
THE CAUCHY PROBLEM FOR THE 

DIFFUSIVE-VLASOV-ENSKOG EQUATIONS 

by | 

PENG LEI 

Dissertation submitted to the Faculty of the 

Virginia Polytechnic Institute and State University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Mathematics 

APPROVED: 

    
Lidia Laban lly 

W. Greenbof, Chairman 

Keb F Gover LL Chan. 
  

  

P. F. Zweifel M. Klaus 

RB 
Jhectég ML. bbe e dete A L 

G. Hagedorn (/ J. Bail 

April, 1993 

Blacksburg, Virginia



THE CAUCHY PROBLEM FOR THE 

DIFFUSIVE-VLASOV-ENSKOG EQUATION 

by 

PENG LEI 

Department of Mathematics 

Virginia Polytechnic Institute & State University 

Blacksburg, VA 24061 

Committee Chairman: W. Greenberg 

ABSTRACT 

In order to better describe dense gases, a smooth attractive tail arising from a 

Coulomb-type potential is added to the hard core repulsion of the Enskog equa- 

tion, along with a velocity diffusion. By choosing the diffusing term of Fokker- 

Planck type with or without dynamical friction forces, the Cauchy problem for the 

Diffusive- Vlasov-Poisson-Enskog equation (DVE) and the Cauchy problem for the 

Fokker-Planck-Vlasov-Poisson-Enskog equation (FPVE) are addressed. 

Chapters II - V focus on global existence of renormalized solutions of (DVE). 

The main tool used here is a sequential stability theorem, which, based on the fact 

that the operator L, = 2 +v0-WVz— Az acts like a hypoelliptic operator from 

L\((0,T) x R® x R)) to L'((0,T) x R? x R83) @ L'((0,T) x RS; L?( R3)), concludes 

that any weakly compact set of solutions of (DVE) is strongly compact and the 

limits are renormalized solutions. The existence of global-in-time solutions to the 

renormalized equation (DVE) is proved for arbitrary L’ initial conditions with finite



mass, energy and entropy. In Chapter VI. these results are extended to the equation 

(FPVE). 

The last part of the paper, Chapter VII, introduces the concept of B-type mild 

solutions for non-linear evolution equations in general Banach spaces. The existence 

and uniqueness of this kind of solution, locally and globally, is investigated for such 

equations even with unbounded discontinuous nonlinear terms. The theory is applied 

finally to address the global existence of mild solutions of the Fokker-Planck-Vlasov 

equation, the equation (DVE) and the equation (FPVE) with special geometrical 

factors.
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Chapter I. Introduction 

The aim of statistical mechanics is to explain and predict the properties of 

macroscopic matter from the properties of its microscopic constituents. The subject 

may naturally be divided into an equilibrium and a nonequilibrium part. Historically, 

nonequilibrium statistical mechanics has taken two directions: kinetic theory of gases 

and Brownian motion theory. The subject studied in this paper, roughly speaking, 

belongs to the first direction. 

§1.1 Boltzmann and Enskog Equations 

In this section we shall derive the equations which we wish to study along the 

line of their historic development. As is well known, the basic concept in kinetic 

theory is the (one-particle) density function (distribution function), which, denoted 

by f(r, v,t), is defined, according to Boltzmann, in such a way that 

f(r, v, t)drdv 

is the probable number of the molecules (or other kinds of particles studied) that lie 

at time ¢ within an element d? around point r and have a velocity in the element dv 

around v. Consider a gas in which each molecule of mass m is subject to an external 

force mF, which may be a function of * and t, but not of v. Between the time ¢ and 

t + dt the velocity v of any molecule that does not collide with another will change, 

according to the Newton’s second law, to v+ Fat, and its position vector 7 will change 

to 7 + vdt; the number in this set is 

f(F + ddt, d+ Fdt,t + dt)drdv. 
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Since there are collisions happening among molecules. the number of molecules in the 

second set generally deffers from that in the first set. The number of net gain (or 

loss) of molecules to the second set is approximately proportional to drdvdt, and is 

denoted by (Of /Ot)..drdvdt. A first order approximation gives 

{f(F + ddt,o+ Fadt,t + dt) — f(F,3,t)}drdé = (SP) uaradvet 

Dividing both sides by drdvdt, and letting dt — 0, we get the following form of the 

Liouville Equation: 

0 = Of 
7 (r, v,t) +0: Vel (7, v,t) + F(r,t) ° Val = (Hp eott: (1.1) 

The particular choice of physical mode! determines the different forms of the 

collision terms in equation (1.1), and accordingly, different equations. Two well- 

known assumptions in the dilute gases theory state as follows!!2l-421. 

Assumption [. In the low-density limit, we can limit ourselves to binary collisions 

and consider them as instantaneous and local in space. 

Assumption II. (“Molecular-chaos assumption” or “Stosszahlansatz” ). 

The number of pairs of molecules in the element dr with respective velocities in the 

range (v,v+ dv) and (¥,, 0; + dv), which are able to participate in a collision is given 

by 

f (#0, t)dddF f(F, 0), t)dFdd,. 

From assumption I, the collision term (Of /0Ot).. can be decomposed into two 

terms: (32) cout = C” —C", where C’drdvdt is the number of binary collisions in the 

time interval dt of molecules lying in the range (r, r+dr;v,v+dv) and deflected to any 

other velocity v’, and C"drdvdt is the number of binary collisions in the time interval 
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dt of molecules lying in the element (7,7 + dr) with arbitrary initial velocity v” and 

ending up after the collision with a velocity in the given range (v.+ dv). Using the 

molecular-chaos assumption, we can express the gain-loss term explicitly in terms of 

the (differential) scattering cross section o(9, 9) , where, roughly speaking, 0 (2, dA 

indicates the probability of a molecule, having the initial velocity g and sent to the 

fixed potential, that is deflected into a solid angle dQ around the polar angles © of the 

final velocity g’. If two molecules, with before-collision velocities of v and v,, emerge 

after collision with velocities v’ and vj. Then energy and momentum conservation 

demand: 

= > ~# 2 2 12 2 : ptv=H0, +, veitovisv +o0y. (1.2) 

In this case, g = v; — v and g’ = v; — wv’ are the relative velocities before and after 

the collision. Integrating over all (possible) deflection angles 9 and all velocities 7; 

as well as using the relationship 

we derive the celebrated Boltzmann Equation in the dilute gas theory: 

O ~ « 

al v, t) +v- Vel (r, v,t) + F(F,t) -Vef= (4) ao = 

= fae f oS, NAR e O11) — FF TOSE HO) (BB) 
Despite its pre-eminent role in nonequilibrium statistical mechanics, the Boltz- 

mann equation is known to be valid only in the dilute-gas regime, indeed yielding 

transport coefficients of an ideal fluid. Enskog, first in 1921, attempted to rectify this 

situation by introducing a Boltzmann-like collision process with hard core interac- 

tion representing particles with non-zero diameter. The Enskog equation, in several 
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modified and revised versions introduced in the 1970’s in order to obtain correct hy- 

drodynamics, describes a non-ideal fluid with transport coefficients within 10% of 

those of realistic numerical models up to one-half close packing density. 

Unlike the Boltzmann theory, which describes the behavior of a dilute gas, 

the Enskog equation deals with a dense gas consisting of hard spheres. Interestingly 

enough, in the derivation of the equation, multiple collisions are neglected completely 

and the dynamics is described by two-body events, just as in the Boltzmann theory. 

Since the gas is dense, Enskog modifies the Boltzmann theory in the following way: 

(1) Modifying the frequency of these binary events by invoking geometrical effects; 

(ii) Taking into account the collision transfer; i.e., in a collision, the momentum 

Ap = m(v} — v1) = —m(v" — v) exchanged between the molecules is suddenly 

transferred from the center of one molecule to the center of the other. 

Since the molecule is a sphere with diameter a, a collision does not take place 

at a given point. Rather, we have to replace 

F( r, v, t) f(r, Vi, t) = f(r, v, t)f(r- a€, V1, t), 

where € is the unit vector along the line joining the centers of the molecules. We use 

Y® to indicate the geometrical factor, which depends only on the density at the point 

of contact, Y* = Y®(n(r— 4aét)). From classical scattering theory, the scattering 

cross section for a hard sphere potential is o(€, 7) = a?(2)e(é -g). Therefore from 

(1.1) and (1.2) we can surmise the Standard Enskog Equation: 

of 4d- Vf +B Vel = Call = 

=a? / / (8-H) -JO(T—H)- HWP (nlF+ SNAG TO MF + a2 H.0 
2 R3x St



Unfortunately, this Standard Enskog Equation does not yield correct hydrodynamics. 

In the next section, we will indicate a derivation of a revised Enskog equation via 

BBGkyY hierarchy. which corrects this deficiency. 

§1.2 BBGKY Hierarchy and Vlasov-Enskog Equation 

A limitation of the Enskog equation, unlike the Boltzmann equation, is that it 

incorporates only hard-sphere molecular interactions. In order to account for more 

realistic potentials, several extensions of the Enskog equation have been proposed in 

the statistical mechanics community, especially by de Sobrino, Grmela, Davis, Rice, 

Sengers, Stell, van Beijeren and co-workers (see, for example, [8], [21], [24], [25], [28], 

[29]. [31], [32], [46], [47]). 

One strategy toward improving the Enskog theory is based on the addition 

of an intermolecular potential tail to the hard-core repulsion. In this direction the 

addition of a square well potential to the repulsive hard core has been studied by 

Grmela, Davis, Rice, Sengers, and by Karkheck, van Beijeren, de Schepper, Stell, 

Liu, Greenberg, Polewczak, and others (cf. [24], [31], [46], [33] ), obtaining a kinetic 

equation with multiple Enskog-like collision terms. Another approach is to add a 

smooth attractive tail to the hard core. This direction is first studied by Luis de 

Sobrino for the nonequilibrium problem of a van der Waals gas. 

Consider a system consisting of N particles with Hamiltonian 

  

Hy = HY, + Vy, (1.3a) 

“mw * 
HY =) oS, Vw = S° V(ris), (1.3b) 

i=l ~ j>i=l 

where (71,--- ,7N,01,°**,UN) = (t,v) denotes the positions and velocities of the 

particles, H®, is the total kinetic energy of the system, and Vy represents the total 
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potential energy, which is the sum of all distinct pair interactions V(rj;) with r;; = 

|r; —;|. Define the N-particles distribution function py(r.v,t) in the same manner 

as in the one-particle distribution function. It is well-known that the distribution 

function py(t,v,t) satisfies the N-particles Liouville equation: 

0 
pO (ts ®t) = {Hn, pv}, (1.4) 

where we have used the Poisson bracket { * , * } defined as: 

{A, B} = 
] 

m 

N 
S(Vz,4- Va,B - Va,A- V7.8), 
a=l1 

for any two functions A and B of (t,v). If we use 

6; = va Vir3;) . (Ve. _— Va; ); (1.5a) 

then the Liouville equation (1.4) can be rewritten as 

a N . N 

Bp PN (es ®t) = a ‘Vion t+ S— Gispn. (1.5) 
t=1 b>i=1 

Introducing the (reduced) specific distribution function p, and the (reduced) generic 

distribution function f, by 

alfi,-- ,F Bi ,8,t) = / din, ---dFydirg, --- diypy(e, vt), 
(1.6a) 

N! 

iN pier TI, 01, °° , v1, t), (1.6b) fi(ti,--- ar , U1, t) = 

and integrating (1.5) over ri41,--- ,7N,UI41,°°" , UN, We find 

0 ~ ~ = ~ 

Rpts Tl, U1,°°° , U1, t) = 

N l 

= SOG VERA Pity Ot) + SO Og filAy FG + Ft) 
t=1 j>t=1



Hf 

+> A414 Oi i figr (Mis: Pi41, Vi, °° Vi415t), (1.7) 

t=1 

which. when we take / = 1,2,---. .V. forms the well-known BBGKY hierarchy. In 

particular, for / = 1, we have 

a ~ —” - ~ ~ 

By filMs Ht) + 0,- Va fi (7s, 01, ¢) 

_ _~ 1 _~ ~ ~ _~ 

= / dr,dvy va V (ria) . Vin frolri, P2, U1, V2, t). (1. 
v7 

G
 ) 

Let us point out that equation (1.8) is asymptotically exact when we assume that the 

system is formed by a very large number, N, of identical particles and the boundary 

effects are negligible. 

Define the correlation function 

‘1° ) ’ 2,t = > = > . 1.9 

gal" 201902 ) f(71, 01, t) f (Fa, V2, t) ( ) 

  

Then (1.8) can be rewritten as 

0 —_ - ~ ~ ~ 

Ot (71, U1, t) + 1° Ve S(T, 01, t) 

=> —_ 1 =~ ~ —~ _” = —~ ~ _ 

= | dry,dv2 ~ Va V (ri) . Va, [92(T1, T2, U1, V2, ‘f(r, V1; t)\f (72, U2, t). 

(1.8’) 

For hard-sphere collisions, the potential V(r) takes the form 

co r<a, 

Ves 0 r>a. 

At the one particle level, one can assume that the correlation function does not depend 

on the velocity, i.e., 

f2(71, 72, V1, Ve, t) = g2(71,72|n(t)) (M1, U1, t) f (Te, v2, t), (1.10) 
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where n(t) = = { dv f(F.t.t). Expanding the solution of (1.8’) f(7,0,t +7) 

in terms of powers of n(7,t) and letting r > 0,9! or using the pseudo-Liouville 

equation] we get the following revised Enskog equation!47!: 

49 VANE ES = CHL NGO) 
CePA Ra) =a ff toalRF + adn T OF + a2 8,2) 
g2(7, 7 — aeln(t)) f(r, v, t) f(r — a€, v1, t)JO(E- (¥—t1)) < Ev — v, > dedvi, 

(REE) 

where 

~ yf ~ ~~ > ~ _~ >~_ = ~ 

VvVSEV-EKCEVU—U >, VH UTES EV—V>, 

and €is the unit vector from the center of the target particle to the center of colliding 

particle. Since the correlation function g, depends only on the local density at r and 

rae, using traditional notations we can write go(7, rtaé|n(t)) = Y(n(r, t), n(rae)). 

On the other hand, if the particles interact through a repulsive hard-core po- 

tential of diameter a, as well as a weak attractive pair potential 9’"'(r,,), 

Vir) = oe r<a, 

= {acy r>a, 

then, in terms of the two-particle distribution function f2(7,v,7, 0’, t), from (1.8) we 

derive the following equation|!?*! 

’ +0-VIf(7,¥, y-— | ae | dr, Ved" |r ~ 7] - Ve fo(r, 0,71, 01, t) 
ot IFi-A>a 
=f a, | dé: (3, —T)a2[f,(F, P+ 20, t;,t) — folF, 7 — 02,0, 04, 1)], 

st (1.11) 

> where Sf = S}(v,v;) = {€ € S.|é- (v, — v) > 0}. The weakness of the attractive 

potential tail ¢‘* permits us to neglect the correlations in the integral on the left- 

hand side of (1.11) and to extend the integration within the sphere |r, — r] < a, 

8



since the contribution of the region where the correlations due to the hard core are 

important will be very small. Denoting the extended tail potential by V(*), in this 

case, the third term of equation (1.11) can thus be written 

1 ——Vaf (F,0,t)- Ve / di V(l — F)n(F2. 2). (1.12) 

Replacing the two-particle distribution function in (1.1) by one-particle distribution, 

as was carried out in (REE), leads to the Vlasov-Enskog equations! 

QO. . + ~ r 
5g t 2 VAS 2) = —-E-V5f(z,t)+ Calf. f). (VE1) 

E= / dry VV (T12)n(79, t) = / dr» P2V!(F12)n(Fo, t) (VE2) 

Equations similar to (VE1)-(VE2) were first derived by de Sorbrino,!°?! but with the 

Enskog collision terms replaced by a perturbation of the Boltzmann collision. Grmela 

et al.?4l studied the solution of the linearized version of the Vlasov-Enskog equations. 

The Vlasov-Enskog equation studied in our paper was first derived by George Stell 

et al.I29] by using the method of maximization of entropy. and taking the Kac-limit 

for the tail potential, {37 = lim,.o y?v(qr). In their work. they also obtain some 

useful properties of the Vlasov-Enskog equation, such as an H-theorem. 

§1.3  Fokker-Planck Terms 

Let us mention some problem arising when trying to derive the Vlasov-Enskog 

equation from the exact classical dynamics. First, in the above derivation of the equa- 

tion from the BBGKY hierarchy, the velocity correlations are completely neglected. 

One method of taking into account the velocity correlation effects is the addition 

of the Fokker-Planck terms.!?61 Moreover, in the derivation above, we assume that 

the tail-potential has no influence on the binary collision. If we account for this 
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influence in some approximate way (small-angle scattering), an additional term of 

Fokker-Planck type should also appear. Therefore, we will consider in this paper the 

so-called Fokker-Planck-Vlasov-Enskog, or Diffusive-Vlasov-Enskog, equation. 

In general, the Fokker-Planck term, or Kolmogorov forward process, as it is 

called by some authors, has different forms. The most simple, but very important, 

case is to treat the term just as the Laplacian Ajf of the distribution function f about 

the velocity v. Another very popular treatment is to write that process as Asf + 

a diva(v f). From the point of view of physics, Az denote the thermal background 

interaction, and divs(vf), the dynamical friction forces. In other words, in the first 

case, the Fokker-Planck term takes only the thermal background interaction into 

account, but without the dynamical friction forces. The second situation takes care 

of both thermal background interaction and the dynamical friction forces. Although 

both cases are frequently referred to as Fokker-Planck terms in the literature, we 

will call the first case a diffusive term and the second one a Fokker-Planck term. In 

conclusion, in order to better describe the behavior of dense gases, we get two kinds 

of systems: the first one, called the Diffusive-Vlasov-Enskog equation in this paper, 

is given by 

[= +0-Velf(7,9,t) + E(F,t)- Vaf (7, 0,t) — gf = Calf, f), (DVE) 

and the second one, called the Fokker-Planck-Vlasov-Enskog equation, is given by 

QO. — ~~ . _o... 8 . 
lay TU: Valf (7, v, t) + E(r, t) . Vol (7, Vv, t) ~~ ndivs(vf + 5 Val) = Calf, f), (FPV E) 

where E(7,t) is assumed to satisfy the equation 

E(#,t) = | , a VeV (|? ~ Fil) n(F). (VE) 
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Here, R? denotes real D-dimensional position or momentum space, 6, 7 and A are 

positive numbers, and Cg(f, f), is the Enskog collision term. Let us point out that, 

although it seems that the treatment of the (DVE) is simpler than that of the (FPVE), 

the conclusions about the solution of the two systems, from the point view of either 

mathematics or physics, can not be inferred from each other. 

§1.4 Outline of Results 

In this paper we will study the Cauchy problem for the equations (DVE)-(VE) 

as well as (FPVE)-(VE) with given initial condition 

lim f(r, v,t) = fol, v). (IC) 
t-—+0 

in the Banach space L'. We will use the revised Enskog collision term with the form 

of 

Calf, f\(F.8,t) =e? If. MF t) nF a8, 2) fF LF — a8, Ht) 

Y (n(,t), n(F + ag, t)) f(F7, 8,2) f(F + a2, 01,t)] <2T-H > dedi, 
(ET) 

v=v—€<GV-V>, BW=ute<€V-y >, 

and n(7,t) = f du f(r,v,t). The geometric factor Y(7}, 2) in principle is a functional 

of f and should be determined by the Mayer cluster expansion.®7 The tail potential 

V is chosen as the Coulomé potential, V(r) = —aT'(D/2)(2(2 — D))-14-P?|FP-?, 

where D > 2 is the dimension of the space. The field term is assume to satisfy the 

following Poisson equation: 

dive E (7, t) = —an(F,t). (VP) 
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The paper is naturally divided into three parts. The first part. including Chapter I] 

— Chapter V, deals with the so-called renormalized solution of the equations (defined 

below) with only the thermal background interaction considered in the diffusive term, 

i.e. the system (DVE)-(VP)-(IC). The second part, Chapter VI, consider the renor- 

malized solution of the equation in which the diffusive term includes both thermal 

interaction and dynamical friction forces, that is, the (FPVE)-(VP)-(IC) equation. 

In the last chapter both (DVE)-(VP)-(IC) and (FPVE)-(VP)-(IC) are considered, for 

the mild solutions and B-type mild solutions rather than renormalized solutions. 

Now we introduce the main results of the first two parts of this paper and 

sketch the processes of the proof. A nonnegative function f of C([0, 00), L'(R2 x R)) 

is called a renormalized solution of (DVE)-(VP)-(IC) if the composite function gs(f) = 

*log(1 + é6f) satisfies the equation 

1 

1 +6f 
  

0 . ~ O . 
a95 + ¥- Vegs — AAsgs = Calf, f) — B- 5296 + A6|Vagsl?,  (RDVE) Ot 

and f satisfies (VP)-(IC) in the sense of distributions. Similarly, f is called the 

renormalized solution of (FPVE)-(VP)-(IC) if gs satisfies 

0 . =), , , 0 
B96 +B Vege + E(r,t) - Vege — ndivalgsd + 5 Vigs) + 96 = 

] On 2 f 
= — ) M Tp og BE A) + oy Wags! + Ne (R E) 

  

  

and f satisfies (VP)-(IC) in the distribution sense. These equations are obtained from 

the original kinetic equations by replacing the unknown distribution f with gs(f). 

The main result of first two parts is: 

MAIN THEOREM. a) Assume that Y(o,rT) = Y(r,¢) is a jointly continuous function 

satisfying the boundedness condition cY (o,T) < My < ov, the initial value fo(r, v) > 

12



0 satishies the boundedness condition 

Jf ards tole a + iP + [AP + log fol) $C < 00, 
R3 x R3 

and Eo(7) = Via *Ng)(T) = Viliq * f fo(?, v) dv)(7) satisfies 

/ IE\(A2 dF < C <0. 
R3 

Then, there exists f € C([0,00); L'(R® x R*)) which is a renormalized solution of 

(DVE)-(VP)-(IC). 

b) Under the same conditions as in a), the equations (FPVE)-(VT)-(IC) have renor- 

malized solutions. 

For the equation (DVE), the proof of the theorem is based upon the following 

ideas. In Chapter II, we give some useful estimates, including conservation of mass, 

a bound for the total kinetic and the field energy as well as a bound for the entropy, 

provided the system has classical solutions. From a mathematics point of view, these 

bounds indicate the weakly pre-compactness of the set of solutions. Chapter III ad- 

dresses sequential stability results. From the boundedness arguments, approximate 

solutions can be obtained, which form a weakly pre-compact set in the Banach space 

L'((0,T) x R° x R°). The sequential stabilities theorem concludes that the approxi- 

mate solutions set is pre-compact, and limits are renormalized solutions of the system. 

This kind of idea is not new, for example, similar results are obtained by DiPerna 

and Lions for the Fokker-Planck-Boltzmann equation.!"] In fact, our approach to the 

proof is very similar to theirs. The increased difficulty here is in part due to the fact 

that we have to show the pre-compactness of {g?} with Lyg? = At +h}, where 

a. Ly = S+0- V7 Ads, 
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{h®} is weakly pre-compact is L'((0,7) x R° x R3), but {h3} is only weakly pre- 

compact in L'({0,T] x R2; L?( R2)) (see, e.g., Lemma 3.4). In other words, Ly is 

similar to hypoelliptic operator from L'((0,T) x R? x R?) to L'((0.T) x RB? x BR?) 2 

L'({0.T] x R28; L?(R2)). From the compactness argument and some detailed mea- 

sure and distribution theory considerations, we deduce that gs, a weak limit of g?, 

solves the (RDVE). Chapter IV and Chapter V provide the existence (and unique- 

ness) argument for the solution of the approximate equations and the existence of the 

renormalized solution of (DVE)-(VP)-(IC). The technique used for the existence of 

approximate solutions is the contraction mapping method, and the fact that the op- 

erator consisting of the Laplacian and the Vlasov term generates a positive semigroup 

in some functional Banach spaces. 

The idea for demonstrating the solution for the (FPVE)-(VP)-(IC) is similar, 

but with some technical modification. For this reason, the second part of the paper 

is written in an abbreviated fashion. We do not present the proof of the theorems in 

great detail. Instead, we outline key facts differing from the first part, which set the 

new problem into the frame work of the first part. 

The third part of this paper is basically to consider the following abstract non- 

linear evolution equation 

4 f(t) — Af(t) = IF), | 
f(t =0) = fy (ABS) 

in some Banach space V, where A: D(A) — is a closed linear operator which 

generates a co-semigroup U(t) , and 7(-) is an unbounded discontinuous nonlinear 

operator from D(7)(D D(A)) to .v. For a given closed linear operator B, we call an 

*-valued function f(t) as a B-type mild solution of the equation (ABS) if f(t) is a 

14



mild solution of (ABS), i.e., the solution of the integral equation 

t 

f(t) =Ul)f= | UE- TUS) as 
0 

and both f(t) and Bf(t) are continuous in t. We give some conditions for A, B, J 

under which the equation (ABS) has a unique B-type mild solution locally and glob- 

ally. Using the theory obtained, we show that the Fokker-Planck-Vlasov equation 

and the Diffusive-Vlasov equation have globally a unique mild solution f(r, v,¢) such 

that aS (*, v,t), 7=1, 2, 3, is a continuous L}(R° x R°)N C( RE; L'( R2))-function 

of t. Furthermore, we give some examples of the geometrical factor Y with which the 

Fokker-Planck-Vlasov-Enskog equation and Diffusive-Vlasov-Enskog equation have 

locally and globally a Vs-type mild solutions. 

§1.5 A Short Review 

In the remainder of this section. we review some works on related subjects. 

The first local in time existence theorem of the Enskog equation was obtained by 

Lachowicz.®% A global in time existence theorem was obtained by Toscani and 

Bellomo!5! in the case of a perturbation of the vacuum. Polewczak!*! showed the 

solution obtained in [30] is actually a classical solution if the initial datum is smooth. 

Cercignanil!! obtained global in time solutions for small initial data in L} and Y = 1. 

All of the above results deal with the standard Enskog equation, but with easy modi- 

fications can be extended to the revised Enskog equation. Furthermore, those results 

refer either to small initial data or to local in time existence. For large initial data, 

Cercignani!!®! obtained global in time L'—solutions in the case of one-spatial dimen- 

sion and Y = 1. Arkeryd!?] considered the two-spatial-dimension case using a weak 

compactness argument in L!, however with the range of integration with respect to 
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€ extended to the whole sphere S*, together with the assumption that Y = 1, ice., 

the Enskog-Boltzmann equation. Moreover, Arkerydl) obtained global existence for 

Y = 1 under the assumption that the initial value was differentiable in 7 in the L! 

sense. and Arkeryd and Cercignani!4] gave a proof of global existence with arbitrary 

L' data in the case of periodic boundary conditions for Y = 1. For the Vlasov- 

Enskog equation, Grmela!4l first studied existence for the linearized Enskog-Vlasov 

equation as well as bifurcation of the equilibrium stationary solution to the nonlinear 

Enskog- Vlasov equation. The Enskog-like term in that paper is actually an improved 

Boltzmann collision operator. Global existence of a renormalized solution of the 

Fokker-Planck-Boltzmann equation was first studied by DiPerna and Lions.!5! Exis- 

tence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems was studied 

by Victory et al.l8I491 and for the Maxwell-Vlasov system by Dressler, DiPerna, Lions 

etc.5I06]19] The reader is referred the references there for further review on related 

subjects. 
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Chapter II. Conserved Quantities and Bounds 

In this chapter, we obtain some useful identities and inequalities, including 

bounds for mass, energy, spatial momentum as well as entropy. These bounds are 

obtained based upon the assumption that f is a classical solution of equation (DVE)- 

(VP) if no additional description is provided. 

§2.1 Conservation of Mass and Energy Bounds 

First, we assume a symmetry condition on the geometric function 

Y(o,7T) = Y(7,¢). (2.1) 

Then we havel37),[%] 

i o(r, v) Ce(f, f) dvdr = 

ee 

x fF tf (r + aé,v1,t)Y (r, r+ aé) < €,v—v, > dédv, dvdr, 

(2.2) 

which gives 

“ / | f(#,8, 1) dad? = 
R3 x R3 

= [fo Agf dvdr — [fe Vaf dvdr + [fee Cr(f, f) dvdr 

R$ x R83 R3 x R3 R3 x R3 
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= // divs(Vaf) — / div; fE dtdr = 0, 

R3x R3 Rx R3 

or 

/ {[(7, 0, t) dvdr = / f(7,0,0)dvdF = M, Vt>0, 

Rx R3 R3 x R3 

(conservation of mass.) (2.3) 

Next, we want to get some information about the energy. Multiplying both sides of 

(DVE) by v? and integrated over R® x R?, we have formally 

| oe vd -V f(z, t)] didr + + ff vE. 212. t) dar = 
R3x RS R? x R3 

=) / / vtAgf didi + / Calf, f) dod®, (2.4) 
R3 x R3 R3 x R3 

Since E is a function of 7 and t only, 

divs((v*f))E = (divsE)w?f +E. Vau?f =2E of +v?E- Vsf, 

or 

vE .Vef = divs(v? fE) —2E - of. 

Also, by (2.2), the last term on the RHS of (2.4) is 0, and 

[feat aver - // divs(v?Vef) dwar —2 ff o- Vef dvdr = 

R°?x R3 R?x R3 R3 x R3 

=-2 ff dvesoasar+2 [f sea,yarar=2 [f pa, 0) dvdr. 

R3 x R3 R° x R38 R8x R8 

Therefore, at least formally, we have 

| fons .) did = 2) / [1 iG 0) dodF +2 / drFE-j, (2.5) 
R3 

Ooo a R x R38 
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where 

j(*,t) = / Cf(F.U, t) dv. (2.5a) 

Next, let us consider + fos E° dr. Note that, at least formally, Js E. sf di = 

Js divs fE di = Q, Js Asfdt¥ = Spe diveV sf dv = 0, and from (DVE)-(VP) we 

have 

0 ~~ —« ~~ > > 

—n(F,t) = -| dvu-Vef+] Celf.f)(rv,t) dv, 
ot R3 

0 = —_ ~ _ ~ _ 

b= [| Va-V(r2a-—r)dry f Calf, f\(r2,,t) dv ot R3 R 

_ / Ve,-7V (72 _— r) dry / v° of dv 
R3 R3 or 

= | Va eV (hy — 7) dis / Calf. Afni, t) do / / Van-eV (Fy — Pdivg, fo 
R R3 

R°x R38 

== / Vane (% — 7) di, Ce S) B,t) do — / / dr,di VA Vz - fi)+ 
3 

R R3x R3 

+ / / dFydv AgV(* — F) fo, (2.6) 
R3x R3 

where we have used 

In (2.2), let (72,0) = (72) = VV(r2 — 7). We assert that the first term on the right 

hand side of (2.6) is 0. Also, at least formally with some restriction, the second term 

on the RHS of (2.6) is equal to zero. Therefore, we have 

d wate. - dE 2 a . . 
— dr |E|° =2 dr E.—_=2 dr FE - dr,dv AV(rg —7T) ft (2.7) 
dt Jra R3 dt RS 

R3x R% 

Now, if V satisfies (LPE), then 
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d =. ~ 
— dr |E|? = 2 | dr E // ar,dv fv(—a)é(ri2) = 
dt R3 Rs 

R3 x R3 

= -2a | dr E . BF, 9,2) 4 = 20 | dF B +7. 
RS RS RS 

Thus, (2.5) and (2.8) imply 

(a ff vy t) dvdr + | di|E|?) = const. = 2haMy. 
5 R3 

R3 x RS 

With no loss of generality we assume a = 1, which, in turn, implies that 

u* f(r, v,t) asa + | dr |E(F,t)/? =M,+2AM\t, Vi > 0, 

R3x RS R 

where 

M; = /I vf Rat =o) anaes | dF |E(7,t = 0)|*. 
R3 

R3x R8 

(2.10) 

Now let us estimate the term f/f r?f dvdr. Introduce the Liapunov function 

E(t) by 

E(t) = dr du(r — tv)? f(r, 0, t). J, 
Since 

d 
(4+ + E(7F + to, t)- Vz — AAs) f(r + td, 0, t) = Ce(f, f)(7 + tv, v, t), 

a + E( P+ tv,t)-Ve—AAg)r? f(F + td, 0, t) = r°Ce(f, f)(F + td, 0, 1), 

= || di di(F — tv)? f(F,8,t) = 
RS x RS 

(2.11) 

- df dv E(F,t)- Vali — t0)2(F, a) +2 ff di doAgf (F,0,t)(F — to)?+ 
R3x R3 R$ x RS 

+ / [eran — apoE NEY 
R3x RS 
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th dF di(F — t0?Ce(f. f\(F som df dvF-0Cg(f, f)(7,0.t) = 

R? x R3 R3x RS 

-a [ff] dédv, dvdr < €0—%, >? f(F, vt) f(F + a€ 01, t)Y(n(P).n(F + aé)) 

R3x R3 x R3x 84 

<0, (2.11') 

we have 

dF di(* — t8)? f(7,3,t) = E(t) < E(0) = / / di dir? fo(F,3) = Mz. (2.12) 
R° x R® R?xR3 

By the Cauchy-Schwarz inequality and (2.10), 

/I di dir? f < (t\/Mz + 2\Myt + VM)”. (2.13) 
R’x Rs 

§2.2 A Bound for Entropy 

Multiplying both sides of (DVE) by log f and integrating over R® x R°, 

Of or 4 of 
log f 5 + log fu: og f B. == = log f Calf, f) + Alog fAsf, 

a | “ _ 
tap tO Vet B Va — AAs} flog f = (1 + log f)Ce(f, f) — AFT Vall’, 

= /I divs(Ef log f + AVef log f) dédF + / (log fCe(f, f) — AFT |Vef |?) dadF 
Rx RS R?x Re 

— / / log fCg(f, f) dvdF — 4X / / IVaV/ fl? dodr. (2.14) 
BBR Rex R3 
3 R3 

21



Define 

st t 

T(t) = / F(F.3, t) log fF. st) dear — | His)ds+ [ J(s) ds, (2.15) 
0 0 

R3x RS 

where 

I(t) = s/f déds, ded? f(#, 0, t)[f (7 — a2, t)Y(n(7), n(F — a) 
2 R3 x R3 x R3 x S3 

— fF + a2 H1,t)¥ (n(F),n(F + a2) < 25-4, > 
~I*(t)—I-(t), (2.16a) 

J(t)=4\ / | IVaV FF, 8, bt) dod. (2.16b) 
R?x R3 

Letting y = f(r. vt) f(F+a€ 01,t), z= f(r,v",t) f(rF+a€ dj, t), using the inequalities 

y(log y — log z) > (y — =), and integrating both sides of (DVE) over R® x R?, we have 

d 
— < 0. 2.17 “T(t) <0 (2.17) 

Furthermore, 

d t 
— /| flog f dvdr = a(t) + I(t) — I(t) < I*(t). (2.18) 
dt J J psy p3 dt 

Now we assume that the scattering function Y(7, a) is continuous in T,o satis- 

fying 

sup TY (7.0) < My < cc. (2.19) 

Then 

I*(t) = 
a 

=", Sif fF — a@, ty, t) f(F, 0,2) (n(A), nF — ad) < 2-H, > dedv,dodF 
R3x R?x R3 x S7 
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<t /I/ fF — 42%), t)f(F, 8, t)Y (n(A), n(# — a2))(|d] + |a,|) dédv, doar 

R3x R3x REX SF 

2 
> [ff n(r — ae, t) f(r, v,t)Y(n(r- a2), n(7))=(1 + v*) dédv,didr 

ees 

lA
 

l 
+o ii (FL tf(r— a€ vy.t)Y(n(r), nr — a€))5(1 + vy) dédv, dvdr 

Rex R? x R3x St : 

<2na?My / / R°f(#.8,t)(1 + v2) dod? (from (2.3) and (2.10) ) 
R? x R3 

<2ra*My (Mz + 2M,t), (2.20a) 

and similarly, 

I~ (t) < 2a? My (M2 + 2AM;t). (2.20b) 

In addition, suppose that 

My, = / f(r, v,t = 0)| log f(r, uv, t = 0)| dvdr < co. (2.21) 

Re x R38 

Then (2.18) and (2.20) imply that there exists a constant Ws; = Ms(M,. Wo, M4, My ,T) 

such that 

| f(r, v0, t) log f(r", vt) dvd? < Ms, O<t<T. (2.22') 

R?x RS 

Combining (2.3), (2.9), (2.12) and (2.22) and using the argument as in [17]-[20] we 

have 

/ Ge v, t)| log f(¥, v,t)| dvdr < Me(M,, M2, Ms, M4, My, T) <x (2.22) 

Rx R3 

for 0 <t<T. In fact, suppose [f flog f dvdr < R, [f(1 + lo]? + |r?) f ddr < R. 

[fs log f| dsdt = [ff frog pacar +2 ff xyesyflos(5) doar = 

23 
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=K+2 / / X(1> soexn(-(lA2+laP)F ay dudr+ 

+2 / / X(s<exp(-(lAP+lae))F log(s =) dea 

S3h+2 / / X (F<exp(—(lA? +P) Ff mi drdv 

(.. dCo = const. such that tlog - ; <Covt, WO<t<1) 

< 3R+2Cy // X(f<exp(—(72-+\02)) Vf ddd? < 3R + 2Co(27)?, 

which proves the inequality (2.22). 

Finally, integrating both sides of (2.14) on (0,t) one gets 

g(t) — y= f ds i log fCg(f, f) dvdr -4 [ II... Va fl? dade 

Rx R3 

Sn h( f) dédv, dvdrds -4 [f/f \VaW fl? didrds, 
[0,t]x R3x RS 

(0,t]x R3 x R3 x R3x S? 

where 

g(t) = / / flog f(F,3,t) dds, (2.23a) 
R3 x R3 

  Wf) = tog FIT ee y (nfF),n(F + ad) <ET— A>. (2.280) 
Letting h*(f) = maz{h(f), 0}, UN) = max{—h(f),0}, and using the fact z(log z — 

[If ovis [a 
(0,t]x R9x R? x R3 x S2 

logy) > z-—y yields 

Note that h = ht —h7, and from (2.3), (2.20a) and (2.22) we get that there exists a 

constant M; = M7(M,, M2, M3, My, My ,T) such that 

/ / / / Jot A)|deda, dvardt + 43 / / | IVa Fi? dbdrdt < My. 
[0,7]x R3 x RS 

[0,¢] x R? x R3 x R3 x S27 

(2.24) 
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Chapter III. Sequential Stability and the Proof 

This chapter will address a key result of the first part of the paper, i.e., the 

sequential stability theorem. We first introduce the definition of a renormalized solu- 

tion of the equation. Then we investigate some properties of the transport-diffusion 

operator. Finally, we give and prove the sequential stability results (Theorem 3.1). 

§3.1 Sequential Stability 

Consider a sequence f, of nonnegative solutions of (DVE). We assume that 

fn € W2°(R™ x R®™ x [0,00)), fy — 0 as (7,0) — 00 uniformly in t € (0,T] for all 

T <co, E” € W?( R® x [0,00)), E” + 0 as r — oo, and there exists a constant Cr 

independent of n such that 

Jf fol 8.00 + FAP + JP + [log fal) dBdF < Cr, (3.1) 
R3 x R3 

JE, (7, t) Pdr < Cr, (3.2) 
R3 

T 

[af] MeV FP + ios faCel Fas fall} a0dF Cr (33) 
0 R? x R3 

Also note that assumptions (3.2) and (3.3) imply that for all R < co there is a 

constant C = C(T, R) such that 

T > | dé | dt / dF|VaV/J,- B,| < C(T,R), (3.4a) 
Br 0 R3 

and 
T 

| au f art | [View fn: E,,|? dg)\/? < Cp. (3.4b) 
0 
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In view of the preceding chapter, these bounds are automatically satisfied pro- 

vided the basic physical identities (2.2), (2.3), (2.9) and (2.14) are justified and pro- 

vided (3.1) and (3.2) hold at t = 0. The justification of these and related identities 

becomes necessary only when we address the question of the existence of a solution 

of (DVE) and analyze sequences of approximate solutions. For the moment we shall 

assume for simplicity that (3.1)-(3.4) hold. Because of (3.1) and (3.2) we may assume 

by passing to a subsequence that f,, converges weakly in L'( R" x R" x (0, T]) to some 

f for all T. and E., weakly in L*(R" x (0, T]) to E. 

In order to deal with the term Cg(f. f), DiPerna and Lions in their treatment of 

a Fokker-Planck-Boltzmann equation"? introduce a new formulation which consisted 

of renormalization by a suitable non-linear transformation of the dependent variable 

f. Suppose f is a smooth nonnegative solution of (DVE)-(VP)-(IC). Then gs = 

Bs(f) = = log(1 + éf) solves the following renormalized version of (DVE), 

  

a 1 = 0 
ve + U- Veg5 — AAggs = 1+ Fak f)-E- rt + \6|Vags|", (RDVE) 

div;E = —n(7,1), (VP) 

which motivates the following definition. 

DEFINITION. A nonnegative element f of C([0, co), L'(R2 x R3)) is a renormalized 

solution of (DVE)-(VP)-(IC) if for any 6 > 0, the composite function gs = {5(f) 

satisfies (RDVE) and f satisfies (VP)-(IC) in the sense of distributions, where {5(t) = 

+ log(1 + 6t). 

We state now the sequential stability theorem for the Diffusive Vlasov-Enskog 

system. This result is a key ingredient in the construction of an existence theorem 

for (DVE)-(VE). 
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THEOREM 3.1. Under the assumptions (3.1)-(3.2)-(3.3). 1 < p < oo, T > 0, then 

the sequence f,, converges in L?(0,T; L'( R2 x R2)) to a renormalized solution f which 

satisfies (3.1)-(3.2) for a.e. t € (0,7) and (3.3)-(3.4). Furthermore, for every 6 > 0, 

the renormalized interaction terms satisfv 

{ CaS, AA + 6f) leew, € Cl[0. 00); L1( R32 x Br)), VR< co 

CES, A) + Sf) lrewe € L'([0,00) x R2x Br), VR,T <0 

and Isl|seBr € L?((0,T) x Re; H*(Br)) (VR, T < 00). 

§3.2 Properties of the Diffusive Transport Operator 

To prove the theorem, we need some information about the partial diffusive 

transport operator: 

0 
Ly = —+0-Vz7— Adz. 3.5 = > + (3.5) 

LEMMA 3.1!7]. The operator Ly has a fundamental solution (Green’s function) 

p(t, 7, 0:7", 0") satisfying 

(i) 

sup / v(t, 7, 0:7", 0") dod? < C(T), Wh< cc. (3.6) 
t€(0,7], (73) R? x R3 

(ii) 

p(t, F, 0:7, 0) < C(T,h) ift € [AT] (7.8, (7,5) € Bx B, W<h<T <0, 

(3.7) 

(iii) 

p(t, 7, v7.0") dvdr +0 as R- co, 

(77a )|<M,te[h,T]|(F,a)[>R 

YVM<oo, VO<h<T<o. (3.8) 
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Moreover, the Green’s function p(t,r, v;7", v0") is given by 

    

3V3, 1 Lol ne lw. ng HF-P)-(T4H)  3(F-—7/YP 
X (0.00) (t) ——(——+)* exp(——(-(#@-#”)? + — ~ X(000)(t) (<a) exp (G (FF) (F407) ee) 

(3.9) 

PROOF: Let us first show briefly here how to deduce fundamental solutions of 

the operator Ly. Since the coefficients of the homogeneous equation depend on the 

variable v, we can not obtain the general solution of the equation by using the con- 

volution of the right hand side of the equation with the Green’s function. Instead, we 

seek fundamental solutions of the equation 

(< 43+ Ve— AAs) G(F,8, ta) = 6(F, 8 — 7,1), (3.10) 

where u is a ( 3-d ) parameter. Taking the Fourier transform of (3.10) with respect 

to *, denoting by & the transformed variable and G the transformed function, then 

O ok “ea . 4 
(= +0 -1a — AA;s)G(a, 0, t; v) = 6(0 — w,t). 

Fourier transforming with respect to v, writing 8 and G as the transformed variable 

and the function, respectively, we have 

(S— a-Vg+ BOG, B.A: t) = 2 *FH(0). 

Using the method of characteristic for the PDE, we have 

d 
73 G(a, B — sa,s) + (8B — sa)*G(a, B — sa, s) = et (B-$8) (4), 

7 -= 3 

A . ~1t-(B+td) (10? +0°2-8+ 5a?) t>0O 
G(a, B.t; a) = { € , 

t<0 

Therefore, by taking the inverse Fourier transformation about B and a@ , respectively, 

we have for t > 0, 

Ay =e me ~ fq? -itta 9(t-a@) —2l(t62424-3 OHH ta) = erSeerss | giao ner aat sea) 
R? 
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and 

  

~ 7 4, 3/2, ~ =a" - ~$e(T+4d)-4,-A Ba? CR 5,40) = (FR)PPe a Fe HO eae) 
3V3, 1 3 1.1 ay 3,4, gy 35 75,4, 34 

73) exp{— i517 (% —u) + 78+ 4) ~F (@ aT |}.   

Noting the coefficient of the operator Ly is independent of the variables 7 and t. it is 

easy to show from (3.9’) and the classical theory of PDE that (3.9) is the fundamental 

solution of the operator Ly. 

Now, integrating (3.9) over (r,v), then for each given (q, u,t), we get 

di di p(t, F, 6: G, a) 

  

  

R3 x R3 

3V3, 1 3 — ll, 1, 
=— (yp) / dr dv exp(— 7 (0 —t)")x 

R3 x RS 

1 3 . 3(F-q)-(v+u)  3(F-q)? 
exp(—> (+a u) — t + #2 )) 

  

3/3, 1 31 1 v4  3r? 
= (x7) J exp(— 52 Jaz f exp -Sa) ar 

_3v3/ 1 Ate 

8 = (R7 
~(4ntn )3/?(—_) 3/2 = 1, (3.11) 

which proves (3.6). (3.7) is obvious from (3.9), and (3.8) from the identity (3.11) and 

Lebesgue’s Dominated Convergence Theorem. @ 

Now let h” be a bounded sequence in L'((0,7) x R° x R°) satisfying 

T 

sup / [I Ian"|dFdidt +0 as R= x, (3.12) 
n JO [(7,a)|>R 
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and g? be a bounded sequence in L!(R® x R°) satisfying 

sup // lgs|drdv¥ +0 as Ro. (3.13) 
(F7[>R 

We denote by g” the solution of Lig”? =h" in (0,7) x R? x RB? with g™lco = g%. 

Then, for each given ¢ € [0, 00). define the operator U: L'( R® x R°) + L'(R® x R*) 

by 

OMe) = ff we Ra qaacqit.e) aga 
R°x R8 

Using the definition of the fundamental solution, we write g” as 

(7, v,t) = U(t (\g0+ [Ules)h"(s)ds = (F, 

- ix (s, q, dt) p(t — s,r,v; q, a) dqdtids + / 90 (9, By) p(t, r, v, 7, v) dgdu 

R3 x R? R2xR3 (3.14) 

fort € (0,7), 7,a@€ (R° x R?. 

LEMMA 3.2. The sequence g” is pre-compact in L'((0,T) x R® x R?°). 

PROOF.: From the Dunford-Pettis property,4! we only need to show 

(a) for Borel sets A in (0,T) x RetimesR®, 

sup | lg" (t, 7, ¥)| drdvdt +0 as meas(A) — 0, 
n JA 

(b) for any T > 0, 

T 
sup | II drdvdt|g"(t.7,v)| ~0 as R—- oo, 

n Jo JJyranirr 

(c) Af{gl} Cc {g"} and gi converges a.e. on (0,7) x R® x R?. 

To prove (a), let us consider 

fue jarasde < [ / Xalt, rv syaearas [ Jf |h"(s, 4, @)|p(t — 5, 7, v; 7, w)dqdvds 

Rex RS 
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ff / Xa(t, 7, v)dtdrdv | l9g (7: &) p(t, 7, ¥; 7, uw) dqdu, 

R38 x R83 RS’ x R8 

and thus (a) holds as soon as we have 

sup qa(s.g,u) +0, as meas|A| — 0, 
s€(0,T],(¢.2) ER? x R3 

where qu(s.q,u) = fr dt [fas ps UrdvX 4(t, 7, 0)p(t — 3,7, 0:¢, a). But this is obvi- 

ous from (3.9’) and the absolute continuity of Lebesgue integral with respect to the 

measure. 

Next, 

T 

atdFds |g"(t.F.8)| < 
(a)|>R 

f Jf seawalt cyataras | J five [h"(s, 7, uw) [p(t — 3,7, 0, ¢, 4) d(q, u)ds 

R3 x RS Rx R38 

T t 
tf Lf xemmattnonararas | [foam bot,7,0,4.0 aga 

° R3x R3 ° R3 x R3 

T t 

-/ // Xyea>r(t, &. nararas | / |h™(s.q, 4) |Xqg z a)|<M)p(t — 8,°° -) dqdiids 

© ROR ” 3x Re 
T t 

+ | / Xyraiertt. 7 jaaras | / JA" (s, 4, W)IXqqayzmyp(t — ,--- ) dgduids 
° R3 x R$ ° ay Ra 

T t 
+ / i Xyeaj>r(t. r. sjardras | / lgo (4; u)IXqqayiemyP(t, ---) dqduds 

© BRS ” FB xR? 
T t 

tf ff xvenentt.ranaras f/f oe aX uassnelt, +) aids 
© Bx ” R3%R9 
T T-s 

if is// ana f we ff drdvXyraaRr(" V)Xgaicmh"(s,¢, U)p(t,--) +o 
R3 x R8 RB x R3 

Decomposing fi dt’ into eats) dt! + feo dt’, and using Lemma 3.1 and the 
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condition (3.12)-(3.13), we have 

[ // dtdrdt |g"(t,7r,v)| < C6+C sup // p(t, r, v, g, @) drdv+ 
(GD ISMtE(8.7) 

|(FW|2>R (Fv) |2>R 
T 

+ c | underset|(g,u)| > Wo / dtdgdu|h™| + c | lgg |dqd, 
0 I(Gt)|>M 

and (b) is proved. 

(c) is proved by the following facts. First, without loss of generality, we may 

assume that h” converges strongly to some bounded measure yp on [0,7] x R° x R° 

and gj to some bounded measure \ on R° x R?. It follows from (3.6)-(3.7) that 

BEML AIMM ff ve,7 saa AGD, 
R°x R3 

Therefore we can assume gf = 0 without loss of generality. 

Let 6>0 and d5€ C™(R), 0< 5 <1, 65 SV ifs <6, 5 = 1 ifs > 26. Set 

gf (t, 7, v) -[ / dsdqduh"(s, 7, u)os(t — s)p(t — 8,7, 0, 9g, t). 

R3x R3 

From (3.6)-(3.8) we have 

LA) [f dst spl FEED dus, 0.0), 

i «) drdvlgs — g"| 

R? x R3 

<[ dt // area [ ds / dqdii|h”(s, 7, u)|(1 — o5(t — s))p(t — 8,7, 0, (a) 

R3 x RS R3 x RS 
T t 

< / dt Jf a I dsdqdti|h"(s, 7, %)|p(t — 3,7, 0,9, u)} 
0 (t—s5)+ 

R? x R® 

< 2C 76 / |h"(s, 7, 0)|dsdqdu < C6, 

Rx RS 

which proves (c). @ 

The next lemma is quite important for our argument. 
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LEMMA 3.3. In addition to (3.6)-(3.8) in Lemma 3.1, the fundamental solution of 

Ly satisfies also 

(iv) for any Borel set A and VT < 00, 

sup / ards( f p(t, a; 7,0") do")? < C(T, meas(A)) 3 0 
PERI JA 

as meas(A) — 0; 

(v) for all M < co and for allO<h<T<o, 

sup / a | p(t, 7, 3; 7, 0") dv)? dF 4 0 as R co. 
Jr+|ol2R |r? a |< M,tE[h,T] 

PROOF: Since 

  

=F. exp{-(5(8- uy + “(0+ ot)? — “(5+ O).(F--P)+ a(F~ *))}do 3 

=F onal rv — tv')’) (/. exp(— (3+ s(o - ee") “))))48) “ 

=O (AE ym (Fa lF-# - 1077), 

[ 5 5 ar (oS a) a= Con 

and 
T 

/ ~_dt=C(T)<0,  YW<o, 
0 

(iv) follows from the absolute continuity of Lebesgue integral with respect to the 

measure, and (v) from Lebesgue’s Dominated Convergence Theorem. @ 

Now, let A” be a bounded sequence in L!((0,T] x R3; L?(R3)) satisfying 

T 
sup | at f art | |A"|?(", 0, t) do)? 0 as Roo (3.15) 

n Jo \+la1>R 
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Consider 

t 
(7, 8,t)= / is | dr" / doh" (s, 7,0 )p(t — 8,7, 0,7", 0), (3.14’) 

0 RS 

Then from Lemma 3.3 and the boundedness of A” we have, for each Borel set A C 

(0,7) x R° x R3, 

/ \Gn(r, v,t)| dudrdt < 

t 

<[ ¥) ar | mars, S s/f ar [aie |A"|(s, 7, o)p(t — 3,7,0,7, 0) 
R3 J RS RS 

<[ at | ar | dvX 4(7. nf as dr*( cf aati (s,7,0 BY) )1/2 
Rs JRS R3 

x (fas p(t —s,7,0,7,0))7] 

< C(T, meas(A)) — 0 as meas(A) — 0. 

Similarly, 

T 

fal aaaims,ol < 
0 Ji+aDR 

< [a / araixqnainsm [a s | ar liere »U 

x (f re=sRaF 0 v)X ae 4a cmd")! /2 

+ fa f dr'dvx inviam [Od sf a( | iis, 7,2) PXmimigandd 
0 

x (fp *(t — 3,7, 0,7, v)Xqeejay<cmyao yi/? 

PX ca ataieaydo’)?   

— 0 as R—- oo. 

Therefore, using the same argument as in the proof of Lemma 3.2 we have the fol- 

lowing lemma. 
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LEMMA 3.4. Suppose the sequences {h"}, {h"} and {g®} satisfy (3.12), (3.15) and 

(3.13) respectively. Then the set of solutions {g”} of the equations 

Lyg” =h" + h® in (0,7) x R® x R°, 

9" |t=0 = Jo: 

is pre-compact in L'((0,T) x R® x R°). 

§3.3 Proof of the Sequential Stability Theorem 

Now let us start the 

PROOF OF THEOREM 3.1.: We will divide this proof into four steps. In the first step. 

we show that {Cr(fn,fn)} forms a bounded set in L'([0,T] x R® x R*). Then using 

assumption (3.3) and Lemma 3.4, we prove in the second step that {g?} is pre-compact 

in L'((0.T] x R® x R*). Supposing, passing into a subsequence if necessary, that 

= 3s( fn) 2 3s(f) = gs , we will in step 3 demonstrate that Ce(fn, fr)(1t+é6f,)7! 

Ce(f, fy) +éf)— in L'. The fourth step will address how to pass to the limit in the 

(RDVE) such that f is the renormalized solution of the equations. 

Step 1 We first remark that Ci(fn,fn)(1+6fn)7' is bounded in 

L~(0,T: L'( R32 x R3)). In fact, letting Y,(n(r), (7+ aé)) = Y(n,(7,t), na(F + a6, t)). 

then 

Calta ne +6f,x) = 

r+ a€, 01, t)Y¥,(n(r), n(r + ae)) < 6 —v, > dédv,   

  

woxsa 

  (24+ v? 4 v?) dedi. 

bo
] 

e
o
 

I(F + a8, Hy, AY, (nF), nF + a@)): 

  

3 +2 R xX Sy 
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Therefore, 

WCe(fur fa) + fn) Lor casxrsy < 

m1 r v,t ) - ~ an . . . a 

< Sf iff as v on (2+ 0° + vi )f(F + a€, 01, t)Yn(n("), n(% + aé)) dédv, dvdr 

n (7, ,U 

ee (F + a€, v1, t)n(7, t)Y,(n(7), n(F + aé)) dvy+ 

n r,U. t) : , E” v- r é, r v + | 1 ae vst) F yl + vw?) f(F + a€, ty, t)n(7 + a€, t)Y,(n(F), n(7F + aé)) dv} 

dna wife didvy(1 + v?)f(F a), t) + // dFdo(1 + v”) f (7,8. t)} 

C(T) 

IA
 

lA
 (3.16) 

ie., {Ce (fas fx)(1 + 6fn) 71} is bounded in L°(0,7; £'(R3 x R3)). 

Now let us estimate the norm of C#(fn, fa). First, one has,®7I58l for each 

M > 0. 

CH fa, fx) <Ma? | J Y,,(n(*), n(# — a2) f,(F,9,t) fal — a, 94,1) 
R3 x S23 

a( fn, fn) (3.17)                 
log M 

where 

  

Then, define h(f) by (2.23b). Using equality (2.23a), inequality (2.24) and the fact 

that 

Wernarae i Deeto= [ff] ] ror ur+iriniacunasra, 
(0,t]x R? x R3 x R3 x $2 
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it can be concluded that 

sup lo( fa. fa} 
m™ 

  [n(fo,7}xR3xR3) < C(T) < x, 

and 

sup Cefn fl < CUT) < x. (3.18) 

Step 2 We want to get the pre-compactness of {g?}. In step 1 we showed that 

{Lyg?} = {h2 +E-Vag?} with {h2} bounded in L'((0,T) x R? x R?), and {E,,-Vag?} 

bounded in £'((0,T) x R2, L?(R3)) by the assumption. In order to get the pre- 

compactness of {g?} by using Lemma 3.4. we consider the problem in the following 

way. For any cut-off function o(F,0) in D(R? x R°), with supp(¢) C {Br x Br} for 

some R < co, we observe that 

Ly($95) = (Lage) + 950 <9 ~ \(gg Aad + 2V 20+ Vags) = hf. 

Then L,(¢g#) is bounded in L1((0, 7) x R? x R3)@ L1((0, T| x R3; L?(R3)) and Lemma 

3.4 shows that {¢g?} is pre-compact. 

Next, choose ¢, € D(R° x R?) such that supp(}@m) € Bn+iX Bmti,0< om <1, 

and ¢mlB,xB, = 1. The above argument implies that {0,97} is pre-compact in 

L1((0,T) x R? x R) for each positive integer m. Using the diagonal method we can 

choose a subsequence of {g?}, denoted still by {g?} for simplicity, such that there is 

a function g, gf — g in L'((0,T) x By, x B») for each m. Then classical measure 

theory shows that 9$|(0,7)xBmxBm —? 9|(0,7)xBmxBm 10 the topology of convergence in 

measure. Fatou’s lemma and the boundedness condition (3.1) imply 

| gdrdvdt < lim inf ggdrdvdt < C(T) < co (3.19) 
(0,7)xBmxBm (0,T)xBaxBm 

for C(T) independent of m, and 

| lg — gg |drdvdt = 
(0,7)x R3 x R3 
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/ lg — gt |drdédt + / lg — 95 |drdvdt — 0. 
(0.T)xBmxBm (0.T)x Bmx Bm—(0,T)xBmxBm 

In other words, g € L'((0,T) x R°x R?) and g? — gin L!((0,T) x R?x R°). Therefore. 

gg converges also to g in measure. That is, meas(!g! — g| > €) —, 0 for any € > 0. 

Since f" = 4[ exp(ég?) — 1], f* >, f = #lexp(6f) — 1], f" — f in measure for any 

set with finite measure. Next, we recall f" — f weakly in Z1((0,7) x R? x R?). 

Combining this information with the convergence in measure, we conclude that f" > 

f in L1((0,T) x R° x R3) by using Schur’s theorem (see, for instance. [50]). Therefore. 

using the L~(0, 7; L'(R® x R*)) boundedness of f” implied by (3.1), it follows that 

f” converges in L?(0,T; L'(R? x R?)) to f for all 1 < p < oo and for all T < «x. 

Hence, gf converges in L?(0,T; L'(R® x R?)) to gs = 3s(f) for all 1 < p < co and for 

all T < ox. 

Step 3 Now we want to show that Ce(f". f")(1 + 6f")~! converges in L’ to 

Ce(f, f)(1+6f)7!, and that C#(f. f)(1 + 6f)7! € L!. In fact, we shall show that 

CES, fA + of) € L°(0,T; Li(R? x R*)), 

CES, A) + 6f)* € £'((0,T) x Rx R°), 

and that 

CES LY + bf") en CaF A+ Sf) in L?(0,T; L'), 

Vp<0, T<o, (3.20a) 

CHF", #1 + of") | =, CE, AU +6f)7 in L VT < 00 (3.20b) 

The convergence (3.20a) is easy to prove since 

Ce(f™, MY + Sf")! = fA + of") LF"), (3.21) 
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L(f") = II. ft ae, MY. t)Y(n(F), nF + aeé)) < €,v— 0, > dédd,. (3.22) 

x54 

The argument used in step 2 and the continuity of Y ensure that Y(n, (7), n,(7+ aé)) 

converges in measure to Y(n(r).ni7+ aé)) and the argument in step 1 shows that we 

can use the boundedness condition (2.19) and Lebesgue’s theorem to get (3.20a). 

For (3.20b), it is sufficient to show /” = CE(f", f")(1 + 6f")7! converges in 

measure to ] = CE(f, f)(1+6f)7! on every set with finite measure. In fact, supposing 

local convergence in measure, we observe that the sequence 7" is bounded in L' and 

satisfies (cf. (3.17)) 

0 < I” < Mh" + 1 =e”, 

log K 
  

where A" > 0 converges in L! while e” > 0 remain bounded in L’ (e.g., see the proof 

of lemma 3.5). Therefore J” is weakly pre-compact in L’. The strong convergence of 

I” follows from Schur’s theorem. 

To prove the convergence in measure of J” to I, we notice that (1 + 6f”)7! 

converges in measure to (1+ 6f)~!. Therefore what we need is to show Cz(f”, f”) 

converges is measure on each set with finite measure to Ci(f,f). This is easy if 

one notices that our bounded condition (2.19) makes the Y regular in the sense of 

Polewczak ( see [37,p469] ), and we omit the detailed proof. 

Step 4 Now we consider how to pass to the limit in (RDVE). Comparing the 

right side of the renormalized equation with the kinetic equation (cf. [37], [38]), we 

should consider the weak convergence of both |Vzg?|* and E. Vagg. Since Vags 

converges weakly in L? to Vigs, we have 

LEMMA 3.5. There exists a bounded nonnegative measure up") on (0,T) x R? x RP 
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such that 

IVsg7[? Sa |\Vegs|? + uw in D'((0,T) x R? x RP). (3.23) 

In fact, for each n, define the measure uw, on (0,T) x R? x R® by 

din(?, 0, t) = |Vage|*drdvdt. 

Then the weak convergence of Vig? in L* and the Uniform Boundedness Theorem 

imply that {u,} C BV(X), the space of bounded variation measures on Y = (0,7) x 

R? x R?, and p,, is a bounded sequence in the space. X is obviously a locally compact 

Hausdorff space. Using the Riesz-Kakutani theorem, [44P:151—153).[41,7.-138-142] BY X) is 

congruent (isometrically isomorphic) to the conjugate Cj(X) of the space Co(X). 

Now using the Alaoglu’s Theorem,!44?-1"4] {u,,} is w* pre-compact in BY(X). Since 

Co(X) is separable, there exists uy) € BY(X) and {n'} C {un} such that 

/ fdlint / fdu + | fdu™ 
xX xX X 

for each f € Co(.X), where the measure v is given by dy = |f|?drdvdt, which in turn 

implies that 

\Vg§ ? > |Vags? +u™ in D’((0,T) x Rx R?). 

Furthermore, it follows from Fatou’s lemma that u is a nonnegative measure. Then 

(3.23) is easily obtained by using the weak convergence of Vg?. 

Using the same argument, we conclude, passing to a subsequence if necessary, 

that there exists a locally bounded (may change sign) measure y) such that 

~E". Vsgt >, —E-Vags +p? in D'((0,T) x R? x RB?) 

and fr Sn (Sra |#4(2)|?)}/? bounded. 
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Now we may pass to the limut in (RDVE) in the sense of distributions and 

deduce, using the above convergence, that gs = 3;(f) solves 

a > = | 
5795 +8 Vegs — Aso = N6|Visgs\/7—E-Vegstu in D'((0.T)x R?x RR), (3.24) 

diveE =—-n(F,t) in D'((0,T) x RB). (3.25) 

where p = Aw) — yl), Of course. f and E satisfy (3.1)-(3.4). 

To get (5.25) from the fact that diveE, = —n,(7,t) is easy. In fact, since E™ 

is weakly pre-compact in L*, we have, passing to a subsequence if necessary, 

lim E"(7,t) 3” E(7,t) in L?, 
n—-0o 

and for all » € D((0,T) x R®), 

lim Jf ove: Barat = = tim [f B. Ve6 4 - [Eve = ff ove é, 

1.€., 

V--E" = V-z-E in D'((0,T) x R). 

On the other hand, from the weak pre-compactness of f” (which comes from the 

bounded condition (3.1)®7)I58l) we have 

n(f") = -[pa v—, ng 8 = MS) in D’((0,T) x R°). 

Then (3.25) follows from the uniqueness of the limit of distributions. 

Now we show that the measure yu on the right hand side of (3.24) vanishes. The 

formal argument in Chapter II. if it could be justified, hints that y~ should be zero. 

We get the conclusion by considering a modified version of the formal proof. 

Let ®gn(t) = exp A(t A R) = exp[6 min{t, R}], Ve r(t) = fs ®op(s) ds. Multiply 

the equation (RDVE) by ®gr(gs), with 0 < 9 < 6, R > 0 fixed. Multiplying by 

o(r.t) € D’((0,T) x R?) we have 
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— Me 0 nm —~ n\ 7 7 7m —_ m 1 d(T, t) Por( gz 549 + O(r,t)Por(gs)v- Vege — O(7, t)Por( 95 4 +6f CE 

— (7, t) Pop Asg? — 60(7, t) awl Vag UL", f") + O(F, t)Oon( gh )E” » Vagh = 0. 
(3.26) 

Since 

lp n 0 n a t n Md 0 (r ol. t) Porl95) 595 = By Pl" t) ont ge )) ~ Vor 95) 5,0" #), 

O(F, t)Pon(gR)T- Veg? = dive d(F, t)Var(gh)0) — Vor(gh)d- Ved, 2), 

$(F.t)Por(g5)Asgs = O(7,t)Ser(gs divs: Vig? = 

= divs - (4(r, t)®aa(95)Vags) — 90(F, t)®or(95)X(gr<Ry)|Vags |’, 

and 

E” . Veg? Gor(g2)O(F,t) = OgrE” - VsVor(g2) = divs(d(F, t)Vor(g2)E”). 

Substituting all of these equalities into (3.26), we get 

0). md n n 0 ~ : ~~ n\ > 
By (Ol: t) Por 95)) - Vor 95) 5 0(7 #) + divz(o(7, t) Vor(gs )v) 

— Wor(g5)U- Veb(7, t) — Adiva( G(r, t) Por( 9s) Vigs ) 

+ d9O(F, t)Por(95)X(ge<rylVage|” — AS O(F, t)Pon(93)|Vage |? 

*__Cg(f", f*) + dival (7 t)Vor(gt) E") = 0 — o(F, t) Pers + ofr   

(3.27) 

Integrating (3.27) over (0,7) x R° x R?, at least formally we get 

T ‘ 

> 0 > > _ mr 

-[ m // dF dd{(S-o(r, t) + ¥- Ve@(F, t)) Vor(Gs) 
° R8 x R3 

l 
+ o(7, t) ] + 6 f™ 

  Ce(f", f")®er(95)} 
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=f dt 6(?, t) / dr dv (6|V sg |? — 8|V sg3 |?X(gp<ry] Oor(9¢)- 
Rex R38 

(3.28) 

The correctness of this integration by parts will be shown later. 

Now observe that the right-hand side of (3.28) 1s bounded by 

T 

Asup [A(F, I{(6 — 8) / at / dF di Vogt Sort) + 
0 

R3 x R3 

T 

5et® | dt // di di |Vag§ |’ Por(95 )X(g2>R)}- 
0 

R? x R3 

Since Vag? = Va(# log(1 + 6f") = (14+ 6f")7! and ®on(g?) = exp(O(4 log(1 + df") A 

Ry<(U+ 5f")%, we can bound the first integral by 

fa / dF di |Vaf"P(1 + 6f")7(1+ 6f")3 < 5 # | Pee EY Re x RS R3x R3 

Also, since (1 + bf” )|g2>R > Por(gF \Igz>r = eh (1 + bf") "grok < SN PR n> >R; 

(L+6f")lp>k > Gor(g?)lpp>e = €°", and (1+ 6f")"|g>n < e7*F lana, we 

bound the second integral by 

T ; 1 7? 
/ dt / dF do |\Vsf"|?(1 + 6f")1e-* < eine | dt / dr dv |\Vaf"\?(f")7' 

° R°x R° ° R3 x R3 

In conclusion, using (3.3) we deduce 

T 0 
|| dt / dr di( = O(r,t) + 0- Veo(, t)) Worl 95) 

Rx Re 

+f aot) ff dF dv 
0 

R8x R38 

< C sup |9(7, t)|[(6 — 4) + e@-)*) 

ae f")®or(93)|   

for some constant C’ > 0 independent of n, 6, R. Passing to the limit, we deduce 

if at | dr du( (<9 r.t)+u- V7o(?, t))Wor(gs) 

Rx R3 
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Fo 7E(f, fi®sr(gs)| +f dt o(7", 0 ff drys 
0 

R?x R3 

< C sup |d(7, t)|[(6 — 8) + e?-9F) (3.29) 

Next. multiplying equation (3.24) by o(7.t)®gr(gs) and integrating over (0, 7’) x 

R? x R°, we deduce exactly as before 

-[ dt / / dF do (F,t) +5 Ved(F,t)) Yonge) 

  

R3 x R3 

-[ dt o(*" ol dr du BPO ES S) Parl 9s) 
R?x R3 

T 
=) / dt oF | ff di dB (5|V sgel? — 8|Vags|?\igecry]®or(9s) 

O 

Rex RS 

. ~~ ® ’ 5 d r, U, 2 a) 

T . 

[a ff aes Sori 
R8 x R3 

+f dt (7, t) ff dF dv 
0 

R?x R3 

> Cy sup |9(F, t)|[(6 — 8) + 7] + | vsi/ / / o(7*, t)®or(gs) dp! 
(0,7) x R?x R? 

and 

apo EMS f)®or(gs)|   

(3.30) 

for some (nonpositive) constant C, independent of @ and R. Combining the inequality 

with (3.29) we deduce 

| / / I nox Rt HF.) onl on) 3,0) < C(sup |4(F, t)|) [(6-0) +97} (3.31’) 

for every 6(r,t) € D((0,T) x R°). We get, by letting R — 2 and then @ — 6, that 

Pf. reir $(7, t) Dor(gs) dul(r, v, 0) =0.  VWd(F,t) € D((0,T) x R°) (3.31) 
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Since ®gr(gs) > 1, we conclude by standard distribution theory that the measure 

u((7, 3,t)) vanishes if we can prove further Vw € D(R3), 

HI bP on(gs) du((F. 0, t)) = 0, Vib € D( R3). (3.32) 
(0,T)x R°x R3 

We use the same trick as before to prove (3.32). Since 

0 Tr 0 nr “ 

a5 = By Wor(9 yw), 

bOon(gt)d- Vegh = dive Vor(gn vd), 

bP orl gz) 

b®on( gh Acg? = As(bVor(g?)) — 20n(93 Vag?» Vo 

— Wap(gp Ash — ObGor(gF)X(gp<ry|VagF |’, 

and 

bon (gh) E” - Vagt = divs(bWVor(g2)E") — E” - Var(g?) Vad, 

multiplying (RDVE) by # € D(R3) and ®9a(g”), integrating over (0,7) x R® x R°, 

we deduce 

2A / / dt ddd ®pp(g?)Vagn - Vb +X / / / dt di diVopAd 
(0,T)x R? x R3 (0,7) x.R3 x R3 

— fff ear ancien ai ea Oe lL) + Wel ah)B* Veb) 
(0,T)x R3x R 

= \ Hl dt dF div[5®gp(9?)|Vag? |? — 69 6n(95)X(gn<ry| Vag | ’). 

(0,T)x R3 x R3 (3.28) 

Noticing the similarity between (3.28) and (3.28’) and remembering the weak pre- 

compactness of {E"(7,t)} in L?((0,T) x R32), we deduce (3.32) by using the same 

argument as above. Therefore, 4 vanishes in D’((0,T) x R® x R°). 

Finally, we have to justify the nonlinear multiplication by ®gp and the resulting 

integration by parts, (3.27), (3.28), and so on. This can be checked by the convolution 
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regularization. In fact, let p, denote a regularizing kernel p in ((r, v,t)), 

1. _ 
Pe = PI ), pEeD(F'), p= 0, fo=n € 

We check directly that 

G5 = Pe* 95 = | f[os- Pow t—t')p.(7.& dt dvdr 

satisfies 

0 € ; = € € m 

ae te Vigs — AAsgs + E- Vags = 

l 

=U + 5f 

in (a@,,T) x R° x R?, where a, € (0,T), a 7 0ase 30, ry. = 0: Veg — (8: Virgh) * pe, 

Calf, f) + A6|Viag5|?} * pe FM * Pe $1 e +2 (3.33)   

r= E-Vagi —(E- V 595) * Pe- 

Notice that 

with K!) = e-7K(-/e), K® = —a- V+((F.3,t)). Hence 

Tre Je f K™)g,=0 in Li. 

Similarly, ra. = gs * KO, with KP) = e-7K)(-/e), K@) = —E(F,t) - Vapl(7, i,t). 

Hence 

Pe =Te +12 (JK +K"))g5 =0 in L’ @ L*([0,T] x R?; L?(R3)). 

Then for (7,t) € D((0,T) x R°), b € D(R), ||d||co = 1, multiplying equation 

(3.33) by d®gr(g§) and bP or(95) respectively, observing ®gp(gs) > 1, we deduce that 

: | 
a O oe _ / it / di? do{(—o(F,t) +0- Veo(F,t)) Vor(95)+ 

0 

Rex RS 
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+ 6(F,t) Por(9i)4 F.f)} * pe} rea 

>) / a(7*,t)[8@on(96)|Vogél? + pe — iVa96l2VsFon(99)] 

r | o(F, t)®on(g5)u* p. — e’*(sup |o(F,t)|)[[Imiella + Pralleracrcretsriyy 
3.34a) 

and 

. . - 1 . 2 | Gan(95)Vsa5- Vab +d | Verdi — | bPonlai{ aeCellM) * . 

- | Ven(oi)E- Ved 

2 Jo t)Bor(g5)u * pe — (sup |o(7.2)|)[I]ricl]z: + |lr2ellz1(o,7]x.A2:22(R3))| 

$A / 4(7*, t)[5Pon(9)|Vagsl? « p. — |Vag§l’Vsbon(95)] (3.34b) 

Let « — 0. Then we may argue that the left sides of both (3.34a) and (3.34b) are 

bounded below and conclude that uw vanishes by the argument as before, provided 

that we have shown the following inequalities: 

2 FG _pt/2p2 ae * SRD _ p1/2/2 
IVagsl” S glVal |" ae, [ValgsA RP < 5° IVaf |) ae. 

Formally, these bounds are obvious if we remember that gs = 8s(f) = }log(1 + éf) 

and f > 0. Using a simple approximation argument, say, taking fr. = p.*(f + 

1/nexp|[—n(r? + v?)]) and observing that f, satisfies the above inequalities and f, > 

f, we have justified these inequalities. 

Now we have proved that gs solves the (RDVE) and that (1 + 6f")"'Cg(f”, f”) 

converges to (1 + 6f)"'Cg(f, f) in L'((0,T) x R® x R°) for all T < oc. The next 

step is to show that both u@) and pv) vanish. As the matter of fact, we know that 

0= w= Av — py) and p™ = 6-'y) > 0. Integrating (RDVE) over (0,7) x R° x R° 
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allows us. at least formally (and rigorously by a similar proof as above), to deduce 

that 

    

l rg L r Lat |2 __ 7 7. {2) — J RCo PY = Col) +6 [V8 = Ve !2) = 

Letting n — oc, we may see that 

[isote + [ivsast (3.35) 

and p!?) = Au(1) = 0. Also 

[ at ff E. Vag, dvdr -[ at ff iE Vags dvdr, VR< co 
Rix Br(¥) REx Br(d 

(3.36’) 

and 

T T 

[ dt / dr | |E"-Vagh|? ds)? a / dt | de | |B Vags|? ds)/?. (3.36) 
0 R3 R3 0 R8 RS 

This completes the proof of the theorem. @ 

COROLLARY. Using the above notation, 

gs—~>f in L™((0,T);L'(R® x R°)) as 6-04. 

In fact, from the standard results on weak convergence, (3.35) implies V sg? 

converges to Vags in L?((0,T) x R°? x R®) and |Vyg?|? converges to |Vags|? in 

L'((0,T) x R? x R?). Also, E”- Vag" converges in L'((0,7) x R? x Br(v)), R< co 

and in L'((0,T) x R?: L?(R3(%))) to E - Vegs. In particular, Lg? converges in 

L‘((0,T) x R° x R°)@L'((0,T) x R3; L*( R3)) to Lygs in the sense of Lemma 3.4. The 

standard results of Lemma 3.4 show that gs € C((0,T]; Z'(R® x R°)) for all 6 > 0. 
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From this fact, it is straightforward to deduce f € C([0,T]; L'(R® x R°)): one just 

needs to observe that for ae. t € [0,7], 

/ di dé |f((#,8,t)) — gs((7,8,2))| < 
Pex RI 

<6 / | dF dé f((#,8,t)) +2 / dF dif((F,8,1))Xysr). 
R3 x R$ R3 x R3 

where R > 0, and €5 = suppl — As(s)s~"| + 0 as 6 + 04. Because of (3.1). this 

implies that gs > f in L%((0,7); L'(R® x R8)) as 6 > 04. 

COROLLARY. In theorem 3.1, if we assume further that ||filtzo — follz:(pexr3) 7 0 

for some fy € L', then the renormalized solution satisfies also the initial condition 

fliso = fo. In other words, f is a renormalized solution of (DVE)-(VP)-(IC). 
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Chapter IV. Existence Of Approximate Solutions 

In this chapter, we construct positive solutions for the approximate equations. 

The strategy of the construction is as follows. First, we find the semigroup U,(t) 

generated by the diffusive operator A: Af = —v- Vef + AAg, and the evolution 

system U,(t,s) determined by the time-dependent generators B(t): B(t)f(r,v,t) = 

—E-Vz f — L(7r,v,t)f. Then we show that the linear evolution transport operators 

C(t) = A+B(t) determine a positive evolution system U(t, s) by using Kato’s theorem 

and the Trotter product formula. Observing that the approximate Enskog collision 

terms C# are Lipschitz functions, we conclude that the approximate equations have 

positive solutions for each n, by a contraction type fixed point argument. Finally, 

at the end of this chapter, we estimate some bounds related to the solutions of the 

equations. 

§4.1 Semigroups Generated By The Diffusive Operator 

Let X = L?(R® x R) (1 < p < oo) or C,,(R® x R®). Define the diffusive 

transport operator A: D(A)(C X) — X as the closure of the operator 

Af(?, 0) = —0- Vf + AAsf = Aof + Acf (A) 

on W?-( R? x R8) (for 1 < p < 00) and S(R® x R®) ( for C..(R? x R?)), respectively. 

Since A, is an infinitesimal generator of a co-semigroup U(t) 7] Ag(= \Az) 

is dissipative both in L? and C.. (see [35] or [43, §X.8]), and D(A2) C D(A;), the 
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operator A generates a co-semigroup Uy(t) in X. Using the relationship of the co- 

semigroup and its infinitesimal generator and the fundamental solution of the operator 

Ly given in (3.9), we deduce that the semigroup generated by A is given by 

. 3(F-q- (+a)  3(F-9G)? was = ff epl-pq@- ar + je4 ap - AE ey   

    <a) f(G,a)d¢dt, t>0. (4.1) 

Using the fact, given by (3.11), that ff p(t,r,0:¢,a) drdv = 1 for each (q,u.t) € 

R® x R° x R,, (4.1) and the Fubini Theorem, we have 

[Wallon = ff ara [fanaa nnaasaea 

= ff nanagia [f ner. %a0 ares 

- / Ma Daqaz, 

and conclude that U,(t) is a contraction semigroup in L!. The Young’s inequality !°) 

shows that ||U4(t)||.. <1. Then classical L?-interpolation theory (e.g., Riesz-Thorin 

theorem) implies U,(t) is a contraction semigroup on L? (1 < p< oo) and C,,. That 

U.(t) given by (4.1) does define a semigroup can also be justified directly by using 

the following integration: 

_ 3V3 | (i +h} p [fara 
8. \nttte 

  

  

x exp[-po (v= —v")y— an — vy")? + aa —v)?]x 

x exp[-—— Or (v+v")* — = (v' tv")? + aE’ + v)*]x 

x expla =F) (+8) + a —F)- 4) — GF) 4) 
x mine ry? — sa — ryt ae — Fy"),



which can be checked by elementary calculation. 

Let 7, be the cone of non-negative functions in X. As seen from (4.1), we also 

have 

Ua(t)Ty & Ty. (4.2) 

§4.2 The Vlasov-Enskog Operator 

Suppose E(7,t) is a (bounded) continuous function on R? x [0,T] and L(?, @,t) 

a non-negative measurable function on R° x R° x [0,T]. Define the time-dependent 

Vlasov-Enskog operator B(t) : D(B(t))(C X) — X by 

_ 

Bit) f(r, v,t) = —E(r,t) , Val (7, v,t) ~ L(r, v, t) f(r, v,t), (B) 

D(Bt)) ={f EX; lim f(7,0,t) = 0, [Vafl € X}. 

It is not difficult to prove that, for each given s € [0,0c), the operator B(s) satisfies 

the Hille-Phillips- Yosida condition and generates a co-semigroup U,s(t). In par- 

ticular, {B(t)} itself satisfies the Kato’s conditionsl®° ?-49°498] [45] [55] for generating a 

two-parameter contractive evolution operator!) (evolution system, ! integration of 

evolution equation,®! propagator!) Ug(t,s). That is, there exists a two-parameter 

family of bounded operators Ug(t,s) (0 <5 <t < co) on X, such that 

(1) Up(s,s)=1, Us(t,r)Us(r,s) = Us(t,s) for0<s<r<t<o; 

(2) (t,s) + Usg(t, s) is strongly continuous for 0 < s < t < o; 

(3) Vfo € D(B(0)), the equation 

a = B(t)f(t), f(0) = fo, F(t) € D(B(t)) (4.3) 

is solved by f(t) = Us(t,0) fo which satisfies the estimate || f(t)|| < || fol]. 
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In fact, checking directly. Ugit,s) is given by 

= Us(t, 3)g) (Weth= LPY, ( 
t 

=exe{= [LU eon Er; 7 )dr, t,)dt, } g(r. pf Br ~jdT, 8). ge xX 

5 (4.4) 

and |[f(t)|lz1 < |lglln:, Fle < llglic.,. Using the interpoijation theory again we 

conclude that Ug(t.s) is a contractive evolution operator in L?, 1 < p< x. Note 

that (4.4) also implies 

Uz(t, s)T. ¢ Th, 0O<s<t<c. (4.5) 

§4.3 Solutions of The Linear Homogeneous Equation 

Let X bea Banach space, A: D(A) — X and B(t) : D(Bit)) + X, (t € [0.7]), 

be dissipative operators. Suppose D(A) C D(B(t)) for each t. Define the linear 

evolution operator C(t) : D(C(t))(D D(A) N Di B(t)) = D(Ai = D(C(0))) — X as 

the closure of the addition of A and B(t): C(t) = A+ Blt). The C(t) are linear 

closed operators with D(C(t)) independent of t and dense in .\. Assume that 

(H1) For every A > 0 and t, 0 < t < T, the resolvent (AJ — C(t))~' exists as an 

operator belonging to LLY.) such that 

WAL —C(t)) AI] < AT! for A> 0: (4.6) 

(H2) For each x € X. (¢—s)7'(C(t)C(s)~' — I)x is bounded and uniformly strongly 

continuous in ¢t and s, t #3. and s — limp. kC(t)C(t — 1/k)x = K(t)x exists 

uniformly in t(€ [0,7T]) so that K(t) € LUX, X) is strongly continuous in t. 

With above assumptions, we have the following 
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KaTO’s THEOREM. §0-?-4321 For any positive integer k and0 <s <t< T, define 

the operator U,(t,s) € L(X, X) bv 

| U,(t,s) =exp((t—s)C(44T)) for $17 <s<t<ZT (l<i<k), 

<s T. 

al
o.
 

(4.7) 

A
 

A
 < 

U,(t,r) = Uy(t, s)Up(s.0) for O<r <t 

Then, for everyx € X and0O<s<t<T,s— limp. U;,(t,s)z = Ue(t,s)x exists 

uniformly in t and s. Moreover, for y € D(C(0)), the Cauchy problem 

dzx(t) 
at C(t)x(t), x(0)=y for x(t)E D(C(t)). O<t<T, (C’)   

is solved by x(t) = Uc(t,0)y which satisfies the estimate ||x(t)|| < |ly(t)]]. 

The following theorem tell us how to “compute” Ue in terms of Uy and Ug. 

THE TROTTER PRopucT Formuta. [P45 Let A and B be the generators of 

contraction semigroups in X. Suppose that the closure of (A+ B)|pi4ynp(n) generates 

a contraction semigroup on X. Then for all @ € X, 

eng = HATA g — Jim (eA Me 88/8 g, (4.8) 
M00 © 

Substituting (4.8) into (4.7) for each &, and using an argument similar to that 

in the proof of Kato’s theorem, we have 

THEOREM 4.1. |! Under the assumptions of (H1) and (H2), then the evolution 

operators Uc(t, s), generated by C(t), are given by 

U(t, s; E, L) = Uc(t,s) = (C) 

  

and Uc(t,s) solves the evolution equation (C’). In addition, if UsT, C Ty and 

Us(t,s)T, C Ty, then Uc(t, s)T, C Ty. 

Now let us consider the operators A given by (A) and 8(t) by (B). We have 
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THEOREM 4.2. Suppose that E(#,t) is continuous in F and L(?,3,t) is non-negative 

measurable on (0,7) x R® x R®. Then there exists a system of evolution operators 

Uc(t,s) such that for each fy € P(A) and s € (0,7), the homogeneous evolution 

equation 

BLP) tT Vef—MAGftE Vif +hf=0. OSs<tsT any lim:s+ ||f(¢) — follx = 0 

has a unique solution f(t) = Uc(t,0) fo with || f(t)|| < ||fol]. Furthermore, f(r, v,t) > 

0 if fo > 0. If L(*, 0. t) is assumed bounded but not necessarily positive. the above is 

still valid, except that the estimation || f(t)|| < || fo|] mav fail. 

We remark that Theorem 4.2 is not a direct consequence of the Kato’s theorem. 

If inf L(r, v,t) = 0, we may apply the theorem to the solution of 

t—+O+ 
© g(t) — (A+ BUt) + g(t) =0, lim f(t) = fo 

and deduce that |lg(t)||x < e7‘||folly. Then we justify that f(t) = e'g(t) is the 

solution of (HE) with || f(t)|] < || foll. m 

§4.4 The Solution of Approximate Equations 

Let us consider the solution of the following non-linear equation 

{ BAR) +0-Vaf —AAsf + ER) Vel =CeF) — ogpyy 
lim,—o+ Lr, v, t) = fol, v). . 

where 

Arte t / d?°V;-— / dof (i, v,1), (AE2) 
4m \7 — 7 

Calf, A(F4,t) 

w
r
 

o
e



=/f ot V(n(F, t), n(r — a€,t))np(v, 01) f(r, 0, t) f(F — aé v,t)— 

Y(n(r", ‘), n(r t+ aé tng voyf(r, vofirt c&a,t)] << é&v-v, > dédv, 

= Ct - G5, (AE3) 

= {(¢. 01); |v)? +|e,|? < &} for some positive constant k and n(r,t) = fp f(7", 0, td?. 

We assume 

(Al) fo € Co°( Re x R°)N LY (R® x R?); 

(A2) there exists a bounded function Y satisfying Y(o,r) = Y(r,0), sup, rY (1,0) 

< My < oo, and Wn(7,),n(F2)) = (1+ en(71))71(1 + en(7)) TY (n(A), n(F)) 

for some € > 0. 

(A3) Y satisfies the Lipschitz condition: |Y(01,7)—Y (02, T2)| < C(\o1—o2|+|71 —72|) 

for some constant C’ independent of o and 7; 

(A4) ne(v,0,) = nB(%1,v) = np(v}, 0") is a smooth nonnegative function of (v, v4). 

7 <1, and supported in B. 

It seems that the assumptions (Al) and (A3) are artificial. We will, however. 

show how to alter the initial value fo and the geometric factor Y to satisfy those 

assumptions for the purpose of constructing approximate solutions in the proof of 

global existence (Theorem 5.1). 

THEOREM 4.3. Under the assumptions (A1)-(A4), the equation (AE1)-(AE3) has a 

unique non-negative solution which belongs to C({0,T]; L?(.R3; L'(R3))), 1<pse. 

for each T € (0, 00). 

We will need the following easy lemma."®! 

LEMMA 4.4. Let d > 3 and V(r) = 1/|r|*-?. Then for all ¢ € L}(R4) NM L©(R®), the 
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convolution Y * @ is differentiable and 

V-(V * 6) = (V=V) * 6. 

Furthermore V * ¢ and its gradient V-(V * ¢) are bounded (i.e., V* 6 € H'(R*)), 

|[VrV + o(7)] < IM eV lle1(Bpyll Pleo + |VFV||c-(ee loll, 

where Br = {|r| < R}. 

Before we prove the theorem. we also need to introduce the following spaces: 

the space X = C(R3; L'(R3)) with the norm i fllx = sup J |f(*,¥)| dv, the space 

M = XO 1'(R8 x R3) with the norm || fly = max|| fiz s|| lla}, and the space 

Mor) = C(0,T; M) with the norm lft, T| = sue. f(t)||v. The following lemma 

shows some important properties of the operator “Olt 3 E _ L). 

LEMMA 4.5. If L(r,v,t) is a non-negative measurable function, then U(t, s; E,L) 

defined by (C) is a contractive operator fort > s > 0 in both X and M. 

In fact, for any t > s > 0, we have 

  

  

Uae) fllx = 
3... », 3(F¥-qQ)-(8+u)  3(rF- 9G) _ _a2,? 2 = sup f ai // exp[— 3 ql? i) + +4) — ; +3 )I 

R? x RS 

 3v3 oy py 
ag —) f(g, u) dqdu| 

    

_3V3, 1 1. 
<sup [di 3 (Tp exp(-py (7 - #)’) x 

  

    

+ po py 3 0. se ye, x ff aaa saa) exe(-PaF- 7-5 + DY) 
R3 x R3 

~3V3 lo . 3 
< |. av (= —)° exp(—5V") - dr( (up [G9 7, ¥)| dv) exp(— De” ? 

a7



= |lf lx. 

and 
t 

|Usltssdallx < sup f deig(o— f Be -)dr,5)] = llols)llx 

It follows from the product formula (4.8) that U(t,s:£,L), 0 < s < t, is contrac- 

tive, since U,(t) and Ug(t,s) are. The conclusion in VW follows from the fact that 
=> 

U(t, s; E, L) is contractive in both L'(R° x R°) and_X. 

PROOF OF THEOREM 4.3: The theorem is proved in three steps. First we demon- 

strate a local existence result in a special space. We then finish the proof by extending 

that result to general spaces and global time. 

Let us first consider the following integral equation: 

t 

f(t) = Ualdfo+ | Ualt-sICelF Nl) - B+ Vefls)ds. (4.9) 
0 

Using the explicit expression for U, and Cg, we rewrite (4.9) explicitly in terms of 

(7.3, t) as 

=
 

28 [| «a 
R3x R? 

l 1 

A(t — s) (FI 

«Cals f)(q, a, 8) — E(G,s)- Vif (4a, s)] 

+ ff Bacar dor iva 
1,1 

uy” + TU + u)’ — x expl— 5, (q(? — u 

-[ ds [fai om Gaga 
Re x R8 

x exp[—5 v- a) + “(04 az)? — 
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l 1 ay 385 wy) 8(F—@)- (P+ u)  3(F- 9G) 

x expl Vena ge + Ge tay ~~ yO Tp Ix 

x / < €u—-t > V(nl(Gs),n(¢— a6))na(t, a) f(g wv, s)f(— aé, a, s) 

R3x 54 

~ Y(n(F, 8), n(F + a€) )nw(V, G1) f(G, ws) f(T + aé, th. 8)] déduy 

    

  

8 ‘Ar(t—s)? 
R°x R3 

Le oe Bye, op EDF H A) BG x exp[ Vensy a> ) + [lot ) — (t — s) (t — s)? )I 

_ .3V3, 1 3 | ar + ff dit dq — (sa) exp[-T, ‘++ )) fog, u) 
-~h-h+h. 

(4.10) 

Now we want to show each term in (4.10) satisfies a Lipschitz condition. Since J; is 

independent of f, we need only to consider /; and /,. For the first term, we have 

lCa(b,b) —Cz(¢,¢4)|ln < 

< || dr dv{| Fo xs} < €,0—v; > [(V(n,y (1), ny (F — aé))v(F, 0) b(F — aE, 0) 

R3 x R3 

~ 

Y(n5(7), ng (F — a2)) HF, T)S(F — a2, 7))nalT, H) dd ae 

+ | < BT — > [Y(ng(F), nu(F + a W(F, UF + ad, G1) 
3% 52 R xSt 

— Ying (7), nel(7 + aé))b(* D)d(F + aé 01)]nNB(V, 01) dv; dé} 

< 4k ai dédv, dvdr |Y(ny(r), ny(F + aé))p(r, v)w(F + aé, v;) 

R° x R° x Rex s4 

—V(nolF),nalF + a2) OF, DOF + a2, 03)| S 

< 4k{ fy ded dvdr Yo, v) oy’ — pt 

RP x RS x RB x 53 + v)(1 + v’) (1+ ¢)(1+ ¢') 

ny ¥(d, w’) ay Y( b, w') ) 

° we wer 
i er as 

A _— T+ éa+e9 + 8)(1 a (l+e)( tae lt 
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Y( wb’) : of Y(¢, ¢’) / — ditt, diode | NPP) nn = 
+ fff] FON eo 1+6(1+o) on} 

R3 x R3 x R3 x SZ 

= 4k(P, + Py + P3), 

where, for the sake of simplicity, we have written y = w(r,t), Pp! = (r+ a€ vj), p= 

ny, etc., and set € = 1. Now. 

- f/f} ded ddr |Y (wv. Tabu saya” 
R°x R? x R3 x $3 

x [(d-v) + (9 - Pd) 4+ 00 - db) +004 LI]. 

  

Since 

  

“7 8 br! “4 “ 
dédv, dvdr Y (wb, = — 7 = yo wt < 

If] naar YT paseasoaray 9's 
R3x R3 x RS x S32 

< [a | az( | as ? rb, ie Cf a 
1+¢ 

< far f ae¥(i,06 —|¢' —w'| < 
1 + 

< My / di / dé|g! — 

< 4a My||¢' — W'||21(R3xR3); 

/ 
yw 14, aA 

L+u' 
    

    

we have P, < Ci||¢ — p||. Use the assumptions (A2) and (A3) and similar decompo- 

sition, we have a similar estimation for P; and P3. That is. 

ICe(v.v) — Ce(o.o)|la S Cll — olln:, (4.11a) 

with C independent of 6 and w. In other words, C E(w.) is a global Lipschitz 

operator. Using a similar argument we have 

|Ce(b, b) — Ce(o. 4)||x < Cle — ollx. (4.11b) 
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We conclude that J; in (4.10) is globally Lipschitz continuous in M. 

Next, we rewrite /, as 

    

1, (7, v,t) 

byee men BFAD , G-D 364+ 
[ “ ype oP M4 s)EGs)- Ses + Ss) 7 Teas) 

R? x R? 

] Ly oe FD (8+ U) 3(F — q)? dadit 

Mews) 4 “) Gl +H) (t — s) r (¢ —s)? : (4.12) 
  x exp[—   

~~» —« 

Let KF, 7; 0, u;t — s) denote the integral kernel of the integral operator defined 

by (4.12). We have 

[ow | dit dq |k(7, q;U,u;t—s)| = 

R38 x R3 

1 3F-q) . (@-@) (840) 
-[ as I avag (SEP a eas)? * 2\G=s) DMEWs)| 

R°x RS 

  

saa 3(7 — g)- (0+ u) 3F =D") 

és) =; 
3 

4 

3V3 ~.f 1\2 3. 4. #-28 
— 8 fy dr fs du dq (5) Tale 7H) + 2Ar | 

  

      

  

Mr 

ef dr []e(0) 99 + Ox 

xX eXp (-SG0" +50 *) 

2A fe [fen date ted) 
8 [ar [/ adao( 2) Beer +20) 

28 [morta tl [+ [pret 

 



    

_v34+1 [it 
9 Ar 

On the other hand, from Lemma 4.4 and the definition of the norm || - ||, we can 

find a constant C (= 2max{||V-¥|lz1(8,), ||VrV|lz:(e2)}) such that 

||Eallzo < Callolla, 

where Ey and ¢ are related by (AE2). Now 

I[f2(¢) — (| Ss 
t 

cet [as ff aati Bs(a.s)ho(ad,s) — 6(¢.i,3))/+ 
R3 x R3 

t 

+ / ds / dit dj|E,(7, s) — E4(7,s)||0((Z a, )))} 
° Rx Re 

8 ~ ~ a 
< et 2S Fl cor pay il — dll} + lEy — Ell p00 il< < Fat (Bellamy |v ~ Al + Bs — Bolle lollas} < 

8 <a 
~ Vr 

and similarly 

Cot? ([l4llae + [lv lla lle — lle, 

8 
  I[Z2(b) — h(P)\lx < Feat (I llaa + ||P]lac)|lb — Ollas. 

Therefore, 

; 8 
I[Z2(%) — Leo) Ilto.q S Cyt/?(||dllto.q + Plo llY — ollo.4- (4.13)   

VAT 

In other word, /,(f.t) is local Lipschitz continuous in the space Mjo.. with the Lips- 

chitz constant depending only on the norm || f]lfo,4. 

Now we consider the norm of the solution of the approximate equation. Con- 

sider the following sequence of functions: 

fi =0, 
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LF, 0,t) = Caf, f) = 

= // Yn (7, t), nO(F + aZ t))\ B(8, 0) fO(F + aé 0,,t) << EFT, > dedi, 

R3 x $2 (4.14a) 

~,. l 
EM (F, t) = ff Va. ara (4.14b) 

r—?Pry, 

t 

for) = U(E, 0; BL) fo+ | U(t. 3; EO, LOVCE (FO, fO)(s) ds, (4.14c) 
0 

where CE(f, f) is given by (AE3). 

It is not difficult to show that the sequence defined above converges to some 

function f, the solution of the equation, for small time t. Let us estimate the norm 

of functions of this sequence. Looking at the structure of the operator Cf(f, f) and 

using the assumption (A2) about J, it is easy to show that CES, f) € M if f is, and 

CEP, f)(s) = 

< 4ko My f (*, 3, 8), 

WCF, Py llar < Cull fila; 

with the constant C, independent of f. Therefore, using the Lemma 4.5 we conclude 

from (4.14c) that 

FOF IL < || follas + tC || f |v. 

Letting 

Bo =Ifollu, Th = 5 
we have easily 

WF lor) <2Bo, += 1,2,-°- 
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Furthermore, following from (4.14c) and the fact that fo € Li. the solution f of the 

integral equation (4.9), if it exists, is a nonnegative function. 

Now let us go back to (4.10), 

f=h-hi+tl. 

1(6, t)—Io(¥, t)||fo.q < C3t/*(Jollogt   Since [[11(¢,4)—h(v, )llo.g < Cit|lo—Pltog, | 

IlP | Ifo, ]O ~ Pllpoy < 40C3t"/? || — w]]jo,y for t € [0,T;], and J; independent of v or 

¢, we conclude by the contractive mapping theorem that (4.10) has a unique solution 

f(t) > 0 in Mp,rq for some T’ € (0, 7)]. 

Next we want to extend the solution given above to any given Mj,7). In view 

of the proof of local existence, it is enough to show that if f(t) is a solution of the 

equation on an arbitrary interval [0, T], then we can find a constant B > 0 such that 

flo < B Vt € [0,7]. (4.15) 

This conclusion is based on the fact that the choice of the ‘existence interval’ [0. T’] 

in the first step depends only on the norm |{ folljo.q of the initial value. Now we prove 

4.15. If f(r,v,t) > 0 is a solution of (AE1)-(AE2)-(AE3), integrating both sides of 

the equation over R° x R®, we have 

Olle = ff ares sra.e) = ff ares foro) = By = [Ifalles 

On the other hand, using hypothesis (A2) and (A4), it follows from (4.14c) that 

WFO ae < Wfollar + 4k Myt/e < Bo + 4krMyT/e. Letting B = max{B,. By + 

Akan MyT/e}, we assert that the integral equation (4.9) has a unique solution in 

C(0,T;Mn Lt) for any T > 0. 

Finally we finish the proof of the theorem by the following two remarks: |) We 

have shown that the solution f(t) of the integral equation belongs to L'( R32; L'(.R3))N 
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C( R2; L'(R3)) for each t. It then follows from interpolation theory that f(t) € 

L?( R2; L'(R3)) for any 1 < p < oo; 2) to make f(t), the solution of “the integral 

equation” (4.9), be the solution of “the differential equation” (AE1)-(AE3), it is suf- 

ficient to show that!*4l f(t) € C(0,7;D(A)). which, in our case, follows from the 

estimation about the derivatives of f(r,v0,t} stated at the end of this chapter (cf. 

(4.20)). This completes the proof of Theorem 4.3. ™ 

In the reminder of this chapter we give estimations of some quantities related to 

the solutions of the approximate equations. First we estimate the ‘k-th moment of the 

system. For k = 0, 2, we have already (using the same arguments as in Chapter II) 

that ff f(t) dvdr = [f fo dvdr < 00 and sup JJ F(t) (FP + |u|?) dtidr < C(t) < c 

and ( by the Cauchy-Schwarz inequality ) sap SJ f(t)(r) + |vl) dvdr < C(t) < 

Now multiplying equation (AE1) by |o]* + a. integrating over R® x R°, and using 

the facts that 

lho Vf (F.8,t) = divel [FS fo) — kr. a 

and 

9 

|at}Asf = diva(|a}*Vaf) — kdiva( fla*-?a) + k(k — Lf (#7, 0,2) |oF°. 

we have 

5 | f sae Mewes | recone see 
= [fis 9. E(F,t) f dod — Ak(k — 1) [fae B,t)|ay-? 

_ / al*Ca(f, f) dad 

From Lemma 4.4 we know £(7,t) is bounded. and therefore 

& [f araap(e,s,ey rt + ah) ares 
R3x Re 

65



cc |/ aaa ay + a + at?) +f dF do|Ce(f, f)||a*. 
R3x R8 Rex R38 

Since Vng(v. v1) is compactly supported in v, one can easily bound the second term 

by C ff drdvf(1+|o|*). It follows inductively from the Gronwall’s inequality that 
Rex RS 

sup / dF dé f(#,0,t)(1 + |Fl* + |a|*) dFdv < co forall k>1. (4.16) 
0<t<T 

~~ R3xR3 

Now, we establish an estimate on the derivatives of f in L®(0,7; LN L™(R? x 

R3)). We begin with Vef and Vaf. Set F = Vef =(2/2/,2f)9 = Vell = 
1/2 

(er? +($f)? + LIF) . Note that 

0 l> O- dg 0 —g=-F.—F=—%-VA—f), 
ot ra He dF Aap) 

dg 0 = J oR dg yo 

dg —~ nm dg > 
= Ts VF =—s-V; Ve 5 TE ( ) 7 al f) 

EB Vg = SE V;)B) 

dg => dg = 
= -VHE-Vef) - SS: (V2 E)Vaf), ah ( ) 7B (( )Vaf) 

where ® indicates the vector tensor product, and 

; T 

deg =Va (SF oop so 2) _ 

=- FF Pre F CaP HR P AN 

+ “(g-F) + (FY + (FY + a - AgF 

= soPy +(B x oy (Be 3) + (Z- AF 

Therefore, 

O . ~ 

ag + ¥ Veg + Bs Vag — Bag = 
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d 0 ~ bas Le 4 . 

=< Valo f ti Vif +B: Vif — Maf]-S-[(Vr2 E\)V sf] 

  

~ dF dF 
dg 0 9 dg O \ 2 dg 0 \2 

— A- —F)? +(—3 x —F) +(x —F 
il GR* Dey’ Li Ory OE dvs 

dg =—.V; —~—=-|(Ve2E 7 Ce(f.f) _ “| )Vaf] 

dg O =. dg O = dg O 5 
—\- x —F a = —F —F)*|. 

sl(GR Ov, GR” Ov, +R Ova a 

Taking integral over R°? x R?, we get 

d iF da|V-fidrdd =f dr dv|V ef idrdv 

R3x R8 

/I ido, .Vh f, f) / dz do [((V-@ E)Vsf] _ —-VCxlf, fy— Tr dv—s -[(Vr a dp dF 
R3 x R3 Rex RS 

d d -, d ~, dg O-, -= |} di dil (Sx SPY + (hy Sy 4 (SB x ZF), g Ov dF” Ov, dF 03 (4.17) 
R38 x RS 

Similarly, letting H = (se f, et sts), h =|H|. H= a we have 

Q oA 

HV; vat’ 
B-Veh =o: | A VALS) | =o. (A Ve) Vell 

H-Vil sf) 
=H-Vs0-Vef)-—H-Vef, 

E.Vgh= E . (A -Va)Vef] = AVE - Vaf), 

Agh = Vs-Vah = Va-(H- Va) f 

0 Om. - O =. 
=H. Ag H Hx —dH A x —H)?+(H x —H/ 

+ zl 8 y+ + ( * Ov, + ( * Ov; y" 

=A-V(Acf) +24 x Day + (ax Day + (ax ay, 
h Ov, Ov2 Ov3 

and 

Sh 4d- Veh + B-Vsh— gh = 
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» ~ - los 0 0 0 
=H -VsCe(f, f)— H- Veh — 5 ((H x FH) + (H x 5-H) + (H x 5-H)’, 

Therefore, 

0 OQ =. p O =. 
dv h = —X — 2 Af) 4 ( © Fy ff « j | f eran x FIP + (A x HD + (Hl x =D 

ase R3 x R° 

+ | dF ddH -VsCelf, f) - || dF dvH -Vzf, (4.18) 

R3 x RS R3 x R3 

= ff didi(g +f) < // érao(E. Ver A Vs)ColhS) 
RS x R38 R°xR° 

dF di (4 -[(V2@ E)Vsfl+a- Vel). 
g 

Rex RS 

and 

(4.19) 

Similar to the estimate in [17], there is a constant C(e) such that 

aac(= Vet+A- vs) Calf, f) < C(6) / didi(g + f). 
R°x R83 9 Rx R3 

Since n(7,t) € L'M L®, it follows (16. p.174] that each element in V7 ® EF belongs 

to L®. In addition. |H| = |F'|/g = 1, and we get a similar estimate for the second 

integral on the RHS of (4.19). Hence, 

d > 77 —~> j> 5 ff eaaiven+iver se ff aranivesl+ lef), (420) 
R3x R3 R$ x R8 

which implies that both |V;f| and |V3f| are bounded (in LZ’). In addition, using the 

estimation! 5104 

VeE lz» SCO + [Inlli + [frllooll + log(1 + || Veral]oo)]) 

and a similar argument we can bound the second order and other derivatives. 

68



Chapter V Global Existence 

In this chapter we state and prove the main result of the first part of this paper, 

1.e., global existence of the renormalized solution. 

THEOREM 5.1. Assume that Y(o,7) = Y(t.¢) is a jointly continuous function satis- 

fying the symmetry condition (2.1) and the boundedness condition (2.19), the initial 

value fo(7,v) > 0 satisfies the bounded condition 

dF d¥ f(r, ¥)(1 + [FP + |a]? + |log fol) < C < cw, 
R°x R3 

and Eo(*) = Va * no)(7) = Vil * f fol, 0) dv) (F) satisfies 

/ LEy(*)[2 dF < C <0. 
R3 

Then, there exist f € C([0,00); L'(R® x R°)) which satisfies f\t-o = fo, (3.1), (3.2), 

(3.3) and such that, for all 6 > 0, gs = 3s(f) satisfies (RDVE)-(VP)-(IC) in the 

sense of distributions and 9s|(o,r)xR°xBp € L?({0,T] x R°, H'(Br)) (VR,T < oo). 

In particular f is a renormalized solution of (DVE)-(VP). 

PROOF: The theorem is proved by combining use of Theorem 3.1 and Theorem 4.3. 

First, truncating fo and regularizing the truncated function by convolution, we get a 

sequence fj € D(R° x R°) such that fo > 0 and 

/ / di dil fo — FR\(1 + FP + |S?) pO. (5.1) 
R3 x R3 
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/ | ar aazfshog f5] <C. (5.2) 
R3 x R° 

for some constant C > 0 independent of n, and such that 

[aries ~ Ey? =, 0. (5.3) 

Next, in equation (AE3) of Chapter IV, let « = 1/n (in assumption (A2)) and let 

nB(v,01) = na(¥,0,) € DR? x R*) such that 0 < mn, < 1, suppna C Bnir. and 

Yn!B, = 1. Furthermore, since Y(r,o) is bounded and continuous, we can choose 

Y, = Y,,(0, T)EC*(R x R) such that Y,, satisfies the symmetry condition (A2) and 

the Lipschitz condition (A3) in the last chapter (with the Lipschitz constant C = C(n) 

depending on n only) such that 

lim sup |Y(o,7) — Y,(o.7)| = 0. (5.4) 
nooatT 

Define the approximate geometric factors Y,(o, 7) = (1+1/no)71(1+1/nr)7! Yala, 7) 

X{jA<n}- Consider the solution of the following system of equations: 

Lyf" + En(Ft)-Vaf" = CRI"), flino = fe (APE) 

with E,, satisfying (AE2) in the last chapter. As shown in the last chapter, for each n, 

there exists uniquely a non-negative solution f"(t) € L'NL®(R® x R°) of the equation 

(APE). Furthermore. the conditions (3.1)-(3.4a-b) are automatically satisfied for f” 

and Cr( f", f"), provided the identities and inequalities (2.3), (2.10), (2.13) and (2.15) 

are justified for the {” and E, given above. (2.3). (2.10) and (2.13) can be checked 

without difficulty by the regularity and decay of f” and E,, stated at the end of the 

last chapter. In view of the choice of f$, (2.13) may be justified by the lower bound 

method used in [17]. 
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Finally, despite the fact that f” is not a solution of (DVE)-(VP), regarding the 

statement of Lemma 3.4 and the proof of Theorem 3.1, we see that Theorem 3.1 and 

its proof still apply to this sequence of solutions of approximate equations and yield, 

passing to a subsequence if necessary, convergence in C((0, 7]; L1(R?, R°)) (VT < oo) 

to some f satisfying all the properties listed in Theorem 5.1. 

In fact, since f” is the solution of the approximate equation, gs(f") automati- 

cally satisfies the approximate renormalized equation 

] Any pn pn _ Bn Vea + A6|Vieq? 2 5.5 ROR) of + A5/VaehP. (5.5) S98 + 3+ Vegh — Mag? = 

Comparing this equation with the renormalized equation (RDVE), the only difference 

is the collision term. We may complete the proof by following remarks. First, Step 

J in the proof of Theorem 3.1, i.e., the boundedness of {Cze(f", fF) + 6f")7? in 

L', depends only on the bounds in (3.1) and My, which is obviously correct in our 

case. Second, Step 2 and Step 4 in that proof depend only on the linear operator 

Ly and the form of the additional terms E. Vags and |Vags|? in the renormalized 

equation, and not on the collision term Cg(f”, f”). finally, passing to the limit 

Ce(f",f™) (1 + 6f")7! —, Cel(f. f)(1 + 6f)7! in Step 3 is mainly based upon the 

bounds (3.1)-(3.4a-b) and the convergence in measure, passing to a subsequence if 

necessary, of the integrands in (3.20a)-(3.20b), which, in our case, can be proved in 

the same manner by using (5.4). This completes the proof. &



Chapter VI. The Fokker-Planck- Vlasov-Enskog Equation 

In this chapter we consider the renormalized solution of the following Fokker- 

Planck-Vlasov-Enskog equation: 

0 9 is to VALE, t)+ E(F,t)- Vaf(*, 8, t) — ndiva(0f + 5Vaf) = Calf, f), (FPVE) 

where, as before, E(F, t) is the field function and satisfies the equation 

~ l (rt) = «a / dF, V-( as _ :) f(A, 8, t) di, (VE) 
RN jr — ry |N- RN 

a > 0 is a constant, R\ denotes real N-dimensional position or momentum space. 

The terms ndiv;(vf) and nédivs(Vsf)/2 denote the dynamical friction forces and 

thermal background interaction. respectively: The last term Cg(f, f) is the Enskog 

collision term. 

§6.1 Conserved Quantities and Bounds 

The system we consider is (FP VE)-(VE). defined above. Suppose that Y(o.T) = 

Y(t,o). Then we still have equation (2.1), i-e.. 

// (7, VICES, f(r v, t) dvdr 

=$ //[fre (7,7) + O(F + a€, v1) — 6(F, 8) — o(F + %1)]x 

x f(r vty f(r+ aévy,tpY (ri rt aé) < é€v—v, > dédv, dvdr 

for any given ¢ = d(7,v). Let o= 1. Then 

0 . > a. 4,8 
drdo{ af +0-Vef + E(r\t)- Vaf(*, 0,t) — ndive(vf + 5 Veh) = 
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= // drdd f(F + 3,%.t) = 

- 0 
-// drdv dive f(F + ti, v1 t)E(r + tv,t) —n( fo+ 5 Val(F + tv, v,t))} = 0, 

or 

// f(r. 0, t)drdv = / fo(r, v)drdv, ( Mass Conservation ). (6.1) 

Next we consider the energy bound. Since 

oy + dive(u? fa) + v?divg( fE) — nu*dive( fi + aVsf) =v'Cr(f,f), 

< / di div" f + // dF div? divg(vE) —n / dF div" dive( fi + Vaf) 

R° x R3 R° x R3 R3x R3 

= /I dr div’Ce(f, f) = 0, 

R3x RS 

using 

v'divs( fE) = div,(v? fE) —2E - fi, 

v'divs( fu) = divs(u* fa) — 2u’f, 

v*divs(Vaf) = divs(v?Vzf) _ 2divs( fv) + 2Nf, 

we have 

~~ jf pyro ~ 2 > -~ 21: > 0 
dr du{E(r + tv,t)-u°Vef(F + tu, v, t) — nu*dive( fo + 5Vaf)} = 

R3 x R3 - 

=-? // dF dvE - fo+ 2n // dr dov* f ~ Nn // dr du f 

R? x R3 R3 x R38 Rex RS 

= -2 | dF FE -7 +2n // dF div? f — NOn iI dr dv fo, 
3 

R R3x R3 R3 x RS 

where 

~ 

j= / of (Fa, t)de, 
3 
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and N = 3 is the spatial dimension, and 

© / dr déf(r,v,ty? =2 | dFE-7+N6n / dF di fy — 2n // di di fv?. 
R3 

R? x R3 R? x Re R3 x R3 

(6.2) 

On the other hands, let n(7,t) = f dv f(7,v,t). Then n(F,t) satisfies the following 

equation: 

< nF) + dive(j(#,t)) = [cots fydi. 

But 

E(?, t) = -« | dry Vee f Ana nae 

and therefore 

© BF.) = 

~ | - tee ~ — =na f ai Vl Jldivn (MFO) + f ACA NAE 

=~ 4draj(F,t), 

and 

d —_ « ~ — 

~ | alk) = -8ra | dij - E(F,t). (6.3) 
dt Jp: 

From (6.2) and (6.3) we get 

£4 // dr div? f(r, 0,t) + —/. dF |E(#, t)|?} = —2n i dr di fu? + N6nM,, 

R3x RS R3 x R3 

(6.4) 

where M, = ff drdvfo(7,v). Obviously, we have 
R3 x R3 

// dr div f(r, v,t) + = / 3 dF |E(7,t)|? < M2, + N@nMyt, (6.5) 
a 

R3 x R3 * 

where, M,= ff didiv?fo(?,0) + <b fas dF |E(F,t = 0))?. 
R3 x R$ 
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Since 

d aia a de alte Laid Ft) = 5 ff dr dvr f= /f dr du(r + tv)" f(r + tu, v,t) = 

R3 x R3 R3x R38 

= [[e Of (F, a, t) dFdd + [forgse. ot) 4o-Vef(#, o,t))drds 

= / / dr dor of (7,0, t) + / / dF dédivg{r?(—fE(F,t) + fot Vef)}+ 
R3x RS R3x R38 

+ / | dF dir’Ca(f, f)(F, 3, t) 
R3 x R3 

= / | di dir - (7,8, t), 
R° x R3 

we have 

d 1/2 1/2 

Z / / ar dor? f(F,3,4) <2 / / ar adv? f(F,0,0)) ( / / ardor? (7.0.4) 
R3 x R3 R3 x R38 R3 x R3 

and 

/ J di dir? f(F,8,t) < als + N0nM,t)? + 2Ms, (6.6) 
R’ x R3 ’ 

where Mz = ff fo(7, 0)r?drdv. 

Finally, let us consider the entropy. Formally we have, 

0 = 
in +0-Ve+E-Va}flog f= 

6 
= (1 + log f)Ce(f, f) + n(1 + log f)diva( fo + 5 Ves), 

(1 + log f)divs(fv) = divs(flog fv) + Nf, 

(1 + log f)divs(Vef) = divs(Vsf log f) _ fc! \Vaf|*, 

and therefore 

d ~~ —~ 7-7 —- 47 2 } 
ai // dr dvf log f = /I dr dv log fCz(f, f) — 2n6 // dF db|V s/f | + NnM,. 

R3x R3 R?x R3 Rx R3 
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Define 

I(t) = / FF IA) og f(Fv. ava [ Us)as+ [ 3(s) ds, (6.7) 
R?x R38 

where I(t) and J(t) are given by (2.16a) and (2.16b), respectively. Using the fact that 

y(log y — log z) > (y — z) for y.z > 0, and integrating both sides of equation (6.7) 

over R? x R3, we obtain, as in chapter II, 

“rit) < NnM,, (6.3) 
dt 

and 

d ys l(t) + 

R3 x R38 

Now assume the geometric function Y(r,o@) is continuous in t,o satisfying (2.19). 

Then we have as before that 

In addition, 

| | dF db f(F,5,t)|log f(F,0,1)| < Ms, O<t<T, (6.10) 
R3 x R3 

where M; = Ms(M,, Mz, M3, M4, My,T) is a constant depending on M,, M2, Ms, 

M,, My, T, and 

Ms, = / dF dv fo(7, ¥)| log fo(*, ¥)| < co. 

R3 x R3 

Finally, as in Chapter II, we can find a constant Mg = Me(M,, M2, M3, Ma, 

My ,T) < co such that 

T 

[af] (veVFP + los fCol 4,1) ddd < Me 
0 R’ x R3 
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§6.2 The Green’s Function 

Now let us consider the fundamental solution or the Green’s function of the 

field free Viasov-Fokker-Planck equation. Consider the following equation: 

0 0 ow 
BP +B Vep —1V sup + - 3 Van) =r .U — u,t), 

where @ and w are parameters. 

Taking a Fourier transformation with respect to r, and denoting the trans- 

formed variable as a, 

0 , . ae, OO, a 
HP +v-iap — ndivs(pi + 5 Ve) = 6(v— t,t). 

Fourier transforming with respect to v, with transfored variable 8, 

d.- “aad 

ab — &- Vab— 0 — ind iV gb + si] = 5(t)e“™, 

0. ~ ~ z ~ 8 ay. a 

ByP — & Vg t 18 V sb + snB'p = alte 

Sola. B- ta + tnB.t)e& $n(8—-sd—snp)? ds _ 5(t t)eb Sn(é a—onf)Pds i(8—tatind) 

The solution of this equation is, for t > 0, 

A(a, (1 + tn) — ta, t) =e B7 e407) Bra)? ae 2-18 

) 2 143) 92 2,2 3)— 2, 1 oy ie = exp{—sal(é + nt + 3? \B* — (4° + 37 ja- Bt 30 t]he 

0 Ly a 49 2 ne FZ to» ist = exp{—pme[(1 +nt+ 3! n)B° — (t+ git Ja: Br 30 t*]}en 

_ 

Let B = (1+tn)B— = = Sti then 

1 2 ~ ft? . 
(1+ nt + 3t’n’)p? — (t+ 3m )a B+ sal 

—_



L+nt+ it? - 5, #t+2nft? ~ » ls. 
= —_—__3_— B’ + 2ta&- B+ ta’) ~ —2—(a&- B + ta’) + <td’ (1 +t) (B* + 2ta- B+ t*a*) iain t tat) +5 a 

l ly as 2,2,2 1,4. 
= Taal! ttt st*)B? + (t+ snt?)a- B+ xt0"). 

Therefore, for t > 0. 

~~ _. ,btta = 

p(a, 8, t; we tent 

  

  

Ont 1 iy 2) 92 2 y= lo a ? =exPl—3 7 pl te + Ft n°)B + (t+ 30 )a-1+nt+ 3t n + ze')}= 

= exp{ On(1 + nt + 3t?y?)e 

~ SSP 2(1 + tn)? 

~ 1 t+ 2nt? | t? 1 t+2nt?., . 
4+ =<——_3 a)’ + Bye dp 3 Var 

(8 21+ nt + 4t?7? ) (Sant + ey 1! iti? I} 

6 nt l,5,7. 1 t+ 2nt? 
= —————_(1 4 nt + =t?n?)(8 + - 2-2 

exp 2 +t) tm + sty Vl +3 Teast tap} 
6 ts . 

x exp{—= | a},   

2 12(1 + nt + $t?n?) 

and 

p(a, 3,t;u) = 
t+2nt? 2, , > nF a 2(14t 

_ exp{—$qqap ll +nt+ +t?) [(8 + + 5 a)? 4 Soe ott) a’]}, t>0 
1 +nt+zt?n? 

0. t<0 (Al) 

Taking an inverse Fourier transform for 9 and for &, then for t > 0. 

      

  

  

  

. ~ (1 + tn)? 3/2 (1 + tn)? -~ u > 
"5 1t; = 20: ~ 2p) (Ix P(r, v, tt) Soni nt + Le exp nil + nt+ sey itm? 

| Ont? 2 aye, Et gn + 5re ='{ exp(— > id (t+ on )\o+— 2 3 Fy («0( Xi tnt + bP?) yp 1A (E+ St e+ ee) 

_ G+ (__+ ___t_»), 
mnt? 2Ont(1 + nt + 4t?n?) 1+ tn 

6(l+nt+4i'n?) , 6. 2. Lt antt pnt’ ~~ _ 3 a —nt x exp{ ont r + op! ((l+ 59 \u+ yt u)}x 
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3 2 L+ Snt + 3770? 
(L+=nt)v+ a)7}. 6.11 

20nt(1 + nt + LP ne) | +378) 1+ tn w)) \ ) 
  x exp{— exp{ 5 

Consider the linear operator 

. 0 4 _,. 9 
L,e(v)f = ait +0-Vef —nVelvft 5 Val). 

Its Green’s function is given by 

G(r vt: 7, u,s) = pir — q,v,t — 8; u). (6.12) 

That is, the solutions of the nonhomogeneous equation 

{ of (F, v ,t) + ve Vif ~ ndivs(vf + 2V sf) = ACY, v,t), 

limy—+4o f(r r,v,t) = fol(?, v), 

are given by 

ean= |] oe nazo la naqas 
Re x R3 

t 
+ | is | G(r, v.t:¢, U, s)h(q, uw. s)\dqdu (6.13) 

0 
R3 x R3 

The following identities and inequalities will be used later. First, for all (q.w) € 

R? x R3 and t > 0, 

/ h G(7,0,t: 4, @, 0) drdv = 

  
  

  

R° x RS 

V3(1+t l+t . a. 

a Sa uy rf tar exp (- Tai = nt LA 3 + 5") * 
R3 x R3 

x exp (- 6(1 + nt + stm) ge ( t+ nt? 4 t+ ant? + 2n?2? ») 

Ont? 2L+qtt sty?) 21 + nt + 3t?n?)(1 + tn) 
= 1, (6.14) 
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Let 

    

  

    

    

    

Gas-( 7 6(1 Font+ shot + ant?) 4. 2t + 2nt? + 2n?t?/3 i) 
= _ = Lo 5 

l+tn t?(7 + 10nt + 4n?t?) 2(L + ty)(1 + nt + $t?n?) 

~ | 2t + 2nt? + 2y%t?/3 
=r-— ) 

2(1 + ty)(1 + nt + $t?n?) 

then for every (q,i@) € R? x R?, 

l+t . ad. 6, 20. L+Snt+ 37??? _ 
gg yO 1 4 yt p EE 2Ont(1 + nt + 3t?n?) 1+tn Ont? 3 1+ty 

6(1 + nt + 4t?7’) , 3 2  _ L+4nt+ 4n?t?_.. ( é = 7) ) 2 Ta Tipp ((l + gt )o + a a i)? 

7 nt(l + nt + 3t°n?) + tn 
12. tnt t+ hPn?)\1+tn)? . T+ 10ntt+ Bn?t? 

Ont? (7 + 10nt + 222?) 2Ont(1 + nt + 4t?n?) 

and 

1/2 

Lf MFT. Gd.) dr) di? 
R3 R3 

1/2 1/2 

-| (| PF F8,40)40) a= | (| PF, 8.40) a) di? 
RS RS R3 R3 

: 3 é 142,,2 2 : ~ 12(1 t+ =t 1l+t Cute) | Af exp{— (l+nt+4 m0 + tn) R} x 
R3 Ont? (7 + 10nt + 37°t?) 

7+10nt + Unt? | \1/? 
x (| d3 exp{(-_——_— v"}) 

R3 Ont(L+ntt+ 3°71 ) 

TH 1Oné + igre? VO aay 6.15) 
~ \ 16m O4t(1 + nt + 4242p?) 8\llrndt) — (6. 

  

    

Similarly, we also have 

G(?,8,t:7, d,s) dgdt = (1 + n(t—s))*. (6.16) 

§6.3 Sequential Stability 

Now we consider the solution of the following equations: 

IMF, B,t) + T+ Veg” — ndiva(dg” + Vag") = h7(F, 9,1), (HS) 
limy+40 g(r, v, t) = go(?, v), 
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From (3.3), the solutions of equations (IHS) are given by 

Ft) = ff GR Bug t0)gh a Dagar 
R3x R3 

t 

+ | ds // G(r, 0, tig, U, s)h"(¢, uw, s)\dqdu 
0 

R3 x R3 

Using (6.16), (6.17) and the argument in the proof of Lemma 3.5, we have 

LEMMA 6.1. Suppose that {gj} and {h”} satisfy the following hypothesis: 

(1) {gf} are bounded in L'(R? x R3), and 

sup Jf ai g(r, v) drdv — 0 as Rao; 

(7,7) [geR 

(2) h® = A™ +h*, {h"} is bounded in L1((0.T) x R® x R3), {h"} is bounded in 

L'((0,T) x Rez; L?(R35)), and 

sup, Jo Senor lh ldFdidt +0 as Rx, 

| SUPy fi dt f dr f FILWIDR |A"|?(*, 3,t) dv)/? +0 as R—- oo. 

Then the set of solutions {g"(7,v,t)|| of the equations (IHS) is compact in 

L1((0,T) x R° x R3). 

Now we can consider the sequential stability result for the equation (FPVE). 

Suppose that f(r, v,t) is a nonnegative solution of the equation (FPVE). Then. the 

function gs of f, gs = Bs(f) = + log(1 + 6f) solves 

O 6 
ane Vegs — ndivgs nme 5 995) = 

f > = 3€ 45 Vege)? + NL ~ EF. t) - Vens. ale L) + OP Vans) + NEES — BR): Yeas mown     

This motivates the following definition. 
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DEFINITION 6.2. A nonnegative element f of C([0,0o), L'(R® x R°)) is a renormal- 

ized solution of (FPVE)-(VE) if the composite function gs = 35(f) satisfies (RME)- 

(VE) in the sense of the distributions, where 3;(t) = < log(1 + 6t). 

THEOREM 6.3. Assume that f" <¢ W*°(R? x R? x [0,00)) is a sequence of nonneg- 

ative solutions of (DVE)-(VE), /" ~ 0 as |(r.0}| - 00 uniformly in t € [0,7] for all 

T < oo. Assume that there is a constant Cr independent of n such that 

| | PFT, 0 + [AP + OP + [log f*|) dod? < Cr, (6.174) 
R38 x R3 

/ |En(*, t) Pdr < Cp, (6.17b) 
R3 

T 

/ dt /I {|Var/ fri? + |log f"Ce(f™. f")|} didF < Cr. (6.17c) 
0 Rex R3 

Then the sequence f" converges in L?(0,T; L1(R? x R3)), 1<p<w,0<T<ec. 

to a renormalized solution f which satisfies (6.17a)-(6.17b) for a.e. t € (0,7) and 

(6.17c). Furthermore. for each 6 > 0. the renormalized interaction terms satisfy 

Ca(F, fl + 5f) nea, € C((0, 00); LR x Bp)), VR < oo 
CEPA) + 5f) eae € L([0,00) x R2x Br), WRT < co 

and gs|zep, € L*((0.T) x R32, H'(Br)) (WR,T < 00). 

We point out that Theorem 6.3 can be proved in the same manner as the proof 

of Theorem 3.1 with little modification, noting in particular that the results of Lemma 

3.4 are given by Lemma 6.1. 

§6.4 Global Existence 

As we did in chapter IV and V, we first consider the solution of the following 

non-linear approximate equation: 

af (7, 3, t) + 8+ Vaf — nf 
lim,o+ f(7.&.t) = folFe 

4 f+ 2Vsf) + El7t)-Vof =CelhS) ° 

(AE1) 

S
e
e



where 

Celf, fF, 8.1) 

“Tira? ‘(n(F,t), n(F — aé.t))nB(d, 01) f(r, 0", t) f(r — aé 04, t) 
3x SF 

(n(7,t).n(F + aét))ng(t, a) fF Ot) fF + a 0, t)] << 6&0 -—v, > dédv, 

= Ct - Cz. (AE3) 

= {(%, 01); |U]?+)0;|? < &} for some positive constant & and n(r,t) = fz f( 

We assume that Y and fo satisfy the assumptions (A1)-(A4) in Section 4.4. Then by 

considering the following form of the integral equation 

f(r, u,t) = / G(r, v, t; J, w. 0) fol(g, w)dqdu- 

R3 x R3 

t 

+/ ds / G(7,0,t:¢. a, s)[Ce(f. PG a, s) + E(G.s)- Vel (G2, s)dgdi, 
0 

R3 x R3 

and using the lemma 6.1, we can follow the proof of Theorem 4.3 and conclude 

THEOREM 6.4. Under the assumptions (A1)-(A4), the equation (AE1)-(AE3) has a 

unique non-negative solution which belongs to C([0,T]; L?( R32: L'(R3))), 1<p< oa, 

for each T € (0,00). 

Finally, truncating fo and regularizing the truncated function by convolution, 

we get a sequence f” € D(R® x R?) such that fo > 0 and 

i dF dé] fy — f2\(1 + [FP + [SI2) > 0. (6.18a) 
R?xR 

/ dF dv f"|log f2| <C, (6.18b) 
Rx R3 
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for some constant C’ > 0 independent of n, and such that 

/ dF |E% — Eg|* >, 0. (6.18c) 

In equation (AE3) let € = 1/n (in the assumption (A2)) and let na(v, v1) = na(v, v1) € 

D(R?® x R>) such that 0 < ny <1, suppn, C Bu4i. and nalp, = 1. Since Y(7,c) 

is bounded and continuous. we can choose Y;, = Y,,(0.7) € C@(R x R) such that 

Y,, satisfies the symmetry condition (A2) and the Lipschitz condition (A3) in the last 

chapter (with the Lipschitz constant C = C(n) depending on n only) and such that 

limsup |Y(o.r) — Y,(o,7)| = 0. (6.19) 
Nor 

Define the approximate geometric factors Y,(o,r) = (1+1/no)71(141/nr)7}Ya(o, 7) 

X{j#¥<n}- Consider the solution of the following system of equations: 

Lyf? + E,(7,t)- Vaf" = CBE", I"), Flexo = 2, (APE) 

with E, satisfying (AE2). Then, according theorem 6.4, there exists a unique non- 

negative solution f”(t) € L'N L°(R® x R°*) of the equation (APE), which satisfies 

the bounded condition in Theorem 6.3. Using Theorem 6.3, we have 

THEOREM 6.5. Assume that Y(o,7) = Y(r,o) is a jointly continuous function satis- 

fying the symmetry condition and the boundedness condition (2.13), the initial value 

fo(7, v) > 0 satisfies the bounded condition 

/ / dF di fo(F,5)(1 + [FP + [oP + [log fol) < C <0, 
R3 x R3 

and Eo(7) = Vee * no)(7) = Vel * f fol*, #) dd)(7) satisfies 

/ |Eo(F) 2 dF < C <x. 
R3 
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Then, there exist f € C([0,00); L'( R° x R°)) which satisfies f|t=o = fo. (3.9a)-(3.9b)- 

(3.9c) and such that, for all 6 > 0, gs = Bs(f) satisfies (RDVE)-(VP)-(IC) in the 

sense of distributions and gs|,r)xR*xBp € L?((0,T] x R®, H'(Br)) (VR,T < oo). 

In particular f is a renormalized solution of (DVE)-(VP). 
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Chapter VII Mild and s-Type Mild Solution 

In this chapter we study the existence of weak solution and semi-stronh solution 

for some special models. We first give a general theory for the existence of solution for 

semi-linear evolution equations. We then apply this theory to some kinetic equations. 

§7.1 Solution of Non-linear Evolution Equations 

Let VY be a Banach space, A: D(A)(C V) — 1 be a densely defined closed 

linear operator which generates a cg-semigroup U(t). Let 7(f) : D(A)(D D(A)) — ¥ 

be a non-linear operator. Consider the following non-linear evolution equation: 

4 f(t) — Af(t) = T(f(2)) (7.1) 
f(t = 0) = fo. 

A X-valued function f(t) is called a strong solution of equation (7.1) if f(t) € D(A) 

for each t > 0, strongly differentiable about t, and satisfies the equation in the strong 

topological sense. f(t) is called a mild solution of equation (7.1) if f(t) satisfies the 

integral equation 

f(t) = Ufo + / U(t = s)F(f(s)) ds. (7.2) 

Suppose that B : D(B) — + is another densely defined closed linear operator satisfy- 

ing D(A) Cc D(B) Cc X. We shall say that f(t) is a B-type mild solution of equation 

(7.1) if f(t) € D(B), satisfies (7.2), and both f(t) and Bf(t) are continuous. Obvi- 

ously a strong solution or a B-type mild solution is a mild solution, but the reverse 

may not be true. 
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In the following, we want to find some conditions under which equation (7.1) 

has a B-tvpe solution. In order to do so. we need to restrict both A and J. Since 

D(A) C D(B) CV and B isa closed operator, for any ¢ € .V. U(t)¢ € D(A)(C D(B)) 

as long as t > 0, that is, for any t > 0, BU(t) is a closed operator defined on .V. By 

the closed graph theorem, BU(t) is a bounded operator. The co-semigroup U(t) will 

be called B-regular if there exists a continuous function a(t). 0 < t < oo, such that 

(R1) ||BU(z)|| < oft), t > 0; 

(R2) U(t)Bd|| < o(t)|lol], for o € D(B) and ¢t > 0; 

(R3) J o(t) dt = p(T) < co for any T > 0. 

The closed operator A is called a B-regular operator if the semigroup U(t) generated 

by Ais B-regular. For the nonlinear operator 7(-), we will say that 7(-) is B-bounded 

continuous if D(B) C D( 7) and J satisfies the following conditions: 

(B1) IF(e)ll < CCAll, IS el) Bell + lel); 

(B2) 7(%) — FP) S Cell, Well Bol], [BY UIBlo — HI + Ile — vID) 

for all ¢, € V, where each constant C is a monotone increasing (everywhere finite) 

function of the norm indicated. 

THEOREM 7.1. (Local Existence) Suppose A is B-regular and J is B-bounded 

continuous. Then, for each 09 € D(A), there is a T > 0 so that equation (7.1) has 

a unique B-type mild solution for t € (0.T). For each a,b > 0, T can be chosen 

uniformly for all ¢o in the set {¢ | ||@|| < a. ||[B¢|| < 5}. 

PROOF: We first assume that o(t) is decreasing and that U(t) is contractive. Let Xr 

be the set of D(B)-valued functions on (0. T) for which ¢(t) and B¢(t) are continuous 

and 

Jol = sup [6(e)| + sup [B9(e)|| < oo 
te€(0,T) te(0,T) 
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Since B is closed, X7 with the norm ||@(-)||r is a Banach space. For fixed € > 0, 

let do € D(B) be given and let X7,4, consist of those Xr with ¢(0) = @ and 

llo(-) — U(t)oollr < €. We will show that the map 

t 

(S@)(t) = U(t)do + | U(t — s)7(o(s)) ds (7.3) 
0 

is a contraction on X7.,4, if J is small enough. We denote by C, any of the constants 

in the conditions (B1)-(B2) with arguments ||¢]|, ||w|| = ||¢ol] + € and ||Be¢ll, ||Bw|| = 

|B ao|| + «. Suppose that ¢(-) € X7<.9,, if s € (0,t) and s +h € (0,t). Then 

|| U(t — (s + h))F(o(s + h)) — U(t — s) F(4(s))]| 

< |[U(t — s — h)(T(O(s + h)) — F(O(s)))Il + (UE - s — 2) — Ult — 8)) F(9(s))I 

< C.(|Be(s + 2) — Bo(s)]] + llo(t + 2) — o(t)]}) + |](U(2) — 1U(t — 8) 7(o(s))I- 

S |]7(9(s))ll < C-(BI + 

\|o|| + 2€). Therefore, the last term above tends to zero as h — 0 since U(t) is co- 

  
For fixed ¢ and s, let Y(s) = U(t—s)7(¢(s)). Then ||w(s)| 

semigroup, and the first term on the right hand side of the above estimation converges 

to zero by the assumption. Hence, the integrand on the right hand side of (7.3) is 

continuous for s € (0,t). Similarly, for any b € (0,t), if s € (0, b) and s +h € (0, )), 

||BU(E — (s + h)) FT (G(s + h)) — BU(t — 5) F(4(s))]] < 

< ||BU(E — (s + h))(T (G(s + h)) — F(4(s))) | 

+ ||B(U(t — (s + h)) — Ult — s))7(4(s))|| 

< C,a(t — 6)(||Bo(s +h) — Bz f(s)|| + lot + 2) — o(4)|I) 

+ a(t — b)\\(U(h) — 1) F(4(s))II- 

A similar proof shows that BU(t — s)J(@(s)) is continuous for s € (0,t). Therefore, 

the right hand side of (7.3) can be defined as a generalized Riemann integral. For 
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any b € (0,t) given, rewrite (7.3) as 

b t 

(S8)(#) = Ule)do+ | Ule-s) TCAs) ds + | Tle 5) F(0(s)) ds, 

and let 

1 m 
m(t)= Dd) =U(t-—t)F(o(—¢)), 

igm<ing] 
b 

m(t) = ; U(t — s)7(9(s)) ds, 

n(t)= [| U(t—s)I(0(s)) ds 
0 

Then 7n(t) — m(t) as n > co. Furthermore, 

t—b 

Himlin(t) — ml) S lin [ U(s)-TCLE-s)}) as (tb) 0 
tb 

< lim a(s)ds C.(||¢o|| + ||Beo|| + 2€) = 0. 
~ (t-b)+0 Jo 

Now, each 7,(t) € D(A)(C D(B)), so 

1 m m 
Bn(t)= | B-U(t-—t)I(o(=#)) 

1<m<[nb/t] 

=| BU(t — s)T(4(s)) ds = Bno(t) 

and 

im|Bns(t) — Bo(¢)|| = lim | le — s)F(6(s)) asl — —t A 
t 

<lim | o(t—s)C,(||Bdol] + ||¢ol] + 2€) ds — 0. 
b —t 

Therefore, 7(t) € D(B), and 

[|Bn(t + hk) — Bn(t)|| < 
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t+h t 

<I] f- BUE+ A= s)T(o(s)) dsl] +I) [ BUC 3)(ULH) - NICs) asl 
t 0 

tth t 

< Cllollx | ao(t+h—s)ds + | |BU(t — s}\(U(h) — 1) 7(o(s))|| ds. 
t 0 (7.6) 

The first integration tends to zero as h — 0. The integrand in the second term 

converges to zero as h — 0 for each s, and by the hypotheses on 7, the integrand 

|BU(E — s)(U(h) — 1) F(9(s))|] < 2C.o(t — s)(|B oll + [lool + 2¢), 

and fe a(t — s)ds = p(t) < o. Thus, by Dominated Convergence Theorem, the 

right-hand side of (7.6) converges to zero as h + 0. That is, An(t) is continuous, and 

similarly, 7(t) is continuous. Moreover, exactly the same kind of estimation as above 

shows that for any 9(-), %(-) € Xr-¢,¢., we have 

I|(S9)(¢) — U(E) ool] < CAT sup. |o(t) |] + Sup. Be(t)l)), 

I(BSo)(t) — BU(t) dol] < C.p(T)( sup [Bote )Il + sup Hed, 
te€(0,T te(0,T 

I(So)(¢) — (Sv)(t)|| < C.-L sup |lo(t re + sup 1860 ) — Bv(t)|l), 
t€(0,T) te(0,T) 

I|(BSo)(t) — (BSw)(t)|| < CPT) sup Bott) — Bo(t)||+ sup [¢(t) — o(é)|]. 
tE(0,T) 

Thus, since limrio p(T) = 0, for T small enough, S is a contraction on X7..4,. By 

the Schauder fixed point theorem, S has a unique fixed point ¢(-) in X7.4,, which 

satisfies (7.2). Comparing the definition of a B-type solution and the space X7T.,6; 

we see that the fixed point ¢(-) is actually a B-type solution of (7.1). 

We complete the proof of this theorem with the following two remarks: First. 

the assumption that o(t) is decreasing and U(t) is a contraction at the beginning 

of this proof is just for convenience, but not necessary. Second, what was used in 

the above estimations was the norm of ¢@ and B¢@. Hence T can be chosen uniformly 
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whenever the initial data @o is in the set {@| |||] < a, |]B|| < 6}. This completes the 

proof. a 

From the proof above, it is evident that the existence result can be continued 

globally. 

COROLLARY 7.2. Suppose A itself is an A-regular operator, and J() is A-bounded 

continuous. Then for any ¢9 € D(A), there is a T = T(||¢oll, || Agol|) > 0 so that 

equation (7.1) has uniquely a strong solution. 

PROOF: First, by Theorem 7.1, equation (7.1) has an A-type mild solution ¢(-). We 

want to show the A-type mild solution is actually the strong solution of equation 

(7.1). First, suppose that ¢(t) is a continuous D(A)-valued solution of (7.1) on the 

interval (0,7) with 4(0) = ¢o. From the differential equation, A¢(t) is continuous, 

so o(t) € Xr¢4, for t in some interval (0,7), where, X7.-.4) is the space used in the 

proof of Theorem 7.1. Since ¢ obeys (7.2), ¢(t) = A(t) for t < Tp. Let T; be the 

supremum of such 7, since X7,,4, is closed and ¢(T;) E Xre4¢,- Now if T, < T, 

then since ¢(T,;) = 4(T;), the same argument as above shows that g(t) = ¢(t) for 

some small interval of 7;, which contradicts the maximality of T;. Thus T, > T, and 

g(t) = g(t) for t € (0,7). That is, any strong solution of (7.1) on (0,T) equals the 

A-type mild solution ¢. 

Next, we want to show the differentiability of é(t). We write 

  

Hee = 8) UM = Nye, +4 [UHI (#(s)) ds 
+ | (Out — 5) 7(4(s)) ds. (7.7) 

Since ¢9 € D(A), the first term converges to AU(t)¢o as h — 0. The integrand in 

the second term, as shown in the proof of Theorem 7.1, is continuous, and its norm 

is dominated by C;(||¢o|] + ||Adol] + 2€). Therefore, the second term converges to 
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J(o(t)). The integrand in the last term converges to AU(t ~ s).7(@(s)) for each s 

and its norm is dominated by a integrable function C,(i]¢o||-+||Ado||+2¢€)o(t—s). so, by 

Dominated Convergence Theorem, the last term converges to f’ AU(t — s)¢(s) ds = 

Af, U(t — s)o(s) ds. In conclusion, ¢(¢) is strongly differentiable for ¢ € (0,7) and 

satisfies (7.1), i.e., a strong solution. This completes the proof. a 

Remark: It is not quite clear under what conditions an unbounded operator A itself 

is A-regular. In fact, the remark after the proof of the next lemma shows that. for 

self-adjoint operators A in Hilbert space, A is A-regular is nearly equivalent to that 

A is bounded. 

COROLLARY 7.3. Suppose that .V is Hilbert space and A is self-adjoint with spec- 

trum contained in (—0o, ao] for some finite ag. If there is a p, 0 < p <1, such that 

J(-) is |A|?-bounded continuous, then equation (7.1) has uniquely an |A|?-type mild 

solution in (0,T'(||¢oll, | Al?ol|)) for any bo € D(A’). 

PROOF: By the theorem, we only need to show that A is |A|?-regular. Since A is 

self-adjoint, A generates a spectral family {€, : —oo < uw < co}, and the operator 

|A|*U(t) can be represented as 

|APU(t) = / \ulPet dE, (7.8) 
- OO 

in the strong topology sense. Formal computation shows that 

Ye) 

| AlPU()|] < max{lao|*e'*?, Fe}, (7.8) 

and the right hand side above, if 0 < p < 1, is finite integrable on any finite interval, 

i.e., A is |A|?-regular for 0 < p < 1. 7 

Remark: If the spectrum o(a) D (—co, a] for some constant a1, then for t < fay, 

it can be shown that (7.8a) takes equality in this case. Since i 1/tdt = oo, A can 
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not be A-regular. Nevertheless, the equation (7.1) can have uniquely a strong solution 

if J(-) satisfies some conditions. The reader is referred to the last chapter of [43] for 

some examples. 

§7.2. The Fokker-Planck-Vlasov Equation 

This part will consider the solution of the Diffusive-Vlasov equation and the 

Fokker-Planck- Vlasov equation. Since the arguments are almost the same, we only 

consider the Diffusive- Vlasov equation: 

at r vats. i) + Be VVAGEN—Nef =o, (DY) 

jim i (F, v 5 r,v) (IC) 

in the space M = XN L'(R8 x R°) = C(R3; L'( R32) L'( Re x R®) defined in Chapter 

IV. Define operator A: D(A) > X and J(-): D(A) — X by 

Ad(r,v) = —v- ven v) + fee v), (7.8a) 

TNF =— Lf eae | oF, a1) do) - Ved Fa) 
FAP 7 (7.8b) 

for ¢ € D(A), where the domain of the operator A is given by 

rv) is abs. cont., — | = 0 ¢(7, v) is abs. con > gai 0% ,v) 

D(A) = ‘é EX: v- Vzo(r, 0) € X, [Vad] € X, alm |Vz¢| = 0 

|[Vs(7", v) is abs. cont., Ag Ee X 
(7.8c) 

We call that the function f(7,v,t) is a Vs-type mild solution (of (DV)-(PV)- 

(IC)) if f is the solution of the integral equation 

(7,9, t) = / / v(t, 7,8; Ga) fol d, @) dag 
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t 

—f ff ot-sraeDE Gs) VaMTts)agat — (7.9) 
0 

with E satisfying (PV), and sof lF, v,t) is a continuous X-valued function of ¢ for 

i = 1.2.3. Define a vector operator B : D(B) + X x X x X by 

Bo(7,0) = Vz0(F, 0), (10) 

where 

D(B)={¢EX: lim (7.5) =0, [Ved] € X}. 
l7]+|¥|—-0 

Let X? = X x X x X with the norm |||] xs = ({|o1||% + ||@2l|% + || ¢3||%)!/?.. Then X? 

is a Banach space, and for any t > 0, by an argument similar to the proof of Theorem 

4.3 (cf. (4.12)), we know that 

      

  

BU(t)o(7, 0) = 

_ ik 3-9 (8a) 3740) 
~ [f 4 (ao aie (9) 2M mm 
R° x R38 

1 1, nn 3,4, mg BF -Q)-(@+u) . 3(F- 9G) 
x exp yg v—t) + 7 +t) — ; + 2 )] 

_ iI dddit RF, 4:3, d:t)o(Z, a), (7.11) 
Rx RB 

V3+1 /t 
— 7.1? ([BGU(t (t\Ilx x3 < < 5 Mn’ (7.12) 

Next, by Lemma 4.4 in Chapter 4, we know that E € C(R%) x C(R®) x C(R3) if 

and 

  

@ € X, and || E'|] 220 < C|léllx for some constant C. Therefore, 7(-) is B-bounded 

continuous in the following sense: 

IF (@)llx < Clld|lx||BolLxs, 

7 (4) — TWX < CWollx, IBV) d — Vllx + Bd — Bullxs), 

for all 6, » € D(B). Thus, using Theorem 7.1 on each component of Bd, we have 
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THEOREM 7.4. (Local Existence) For each fo € D(B), there exists a T’ such that 

the Diffusive-Vlasov equation (DV)-(PV)-(IC) has a unique mild solution f(t) for 

0<t<T. Furthermore, = f(t) is a continuous X-valued function in the interval. 

The conclusion is also true for the Fokker-Planck- Vlasov Equation. 

THEOREM 7.5. (Global Existence) For any T > 0, the equation (DV)-(PV)-UIC) 

has uniquely an X-valued mild solution f(t) for0 <t < T. Furthermore, the X- 

valued function os (t= 1, 2, 3,) is continuous for0 <t< Tif fo € D(B). 

PROOF: The following proof is essentially based on the proof of Theorem 4.2. Con- 

sider the solution of the integral equation (7.2) with operator A defined by (7.8a)- 

(7.8c) and operator 7(-) given by (7.8b). We can rewrite the integral equation as 

+ ie 
see a 3F-G  (8-a) 3840), = 

of pe 8 Esa MAGN ages Tea A 
  

  

R3 x RS 

x exp[— aa i)” + “(0+ a)? — a =f = +i) st )] dgdit. 

By using Lemma 4.4 and the expression for U(t)7(f) above, we can show that, in 

addition to satisfying (R1)-(R2)-(R3) and (B1)-(B2) relating to the operator B, the 

operators A and J also satisfy 

(Al) Ul) 7(A)Il s C(leDeo(Mllell; 

(A2) U4) 7(¢) — UE) TH) < C(Ioll, Ib Deo@ll¢ — vl: 

(A3) fe tT) dr = p(t) < co. 

The same proof as in Theorem 7.1 shows that, under condition (Al)-(A2)-(A3), the 

equation (7.1) has uniquely a local (mild) solution, and can be extended globally if 

one can bound that the norm ||f(t)|| of the solution f(t) is upper bounded on any 

(finite) existence interval (0, T). Suppose that the equation has a mild solution f(t) 
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for 0 <t <T;. Let 

| | . l . ee _ 
Fy(r,t) = -— | dr; Vk) | FF. 8.0) a8, (7.13) 

{ av 

which at least is well-defined on (0,7,). Consider the solution of 

2 f(F,0,t) = —0- Vef + AAsf — Ey - Vel, 

lim f(t) — follx = 0. 
Since f(7,v,t) is also the solution of the integral equation (7.9), it can be shown 

that f f(7,v,t) dv is continuous in 7, and therefore E,(7,t) is continuous in r. For 

each given ¢ € (0,7'), the operator €\(t) : (fi(t)f)(r,v,t) = ~Ey(F,t)- Vef(*,0) 

generates a contraction semigroup. By Theorem 4.2, the operator A+ &(t) defined 

via the right hand side of (7.14) generates a contractive (two parameters) system of 

evolution operators U¢(t,s) for 0 <s <t < T and the equation (7.14) has uniquely a 

solution f (7,0, t) with |] fl]x < || follx. On the other hand, since F; is given by (7.13) 

via the mild solution (DV)-(PV)-(IC), it can be shown that f(7,0,t) = /(7.%,t) 

and || f(r, 0, ¢) 

    

x < |lfollx. That is, the Diffusive-Vlasov equation has globally a 
    

unique mild solution. The second half of the theorem can be proved by using the 

explicit expression of the integral equation and the existence of the mild solution. 

This completes the proof. a 

§7.3 The Solution of (DVE) and (FPVE) 

Now we use the theory in §7.1 and 87.2 to get existence of a unique V-type 

mild solution of the Diffusive-Vlasov-Enskog equation (DVE) and a unique V-type 

mild solution of Fokker-Planck-Vlasov-Enskog Equation (FPVE). From Theorem 7.1 

and Theorem 7.4 we have 

THEOREM 7.5. Suppose that in the Enskog collision term, the geometrical factor 

Y = Y(r,v,r+ aé,v\|f) is so chosen such that the Enskog collision operator Cg ? 
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is a bounded continuous operator in X. Then, for any fo € P(B), there isa T = 

T(|foll, |lebfoll) so that the equation (DVE)-(PV)-(IC) (or the equation (FPVE)- 

(PV)- oo has uniquely a mild solution f(t) forO <t < T with continuous \-valued 

derivative 5, (t = 1, 2,3). 

In the following we give some examples of the existence of mild solutions as 

well as the existence of V-type mild solution. 

EXAMPLE 1: (The cut-off model) Suppose that Y = Y(n(#,t),n(7+ aé,t))ng(@, i) 

with Y satisfying (A2)-(A3)-(A4) given in Chapter IV. Then we know that the colli- 

sion operator C’g is bounded continuous in this case. By Theorem 7.5, the equation 

has uniquely a V-type solution for small time ¢t. In fact, Theorem 4.3 has shown the 

global existence of the strong solution in this case. 

EXAMPLE 2: (The decreasing velocity model) In this case, we assume that Y = 

Y(r,v,7\, 01) is a continuous function of its arguments, and bounded by a decreasing 

velocity function: Y(r,v;71,01) < Maa =p with constant M and positive 7 > 0. 

By the definition of the space X, we know that Cg is bounded continuous , satisfying 

(B1) and (B2) in this case. According to Theorem 7.5, the (DVE) or (FPVE) has 

uniquely a V-type solution for small ¢. In fact, one can show that the equation has 

uniquely a global mild solution in this case. The proof is almost the same as Theorem 

7.4 and we omit the details. 

EXAMPLE 3: (Maxwell Distribution Model) In this case, we assume that the ge- 

ometrical factor Y is bounded by the Maxwell distribution: ¥Y(r,v,7),0,) < © exp{ 

—y|v—0;|?} with constants M,y > 0. It can be show that in this case Y also satisfies 

the velocity decreasing model. Therefore, the equation has a unique local Vs-type 

mild solution, and a unique global mild solution. 
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