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ABSTRACT

In order to better describe dense gases, a smooth attractive tail arising from a
Coulomb-type potential is added to the hard core repulsion of the Enskog equa-
tion, along with a velocity diffusion. By choosing the diffusing term of Fokker-
Planck type with or without dynamical friction forces, the Cauchy problem for the
Diffusive-Vlasov-Poisson-Enskog equation (DVE) and the Cauchy problem for the
Fokker-Planck-Vlasov-Poisson-Enskog equation (FPVE) are addressed.

Chapters I - V focus on global existence of renormalized solutions of (DVE).
The main tool used here is a sequential stability theorem, which, based on the fact
that the operator L, = gt— + v - V7 — AAy acts like a hypoelliptic operator from
L'((0,T) x R* x R®)) to L'((0,T) x R* x R®) & L*((0,T) x R%; L*(R3)), concludes
that any weakly compact set of solutions of (DVE) is strongly compact and the
limits are renormalized solutions. The existence of global-in-time solutions to the

renormalized equation (DVE) is proved for arbitrary L! initial conditions with finite



mass, energy and entropy. In Chapter VI. these results are extended to the equation
(FPVE).

The last part of the paper, Chapter VII, introduces the concept of B-type mild
solutions for non-linear evolution equations in general Banach spaces. The existence
and uniqueness of this kind of solution, locally and globally, is investigated for such
equations even with unbounded discontinuous nonlinear terms. The theory is applied
finally to address the global existence of mild solutions of the Fokker-Planck-Vlasov
equation, the equation (DVE) and the equation (FPVE) with special geometrical

factors.
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Chapter I. Introduction

The aim of statistical mechanics is to explain and predict the properties of
macroscopic matter from the properties of its microscopic constituents. The subject
may naturally be divided into an equilibrium and a nonequilibrium part. Historically,
nonequilibrium statistical mechanics has taken two directions: kinetic theory of gases
and Brownian motion theory. The subject studied in this paper, roughly speaking,

belongs to the first direction.

§1.1 Boltzmann and Enskog Equations

In this section we shall derive the equations which we wish to study along the
line of their historic development. As is well known, the basic concept in kinetic
theory is the (one-particle) density function (distribution function), which, denoted

by f(7,7,t), is defined, according to Boltzmann, in such a way that
f(7,0,t)drdv

is the probable number of the molecules (or other kinds of particles studied) that lie
at time ¢ within an element d7 around point 7 and have a velocity in the element dv
around v. Consider a gas in which each molecule of mass m is subject to an external
force mf, which may be a function of 7 and ¢, but not of . Between the time ¢ and
t + dt the velocity o of any molecule that does not collide with another will change,
according to the Newton’s second law, to v'+ ﬁdt, and its position vector 7 will change

to 7 + vdt; the number in this set is

f(F+ 5dt, T+ Fdt,t + dt)drds.
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Since there are collisions happening among molecules. the number of molecules in the
second set generally deffers from that in the first set. The number of net gain (or
loss) of molecules to the second set is approximately proportional to drdvdt, and is

denoted by (0f/0t).oudrdvdt. A first order approximation gives

{f(F + 5dt, 7 + Fdt,t +dt) — f(F,7,t)}drdv = (%%)coudf’dﬁ’dt.

Dividing both sides by drdvdt, and letting dt — 0, we get the following form of the
Liouville Equation:

(_% (7, 0,8) + 7 - V+f(7,0,t) + F(F.t) - Vaf = (%)Co”_ (1.1)

The particular choice of physical model determines the different forms of the
collision terms in equation (1.1), and accordingly, different equations. Two well-

known assumptions in the dilute gases theory state as follows(12[42);

Assumption I. In the low-density limit, we can limit ourselves to binary collisions

and consider them as instantaneous and local in space.

Assumption II. (“Molecular-chaos assumption” or “Stosszahlansatz”).
The number of pairs of molecules in the element dr with respective velocities in the
range (v, v+ dv) and (¥, 0y + dv;), which are able to participate in a collision is given

by
f(F, 5, 8)dvdF f (7, ¥y, t)drdoy .

From assumption I, the collision term (0f/0t) . can be decomposed into two
terms: (%%)coll = C" — C', where C'drdivdt is the number of binary collisions in the
time interval dt of molecules lying in the range (7, 7+d7; v, v+ dv) and deflected to any
other velocity v, and C"drdvdt is the number of binary collisions in the time interval
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dt of molecules lying in the element (7,7 + d7) with arbitrary initial velocity ¢ and
ending up after the collision with a velocity in the given range (.7 + dv). Using the
molecular-chaos assumption, we can express the gain-loss term explicitly in terms of
the (differential) scattering cross section ({1, §) , where, roughly speaking, o(§, 7)d(}
indicates the probability of a molecule, having the initial velocity § and sent to the
fixed potential, that is deflected into a solid angle dQ) around the polar angles Q) of the
final velocity ¢’. If two molecules, with before-collision velocities of ¢ and vy, emerge
after collision with velocities " and ¢]. Then energy and momentum conservation

demand:

- — — — 2 2 2 12 .
oy +v=10]+7, vi+vi =0 0", (1.2)

In this case, § = v; — v and ¢’ = v] — ¥" are the relative velocities before and after
the collision. Integrating over all (possible) deflection angles 0 and all velocities 7;

as well as using the relationship

we derive the celebrated Boltzmann Equation in the dilute gas theory:
0
ot
= [ [ a@o(@ 105 01, 700) — £, 8,056, 5,0

(F,5,8) + T - Vef(F,5,t) + F(F,t) - Vf = (%’%) =
coll

(BB)

Despite its pre-eminent role in nonequilibrium statistical mechanics, the Boltz-
mann equation is known to be valid only in the dilute-gas regime, indeed yielding
transport coefficients of an ideal fluid. Enskog, first in 1921, attempted to rectify this
situation by introducing a Boltzmann-like collision process with hard core interac-
tion representing particles with non-zero diameter. The Enskog equation, in several
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modified and revised versions introduced in the 1970’s in order to obtain correct hy-
drodynamics, describes a non-ideal fluid with transport coefficients within 10% of
those of realistic numerical models up to one-half close packing density.

Unlike the Boltzmann theory, which describes the behavior of a dilute gas,
the Enskog equation deals with a dense gas consisting of hard spheres. Interestingly
enough, in the derivation of the equation, multiple collisions are neglected completely
and the dynamics is described by two-body events, just as in the Boltzmann theory.
Since the gas is dense, Enskog modifies the Boltzmann theory in the following way:

(i) Modifying the frequency of these binary events by invoking geometrical effects;
(i1) Taking into account the collision transfer; i.e., in a collision, the momentum

Ap' = m(v] — ¥1) = —m(¥' — ¥) exchanged between the molecules is suddenly

transferred from the center of one molecule to the center of the other.

Since the molecule is a sphere with diameter a, a collision does not take place

at a given point. Rather, we have to replace
f(F7 6', t)f(F, 617 t) = f(F7 67 t)f(F— (16—; 617 t)a

where € is the unit vector along the line joining the centers of the molecules. We use
Y% to indicate the geometrical factor, which depends only on the density at the point

of contact, YE = YE(n(7 — 1aé,t)). From classical scattering theory, the scattering

-

cross section for a hard sphere potential is o (€, §) = az(ff-)@(g- J). Therefore from
(1.1) and (1.2) we can surmise the Standard Enskog Equation:

%f+a.vr.f+ﬁ-vgf=05(f,f)=

= ¢? // (5= ) - O((T — &) - O{YE(n(F + g,t))fl(f,a",t)f(ﬂ ag, 7, 1)

R3xS2
— YE(n(F— =, t))f(F, 5,1) (7, 51, 1)} dv &°€. (SEE)
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Unfortunately, this Standard Enskog Equation does not yield correct hydrodynamics.

In the next section, we will indicate a derivation of a revised Enskog equation via

BBGLKY hierarchy. which corrects this deficiency.

§1.2 BBGKY Hierarchy and Vlasov-Enskog Equation

A limitation of the Enskog equation, unlike the Boltzmann equation, is that it
incorporates only hard-sphere molecular interactions. In order to account for more
realistic potentials, several extensions of the Enskog equation have been proposed in
the statistical mechanics community, especially by de Sobrino, Grmela, Davis, Rice,
Sengers, Stell, van Beijeren and co-workers (see, for example, [8], [21], [24], [25], [28],
[29], [31], [32], [46], [47]).

One strategy toward improving the Enskog theory is based on the addition
of an intermolecular potential tail to the hard-core repulsion. In this direction the
addition of a square well potential to the repulsive hard core has been studied by
Grmela, Davis, Rice, Sengers, and by Karkheck, van Beijeren, de Schepper, Stell,
Liu, Greenberg, Polewczak, and others (cf. [24], [31], [46], [33] ), obtaining a kinetic
equation with multiple Enskog-like collision terms. Another approach is to add a
smooth attractive tail to the hard core. This direction is first studied by Luis de
Sobrino for the nonequilibrium problem of a van der Waals gas.

Consider a system consisting of NV particles with Hamiltonian

Hy = H]% + Vi, (1'3a')
N mo? Al
HYy =) =+, Vv =Y V(r), (1.3b)
i=1 = i>i=1
where (7,--- ,7n, 01, ,0n) = (r,0) denotes the positions and velocities of the

particles, HY is the total kinetic energy of the system, and Vi represents the total
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potential energy, which is the sum of all distinct pair interactions V(r;;) with r;; =
|7; — 7;|. Define the N-particles distribution function py(r.v,t) in the same manner
as in the one-particle distribution function. It is well-known that the distribution

function py (v, b,t) satisfies the N-particles Liouville equation:

0
EPN(“D)t):{HI\UPN}’ (14)
where we have used the Poisson bracket { x , = } defined as:

N
A A 1 - A
(4, = B-V3A-V:B),
B} §=: B)

for any two functions A and B of (x,v). If we use

1
9,']' = ;V,-‘ V('I‘,’j) . (Vg‘. - V{;].), (15&)
then the Liouville equation (1.4) can be rewritten as
5 N N
E/)N(t, o,t) = — Z Ui - Vipon + Z biipN. (1.5)
=1 b>i=1

Introducing the (reduced) specific distribution function p; and the (reduced) generic

distribution function f; by

Pl(ﬁ,"' 77'—‘17617"' 761at) = / d'Fl+l "'dT-"Nd‘l;.[+1"'d’l?NﬂN(t,D,t),
(1.6a)

fl(rlv"' y TV, ° ’Uht) = _('mpl(rlv"' TR PR ,'U[,t), (16b)

and integrating (1.5) over g1, , 7N, Utg1, -+ - , Un, We find
2fl("-"ly 17-"177—)‘1,"' a"}‘lat) =
ot

N l
= _Zavﬂfl(ﬂy‘ 77-"1;1717"' 7617t)+ Z 01],/{1(7-'17 ’ﬁa{;l,'” ,glvt)

=1 1>1=1



{
+Z/ A1 @5410s i S (P 5P, By B ), (1.7)
=1

which. when we take [ = 1,2,--- . N, forms the well-known BBGKY hierarchy. In

particular, for [ = 1, we have

8 - — - - -
afl("'lvvlat) + 01 - Vi f1(71, 01, 1)

| e o .
= / dr,dv, -"—lvr-l V(rz) - Vi, fa(F1, 72, U1, U2, B). (1.8)

Let us point out that equation (1.8) is asymptotically exact when we assume that the
system is formed by a very large number, N, of identical particles and the boundary
effects are negligible.

Define the correlation function

oo o fa(71, 73, U1, U, t)
’ 9 s Vo 1t = ST — ‘ —- - . 19
g2(1 b U b2 ) f("'la U1, t)f(7'-2, V2, t) ( )

Then (1.8) can be rewritten as

a > =2 - — -
b"t'f(rlavlat) + vy - Vi (71,71, 1)

— - ]' — — — - - - — -
= / drdv, —n;V;lV(ru) - Vi [92(71, 72, U1, Ua, t) f (71, U1, 8)] f (72, U2, t).
(1.8")

For hard-sphere collisions, the potential V(r) takes the form

oo r<a,

Vi) = { 0 r>a

At the one particle level, one can assume that the correlation function does not depend

on the velocity, i.e.,

f2(71, 72, U1, Ua, t) = ga(71, 72 n(t)) F(71, O1, £) £ (72, V2, 1), (1.10)
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where n(t) = = [ dv f(7.7.t). Expanding the solution of (1.8') f(7,¥,t + 7)
in terms of powers of n(7t) and letting 7 — 0, or using the pseudo-Liouville
equation,*¥] we get the following revised Enskog equation!*”:
J . - = I
(57 + 7 VAS(.5,8) = Ce(f- )7, 5,1),
Celru 50 = [[ (ol + aln(®) (7 5,00+ 08,7,
R3x 5?2

92(F, 7 — aéln(t)) f(F,0,8) f(F — a€, 01,1)|O(€- (T — 1)) < €, 0 — ¥; > dédv,,
(REE)

where

-

- ~f - -
v1 >, vy =v1+€E<EV—

-

— — - -
V=v—€e< EU—

’61 >7

and €'is the unit vector from the center of the target particle to the center of colliding
particle. Since the correlation function g, depends only on the local density at ¥ and
F+tae, using traditional notations we can write go(7, r+aéln(t)) = Y(n(7, t), n(Ftae)).

On the other hand, if the particles interact through a repulsive hard-core po-

tential of diameter a, as well as a weak attractive pair potential ¢***(r;;),

o0 r < a,
Vir)= { ¢taﬂ(r) r>a,

- -

then, in terms of the two-particle distribution function f,(7,v,7,¢",t), from (1.8) we

derive the following equation(?!

6 -I—-U V]f(F7 J,t ———/ dl‘ / d’f'l V¢ta11‘r T_"] vaz( 2-)‘ T-" ’t)
at |71 =71>a

=/di;‘1/ €2 (5y — 0)a2[folF, 7 + a8, 5,71, t) — folF, 7 — a&, 7,1, )],
st (1.11)

where S = S} (v,01) = {€ € S,|€- (¥ — ¥) > 0}. The weakness of the attractive
potential tail $*? permits us to neglect the correlations in the integral on the left-

hand side of (1.11) and to extend the integration within the sphere |f; — 7] < a,

8



since the contribution of the region where the correlations due to the hard core are
important will be very small. Denoting the extended tail potential by V(7), in this

case, the third term of equation (1.11) can thus be written

~Vaf(751) Vs / &7y V(|7 = nlin- ). (1.12)

Replacing the two-particle distribution function in (1.1) by one-particle distribution,

as was carried out in (REE), leads to the Vlasov-Enskog equations!?°l:

0

(57 + 7 VAf(Et) = ~E - Vaf(£,1) + Cu(f. f). (VE1)
E: / dT_"2 VFV(Fl-z)n(T-'tz,t) = / dFZ %IQVI(FIZ)Il(Fz,t) (VEQ)

Equations similar to (VE1)-(VE2) were first derived by de Sorbrino,®¥ but with the
Enskog collision terms replaced by a perturbation of the Boltzmann collision. Grmela
et al.?Yl studied the solution of the linearized version of the Vlasov-Enskog equations.
The Vlasov-Enskog equation studied in our paper was first derived by George Stell
et al.®I?% by using the method of maximization of entropy. and taking the Kac-limit
for the tail potential, ®%! = lim,_¥3v(yr). In their work. they also obtain some

useful properties of the Vlasov-Enskog equation, such as an H-theorem.

§1.3 Fokker-Planck Terms

Let us mention some problem arising when trying to derive the Vlasov-Enskog
equation from the exact classical dynamics. First, in the above derivation of the equa-
tion from the BBGKY hierarchy, the velocity correlations are completely neglected.
One method of taking into account the velocity correlation effects is the addition
of the Fokker-Planck terms.[?! Moreover, in the derivation above, we assume that
the tail-potential has no influence on the binary collision. If we account for this

9



influence in some approximate way (small-angle scattering), an additional term of
Fokker-Planck type should also appear. Therefore, we will consider in this paper the
so-called Fokker-Planck-Vlasov-Enskog, or Diffusive-Vlasov-Enskog, equation.

In general, the Fokker-Planck term, or Kolmogorov forward process, as it is
called by some authors, has different forms. The most simple, but very important,
case is to treat the term just as the Laplacian Ay f of the distribution function f about
the velocity . Another very popular treatment is to write that process as Azf +
2divy(7f). From the point of view of physics, Ay denote the thermal background
interaction, and divy(vf), the dynamical friction forces. In other words, in the first
case, the Fokker-Planck term takes only the thermal background interaction into
account, but without the dynamical friction forces. The second situation takes care
of both thermal background interaction and the dynamical friction forces. Although
both cases are frequently referred to as Fokker-Planck terms in the literature, we
will call the first case a diffusive term and the second one a Fokker-Planck term. In
conclusion, in order to better describe the behavior of dense gases, we get two kinds
of systems: the first one, called the Diffusive-Vlasov-Enskog equation in this paper,
is given by

J . - oo L
[5; + - VAS(7R,9,8) + E(7,1) - Vaf(7,0,1) = Maf = C&(/, f), (DVE)

and the second one, called the Fokker-Planck-Vlasov-Enskog equation, is given by
a - - - = - - = . - 9 4
[5? +v- vf]f(h v, t) + E(T‘, t) ) V;f(r, v, t) - T]le;;('Uf + Evﬁf) = CE(fy f)7 (FP\’ E)
where E(F,t) is assumed to satisfy the equation

B(7 1) = /R &y V(I = 74 ) n(7). (VE)
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Here, RP denotes real D-dimensional position or momentum space, 8, 7 and A are
positive numbers, and Cg(f, f), is the Enskog collision term. Let us point out that,
although it seems that the treatment of the (DVE) is simpler than that of the (FPVE),
the conclusions about the solution of the two systems, from the point view of either

mathematics or physics, can not be inferred from each other.

§1.4 Outline of Results

In this paper we will study the Cauchy problem for the equations (DVE)-(VE)

as well as (FPVE)-(VE) with given initial condition

lim f(Fa th) = fO(Fa 6) (IC)

t—+0

in the Banach space L'. We will use the revised Enskog collision term with the form

of

Ce(f N T =a [[ V(70,0 6 )70 067, )=

Y (n(7,), n(F + a&,t)) f(F, ) f(F + a8, 71, 8)] < &5 — 5y > dédin,
(ET)

- — - - — - - - —
V==U—€<ET—0,>, U=u4+ESEET—1T; >,

and n(r,t) = f dv f(7,v,t). The geometric factor Y (7}, 7,) in principle is a functional
of f and should be determined by the Mayer cluster expansion.?” The tail potential
V is chosen as the Coulomb potential, V() = —al'(D/2)(2(2 — D))" 'x~P/27>-D,
where D > 2 is the dimension of the space. The field term is assume to satisfy the

following Poisson equation:

divzE(7,t) = —am(F, t). (VP)

11



The paper is naturally divided into three parts. The first part. including Chapter 11
— Chapter V, deals with the so-called renormalized solution of the equations (defined
below) with only the thermal background interaction considered in the diffusive term,
1.e. the system (DVE)-(VP)-(IC). The second part, Chapter VI, consider the renor-
malized solution of the equation in which the diffusive term includes both thermal
interaction and dynamical friction forces, that is, the (FPVE)-(VP)-(IC) equation.
In the last chapter both (DVE)-(VP)-(IC) and (FPVE)-(VP)-(IC) are considered, for
the mild solutions and B-type mild solutions rather than renormalized solutions.
Now we introduce the main results of the first two parts of this paper and
sketch the processes of the proof. A nonnegative function f of C([0, 00), L}(R2 x R3))
is called a renormalized solution of (DVE)-(VP)-(IC) if the composite function gs(f) =

2log(1 + 6 f) satisfies the equation

a -
=095+ V- Vizgs — Azgs =

-~ 0 . )
ot Ce(f,f)—E- 759+ A6|V3zgs|®,  (RDVE)

1
1+46f
and f satisfies (VP)-(IC) in the sense of distributions. Similarly, f is called the
renormalized solution of (FPVE)-(VP)-(IC) if g5 satisfies

0 - S . L 0
Egs + U+ Vigs + E(7,t) - Virgs — ndivg(gsv + -2-Vaga) + g5 =

_ f
= 1+ Cx(f, f)+6—|vaal2+N1 57 (RME)

and f satisfies (VP)-(IC) in the distribution sense. These equations are obtained from
the original kinetic equations by replacing the unknown distribution f with gs(f).

The main result of first two parts is:

MAIN THEOREM. a) Assume that Y(o,7) = Y(7,0) is a jointly continuous function
satisfying the boundedness condition oY (o, 7) < My < oo, the initial value fo(7,v) >

12



0 satisfles the boundedness condition

[ drasntz o+ 17+ 1 + log £l) < € < o0,

R3xR3

and Eo(7) = V(15 % no)(7) = Ve * [ folF,5) db)(7) satisfies
|Eo(F)[2dFf < C < oo.
R3

Then, there exists f € C([0,00); L'(R? x R®)) which is a renormalized solution of
(DVE)-(VP)-(IC).
b) Under the same conditions as in a), the equations (FPVE)-(VT)-(IC) have renor-

malized solutions.

For the equation (DVE), the proof of the theorem is based upon the following
ideas. In Chapter II, we give some useful estimates, including conservation of mass,
a bound for the total kinetic and the field energy as well as a bound for the entropy,
provided the system has classical solutions. From a mathematics point of view, these
bounds indicate the weakly pre-compactness of the set of solutions. Chapter III ad-
dresses sequential stability results. From the boundedness arguments, approximate
solutions can be obtained, which form a weakly pre-compact set in the Banach space
L'((0,T) x R® x R3). The sequential stabilities theorem concludes that the approxi-
mate solutions set is pre-compact, and limits are renormalized solutions of the system.
This kind of idea is not new, for example, similar results are obtained by DiPerna
and Lions for the Fokker-Planck-Boltzmann equation.'”l In fact, our approach to the
proof is very similar to theirs. The increased difficulty here is in part due to the fact

that we have to show the pre-compactness of {g§} with Lyg§ = h} + A%, where

o .
L,\—E—FU-V;—/\A,;,

13



{h?} is weakly pre-compact is L'((0,7T) x R3 x R3), but {h}} is only weakly pre-
compact in L1([0,T] x R2; L*(R2)) (see, e.g., Lemma 3.4). In other words, L, is
similar to hypoelliptic operator from L!((0,7T) x R* x R?) to L'((0.T) x R®* x R*) &
L'([0,T] x R3; L*(R%)). From the compactness argument and some detailed mea-
sure and distribution theory considerations, we deduce that gs, a weak limit of g},
solves the (RDVE). Chapter IV and Chapter V provide the existence (and unique-
ness) argument for the solution of the approximate equations and the existence of the
renormalized solution of (DVE)-(VP)-(IC). The technique used for the existence of
approximate solutions is the contraction mapping method, and the fact that the op-
erator consisting of the Laplacian and the Vlasov term generates a positive semigroup
in some functional Banach spaces.

The idea for demonstrating the solution for the (FPVE)-(VP)-(IC) is similar,
but with some technical modification. For this reason, the second part of the paper
is written in an abbreviated fashion. We do not present the proof of the theorems in
great detail. Instead, we outline key facts differing from the first part, which set the
new problem into the frame work of the first part.

The third part of this paper is basically to consider the following abstract non-

linear evolution equation

L) = AF(®) = T(F(2)), .
{ flt=0)=fo, )

in some Banach space X, where A : D(A) — X is a closed linear operator which
generates a co-semigroup U(¢) , and J(-) is an unbounded discontinuous nonlinear
operator from D(J)(D D(A)) to .X. For a given closed linear operator B, we call an
X-valued function f(t) as a B-type mild solution of the equation (ABS) if f(t) is a
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mild solution of (ABS), i.e., the solution of the integral equation
t
f16) = U)o+ [ Ut = 7)) ds,
0

and both f(t) and Bf(t) are continuous in t. We give some conditions for A, B, J
under which the equation (ABS) has a unique B-type mild solution locally and glob-
ally. Using the theory obtained, we show that the Fokker-Planck-Vlasov equation
and the Diffusive-Vlasov equation have globally a unique mild solution f(#,,?) such
that %f(f", o,t), =1, 2, 3, is a continuous L'(R> x R®*) N C(R%; L'(R3))-function
of t. Furthermore, we give some examples of the geometrical factor Y with which the
Fokker-Planck-Vlasov-Enskog equation and Diffusive-Vlasov-Enskog equation have

locally and globally a Vtype mild solutions.

§1.5 A Short Review

In the remainder of this section. we review some works on related subjects.
The first local in time existence theorem of the Enskog equation was obtained by
Lachowicz.% A global in time existence theorem was obtained by Toscani and
Bellomo™ in the case of a perturbation of the vacuum. Polewczak[® showed the
solution obtained in [30] is actually a classical solution if the initial datum is smooth.
Cercignanil'l obtained global in time solutions for small initial data in L' and Y = 1.
All of the above results deal with the standard Enskog equation, but with easy modi-
fications can be extended to the revised Enskog equation. Furthermore, those results
refer either to small initial data or to local in time existence. For large initial data,
Cercignanil' obtained global in time L'—solutions in the case of one-spatial dimen-
sion and Y = 1. Arkeryd® considered the two-spatial-dimension case using a weak
compactness argument in L', however with the range of integration with respect to
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€ extended to the whole sphere S?, together with the assumption that ¥ = 1, i.e.,
the Enskog-Boltzmann equation. Moreover, Arkeryd® obtained global existence for
Y =1 under the assumption that the initial value was differentiable in 7 in the L!
sense. and Arkeryd and Cercignanil!l gave a proof of global existence with arbitrary
L' data in the case of periodic boundary conditions for ¥ = 1. For the Vlasov-
Enskog equation, Grmelal®¥ first studied existence for the linearized Enskog-Vlasov
equation as well as bifurcation of the equilibrium stationary solution to the nonlinear
Enskog-Vlasov equation. The Enskog-like term in that paper is actually an improved
Boltzmann collision operator. Global existence of a renormalized solution of the
Fokker-Planck-Boltzmann equation was first studied by DiPerna and Lions.'®! Exis-
tence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems was studied
by Victory et al.*8l¥] and for the Maxwell-Vlasov system by Dressler, DiPerna, Lions
etc.[15108119] The reader is referred the references there for further review on related

subjects.

16



Chapter II. Conserved Quantities and Bounds

In this chapter, we obtain some useful identities and inequalities, including
bounds for mass, energy, spatial momentum as well as entropy. These bounds are
obtained based upon the assumption that f is a classical solution of equation (DVE)-

(VP) if no additional description is provided.

§2.1 Conservation of Mass and Energy Bounds

First, we assume a symmetry condition on the geometric function

Then we havel37:38]

¢(7,9) Ce(f, f) dvdr =

R3xR3

2
- “—/f// (67, 7) + $(F + a2, 3) — 67, 5) — 6(7 + a& 1))
2 ROXR®xR3x 52

x f(F,7,0)f(7 + a&, 01, 8)Y (F,F + ad) < €,7 — 71 > dédv,dvdr,
(2.2)

which gives

% / / f(7,5,¢) dirdi =

R3xR3
=\ // Agf dvdi — //E V—fdz')‘dr+/ Cg(f, f) dvdF
R3x R3 R3xR3 R3xR®

17



=) / / divs(Vsf) — / / divyfE didr =0,

R3xR3 R¥xR3

or

// (7, 7,t) dodF = / F(7,7,0)dodF = My Vit >0,
R*xR? R3xR?
(conservation of mass.) (2.3)

Next, we want to get some information about the energy. Multiplying both sides of

(DVE) by v? and integrated over R*> x R3, we have formally

// [vzafg;‘ v¥v - Vf(Z,t)] dvdr + // viE - fx t) dvdr =

R3xR3 R3xR3

.\ / / V2 A f didF + / Culf, f) dvdF. (2.4)

R3xR3 R3xR3

Since E is a function of 7 and ¢ only,
divs((v f)E = (diveEW?f + E - Vv f = 2B - §f + v2E - Vs,

or

V2E - Vif = divg(v?fE) - 2E - 5f.

Also, by (2.2), the last term on the RHS of (2.4) is 0, and

// v Ay f dvdr = // divy(v: Vs f) dvdi — 2 // U- Vif dodr =

R3xR3 R3xR3 R3xR3
_—>// dwvadad7+>//f t) didi —2//f 0) didr.
R3xR3 R3xR3 R3xR3

Therefore, at least formally, we have

// ) dvdr = u/ f(F,7,t dvdF-{-‘Z/ &FE -7, (25)
RS

R3 x R3 R3xR3
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where
J(FRt) = /i’f(f-'.ﬁ',t) dv. (2.5a)

Next, let us consider & [, E>di. Note that, at least formally, [ E. g—%d{)’ =
Jrs divsfE dv = 0, Jrs Azfdv = [padiveVgfdo = 0, and from (DVE)-(VP) we

have

a - — - , - - -
-,—-n(r,t):—/dvv'V;f-j—/ Ce(f.f)(F.v,t)dv,
at R3

ZB= [ Va0 [ Colr 50 b
dt R3 R3

—/ V;Z_FV(Fz—F')sz/ 7.9 5
RJ

o OF
= | Va V(7 - ) di / Cu(f, ), 7,t) d7 — / / Ve V(7 — Fdivg, f5
R R RexR3
= | Ve V(-7 di | Crlf, f)(7s ,t) db — / / diyd5 VAV - f7)+
3 3
R R R3xR3
+ / / 47 d5 AV (7 — 7) 7, (2.6)

R3xR3

where we have used
VAV - fv) = AV U+ VVdive fT).

In (2.2), let ¢(72, V) = ¢(72) = VV(72 — F). We assert that the first term on the right
hand side of (2.6) is 0. Also, at least formally with some restriction, the second term

on the RHS of (2.6) is equal to zero. Therefore, we have

4 dF|E|2=2/ dré.ﬁ_—_Q/ A E - // didi AV (7, — A fT (2.7)
dt Jrs - dt -
R3xR3

Now, if V satisfies (LPE), then
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4 A7 |E* = -z/ dF E - // A dT f5(—)8(F1a) =
dt R3 R3
R3xR?
= —2a/ &rE - | Gf(F,7,t)dv = —-Za/ dFE -j. (2.8)
R3 Re R®
Thus, (2.5) and (2.8) imply
d 2 — - - - — "2 <
E(a v f(F,0,t) dvdr + dr |E|*) = const. = 2 aM;. (2.9)
R3

R3xR3
With no loss of generality we assume a = 1, which, in turn, implies that
v f(F, f)’,t)d{)'df"+/ df"lE-"(f",t)l2 = M, + 2\ Mt, Vt>0, (2.10)
3
R3xR3 R
where
My = // v f(F,7,t = 0) dUdF+/ dFIE(F,t = 0)J°.
3
R3xR3 R
Now let us estimate the term [[r?fdvd7. Introduce the Liapunov function
E(t) by
E(t) = // di do(7 — t0)? f (7, 7, t). (2.11)
R3xR3
Since

(S B +15,1) - V= MM J(F+15,5.0) = Colf, F)(F +15,7,1)

(dit + E(F+t3,t) - Vi — M) f(F + t9,5,t) = r2Cg(/f, f)(F + 17, 7,1),
%E(t) = / / A7 d5(7 = t0)* (7, 0,t) =
R3xR3
=— / / dF dTE(F,t) - V(7 — t0) f(7,5,) + A / / A7 dT Az f (7, 7, 1) (F — t7)2+
R3xR3 R3xR3
+ / / 47 d5(7 — t3)2Cg(f, f)(7, 7,1)
R3xR3
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- / / dF d(7 — t5)2Ca(f. f)(F.5,t) = =2t / / 47 457 - 5Cx(f, f)(F,0.t) =

R3xR3 R3xR3
= —td3 //// deds,did7 < &5 — 5y >2 [(7,0,1) f(F + a&, 71, 8)Y (n(7). n(F + ad))
R3xR3xR3x 5%
<0, (2,11
we have

dF di(F — t9)2 (7, 5,t) = E(t) < E(0) = / / A dor fo(7,7) = Ms.  (2.12)

R3xR? R3xR3

By the Cauchy-Schwarz inequality and (2.10),

/ / dF dir? f < (t/ Mz + 2AMit + /)2 (2.13)

R3xR3

§2.2 A Bound for Entropy

Multiplying both sides of (DVE) by log f and integrating over R x R,

0 . 0 -~ 0
log £ 9+ 1ox £ 9L 108 1 B 2L = log £ Cs(f. £) + Alog 7o,

J . ~ , _ ‘
{a+v-V;+E-Va—AAa}flogf=(1+10gf)C'E(f,f)—/\f HVafI%

d 2] —
E//flogfdvdr—

R3xR3
= // divy(E f log f + AV f log f) dvdF + // (log fCEe(f, f) = Af Y Vaf[?) dvdF
R3xR? R3xR3
= // log fCg(f, f)dvdr — 4\ // |V;,-\/}—|2 dvdr. (2.14)
R3xR3
R3xR3
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Define
t [4
['(t) = // f(7.5,t) log f(T. E’.t)dffdv"—/ I(s)ds—}-/ J(s)ds, (2.15)
0 0
R3xR3

where

I(t) = 13//// dedvo\dedr f(7,0,8)[f(F — a€, 01, )Y (n(7), n(F — a€))
“ RExR3xR3xS%
— f(T+ a€ 01, 0)Y (n(r), n(7 + aé))] < €,0 — 7 >
=TIH(t) —I7(t), (2.16a)

J(t) = 4A / / VoV f(7, 8, 1) dvdr. (2.16b)
R3xR3

Letting y = f(7.0,t) f(F+a€, 0, 1), = = f(7,0,t) f(F+a€ v}, 1), using the inequalities

y(logy —log z) > (y — =), and integrating both sides of (DVE) over R> x R, we have

d
— < .
dtr(t) <0. (2.17)
Furthermore,
2 // flog f dvdr = dr(t) + I(t) — J(¢) < I (2). (2.18)
dt R3x R3 dt

Now we assume that the scattering function Y'(7, o) is continuous in 7, ¢ satis-

fying
supTY(r.0) < My < <. (2.19)

ag,T

Then

I*(t) =
2
= % //// f(F = a& vy, t) f(7,0,)Y (n(7), n(F — a€)) < €0 — ¥y > dedv,dvdr

R3xR3xR3 xSi
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2
<5 JJJ] 167 - @@ 50 (a7 - @)1 + [51) i s

R3xR3*xR3x 5%

2
%— //// n(r—a€t)f(7,0,8)Y (n(7 - aé),n(F'))é—(l + v?) déde, dvdr

R3xR3xR*x$3%

2
+ 2 //// W7, (7 = ad, 51, )Y (n(7), (7 = a@)3 (1 + o) déddrdidr

IA

=

R®xR3*xR>x 5%

<2ra*My // R3f(F.¢,t)(1 + v?) dvdr ( from (2.3) and (2.10) )
R3xR3
<2ma’*My (M, + 2\ Mit), (2.20a)

and similarly,

I7(t) < 2ma* My (M + 2AM;t). (2.20b)
In addition, suppose that

M, = // f(7 0,t =0)|log f(7,v,t = 0)] dvdr < oo. (2.21)
R3xR3
Then (2.18) and (2.20) imply that there exists a constant W5 = Ms(M;, M, My, My, T)
such that
/ f(70,t)log f(r,T.t)dvdr < Ms, 0<t<T. (2.22")
R3xR3

Combining (2.3), (2.9), (2.12) and (2.22’) and using the argument as in [17]-[20] we

have

// F(7,5,8)|log (7,7, t)| dvdi < Me(My, My, M3, My, My, T) < 0 (2.22)
R3xR3

for 0 <t < T. In fact, suppose [[ flog fdvdr < R, [[(1+ |0]* + |F]?)f dvdF < R.

//fllogfl dz’fdf’://flogfdﬁdf—i—‘2//X(f51)f10g(%)dl—;d;=
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=R+ 2// X(1>f>exp(—(lﬂ2+|17|2))f103(%) dvdi+
+2// X(f<exp(~{|2+{712) )flog(f)d7 dv
<33R+ 2// X(f(exp(—(|r'12+|17]2))flog(—}) drdv
(- ACy = const. such that tlog% < CoVt, YO<t<l)

< 3R+ 2C, // X(f<exp(_(|r—,z+|,7|z))\/fdﬁ'dv"’g 3R 4 2C,(27)?,
which proves the inequality (2.22).
Finally, integrating both sides of (2.14) on (0,t) one gets

g(t) — / ds / / log fCg(f, f) dvdF — 4 / / /R o IVa/f|? dvd7

R3xR3

///// h(f) dédi, dvdrds —4/\/// |V/f|? didids,
[0,t]x R®x R®

[0,]xR*xR3xR3x 5%

where
= // flog f(7,v,t) dvdr, (2.23a)
R3xR3
a? f(7, 0", 8) f(F+ a€, vy, s - .. o .
h(f) = 710g ((F 7 )) ((r - 1711 q))Y(n(f"),n(r +a€)) <ET—11>. (2.23b)

Letting A*(f) = maz{h(f),0}, A~(f) = maz{—h(f),0}, and using the fact z(log z —
logy) > z — y yields

/ / / / / f) déds, dvdids < /0 T(s) .

[0,¢]x R3x R*x R®x $2
Note that A = A* — 2™, and from (2.3), (2.20a) and (2.22) we get that there exists a

constant M; = Mq(My, My, M3, My, My ,T) such that

/ / / / / |d€dv1dvd7dt+4/\ / / / |Va/fI? didrdt < M.
[0,T]x R3x R3

[0,¢]x R®x R*x R3x 5%
(2.24)
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Chapter III. Sequential Stability and the Proof

This chapter will address a key result of the first part of the paper, i.e., the
sequential stability theorem. We first introduce the definition of a renormalized solu-
tion of the equation. Then we investigate some properties of the transport-diffusion

operator. Finally, we give and prove the sequential stability results (Theorem 3.1).

§3.1 Sequential Stability

Consider a sequence f, of nonnegative solutions of (DVE). We assume that
fo € W2°(R® x R™ x [0,00)), fu — 0 as (¥,7) — oo uniformly in ¢ € [0, 7] for all
T < oo, E* € W»*(R® x [0,00)), E® = 0 as r — 00, and there exists a constant Cr

independent of n such that

//Ra - J(L+ |71 + |51 + | log fa|) dodF < Cr, (3.1)
X
/ |EW(7,1)|*dF < Cr, (3.2)
R3

T
/ dt // (Vo /ol + [1og faCs(fr f)|} didF < Cr. (3.3)
0 R3xR3

Also note that assumptions (3.2) and (3.3) imply that for all R < oc there is a

constant C = C(T, R) such that

T
/ d7 / dt / Vs T - Bal < C(T, R), (3.4)
Bgr 0 R3

and
T
/ dt/dr"'(/ Vo fn- Enlz d{)')ll2 < Cr. (3.4b)
0
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In view of the preceding chapter, these bounds are automatically satisfied pro-
vided the basic physical identities (2.2), (2.3), (2.9) and (2.14) are justified and pro-
vided (3.1) and (3.2) hold at ¢ = 0. The justification of these and related identities
becomes necessary only when we address the question of the existence of a solution
of (DVE) and analyze sequences of approximate solutions. For the moment we shall
assume for simplicity that (3.1)-(3.4) hold. Because of (3.1) and (3.2) we may assume
by passing to a subsequence that f, converges weakly in L'(R™ x R" x [0, T]) to some
f for all T. and E, weakly in L2(R" x [0,T]) to E.

In order to deal with the term Cg(f. f), DiPerna and Lions in their treatment of
a Fokker-Planck-Boltzmann equation!!” introduce a new formulation which consisted
of renormalization by a suitable non-linear transformation of the dependent variable
f. Suppose f is a smooth nonnegative solution of (DVE)-(VP)-(IC). Then g5 =

Bs(f) = 3log(1 + &f) solves the following renormalized version of (DVE),

0 1
—_—s 1 - v- _ - =
atgo TV 7ds AAvng 1 T é-f

. 0
Ce(f,f)-E- Fa9 T A6V 395/°, (RDVE)

divsE = —n(7,1), (VP)
which motivates the following definition.

DEFINITION. A nonnegative element f of C([0,00), L'(R2 x R3)) is a renormalized
solution of (DVE)-(VP)-(IC) if for any § > 0, the composite function gs = Ps(f)
satisfies (RDVE) and f satisfies (VP)-(IC) in the sense of distributions, where 35(t) =

1 log(1 + 6t).

We state now the sequential stability theorem for the Diffusive Vlasov-Enskog
system. This result is a key ingredient in the construction of an existence theorem
for (DVE)-(VE).
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THEOREM 3.1. Under the assumptions (3.1)-(3.2)-(3.3). 1 < p < oc, T > 0, then
the sequence f,, converges in LP(0,T; L'(R2 x R2)) to a renormalized solution f which
satisfies (3.1)-(3.2) for a.e. t € (0,T) and (3.3)-(3.4). Furthermore, for every § > 0,

the renormalized interaction terms satisfv

{ C3(fs /)1 + 6/ sess € CU{0.50); L'(B2 x Br)), VR < o
CHU, [)(1+6f) senn € L}([0,00) x REx Bp), VR,T < oo

and gslseBr € L*((0,T) x R3; HY(Br)) (VR,T < o0).

§3.2 Properties of the Diffusive Transport Operator

To prove the theorem, we need some information about the partial diffusive

transport operator:

o
L,\=a—t+v-V;—/\Ag. (35)

LEMMA 3.1071 The operator Ly has a fundamental solution (Green’s function)

p(t, 7, 0;7,70") satisfying

(i)
sup //p(t,f", 57, 7) dvdi < C(T), VT < oc. (3.6)
t€(0.T], (M7")ER3 x R?
(ii)
p(t, 7,57, 7) < C(T,h) if t € [n, T), (7. 5), (7, 7) € B x R®, V0<h<T < oo,
(3.7)
(iii)

p(t, 7, U;7.0) dodr — 0 as R — oo,
[(7.7)I<M telh,T)|(F.5) 2R
YM < oo, Y0<h<T<oo. (3.8)
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Moreover, the Green’s function p(t,7, ;7 ,v0") Is given by

W31 L1, g b,y 3F=F)-(F47) 3(F-7)?
) ) —~= xp[——(=(T—&)*+~ - .
X000 (1) 5 g P sl ( (=T (547) ST A )
(3.9)
PROOF: Let us first show briefly here how to deduce fundamental solutions of

the operator L). Since the coefficients of the homogeneous equation depend on the
variable ¥, we can not obtain the general solution of the equation by using the con-
volution of the right hand side of the equation with the Green’s function. Instead, we

seek fundamental solutions of the equation

0
(E+J-V;—/\A,7)G(F,5’,t;ﬁ) = §(r,0 —d,t), (3.10)
where @ is a ( 3-d ) parameter. Taking the Fourier transform of (3.10) with respect
to 7, denoting by & the transformed variable and G the transformed function, then

(-g—t + 718 — MA;)G(d, T, t; @) = §(F — 4, 1).

Fourier transforming with respect to ¥, writing 5 and G as the transformed variable
and the function, respectively, we have
a . NA= F 4 —ia@-f

Using the method of characteristic for the PDE, we have

d A, . = o a e
—G(&F — 58,5) + (B - 58)'G(&, f - 5d,5) = e~ T F-sR) 5 (1),

G(&, Bt i) =

{ o=t (F4td) = (1P 488 T4 50?45
t<0

Therefore, by taking the inverse Fourier transformation about ,5 and @ , respectively,

we have for £ > 0,
. 3 o A .3
G(a,v,t;a) = e"\t‘f"‘ge“"“""/ et (7=0) g=l(tB?+128:5)
R3
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and

-, - 3/2 f"-“’ —1(,—+t(F+@)-d -\
v t
GlF.9,4:4) (4/\t7r) S ETe )
3vV3, 1 1.1, ., 3 3. oo 3,
= ——— ) ——r-(v+ —_T .
() e = (T =0 + ST+ @) = 7 (T4 D) + 57}

Noting the coeflicient of the operator L) is independent of the variables 7 and t. it is

easy to show from (3.9’) and the classical theory of PDE that (3.9) is the fundamental

solution of the operator L.

Now, integrating (3.9) over (7, v), then for each given (. u,t), we get

[ ararpie, a9

R3xR3
V3, 1 . 1.
3 (/\7Tt2) // dr dv exp(~—tz(b—u) )%
R3xR?
1.3 . o 3F-q -@F+a)  3(7-9)°
exp(——:\—t- To+a) - " + =)

3f 11 | 3
( ) /exp(—4/\tv)dv/ exp(—ﬁ)(h
3\/_1

=2y

AT
8 “Ar :

(4At7r)3/‘2( P2 =1, (3.11)

tb

which proves (3.6). (3.7) is obvious from (3.9), and (3.8) from the identity (3.11) and

Lebesgue’s Dominated Convergence Theorem. W

Now let A" be a bounded sequence in L'((0,T) x R* x R?) satisfying

T
sup/ // |h"| dFdvdt — 0 as R — o, (3.12)
n Jo JDmozr
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and g2 be a bounded sequence in L'(R® x R3) satisfying

sup // lgo| dFdt - 0 as R — oo. (3.13)
n FO|>R

We denote by g" the solution of Lyg" = k" in (0,7) x R® x R® with ¢"|;=0 = g3
Then, for each given ¢ € [0, cc), define the operator U : L'(R* x R?®) — L'(R® x R®)

by

(UR)(F,5,t) = / / p(t, 7. 5., D)h(§, 1) dfdi.
R3xR3

Using the definition of the fundamental solution, we write g" as

r U, t) = Ul(t go+/Ut—s)h"(s)ds—

(7,
/ // (s, @, d@)p(t — s,7,7; ¢, ¥) dgduds + //90 (¢, y)p(t, 7, 0, q, V) dgdi
(3.14)

R3xR3 R3xR?

fort € (0,T), 7,4 € (R® x R3.

LEMMA 3.2. The sequence g" is pre-compact in L*((0,T) x R?® x R3).

PROOF.: From the Dunford-Pettis property,[*¥ we only need to show

(a) for Borel sets A in (0,T) x R3timesR3,
sup/ lg" (¢, 7,v)| dFdidt — 0 as meas(A) — 0,
n Ja
(b) for any T > 0,

T
sup/ // drdvdt|g"(t.7,7)] = 0 as R — oo,
n Jo JEaizr

(c) 9.} C {9"} and g, converges a.e. on (0,T) x R® x R>.

To prove (a), let us consider

T t
/|g"|df'd{;’dt_<_/ // XA(t,ﬁf;')dtdFdz?// b (s, 4, D)[p(t — s,
4 o R3xR3 0R3xR3
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T
+/ // XA(t,f",t')')dtdFdU/ lgo(q- @) |p(t, 7, U; q, &) dgdi,
0

R3xR3 R3xR?

and thus (a) holds as soon as we have

sup qa(s.q,@) — 0, as meas|A| — 0,
s€[0,T),(§:0)eR3x R3

where q4(5.§,@) = [] dt [[rapo 475X A(E, 7, 5)p(t — 5,7, 5;§,T). But this is obvi-

ous from (3.9') and the absolute continuity of Lebesgue integral with respect to the

measure.
Next,
T
dtdrdv |g™(t. 7, 0)| <
I(F.8)>R
/ //\|“7)|>Rt7Ldtdfdv/ //Ih”sq, p(t — s, 7,7, ¢ u) d(q,u)ds
R3xR3 R3xR3
T t
+ [ ] ot roaras [ [[ 163 olpie.7,5,6. dgaas
° R3xR3 0 R3xR3
/ // X|Fo>r(t, 70 dtd7dv/ // |R" (s, @, @) | Xza)<myp(t — s, -+ ) dgduds
R3xR3 R3xR3
T t
+ / // X\7#>R(L. r, l?)dtdfd’ff/ / |h"™ (s, q, J)‘X(I(tf,i)IZM)p(t — s, ) dqduds
° R3xR3 Ogast
T t
+ / // XI(F.E)IZR(t- r. J)dtdf‘dﬁ/ / lgs (4, J)|X(|(¢ﬁ')|sM)p(t, -+ ) dqduds
° R3xR3 0R3xR3
/ // X|(7, {;)|>R(t r.u dtd’rdU// lgo (g, @)|X |q'1'£|>M)P( -+ ) dqduds
R3xR3 R3xR3
T T-s
- /o ds// d‘idg/o dtl// didi (2R (T, OXigaicmh™ (s, G Dp(t, ) + -+
R3xR® R*xR3
Decomposing fOT—s dt’ into :MT ) at’ + ng—s dt’, and using Lemma 3.1 and the
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condition (3.12)-(3.13), we have

/ // dtdrde |g"(t,7,0)| < Cé6+C sup // (t,7, v, q,w) drdv+
(G < M.t<(5T)

I(F.9)|2R (FDI2R
T
+ C/ underset|(q, )| > M — // dtdqda|h™| + C'/ |95 |dqd,
0 \(@8)2M
and (b) is proved.

(c) is proved by the following facts. First, without loss of generality, we may
assume that A™ converges strongly to some bounded measure x on [0,T] X R®> x R®
and g7 to some bounded measure A on R3 x R3. It follows from (3.6)-(3.7) that

RT3 T DT [[ 0,7,5,0,0) NG

R3xR3
Therefore we can assume g§ = 0 without loss of generality.

Let 6> 0 and d5 € C®(R), 0< ¢s < 1, ¢s = 0if s <6, b5 = 1 if s > 26. Set
T
O D) = / / / dsdqdith™(s, 7, @)6s(t — s)p(t — 5,7, 5, d, ©).
0

R3xR3
From (3.6)-(3.8) we have

47, 7) — / b(t — $)plt — 5,7, 3,0, @) dyu(s, €, ),
/ dt/ dFdTlg? — "
R3xR3
T t
<[ a [[aris [as [ [ g5, 211 - és(t = s)pit = 5,75, (7,)
0 R3xR3 0 R3xR3
/ dt // drda{/ // dsdqd@|h™ (s, 7, @)|p(t — s,7,7,§,0)}
R3xR3 ot ke
<2Ct / // |h™ (s, T, )| dsdgdi < C,
R3xR3

which proves (c). ®

The next lemma is quite important for our argument.
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LEMMA 3.3. In addition to (3.6)-(3.8) in Lemma 3.1, the fundamental solution of
L, satisfies also

(iv) for any Borel set A and VT < oo,

sup / df'dﬁds(fpz(t,f-’, 7,7, 7)) d7")/? < C(T, meas(A)) — 0
A

7eR3
as meas(A) — 0;

(v) for all M < oo and for all0 < h < T < oo,

sup / dF(/ pA(t, 77,7, %) di) 2 di — 0 as R — oo.
|7, 77| <M t€[h,T) [F1+|51>R

PROOF: Since

C 1l . oy 3e s 6 o 6
([ el =T 4 3G+ - T+ 9) - (7= ) + (- 7)a0)?
Ch 3 e 4w 2 1., 3F-7)..,\"
=L exp(——(F — 7 — t —Z (T4 =(7 - d
5 (a7 - 1) )<]QSexP( AR 7 )
_Gy Mgy, 3o 4o
=% (5) (oa t5")?),
11 (-7 —tv):, 1
,/atsﬂﬂ e 7= Cam
and

T
1
/C; t37dt=C(T)<OO, VT < oo,

(iv) follows from the absolute continuity of Lebesgue integral with respect to the

measure, and (v) from Lebesgue’s Dominated Convergence Theorem. W

Now, let 2" be a bounded sequence in L'((0,T] x RZ; L*(R3)) satisfying

T
sup/ dt/dF(/ |h" (7,7, t) d7)* - 0 as R — oo (3.15)
n Jo AR
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Consider

g (v, v t)—/ d9/ dr’ /du R™(s, 7, 0)p(t — 8,7, 0,7, 0, (3.14)
R3

Then from Lemma 3.3 and the boundedness of A™ we have, for each Borel set A C

(0,T) x R® x R®,

/ |G (7, 7, )| dvdFdt <

/ dt/ d7/ d’UYA t)/ dL/ d7 /d’l) Ihn 77—’, )(t'—s’ﬂﬁaf’)ﬁ”)
R3 R3
/ a [ ar [ @ / ds [ ar( [ amiis, o)
R3 R3 R3
(/ t—S -ol-; —4, 1/2

< C(T, meas(A)) — 0 as meas(A) — 0.

Similarly,

T
/ dt / 47 d5 |5 (7, 5,1)| <
AR

/dt/ d7dvx(m+m>m/ d'*/fh /lh" 7, TV X i izan dT)

/ 2t = 5,70, 7, T )X(m 4o 1<n) @5)

/dt/ drduX ﬂ+|,7]>R)/O ds /df"(/Iﬁn(s,71,1—)4)|2X(|,:1|+|17|5M)d17)1/2
/ ( 977_‘76,7-'717)Y(| |+|17'|SM)dﬁd)1/2

-0 as R — oc.

Therefore, using the same argument as in the proof of Lemma 3.2 we have the fol-

lowing lemma.
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LEMMA 3.4. Suppose the sequences {h™}, {h"} and {g2} satisfy (3.12), (3.15) and

(3.13) respectively. Then the set of solutions {g"} of the equations

Lyg"=h"+h" in (0.T)x R® x R,

9" |t=0 = 95,

is pre-compact in L'((0,T) x B> x R®).

§3.3 Proof of the Sequential Stability Theorem

Now let us start the

PrOOF OF THEOREM 3.1.: We will divide this proof into four steps. In the first step.
we show that {CEg(f,. f,)} forms a bounded set in L'([0,T] x R® x R®). Then using
assumption (3.3) and Lemma 3.4, we prove in the second step that {g}} is pre-compact
in L1([0.7] x R’ x R?). Supposing, passing into a subsequence if necessary, that
g = Bs(fn) = 35(f) = g5 , we will in step 3 demonstrate that Cg(f,, fo)(1+6 ()}
Ce(f, /)(1+6f) " in L. The fourth step will address how to pass to the limit in the
(RDVE) such that f is the renormalized solution of the equations.
Step 1 We first remark that Cg(fn, fu)(1 +6f.)"! is bounded in

L=(0,T: L (R x RY)). In fact, letting Ya(n(7), n(F+ ad)) = Y (na(7,t), na(7 + aé, 1)).

then

CE(fn,fu)(l +5fn =
1+6fn //mm 7+ aé, 0y, 1) Yo (n(7), n(F + ad)) < &7 — 7y > déd,

f(7+ a€ vy, ) Yo (n(7), n(7 +aé’)) (2+v2+vf)d€dz71.

R3x 52
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Therefore,

II( £ fru n l+5fn ”L‘(’?"’xﬂﬂ) ~

n 3 -‘t 2 : r €, U; ; U €dv dvdr
= _/// 1 -{j, - )t (2+v? +0]) f(F + a& 01, t) Yo (n(F). n(7 + a€)) dedv, dvdr
n 7 , U

<L / [ el [+ o)1 + a5, (7)) (7 + 08 5+

r DLt ;
+ /3 i/(:(;’f>t) (1+0%)J(7 + a& 31, (7 + a8, ) Ya(n(7), n(7 + ad)) d5)

27&21\/[y{// dFdoy (1 + v3) f(7. 5, 1) + /f dFdi(1 + v?) f(7,5.)}
(T)

IN

(3.16)

(A

e, {Cg(fo, fu)(1 +68£,)71} is bounded in L=(0,T; L'(R2 x R2)).
Now let us estimate the norm of CF(fn, fn). First, one has,PI®8 for each

M >0,

C"" (frs fn) <Ma® // (T — a€)) fu(F, U, 1) ful 7 — a€, 07,1)
R3x 5?2

o fu, fn), (3.17)

X < €0 —10; > dedvy + ——
lg

where

f(F 0. 8) f(F + a€ 03, 8)
x“ng(“,J,s)f( prEy )|<ev v > dédvy

Then, define h(f) by (2.23b). Using equality (2.23a), inequality (2.24) and the fact
that
/// a(f, f) dvdr”dL ///// 2[h*(f) + k™ (f)] d€dv,dvdrds,
[0,T]xR3x R3
[0,t]x R3x R3x R3x §%
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it can be concluded that

sup [[a(fu. fu)llovqorxrexry) < C(T) < 20,

n

and

sup [|C3 (fu, fu)llz: < C'(T) < cx. (3.18)

n

Step 2 We want to get the pre-compactness of {¢g7}. In step 1 we showed that
{Lyg?} = {h?+E-V3gp} with {h?} bounded in L*((0,T) x R*x R®), and {E,-V3g}
bounded in L'((0,T) x R% L* R3)) by the assumption. In order to get the pre-
compactness of {gi'} by using Lemma 3.4. we consider the problem in the following
way. For any cut-off function o(7, %) in D(R® x R3), with supp(¢) C {Br x Br} for

some R < oo, we observe that
n n n= 8 : n 3 n n
L\(¢g5) = #(Lags) + 950 - %@ — Mgs Asd + 2V 0 Viggg) = hi.

Then L,(¢g}) is bounded in L'((0,T") x R3x R*)&¢ L1([0, T] x R%; L*(R%)) and Lemma
3.4 shows that {¢g}} is pre-compact.

Next, choose ¢,, € D(R*x R?) such that supp(¢m) € Bri1 X Bms1, 0 < 0 < 1,
and ¢, |B,xB,, = 1. The above argument implies that {o,,97} is pre-compact in
LY((0,T) x R® x R3) for each positive integer m. Using the diagonal method we can
choose a subsequence of {g7}, denoted still by {g7} for simplicity, such that there is
a function g, gf — g in L'((0,T) x By, x B.,) for each m. Then classical measure
theory shows that g§'|(0,7)xBmxBm = 9/(0.7)xBmxB. i0 the topology of convergence in

measure. Fatou’s lemma and the boundedness condition (3.1) imply

/ gdrdidt < liminf / grdididt < C(T) < oo (3.19)
(0,T)XBm X Bm (0,T)X B X Bm

for C(T) independent of m, and

/ lg — g2 |dFdvdt =
(0,T)XR3x R3
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/ lg — 95|d7'dvdt+/ lg — g5 |drdvdt — 0.
(0.TYXBmXBm (0.T)XBmXxBm—(0,T)XBmXxBm

In other words, g € L((0,T)x R®*x R®) and g — g in L'((0,T) x R*x R®). Therefore.
gy converges also to g in measure. That is, meas(lgl — g| > €) —,, 0 for any € > 0.
Since f* = 3[ exp(ég}) — 1], f* —, f = }[exp(6f) — 1], f* — f in measure for any
set with finite measure. Next, we recall f* — f weakly in L'((0,7) x R® x R®).
Combining this information with the convergence in measure, we conclude that f* —
fin LY((0,T) x R x R®) by using Schur’s theorem (see, for instance. [50]). Therefore.
using the L*(0,T; L'(R*® x R?)) boundedness of f™ implied by (3.1), it follows that
f™ converges in LP(0,T; L'(R® x R®)) to f for all 1 < p < oo and for all T < cc.
Hence, g} converges in LP(0,T; L'(R?> X R?)) to g5 = 35(f) for all 1 < p < oo and for
all T < oc.

Step 3 Now we want to show that Cg(f™, f*)(1 4+ §f™)~! converges in L' to

Ce(f, /(1 +6f)71, and that CE(f. f)(1+ &f)~' € L. In fact, we shall show that
Ce(f, )1 +6f)7" € L=(0,T; L'(R® x R?)),
CES N +6f)" e LY((0,T) x R® x R?),

and that

Ce(/* M +6f)7 =, C5(f, /(1 +68)7 in LP(0,T;LY),

Vp < oo, T < o0, (3.20a)
CE(fS MA+6M)T = CELH+6)™ in LY VT <oco  (3.20b)

The convergence (3.20a) is easy to prove since

Ce(f* M+ = (1 +6f)7L(fM), (3.21)
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L) = // P+ a8 F )Y (n(F), n(F + ad)) < &5 — 6y > déddy.  (3.22)
R3xS$?%

The argument used in step 2 and the continuity of Y ensure that Y (n, (%), n,(7+ a€))
converges in measure to Y (n(r).n{r"+ a€)) and the argument in step 1 shows that we
can use the boundedness condition (2.19) and Lebesgue’s theorem to get (3.20a).

For (3.20b), it is sufficient to show /™ = CE(/™, f*)(1 + 6/™)~" converges in
measure to [ = CE(f, f)(14+6f)~! on every set with finite measure. In fact, supposing
local convergence in measure, we observe that the sequence /™ is bounded in L' and
satisfies (cf. (3.17))

0 S I S MR + 1 ,6”,
log K

where A" > 0 converges in L' while e® > 0 remain bounded in L! (e.g., see the proof
of lemma 3.5). Therefore I™ is weakly pre-compact in L!. The strong convergence of
I™ follows from Schur’s theorem.?l

To prove the convergence in measure of I™ to I, we notice that (1 + §f™)~!
converges in measure to (1 + §f)~!. Therefore what we need is to show CE(f", f*)
converges is measure on each set with finite measure to CE(f, f). This is easy if
one notices that our bounded condition (2.19) makes the Y regular in the sense of

Polewczak ( see [37,p469] ), and we omit the detailed proof.

Step 4 Now we consider how to pass to the limit in (RDVE). Comparing the
right side of the renormalized equation with the kinetic equation (cf. [37], [38]), we
should consider the weak convergence of both [Vzg}|* and E- Vg2, Since Vzg}

converges weakly in L? to Vgs, we have

LEMMA 3.5. There exists a bounded nonnegative measure u) on (0,T) x R® x R®
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such that

Vg2 | = [Vags|> + 1V in D'((0,T) x R® x R?). (3.23)

In fact, for each n, define the measure g, on (0,7) x R® x R® by
dun (7,0, t) = |V g |* drdidt.

Then the weak convergence of Vzg? in L* and the Uniform Boundedness Theorem
imply that {g,} C BY(X), the space of bounded variation measures on X' = (0,T) x
R®x R®, and u, is a bounded sequence in the space. X is obviously a locally compact
Hausdorff space. Using the Riesz-Kakutani theorem,[44P131-153}[41.p138-142] BY( X js
congruent (isometrically isomorphic) to the conjugate Cj;(X) of the space Co(X).
Now using the Alaoglu’s Theorem, 4?1 {4 1 is w* pre-compact in BY(X). Since

Co(X) is separable, there exists u(!) € BV(X) and {un'} C {gn} such that

/ fd/l,n/ — ! / fdl/ +/ fd/i(l)
X X X

for each f € Co(X), where the measure v is given by dv = | f|*drdvdt, which in turn

implies that
IVags |2 = [Vags)? + 1V in D'((0,T) x B® x R®).

Furthermore, it follows from Fatou’s lemma that p is a nonnegative measure. Then
(3.23) is easily obtained by using the weak convergence of Vgj.
Using the same argument, we conclude, passing to a subsequence if necessary,

that there exists a locally bounded (may change sign) measure u(?) such that
—E™ Vgl =0 —E -Vags+u? in D((0,T) x R® x R®)

T A
and [ IR;(fR% l2)|*)*? bounded.
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Now we may pass to the limit in (RDVE) in the sense of distributions and

deduce, using the above convergence, that gs = Js(f) solves

d , =
dtgé +v- V;ga /\A;;gg = )\6ng9¢|2 - F. V’{,'go‘ +u in D/((O T) X R3 X R3), (324)

diveE = —n(F,t) in D'((0,T) x R%). (3.25)

where = A — ). Of course. f and £ satisfv (3.1)-(3.4).
To get (3.25) from the fact that divr-E"n = —n,(7,t) is easy. In fact, since Em

is weakly pre-compact in L2, we have, passing to a subsequence if necessary,

lim E™(7,t) »* E(F,t) in L%

n—o0o

and for all ¥ € D((0,T) x R?),

@//wv CEMdrdt = —11111//E" Va) — —-//E’ v,w—//w E

Vi E* = Vi E in D(0,T)x R).

On the other hand, from the weak pre-compactness of f* (which comes from the

bounded condition (3.1)B7:8]) we have

n(f*) = /f" dv —, fdv =n(f) in D'(0,T)x R®.

Then (3.25) follows from the uniqueness of the limit of distributions.??

Now we show that the measure p on the right hand side of (3.24) vanishes. The
formal argument in Chapter II. if it could be justified, hints that x4 should be zero.
We get the conclusion by considering a modified version of the formal proof.

Let ®gp(t) = exp O(t A R) = exp[d min{t, R}], ¥4 a(t) fo ®yr(s)ds. Multiply
the equation (RDVE) by ®4r(gs), with 0 < § < 6, R > 0 fixed. Multiplying by
#(r,t) € D'((0,T) x R®) we have
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(7, t)Por( gy )5?95 + $(F. 1) Por(g2)T - Vgl — ¢(7, 1) Dpr(g)) ——— i Ck
— A, 1)Baragy — ASo(7, 1)0arl Vagh (f, f*) + (7, t)or(g}) E" - Vigi = 0.
(3.26)
Since

8 o} 0
() 0un(0}) 5705 = (67, ) Wor(}) — Wor(g3)559(7 1),

P(7, 1) Par(g5 )V - Virgy = dive(S(7, 1) Vor(g5)v) — Yor(gs )V - V(7. 1),

o(7.t)®or(95 ) Aag; = B(7,t)Psr(g5)divy - Vizgs =

= divy - (¢(7,1)®sr(g5) Vags) — 08(F, t)®or(95) X (gp<r) V305 7,

and

E™ - Vg2 ®or(g7)9(F 1) = QorE™ - VWer(g7) = divs(d(7,t)Ur(gl) E™).

Substituting all of these equalities into (3.26), we get

%(Gi(F.t)‘I’eR(g?)) \I’OR(.‘]&)da o(7,t) + dive( (7, t) Vgr(g5)V)

— Wor(gs )V~ Vrg(7, t) — Adivs(@(7, 1) Por(g5 ) Vigs)
+ A0(7, ) ®or(95) X (gn<r) | V395 | — A60(F,1)®sr (g5 )| Viags |

— ¢(7,1)®gr Ce(f*, ™+ diVﬁ(¢(F’t)WaR(9?)En) =0

1
L+ofr (3.27)

Integrating (3.27) over (0,T) x R® x R3, at least formally we get

T ,
- [t [[ drastigor.o+ - Veb(r0) Voniap)
R3xR3
1
14+6f

o

+ o(T, t)

Ce(f", f")®er(g5)}
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=) / dt 6(7 1) // & 45 6]V 107 — 6|9 10 PX o<y ol al)

R3xR3

(3.28)
The correctness of this integration by parts will be shown later.
Now observe that the right-hand side of (3.28) is bounded by

T
Asup |6(7, £)[{(6 — 8) / dt / 47 di |V 502 2 ®or(gl )+
0

R3xR3

T
ges” / dt / f 4 45 |V 52 PO orlal X arsr -
0

R*xR?
Since Vg = V(3 log(1 +8f™) = (1+6f™)7"! and ®er(g}) = exp(0(; log(1 4+ 6/™) A
R) < (1+ §f™)%, we can bound the first integral by

/ont // 4 di |V f"*(1+8f")"2(1+ 6 )¢ 5%/0Tdt // S

R3xR? R3xR3
Also, since (1 + ‘an)|g">R 2 QGR(95)|9">R = &R, (1+6f")" 1|g">R = —6R|g,§‘_>_R’
(L+68f)gpsr = Por(gl)lgp>r = €F, and (14 68f")ppsr < e F|por, we

bound the second integral by
T ; 1 (T .
/ dt // dFds |Vaf" 2 (1 + 6f™) te™R < e"m;s-/ dt / drdv |Vaf*2(f™)!
° R*xR3 ° R3xR?

In conclusion, using (3.3) we deduce

T
0
,/ dt/ dng(a‘ﬁ(”jt)+5'VF¢(F,1))‘I’93(9?)
0
R3xR?

+/ dmrt)// 4 dv -
0

R3xR3
< Csup |¢(7, t)[[(6 — 8) + =97

CE(f" Y ®or(95)]

for some constant C' > 0 independent of n, 8, R. Passing to the limit, we deduce

| / @ [[ a7 + 5 Vebl7 ) Von(ss)

R3xR3
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C/E(f f1®3r(9s)]

/ dt o(7. ?“// d7dv
0

R3xR3
< Csup [¢(7,8)[[(6 = ) + eU=9F] (3.29)

Next. multiplying equation (3.24) by o(7.t)®yr(gs) and integrating over 10, T') x

R?® x R3, we deduce exactly as before

/ dt // d7 d’U 7 t) + U- V;é(f,t))\l!m(gj)

R3xR3
_/ dt ¢(F // dr dv Ce(f, f)®sr(gs)

0 5f

R3xR3
T . .
=\ / dt ¢(7, t) / / dr d5 [V gs|* — 01V a95|* X (se<r) | Por(95)
0
R3xR3

- , o ‘ [ d :‘7 —’7
- /() 87, 1)®srlgs) du( (7, 7,1))

T B
|/0 dt // df’dﬁ'(%qﬁ(ﬁt)+27~VF¢(F¢))‘I’93(96)

R3xR3

+/ dt (7, 1) // dvdv
0

R3x RS

> Cy sup [$(7,£)[[(6 — 0) + e¥DR] + | / I/ (7, £)®ar(gs) di
(0.T)xR3x R®

and

CE(f, ) ®or(ys)

(3.30)
for some (nonpositive) constant C; independent of § and R. Combining the inequality

with (3.29) we deduce

‘/ / /(O,T)xmx - (7, 1) ®or(gs) dp((F, v, t))

for every ¢(7,t) € D((0,T) x R®). We get, by letting R — >c and then § — §, that

< C(sup |¢(7,1)])[(6—8)+€~F (3.31)

‘ I 8(7,£)@anlgs) dus(F a,m’ —0. V(1) e D(0,T) x &) (331)
(0,T)xR3x R®
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Since ®yr(gs) > 1, we conclude by standard distribution theory that the measure

u((7,7.t)) vanishes if we can prove further Vi € D(R3),

/ / / POurig) dul(F.5.6) =0, WheDR). (332
(0,TYxR3x R3

We use the same trick as before to prove (3.32). Since

n (G a n a n -

V®yr(9s )ags = a(‘l’m(g& ¥),

$@or(95)7 - Vegy = dive(or(g7)09),
D ®or(g7)Asgy = Ns(DWor(g3)) — 2®0r(g}) Vgt - Vith
— Usr(g7)Asth — 0 ®or(g}) X (gp<r) | Vagi |
and
$Ror(93)E" - Vagy = divs($Wor(g}) E") — ™ - Wor(9}) Vi,

multiplying (RDVE) by v € D(R2) and ®4r(g?), integrating over (0,T) x R3 x R3,

we deduce
2\ // dt dr dv ®er(97)Visgs - ~1/) + A /// dt dr dv\IlgRA¢
(0,T)xR3x R? (0,T)xR3x R3
// dt d* dir{®or(gy) ——= T 6fn Ce(f™ ™) + Yor(g2)E™ - Vb }
(0,T)xR3x R3
=) / / / dt dF AT D[5®er(92) [ Vogh | — 0®ar(9}) X sp<r)| Vgt .
(0,T)xR3xR3 (3-28 )

Noticing the similarity between (3.28) and (3.28') and remembering the weak pre-
compactness of {E™(7,t)} in L*((0,T) x R3), we deduce (3.32) by using the same
argument as above. Therefore, u vanishes in D'((0,T) x R® x R3).

Finally, we have to justify the nonlinear multiplication by ®4z and the resulting
integration by parts, (3.27), (3.28), and so on. This can be checked by the convolution
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regularization. In fact, let p, denote a regularizing kernel p in ((7, U, 1)),

1 -
pc=7p(;), pEDR), p=0, /p=1-

€

We check directly that

Pe * g5 = ///gs 70— 0t — ) p (7T t)dt AT dr

satisfies

4 - ]
dtgs + v Vigs — AAzg5+ £ - Vg5 =

={ Ce(f, )+ M|V 3gsl*} * pe + 1 % pe + P1c + 72 (3.33)

1+6f
in (@, T)x R3x R?, where a, € (0,T), o, = 0ase — 0, r;, = - Vg5 —(T-Vg5) *pe,
T2 = E- Vg5 — (E - V395) * pe.

Notice that

- /dt’ 4T & (7" — 5)gs(7, 7, 8') - Vpo(F = 7,5 — 7.t — ') = g x KUV,
with KV = e "KM (-/¢), KD = —F. VA((F,5,t)). Hence
1e = (/K(l))gg =0 in L'
Similarly, ry = gs * K, with K = e "TK3(-/¢), K@ = —E(7,1) - Vsp((7, 7, 1)).
Hence
Ty = Tl + T2e —r (/(K(” +K®))gs =0 in L' @ LY[0,T] x R; L*(R%)).

Then for ¢(7,t) € D((0,T) x R®), ¥ € D(R?), ||#||lc» = 1, multiplying equation
(3.33) by 6®sr(g5) and 1 ®yr(gs) respectively, observing ®pr(gs) > 1, we deduce that
T 9
- [ [[ drastigoe + 5 9solr0) Vantof)+
0]
R3xR?

46



. p 1
+ o7 t) Dor(g5) {1 HCE(f, HY*p}
> A / 6(7. £)[6@or(95)|Vags|” * pc — [Vag5|* Vs®or(g5)]

+ /é(ﬁt)q’eﬁ(gé)# * P — €eR(SUP lé(ﬁtm[”"h”L* + Hf‘zc||L1([0,T]xRi;L2(R§))]
(3.34a)

and

. . . 1 _
20 [ Gonlg5) Vg Vo + 3 [Wandi = [ 0onlgi) 57 Celf N} +
—/‘I’oR(gE)E"Vv'ﬁ
> /O(F,t)(pen(ﬂé)# * pe — €F(sup [o(F. ) )|Irscllzr + I72ellzr o.11x R2:L2(R3Y)]
+ 0 [ B 0[60un()Vagil?  p. — ViV obon(50)]- (3.34b)
Let ¢ — 0. Then we may argue that the left sides of both (3.34a) and (3.34b) are

bounded below and conclude that g vanishes by the argument as before, provided

that we have shown the following inequalities:

|V,7g5j2 S_ lvﬁfl/ZIZ a.e., ‘V{;(gg A B),2 S -58—5R|v;;f1/2'2 a.e.

SRS

Formally, these bounds are obvious if we remember that g5 = G5(f) = %log(l +6f)
and f > 0. Using a simple approximation argument, say, taking f,. = p. * (f +
1/nexp[—n(r?+v?)]) and observing that f, satisfies the above inequalities and f, —
f, we have justified these inequalities.

Now we have proved that gs solves the (RDVE) and that (1 + 6§ ™) *Cg(f™, f)
converges to (1 + 6f)"'Cg(f, f) in L'((0,T) x R* x R®) for all T < oo. The next
step is to show that both u(!) and u(® vanish. As the matter of fact, we know that
0=p = uM—u® and pgM = 6143 > 0. Integrating (RDVE) over (0,T) x R®x R?
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allows us. at least formally (and rigorously by a similar proof as above), to deduce

that

1 N 1 » ; |
/(TafnCE(f“-f") ~ T+ A5/uvu~g;| ~ |Vagsl?) = 0.

Letting n — oo, we may see that

/ ol / Vsgs]2. (3.35)

and p® = Ay(1) = 0. Also

/ dt// E™. Vg5 dudr —>/ dt// E V395 dvdr, VR < oo
R3x B (7) R3xBR(#

(3.36")

and

T T
/dt/ dF( |E“".vu~gg|2da)1/2_>/ dt/ di( | |E - Vigs|td)2. (3.36)
0 R3 R3 0 R3 R3

This completes the proof of the theorem. m

COROLLARY. Using the above notation,

gs— f in L®(0.T7);LY(R*x R®) as &—0,.

In fact, from the standard results on weak convergence, (3.35) implies Vg3
converges to Vzgs in L*((0,T) x R® x R®) and |V;g7|* converges to |Vzgs|* in
L'((0,T) x R® x R?). Also, E™- Vg7 converges in L'((0,T) x R® x Bg(%)), R < o0
and in L'((0,T) x R3: L*(R3(%))) to £ - Vggs. In particular, Lyg} converges in
LY((0,T)x R®*x R?)& L'((0,T) x R%; L*(R3)) to Lygs in the sense of Lemma 3.4. The
standard results of Lemma 3.4 show that g5 € C([0,T]; L'(R® x R®)) for all § > 0.
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From this fact, it is straightforward to deduce f € C([0,T]; L'(R* x R?)): one just

needs to observe that for a.e. t € [0,7],

/ / 47 d5 | (7, 5,1)) — g5((7, 5, )] <

R3xR?

< e // df'dﬁf((v",ﬁ',t))—{-?/ drdvf((7,7,t))X(s>R)»

R3xR3 R3xR3
where R > 0, and €5 = supg gy |1 = f5(s)s™!| — 0 as § — 04. Because of (3.1). this

implies that gs — f in L*°((0,T); L'(R® x R®)) as § — 0,.

CoOROLLARY. In theorem 3.1, if we assume further that || fuli=0o — foll!(rRexR2) — 0
for some f, € L', then the renormalized solution satisfies also the initial condition

fli=o = fo. In other words, f is a renormalized solution of (DVE)-(VP)-(IC).
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Chapter IV. Existence Of Approximate Solutions

In this chapter, we construct positive solutions for the approximate equations.
The strategy of the construction is as follows. First, we find the semigroup U 4(¢)
generated by the diffusive operator 4 : Af = —v - V:f + AA;, and the evolution
system Upg(t,s) determined by the time-dependent generators B(t): B(t)f(7,v,t) =
-E. Vif — L(7,0,t)f. Then we show that the linear evolution transport operators
C(t) = A+ B(t) determine a positive evolution system U(t, s) by using Kato’s theorem
and the Trotter product formula. Observing that the approximate Enskog collision
terms C’gh are Lipschitz functions, we conclude that the approximate equations have
positive solutions for each n, by a contraction type fixed point argument. Finally,
at the end of this chapter, we estimate some bounds related to the solutions of the

equations.

§4.1 Semigroups Generated By The Diffusive Operator

Let X = LP(R® x R3) (1 < p < 00) or Coo(R3 x R®). Define the diffusive

transport operator A : D(A)(C X) — X as the closure of the operator
Af(F,0) = =0 Vif + Msf = Ao f + Aef (A)

on WP=(R3 x R3) (for 1 < p < 00) and S(R® x R?) (for Co(R? x R3)), respectively.
Since Ay is an infinitesimal generator of a co-semigroup U(t) BB A (= AA;)
is dissipative both in L” and C., (see [35] or [43, §X.8]), and D(A;) C D(A,), the
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operator A generates a co-semigroup U4(t) in X. Using the relationship of the co-
semigroup and its infinitesimal generator and the fundamental solution of the operator
Ly given in (3.9), we deduce that the semigroup generated by A is given by

72 3 3(F—q)- (F+1) | 3(F—q)°
R e e

4
R3xR3

3f

8

(—=)?f(q, @) dfdE,  t> 0. (4.1)

/\ﬂ'tz

Using the fact, given by (3.11), that [[ p(¢,7,0:q, @) drdd = 1 for each (q.u.t) €

R®*x R*x R., (4.1) and the Fubini Theorem, we have

At oy = [[ dris [[ aqazpte, 5. 0,2

~ [[ stagaz [ [ e, 6.7 ara

- [[ st@.0aqaz,

and conclude that U 4(2) is a contraction semigroup in L'. The Young’s inequality [*l
shows that ||U(t)||eec < 1. Then classical LP-interpolation theory (e.g., Riesz-Thorin
theorem) implies U 4(¢) is a contraction semigroup on L? (1 < p < o0) and C,. That
U.(t) given by (4.1) does define a semigroup can also be justified directly by using

the following integration:

| = 3\/— (t +2tz //d‘"d
8 w3t

. 1 .
_ _ IIZ /_ "2 I 2

x exp| ,\t,( ) - ,\tl( v+ I\t +t2)(v v)1x
3 "\2 3 [ mn2 1 ! 2

X exp| 4/\1‘)(0+v) 4/\t1(v +v") +4/\(t1+t3)(v + v)%]x

3 -/ - e/ 3 (= 3
xexp[:\t—g(r—r )-(v+v')+/\—t%(r - (v + V") - )\(t1+t2)2("—'f")-(v + 7))
3 -~ = 3 ~d ! 3 - :
X exp[—)‘_tg(r - )2 - /\_t:;(’ )2 + /\(tl + t2)3(7 - 7_")2]1



which can be checked by elementary calculation.
Let 7, be the cone of non-negative functions in X. As seen from (4.1), we also

have

§4.2 The Vlasov-Enskog Operator

Suppose E(7,t) is a (bounded) continuous function on R* x [0,T] and L(7,7,t)
a non-negative measurable function on R* x R® x [0,T]. Define the time-dependent

Vlasov-Enskog operator B(t) : D(B(t))(C X) — X by

—

B(t)f(r,0,t) = —E(7,t) - Vsf(F,v,t) — L(7,0,t) f(F,0,1), (B)

D(B(t) = {f € X; lim f(7,7,t) =0, {Vsf] € X}.

It is not difficult to prove that, for each given s € [0, oc), the operator B(s) satisfies
the Hille-Phillips-Yosida condition and generates a co-semigroup U, 5(t). In par-
ticular, {B(t)} itself satisfies the Kato’s conditions!®® P-#34381 [43] 3] for generating a
two-parameter contractive evolution operator‘[l3] (evolution system,[35] integration of
evolution equation,[®® propagatort*d) Usg(t, s). That is, there exists a two-parameter
family of bounded operators Ug(?,s) (0 < s <t < oo) on X, such that

(1) Ug(s,s) =1, Ug(t,r)Ug(r,s) = Ug(t,s) for 0 <s<r <t < oo;

(2) (t,s) — Ug(t,s) is strongly continuous for 0 < s < t < oo;

(3) Vfo € D(B(0)), the equation

% =B()f(t), f(0)=fo, f(t) € D(B(1)) (4.3)

is solved by f(t) = Ug(t,0)fo which satisfies the estimate || f(¢)|| < || fol|-
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In fact, checking directly. Ug(t, s) is given by

F(F0,t) = (Us(t, s)g) (7. F.t) =

t ot t
=exp{—/ L(F’.E"—/ E(F'.r)dr,tl)dt,}g(ﬁz?—/ E(r.~idr,s). geX
; g ; (4.4)

and |[f(t)]lzr < |lgllzrs If(@E)llce < |I9llcs- Using the interpolation theory again we
conclude that Upg(t. s) is a contractive evolution operator in L?, 1 < p < x. Note

that (4.4) also implies

Usp(t,s)7T. € 7., 0<s<t<ex. (4.5)

§4.3 Solutions of The Linear Homogeneous Equation

Let X be a Banach space, A: D(A) — X and B(t) : D(Bit)) — X, (t € [0.T]),
be dissipative operators. Suppose D(A) C D(B(t)) for each t. Define the linear
evolution operator C(t) : D(C(¢)) (2 D(A)N D(B(t)) = D(41 = D(C(0))) — X as
the closure of the addition of A and B(t) : C(t) = A+ B(t1. The C(t) are linear
closed operators with D(C(t)) independent of ¢t and dense in .\'. Assume that
(H1) For every A > 0 and ¢, 0 < ¢t < T, the resolvent (A — C(¢))™! exists as an

operator belonging to L(X..X) such that
(AL =CE)Y < AP for A >0 (4.6)

(H2) For each z € X. (¢t —s) Y (C(t)C(s)~" — I)r is bounded and uniformly strongly
continuous in t and s, ¢ # s. and s — limg_ kC(8)C(t — 1/k)z = K(t)r exists
uniformly in t(€ [0,T]) so that X(t) € L(X, X) is strongly continuous in t.
With above assumptions, we have the following



KATO’S THEOREM. [0P433  For any positive integer k and 0 < s < t < T, define

the operator Ug(t,s) € L(X, X) by

U(t,s) = exp((t — s)C{ZT)) for T <
Uk(t,r) = U(t, s)Ui(s.7) for 0<r<

Then, forevery z € X and 0 < s <t < T, s — limy_o Ui(t,s)z = Ue(t, s)z exists
uniformly in t and s. Moreover, for y € D(C(0)), the Cauchy problem

dz(t)

ke C(t)z(t), z(0) =y for z(t) € D(C(t)). 0 <t < T, ()

is solved by x(t) = Uc(t,0)y which satisfies the estimate ||z(t)|| < ||ly(?)]|.

The following theorem tell us how to “compute” Ue¢ in terms of Uy and Usp.

THE TROTTER PRroDUCT ForMULA. 432248 et A and B be the generators of
contraction semigroups in X. Suppose that the closure of (A+ B)|p(a)np(8) generates

a contraction semigroup on X. Then for all ¢ € X,

e—-tcé — e-t(.A-\\—B)cb — lim (e-—tA/ne—tB/1L)n¢' (48)

n—00
Substituting (4.8) into (4.7) for each k, and using an argument similar to that
in the proof of Kato’s theorem, we have
THEOREM 4.1. ¥l Under the assumptions of (H1) and (H2), then the evolution

operators U¢(t, s), generated by C(t), are given by

U(t,s; E, L) = Uc(t,s) = (€)

and Uc(t,s) solves the evolution equation (C'). In addition, if U7, C T, and

Usp(t,s)T,. C Ty, then Ue(t,s)T, C 7T,.

Now let us consider the operators A given by (A) and B(¢t) by (B). We have
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THEOREM 4.2. Suppose that E(7,t) is continuous in ¥ and L(7,7,t) is non-negative
measurable on (0,T) x R* x R3. Then there exists a system of evolution operators
Uc(t,s) such that for each f, € D(A) and s € (0,7, the homogeneous evolution

equation

{ 2 f(F T ) +T - Vaf = AAf +E-Vsf+Lf =0, 0<s<t<T (HE)

lime_g+ || f(t) = follx =0

has a unique solution f(t) = Uc(t,0)fo with || f(¢)|| < || fol|- Furthermore, f(r,v,t) >

0if fo > 0. If L(7,v.t) is assumed bounded but not necessarily positive. the above is

still valid, except that the estimation || f(t)|| < || fo|| mav fail.

We remark that Theorem 4.2 is not a direct consequence of the Kato's theorem.

If inf L(7, 0, t) = 0, we may apply the theorem to the solution of

d t)—(A+B(@)+g(t) =0, lim f(t) = fo

E t—0+

and deduce that ||g(?)|lx < e7'||follx. Then we justify that f(t) = e’g(t) is the

solution of (HE) with |[f(¢)|| < || fo]l- ™

§4.4 The Solution of Approximate Equations

Let us consider the solution of the following non-linear equation

{ GIE50+T-Vof —AAaf + B0Vl =Call )
linlt_.0+ f(,,'.” ﬁ., t) = fo(F, E).
where
B =L / Vet / 4 f (7, 5,) (AE2)
b - 47‘_ 1‘|7—:_ 7-'7| b b b
éE(fa f)(r’ 17, t)



= // [YV(n(F,t), n(7 — a& t))np(, 51) f (7, T, t) f (7 — a&, 0}, )~
Rx5?%
V(n(F, 8), n(F + ag, 1) na(F. 50) f(F, 5,0 f(F + a&. 50, 8)] < &5 — 51 > dédi,

_ (o0, (AE3)

B = {(Z.01); |9]*+|t1]* < k} for some positive constant k and n(r,t) = [5 f(F, 7, 1)dT.

We assume

(Al) fo € CP(R’ x R®)N L (R® x R?);

(A2) there exists a bounded function Y satisfying ¥ (o, 7) = Y(r,0), sup, , 7Y (r,0)
< My < 00, and Y(n(R),n(R)) = (1 + en(7)) 11 + en()) Y (n(71), n(72))
for some € > 0.

(A3) Y satisfies the Lipschitz condition: |Y (o1, 71)=Y (02, 72)| < C(|o1—02|+|r1 —72])
for some constant C independent of o and 7;

(A4) ng(¥,7,) = np(th, ) = ng(v},7") is a smooth nonnegative function of (7, v;).
n <1, and supported in B.
It seems that the assumptions (A1) and (A3) are artificial. We will, however.

show how to alter the initial value fo and the geometric factor Y to satisfy those

assumptions for the purpose of constructing approximate solutions in the proof of

global existence (Theorem 5.1).

THEOREM 4.3. Under the assumptions (Al)-(A4), the equation (AE1)-(AE3) has a
unique non-negative solution which belongs to C([0,T]; LP(R%; L*(R3))), 1 < p < .

for each T € (0, 00).

We will need the following easy lemma. 1!

LEMMA 4.4. Let d > 3 and V(¥) = 1/|F|*"2. Then for all $ € L*(R*) N L®(R?), the
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convolution V * ¢ is differentiable and
VAV x¢) = (V:V) * 6.
Furthermore V * ¢ and its gradient V(V * ¢) are bounded (i.e., V * ¢ € H'*(R")),
[V * ¢()| < “vr‘V“LI(BR)||¢||oo T “VFV'|L°°(B§)||¢H1a
where Br = {|7| < R}.

Before we prove the theorem, we also need to introduce the following spaces:
the space X = C(R%; L'(R2)) with the norm ||f||X = sup J|f(7,9)| dv, the space
M = X N L'(R® x R?) with the norm ||f]l» = max{”thl, Ifllx}, and the space
M1 = C(0,T; M) with the norm Hﬁl[o T = Sup 1 /(®)||p. The following lemma

shows some important properties of the operator U( ,S; E, L).

LEMMA 4.5. If L(7,7,t) is a non-negative measurable function, then U(t,s; E L)

defined by (C) is a contractive operator fort > s > 0 in both X and M.

In fact, for any ¢t > s > 0, we have

UAQ)fllx =
_sup/dv // exp /\t4 _ )2_{_%(1—;_*_{[)2_3(7'—@1:(1)‘*‘11) (Tt‘;(n)]

R3xR3

)*f(g, %) dqdal

3v3

—(

AT t2
3V3o1 o 1, .,
< _ (7 —
_sgp/dv 3 (/\7rt2) exp( 4)\t(v 7) )x
x [[ awdilf@ olexs (- 71+ D))
R3xR?

3V3 . ol 3
S/Ba dVT(/\ﬂ'tz) ex (—EV )La dr(sup |f( ,v)ldv)exp(—4/\t3r2



= [Ifllx-

and

t
[Us(t,5)gllx < S‘{P/dilg(ﬁﬁ-*/ E(7,7)dr,s)| = |lg(s)||x

It follows from the product formula (4.8) that U(t,s; E,L), 0 < s <t, is contrac-
tive, since U4(t) and Ug(t, s) are. The conclusion in M follows from the fact that

—

U(t,s; F, L) is contractive in both L!(R® x R®) and X.

PROOF OF THEOREM 4.3: The theorem is proved in three steps. First we demon-
strate a local existence result in a special space. We then finish the proof by extending
that result to general spaces and global time.

Let us first consider the following integral equation:

f(#) =Ualt)fo + /0 Uu(t = 3)[Calf, f)(s) = E - Vaf(s)]ds. (4.9)

Using the explicit expression for U4 and Cg, we rewrite (4.9) explicitly in terms of

(7. 7,t) as

(ra

// di d t_)z)

R3xR?
L 1o o 3y 30-9)-(T+d)  3(F-9)?
A(t_s)(Z(”‘”) +Z(v+u) — 5 )]

x [Cs(f, ) s) — E(d ) Vaf(§,d,s)]
v [[ Xasasilmr pao

X exp[—

% exp[—i-(l(ff— ﬁ)z + %(U-{- ﬁ)z 3(F — ‘Dt (V+u) + (7’; @2)]
/ ds // dudq )m'(t—s) =)>x

R3xR3
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1 1 w2 3, 3= -(f4+a)  3(F-q)-
X exp| /\(t_s)(z(v—-u) +4(v+u) - =) + CEE )] x
X // <€7ﬁ—ﬁl>{y(n’((f’3)an((i— aa)ﬂB(ilﬁl)f(fT»f,S)f(‘T—051719)
R3x5%

— Y(n(q, 8),n(§+ a&))np(0,01) f(q, 7. 8) f(§ + a€, Ty 8)] dedi;
3 1
/ds // didq \/- (t—s)l) (lf s)- Vaf(q.4,s)x

R3xR3
exo— 1 IU . i-{; 22 37— q) - (z+u) (7-—(]')
// di dq—— ! 2)Bexp[—% )] folq. @)
— ]1 —]2+]3. (4‘.10)

Now we want to show each term in (4.10) satisfies a Lipschitz condition. Since I3 is

independent of f, we need only to consider I; and 7,. For the first term, we have

ICE(%, %) — Ce(4, ¢)llz: <
// dr dv{| poxst < ET— U1 > [Y(ng(F), ng(F — aé) )b (7, ") (7 — a€, 7})

R3xR3

V(o) ns(F = ad))o(F, 7)8(7 — af 7)lna(7, 3) dy da

+ <ET— 1 > [V(ng(P), nu(F + ad)b(F, DY (7 + ad, 7))
R3xS%

= V(ng(7), e (7 + a8))$(7. 0) (7 + a€. 01)|np(7, 01) dv del }

< 4k //// dEdT,dTdR | Y (ny(F), ny(F + a&)) (7, ) (F + af, 7)

R3xR3 xR"xS2

— Y(ns(7), ng(F+ a€)) (7, 0)d(7 + a€, 0y )| <

€dv; dudr | (‘/’W) v — 17(213,1;3') !
< 4k{ //// dedin dodr| A+ +0) " (H&S)(H&)WH

R"xR3xR3xb2
e YW, V(@)
dedvydudr — - = +
/I R T T s T
R3xR3xR3xbi
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//// dedvldvdv }"(;f;",?b') —o¢' — qui, ) —o0'|} =
+0)(1+¢) (1+0)(1+ o)

R3x R3xR3 xb2

= 4k(P1 + P_) + P’;),
where, for the sake of simplicity, we have written ¢ = y(r., 7), ¢’ = ¥'(i"+a€, v7), 1Zv =
Ny, etc., and set e = 1. Now.

//// dedndgdr |V (v ) 1+1P)(1+LL)1:1+¢)(1+0)

R3xR3xR3x5%

X [(¢ =) +(¢' = ¥") + o0’ = &) + P'(0 + )]I.

Since

P’ TR
ded,dvdr Y (x - - —oplp' — v'| <
//// ane Y(M’) s isansd) YIS

x R3 xR3xS2

dr/dc/ ' b, v e /dv1
/ 1+¢ Y (1, w)e) (
e e e
S /dF/de”Y(w,w’)w —|§ — | <
1+

<My [ [zl -1 <

< 4rMy||¢" — V|| L1 (RexR3)s

/

o' —4']) <

1+ ¢/

we have P; < Cy||¢ — ¥||. Use the assumptions (A2) and (A3) and similar decompo-

sition, we have a similar estimation for P, and P;. That is.
ICE(w.%) = Cr(o. o)l < Cll¥ = ollt, (4.11a)

with C independent of ¢ and 1. In other words, Cg(w.®) is a global Lipschitz

operator. Using a similar argument we have

(4.11b)

ICe(%, %) = Calo.8)|x < Cl¢
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We conclude that /; in (4.10) is globally Lipschitz continuous in M.

Next, we rewrite I, as

(r,0,1)
3\/‘ 1 5. N IF—q) (F-d@) 3(T+a)
/dt // Cr=a) GBI N Y 3 =) ~ =),
R3xR3
,. Ll 3y 3E—9-F+0) 3F-@
xexp[—/\(t_s)(z(v ) ,4(t+u) = L )]d(fziz)

Let k(" 7; U, u;t — s) denote the integral kernel of the integral operator defined

by (4.12). We have

/ds/ A d7|k(7, 47, @t — )| =

R3xR3

L 1 3, 3(F—¢q) (F-u) (V+4)
/ ds // dqu /\7r(t—s)2) ')\(t—e) * 20t — s) ‘2/\(t—s)|

R3xR3
L. o 3. ., 30F=—q- (0+4) 3(F = )
xexp[ /\(t'—S ( ('U U) +4(v—r ) (t"‘SJ (t_s)z )]
3V3 3 u—27
=3 /dT // d‘“”(vw) =T 8+ 55
R3xR3

X exp (-A—(-(a— 20)* + —w — Ti/2) ))

B[]0 (n) s

X exp (——-(— + T—iQZ))
3v3 ==/ 1 \>3 = 1.1, 3 .
:TA dT // deU(/\ﬂ’T2> ml@l@(p(*x;(zlzz + §Q2)>
g t 3 :
28 [ [fagar () ;m,exp<-;;guz+gcy>)

3\/_f /3/\2226 4Afdu+—/ / T




V341 [
D Ar

On the other hand, from Lemma 4.4 and the definition of the norm || - ||ps, we can

find a constant C, (= 2max{||V#V||L1(,), [|V#V||lL1(Bs)}) such that
[ EsllLee < Call@]|ar,

where E; and ¢ are related by (AE2). Now

112(¢) — L(¥)||r <

t
s%%W%Ads//ﬁwﬂ@mwmwama—a@m@»+

R3xR3

fl“/ 4 d71By(d,5) — Bo(7,9)16((3,7,9)]}

R3xR3
8 - - .
< ﬁtl/z{HEw”Lm(RﬂW — 8|+ 1By — Eglleligll} <
8

< —=Cat*(]| 4 ' — é|lm,
< 7Ot el + 1 llally = olla

and similarly

8

m@ﬂ“(nww + 1#llan)ll¥ = ollar-

I112(%) = I(¢)]|x <

Therefore,

8
VAT

12(#) — L(0)lp.g < Cat'*([|8llo.g + 1 o)1 = #llfo.- (4.13)

In other word, I,(f.t) is local Lipschitz continuous in the space Mo with the Lips-

chitz constant depending only on the norm || fl|fo,q-

Now we consider the norm of the solution of the approximate equation. Con-

sider the following sequence of functions:

O =0,
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LY 3,8 = Cg (/9. /) =

= / Y7 1), nO(F + a@,t))\ (T, 71) fO(F + a, 5y, t) < &7 — ) > dédwy,

R"XSi (414&)
o 1 : \
E(’)(F,t)://V,-(Iq—*l)f(‘)(ﬂ.ﬁ.t)dﬁdﬁ, (4.14b)

r—nr
t
SO = U(t,0; EO, L) fo + / Ut s; EO, LOYCE(FD, fO)(s) ds, (4.14c)
0

where CE(f®, f)) is given by (AE3).

It is not difficult to show that the sequence defined above converges to some
function f, the solution of the equation, for small time t. Let us estimate the norm
of functions of this sequence. Looking at the structure of the operator ég(f, f) and

using the assumption (A2) about Y, it is easy to show that CE(f, f) € M if f is, and

Ca(f9, fO)(s) =

= / déds, fOF, 5, 8) fOF + al. 7, 8)V(n(F, s),n(F — a&,s)) < T — 0y, >
< k// déds, fO(7,5,8) fO(F + a5y, 8) Y(n(F, 8), n(F + ad))

< 4k My fO(7, 7, 5),

ICEf Allar < Cullfllars

with the constant C'y independent of f. Therefore, using the Lemma 4.5 we conclude
from (4.14c) that
17D < [l follar + ¢Callf Dl

Letting
By = ”fo”M, Th=—

we have easily
1fOlory <2Bo, =12,
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Furthermore, following from (4.14c) and the fact that fo € LL. the solution f of the
integral equation (4.9), if it exists, is a nennegative function.

Now let us go back to (4.10),
f=hL -5+

Since || I1(¢, )= L (¥, t)llp.g < Citllo—bllio.g, 11200, )= L(,t)[|.g < C5t**(|[olio.q+
1Yl )llé — ¥l < 4boCit 2|0 — ¥||jo,q for t € [0,T1], and I3 independent of v or
&, we conclude by the contractive mapping theorem that (4.10) has a unique solution
f(t) 2 0 in My for some T € [0, Ty].

Next we want to extend the solution given above to any given Mo 7). In view
of the proof of local existence, it is enough to show that if f(¢) is a solution of the

equation on an arbitrary interval [0, T], then we can find a constant B > 0 such that
[flog< B Vte(0,T]. (4.15)

This conclusion is based on the fact that the choice of the ‘existence interval’ [0.7"]
in the first step depends only on the norm || fol|[0.q of the initial value. Now we prove
4.15. If f(r,v,t) > 0 is a solution of (AE1)-(AE2)-(AE3), integrating both sides of

the equation over R®> x R*, we have

5@l = [[ dria 5.0 = [[ 7o o7,9) = B = ol

On the other hand, using hypothesis (A2) and (A4), it follows from (4.14c) that
1 £ ae < Il follar + dkmMyt/e < By + 4kwMyT/e. Letting B = max{B;. B, +
4kwMyT/e}, we assert that the integral equation (4.9) has a unique solution in
C(0,T;MN L*) for any T > 0.

Finally we finish the proof of the theorem by the following two remarks: 1) We
have shown that the solution f(¢) of the integral equation belongs to L'(R%; L'(R3))N
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C(R%; L'(R3)) for each t. It then follows from interpolation theory that f(¢) €
LP(R3; LY(R2)) for any 1 < p < o005 2) to make f(t), the solution of “the integral
equation” (4.9), be the solution of “the differential equation™ (AE1)-(AE3). it 1s suf-
ficient to show thatP! f(t) € C(0,T;D(A)). which, in our case, follows from the
estimation about the derivatives of f(7,7,t) stated at the end of this chapter (cf.

(4.20)). This completes the proof of Theorem +4.3. ®

In the reminder of this chapter we give estimations of some quantities related to
the solutions of the approximate equations. First we estimate the ‘%-th moment of the
system. For k = 0, 2, we have already (using the same arguments as in Chapter II)
that [[ f(t) d5d7 = [[ fodidF < 0o and sup [[ f(£)(|[F]? + |£]?) d5d7 < C(t) < o0
and ( by the Cauchy-Schwarz inequality ‘)3st5qu [J F(&)(|7] + |9]) dvdi < C(t) < o0
Now multiplying equation (AE1) by |5]* +()|§1:§.Tintegrating over R? x R3, and using
the facts that

|71¥o - Vef(r.v,t) = div;([ﬂ"fﬁ') — k[Fl*2F - g
and
(91 Asf = dive(|51*Vaf) — kdiva(f[51°75) + k(k = 1) f(7, 5,2)[51°7.

we have

/ f 0, ) (|7 + |o)F )drdv—L/ (7,0, )|F1*2F - G dvdi®

—k//]“l’“ 25 )fdidv—\kk—lf fOF 0, 8) |51

= [[ 1#1Ce(s. ) do

From Lemma 4.4 we know E(7,t) is bounded. and therefore

/ 47 A5 (7,5, )7 + [5%) drds

R3 x R3
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<c / / 47 a5 (T3 + |51 + |12 + / / 47 d5\Ca(f, F)||5]*.

R3xR3 R2xR?

Since Yng(v.v;) is compactly supported in v, one can easily bound the second term

by C [ dFdvf(1+|5]*). It follows inductively from the Gronwall’s inequality that
R3xR3

sup // drdvf t)(1+ |7* + |5)*) dFdt < 0o for all k> 1. (4.16)
0<t<T
R*xR3

Now, we establish an estimate on the derivatives of f in L°°(0,7; L* N L>(R3 x

R?)). We begin with Vzf and V;f. Set F = Vf = ({m f, 31_2f, B ),g = IVaf] =

1/2
(G507 + (7 + (F57) - Note thas

31‘3
9 1= 0 =~ dg 0
= _EF-EF_T-VAEJ”),
. dg Jd = d Jd = dg d =
Vig=—= -ng—F+ -5 vn—F+—= v—F=
v veg dF vldrl dF 02072 dF v3373
dg - — dg -
= — -V VFF:—'—..'V',- vi" 9
dF( ) 7 ~ )
- dg =
E V,—; = =" E Vf:’E
9=—= (( )E)
_ Y G -Vef) - (Vo0 B)Vaf)
diF TR T o

. ; T
= Sl(F e PP 4 (Fe P (PSP
+ G B+ (PP 4 (e PP+ [ AeF
=S[(CL X g P (ST x P (L x o Y4 5% - A

Therefore,

6 - -
5{9+U'VF9+E'VUQ—/\A69=
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dg 41_] = .
= + = +E \vF ANz (V/7® E)V;
VA S+ 7 Vsl + B Vaf = Adaf] = 5 (V7 BV
dJ J = 9 dg J ,d(/ 0
— A= —F)* 4 X —F)? 4 (=% x =—F
9[(dF o T (dF o, ’ T !
dg dg -
=—..'VFC . ——~' Ve E)V5
7 e(f.f) T [( Vi f]
dg J =, ,dg J =, ,dg J =
—A- X —F)+(—=x—F)"+ x —F)7].
9[(dF Oy ’ (dF I ) (dF dvs )]
Taking integral over R® x R*, we get
e
%// T dv|Vzfidrdv
R3xR3
= // dFdz}‘g%-V;C’E(f, // dr dv——- (Ve® E)V3f]
R3xR? R3xR®
A d = 5 = 5 d 0 =~
--// 4 di| -ixiF) (2 O pp 99 2 pyy,
g Ouy dF ~ Ov dF  Ovs (4.17)
R3xR3 :
Similarly, letting H = (3”l f, dzz f, GU3f ), h= Iﬁi H= %, we have
(9 B
AV <?,1f>
T-Veh = H-ViZf) | =7-(H-Vs)Vef]
-V f)
= H-Vi7-Vof) = H-V+f,

E-Vsh=E-[(H-Vi)Vsf] = H-VHE -V3f),

_ 1 3 ) d =, ~ 0 =
=H- -A;H + [(HXEEH)+(HX3_U-3 )-I-(Hx,—dg )
« 1., - 0 = . d 5. d =
=H - Vy(Agf) + 7 [(H x 5—H)* + (H x 3—H)* + (H x 7—H)7],
h ovy Ovy v3
and
0

52h+6-V;h+E-V5h—AA5h=
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_ H-V,;C’E(f,f)—H-V;f—/\%[(ﬂxTﬁ)H—(H x )+ (x5

Therefore,

i d " . 0 0 =y,
dt//chdlh———)\//(hdu—— H) (dev2 )-{—(dev3 7)?)

R3xR? R3xR3

/ dr dvH - V{E £, // dr dvH - V- =f, (4.18)

R3xR3 R3xR3

_// dFdi(g + f) < // drdv( V;+1§l-vg>é’z(f,f)

R3xR3 R3xR3

a7 dv (E (Ve® E)Vsf] + H - vff)
R3xR3 g

and

(4.19)

Similar to the estimate in [17], there is a constant C(e) such that
e : X .
// drdv(—-V;—}-H-Vg)CE(f,f) < C(e) // & dig + ).
R3xR3 I R3xR3
Since n(7,t) € L' N L™, it follows [16. p.174] that each element in Vr® E belongs
to L. In addition, |H| = |F|/g = 1, and we get a similar estimate for the second
integral on the RHS of (4.19). Hence,
d oo 1 ‘
G [ was9eni+ Ve < ¢ [[ drasves+ i), (4.20)
R3xR3 R3x RS
which implies that both |Vf| and |V;f| are bounded (in L'). In addition, using the

estimation(15116]

IVeEl0 < C(1+ Il + [[nloo[1 + log(1 + [|Vonl|oo)])

and a similar argument we can bound the second order and other derivatives.
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Chapter V Global Existence

[n this chapter we state and prove the main result of the first part of this paper,

L.e., global existence of the renormalized solution.

THEOREM 5.1. Assume that Y(o,7) = Y(7.0) is a jointly continuous function satis-
fying the symmetry condition (2.1) and the boundedness condition (2.19), the initial

value fo(7,v) > 0 satisfies the bounded condition

/ 47 difol, 7)1 + 7 + 3% + | log fol) < C < oo,
R3xR3

and Eo(7) = Vi * no)(7) = Vil * [ fo(F, ) d0)(F) satisfies
/ By (M2 dF < C < oo.
R3

Then, there exist f € C([0,00); L}(R® x R®)) which satisfies f|i=0 = fo, (3.1), (3.2),
(3.3) and such that, for all § > 0, g5 = 35(f) satisfies (RDVE)-(VP)-(IC) in the
sense of distributions and gs|(o.r)xroxBy € L*([0,T] x R®, H'(Br)) (VR,T < o).

In particular f is a renormalized solution of (DVE)-(VP).

PROOF: The theorem is proved by combining use of Theorem 3.1 and Theorem 4.3.
First, truncating fo and regularizing the truncated function by convolution, we get a

sequence fi € D(R® x R3) such that f, > 0 and

J[ drasiso= g1+ 17 + 151 =0 (5.1
R3xR3
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J[ wasmnosssi<c (5:2)
R3xR3
for some constant C' > 0 independent of n, and such that
/deg — Fol* -, 0. (5.3)

Next, in equation (AE3) of Chapter IV, let € = 1/n (in assumption (A2)) and let
ne(7,01) = na(0,01) € D(R® x R?) such that 0 < m,, < 1, suppnn C Bn41. and
M!B, = 1. Furthermore, since Y(7,0) is bounded and continuous, we can choose
}N’n = )7,1(0, 7) € C®(R x R) such that f’n satisfies the symmetry condition (A2) and
the Lipschitz condition (A3) in the last chapter (with the Lipschitz constant C' = C(n)
depending on n only) such that |

limsup |Y(o,7) = Ya(o.7)| = 0. (5.4)

LI

Define the approximate geometric factors Y, (o, 7) = (14+1/n0) " (1+1/n7)"! Y, (0, 7)

X{lfi<n}- Consider the solution of the following system of equations:
Lyf* + Ea( 1) - Vaf* = CR(™. /"), fMl=o = f5, (APE)

with E, satisfying (AE2) in the last chapter. As shown in the last chapter, for each n,
there exists uniquely a non-negative solution f*(t) € L'NL>®(R>x R?) of the equation
(APE). Furthermore. the conditions (3.1)-(3.4a-b) are automatically satisfied for f"
and CE(f", f*), provided the identities and inequalities (2.3), (2.10), (2.13) and (2.15)
are justified for the f* and E, given above. (2.3). (2.10) and (2.13) can be checked
without difficulty by the regularity and decay of f™ and E, stated at the end of the
last chapter. In view of the choice of fg, (2.13) may be justified by the lower bound
method used in [17].
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Finally, despite the fact that f™ is not a solution of (DVE)-(VP), regarding the
statement of Lemma 3.4 and the proof of Theorem 3.1, we see that Theorem 3.1 and
its proof still apply to this sequence of solutions of approximate equations and yield,
passing to a subsequence if necessary, convergence in C([0,7]; LY(R3, R?)) (VT < o)
to some f satisfyving all the properties listed in Theorem 5.1.

In fact, since f™ is the solution of the approximate equation, gs(f™) automati-

callv satisfies the approximate renormalized equation

1

Anonoomy _'n_vt_}_ P+ A6 Viggr 2 5.
1+6fnCE(f»f) E 95 +A6|Vags ", (5:5)

a n - n n
59 T Viegs — Mgy =

Comparing this equation with the renormalized equation (RDVE), the only difference
is the collision term. We may complete the proof by following remarks. First, Step
I in the proof of Theorem 3.1, i.e., the boundedness of {C’;(f",f")(l +8f™)" ! in
L', depends only on the bounds in (3.1) and My, which is obviously correct in our
case. Second, Step 2 and Step 4 in that proof depend only on the linear operator
L, and the form of the additional terms E - V395 and |Vygs|? in the renormalized
equation, and not on the collision term Cg(f", f"). finally, passing to the limit
Ce(f*, )1 +6f*)"! —, Ce(f.f)(1 +6f)7! in Step 3 is mainly based upon the
bounds (3.1)-(3.4a-b) and the convergence in measure, passing to a subsequence if
necessary, of the integrands in (3.20a)-(3.20b), which, in our case, can be proved in

the same manner by using (5.4). This completes the proof. ®
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Chapter VI. The Fokker-Planck-Vlasov-Enskog Equation

In this chapter we consider the renormalized solution of the following Fokker-

Planck-Vlasov-Enskog equation:

0

(9 45 VA7 5.0)+ E(7.0)- Vof (7,5.1) ~ ndive(&] + 5 Vf) = Ci(f, 1), (FPVE)

where, as before, E(F’,t) is the fleld function and satisfies the equation
— - 1 L. -
E(T,t) = —CY/ d'l'l V; — =N f(l'l, v, t) d'l), (VE)
RN T =rN"2) Jgw
a > 0 is a constant, RV denotes real N-dimensional position or momentum space.
The terms ndivz(vf) and nfdivy(V;f)/2 denote the dynamical friction forces and

thermal background interaction. respectively: The last term Cg(f, f) is the Enskog

collision term.

§6.1 Conserved Quantities and Bounds

The system we consider is (FPVE)-(VE). defined above. Suppose that Y (o, 7) =

Y(r,0). Then we still have equation (2.1), i.e..

/ &(7,0)Ce(f, f)(7.0,t) dudi

=_//// O(F,7) + &(F + a&, 5,) — 6(F,7) — &(F + %1)] x

x f(F,0,8) f(F+ a€, 0}, )Y (F, 7 + a€) < €, 0 — 0) > dédv,dvdr
for any given ¢ = ¢(7, 7). Let 0o = 1. Then

//d?"dﬁ{ f+7-V: f+E(r t) - Vaf(F,0,t) — ndivs(0f + 0V~f)}
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d TS g n o —
;E//dulvf@ +v,v.1) =

- 0
=// drdv divg{ f(F+ t&, 0, t) E(F + tv,t) — n(fU + ;V’af(v?+ tv,v,t))} =0,
or
// f(F. 0, t)drdv = / Jo(7, 0)drdv. ( Mass Conservation ). (6.1)

Next we consider the energy bound. Since

(%U")f + dive(v? f7) + v¥divg(f E) — nvdivg(f7 + gvgf) = v:Cg(f, f),

R3xR3 R3xR3 R3xR3
- / / dF v Cu(f, f) = 0,
R3xR3
using
vidivy(fE) = divy(v2fE) — 2E - f#,
vidivy(f7) = diva(v® f7) — 2v* f,
v2dng(ng) = dng(”UZV;f) - .Zle;;(fl-)‘) + QNf,
we have
- , .. e 0
// dr dG{E(7 + t7,t) - v’V f (F + t7, 7,t) — nvdivs(f7 + 7)-V,7f)} =
R3xR? )
= -2 // dFdUE-ft‘)’-{-Zn // dr dvv*f — Nén // drdvf
R3xR3 R3xR? R3xR?
= _2/ d&FE -7 +2n // a7 v f — Nén / A7 dv f,
3
R R3XR3 R3xR?
where

-

j= / FF (7, 5,)d5,
3
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and N = 3 is the spatial dimension. and

/ dr do (7,7, t)v* = 2 dFE~f+:‘V¢917// dv"'dfffo—?n/ drdv fv®.
R3xR3 R R3xR® R3xR3
(6.2)
On the other hands, let n(7,t) = [ dv f(,v,t). Then n(r,t) satisfies the following

equation:

%n(r t) + dive(y ( t)) = /CE(f,f)di".

Et) = o [ 7 Ve [ 165

But

and therefore

0 = .
,—dEE(’I,t) =

— o [ 45 Vel =) v (772,00) + [ d5Ca(s, (7, 7,0)

= —draj (7, 1),

and

4 a7 |E(F,1))* = —8ra / d7'j - E(7,¢). (6.3)
dt Jps

From (6.2) and (6.3) we get

{// di dov: f (7, t)+i- a7 |E(7,1)]*} = —2n // dr dv fv* + NonM,,

L% fo R3
R3xR? R3x R3
(6.4)
where My = [[ dFdvfo(F, ). Obviously, we have
R3xR?
1 -
// dr dvv? f (7, 7, t) + K/ 3dF|E(7t)|* < My + NonMt, (6.5)
o
R3xR3 R
where, My = [ dF dov? fo(7, %) + 2= [ps dF|E(7,t = 0)]2.
R3xR3
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Since

d—(i// dFd{)‘rzf:d—dt/ A7 dO(F + 1) (7 + 17,5, 1) =

R3xR3 R3xR3
= //(f-) - Bf(F, 7, 1) did + //(ff((%f(f-,ﬁ, t) + 5 Vi f(7,5,t))drdT
= // dF A7 - Tf(F, 7, t) + // &7 didive{r}(— fE(7,t) + f5+ Vaf)}+

R3xR3 R3xR3
+ / / &7 dir Ci(f, f)(F, 5, ¢)
R3xR3
= / / dF d57 - Tf (7, 7,1),
R3xR3
we have
d 1/2 1/2
= / / dFd13’1-2f(r",z7,t)§2< / / dF‘dz‘;’vU(F’,U,t)) ( / / dr dor? f (7, a.t)) ,
R3xR3 R3xR3 R3xR3
and
/ / dF dor? (7,5, 1) < %(;‘4) + NOnMt)® + 2Ms, (6.6)
R3xR3 !

where My = [[ fo(F, 5)r?dda.
Finally, let us consider the entropy. Formally we have,
{(.% +7-Vs+E-Vs}flogf =
= (1-+10g /)Cx(/, /) + (1 +log f)diva(f7 + 3 V),
(1 +log f)dive( /) = divs(/log /) + N,

(1 +log f)diva(Vizf) = divs(Visf log f) — f—l]nglz,
and therefore

% / / d7 45 [ log f = / / d7 dilog fCa(f. f) — 20 / / 47 45|V s /TI* + NoM,.

R3xR3 R3xR3 R3xR3
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Define

rm:/ f(F,ﬁ’,t)iogf(F,ﬁ‘,t)def‘—/OtI(s)ds+A I(s)ds,  (6.7)

R3xR3
where I(t) and J(t) are given by (2.16a) and (2.16b), respectively. Using the fact that
y(logy — logz) > (y — 2) for y.z > 0, and integrating both sides of equation (6.7)

over R3 x R3, we obtain, as in chapter II,

ir(t) S ;"\/—771‘/11, (68)
dt
and
d o I(t) .
E dr dvflog f = W + I(t) - J(t) _<_ I + 77NMO (69)

R3xR3

Now assume the geometric function Y (7, o) is continuous in 7,0 satisfying (2.19).

Then we have as before that

IT(t) < 2na* My (M, + NOpMit),

I_(t) < 2ma* My (My + NOpMit).
In addition,

/ [ drassr 5, 0llog £, 7.0 < M, 05 e<T, (6.10)

R3xR3
where M5 = Ms(My, My, M3, My, My, T) is a constant depending on My, M,, Ms,
My, My, T, and

M, = // dr dv fo(7, U)| log fo(7, V)| < oo.
R3xR3
Finally, as in Chapter 1I, we can find a constant Mg = Me(My, My, M5, My,

My ,T) < oo such that

T
/ dt / / (Vo /TI? + |log fCa(f, )]} didF < M.
0 R3xR3
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§6.2 The Green’s Function

Now let us consider the fundamental solution or the Green’s function of the
field free Vlasov-Fokker-Planck equation. Consider the following equation:

0 . L 0 e e o
5P 0 Vep = 1Valip + 5Vap) = §(F.0 — 1),

where 6 and u are parameters.
Taking a Fourier transformation with respect to 7, and denoting the trans-
formed variable as &,
a A - -, A . A — 0 A —r —
2P + v - iap — ndivg(pv + EV,yp) = §(v — 4,t).

Fourier transforming with respect to U, with transfored variable 3,

(9 - - - .3 . ~ 0.,"~ —i-
Fridaich Vsp—n—ind-[iVp+ §z,dp] = §(t)e™™",

0 & 5 3 - 0 - —ig-@
a—tp—a-V5p+n/3-V5p+-_2—nﬁ2p=5(t)e b,

IS

(.5 = 1+t )l BT _ (1) $ri-sa i s

The solution of this equation is, for ¢ > 0,

]

B(&, (1 + tn)f — &, t) = e~ 31k ((1m)F-r@)dr —if.a
0 2, M3y a2 2, 2 32 3,1 o3 ida
= exp{~gnl(t +nt* + T8 ~ (£ + 30t°)d - § + 307 e

0 1o 2 o o1 g
= exp{—int[(l + 0t + gtzn‘)/ﬁz - (t+ §nt2)a B+ §a2t2]}c B

Let B =(1+tn)B —td, 3 = BHE then

| 2 . - 2
(1+0t+ 508 = (¢4 S0 - 5+ =

(N



l-{—ryt—k%t"znl2 =) — 9 - + =n - 5 1., .
= - A& - B+ t*a? ik UL - B +ta?) + =t*a?
0+ (B*+2ta- B+ta”) — i (& -l»a)—f—3 o
1 1 2 — 1
= ———[(1 +nt t“BZ t+=nth)a- B+ <t
Therefore, for ¢ > 0.
p(&',ﬁ,t,u)e i
o nt 1, 5 02 2 - L,y 2,
= ———(1 t t'n )3+ (t + =nt -1 t+ —t° — =
=epl-s Lt gt (4 ut)a- T4 nt+ 5t + 2a’])
On(1 +nt + -;-tznz)t
2(1 +tn)
2. 1 t+ipg? t? 1 t+ 5t
= - = o
9 nt 1 1 t4 Ipt?
= ———(1 t tz NB+ = 3 7)?
exp{ 2(1+tn)‘( +7I+ B +21+77t+ 3t2n? a)}
t3 .
X exp{—g 1] o?},

212(1 + nt + 3t%n?)

and

p(& 3, td) =
— 22 .. n2
_ { exp{—4—2(1 + 0t + 3 )8 + % t-{-%;t‘ @)+ tz(l;}f_,“] a?l}, t>0

2 (1+tn)? +nt+ 1292

0. t1<0 (A1)

Taking an inverse Fourier transform for 3 and for &, then for ¢ > 0.

1 t 2 . 1 t 2 — N
p(r'l 6’t;ﬂ) =( ( i T,)l 2.2 )3/28)( {—" ( * n) 112..2 (27‘ - )-
297]t(1 + T]t+ '3't 77")7(‘ Zent(l + nt + §t 77_) 1+ tT}
1 ot , . 9 . t 4 dnt2 4+ 223
;! - ? _ e Zat\3 3 3 -
Fs (exp( 21 +77t+:};t2772)[ 5 — i ((t+ 3nt Yo+ T @)
B L) Y G (E) B S
mndt? 20mt(1+ 9t +3t*n%) " 1+tn
6(1+nt+it}9®) , 6 9 l4ipt4 g
_ . 2
x exp{ e r?+ 677t‘27 (1 + 37 )7 + = )} x
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3 2 L+ gt + n%2
X — (1 + 2nt)5 + 3 3 21 6.11
exp{ 2ot +nt + 3o L T 37 )0 T )%} 6.11)

Consider the linear operator

- 0 . . 0
Ly e(0)f = 'a—tf +0-Vef = nVsvf + §Vaf)-

Its Green’s function is given by

G(r,v.t:q,u, s) = p(F — ¢, 7). (6.12)

That is, the solutions of the nonhomogeneous equation
{ 5if(7,0,) + T Vaf —ndivg(Tf + §Vaf) = (7, 7,¢),

hn’lt—»+0 f(7 ’ Ua t) = fO(Fy 6)3

are given by

t
+/ ds/ G(7,7.t: §, @, s)h(q, . 5)dqdil (6.13)
0

The following identities and inequalities will be used later. First, for all (§.%) €

R®x R®and t >0,

// G(7,7,t; , @,0) didd =

R3xR3
V(1 +t 1+t TN
= (——— +2n / dodr exp( (1+ 71)1 — (7 — - )2>><
ot 20mt(1 + nt + 3tn?) 1 +1tn
R3xR3
y ( 6(1 + nt + %t%ﬁ)(* ( t + 2pt? . t+ int? + Ip%t3 ))>
ex - - r— - v -

ont® 21+t + 5207 2(1+nt + 3202 (1 + )

(6.14)
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Let

Lbtg T+ 10pt+ ) 7 AL+ )L+t +5t0%)
5 o 2t + 2nt? + 27]2152/3 -
=r

_ u,
2(1 +tn)(1 +nt + %t’n'-’)
then for every (§,4) € R®* x R?,

(1+tn) i ., 6 L+ 30t + 39°t%

2
—o_ 2 -?. ( 1 : t —
20nt(1 + nt + %t‘ln'l)(v 1 +tn) + Hnt‘f (1+ 3" )7+ 1+1tn i+
6(1 4+ nt + %ﬁnz)rg 3 (1+ gnt)“ 1+ 40t + %rﬁtzﬁ)z
Ont3 20mt(1 + nt + $t3n?) 3 1+1tn
:1‘2(1 +at+ 32H)(1+tn)? _, T+ 10pt+ Un?t2 |
Ont3(7 + 100t + 13—1172{2) 20nt(1 + nt + %t2n2) ’

and

1/2
/ ( G2(F, E’,t;q‘,d,O)dz}‘) dF
R3 R3

1/2 1/2
=/ (/ p'Z(F_q*.J,t;a)dU) df-’:/ (/ pZ(F,a,t;a)dﬁ) 7
R3 R? R3 R3

5 3 ¢ 1,2, 2 2
3(1 + _ 12(1 + 9t + 3t 1+4+¢
R3 977t3(7 + 109t + 3 T]’tz)

74100t + Lp22 N\ 1/2
x (/ 45 exp{— Tt 312 v2}>
RS Ont(1 + nt + 3t°n?)

7+ 109t + Lp2t? 3/4<1 1\ 615
B 167rn9t(l+r]t+%t2172) 8\ 11lmnot ) (6.15)

Similarly, we also have

// G(F,7,t; 7., 5) dgdit = (1 + n(t — s))°. (6.16)

§6.3 Sequential Stability

Now we consider the solution of the following equations:
{ 2 47,0, t) + T Vg™ — ndiva(Tg™ + £Vag™) = h*(F, 7, 1),
limy— 40 ¢™(F, 0, 1) = g5 (7, D),

(IHS)
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From (3.3), the solutions of equations (IHS) are given by

g"(7,5.1) = / / G(F, 5, ¢ @.0)g3(, ) dgdi+

R3xR3

t
+ / ds / G(7,3.t: 7, T, $)h™(§, 4. s)dgda
0

R3xR3

Using (6.16), (6.17) and the argument in the proof of Lemma 3.3, we have

LEMMA 6.1. Suppose that {g)} and {h"} satisfv the following hypothesis:
(1) {g2} are bounded in L'(R* x R®), and

sup // 9o (7, 0) difidv — 0 as R — oo;
|(7\9)lgeR

(2) A = A + &, {h"} is bounded in L*((0.T) x R® x R3), {k"} is bounded in
L'{(0,T) x R3 L*(R3;)). and
supnf0 ff(NT)I>R [h |drdvdt - 0 as R — =,
supy fo dt [ 4 iy 50 1B (7, 5,8) d9)/2 = 0 as R — oo,

Then the set of solutions {g"(7,v,t)|| of the equations (IHS) is compact in

L'((0,T) x R® x R3).

Now we can consider the sequential stability result for the equation (FPVE).

Suppose that f(7,7,t) is a nonnegative solution of the equation (FPVE). Then. the

function gs of f, gs = Bs(f) = 3 log(1 + 6 f) solves

0 0
dtgg—}—v Viegs — ndivi{gst + - V-gg)

5. Cslf, f)+5 |V agsl* + N ij§ — B(7.t) - Vegs.

This motivates the following definition.
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DEFINITION 6.2. A nonnegative »lement f of C([0,o0), L'(R* x R®)) is a renormal-
ized solution of (FPVE)-(VE) if the composite function g5 = 3s(f) satisfies (RME)-

(VE) in the sense of the distributions, where 3s(t) = %10g(1 + 6t).

THEOREM 6.3. Assume that f* € W2°(R> x R3 x [0,00)) is a sequence of nonneg-
ative solutions of (DVE)-(VE), f* — 0 as |(7.7)| — oo uniformly int € [0,T] for all

T < co. Assume that there is a constant Cr independent of n such that

/ / A0 + 7P + [0 + |log f*]) didF < Cr, (6.17a)
R3xR3
/iEn(F,t)FdFS Cr, (6.17b)
R3
T
/ dt// (IVsr/Tr 1 + |log f*Cu(f™. f*)|} didF < Cr. (6.17¢)
0 R3xR3

Then the sequence f* converges in LP(0,T; L'(R* x R3?)), 1 <p< o0, 0 < T < ox.
to a renormalized solution f which satisfies (6.17a)-(6.17b) for a.e. t € (0,T) and

(6.17¢). Furthermore. for each § > 0. the renormalized interaction terms satisfy

{ Cz(f, )1 +6f) Y sens € C([0,00); LY(RE x Bgr)), YR <
CH(f 1 +6f) Y ses, € L'([0,00) x R x Br), VR.T <o

and gslsepp € L2((0.T) x R, HY(Br)) (VR.T < ).

We point out that Theorem 6.3 can be proved in the same manner as the proof

of Theorem 3.1 with little modification, noting in particular that the results of Lemma

3.4 are given by Lemma 6.1.

§6.4 Global Existence

As we did in chapter IV and V, we first consider the solution of the following

non-linear approximate equation:
/(7 5,0) + T Vof —n(5f +§Vsf) + E(7,1) - Vaf = Ce(f, /)
. - IR (AEI)
lim,_o+ f(7.T.t) = fo(7, 7).
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where

E(Ft) = J%_/df'V;'F 1 = /daf(r*,a t), (AE2)

-

CE(f IRl
// (n(7,t),n(F — aé.t))n(v,v1) f(7, 0, ) f(F — a€. v, t)
1-'1‘.3x.52
(n(7,t). n(F + a€ t))ng(¥, 1) f(7, T. 1) f(T + a€, 0y,t)] < €T — v > dedv,

= ég - Cx. (AE3)

= {(¥,71); |[U]*+]%1|* < k} for some positive constant &k and n(r,t) = [, f(¥,7,t)d
We assume that )} and f, satisfv the assumptions (A1)-(A4) in Section 4.4. Then by

considering the following form of the integral equation

17,5, = [[ 66.5,44,2.0/5(7 Dz
R3xR3

1
i / ds / G(F,5,: 4.3, 9)[Colf. UG T,5) + E(d5) - Vaf(d, 1, $)dida,
0
R3xR3

and using the lemma 6.1, we can follow the proof of Theorem 4.3 and conclude

THEOREM 6.4. Under the assumptions (Al)-(A4), the equation (AE1)-(AE3) has a
unique non-negative solution which belongs to C([0,T]; LP(R3: L'(R2))), 1 < p < oo,

for each T € (0, o).

Finally, truncating fo and regularizing the truncated function by convolution,

we get a sequence f3 € D(R® x R?) such that fo > 0 and

// 47 d7) fo — F2)(1+ |7 + [317) —n 0. (6.18a)

R3xR3

/ dF dif*|log f2 < C, (6.18b)

R3xR3
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for some counstant ' > 0 independent of n, and such that
/dF|E,;‘ — Eg|* =, 0. (6.18¢)

In equation (AE3) let € = 1/n (in the assumption (A2)) and let ng(v, 1) = n.(¥, 1) €
D(R? x R®) such that 0 < n, < 1, suppn, C Buny1. and n,|s, = 1. Since Y(7,0)
is bounded and continuous. we can choose Y, = Y,(0.7) € C®(R x R) such that
Y, satisfies the symmetry condition (A2) and the Lipschitz condition (A3) in the last

chapter (with the Lipschitz constant C = C(n) depending on n only) and such that

limsup |Y (0. 7) — Y, (o, 7)| = 0. (6.19)

noogr

Define the approximate geometric factors Y, (o, 7) = (1+1/nc)" 1 (141/nr) Y, (0, 7)

X{lf1<n}- Consider the solution of the following system of equations:
L™+ Eu(7t) - Vof* = CE(/" /™) M=o = S5, (APE)

with E_"n satisfying (AE2). Then, according theorem 6.4, there exists a unique non-
negative solution f™(¢) € L' N L°(R® x R®) of the equation (APE), which satisfies
the bounded condition in Theorem 6.3. Using Theorem 6.3, we have

THEOREM 6.5. Assume that Y (o,7) = Y(7,0) is a jointly continuous function satis-
fying the symmetry condition and the boundedness condition (2.13), the initial value

fo(7,U) > 0 satisfies the bounded condition

dr dv fo(7, 0)(1 + |71* + |7]% + |log fo|) < C < oo,

R3xR3

and Ey(7) = V;(% * 1) (7) = V;(-I% * [ fo(7,T) dT)(F) satisfies
|Eo(F)P dF < C < oo.
R3
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Then, there exist f € C([0,00); L'(R®>x R®)) which satisfies f|i=0 = fo. (3.9a)-(3.9b)-
(3.9¢) and such that. for all § > 0, gs = ps(f) satisfies (RDVE)-(VP)-(IC) in the
sense of distributions and gs|(o.1)xr?xBr € L*([0,T] x R*, HY(Br)) (VR,T < ).

In particular f is a renormalized solution of (DVE)-(VP).
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Chapter VII Mild and 3-Type Mild Solution

In this chapter we study the existence of weak solution and semi-stronh solution
for some special models. We first give a general theory for the existence of solution for

semi-linear evolution equations. We then apply this theory to some kinetic equations.

§7.1 Solution of Non-linear Evolution Equations

Let X be a Banach space, A : D(A)(C Y') — X be a densely defined closed
linear operator which generates a co-semigroup U(t). Let J(f) : D(A)(D D(A)) —» X
be a non-linear operator. Consider the following non-linear evolution equation:

{ 7/ - Af(t) = T(f(2)) )
fE=10) = fo.

A X-valued function f(t) is called a strong solution of equation (7.1) if f(t) € D(A)

for each t > 0, strongly differentiable about ¢, and satisfies the equation in the strong

topological sense. f(t) is called a mild solution of equation (7.1) if f(t) satisfies the

integral equation

f(t)=Ufo+ /0 U(t — 5)J (f(s)) ds. (7.2)

Suppose that B : D(B) — X is another densely defined closed linear operator satisfy-
ing D(A) C D(B) C X. We shall say that f(t) is a B-type mild solution of equation
(7.1) if f(t) € D(B), satisfies (7.2.), and both f(t) and Bf(t) are continuous. Obvi-
ously a strong solution or a B-type mild solution is a mild solution, but the reverse

may not be true.
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In the following, we want to find some conditions under which equation (7.1)
has a B-tvpe solution. In order to do so. we need to restrict both A and J. Since
D(A) C D(B) C .Y and B is a closed operator, for any ¢ € .Y. U(t)¢ € D(A)(C D(B))
as long as t > 0, that is, for any ¢t > 0, BU(¢) is a closed operator defined on .X'. By
the closed graph theorem, BU(¢) is a bounded operator. The cy-semigroup U(t) will
be called B-regular if there exists a continuous function o(¢). 0 < ¢ < oo, such that
(R1) I1BU)|| < o(t), t>0;

(R2) |U(¢)Bd|| < o(t)||e|, for € D(B) and t > 0;

(R3) JT o(t)dt = p(T) < oo for any T > 0.

The closed operator A is called a B-regular operator if the semigroup U(¢) generated
by A is B-regular. For the nonlinear operator J(-), we will say that J(-) is B-bounded
continuous if D(B) C D(J) and J satisfies the following conditions:

(B1) [T (&) < Clell, 1BsI(lIBell + 181]);

(B2)  1T(8) =TI < Clliel, [l I1Bell, 1B IN(I1B(e — #)]| + [ = »I])

for all ¢,9 € X, where each constant C is a monotone increasing (everywhere finite)

function of the norm indicated.

THEOREM 7.1. (Local Existence) Suppose A is B-regular and J is B-bounded
continuous. Then, for each oo € D(A), there is a T > 0 so that equation (7.1) has
a unique B-type mild solution for t € (0.T). For each a.b > 0, T can be chosen

uniformly for all ¢o in the set {é | ||¢]| < a.||B¢| < b}.

PROOF: We first assume that o(t) is decreasing and that U(t) is contractive. Let X7

be the set of D(B)-valued functions on (0. T) for which ¢(¢) and B¢(t) are continuous

and
[6C)llr = sup [l6(t)]| + sup [|Bo(¢)] < 0.
te(0,T) te(0,T)
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Since B is closed, X7 with the norm ||¢(:)||r is a Banach space. For fixed € > 0,
let &9 € D(B) be given and let X7, 4, consist of those Xt with ¢(0) = ¢, and

llo(-) = U(t)oo||r < €. We will show that the map
t
(S¢)(t) = U(t)do + / Ut — $)T(é(s)) ds (7.3)
0

is a contraction on Xt 4, if T is small enough. We denote by C, any of the constants
in the conditions (B1)-(B2) with arguments ||8||, ||| = ||dol| + € and ||B¢|, ||B¥|| =

|Boo|| + €. Suppose that ¢(-) € X1 4, if s € (0,t) and s + k € (0,t). Then

1UGE = (s + R)T(B(s + b)) — Ut - )T (8(5))]
< [[U(t - s — AT (85 + h) = T () + |(U(t — s — b) = U(t = )T (8(s))]
< C(IBo(s +h) = Bo(s)[ + 6t + h) = s(0)])) + [(U(R) = DUt = )T (8(5))]].
For fixed ¢ and s, let 1(s) = U(t—3)7(¢(s)). Then [[i(s)]| < [7(#())]| < C.(1B]|+
l|do|| + 2¢). Therefore, the last term above tends to zero as h — 0 since U(t) is co-
semigroup, and the first term on the right hand side of the above estimation converges

to zero by the assumption. Hence, the integrand on the right hand side of (7.3) is

continuous for s € (0,¢). Similarly, for any b € (0,¢), if s € (0,b) and s + A € (0,b),

IBU(t — (s + h))T (6(s + k) = BU(t — 5)T (8(s))]| <
SIBU(E = (s + 2))(T(¢(s + h)) — T (8(s)))]
+IB(U( = (s +4)) = Ut — 5))T (6(s))ll
< Ceo(t = b)([|Bo(s + h) — Bzf(s)|| + [|6(t + k) — (£)]])
+ ot = b)|(U(k) = 1T (6(s))l-
A similar proof shows that BU(t — s)J(¢(s)) is continuous for s € (0,¢). Therefore,

the right hand side of (7.3) can be defined as a generalized Riemann integral. For
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any b € (0,t) given, rewrite (7.3) as

[3 t
(S8)(£) = U(t)do + / Ult - )7 (8(s)) ds + /b Ult — )7 (6(s)) ds

and let

mt)= Y Ut——tJ(<z>(—t))

1<m<[nT]

n(t) E/O U(t — s)J (6(s)) ds.

Then 7,(t) — n(t) as n — oco. Furthermore,

t—b
limln(®) = m(®)l < lim / IU() T ((¢ — )] ds

t—b)—0
t—b

< lim o(s)ds Ce(||dol| + ||Béol| + 2¢) = 0.

(t-6)—0 Jo
Now, each 7,(t) € D(A)(C D(B)), so

Bna(t)= Y  B- Ut—;;tj(( )

1<m<[nb/t]

ﬁ/ BU(t - 5)7 (6(s)) ds = Bny(t)

and

imBrs(t) ~ Br(o)] = limlB [ U(e = )7 (8(s)) ds]
- —t b

t

< hm o(t — $)C(||[Béoll + ||doll + 2¢) ds — 0.
b

bt

Therefore, n(t) € D(B), and

1B (t+ h) — Bn(t)|| <

89
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t4h t
< / BU(t + b — 5)T(6(s)) ds]| + | / BU(t - s)(U(h) — T (6(s)) ds|

t+h t
< CJ|¢HT/ o(t+h—s)ds + / IBU(t — sj(U(h) — )T (e(s))] ds.
t 0 (7.6)

The first integration tends to zero as h — 0. The integrand in the second term

converges to zero as b — 0 for each s, and by the hypotheses on J, the integrand
IBU(t — s)(U(R) — 1) T (o(s))l| £ 2Cca(t = s)([|Bdoll + [|ooll + 2¢),

and fota(t — s)ds = p(t) < oo. Thus, by Dominated Convergence Theorem, the
right-hand side of (7.6) converges to zero as h — 0. That is, An(t) is continuous, and
similarly, n(t) is continuous. Moreover, exactly the same kind of estimation as above

shows that for any ¢(-), ¥(-) € X1,.4,, We have

1(Sa)(¢) — U(t)doll < C.T( sup [[g(¢)|| + sup [[B()I]),
t€(0.T) te(0,T)

(BSe)(t) — BU(t)do|| < Cep(T)( sup [|Bo(t)|| + sup |l4(¢)
te(0,T) te(0,T)

)
1(6)(2) ~ (S¥)(®) < C.T( sup [l6(t) = ()] + sup [Ba(t) — Bu®)]),
te(0.7) te(0,T)

I(BS0)(6) ~ (BSL)O)I < CpT)( sup, [Bole) = Bu(D)] + sup [6(6) = ()]

te(0,T)

Thus, since limr—g p(T') = 0, for T small enough. S is a contraction on Xt 4,. By
the Schauder fixed point theorem, S has a unique fixed point ¢(-) in X7 4, which
satisfies (7.2). Comparing the definition of a B-type solution and the space X7 4,.
we see that the fixed point ¢(-) is actually a B-type solution of (7.1).

We complete the proof of this theorem with the following two remarks: First.
the assumption that o(t) is decreasing and U(¢) is a contraction at the beginning
of this proof is just for convenience, but not necessary. Second, what was used in
the above estimations was the norm of ¢ and B@. Hence T' can be chosen uniformly
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whenever the initial data ¢ is in the set {8 ||8|| < a,||B|| < b}. This completes the
proof. |

From the proof above, it is evident that the existence result can be continued

globally.

COROLLARY 7.2. Suppose A itself is an A-regular operator, and J() is A-bounded
coutinuous. Then for any ¢o € D(A), there is a T = T(||¢ol|, |- Adl||) > 0 so that

equation (7.1) has uniquely a strong solution.

PRrROOF: First, by Theorem 7.1, equation (7.1) has an A-type mild solution ¢(-). We
want to show the A-type mild solution is actually the strong solution of equation
(7.1). First, suppose that ¢(t) is a continuous D(A)-valued solution of (7.1) on the
interval (0,T) with ¢(0) = do. From the differential equation, A@(t) is continuous,
50 o(t) € X1.4, for t in some interval (0, Tp), where, X1, 4, is the space used in the
proof of Theorem 7.1. Since ¢ obeys (7.2), ¢(t) = (t) for t < Ty. Let Ty be the
supremum of such Tg, since X714, is closed and q;(Tl) € Xrep,- Now if T7 < T,
then since ¢(T}) = ¢(T}), the same argument as above shows that ¢(t) = ¢(t) for
some small interval of T}, which contradicts the maximality of 77. Thus T; > T, and
é(t) = ¢(t) for t € (0,T). That is, any strong solution of (7.1) on (0,T) equals the
A-type mild solution ¢.
Next, we want to show the differentiability of ¢(t). We write

ot +h) ~ 6(t) :(U(h}l ~Dyuwan+ % " U7 s

h t
+ [(FH=Du - 97 (60s)) ds. (7.7

Since ¢o € D(A), the first term converges to AU(¢)¢o as b — 0. The integrand in
the second term, as shown in the proof of Theorem 7.1, is continuous, and its norm
is dominated by C.(||¢ol|| + || Ado|| + 2¢). Therefore, the second term converges to
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J(o(t)). The integrand in the last term converges to AU(t — 5)J (¢(s)) for each s
and its norm is dominated by a integrable function C(i|#o||+||Ado||+2€)o(t—s). so, by
Dominated Convergence Theorem, the last term converges to f(: AU(t —s)o(s)ds =
.Afot U(t — s)o(s)ds. In conclusion, ¢(t) is strongly differentiable for ¢ € (0,T) and
satisfies (7.1), i.e., a strong solution. This completes the proof. |

Remark: It is not quite clear under what conditions an unbounded operator A itself
is A-regular. In fact, the remark after the proof of the next lemma shows that. for

self-adjoint operators A in Hilbert space, A is A-regular is nearly equivalent to that

A is bounded.

COROLLARY 7.3. Suppose that X is Hilbert space and A is self-adjoint with spec-
trum contained in (—oo, o) for some finite . If there is a p, 0 < p < 1, such that
J(-) is | A|*-bounded continuous, then equation (7.1) has uniquely an |A|*-type mild

solution in (0, T(||doll, |||A|°®0||)) for any ¢ € D(|.A|?).

PROOF: By the theorem, we only need to show that A is |.A4|°-regular. Since A is
self-adjoint, A generates a spectral family {€, : —oo < u < oo}, and the operator

|A|?U(t) can be represented as

APU(t) = / et de, (7.8)

-—00

in the strong topology sense. Formal computation shows that

p
IIAPU®)|| < max{|ag|e, ’t’—pe-l}, (7.8a)

and the right hand side above, if 0 < p < 1, is finite integrable on any finite interval,
i.e., A is |A|*-regular for 0 < p < 1. |

Remark: If the spectrum o(a) D (—oo, ;] for some constant a;, then for ¢ < ||,
it can be shown that (7.8a) takes equality in this case. Since fOT 1/tdt = 0o, A can
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not be A-regular. Nevertheless, the equation (7.1) can have uniquely a strong solution
if J(-) satisfies some conditions. The reader is referred to the last chapter of [43] for

some examples.

§7.2. The Fokker-Planck-Vlasov Equation

This part will consider the solution of the Diffusive-Viasov equation and the
Fokker-Planck-Vlasov equation. Since the arguments are almost the same, we only

consider the Diffusive-Vlasov equation:

8 VAR R+ BE D Vof (5,0 - A/ =0, (DY)
2 )= —— [ ar V=) [ (7 5.8 dF

B(t) = 47r/d ‘v’(lv*—ﬁl)/f( . 5.4) 5, (PV)

tl—i-TOf(F’ 67t) = fO(Fa v) (IC)

in the space M = X N LY(R? x R?) = C(R2; L} (R3) N L'(R® x R®) defined in Chapter
IV. Define operator A: D(A) — X and J(-): D(A) — X by

Ad(7,7) = —7 - V-é(r'-‘ %) + /\A-d)(F 7), (7.8a)

T D) = /I7 — P d«,1/¢ o B ) Ved(7 ) (7.8b)

for ¢ € D(A), where the domain of the operator A is given by
#(7, ) is abs. cont., lim &(7,0) =0

AT =00

|V3¢(7, V) is abs. cont., Az € X
(7.8c)

We call that the function f(7,7,t) is a Vatype mild solution (of (DV)-(PV)-

(IC)) if f is the solution of the integral equation

f(r,v,t) // AT fou‘i)dqu
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t
- [ [[pt-srninbas) Vet a i (19
]

with E satisfying (PV), and a—i—f(r"', U,t) is a continuous X-valued function of ¢ for

-

1 = 1,2,3. Define a vector operator B: D )— X x X x X by
Bo(r,v) = Vgo(r,7), (10)

where

N={peX: lim .75 =0, |Vsd| € X}.

(741710
Let X3 = X x X x X with the norm ||¢]|xs = (||oy]? 5213 312 Tl 3
X=X xXx. w0 = (lorl% +llgall% +10s]3)2. Then X

is a Banach space, and for any ¢t > 0, by an argument similar to the proof of Theorem

4.3 (cf. (4.12)), we know that

BU(t)¢(7,7) =
i L L3F=d) (5—@) 35+
— vy 3 —
= // i t‘z) o0 D 2Nt YR
R3xR3
11 T B 3(F — v+u) 3 —q)?
< exploa (3 (5 — )4 S5 - 0D Dy
= [ ddia R(7, ¢, @ t)0(d,9), (T.11)

and

V3+1 -
I1BU)]|x—xs < —5 /\7r (7.12)

Next, by Lemma 4.4 in Chapter 4, we know that £ € C(R%) x C(R3) x C(R?) it
¢ € X, and ||E||z» < C||¢||x for some constant C. Therefore, J(-) is B-bounded

continuous in the following sense:
17(8)lx < ClldllxlIBollxe,
17(4) = T@)lx < Clllallx, 1BYII6 ~ $llx + 186~ By |Ix2),

for all ¢, ¥ € D(B). Thus, using Theorem 7.1 on each component of gqﬁ, we have
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THEOREM 7.4. (Local Existence) For each f, € D(g), there exists a T such that
the Diffusive-Vlasov equation (DV)-(PV)-(IC) has a unique mild solution f(t) for
0 <t <T. Furthermore, 5:7‘f(t) is a continuous X -valued function in the interval.

The conclusion is also true for the Fokker-Planck-Vlasov Equation.

THEOREM 7.5. (Global Existence) For any T > 0, the equation (DV)-(PV)-(IC)
has uniquely an X-valued mild solution f(t) for 0 < t < T. Furthermore, the X-

valued function 5‘2—',, (i=1, 2, 3,) is continuous for 0 <t < T if fo € D(B).

PRrROOF: The following proof is essentially based on the proof of Theorem 4.2. Con-
sider the solution of the integral equation (7.2) with operator A defined by (7.8a)-

(7.8¢) and operator J(-) given by (7.8b). We can rewrite the integral equation as

v,t) = U(t) fot+
VI 1 g 30D God)  3@+D), g
/ // /\Wt—s)2) (’ ’)[ (t_S)Z 2/\(t—3)_2/\t— )]'E(q’u)
R3xR3

By using Lemma 4.4 and the expression for U(t)J(f) above, we can show that, in
addition to satisfying (R1)-(R2)-(R3) and (B1)-(B2) relating to the operator B, the
operators A and J also satisfy

(A1) IUGIG) < CUr®lol;

(A2)  [UT(8) - UOI@ < C(l8ll, [Bo®llé - B

(A3) fo r)dr = p(t) < .

The same proof as in Theorem 7.1 shows that, under condition (A1)-(A2)-(A3), the
equation (7.1) has uniquely a local (mild) solution, and can be extended globally if
one can bound that the norm ||f(¢)|| of the solution f(¢) is upper bounded on any
(finite) existence interval (0, T). Suppose that the equation has a mild solution f(t)
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for 0 <t <Tj. Let
E\(7t) = —% a7, VF(V"I_“I) /f(a, F.t)do, (7.13)
a7 r—r

which at least is well-defined on (0,77). Consider the solution of
{ %f(l'?’ IL_"’?t) = _6' v?f T /\Aiff - El . vi’fﬂ
lim£(£) — follx =0.

Since f(7,7,t) is also the solution of the integral equation (7.9), it can be shown

(7.14)

that [ f(#,7,t)d0 is continuous in 7, and therefore E\(7,t) is continuous in 7. For
each given t € (0,T), the operator & (t) : (&1(¢)f)(7,v,t) = —E\(F,t) - Ve f(F, D)
generates a contraction semigroup. By Theorem 4.2, the operator A + &;(t) defined
via the right hand side of (7.14) generates a contractive (two parameters) system of
evolution operators Ug(t,s) for 0 < s <t < T and the equation (7.14) has uniquely a
solution f(7,#,¢) with || f|x < || follx. On the other hand, since E; is given by (7.13)
via the mild solution (DV)-(PV)-(IC), it can be shown that f(7,7,t) = f(F,7,?)
and || f(7,70,t)[[x < ||follx- That is, the Diffusive-Vlasov equation has globally a
unique mild solution. The second half of the theorem can be proved by using the
explicit expression of the integral equation and the existence of the mild solution.

This completes the proof. [

§7.3 The Solution of (DVE) and (FPVE)

Now we use the theory in §7.1 and §7.2 to get existence of a unique ¥ ~type
mild solution of the Diffusive-Vlasov-Enskog equation (DVE) and a unique Vitype
mild solution of Fokker-Planck-Vlasov-Enskog Equation (FPVE). From Theorem 7.1

and Theorem 7.4 we have
THEOREM 7.5. Suppose that in the Enskog collision term, the geometrical factor

Y = Y(7,0,7 & a€,0|f) is so chosen such that the Enskog collision operator Cg
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is a bounded continuous operator in X. Then, for any fo € D(B), there is a T =
T(|l foll, llcbfol]) so that the equation (DVE)-(PV)-(IC) (or the equation (FPVE)-
(PV)-(IC)) has uniquely a mild solution f(t) for 0 <t < T with continuous .X -valued

derivative -, (i = 1,2,3).

[n the following we give some examples of the existence of mild solutions as
well as the existence of Vz-type mild solution.
EXAMPLE 1: (The cut-off model) Suppose that Y = Y (n(7,t), n(F+ aé&t))ns(F, &)
with Y satisfying (A2)-(A3)-(A4) given in Chapter IV. Then we know that the colli-
sion operator (g is bounded continuous in this case. By Theorem 7.5, the equation
has uniquely a Vtype solution for small time ¢. In fact, Theorem 4.3 has shown the

global existence of the strong solution in this case.

EXAMPLE 2: (The decreasing velocity model) In this case, we assume that ¥ =
Y (7, U,71,71) is a continuous function of its arguments, and bounded by a decreasing
velocity function: Y (7, v;7r,0;) < MW with constant M and positive v > 0.
By the definition of the space X. we know that Cg is bounded continuous , satisfving
(B1) and (B2) in this case. According to Theorem 7.5, the (DVE) or (FPVE) has
uniquely a V-type solution for small ¢. In fact. one can show that the equation has

uniquely a global mild solution in this case. The proof is almost the same as Theorem
7.4 and we omit the details.

EXAMPLE 3: (Maxwell Distribution Model) In this case, we assume that the ge-
ometrical factor Y is bounded by the Maxwell distribution: Y (7, %, 7, v;) < M exp{
—+|0— |2} with constants M,y > 0. It can be show that in this case Y also satisfies
the velocity decreasing model. Therefore, the equation has a unique local Vstype

mild solution, and a unique global mild solution.
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