Characterization of Post-translational Modifications and Resulting Structure/Function Relationships of Recombinant Human Factor IX Produced in the Milk of Transgenic Pigs

Myles Lindsay

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

Chemical Engineering

Dr. Richey M. Davis, Chair Dr. Kevin E. Van Cott Dr. Kimberly Forsten Williams Dr. Aaron Goldstein Dr. Richard F. Helm Dr. Chenming Zhang Dr. William H. Velander

> December 15, 2004 Blacksburg, Virginia

Keywords: factor IX, hemophilia, transgenic, bioreactor, recombinant protein, posttranslational modification, pharmacokinetics

Characterization of Post-translational Modifications and Resulting Structure/Function Relationships of Recombinant Human Factor IX Produced in the Milk of Transgenic Pigs

Myles Lindsay

(Abstract)

Hemophilia B is a debilitating and life-threatening disorder caused by a deficiency in or dysfunction of factor IX (FIX), a complex plasma glycoprotein required for the formation and maintenance of blood clots. Treatment of hemophilia B involves infusion of replacement FIX currently derived from two sources: FIX purified from pools of human plasma (pd-FIX) and a single recombinant FIX product generated in genetically engineered Chinese hamster ovary (CHO) cells. Both of these FIX products are prohibitively expensive, limiting of the treatment options of hemophiliacs worldwide. As a result, a more abundant and affordable FIX product would greatly improve the life prospects for hemophiliacs.

The biological activity of FIX is dependent upon its numerous post-translational modifications (PTMs), including γ -carboxylation, proteolytic maturation, phosphorylation, sulfation, and glycosylation. Of these PTMs, those known to be vital for activity are γ -carboxylation of multiple glutamate residues near the N-terminus and proteolytic cleavage of the FIX propeptide. When expressed at a high rate in exogenous expression systems, however, the ability of current systems to effect the necessary PTMs is severely rate limited, restricting the production of active FIX.

The transgenic pig bioreactor represents a promising source for the production of large quantities biologically active FIX due to its demonstrated ability to perform the required FIX PTMs. It was the goal of this study to characterize the PTM structure and the resulting function of recombinant FIX when expressed at 1-3 mg/ml in the transgenic pig mammary epithelium (tg-FIX). It was found that the expressed tg-FIX is comprised of a heterogeneous mixture of FIX PTM isoforms. This mixture represents a spectrum of tg-FIX molecules of varying γ -carboxyglutamic acid (Gla) and propertide content, indicating that rate limitations in effecting these PTMs are present. A purification process was developed utilizing heparin-affinity chromatography to purify the total population of tg-FIX from pig milk, a complex multi-phase feedstock. Subsequently, a process was developed to fractionate the total population of tg-FIX into subpopulations based upon the extent of post-translational modification. O ion-exchange chromatography was utilized to fractionate tg-FIX based upon molecular acidity which was found to be correlated to both biological activity and Gla content. The resulting biologically active tg-FIX population contained an average of 7 of the 12 Gla residues found in pd-FIX. Immuno-affinity chromatography was subsequently utilized to further fractionate tg-FIX into mature tg-FIX and propeptide-containing tg-FIX populations.

The isolated FIX PTM populations were subjected to functional analysis by investigating *in vitro* clotting activity, activation by factor XIa, and *in vivo* pharmacokinetics. From this analysis it was found that mature tg-FIX with an average 7 Gla residues, representing approximately 9% of the total tg-FIX produced, exhibits wild-

type *in vitro* clotting activity and normal activation by factor XIa. The remainder of the tg-FIX produced, characterized by either a lower Gla content or the presence of the propeptide, was found to be inactive and displayed less efficient activation by factor IXa. In an *in vivo* pharmacokinetic study in the hemophilia B mouse model, biologically active tg-FIX was found to possess altered circulating properties. Tg-FIX was characterized by a lower recovery, approximately one-sixth that of pd-FIX, but an extended circulation half-life. From this study it was found that the mean residence time of tg-FIX after injections is approximately twice that observed for pd-FIX. These altered pharmacokinetic properties are likely linked to the unique tg-FIX PTM structure, perhaps through altered endothelial cell binding characteristics caused by the reduced Gla content.

Table of Contents

Abstract	ii
Table of Contents	iv
List of Figures	vii
List of Tables	
Amino Acid Abbreviations	
Chapter 1: Project Description	1
1.1 Specific Aims	1
1.2 Significance of Research	
Chapter 2: Background	5
2.1 Hemophilia	
2.2 FIX in Blood Coagulation	
2.3 Factor IX Structure and Post-translational Modification	
2.3.1 General Structure	
2.3.2 γ-Carboxylation	
2.3.3 Glycosylation	
2.3.4 Propeptide Cleavage	
2.3.5 Phosphorylation and Sulfation	
2.3.6 β -hydroxylation	
2.4 FIX Activation	
2.5 Current Recombinant Technologies	
2.6 Transgenic Animal Bioreactors	
	22
Chapter 3: Purification of Recombinant DNA-derived Factor IX Produced in	
Transgenic pig Milk and Fractionation of Active and Inactive	
Subpopulations	30
3.1 Abstract	
3.2 Introduction	
3.3 Experimental	
3.3.1 Reagents	
3.3.2 Transgenic Milk Collection and Storage	
3.3.3 Purification of rFIX	
3.3.4 SDS PAGE	
3.3.5 FIX Activity - aPTT Assay	54 21
3.3.6 Total Gla Analysis3.3.7 Isoelectric Focusing	
3.4 Results and Discussion	
3.5 Conclusions	40

Chapter	r 4: Determination of the Kinetics and Mechanism of tg-FIX Activation	
	by FXIa	
	Introduction	
4.2	Materials and Methods	
	4.2.1 Transgenic Pig Milk	
	4.2.2 Ion-Exchange Fractionation of tg-FIX	
	4.2.3 Isolation of proFIX	
	4.2.4 Determination of FIX Concentrations	
	4.2.5 FIX Specific Activity Measurements	53
	4.2.6 Gla Analysis	
	4.2.7 FIX Activation by FXIa – SDS-PAGE and Western Blot	55
	4.2.8 Integrated Michaelis-Menten Analysis	
	4.2.9 FIX activation in the Presence of 4-aminobenzamidine	56
4.3	Results	
	4.3.1 Fractionation of tg-FIX	57
	4.3.2 FIX in vitro Activity and Gla Content	59
	4.3.3 Activation of HS-tg-FIX by Factor XIa	60
	4.3.4 Integrated Michaelis-Menten Analysis	
	4.3.5 Activation of HS-tg-FIX in the Presence of Benzamidine	63
	4.3.6 Activation of HS-tg-proFIX	64
	4.3.7 Activation of LS tg-FIX and LS-tg-proFIX	65
4.4	Discussion	67
	Summary and Conclusions	
Chapter	5: Pharmacokinetics of tg-FIX in the Factor IX-Knockout Mouse	
	Hemophilia B Animal Model	
	Introduction	
5.2	Materials and Methods	
	5.2.1 Transgenic Milk Collection	
	5.2.2 Preparation of tg-FIX for Injection	
	5.2.3 FIX Activation and PNGase Digestion	
	5.2.4 SDS PAGE and Western Blot	79
	5.2.5 FIX Activity – aPTT Assay	
	5.2.6 Phosphate Content-ProQ Diamond Assay	
	5.2.7 Total Gla Analysis	
	5.2.8 Pharmacokinetic Analysis	80
5.3	Results	87
	5.3.1 tg-FIX Product	87
	5.3.2 Pharmacokinetic Analysis	88
	5.3.3 PTM Analysis	92
5.4	Discussion	96
5.5	Summary and Future Work	101
Ad	ditional Calculations	107

Chapter 6: Conclusions and Future Work	114
6.1 Summary and Conclusions	114
6.2 Future Work	116
6.2.1 PTM Analysis	116
6.2.2 Further Purification	
6.2.3 Preclinical Trials	119
6.2.4 Next Generation Transgenic Pigs	
Acknowledgments	122
Appendix I: Production of Biologically Active Porcine Prorelaxin in the Milk of	
Transgenic Mice	123
A.1 Abstract	123
A.2 Introduction	124
A.3 Experimental	126
A.3.1 Materials	126
A.3.2 Transgenic Mouse Generation	126
A.3.3 Genomic DNA Isolation	127
A.3.4 PCR Analysis	127
A.3.5 Mouse Milking 1	128
A.3.6 Enzyme Linked Immunosorbent Assay – ELISA	128
A.3.7 SDS PAGE and Western Blots	129
A.3.8 Purification of Recombinant Porcine Relaxin	129
A.3.9 Activity Assay Using THP-1 Cells	130
A.4 Results	
A.5 Discussion	131
Vita 1	142

List of Figures

Chapter 2

Figure 2-1:	Minimum volumetric feedstock requirements for the worldwide prophylactic treatment of hemophilia B based on an estimate of	
	300 million IU of FIX required	6
Figure 2-2:	Schematic representation of the blood coagulation cascade	8
Figure 2-3:	FIX primary sequence and post-translational modifications	10
Figure 2-4:	Post-translational modifications of FIX in the secretory pathway	11
Figure 2-5:	γ-Carboxylation reaction	12
Figure 2-6:	Ca ²⁺ -bound FIX Gla domain 3-D structure	14
Figure 2-7:	FIX activation pathways	19
Figure 2-8:	NetPhos predicted phosphorylation sites on human FIX	24

Chapter 3

Figure 3-1:	Amino acid sequence of the Factor IX propeptide and Gla domain44	
Figure 3-2:	Purification of rFIX from transgenic pig milk by heparin-affinity chromatography on heparin-Sepharose	.44
Figure 3-3:	HPLC analysis of the purity of the heparin-Sepharose product.	. 45
Figure 3-4:	Silver-stained SDS PAGE of column fractions from Matrex Cellufine Sulfate, a synthetic heparin analogue	45
Figure 3-5:	Anion exchange chromatography of heparin-purified rFIX on a Mini Q column	46
Figure 3-6:	Anion exchange fractionation of biologically active and inactive subpopulations of rFIX on a Mini Q column	.47
Figure 3-7:	cIEF electropherograms of rFIX subpopulations and plasma-derived FIX	48

Chapter 4

Figure 4-1:	Activation of FIX by two pathways	50
Figure 4-2:	tg-FIX fractionation procedure	58
Figure 4-3:	SDS PAGE and Western blot of tg-FIX and tg-proFIX purification product	59
Figure 4-4:	SDS PAGE analysis of FIX activation by FXIa	62
Figure 4-5:	Analysis of SDS PAGE FIX activation data by the linearized Michaelis-Menten equation	63
Figure 4-6:	FIX activation in the presence of 4-aminobenzamidine	64
Figure 4-7:	Western blot of the activation products of the time course activation of HS-tg-proFIX by factor XIa	65
Figure 4-8:	Western blot of the activation products of the time course activation of LS-tg-FIX and LS-tg-proFIX by factor XIa	66

Chapter 5

Figure 5-1:	One-compartment pharmacokinetic model	81
Figure 5-2:	Two-compartment pharmacokinetic model	83
Figure 5-3:	Western Blot of FIX products	87
Figure 5-4:	One-compartment model fit to concentration versus time data	89
Figure 5-5:	Half-life of FIX products calculated from the one-compartment model	89
Figure 5-6:	Two-compartment model fit to concentration versus time data	90
Figure 5-7:	Western Blot of PNGase digestion of FIX from different sources	94
Figure 5-8:	ProQ Diamond phosphoprotein-dependent staining of FIX	95

Appendix A

Figure A-1:	Transgene stability	
Figure A-2:	Milk Western blots	139
Figure A-3:	Reduced SDS PAGE of relaxin purification	140
	Intracellular cAMP levels of THP-1 cells versus concentration of porcine relaxin exposure	140
Figure A-5:	C chain termini of human and porcine relaxin	141

List of Tables

Table 2-1	Comparison of post-translational modifications and pharmacological properties of pd-FIX and $\text{BeneFIX}^{\mathbb{R}}$	22
Table 4-1:	Table of properties of FIX preparations	60
Table 5-1:	Measured FIX activities detected in mouse plasma after injection	88
Table 5-2:	Incremental recovery of FIX in FIX-KO mouse model	88
Table 5-3:	Calculated two-compartment model parameters	91
Table 5-4:	Mean residence times (MRT) of tg-FIX and pd-FIX derived from the model-independent method by different integration techniques	92
Table 5-5:	Summary of the circulation half-lives of tg-FIX and pd-FIX Calculated by compartmental and non-compartmental methods	. 98

Amino Acid	Three Letter Abbreviation	One Letter Abbreviation
Alanine	Ala	Α
Cysteine	Cys	С
Aspartate	Asp	D
Glutamate	Glu	Ε
Phenylalanine	Phe	F
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Lysine	Lys	K
Leucine	Leu	L
Methionine	Met	М
Asparagine	Asn	N
Proline	Pro	Р
Glutamine	Gln	Q
Arginine	Arg	R
Serine	Ser	S
Threonine	Thr	Т
Valine	Val	V
Tryptophan	Тгр	W
Tyrosine	Tyr	Y

List of Amino Acid Abbreviations