginning of the phase and are persisted in memory till the end of the
prediction phase.

3 The cron job details can be found in Section 5.11

15

Based on our research, we used the high-level approach as shown in Figure 4 to identify the best
choice of the feature selection and classification techniques. We performed our experiments in the
following way.

• Training data creation - We generated training data that by selecting 3 broad categories
and then selecting tweets from the 3 sub-categories each from the collection. We manually
annotated the data and divided it into a ratio of 70:30 for the train/test mix for our
experiments.

• Classification via Association Rules - We used the association rules based classifier [8]
and generated a baseline result. We compared the results of this baseline with our
Word2Vec with Logistic Regression classifier.

• Feature selection via Word2Vec method - We used this technique to generate the word
vectors [4,	5] on the same training data and generate features for the tweet texts using the
word vector model that we have generated from the training corpus.

• Classification via Logistic Regression – We used the multi-class logistic regression
classifier to train a model based on the Word2Vec feature selection technique. We also
performed a 10-fold cross-validation to select the best model and save it into HDFS. We
performed this step so that we can load the best model out of the file system instead of
training the classifier again. This helps in reducing runtime.

• Evaluation of results – Since we are implementing a multi-class classifier, we computed
the micro-F1 scores [9] across all classes to evaluate the overall classification efficacy of
the classifier.

• Writing to database - The classification results for tweets were recorded in the database
by writing, to a column family for each tweet, the real-world events we have determined it
belongs to.

• System Extensibility - To keep our system extensible, we loaded our annotated training
data in a table in the database. This will allow anyone to add more training data in the future
and use it to retrain the classifier. We also implemented the ability to generate a new set of
word vectors using the same approach.

• Pre-processing the training data – To aid faster development of the classification system,
we cleaned the tweets for our training data. This flow is shown in Figure 6. We remove all
the non-English words, short URLs, and emojis as part of this process. We also interpreted
the hashtag and mentions into terms by breaking them into multiple words based on the
casing. An example would be the phrase “#HurricaneSandy” would be broken into the
tokens “hurricane” and “sandy”. We also removed the stop words and lemmatized all the
words that remain. We assume though that the cleaning of tweets in the final system will
be done by the CMT team as part of their system implementation.

16

Figure 6: Data pre-processing before classification

We used the following technologies and frameworks for our project.

1. Apache Hadoop – This is the base layer of the distributed computing framework that we
used. [10]

2. Apache Spark – This is an optimized RDD based framework built on top of Hadoop. [11]
3. HBase – This is the distributed database from the Apache Hadoop stack that is widely used

as a NOSQL database in many implementations. [12]
4. HDFS – This is the distributed file system of the Apache Hadoop stack. [13]
5. Spark MLlib – This is a machine learning library that is based on the Apache Spark

framework. For all the classification work related to our project, we used this library. [14]

5 Implementation
In this Section, we describe the implementation details of our system for our project this semester.

 Environment
To rapidly develop the code needed for the project we opted for a hybrid environment between the
DLRL cluster and our local machines. Fast iterative development was done on our local machines
where we could take advantage of tools such as the IntelliJ IDEA [15] to quickly develop our Scala
code. We could verify that the code is working on small datasets on our local machines, and then
move the code up to the cluster when we ran classifications on the large datasets. This allowed us
to take advantage of the processing power of the cluster when we needed to run our experiments.
From the cluster, we were able to communicate with the database to store and retrieve data from
the IDEAL and GETAR project collections.

 Training data
To be able to build classifiers we had to create training and test sets to train and evaluate our
classifiers. To begin we took data from the database present in the column family “cleantext” and
assume that that data has been cleaned of profanity and unreadable text.

For our initial studies, we took a size 200 random sample of the documents (tweets) from each of
the collections to form the basis for different classes. We then hand labeled the documents with
the class that they belong to.

17

For our training sets we removed all stop words and performed lemmatization after seeing a better
performance of all classifiers with lemmatization in place. We show the comparative performance
results of the classifiers against clean and raw data in Section 5.3.

For our comparative tests, we split this labeled data -- 70% training, 30% testing -- to keep our
comparisons consistent so we could evaluate the best classification result for our data.

We have provided documentation in Section 8.3 to allow for generation of more training data if
desired.

 HBase access
HBase is the database that is being used to store all of the tweets that our classifiers will run on.
For our classification to operate satisfactorily we must read the tweets from HBase efficiently and
correctly. Spark provides many ways to read records from HBase such as Scan that allows iteration
over an HBase table, and HadoopRDD that reads HBase data into an RDD for further processing.

To use the HadoopRDD API one first specify the table name that you want to generate an RDD
of. The API only supports making an RDD out of a single table, to get multiple tables you will
have to create multiple RDDs. The next parameters that must be specified are the type of the data
that each row-key is stored as in the HBase table. Finally, you can specify the columns that you
want to retrieve from HBase.

The HadoopRDD API works by streaming the data to the driver node, then partitioning it across
the cluster so each node can get a different piece of the data. This means that then you can execute
operations on that data across the cluster. Example code for how a HadoopRDD will be created
can be seen in Figure 7.

Figure 7: HadoopRDD usage example

The Scan API works similarly to the HadoopRDD API. It requires the table name to be specified
along with the columns to read and any filtering of records that you want to do. The Scan API
returns a Result object. This object allows you to iterate over these records without drawing many
into memory. This operation is not parallelized and would be executed on the driver node, so to
achieve parallelism for the later operations you have to take some records and parallelize them into
an RDD. An example framework for showing how this is set up can be seen in Figure 8.

18

Figure 8: Scan usage example

One challenge that we faced is that there are collections of tweets that have millions of records.
Because of this our read code must be able to still work efficiently when operating on the large
record sizes. We found empirically that the HadoopRDD API did not finish reading after multiple
hours when run on a collection of size greater than 1 million records. This led us to use the Scan
API and read in small sections of the large collection at a time. By reading in a small block,
parallelizing it across the cluster, then only reading the next one once we had finished processing
the previous block, we were able to keep our code running in parallel while eliminating memory
errors that large collections generate.

 Cleaning
Twitter limits the number of characters in each message. This means that each document we want
to classify has a limited amount of information. To be able to correctly classify these tweets we
clean the data of non-discriminative stop words, perform lemmatization, and remove non-English
characters such as hashtags ‘#’ and URLs.

RT: @AssociationsNow A Year After Texas Explosion Federal Repourt Outlines Progress on
Fertilize... http://t.co/8fDbMu9asU #meetingprofs

Figure 9: Example raw tweet

19

An example uncleaned raw tweet can be seen in Figure 9. This tweet has a short URL that is
irrelevant to the class it is part of. The words in this tweet are also capitalized, and we would like
to have them still match with words of other tweets that are lowercase. It is also important to
lemmatize words so that the features that the classifier will train on will consist of the word
lemmas. [16] An example of the raw tweet from Figure 9 after being cleaned is shown in Figure
10.

We utilized these cleaning methods on our training and test data for our experiments, as well as on
the new tweets that we predict when reading from HBase. The specific details on how we
accomplished each cleaning method can be found in Section 9.6. The accuracy gain that the
classifiers experienced when they ran on cleaned data can be found in Section 6.1.

 Feature selection and transformation
As part of the pre-processing phase for our project, we clean the tweets, lemmatize the words
contained, and remove the stop words. In spite of this, the number of words in a bag of words
representation is still large. Feature selection methods assist in further reducing the dimensionality
of the feature set by removing the irrelevant words. The goal of reducing the curse of
dimensionality is to improve classification accuracy and reduce over fitting.

Methods for feature subset selection for text document classification use an evaluation function
that is applied to a single word. The goal is to identify a subset of words that assist in discriminating
between the classes the most. Techniques like Document frequency (DF), Term frequency (TF),
Mutual information (MI), Information gain (IG), and Chi-square statistic (CHI) use feature-scoring
methods to rank the features by their independently determined scores, and then select the top
scoring features.

Another technique to reduce the size of the feature space is referred to as feature transformation.
This approach does not eliminate features because of their low scores, but compacts the feature
dimension based on feature concurrencies.

Words are central to text classification. The challenges with traditional feature selection techniques
are that they are based on a bag-of-words representation. This representation fails to capture the
neighboring context of a word in a sentence. The absence of this context results in the loss of the
semantic relationship of the word with its neighboring words.

Word embeddings [4] offer distributional features about words. They capture the context of the
word in its neighborhood. This results in an extension to the bag-of-words representation along
with context and word sense information. Word embeddings are low-dimensional, dense vector
representation of words. The compact representation along with capturing of the context make this
a strong choice for the feature representation for words in text classification scenarios.

year texas explosion federal report outline progress fertilize meetingprof

Figure 10: Example cleaned tweet

20

Work in [5] defines specific objective functions for efficient training of word embeddings, by
simplifying the original training objective of a neural objective model. The two variants of the
objective functions are as follows:

a. Continuous bag-of-words (CBOW) – Given a word, predict the context.
b. Skip-gram – Given a context, predict the word.

Figure 11 shows the Word2Vec CBOW neural language model. It is a one layer, 300-neuron neural
network with [1 x V] Boolean vector as input and a [1 x V] float vector as output, where V is the
vocabulary size, in this case 10000. The input to the neural network is a one-hot representation of
a word in the form of a [1 x V] Boolean vector. The word “ant” is the given word in the example,
and the neural network objective is to maximize the probability of the words that could be its
neighbors. The words are fed into the neural network from a training corpus and it generates the
relative probabilities for all the words in the corpus.

The goal of the Word2Vec implementation is to just store the word weights that are in the hidden
layer representation of neural network. As for the example given in Figure 11, the output of
importance is the [300 x 10000] matrix that gets generated for the word corpus, which in this case
consists of 10000 words. This is shown in Figure 12.

Figure 11: A neural language model for Word2Vec [17]

21

Figure 12: The hidden layer weight matrix [17]

Figure 13 shows an example on how to load a corpus from text file and train a Word2Vec model.
Once the model is generated, it can be used to transform a word to its corresponding feature
representation. Also, it can be used to find synonyms for any word that it has been trained on.

Figure 13: Word2Vec usage example

Figure 14 shows the part of output for the word vector for the word “hurricane” and the 4 synonyms
for the word “shooting”.

22

Figure 14: Sample output for the code example shown in Figure 13

We utilized the Word2Vec feature selection technique to generate the features for our words. We
used the Word2Vec class in the Spark MLLib framework for our implementation. The
development details are in Section 9.8 and the experimental results for classification using the
Word2Vec model are in Section 6.3.2.

 Association Rules classifier
Association rules is a technique for data mining that provides relationships between elements
through the form of rules. The rules take the form of implications with a certain confidence value.
For use in classification, if the text contains a collection of terms, it will belong in the rules
respective class. If there is no rule that will classify the record, the record will be classified using
similarity measures such as cosine similarity to determine the class it is closest to in vector space.
Association rules has been shown to be effective at matching publication venue title variations to
their actual titles. [8]

An example rule would be:

{<KY>, <Bluegrass State>} --> Kentucky

where the presence of the token KY, or the phrase “Bluegrass State” implies that this document is
talking about the state Kentucky.

Association rules are useful when classifying large collections because the prediction operation
can be performed efficiently in constant time when a hash table is used to provide a lookup for the
rules. One specific parameter of interest for the association rules classifier will be the support
threshold that is required to use a rule in prediction. A lower support threshold will allow more
predictions to be made by the rules, speeding up the overall prediction time. However, rules with
a lower support will not yield as confident implications as ones with high support. The effect of
different support threshold on the number of tweets classified with rules and similarity is explored
in Section 6.2.

The classifier implementing association rules was provided to us by Dr. Pereira. Instructions on
how to use it and all the parameters that can be tweaked can be found in Section 9.4.

 Classifier training and prediction
The definition of classification is to determine which class(es) a given object belongs to, given a
set of pre-defined classes. As for the problem defined for the project, we have to classify a given
tweet to a real-world event as explained in Section 3.

23

The process of classification involves the following three steps.

1. Feature selection
2. Feature representation
3. Choosing a classification algorithm

Feature selection and feature representation have been mentioned in Section 5.5. In this Section,
we focus on choosing a classification algorithm. The most common classifiers that are
predominantly used in text classification are:

1. Logistic Regression
2. Support Vector Machines (SVM)
3. Multi-Layer Perceptron (MLP or Neural Networks)
4. Naïve Bayes
5. Association Rules (AR)

The following table compares some of the intricacies associated with the classification algorithms.

Table 1 Comparison of classification algorithms

Classifier Training Time Prediction Time Easy to interpret
results

Performs well
with small
number of
observations

Model
complexity

Naïve Bayes Fast Fast Somewhat Yes Linear
Logistic
Regression

Fast Fast Somewhat Yes Linear

SVM Slow Fast No Yes Polynomial
MLP Slow Fast No No Quadratic
AR Fast Fast Yes Yes Linear

We started our first implementation with Logistic Regression and considering that we have a lot
of training data at our disposal, the choice of classifier [1] in our case is not significant. After
performing some initial experiments with a small set of test data, the accuracy results were quite
promising. More details related to this experiment can be found in Section 6.3.2. Dr. Fox also
suggested the we focus on the creation of more training data and tuning the classifier further. Thus,
we continued with Logistic Regression as our classification algorithm of choice. We use a multi-
class classifier for our project.

Figure 15 shows an example on how to use a Word2Vec model to transform a tweet into a feature
vector and train a Logistic Regression classifier and save it into HDFS.

24

Figure 15: Logistic Regression training example

Figure 16 shows an example on how to load a logistic regression model from HDFS and generate
predictions on data.

Figure 16: Logistic Regression prediction example

The exact source code references can be found in the developer’s manual in Section 9.9. Also, the
experimental results are shown in Section 6.3.2.

25

 Emitting probability in a multi-class scenario
As described in the previous Section, we implemented our solution using a multi-class Logistic
Regression classifier. The multi-class implementation for Logistic Regression in the Spark MLLib
framework is a one-vs-all wrapper over the binary Logistic Regression classifier. Also, this
implementation only predicts the class of a given tweet. It does not emit the raw probability for
each of the classes.

For our classification process to be more effective in classification efficacy and also from the
perspective of error analysis, it is imperative that we have a mechanism to generate the
probabilities of each of the classes. Having the probability values for each of the class would help
us analyze the classification results in further detail and also to understand what is the relative
distribution of probabilities across the classes for a given tweet since there is a high possibility that
a tweet can belong to multiple classes.

We want to have a system that lets us control how stringent we are about assigning one class to a
tweet. If we have the probability of the all the classes, we can set a probability threshold based on
the precision we want to have with our classes and balance it with the coverage we want to have
for our tweet collections. Having this threshold based mechanism would also allow us to classify
a tweet in an “unknown” class, since we are not sure what class it belongs to.

Setting a threshold to a high value would result in high precision but low recall, since a lot of
classes with low probability will be rather classified as “unknown”. Setting a threshold to a low
value will get a very good recall or coverage on our collection, but will suffer in precision since a
class can belong to multiple categories. If there are multiple classes with the same probability, the
choice of class in that case will be the first one with the highest probability.

Since the Spark MLLib does not come with an implementation for generating the probability for
a multi-class Logistic Regression, we chose to have a custom implementation by building over a
sample given in the example [18] on the web. We have abstracted the implementation in the class
ClassificationUtility for easy usage in our main codebase.

Figure 17 shows the example to extend the Logistic Regression method call to start emitting
probabilities for a tweet. Especially important to note are the line numbers 26 and 28, where the
former is the way we were using it in the past and the latter is the new call that we make to the
newly implemented ClassificationUtility class that emits the probabilities along with the
predictions.

26

Figure 17: Spark example to generate probabilities for the tweets along with the predictions

Figure 18 shows the probabilities in the expanded object view for the 9 classes for a given tweet
that was classified during our experiments. Note that 5 classes among the nine have the same
probability. The empirical analysis and our interpretation for the scenarios is discussed in
Section 6.3.4. The first two values in the screenshot are the true and predicted labels for the tweet,
and the last entry is the redacted tweet text.

Figure 18: Emission of probabilities along with the prediction for a sample tweet

27

 Spark partitioning and caching
Spark is a general-purpose cluster computing system that empowers other higher-level components
to leverage its core engine. While it allows building other higher-level applications on top of it, it
has a few components that are tightly integrated with its core engine to take advantage of the future
enhancements at the core. Spark is built on top of the Hadoop MapReduce framework to provide
an extension to it based on its basic primitive, the Resilient Distributed Dataset (RDD).

The main idea behind RDDs is that they are immutable collections of statically typed objects
spread across a Hadoop cluster. The partitioning of the RDDs and storage is designed to be user
controlled. The Spark SDKs have extended the programming language to support RDD operations
(map, filter etc.) that have the capability to be executed lazily depending on user implementation.

The RDDs are designed to be automatically rebuilt from failure and a lineage of a failed RDD
operations can be detected automatically and be assigned for computation to another node
implicitly.

The power of Spark comes from the ability to partition data across the cluster and perform
computation on a piece of data in a parallel fashion. The Spark SDK exposes operations on the
RDD primitive to enable the partitioning to be user controlled. In addition to the partitioning, it
also allows an ability to checkpoint an RDD using the cache operation so that repeated processing
does not occur by the code using that RDD later.

For the tweet collections that we have to classify, we have to read and classify tweets ranging in
number from a few thousand to tens of millions. It is important for us to ensure fast execution for
the classification pipeline and have our implementation optimized to run in a distributed fashion
across the cluster.

We read data from HBase and partition it accordingly based on our cluster topology. Once the data
is distributed across the cluster via partitioning, we perform the classification related processing
on the partitioned data.

An example of the partitioning and caching is shown in Figure 19 and Figure 20 respectively.

Figure 19: Spark partitioning example

28

Figure 20: Spark caching example

Figure 21 shows an example of Spark code running across a cluster using partitioning in Spark UI.
The blue bars in jobs panel show parallel execution.

Figure 21: Spark jobs being executed in a parallel fashion [19]

We utilized both repartitioning and caching operations for processing various datasets through our
codebase. The development manual Section 9.11 has the exact details for our project and the
experiments Section 6.4.2 shows the speed gains from the repartitioning and caching based
optimization.

 System extensibility
An extensible system allows additional features to be added without changing the entire system.
To have extensibility a system should read from configuration files, get passed in parameters and
allow data to be changed.

For our project, we must allow the classifier to be extended to predict on more classes than are
currently trained. This is because there are many real-world events that are present in the

29

collections such as the Egyptian Revolution that the classifier is not currently trained on. For the
classifier to be effective, it will need to be able to classify tweets into all relevant real world events.
This includes future events that are not currently in the collection.

To support additional classed being added we created a table that will store the training data. This
table is called “cs5604-f16-cla-training”. The schema for the table is shown in Table 2.

Table 2 Training data schema

Column Name Column Description Column Example
training-tweet:label The numerical label of the tweet 1.0
training-tweet:text Clean text of the tweet to be

used for training
report die china factory
explosion

The classification label corresponds to a real-world event that training data was generated for. The
mapping from labels to real world events can be found in Table 3. The labels are doubles to be
compatible with the Logistic Regression API. If any additional data is added to the training table,
the models can be retrained by passing the ‘-retrain’ flag. This will instruct the classifier to first
reconstruct the Word2Vec and Logistic Regression models from the training data table and save
them onto HDFS for use in prediction.

Table 3 Column mapping between training table label and real world event

training-tweet:label real-world-event
1.0 ChinaFactoryExplosion
2.0 KentuckyAccidentalChildShooting
3.0 ManhattanBuildingExplosion
4.0 NewtownSchoolShooting
5.0 HurricaneSandy
6.0 HurricaneArthur
7.0 HurricaneIsaac
8.0 TexasFertilizerExplosion
9.0 NewYorkFirefighterShooting
10.0 QuebecTrainDerailment
11.0 FairdaleTornado
12.0 OklahomaTornado
13.0 MississippiTornado
14.0 AlabamaTornado

 Scheduled execution of the classification pipeline with a cron job
A cron job is a scheduled task that is executed by the system at a specified date/time. It is a Linux
utility that allows tasks to be automatically run in the background at regular intervals by the cron
daemon. These tasks are often termed as cron jobs in Linux. Crontab is the file which contains the
schedule of cron entries to be run at specified times.

30

For our project, it is a given that at every moment new tweets will be added to the HBase table and
we should have a mechanism to perform classification on the new tweets that are added. Adding a
cron job to perform classification periodically on newly detected tweets would ensure that the
HBase table is updated with the classification labels for the new tweets. The cron job can also
notify via email once the run is complete.

The cron daemon schedules all the jobs to be run as defined in in the crontab file. The following
is an example of an entry in the crontab file. It is supposed to delete all the files in the temp folder
of someuser at 18:30 every day.

30 18 * * * rm /home/someuser/tmp/*

More details about the configuration and scheduling of the cron job for the classification can be
found in Section 8.6.

6 Experiments
 Cleaning Experiment

The purpose of this experiment was to determine if cleaning the training and test data would result
in better accuracy for the classifiers.

6.1.1 Experimental setup
To conduct this experiment, we divided the hand labeled data into a training and test dataset. The
split used was 70% for the training and 30% for the test data. The same split data was run on both
classifiers with the raw text and cleaned text.

The dataset that these experiments were run on can be found in the experiment_data_(un)lem.txt
files in our Github repository. This data is drawn from 3 broad categories, with 3 sub-categories
for each broad category:

1. Shootings
a. Kentucky Shooting
b. Newton Shooting
c. Firefighter Shooting

2. Hurricanes
a. Hurricane Arthur
b. Hurricane Sandy
c. Hurricane Isaac

3. Explosions
a. China Factory Explosion
b. Texas Plant Explosion
c. Manhattan Explosion

The distribution of the specific classes for the sample data is shown in Figure 22. This data shows
the class imbalance in the sample set. Such an imbalance was intentionally created to reduce the

31

bias of the classifier. The matching of the real world events to class labels can be found in Table
4.

Table 4 Real World Events

Class Label Real World Event
0 Firefighter Shooting
1 China Factory Explosion
2 Kentucky Shooting
3 Manhattan Explosion
4 Newton Shooting
5 Hurricane Sandy
6 Hurricane Arthur
7 Hurricane Isaac
8 Texas Plant Explosion

Figure 22: Class distribution in the experiment sample

The cleaning that was done for this experiment was:

• Lemmatization
• Stop word removal
• Hashtag removal
• Non-English character removal

The motivation behind cleaning in this way is discussed in Section 5.4.

6.1.2 Experimental results
 We can see the summary of the results in Table 5. Cleaning of the data yielded a large reduction
in the misclassifications for both the Association Rules classifier as well as the Logistic Regression

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8

Nu
m
be

r	o
f	T
w
ee
ts

Class	of	data

Class	distribution	 in	the	experiment	sample

32

classifier. To be able to best classify the tweets in the collections to specific real world events we
will employ pre-processing both on the training tweets as well as the tweets whose class we are
predicting.4

Table 5 Cleaning experiment results

Classifier % reduction in
misclassifications

Word2Vec with Logistic Regression 28.63
Association Rules 50.84

 Association Rules support threshold experiment
This experiment will look at the support threshold and see the number of tweets that are predicted
by rules and distance for a given support threshold. By looking at this we will be able to see the
support that the rules in the Twitter domain need, to classify most by the association rules. The
reason for wanting to classify by the rules instead of cosine similarity is that the rules can be
applied much faster.

6.2.1 Experimental setup
This experiment was performed with a limited number of hand-labeled training data from 3
different classes of shooting events. The data was pulled from the ‘ideal-tweet’ table and represents
the following real world events:

– New York Firefighter shooting
– Connecticut School shooting
– Kentucky Accidental Child Shooting

The data can be found in the folder “shooting_data” on the project’s Github repository.

For this experiment the Association Rules classifier was run on the same dataset with different
values for the support threshold. The support threshold parameter dictated the association rules
that will be used in prediction. Only rules that have support greater than the threshold will be used
to predict tweets.

Experimental results

Table 6 shows the percentage of the test set that was classified by association rules and distance
respectively. We can see that when there is no threshold on the rule values 83.33% of the tweets
are predicted by the association rules. As expected when the support threshold is increased to 0.05
the percentage classified by rules decreases to 33.33% because many of the rules that had very
small support were excluded. We found that the rules created had low support because the tweets
themselves did not have a significant number of common terms even after cleaning. This means
that to be able to predict by association rules we will have to use a support threshold close to 0.

4 A comparison of the accuracy of these classifiers can be found in Section 6.3

33

Table 6 Number of tweets classified by support thresholds

Support threshold Percent predicted by rules Percent predicted
by distance

0.0 83.33 16.67
0.05 33.33 66.67
0.1 15.56 84.44
0.15 14.44 85.56
0.2 14.44 85.56

 Word2Vec based Logistic Regression classifier
The purpose of this experiment was to determine which classifier performs better from an accuracy
perspective out of the Word2Vec based Logistic Regression classifier and the Association Rules
classifier on our hand-labeled set.

6.3.1 Experimental setup
This experiment used the same hand-labeled data procured for the Cleaning experiment5. This data
consisted of 9 classes falling into 3 broad categories.

To fairly judge the performance of these classifiers we split up the hand-labeled data into 10
different 70% train - 30% test sets. This was accomplished by first splitting the data into 10 equal
sets, then placing 7 of those into training and 3 into test. The remaining splits were generated by
rotating the sets between training and test so that each set was in both train and test for at least one
of the splits. This procedure is explained pictorially in Figure 23.

Each of the splits was then run on each classifier to compare their results on the exact same training
and test data.

5 The specific breakdown and name of classes can be found in Section 6.1.1.

34

Figure 23: Accuracy experiment data generation

6.3.2 Experimental results
Each classifier was run on all 10 experimental splits and the metrics Weighted F-Measure,
Weighted Precision, and Weighted Recall were recorded. The results from each classifier on a
specific set as well as the averages are shown in Table 7. The averages calculated are shown in
Figure 24. From these results, we can see that for all the metrics tested, the averages were higher
for the Word2Vec with Logistic Regression classifier on the hand-labeled dataset used.

Figure 24: Average classifier accuracy results

0.9609 0.9638 0.9607
0.9005 0.9109 0.9104

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

Weighted	F1 Weighted	Precision Weighted	Recall

Classifier	Accuracy

Word2Vec	With	Logistic	Regression		 Association	Rules

35

Table 7 Comparative experiment results

6.3.3 Test of significance
We performed a t-test to determine if the results from the accuracy experiment in Table 7 were
statistically significant. The t-test is used to determine if two sets of data are different. The null
hypothesis for this test is that the average weighted F1 scores are equal. The result of a t-test is a
p-value is the probability of obtaining a difference at least as large as what was observed assuming
the null hypothesis. A higher p-value indicates that the null hypothesis is likely to be true, while a
lower p-value indicates that the null hypothesis is likely to be rejected. A normal p-value that will
determine if the null hypothesis should be rejected is less than 0.01.

We performed a 2-tailed t-test and found that the resulting p-value was 0.000600527.	Given the
results of this test we will reject the null hypothesis and conclude that the difference between the
average weighted F1 scores are statistically significant.

6.3.4 Probability Experiment
The purpose of this experiment is to see the distribution of probabilities for the Word2Vec based
Logistic Regression classifier predictions on the test set. This will let us see how confident the
classifier is on the predictions it makes.

6.3.5 Experimental setup
For this experiment, we used one of the sets from the same training test data split from the cleaning
experiment in Section 6.1.1. The data used was the cleaned data as it had produced more accurate
predictions for the Logistic Regression classifier.

6.3.6 Experimental results
The distribution of the probabilities of the test set can be found in Figure 25. One use of these
probabilities is to set a threshold where tweets with probabilities below that threshold will not be
classified into their predicted class. The first 3 bars in the figure represent the number of samples
that were classified as belonging to 4, 3 and 2 classes respectively. This means that the classifier
is not absolutely certain which one class the tweets belong to. It makes a random choice between

		 Word2Vec	with	Logistic	Regression	 Association	Rules	

Data	Set	
Weighted	
F1	

Weighted	
Precision	

Weighted	
Recall	

Weighted	
F1	

Weighted	
Precision	

Weighted	
Recall	

10	 0.9720	 0.9730	 0.9720	 0.9555	 0.9584	 0.9562	
9	 0.9636	 0.9658	 0.9626	 0.9119	 0.9167	 0.9221	
8	 0.9421	 0.9521	 0.9439	 0.8932	 0.9039	 0.9031	
7	 0.9688	 0.9696	 0.9688	 0.9658	 0.9673	 0.9657	
6	 0.9635	 0.9673	 0.9626	 0.8796	 0.8967	 0.8938	
5	 0.9593	 0.9600	 0.9595	 0.9021	 0.9085	 0.9128	
4	 0.9755	 0.9776	 0.9751	 0.8467	 0.8775	 0.8656	
3	 0.9506	 0.9554	 0.9502	 0.8834	 0.8819	 0.8972	
2	 0.9549	 0.9574	 0.9533	 0.9082	 0.9143	 0.9159	
1	 0.9590	 0.9595	 0.9595	 0.8583	 0.8837	 0.8719	

Average	 0.9609	 0.9638	 0.9607	 0.9005	 0.9109	 0.9104	

36

the probable classes that have the same probabilities. If we set a threshold to be 0.3, we will be
able to classify about 87% of the tweets in the test set, but 64% of them are of the nature where
the classifier believes that they can belong to more classes than what has been labelled. The choice
of this threshold represents the precision-recall tradeoff. If we set a high threshold such as 0.9 we
would get 74 results that the classifier was very confident about, while the other tweets would not
get classified. This would lead to high precision but low recall as the tweets we are very confident
about would get a classification label, but other tweets are about a specific classification label that
the classifier is less confident about would not be classified lowering the recall.

Figure 25: Probability distribution of predicted tweets

We believe that the distribution across the different probability ranges is happening because of two
reasons.

• Limited number of word vectors – We trained our word vectors using about 750 training
tweets. During classification of test data, we omit all the words that the Word2Vec model
was not trained on. This results in the culling of words that would have otherwise
contributed to the probability for some class. Having a larger set of word vectors would
result in more scattered but equal distribution of probabilities across more classes. Or it
might also contribute strongly towards the probability of one class. This will result in fewer
cases where a tweet has a probability of 0.5 for 2 classes (35% of samples) as shown above.
These kinds of classification labels will move into either of the low or high probability
ranges.

• Training on broad categories – In our experiments, we observed that the probabilities
indicated a tweet was more likely to belong to multiple classes than belong to a specific
class. For example, a tweet that just had the presence of the word “hurricane” was classified
with a probability of 0.33 across all the three specific hurricane classes that we had. This
happened because the classifier thinks that each of the 3 classes is equally probable.
Training a class specific to a broad category like “hurricane” would ensure that a tweet that
is not specific to a particular hurricane gets a probability score close to 1. This would help

37

classify a tweet that could be of a broad nature into the respective broad category, instead
of the probabilities being scattered equally across the specific classes under that broad
category.

If a lower threshold is used, the classifier is not sure which label to assign to a given tweet. The
label in this case will be any of the equally probable classes at random, but the tweet will be
classified. If we select a high threshold, we are very confident about our prediction, but we are not
getting a lot of coverage in our classification. Figure 26 shows the distribution of the number of
classes our classifier labels the tweets for, based on their probabilities. If we choose a probability
threshold of 0.9, then we only get a coverage of 23%. These predictions are very precise, but this
precision comes at the cost of recall. If we select a threshold of 0.3, we get a coverage of 87%. The
increase in recall comes at the cost of precision. User and product requirements should be the best
factor in defining what the ideal threshold should be.

Figure 26: Multi-class assignment distribution

6.3.7 Inter-classifier mutual agreement
In this experiment, we measure the level of agreement between the classifiers that we are
evaluating. We used the results of the accuracy experiments in Section 6.3.2 to compare the
classification results between our logistic regression classifier (LR) and the association rules based
classifier (AR). We used the kappa statistic [1] to calculate the inter-classifier agreement for our
experiment.

Table 8 Kappa inter-classifier agreement

												LR	
	AR	

Correct	 Wrong	 total	
Correct	 299	 7	 306	
Wrong	 13	 1	 14	
total	 312	 8	 320	

	
P(A)	 0.94	 	

4
13%

3
29%

2
35%

1
23%

38

P(Correct)	 0.97	 	
P(Wrong)	 0.03	 	
P(E)	 0.93	 	
kappa	 0.06	 	

Figure 27: Formula to compute kappa

Table 8 shows the distribution of the classification results. The LR and AR classifier agreed on
299 correct classifications and 1 misclassification. They disagreed on 7 and 13 misclassifications
for LR and AR respectively. We compute the marginal values P(A) and P(E) and use the formula
in Figure 27 to compute the kappa value. Table 9 shows the different ranges of the kappa values
and the definition of agreement for the different range of kappa values. For our computed value of
0.06, it signifies that there is only a slight agreement between the two classifiers.

Table 9 Kappa agreement definitions

kappa Definition of agreement
> 0.8 Good

0.67 – 0.8 Fair
< 0.67 Slight

We believe the reason for slight agreement between the classifiers is because of the fact that the
classifiers agreed only once during misclassification compared to 299 correct classifications. This
imbalance skews the kappa statistic. A kappa computation on a larger set would definitely give us
more data for the kappa statistic to be of significance. We have outlined an experiment in the future
work Section that would address this very scenario and help compute a relevant kappa statistic that
would make the results more interpretable.

 Runtime Comparison Experiment
In addition to the accuracy of the classifiers another property to consider is the time that the
classifier takes to predict the classes for large sets of data. This is an important consideration
because we have a very large number of tweets to be classified, and it is imperative for us to
efficiently classify these into their respective classes within reasonable time.

Being able to classify efficiently means that we can reclassify large parts of our collection as we
add additional training data. The classifiers must also be able to classify at a rate faster than the
production of tweets so that they can run on future tweets.

6.4.1 Experimental setup
For this experiment, we reused the cleaned hand-labeled data described in Section 6.1.1. Instead
of splitting the set into training and test we used all of the labeled data as training for the classifiers.
We then selected from unlabeled tweets in the IDEAL collection a large set of 640,000. This set

39

was then shuffled and different sizes of data were used to see the time each classifier spent in the
prediction stage. Each classifier was instrumented so that only the prediction time would be tested
and the training of the classifiers was done before. Both classifiers classified the same sets of data
for each different tweet number tested to ensure one classifier did not get tweets that were more
expensive to classify.

6.4.2 Experimental results
The initial results can be seen in Figure 28 which shows that for smaller collections of tweets, the
Logistic Regression classifier was faster at prediction, while one the larger input sets the
Association Rules classifier began to predict much faster. As the collections for this project will
have millions of tweets, the performance at large datasets are of top concern.

Figure 28: Performance of the classifiers on different number of tweets

To be able to use the Logistic Regression classifier effectively we must reduce the runtime it
experiences over large datasets. We optimized the classifier using the partitioning and caching
methods mentioned in Section 5.9. The details of the optimization performed can be found in
Section 9.11. The results of the experiment when run with the optimized classifier can be seen in
Figure 29. Applying the optimization showed an improvement of 57% less time spent in prediction
than the original classifier as well as a 14% faster prediction time than the Association Rules
classifier at the tweet number of 640,000.

0
10
20
30
40
50
60

3000 6000 9000 20,000 40,000 80,000 160,000 320,000 640,000

Se
co
nd

s

Number	of	tweets	to	classify

Classifier	prediction	performance

Word2Vec	with	Linear	Regression Association	Rules

40

Figure 29: Performance of the classifiers including optimization

7 Timeline
This Section contains the timetable that we followed showing the weekly breakdown of the project
tasks worked on and completed over the course of this semester.

Table 10 Timetable of tasks

Week start date Tasks Performed by
Sep 5th Reading of previous year’s reports, finalizing goals for

the project
Saurabh

Sep 12th Setup the development environment and VM. Getting
familiar with the development environment and the
cluster. Literature survey on feature selection
techniques started.

Saurabh

Sep 19th Literature survey on feature selection and
classification techniques. Start looking at the
Association Rules (AR) classifier.

Saurabh

Sep 26th Perform a run of the AR classifier based on sample
data. Literature survey on feature reduction and
transformation techniques.

Saurabh

Oct 2nd Eric joins the team. Knowledge transition process
started

Saurabh, Eric

Oct 9th

Gather hand curated training data to start off. Eric

Literature survey completed. Start implementation of a
Word2Vec based logistic regression classifier.

Saurabh

0

20

40

60

3000 6000 9000 20,000 40,000 80,000 160,000 320,000 640,000

Se
co
nd

s	
to
	P
re
di
ct

Number	of	tweets	to	predict

Classifier	prediction	performance	with	optimized	
Word2Vec

Word2Vec	with	logistic	regression Association	Rules

Optimized	Word2Vec

41

Oct 16th

Integrate with the Association Rules based classifier Eric
Conclude implementation of the classifier and emit
classifier metrics.

Saurabh

Oct 23rd Compare Association Rules and Word2Vec with
logistic regression classifier based on decided metrics
(F1, precision, recall).

Eric

Oct 30th

Compare the classifiers based on the runtime
performance of large collections of tweets.

Eric

Research ways to improve the run-time performance of
the classifier.

Saurabh

Nov 6th

Optimize Word2Vec with logistic regression classifier
to run on the cluster and repeat the runtime performance
experiment.

Saurabh, Eric

Implement the saving and loading of the models for
Word2Vec and Logistic Regression.

Saurabh

Nov 13th Perform end-to-end integration of the system with the
HBase tables we will be reading from and writing to.

Eric

Nov 20th

Gather additional training data on a variety of classes.
Work with other teams on the integration plan.

Eric

Find the root cause of the HBase read performance
issue and research ways to resolve it.

Eric, Saurabh

Implement the fix and refactor the codebase to work
with the new fix

Eric, Saurabh

Nov 27th

Begin/conclude the integration of the system with other
components from the different teams.

Eric, Saurabh

Research how to emit probabilities for the Logistic
Regression classifier and implement it.

Saurabh

Run the classification on the selected 25 small, medium
and large collections.

Eric

Final project presentation Eric, Saurabh
Dec 4th

Final project report Eric, Saurabh
Upload project artifacts to VTechWorks Eric

42

8 User Manual
 Environment Setup

The code developed will run on the class’ provided cluster. As of right now the cluster is running
the following software versions:

– Java version 1.7.0_101 (http://www.scala-lang.org/download/2.10.4.html)
– Scala version 2.10.4 (http://www.scala-lang.org/download/2.10.4.html)
– Apache Spark version 1.5.0 (https://spark.apache.org/releases/spark-release-1-5-

0.html)
– Python version 2.6.6 (https://www.python.org/download/releases/2.6.6/)

It is recommended to install these software versions to ensure that the code given will run correctly
on your setup.

The code for this project can be found on Github, and should be cloned onto your machine using
the “git clone <repoUrl>” command. The Github URL for the team is
https://github.com/saurabhc123/ISRProject.

 Project Layout
This Section will detail the layout of the code supplied with the report submission and the locations
on the HDFS that project artifacts have been stored.

8.2.1 Uploaded files
This Section will talk about the user files uploaded alongside the report to the VTechWorks site
as well as their usage in the overall classification system. Figure 30 shows the file tree of the
uploaded files.

Figure 30: Repository directory tree

43

The project folder ISRProject contains a data folder which stores experimental data to rerun
experiments, a src folder that has all of the code file, and scripts to build the project as well as run
the classification code on a certain collection. The details of the src folder will be discussed in
Section 9.2. Table 11 gives a brief description of the files in the base directory. The experimental
data is found in the data directory. Table 12 gives a brief description of those files in the data
directory.

Table 11 Description of files in base directory

File name Description
README.md This file holds instructions for how to use the provided code as

well as how to build the code into a jar file. This serves a function
similar to the user manual but at a higher level.

classifyCollection.sh This is a shell script that will run the classification code on the
specific collection specified in the ideal-cs5604f16 table. This
script takes 2 parameters: the collection ID to classify, and the
batch size for tuning the performance.

buildAndRun.sh This will build the project from the latest source code and run
classifyCollection.sh on a successful build. This will submit the
job across the cluster for parallel execution.

buildAndRunLocal.sh This files serves a similar function to buildAndRun.sh but will
not submit the job across the cluster. Instead the code will be run
locally. This aids in fast debugging.

build.sbt This file is used in the build process to specify what packages
need to be downloaded automatically to use in the project. This
should only be changed when updating the Spark version or
adding new external libraries.

44

Table 12 Description of files in the data directory

File name Description
stopwords.txt This is the stop words file that is used for

cleaning the data. Any additional stop words
can be added to this file.

cleaning_experiment_data_unlem.txt The raw tweets used in the cleaning
experiment.

cleaning_experiment_data_lem.txt The cleaned tweets that were used in the
cleaning experiment.

word2vec.model The Word2Vec trained model used for the
collection classification.

shooting_data The training and test files specific for shooting
data to more quickly see everything is working
as intended before it is run on the larger sets.

lrclassifier.model The Logistic Regression trained model used
for the collection classification.

accuracy_experiment This folder holds all of the training test splits
used in the accuracy experiment so that the
results can be reproduced.

When the scripts are run in local mode, they will be read from the local file system, but when they
are run on the cluster they are read from HDFS. To ensure the code operates the same, the modified
files should be copied to HDFS. This can be done by first removing the old file, then copying the
new file as seen in Figure 31.

Figure 31: HDFS commands

8.2.2 HDFS files
This Section will document the various HDFS artifacts. Unless otherwise noted these artifacts are
stored in the base HDFS directory of /usr/cs5604f16_cla.

Similar to the local directory the models are stored on HDFS in that data folder. The folders the
models are stored in are:

• word2vec.model – the previously trained Word2Vec model
• lrclassifier.model – the previously training Logistic Regression model

45

Because the files are too big to store on Github the data used for the performance experiment is
stored in the data/mega_sets folder with a suffix describing the number of tweets in each file.

 Generating training data for files
8.3.1 Github training data
Training data is provided in the Github repository in the folder data/shooting_data for small proof
of concept tests. Training data to perform accuracy comparisons is provided in the
data/accuracy_experiment folder discussed earlier. The data provided is divided into 2 files, the
training data and the test data. These are divided using a 70-30 split where 70% is in the training
data and 30% is in the test data. The provided files have a list of classified tweets with the following
structure.

“class the tweet belongs to”; “unique ID of the tweet”; text that makes up the tweet.

The class numbers correspond to a specific real world event label. This mapping is provided in
Table 13. This mapping can be changed in the code in the DataWriter.scala class file. The details
for how to do this will be discussed in Section 9.7.

Table 13 Mapping from label to event

training-tweet:label real-world-event
1.0 ChinaFactoryExplosion
2.0 KentuckyAccidentalChildShooting
3.0 ManhattanBuildingExplosion
4.0 NewtownSchoolShooting
5.0 HurricaneSandy
6.0 HurricaneArthur
7.0 HurricaneIsaac
8.0 TexasFertilizerExplosion
9.0 NewYorkFirefighterShooting
10.0 QuebecTrainDerailment
11.0 FairdaleTornado
12.0 OklahomaTornado
13.0 MississippiTornado
14.0 AlabamaTornado

A user can add additional classes by adding more tweets in the same format and placing a unique
class number for each of their additional classes. This number should be 1 greater than the
maximum class label. For example, the first label number to be added would be 15.0. The labels
are real numbers to be compatible with the Logistic Regression Classifier API.

8.3.2 HBase training data
In addition to the data provided on the Github repository, we created a HBase table to store the
training data called “cs5604-f16-cla-training”. Table 14 stores the training data schema used.

46

Table 14 HBase training data schema

Column Name Column Description Column Example
training-tweet:label The numerical label of the tweet 1.0
training-tweet:text Clean text of the tweet to be

used for training
report die china factory
explosion

The labels used in the table correspond to the mappings in Table 13. Additional training data can
be added by following the same schema. This data can then be used to retrain the models by passing
the ‘—retrain’ which will reread the training data from the table and save the models back into
their respective places on HDFS.

 Running the Association Rules classifier
To run the association rules classifier on the training data you will have to run the jar file with
Spark submit. An example command for running the classifier is shown in Figure 32. This will
output the association rules results into the base directory on HDFS into a folder called
tokensClassRules. The predictions from the classifier will be in a directory called
outputPredictedDir.

An example command to run the AR classifier is shown in Figure 32. The jar file for the classifier
is found on HDFS and called assocer-spark-1.2.jar. This file should be pulled down from HDFS
to run the classifier.

	

Figure 32: Running the AR classifier

The main parameters to look for are “input/train_data” and “input/test_data” which specify the
training and test data files, respectively. These can be changed to run the classifier on different
datasets. Note that these datasets are being read from HDFS so any files should be pushed to HDFS
before being run.

47

Figure 33: Results of running the Association Rules classifier

Once the command has been executed, statistics will be sent both to the screen and to local
directories. The data shown on the screen will include how the test data was classified either
through the rules or by similarity. An example of that is found in Figure 33.

This shows the number of rules generated for each specific class, the quantity of data that was
predicted by rules, and the time that the total evaluation took.

In addition, the metrics such as precision and recall were placed into the output folder in the
directory the code is run in. The content of this output file is seen in Figure 34. In this example the
output folder was called “output”. The output folder will contain 2 subdirectories as shown in
Figure 34.

Figure 34: Output directory files

The evaluation directory will contain specific metrics related to the test set such as precision and
recall. Note that there are different metrics than are computer by the other classifier. Any
comparisons should use the same metrics. An example evaluation file can be seen in Figure 35.

48

Figure 35: Association Rules evaluation output

The times directory will store the values printed out at the end of running the script so they can be
used later to see the number of tweets that were predicted by rules as well as the time required to
predict the tweets. The file contents are shown in Figure 33.

 Running the classifier
To run the classifier first run the buildAndRun.sh script. This will build the project from source
and download any required packages. Then copy the Stanford-nlp files downloaded into “~/.ivy2”
into the directory the code is in. This will allow the jar files to be distributed to each node in the
cluster to aid in cleaning.

Once the script has been run there should be a target directory created containing a jar file.

If this is the first time the code is being run, the training models must be created. By running the
command “classifyCollection.sh –retrain” it will generate the feature selection and classifier
models and save them onto HDFS. These models were trained using the training data table on
HBase mentioned in Section 8.3.2.

Now that the models have been trained the classifier can be run on a specific collection. The
collections can be seen at http://hadoop.dlib.vt.edu:82/twitter/. The Archive ID corresponds to the
collection number. To run the code on a specific collection use the command
“classifyCollection.sh <collection number> <batch size>”. The specific parameters for the
classifyCollection script are listed in Table 15.

49

Table 15 ClassifyCollection.sh parameters

Parameter Use Description
collection number This is the number of the specific collection to

run the classifier on.
batch size The size of the batch that is pulled from HBase

before being parallelized across the cluster. A
larger value may improve performance but risk
memory related errors. The default and
recommended size is 5000.

--retrain This flag will cause the program to retrain the
models and save them onto HDFS for use in
future runs. The training data comes from the
“cs5604-f16-cla-training” table on HBase.

--metric <training file> <test file> This flag will tell the program to generate
metrics for the predictions by training models
from the training file and testing the
predictions of the test file. This can be used for
the accuracy experiments.

The results of running this script are that the “real-world-events” column in HBase has been
populated with the classification results for the tweets in the collection specified. This can be seen
by using the HUE interface found at http://hadoop.dlib.vt.edu:8888/hbase/#HBase/ideal-
cs5604f16. This interface can be queried for a prefix of the row keys. The row keys in HBase as
based on the collection number. An example of HUE being queried to show tweets in collection
28 is shown in Figure 36.

Figure 36: Hue interface example

50

The timestamp of the “real-world-events” field can be used to verify that the tweet predictions
have been written. This can be seen by hovering over the “real-world-events” column. This is
demonstrated graphically in Figure 37.

Figure 37: HUE timestamp viewing example

 Configuring the cron job
We need to execute the following command to be executed at each run of the cron job.

“classifyCollection.sh <collection number>”

We need to either specify the collection number or execute the command without the parameter.
Doing so would run classification on all the collections which could take a long time.

Create a file name classifierCronTask.txt and add the following line to the file with the
appropriate collection number. The below format would run the task at 6:30 PM every day.

30 18 * * * classifyCollection.sh <collection number>

To change the run time and scheduled interval, please refer to Figure 38 and Figure 39 for a detailed
list of position placeholders and parameter settings, respectively.

51

Figure 38: Parameter placeholder specifications for the cron job [20]

Figure 39: Usage examples for the crontab entry [20]

Create a cron job from the file by executing the following command.

crontab /<path to file>/ classifierCronTask.txt

Execute the following command to see the list of cron jobs that are registered to run.
crontab -i

Figure 40 shows the list of jobs that have been configured to run by the cron daemon. The job that
we configured to run by the cron daemon should be shown as part of the list.

Figure 40: Console output for the list of cron jobs

52

To remove the cron job, remove the line containing the < classifyCollection.sh> script from the
classifierCronTask.txt file and execute the following command.

crontab /<path to file>/ classifierCronTask.txt

9 Developer Manual
 VTechWorks Inventory

We have uploaded the following to the VTechWorks repository:

• ClassificationFinalReport - This document.
• ClassificationFinalPresentation – The final presentation our team gave. This document

highlights what we completed and the experimental result observed.
• ClassificationGithubRepository – The zip file containing a snapshot of the team Github

repository. This contains the project source code as well as scripts for building and running
the project. The specific files are discussed in the user and developer manuals. The
repository is also publically available at https://github.com/saurabhc123/ISRProject.

 Source Directory
The developer manual discusses portions of our code that can be extended. All of these code files
can be found in the src directory. Note that the code can also be easily browsed on Github. Our
project URL is https://github.com/saurabhc123/ISRProject. A short description of each file is
found in Table 16.

Table 16 src directory files

Filename Description
CleanTweet.scala Contains functions that will clean the tweet

text to provide better classification results.
DataRetriever.scala Contains functions to retrieve prediction as

well as training data from HBase.
DataWriter.scala Contains functions to write the predicted tweet

real-world-events into HBase so other teams
can make use of them.

FeatureGenerator.scala Generates the feature vectors with Word2Vec
given tweet text.

SparkGrep.scala The entry point for the project that calls the
other functions.

Word2VecClassifier.scala Contains functions to process clean and
unclean tweets as well as train the models.

HBaseInteraction.scala Contains functions for interacting with HBase
at a lower level.

ClassificationUtilities.scala Contains functions for generating the
probabilities as well as the predictions of
tweets.

53

 Training data
We have provided in the data_scripts directory on HDFS numerous scripts that will retrieve data
from HBase, randomly sample the retrieved datasets, and partition those sets into training and test
sets.

The files in the data_scripts directory are shown in Table 17.

Table 17 data_scripts directory files

File name Description
Command.sh <prefix> Run an HBase shell command to get all records

that begin with that prefix.
Rand_select.py <input file> Select and random sample the lines from the

input file that can be used to select training and
test data to be hand-labeled.

Partition.py Partition the labeled set into a 70% training
30% test split. This will be used on the hand
labeled data to generate separate sets.

These files can be run and modified to generate the training and test sets from a certain collection
within HBase.

 Parameters for the Association Rules classifier
The jar file with the classifier can be found in the code directory under the name assocer-spark-
1.2.jar. Unfortunately, the source is unavailable, but there are numerous parameters that can be
tweaked when running it from the command line. The contact for the Association Rules classifier
is Dr. Pereira (denilson@vt.edu).

The parameters to run the Association Rule classifier are shown in Figure 41.

Figure 41: Parameterized Asscoaition rule classifier command

54

The parameters to this command are shown in Table 18.

Table 18 Association rules classifier parameters

Parameter name Description
path_to_jar_file The directory where the file assocer-spark-

1.2.jar is located on the local file system.
support threshold The support required to use an association rule

for classification.
block size The number of blocks to split the data into to

distribute across the cluster.
cluster node The node that the code is running on

(node1.dlrl).
base_dir_on-HDFS The directory on HDFS that will be used as the

base for the training and test file paths.
(/user/cs5604f16_cla/)

path_to_training_file The file that will be used for training the model
path_to_test_file The file that will be used to test the predictions

and output metrics.
stopwords_file The file on the local file system for stop word

removal.
output_directory The path on the local file system where the

program will write additional metrics to on
completion.

The example command we ran to generate the classifier on our cluster is shown in Figure 42.

	

Figure 42: Command to run the classifier	

Running the command in Figure 42 resulted in the file input/training_data being read as the
training file and input/test_data read as the test file. The results were written to the output folder.

 HBase Reading
The code for reading from HBase can be found in the DataRetriever.scala file. This file provided
methods for retrieving all tweets from a specific collection into a Spark RDD as well as retrieving
the labeled training data from the table to allow retraining of the models.

9.5.1 Reading Prediction Data
The data is read in batches based on the parameter passed in from the result scanner object. This
results in a list of result objects returned from HBase. The code to set up the Scan is seen in Figure
43. To only scan over one collection we specified the start and stop prefixes that will only give us
row keys that fall within.

55

Each batch is then processed by taking up to the batch size number of records. These batches then
go through the pipeline as seen in Figure 44. This allows our code to work on any arbitrarily large
tweet set.

Figure 43: Configure scan for HBase reading

Figure 44: Batched processing code example

	The raw HBase result is mapped into a tweet object to work with all of our other code by the
rowToTweetConverter method that will take a result and extract the tweet text, and row key to
allow the prediction to be written back to the correct tweet. The method used for the conversion is
shown in 	Figure 45.	

56

Figure 45: Conversion from HBase row to tweet example

 Cleaning
As shown in our experiments, cleaning was effective to increase the accuracy of both classifiers.
In this Section, we will detail how we implemented cleaning of the tweet text.

The code can be found in the file called CleanTweet.scala.

Our cleaning method takes in an RDD of tweets, this can be tweets read from a file, or from HBase.
The result of running the cleaning will be an RDD of tweets that has the text changed to be the
cleaned text. Cleaning will not modify the identifier not the label on a tweet. The entry point to the
cleaning code is the method clean shown in Figure 46.

Figure 46: Cleaning class entry point

The cleaning step performed is # removal seen in Figure 47.

Figure 47: ‘#’ character removal

In addition, lemmatization is performed using the Stanford NLP library. This library will tokenize
the input, and perform lemmatization. One important not is that the library is large and so we use
a foreachPartition to only load the model once per every partition of the data. This provides a large
speedup. The code for using the Stanford NLP is found in Figure 48.

57

Figure 48: Stanford NLP example

Stop word removal is performed by taking each lemma and discarding any that are in the stop word
set. This is done efficiently by using a set for the collection of stop words and broadcasting it
across the cluster.

 Writing to HBase
The predicted tweets must be written back to HBase to that SOLR can index it and provide faceted
searches on the classes the tweets are predicted to be. The data has already been partitioned, so
each partition can be written to the database in one chunk. By keeping the writing distributed
across the cluster it provides a speedup.

The file that contains the writing code is DataWriter.scala.

The table the tweets are written to currently is “ideal-cs5604f16”. This value as well as the column
family and column can be changed in the code. Note that the table and column family must be
created before data can be written to the table. The API we are using does not allow for automatic
table or column family creation if it is non-existent.

The main method of interest in this file is the writeTweets method. This takes in an RDD of tweet
objects, and writes, to rows with those IDs, the values of their mapped real-world-event. The logic
is shown in Figure 49.

58

Figure 49: Writing tweets to the database

The tweets are written so that the tweet.id field is used as the row key for the record. This was
done so that if the tweets predicted are read from the same table, then the column will be added to
the rows that were read, which immediately pairs the predicted tweets back to the original. If this
is not desired the tweet ID can be changed to whatever row key is desired.

As seen in Figure 49, the DataWriter.scala class takes advantage of HBaseInteraction.scala, which
was written by Matthew Bock for writing data to HBase. These files are included in our source
directory and can also be found in the Canvas file directory in the F2016/Code folder.

We made one modification to the code to allow the interaction object to be closed. This frees up
the resources such as the HBase connection after it is no longer needed. We needed this closing
functionality because we create a new HBaseInteraction object every time we run a new batch.
The closing code is given in Figure 50.

Figure 50: Disposing of the HBaseInteraction object

The other component of the writer is the mapping from labels to the corresponding real-world-
events. Table 13 shows this mapping. Figure 51 shows how the mapping was implemented in code.
New classes should have their mappings defined in this Map structure.

59

Figure 51: Code for label mapping

 Word2Vec Generation
As described in the Section 5.5 for implementation of Word2Vec based feature selection and
transformation technique, Figure 52 shows the exact way we have implemented it for our project.

Figure 52: Code snippet for Word2Vec training

60

Once the word vectors are trained, we have to transform a given tweet into a feature vector. For
that we have to transform a word into its vector representation, and average the sum of the vector
that we get back from the transformation operation. We used the default vector size of 100 values
for the word vectors.

Figure 53: Feature transformation for tweet text

 Classification
As described in the Section 5.7 for implementation of the classifier, Figure 54 shows the exact way
we have implemented it for our project.

Figure 54: Implementation code snippet for the classifier

61

To measure the accuracy of the classifier, we implemented a helper function that provides micro
and macro averaged F1 scores, along with the precision and false positive counts. Figure 55 shows
our implementation to generate the classifier metrics for the project.

Figure 55: Implementation code snippet for generating classifier metrics

Figure 56 shows the per class metrics for a few classes.

Figure 56: Classifier metrics per class

Figure 57 shows the confusion matrix and overall results of the classification. The counts along
the diagonal shows the true positives, and all the other numbers in the matrix are the
misclassification counts. Also shown are the micro-averaged F1-score along with weighted
precision and recall. These numbers are sample representation of the confusion matrix and the
overall results and in no way, indicative of the actual experimental results for our project.

62

Figure 57: Confusion Matrix and overall results for the classifier

 Probability emission by the classifier
The probability code can be found in the ClassificationUtility.scala file. This code uses the logistic
classifier to generate the probabilities that a tweet belongs to each class. This function can be called
in place of the classifier prediction, and instead of just giving a prediction, it will add an array of
doubles representing the probabilities that the tweet is of that class.

An example of using the ClassificationUtility.scala file can be found in Figure 58.

Figure 58: Use of ClassificationUtility.scala

Note that the probability generation code normalizes the probabilities produced. This can be
removed if desired. The normalization code is shown in Figure 59.

Figure 59: Probability normalization

63

 Spark partitioning and caching
To take advantage of the entire cluster the data must be parallelized across the cluster. This is
accomplished by doing as much work in RDDs as possible. When the work is done in RDDs it can
be executed on multiple nodes simultaneously. We found in particular the Spark UI interface
provided by the cluster to be valuable in seeing how parallelized the data is. A snapshot of the
interface is shown in Figure 60. Each horizontal section represents the work performed by an
individual executor. The horizontal axis is the time that the spark job has been running. This
snapshot shows that tasks are being executed in parallel as they appear vertical on the time axis.
When multiple tasks are being executed at the same time, the tasks are being well distributed across
the cluster. If we see the tasks executing in sequence, then that will pinpoint the place where
optimizations can occur.

Note that the UI is only available when a task is running.

Figure 60: Spark UI example

The UI can be viewed by first setting up port forwarding. Port forwarding will let your local
browser connect to the UI on the cluster.

The command we used to do port forwarding is found in Figure 61. The user then directs their
browser to localhost:4040 to see the running job.

Figure 61: Port forwarding command to configure access to the Spark UI

64

10 Conclusion
The classifier that we have developed based on Word2Vec with Logistic Regression gives us very
good accuracy (0.96 F1 score) when applied to a sample of 9 classes. This result also performed
better than the AR classifier which had an F1 score of 0.90.

We focused on cleaning the tweets that we have in the collections and this pre-processing step
gave us improved results with both the classifiers. This proved that cleaning the text after
understanding the domain (Twitter) does result in better F1 scores for both the classifiers, as shown
through experimentation.

In addition to classifying a tweet, we also generate the probabilities for a tweet for all the classes.
There were a large number of instances where a tweet was classified into multiple classes. This
suggests that it is also important to analyze the hierarchical structure in our classes. We need to
have one broad category for each combination of sub-categories. This would ensure that if a tweet
has equal probabilities across multiple sub-categories, it will be classified into the broad category
instead.

Using the partitioning and caching operations on the data provided by the Spark library functions
gave us a 57% faster run-time performance over our basic implementation. The Spark/Hadoop
development platform lets us monitor the performance metrics in detail. The platform
documentation on task optimization enabled us to identify the various performance bottlenecks
visually and design the corresponding optimization strategy accordingly.

The tweet collections that we have in HBase to perform classification on, vary in size. We faced
out-of-memory exceptions while loading some huge (4 million tweets) collections in memory. We
resolved this issue by refactoring our implementation and performing the read from HBase in
blocks. Performing a blocked read and then distributing this data across the cluster for further
execution of classification tasks gave us a tremendous boost in run-time performance. It also gives
us reliability in terms of being able to complete classification of huge collections.

Overall, we conclude that there is no single technique in the text classification domain that would
contribute to the accuracy dramatically. Each component in our classification pipeline contributes
to improving the accuracy and must be adjusted to fit the problem domain. While the accuracy of
the classifier is vital, it should not come at the cost of large performance degradation. The use of
platform tools to keep an eye on runtime performance and optimize it from time to time is equally
important.

65

11 Future Work
To fully explore the problem of classifying tweets as well as the results of our experiment we have
identified the following future work:

1. To get a better feature selection for the classifier we propose using a larger corpus such as
Google News, or our entire tweets and webpage collection, to train the Word2Vec model.
This will give more documents for the model to build the syntactic and semantic
relationships for the words. Currently by training on the training set itself, the model cannot
generate any word vectors for terms not present in the training set. This is a big limitation
of the system. It will be interesting to see which of these bigger corpuses provide us the
best classification accuracy empirically.

2. As additional classes are added we expect the accuracy of the classifier to decrease as it
has to distinguish across more classes. We need to investigate whether the accuracy
actually decreases in such cases, and then experiment with approaches to classify large
numbers of classes without the accuracy penalty, such as breaking up the multiclass
classifier into one classifier for each broad category or using ensemble methods for voting
based prediction across multiple classifiers.

3. We would like to classify large collections using ours and the AR classifier. We would
then want to perform random sampling of the labels that are generated for the tweets by
both the classifiers and calculate the kappa value for the inter-classifier agreement between
the two classifiers. This would help us understand the agreements and disagreements
between the classifiers and assist in evaluating whether an ensemble of AR and our
classifier would be effective for classification of tweets.

4. We would like to evaluate the classification results by using the output of the clustering
team and comparing the clusters formed with the classes predicted. We propose taking all
of the classified tweets and performing clustering on the entire set. Set the number of
clusters equal to the number of real world events. Then, see if the clusters formed have
tweets that are of the same class, and analyze any differences that occur.

5. The original goal of the classification team was to perform classification on the web pages
too. This was curtailed from the scope due to the limited capacity available in the
classification team. It would be interesting to modify the techniques used to classify web
pages and tune it to achieve a satisfactory classification accuracy for web pages.

6. Based on recent research [6] it was found that text classification achieves state of the art
results if the word vectors are trained on multiple broad classes separately and tweets from
a broad class are classified using the specific trained model. It would be interesting to train
multiple classifiers on broad categories like hurricanes, floods, and shootings, and then
measure the efficacy of the classifiers empirically.

7. A further analysis of the probabilities should be done to distinguish between tweets that
are part of multiple classes and those that are ambiguous. This will allow a tweet to be
classified into multiple real world events. This could be useful for finding events that are
similar as well as providing a better classification of the data.

8. To make the system be able to be used on multiple HBase tables and write to different
columns than the project’s schema we should place hardcoded values in a configuration

66

file. This file could also be used to store the names of the model files that we use for loading
the Word2Vec and the Logistic Regression model at run-time. This file would be read in
at the startup of every script to target the reading and writing of tweets to the proper tables.
The fields that would be configured are the table names, column family names, column
names, and the names of the model files.

12 Acknowledgements
We would like to acknowledge and thank the following for assisting and supporting us
throughout this project.

• Dr. Edward Fox, Dr. Denilson Alves Pereira
• NSF grant IIS - 1619028, III: Small: Collaborative Research: Global Event and Trend

Archive Research (GETAR)
• NSF grant IIS - 1319578, III: Small: Integrated Digital Event Archiving and Library

(IDEAL)
• Digital Library Research Laboratory
• Graduate Research Assistant – Sunshin Lee
• All teams in the Fall 2016 class for CS 5604

67

13 References
	

[1] C. D. Manning, P. Raghavan and H. Schütze, An Introduction to Information Retrieval, vol.
1, Cambridge: Cambridge University Press, 2008.

[2] P. Meesad, P. Boonrawd and V. Nuipian, "A chi-square-test for word importance
differentiation in text classification," Proceedings of International Conference on
Information and Electronics Engineering, pp. 110-114, 2011.

[3] S. R. Singh, H. A. Murthy and T. A. Gonsalves, "Feature Selection for Text Classification
Based on Gini Coefficient of Inequality," FSDM, vol. 10, pp. 76-85, 2010.

[4] Y. Bengio, R. Ducharme, P. Vincent and C. Janvin, "A neural probabilistic language model,"
The Journal of Machine Learning Research, vol. 3, pp. 1137-1155, 2003.

[5] T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient Estimation of Word
Representations in Vector Space," eprint arXiv:1301.3781, 2013.

[6] P. Jin, Y. Zhang, X. Chen and Y. Xia, "Bag-of-Embeddings for Text Classification,"
International Joint Conference on Artificial Intelligence, no. 25, pp. 2824-2830, 2016.

[7] S. K. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, and classification," IEEE
Transactions on Neural Networks, vol. 3, pp. 683-697, 1992.

[8] D. A. Pereira, E. E. Silva and A. A. Esmin, "Disambiguating publication venue titles using
association rules.," Proceedings of the 14th ACM/IEEE-CS Joint Conference on Digital
Libraries, pp. 77-85, 2014.

[9] Z. Chase Lipton, C. Elkan and B. Narayanaswamy, "Thresholding Classifiers to Maximize
F1 Score," eprint arXiv:1402.1892, 2014.

[10] "What is Apache Hadoop?," 2016. [Online]. Available: http://hadoop.apache.org/.

[11] "Apache Spark is a fast and general engine for large-scale data processing," October 2016.
[Online]. Available: http://spark.apache.org/.

[12] "Welcome to Apache HBase," 09 October 2016. [Online]. Available:
http://hbase.apache.org/.

[13] "APACHE HADOOP HDFS," 2016. [Online]. Available:
http://hortonworks.com/apache/hdfs/.

[14] "MLlib is Apache Spark's scalable machine learning library," 2016. [Online]. Available:
http://spark.apache.org/mllib/.

68

[15] JetBrains, "Intellij IDEA," [Online]. Available: https://www.jetbrains.com/idea/. [Accessed
11 October 2016].

[16] R. Jindal, R. Malhotra and A. Jain, "Techniques for text classification: Literature review and
current trends," webology, vol. 12, no. 2, pp. 1-28, 2015.

[17] C. McCormick, "Word2Vec Tutorial - The Skip-Gram Model," 19 April 2016. [Online].
Available: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model.
[Accessed 2016].

[18] Emit Classifier Probability in Spark for Logistic Regression,
http://stackoverflow.com/questions/30391399/predicting-probablities-in-logistic-
regression-model-in-apache-spark-mlib/36238801#36238801.

[19] A. Or, "Understanding your Apache Spark Application Through Visualization," 22 June
2015. [Online]. Available: https://databricks.com/blog/2015/06/22/understanding-your-
spark-application-through-visualization.html. [Accessed 2016].

[20] "Crontab – Quick Reference," Admin's Choice, [Online]. Available:
http://www.adminschoice.com/crontab-quick-reference. [Accessed 2016].

[21] American Press Institute, "Twitter and the News: How people use the social network to learn
about the world," 1 September 2015. [Online]. [Accessed 2016].

[22] J. Han, J. Pei and Y. Yin, "Mining frequent patterns without candidate generation," ACM
SIGMOD international conference on Management of data, pp. 1-12, 2000.

[23] D. D. Lewis, "Reuters-21578 text categorization test collection, distribution 1.0," 1997.
[Online]. Available: http://www. research. att. com/~ lewis/reuters21578. html.

[24] C. Sherman, "Humans Do It Better: Inside the Open Directory Project," July 2000. [Online].
Available: http://www.infotoday.com/online/OL2000/sherman7.html. [Accessed 2016].

[25] M. Oakes, R. Gaaizauskas, F. H, A. Jonsson, V. Wan and M. Beaulieu, "A method based on
the chi-square test for document classification," Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information retrieval, pp. 440-441,
September 2001.

