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ABSTRACT

Increasing computing power has been helping researchers understand many complex scientific
problems. Scientific computing helps to model and visualize complex processes such as
molecular modelling, medical imaging, astrophysics and space exploration by processing large
set of data streams collected through sensors or cameras. This produces a massive amount
of data which consume a large amount of processing and storage resources. Monitoring the
data streams and filtering unwanted information will enable efficient use of the available
resources. This thesis proposes a data-centric system that can monitor high-speed data
streams in real-time. The proposed system provides a flexible environment where users
can plug-in application-specific data monitoring algorithms. The Long Wavelength Array
telescope (LWA) is an astronomical apparatus that works with high speed data streams,
and the proposed data-centric platform is developed to evaluate FPGAs to implement data
monitoring algorithms in LWA. The throughput of the data-centric system has been modelled
and it is observed that the developed data-centric system can deliver a maximum throughput

of 164 MB/s.
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Chapter 1

Introduction

Real-time data streaming plays a crucial role in various data-intensive applications. Scientific
activities such as astronomical observations using telescopes, intensive simulations in biological
research, and weather prediction in meteorology require real-time data analysis. On a
commercial scale, vehicle navigation systems providing directions based on the vehicle location
and security surveillance using various sensors also have a need for real-time processing. In all
these applications, the processed data streams are to be sent to appropriate output devices
such as display screens in navigation systems or storage units for further processing as in
astronomical observations. Recent advancements in high performance computing devices
such as FPGAs and GPUs, and high-speed communication interfaces such as Peripheral
Component Interconnect Express (PCle) and 10 Gigabit Ethernet(10GbE), have led to the

design of high performance data streaming systems.

In this thesis, a data-centric system is developed to stream and monitor data in real-time.
Data-centric systems acquire, analyze and store data streams originated from inputs such
as antennas [1]. The data-centric system is developed as a prototype for a data monitoring
system in the Long Wavelength Array (LWA) telescope. LWA is an astronomical instrument
being built in New Mexico for radio astronomy [2]. The proposed data-centric system will

help in monitoring the celestial emissions captured by LWA antennas may help in mitigating
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radio frequency interference (RFT). In this thesis, data-centric system and data monitoring

system are synonymous.

1.1 Motivation

LWA station captures celestial radio emissions through its antennas. Data acquired by the
stations are routed to the storage units. Capturing unusable data (such as data with a high
amount of RFI) might result in wasteful consumption of storage capacity and processing
power utilized for recording and processing of unwanted data. The proposed data monitoring
system provides a framework that can be used to detect RFT in the radio signals captured by
an LWA station, and discard unusable data. The advantages of the new data monitoring

system for LWA can be summarized as follows:

o Efficient utilization of storage capacity: Every LWA station has dedicated data storage
units. Due to long periods of observation, the storage disks frequently run out of space
and need to be replaced with empty disks. A large amount of storage resources and
increased LWA station maintenance are required to replace the disks. Monitoring data
helps in detecting unusable data which can be discarded. Reducing the amount of
unusable data before storage will enable efficient use of the available storage space and

minimize the costs associated with extra storage and LWA station maintenance.

e FEfficient utilization of processing time and power: Data recorded in the storage disks
of an LWA station are processed at a central unit, usually a computer cluster. These
computers are high performance shared computing resources that consume a large
amount of power. Filtering data at the LWA stations avoids processing of unnecessary
data and hence saves the processing time and power along with the costs involved in

utilizing the high performance resources.
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The prototype data monitoring system developed in this thesis is used to evaluate FPGAs
for monitoring data in an LWA station. The developed data-centric system might also be
used for data monitoring and analysis in real-time streaming applications such as computer

surveillance systems to monitor Internet traffic.

1.2 Contributions

A generic FPGA-based data-centric system that can be integrated with any PC-based
streaming application is developed in this thesis. The data-centric system is developed as a
prototype FPGA-based data monitoring system for LWA in order to evaluate FPGAs for
implementing data monitoring algorithms in LWA. The data-centric system is not tied to
a specific application but provides a framework to which data monitoring algorithms can
be plugged-in. Using Xilinx System Generator (XSG), a model-based tool for developing
algorithms on FPGA, DSP functions such as a 8-point Fast Fourier Transform (FFT) block
and a Finite Impulse Response (FIR) block of order 21 are developed. The FFT and FIR
blocks developed using XSG are used to test the data-centric system and demonstrate its
plug-in capability, but are not intended as the goal data monitoring algorithms. A synthetic
data generator developed in this thesis generates random data and mimics an input data
source which transmits data-to-be-monitored to the the data-centric system via a 10GbE

link.

In the current design of an LWA station, the data generated by the Digital Processor (DP)
system is routed to the Monitoring and Control System Data Recorder (MCS-DR) system
which records data in storage disks known as Data Recorder Storage Units (DRSUs). The
FPGA component of the developed data monitoring system is inserted into the already
existing MCS-DR Personal Computer (MCS-DR PC). Figure 1.1 shows the LWA station

current design and Figure 1.2 shows the modified design with an FPGA for data monitoring.
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LWA Station

MCS-DR

Inputs from

other systems of an
o »{ DP System »{ MCS-DRFC »| DRsU

Figure 1.1: Current LWA station set-up.

LWA Station
MCS-DR
Inputs from
other systems of an
WA Sstyatio'h""""""') DP System 3| MCS-DR PC » Frca » Drsu

Figure 1.2: Modified LWA station set-up with FPGA based data monitoring capability.

This thesis makes the following contributions:

1. A generic data-centric system that can stream and monitor data in real-time is developed
in this thesis. The data-centric system is used to evaluate FPGAs as a possible data

monitoring device in LWA.

2. A plug-in capability has been provided for the data-centric system which allows its
users to develop monitoring algorithms in their preferred development environment and

integrate them with the developed data-centric system.

3. A synthetic data generator is developed to mimic an input data source which transmits
data-to-be-monitored to the the data-centric system via a 10GbE link. The synthetic
data generator is basically a 10GbE transmitter that transmits random data to the

data centric system.
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4. Establishing communication links:

a) A 10GDbE receiver is configured on the data-centric system. In this thesis, the 10GbE
receiver is used to receive data from the synthetic data generator (10GbE transmitter)
and establishes a one-way communication link between the synthetic data generator

and the data-centric system.

b) A PCle link between the FPGA and a PC.

1.3 Thesis Organization

This thesis is organized into six chapters. Chapter 2 briefly describes the related components
of the LWA architecture and discusses the features of the FPGA and the selection criteria for
the XUPV5 board used in this thesis. An overview of the PCle and 10GbE interfaces is also
presented in Chapter 2. Chapter 3 provides the information required to develop algorithms
on FPGAs. Chapter 4 describes the implementation of the proposed data monitoring system
in detail. An analysis of the data monitoring system and the factors affecting its throughput

is provided in Chapter 5. Chapter 6 presents conclusions and discusses future work.



Chapter 2

Background

This chapter provides the background information about the LWA station architecture and
the communication interfaces used in the data monitoring system and the selection criteria
for the XUPV5 board chosen in this thesis. Section 2.2 gives a brief description of the systems
of an LWA station relevant to this thesis. Section 2.3 lists the available high performance
digital devices capable of implementing data monitoring algorithms, and Section 2.4 lists
the features of FPGAs. The selection criteria for the XUPV5 board used in this thesis is
mentioned in Section 2.5. An overview of the communication interfaces used between various

systems of the data monitoring system is discussed in Section 2.6.

2.1 The Long Wavelength Array (LWA)

Astronomy, the study of outer space, has made a significant contribution in expanding human
knowledge about the universe. The branch of astronomy that studies radio emission from
celestial bodies is called radio astronomy. Astronomical instruments called radio telescopes
are used in radio astronomy. Radio telescopes consist of a radio receiver and an antenna

system used to detect radio-frequency radiation emitted by celestial radio sources such as
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radio galaxies. LWA is a large radio telescope being constructed in New Mexico which will
expand the knowledge of the energetics and properties of many cosmic objects and events,
the solar system, and the ionosphere [2]. LWA will consist of 53 stations distributed over a
region 400 km in diameter, with each station consisting of an array of 256 dipole antennas
and will operate in the frequency range of 10 to 88 MHz. Figure 2.1 shows an aerial view
of the first LWA station, LWA-1 and Figure 2.2 gives a close-up view of the crossed-dipole

antenna.

Figure 2.1: Aerial view of LWA-1, the first LWA station set up in New Mexico, USA.

Outputs from the antennas are amplified and filtered to the frequency range of interest. The
filtered signals are digitized and transmitted to a the DP system. The outputs of the DP
system are recorded to storage disks. The signal flow in a LWA station is summarized in

Figure 2.3.

2.2 LWA Station Architecture

A LWA station is divided into subsystems which handle various functions of the station. A

detailed description of the LWA station architecture and its subsystems is specified in [3]. A
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Figure 2.2: Close-up view of an LWA-1 crossed-dipole antenna.

Chapter 2. Background
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Figure 2.3: Signal flow in a LWA station.
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brief description of the relevant subsystems is given below.

2.2.1 Analog Signal Processor (ASP)

As shown in Figure 2.4, the LWA antennas capture radio signals and transmit them to the
ASP (Analog Signal Processor) which amplifies the raw radio signals and filters them to the

frequency range of interest to enable further processing of the signal.

Radio Waves LWA Antennas

between 10 MHz-88 MHz
> —»
= -
B ot ."\_,”f )
= Analog Signal s
A A A / To
L S Y Processor
W '\/ RYARY r\ DP Subsystem
(ASP)
> —»

Figure 2.4: Analog Signal Processing: LWA antennas to ASP.

2.2.2 Digital Processor (DP)

The outputs of the ASP are digitized by the Digitizer (DIG) subsystem (set of analog to
digital converters) and distributed to the Beam Forming Units (BFUs), the Narrow-Band
Transient Buffer (TBN) and the Wide-band Transient Buffer (TBW) of the DP system. Each
BFU forms a beam in the desired pointing direction and transmits it to the corresponding
Digital Receiver (DRX). The TBN and TBW systems record the outputs of the DIG for
later recovery and analysis. Figure 2.5 shows a block diagram of the DP system in an LWA

station.

The DRXs route the corresponding BFU outputs to MCS-DR or alternative backends such as
RFT and survey monitoring backends or spectrometers. The TBN and TBW systems help in
the analysis and diagnosis of the LWA station in which they are installed and will also help
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MCS-DR

Beamformer

Module
—» EBFUL DRX
———» BFU2 DRX
From ASP I - ——————————%  EFUZ DRX
BFLU4 DRX

| TEW TBN

Ethernet
Switch

— 1 4

Figure 2.5: Digital Signal Processing: Digital Processor (DP).

in all-sky imaging and monitoring. The system developed in this thesis provides a framework

for a backend system on which data from DRXs and TBW/TBN can be monitored. The

developed framework is a part of the MCS-DR which is discussed in the next section.

2.2.3 Monitor and Control System Data Recorder (MCS-DR)

Each MCS-DR PC receives the output of the DP system and records it to a DRSU. As shown

in Figure 2.6, MCS-DR consists of five identical PCs with each connected to its respective
DRSU. A DRSU is a hard disk array which can record up to 5 TB of data. The PC component

of the MCS-DR receives inputs from the DP system via a 10GbE link and sends outputs to
the DRSUs via an eSATA link. In the current design, all data acquired by an MCS-DR, PC

is streamed directly to its associated DRSU. More information about MCS-DR can be found

in [4].
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MCS-DR
From DRX1
— 1 %| Mcs-DRPC1 —— DRSU1
(10GBE link) (£SATA link)
From DRX2
—_—t | MCS-DR PC2 _} DRSUZ
(10GhE link) (2SATA link)
From DRX3
———+ MC5-DR. PC3 _)' DRSU3
(10GBE link} (eSATA link)
From DRX4
———————1| MC5-DRPC4 |—— DRSU4
(10GbE link) (eSATA link)

From TBN/TBW
————} MCS-DE. PC5
(10GBE link) (eSATA |ink]>

DRSUS

Figure 2.6: Monitoring and Control System—Data Recorder (MCS-DR).

In this thesis, the developed data monitoring system consists of a PC and a FPGA. When
using the data monitoring system with LWA, the PC component of the data monitoring
system refers to MCS-DR PC. The FPGA is an inserted between the PC and the DRSUs as

shown in Figure 2.7.

MCS-DR PC

....... . DRSU
(10GbE link}) : H (eSATA link)

Figure 2.7: MCS-DR PC with an FPGA.

From DRX
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2.3 High-Performance Digital Devices

Some of the digital devices capable of implementing data monitoring algorithms include
General Purpose Processors (GPPs), Digital Signal Processing (DSP) processors, Graphics
Processing Units (GPUs), FPGAs, and ASICs. GPPs are easy-to-use, re-programmable
platforms that can perform a wide range of operations. With advances in clock technology
and multi-core architectures, PCs are able to function at high clock speeds (up to ~3.3GHz)
and are being used for high-performance computing. GPUs consist of a number of parallel
processing units which distribute the workload in a data-parallel manner. The performance
delivered by a GPU varies with the type and size of applications [5] [6]. DSP processors
can be viewed as GPPs with a fixed number of DSP hardware blocks to perform common
DSP operations (such as FFT, IIR filtering, and Viterbi decoding) efficiently. FPGAs are
parallel processing devices with flexible hardware whose features are discussed in Section 2.4.
Berkeley Design Technology Inc. (BDTI) Communication benchmark (OFDM) results show
that FPGAs yield a higher performance per cost than DSP processors for highly parallel
algorithms [7]. ASICs are high performance devices which are optimized in area, power and
performance but are tied to a specific design and cannot be modified. ASICs have a rigid
nature and associated with high costs. As this thesis aims at evaluating FPGAs for data
monitoring, even though all the above devices are capable of implementing data monitoring
algorithms, FPGAs have been selected. FPGAs possess the following features which makes

them suitable for the proposed system:

2.4 Features of FPGAs

The architecture of FPGAs and the development process is discussed in Chapter 3. The

features of FPGAs are summarized as follows:

e FPGAs have flexible hardware which makes them scalable and best suited for high-
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performance, parallel applications.

e FPGAs provide massive, low-level parallelism. Such parallelism makes FPGAs well-

suited to real-time data streaming applications.

e Modern FPGAs come with dedicated DSP cores which ease the design process and
deliver high performance for DSP applications.

e Model-based tools such as XSG provide simpler and faster development of designs on

FPGAs.
e Designs developed on FPGAs can be easily ported to other FPGAs.

e Modern FPGAs support various communication interfaces such as PCle and Gigabit

Ethernet which allows FPGAs to be integrated with other systems.

FPGA advantages come at the cost of design time. In fixed architecture devices (such as
the GPPs, GPUs and DSP processors), the user writes software on tested stable hardware
whereas in FPGAs, the user implements designs on the user-configured hardware. Designing
on FPGAs is a time-consuming process and requires specialized skills to design and test the
user-configured hardware. Model-based tools reduce the development time on FPGAs but
presently have a limited set of library functions. Developments in FPGA design tools and
library functions should improve productivity [8]. More about programming using FPGAs is

discussed in Chapter 3.

2.5 XUPVS5 Development Board

FPGAs are generally not stand-alone devices, but rather are integrated with devices such as
display controllers, off-chip memories, switches, and LEDs placed on a printed circuit board.
The capabilities of these FPGA boards vary from vendor to vendor. In this thesis, the Xilinx
XUPV5 development board with a Virtex-5 FPGA has been selected for the data monitoring
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system. The features of Virtex-5 FPGAs can be found at [9]. Figure 2.8 shows a picture of
the XUPV5 board.

Figure 2.8: XUPV5 board with a Virtex-5 FPGA.

The selection criteria for the XUPV5 board is summarized as follows:

e Compatible interface with the PC: The Virtex-5 has an integrated PCle block (compliant
with the PCI Express Base Specification 1.1) which supports x1, x4, or x8 lanes per
block [9]. The XUPV5 board is connected to a PC which controls and regulates data
to and from the XUPV5 board. In LWA, PC refers to the MCS-DR PC to which the
XUPV5 board can be plugged in through a PCle slot.

e Data Rate: The DRXs of the DP system output data at a maximum rate of 80
MiB/s whereas the TBN/TBW can output data at a maximum rate of 112 MiB/s.
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The throughput of the XUPV5 board varies with the data monitoring algorithms.
Theoretically, the maximum throughput of the XUPV5 board is 250 MB /s per lane which
is the theoretical maximum throughput achievable with a PCle interface. Experimentally,
as discussed in Chapter 5, the XUPV5 board can deliver a maximum throughput of
160 MB/s through its single lane PCle interface which is higher than the required data
rate of the DP system (maximum of 112 MiB/s through TBN/TBW). The dependence
of the throughput of the XUPV5 board with respect to the parameters of the data

monitoring system is discussed in Chapter 5.

o Off-the-shelf device: The XUPV5 board has been selected over other development
boards as it was readily available and consists of a Xilinx Virtex-5 FPGA which has

the features suited to the monitoring system.

e Fase of installation and algorithm development: The XUPV5 is compact and can be
easily integrated with other systems. It can communicate with other devices through a
PCle slot or a 1GbE port. Using model-based tools such as XSG, development of data

monitoring algorithms can be made simpler and faster.

e (Cost per board: The cost of one XUPV5 board is around $2000 for commercial customers

and $750 for academic customers [10].

e Portability: The monitoring system targeting the Virtex-5 FPGA can be ported to
other FPGA families without too much effort.

2.6 Communication Interfaces

As shown in Figure 2.9, the PC component of the data monitoring system receives data via a

10GbE link. The FPGA receives and transmits data from and to the PC via a PCle link.
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Figure 2.9: Communication interfaces between the components of the data monitoring system.

2.6.1 10 Gigabit Ethernet Interface

10GDbE is an Ethernet interface (IEEE 802.3ae) which operates at a nominal rate of 10 Gigabits
per second. Ethernet, formally referred to as IEEE 802.3, is a standard communication
protocol that uses packet-switched technology (data is transferred through the interface in
packets). The systems communicating using a Ethernet standard need to have an Ethernet
network interface card installed on them and are usually physically connected to each other
by a cable known as Ethernet cable. The Ethernet card implements the electronic circuitry
required to communicate using an Ethernet standard and acts as an interface between the
Ethernet network and the system on which the Ethernet card is installed. The Ethernet card
provides has a unique ID, known as the Media Access Control (MAC) address, that acts as

an address to the system.

In this thesis, the proposed platform uses a Myricom 10G-PCIE-8B-C Ethernet card. The
Ethernet card communicates with the PC of the data monitoring system (in LWA, MCS-DR)

through a PCle interface (see Section 2.6.2) and is connected to the synthetic data generator

(in LWA, DP system) through a CX4 cable.

Networking Software: The Ethernet card provides the hardware necessary for data transfer.

Apart from this, the computer on which the Ethernet card is installed should have software
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that controls and communicates with the hardware in order to establish a connection to
perform a data transfer. The software is typically written in high-level languages such as C,
C++, or Python that support socket programming. Socket programming refers to the use of

a set of functions for sending and receiving data over a network.

2.6.2 PCle Interface

PCle is a standard for computer expansion cards and is used to connect personal computers to
peripheral devices attached to them. PCle makes use of high speed serial link technology and
suits the requirements of advanced processors and I/O technology. PCle offers advantages
over PCI, the predecessor of PCle, in terms of increased speed, bandwidth and scalability.
Unlike PCI, PCle provides a point-to-point full duplex link dedicated to each device. This
means that every device has a link of its own (dedicated) that can transmit and receive at
the same time (full duplex), without interfering with other devices (point-to-point). These
links are called lanes. Each lane transports data between endpoints of a link in packets of
8 bits. The number of lanes between two PCle devices can be 1, 2, 4, 8, 12, 16 or 32. As
the number of lanes increase, the data load is distributed among all the lanes of equal speed
resulting in higher data transfer rates. Low speed devices require fewer lanes than the high

speed devices.

Every communication interface follows a protocol in order to transfer data. The PCle protocol
is structured in three layers: physical, data link, and transaction layers. The PCle lanes,
which determine the physical connection between two PCle devices, constitute the physical
layer. Each lane consists of two pairs of differential signals, one each for transmitting and
receiving data. The current technology PCle lanes can transfer data at the rate of 250 MB/s
per lane in either direction. A PCle slot in which a peripheral is plugged into (interface) is

shown in Figure 2.10.
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PCIe Slots

Figure 2.10: PCle slot on the motherboard of a computer.

The data link layer makes sure that the data packets are reliably transferred across the
PCle link. The transaction layer receives the read/write requests and creates responses to
the request. The requests received may correspond to PCle configuration or data transfer
between the host computer and the connected device. A PCle device responds either with

data, or data acknowledgement, or both.

PCle compatible devices are plugged into the PCle slot of a personal computer. Data transfer
between the host computer and a PCle device takes place as shown in Figure 2.11. The
computer, during its boot up, identifies and initializes all the PCle devices by allocating
system resources such as memory and I/O space. This makes the device available for data
transfer. Data can then be transferred to and from the PCle device using software programs
written in high-level languages. These applications communicate to the PCle device through
device drivers (low-level software programs). Device drivers act as translators between the
hardware and the high-level PCle software programs. The PCle software program configures
the PCle for the type and size of data transfer, initiates a transfer and performs data transfer

by providing/accepting data to/from buffers allocated by the OS during initialization.
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Chapter 3

FPGA Development

This chapter provides information necessary to develop algorithms on Xilinx FPGAs. Section
3.1 gives an overview of the architecture of a Xilinx FPGA and Section 3.2 discusses the

steps involved in the development of algorithms on FPGAs,

3.1 Field Programmable Gate Arrays

FPGAs are re-configurable digital devices available in the form of integrated circuits (ICs)
that can be programmed to implement digital functions. FPGAs stand in between generic
microprocessors and application-specific ICs (ASICs) in terms of performance and cost. In
microprocessors, designs adapt to the existing hardware where as in FPGAs and ASICs,
underlying hardware adapts to the design. This hardware adaptability produces high-speed
models of a design and plays an important role in applications which demand high performance.
Though FPGAs and ASICs seem similar with respect to hardware adaptability, they differ in
terms of architecture and re-configurability. FPGAs are user-configurable devices capable of
modelling multiple designs as opposed to ASICs which are customized devices, manufactured

for a specific design. This means that, on FPGAs, users can modify, update and test designs

20
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any number of times at a lower cost unlike rigid and expensive ASICs, fabricated for a specific
user design by a manufacturer. Due to their reconfigurable nature, FPGAs are used in rapid
prototyping of ASICs and in performance critical, high-speed applications where dynamic
changes in the designs may be necessary. FPGAs are widely used in the fields of digital signal

processing, software-defined radios, image and speech processing, and radio astronomy.

3.1.1 FPGA Features

FPGAs have a grid-like structure with logic elements that can be connected together to realize
a digital circuit as shown in Figure 3.1. The basic elements of a FPGA include Configurable
Logic Blocks (CLBs), Input Output Blocks (IOBs), clock management resources and routing
channels [11]. Modern FPGAs also have on-chip memories and dedicated resources for DSP
functions. Xilinx is among the leading FPGA manufacturers and the features of Xilinx FPGA

are briefly described below.
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Figure 3.1: Block diagram of a Xilinx FPGA.
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Configurable Logic Blocks (CLBs): The basic logic elements of FPGAs are called CLBs. A
CLB consists of memory elements (generally SRAMs) which function as Look Up Tables
(LUTSs), selection circuitry (multiplexers), flip-flops, arithmetic gates. LUTs accepts binary
inputs (usually 4 or 6) and can implement a Boolean function stored in the form of a truth
table. Each CLB is capable of implementing combinatorial logic, shift registers or RAM. By

connecting together various CLBs, it is possible to realize designs with complex functionality.

Routing and 1/0 resources: Connections between CLBs are made through programmable
switch-like routing resources. The grid-like structure of a FPGA is formed by the interconnects
as shown in Figure 3.1. The routing resources can be programmed to connect various CLBs
in such a way as to implement the desired functionality. Apart from CLBs interconnections,
the routing resources also connect to the IOBs (Input Output Blocks). The IOBs support a
variety of interface standards providing a flexible interface between the FPGA package pins

and the configurable logic.

Memories and other resources: Most of the designs implemented on the FPGA interact with
external devices such as a host computer or other processor chips. To support such designs,
FPGASs have on-chip Block RAMs that can be used to store and buffer data. Modern FPGAs
come with hard and soft IP (Intellectual Property) cores that can be integrated with a user
design to expedite the design process. Hard IP cores are dedicated chunks of hard-wired
logic present in an FPGA whereas soft IP cores refer to optimized logic that can be used
to program a FPGA for the required functionality. Embedded processors, DSP slices, and
gigabit transceivers are examples of hard IP cores available on modern FPGAs. A variety of
soft IP cores are provided by FPGA vendors for implementation of various communication
protocols (bus interfaces), FIFOs, DSP and math functions. Inside the FPGA, the dedicated
resources (such as on-chip memories, hard IPs) are placed at fixed locations as shown in

Figure 3.1.
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This section discussed the basics of FPGA and how digital circuits are realized on it. From
an FPGA user’s perspective, it is important to know how the logic elements of FPGA are
programmed and the skills needed to work with FPGAs. Programming FPGAs involves a

series of steps as discussed in Section 3.2.

3.2 FPGA Design Flow

The FPGA design process involves a series of steps: design entry, synthesis, design implemen-
tation and device programming, as shown in Figure 3.2. Design verification is performed at

various stages of the design flow.
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Figure 3.2: FPGA design flow.

FPGA vendors offer tools that integrate all these processes making it easier for the designer.
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Xilinx provides an integrated FPGA development tool known as the Integrated Software
Development (ISE) Design Suite to automate the design process [12]. A brief description of

the design processes using Xilinx ISE is provided in the following sections.

3.2.1 Design Entry

Designs that are to be implemented on the FPGA are generally captured in Hardware
Description Languages (HDLs) such as Verilog or VHDL. HDLs insulate designers from the
details of hardware implementation. Some of the EDA tools allow design description in
high-level software languages such as C and C++ which are eventually converted to HDL
designs. Designs can also be captured using model-based tools such as the Xilinx System

Generator (XSG) which convert schematic models to HDL descriptions.

XSG allows users with little or no HDL background to work with FPGAs. XSG uses
MATLAB’s Simulink tool to model designs by connecting hardware blocks together. Hardware
blocks are IP cores or pieces of tested logic supplied by Xilinx. XSG relieves the designer
from low-level algorithmic complexity and helps to implement designs. The XSG library has
a set of DSP hardware blocks that can perform complex functions such as FFT, FIR filter
design, or Viterbi decoding. XSG uses the Xilinx ISE design suite to automate HDL code
generation which can then be integrated with other designs or used as a stand-alone design.

Figure 3.3 gives design flow using XSG.
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Figure 3.3: Design flow using Xilinx System Generator.

3.2.2 Design Synthesis

Synthesis tools take in HDL designs as inputs, check the code syntax, and create a Register-
Transfer Level (RTL) description of the design. The RTL description is an optimized version
of a design described in terms of basic logic gates. The XST (Xilinx Synthesis Technology)
tool combines the RTL description with Xilinx-specific optimization and creates a file known
as Native Generic Circuit (NGC) netlist. The NGC file contains the logical design data in
terms of LUTSs along with constraints specific to Xilinx FPGAs. The NGC file is passed on

to the next step of design process, design implementation.

3.2.3 Design Implementation

Design implementation occurs in three steps: Translate, Map, and Place and Route. NGDBuild,
MAP and PAR are Xilinx ISE programs that perform these design implementation steps.
Figure 3.4 lists the three steps of design implementation along with the files generated at

each step.
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Figure 3.4: FPGA design implementation.

Translate: In the Translate phase, the netlists generated by the synthesis tool are combined
together with a User Constraints File (UCF) to form a single logic design file. UCF contains
information about the physical elements (such as pins) related to the packaging of the targeted
FPGA obtained from the FPGA vendor. The translate tool assigns the input/output ports
of a design to the physical elements of the FPGA. NGDBuild combines all the NGC files
provided by the synthesis tool along the UCF provided by the user, to a single file called
Native Generic Database (NGD) file.

Map: Mapping refers to fitting the design to the underlying FPGA architecture. The Map
process divides the whole design into small logic elements and maps them to the logic blocks
(such as CLBs, IOBs, hard IP cores) of the target FPGA. Xilinx’s MAP program maps the
design defined by NGD file to the target FPGA and produces a Native Circuit Description
(NCD) file which is a physical representation of the design on the FPGA.

Place and Route: PAR places the logic functions of a design into the logic blocks of the target
FPGA (similar to the MAP program) and also connects the logic blocks together. The MAP

program maps the design into the available resources on the target device whereas PAR
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is an iterative process which places the logic onto the FPGA and routes connections until
all constraints (such as timing and power) are satisfied. If the PAR tool fails to route the
design or meet all constraints, an error is generated. In this case, design should be modified
accordingly and the whole design process is repeated. The result of the PAR tool is an
optimized (with respect to area, performance and power) and completely routed NCD file

which meets all the constraints.

3.2.4 Device Programming

The NCD file generated by the PAR tool has all the necessary placement and routing
information for the implementation of the design on the selected target FPGA. This should be
converted to a format that can be used to program the FPGA. The BITGEN program converts
the routed NCD file to a bitstream (a file with a ”.bit” extension). Using a programming
cable, the bitstream can be downloaded from the host computer to the FPGA to configure it
for the design. The iMPACT tool allows the selection of a configuration mode and aids the

configuration download process.

3.2.5 Design Verification

Design verification refers to testing of the design for functional correctness and performance
requirements. The verification process can be broadly categorized into three steps: simulation,
static timing analysis, and in-circuit verification. Simulation of a design is performed by
simulators such as ModelSim. Functional simulation checks the logical correctness of the design
before it is implemented on a device. It is performed on HDL designs (pre-synthesis) or NCD
files (post-translate) and helps in correcting the design at an earlier stage. Simulators also
perform timing simulation. Timing simulation is performed after the design is implemented

in order to verify the design speed under worst-case conditions.

Static timing analysis performs quick timing checks of a design after the MAP or the PAR
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process. It lists the delays derived from the design logic and routing to help evaluate timing
performance. Once the design is tested for functional and timing correctness, the bitstreams

can be downloaded on to the FPGA and verified for in-circuit operation.



Chapter 4

System Implementation

In this thesis, a prototype for the FPGA-based data monitoring system for LWA is developed.
This chapter discusses the implementation aspects of the prototype data monitoring system.
The details of the hardware and the communication interfaces which constitute the proposed
system are discussed in Section 4.1. The implementation of the system, which involves estab-
lishing communication links (through the Ethernet and the PCle interfaces) and configuring

the PC and FPGA for data transfer is described in Section 4.2.

4.1 Hardware Setup

As shown in Figure 4.1, the hardware used to implement the prototype data monitoring

system includes:
1. A host computer with a quad-core 2.66 GHz Core i7-920 CPU,

2. A Myricom 10G-PCIE-8B-C Ethernet Card and a 10GbaseCX4 Ethernet cable,

3. XUPV5 development board with a programming cable.

29
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Figure 4.1: Components of the data monitoring system.

The monitoring system is inserted between the data source and the data sink as shown in
Figure 4.1. Data from the data source (DP subsystem) is routed to the Ethernet card via a
10GbaseCX4 cable. The Ethernet card, inserted into the host computer (MCS-DR PC) via a
PCle slot, transfers the output of the data source to the software process running on the host
computer [4]. The software process accepts data from the Ethernet card (DP subsystem)
and routes it to the XUPV5. The XUPV5 board is connected to the host computer through
another PCle slot and monitors the data obtained from the data source. The output data
from the XUPV5 board is then transferred back to the software process which routes it to
the data sink (DRSU). Thus, the host computer acts as a data manager and routes data

between the appropriate units.

MCS-DR system is an already existing system in an LWA station which routes the data
obtained from the DP system directly to the DRSU [4]. In this thesis, an XUPV5 board
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is attached to the MCS-DR in order to evaluate FPGAs to implement data monitoring
algorithms in an LWA station.

In order to test the prototype monitoring system, another computer with a quad-core 2.66
GHz Core i7-920 CPU is used to generate synthetic DP subsystem output. The synthetic data
generator computer is connected to the host computer (Ethernet card) using a 10GbaseCX4
cable. Both the computers have the Ubuntu 8.10 64-bit Linux operating system installed on

them. The next section discusses in detail the implementation of the data monitoring system.

4.2 Data Monitoring System

As shown in Figure 4.1, implementation of the FPGA-based data monitoring system consists

of three main parts.

(1) Communication through the 10GbE interface,
(2) Communication through the PCle interface,

(3) Data monitoring framework in the XUPV5 board.

Communication through the 10GbE interface is controlled by the software process running
on the host computer. Communication through the PCle interface requires the installation of
the PCle driver on the host computer and the necessary PCle core logic on the FPGA. The
software process running on the host computer initiates a DMA transfer, and the hardware
process (on the XUPV5 board) responds to the commands from the host computer. Data
monitoring is performed by the FPGA and is entirely a hardware process. Sections 4.2.1,
4.2.2 and 4.2.3 discuss the data monitoring system implementation in detail. Section 4.3 gives
an overview of the data transfer process in the data monitoring system in terms of software

and hardware processes.
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4.2.1 Communication Through the 10GbE Interface

An Ethernet socket is configured by the software process on the PC using the socket pro-
gramming functions defined in the ANSI C library. The socket () and bind () functions
are used to create a Internet Protocol version 4 (IPv4) UDP receive socket on the PC [13].
The recvfrom () function puts the receive socket into a listen mode where the socket waits
for data. When the socket detects incoming data directed towards it, the receive buffer is
updated with the received data. The receive buffer is then used to update the transfer to the
data monitoring unit (FPGA). In this thesis, the required device driver for the Ethernet card
has been developed and provided by Myricom. The next step discusses in detail the data
transfer process through the PCle link.

4.2.2 Communication Through the PCle Interface

The necessary code required for the communication between the PC component of the data
monitoring system and the XUPV5 board is provided by Xilinx’s xapp1052 application [14].
In this thesis, the code provided by Xilinx, which includes the software driver, the PCle
software program and the Bus Master DMA engine (BMD), are collectively referred to as the

PCle framework.

Communication between the host computer and the XUPV5 board is controlled by the PC
component of the data monitoring system and is performed by the BMD on the XUPV5
board. This section discusses the PCle framework (provided by Xilinx) required to establish
the connection and transfer data between the host computer and the XUPV5 through the

PCle link. As shown in Figure 4.2, the PCle framework includes three main components:
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Figure 4.2: Components of the PCle framework.

a. PCle driver installation: The PCle driver for the XUPV5 board is obtained from Xilinx
through the xapp1052 application [14]. The driver is a low-level software program (written
in C) installed on the host computer that links the higher level PCle software program on
the computer to the data monitoring framework on the XUPV5 board. The driver contains
various routines called by the PCle software program which are used to communicate with
the hardware via the PCI Express link. After the host computer detects the XUPV5 device,
the PCle driver is installed for the XUPV5 board as per the instructions mentioned in [14].
The driver first gets the base address of the hardware and maps the hardware bus memory to
the system (host computer) memory. The operating system then allocates memory resources
(data buffers) and loads the modules needed for PCle link configuration and data transfer.
After registering the device, the driver is loaded after proper hardware initialization and
buffer allocation. The installed driver resides in the kernel memory of the host computer.

The XUPV5 board is now ready to transfer data to and from the host computer.

b. PCle software program: The PCle software program is a C program provided through
the xapp1052 application which invokes routines in the driver to perform the necessary data
movements. The PCle software program reads the PCle device configuration space and
updates descriptor registers in order to check the status of the PCle device and initiate data
transfers. The configuration space is the common memory space between the host computer

and the XUPV5 board that has information about the capabilities of the PCle link such as
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link speed, link width, and link control. The descriptor registers are used to set up a transfer
and to initialize the BMD design with user-specified information regarding data transfer such
as the payload, size and count of data packets, and read/write enable from/to the XUPV5
board [14]. The PCle software program also manages and updates the write-to-XUPV5 and
the read-from-XUPV5 endpoint data buffers.

The series of steps involved in making a data transfer to/from the XUPV5 board is shown
in Figure 4.3. The PCle software program first reads the PCle device configuration space
and gets the capabilities of the PCle link. The PCle software program then checks if the
device (XUPV5) is ready to transfer data and updates various descriptor registers to set
up a transfer. The write-to-XUPV5 data buffer is updated by data obtained from the DP
subsystem via the Ethernet port. The XUPV5 board receives raw data and sends back the
monitored data to the host computer at the same time. Hence, a two-way data transfer is
initiated by updating the control register to enable reads and writes from/to the XUPV5
board. The control register is a descriptor register used to trigger the BMD to start a DMA
transfer and indicate the status of a transfer. The contents of the descriptor registers are
transferred to the BMD through programmable input/output (PIO) transfers which update
the control and status registers of the BMD. On receiving instructions from the host computer
(PCle driver) to start the data transfer process, the BMD on the XUPV5 board initiates
a DMA request to the host computer. The BMD then takes control of the PCle bus and
performs a DMA transfer to move data between the endpoint buffers and the system (host
computer) memory. The completion of a DMA transfer is obtained by reading the contents

of the control register using a PIO call to the FPGA.

c. Bus Master DMA engine (BMD) design: The BMD is a Verilog (HDL) design running on
the Virtex-5 FPGA to implement the PCle protocol, and controls the data transfer between
the host computer and the data monitoring framework [14]. A PCle link can transfer data
at a theoretical maximum of 8000 MB/s (32 lanes) compared to the 132 MB/s theoretical
maximum throughput of the PCI link. Thus, the evolution of PCle has led to improved
I/O bandwidth and enabled the use of external devices (such as the XUPV5) with various



Sushrutha Vigraham Chapter 4. System Implementation

Start <
‘ Check Device Status ‘
»
Device No
Readw ?

lYes

Update descriptor
registers

v
Initialize the XUPVS
board for data transfer

Update PCle buffer, control register and
start DMA transfer

L4
Check the status of
transfer

Errors

Ne End of Print the error
message

Transfer

Yes

Figure 4.3: Flow chart for the PCle software program.




Sushrutha Vigraham Chapter 4. System Implementation 36

capabilities along with PCs in high-speed data streaming applications.

The BMD design is developed over the Virtex-5 FPGA Integrated Endpoint Block for PCI
Express Designs [15] which implements the PCle protocol on the XUPV5. The Virtex-5
FPGA Integrated Endpoint block is a hard IP core embedded in the Virtex-5 FPGA that
provides the full functionality of the transaction layer, the data link layer, the physical layer,
and the configuration space as per the PCI Express Base 1.1 Specification [16]. The Endpoint
Block connects to the PCle Fabric through the transceivers [17] embedded in the Virtex-5
FPGA [15] as shown in Figure 4.4. The embedded Integrated Endpoint Block can be accessed
through the LogiCORE IP Endpoint Block Plus v1.13 for PCI Express generated by the
Xilinx’s CoreGen tool [18].

/ Endpoint Block Plus for PCI Express \

Virtex-3 Integrated Block for PCI Express

PCIe PCI Transceivers k" FPhysical \'/‘::> Data Link <:::> Transaction /‘ Transaction
Fabric Express Layer Layer Layer Layer Interface

¥ ¥ ¥
Configuration and Capabilities ‘

. %

Figure 4.4: Block diagram of the Integrated Endpoint Block Plus in Virtex-5 FPGA.

The Endpoint Block Plus is Verilog code provided by Xilinx which acts as a wrapper to
the Integrated Endpoint Block as shown in Figure 4.4. The Endpoint Block Plus wrapper
connects the transaction layer of the Integrated Endpoint Block to the rest of the BMD design
which receives and transmits data at the transaction layer in the form of transaction layer

packets (TLPs). The BMD control engines connect to the bridge platform and eventually to
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the data monitoring plug-in module as shown in Figure 4.5.
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Figure 4.5: High-level view of the BMD architecture.

Apart from the Integrated Endpoint core, the BMD design contains control engines for the
receive and transmit data path along with various registers and memory interfaces to store
and retrieve data as shown in Figure 4.6. The BMD consists of target logic, control and
status registers, and initiator logic as shown in Figure 4.6. The target logic captures the
Memory Write (MWr) and Memory Read (MRd) TLPs sent to the endpoint via PIO which

are used to monitor and control the DMA hardware.

The target logic updates the status and control registers with the contents of the descriptor
registers discussed in the Section 4.2.2. The control and status registers contain operational
information for the DMA controller about the link capabilities, start and stop of transfer, size
and the count of TLPs, and status of the transfer. The initiator logic contains transmit and
the receive engines, which generate MWr or MRd TLPs based on the upstream (endpoint to
system memory) or the downstream (system memory to endpoint) transfer. A MWr TLP is
generated by the transmit engine (TX engine) and consists of the DMA hardware address,
TLP size, TLP count followed by data to be transferred to the system memory. A MRd
TLP is a read request which has a similar pattern as the MWr TLP except for data. Data
is received by the receive engine (RX engine) in response to a MRd request TLP. The read

and write DMA control and status registers specify the address, size, payload content, and
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number of TLPs to be received/sent, to construct MRd and MWr TLPs. The data (raw data
from the DP subsystem) received by the RX engine is transferred to the bridge platform,
and the monitored data to be sent is provided by the bridge platform to the TX engine. In
this thesis, a 64-bit transmit and receive PCle links are used which can transfer 64 bits of

data per PCle clock.
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Figure 4.6: BMD architecture.
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4.2.3 Data Monitoring Framework in the XUPV5 Board

Data monitoring is performed by the plug-in user module which is built over the bridge
platform. The BMD provides incoming TLPs to the bridge platform. The bridge platform
extracts data from the TLPs and routes it to the data monitoring plug-in logic. The user-
defined plug-in processes the incoming data from the bridge platform and routes it back to the
bridge platform. The bridge platform provides the monitored data to the BMD which forms
outgoing TLPs and eventually transfers them to the host computer. The bridge platform

and the data monitoring plug-in modules are described below:

a. Bridge Platform: The bridge platform, written in Verilog, performs data buffering using
FIFOs and provides a plug-in capability for data monitoring logic through the FIFO interface
and the data monitoring wrapper logic. The FIFO interface logic is provided in Appendix A.1
and the data monitoring wrapper code is provided in Appendix A.2. The bridge platform uses
two FIFOs, one for buffering data received through the RX engine of the BMD (in-FIFO),
and one for buffering data to be transmitted to the TX engine of the BMD (out-FIFO).
The FIFOs are generated by Xilinx’s CoreGen tool [19]. Both the generated FIFOs use
independent clock Block RAM implementations. The in-FIFO uses a standard FIFO read
mode where as the out-FIFO uses a first-word-fall-through read mode which are available
in the FIFO generator core. Each of the parent FIFOs (in-FIFO and the out-FIFO) is
constructed from two FIFOs, called child-FIFOs in this thesis, which are half the depth of
the parent FIFOs with a data width of 32 bits each. The FIFO generator core configuration
options are listed in Table 4.1. FIFOs of different capacity can be used with the design with
modification made to the in-FIFO and out-FIFO instantiations and inserting the NGC file
generated for the new FIFOs.
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FIFO Generator Configuration Options child in-FIFO child out-FIFO
Clocking Scheme Independent Clocks Independent Clocks
Memory Type Block RAM Block RAM

Eead Mode Standard-FIFO First-Word-Fall- Through
Depth 4095 4097

Width 32-bits 32-bits

Number of 32K Block RAMs required on 4 4

the Virtex-5 LX110T FPGA

Table 4.1: Configuration options chosen for the FIFO generator core.

The transmit and receive PCle links used in this thesis are 64-bits wide. The TX and the
RX engines used operate on 32-bits data (if the other 32-bits of the PCle link are used for
headers) or 64-bit data. The TX and the RX engine of the PCle framework are modified to
assert appropriate enable signals for selecting one child-FIFO (for 32-bits of data in one PCle
clock) or both the child-FIFOs (for 64-bits of data in one PCle clock) in every clock where
data is available. Integrating two 32-bit data width child-FIFOs to form the in-FIFO and the
out-FIFO will provide a 32-bit/64-bit input interface of the in-FIFO and the out-FIFO to

the RX and TX engines respectively, and a 64-bit interface to the data monitoring module.

The write to the in-FIFO and the read from the out-FIFO are synchronized to the BMD
clock with a 32-bit/64-bit data interface, while the read from the in-FIFO and the write to
the out-FIFO are synchronized to the clock of the data monitoring logic with a 64-bit data
interface. The FIFO interface logic routes data between the data monitoring logic and the
FIFOs by asserting appropriate enable signals to the FIFOs and the monitoring logic. The
data monitoring algorithm varies based on the user’s requirement. Hence, in order to provide
a flexible data monitoring platform, a data monitoring wrapper is developed to provide the
plug-in capability for the user-defined data monitoring logic. The data monitoring wrapper
instantiates the user-defined data monitoring module and connects the data monitoring
module to the FIFO interface which in turn connects to the BMD. Thus, the bridge platform

acts as an interface between the BMD and the data monitoring logic.
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Figure 4.7: Bridge Platform.

b. Data Monitoring Plug-in: The data monitoring logic is developed by the users of the data
monitoring system based on the requirements of the application for which the system is used.
The data monitoring logic should be specified as an HDL module or as a NGC netlist. They
can either be developed in HDLs or using model-based tools such as XSG which can generate
HDL code or an NGC netlist for the user-defined XSG models. The input/output ports of
the user-developed, top-level data monitoring module should match the ports of the data
monitoring wrapper. A top-level Verilog module and a top-level XSG model are provided to
users which can be used to match the data monitoring module to its instantiation in the data
monitoring wrapper. Signals inform the data monitoring logic when the FIFOs are ready.
The data monitoring logic then processes the incoming data from the in-FIFO and provides
monitored data to the out-FIFO. Apart from the data processing, the data monitoring logic
should also respond back to the FIFO interface by asserting acknowledge signals for the reads
from the in-FIFO and the writes to the out-FIFO respectively.

To demonstrate the plug-in feature, DSP functions such as FIR filter and FFT have been
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developed using XSG. XSG uses a model-based development environment and generates a
netlist using Xilinx ISE tools. The netlist is used along with the data streaming framework
developed in Verilog in order to generate a bitstream for the entire design. The Virtex-5
FPGA is then programmed with the generated bitstream to perform the functionality specified
by the data monitoring plug-in on the input data. An 8-point FFT and a FIR filter of order
21 are developed using XSG. These blocks are developed and plugged into the design in order
to test the plug-in capability of the data monitoring system and do not represent real data
monitoring algorithms. Data monitoring logic should be developed by the user of the of the

data monitoring system.

4.2.4 Modifications made to the PCle framework

In this thesis, FIFO enable signals are added to the TX and RX control engines of the PCle
framework provided by Xilinx. Also, the state machine of the TX engine is modified in order
to have blocked write to FPGA triggered by the amount of data available in the out-FIFO.
The PCle software application and the BMD are modified in order to add descriptor registers
that communiate the status of the FIFOs (data count and buffer overflow). The PCle driver
is also modified by adding an extra set of PCle buffers in order to enable swapping of PCle
buffers. While one DMA transfer is in progress using one set of read and write buffers, the
software process operates on the other set of buffers by updating the write-to-FPGA buffer
for the next transfer and extracting data from the read-from-FPGA buffer obtained from

previous transfer.

4.2.5 FPGA Resource Utilization

Table 4.2 gives the resources consumed by the PCle framework on the FPGA (default design,
xappl052, provided by Xilinx). Table 4.3 gives the resource utilization for the base design
developed in this thesis which includes the PCle framework and the bridge platform along
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with the FIFOs used and does not include any data monitoring plug-in logic. The in-FIFO
which uses a standard read mode has a depth of 8190 and a width of 32-bits whereas the
out-FIFO with a first-word-fall-through read mode has a depth of 8194 and width of 32-bits
(see Section 4.2.3). The FIFO generator core configuration options are listed in Table 4.1.

Chapter 4. System Implementation

More information about FIFOs can be found in [19].

Device Utilization Summary
(PCIe framework, xappl052)

Slice Logic Utilization Used Available |Utilization
MNumber of Slice Registers 3,785 69,120 5%
Number of Slice LUTs 3,640 69,120 5%
Number used as logic 3,433 69,120 4%
Number used as Memary 185 17,920 1%
Number of occupied Slices 1,940 17,280 11%

Number of LUT Flip Flop pairs used 5,191
Number with an unused Flip Flop 1,406 5,191 27%
Number with an unused LUT 1,551 5,191 29%
Number of fully used LUT-FF pairs 2,234 5,191 A3%

Number of unigue control sets 335
MNumber of slice register sites lost 782 69,120 1%

to control set restrictions

Number of bonded 10Bs 2 540 1%
Number of LOCed 10Bs 1 2 50%
Number of bonded IPADs 4 50 8%
Number of bonded OPADs 2 32 6%
Number of BlockRAM/FIFO 6 148 4%

Number using BlockRAM only 6

Number of 36k BlockRAM used 6
Total Memory used (KB) 216 5,328 4%
MNumber of BUFG/BUFGCTRLs 3 32 9%
Mumber of BUFDSs 1 3 12%
Mumber of DSP48Es 1 64 1%
Number of GTP_DUALs 1 8 12%
Number of LOCed GTP_DUALs 1 1 100%
Mumber of PCIEs 1 1 100%
Number of PLL_ADVs 1 6 16%

Average Fanout of Non-Clock Nets 3.89

Table 4.2: FPGA resource utilization for the PCle framework provided by Xilinx.
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Device Utilization Summary
[Base Design: PCle framework + Bridge Platform]

Slice Logic Utilization Used Available |Utilization
Number of Slice Registers 4,816 69,120 6%
Number of Slice LUTs 4,671 69,120 6%
Number used as logic 4,454 69,120 6%
Number used as Memory 185 17,920 1%
Number of occupied Slices 2,609 17,280 15%
Number of LUT Flip Flop pairs used 6,816
Number with an unused Flip Flop 2,000 6,816 29%
Number with an unused LUT 2,145 6,816 31%
Number of fully used LUT-FF pairs 2,671 6,816 39%
Number of unique control sets 374
Number of slice register sites lost 820 69,120 1%
to control set restrictions
Number of bonded 10Bs 3 640 1%
Number of LOCed 10Bs 2 3 66%
Number of bonded IPADs 4 50 8%
Number of bonded OPADs 2 32 6%
Number of BlockRAM/FIFO 22 148 14%
Number using BlockRAM only 22
Number of 36k BlockRAM used 22
Number of 36k BlockRAM used for in-FIFO 3
Number of 36k BlockRAM used for out-FIFO 3
Total Memory used (KB) 792 5,328 14%
Number of BUFG/BUFGCTRLs 5 32 15%
Number of BUFDSs 1 8 12%
Number of DCM_ADVs 1 12 8%
Number of DSPABEs 3 64 A%
Number of GTP_DUALs 1 8 12%
Number of LOCed GTP_DUALs 1 1 100%
Mumber of PCIEs 1 1 100%
Number of PLL_ADVs 1 6 16%
Average Fanout of Non-Clock Nets 3.83

Table 4.3: FPGA resource utilization for the base design (PCle framework and Bridge
Platform with FIFOs).

4.3 Data Transfer Process in the Data Monitoring Sys-

tem

Section 4.2 discusses the implementation of the data monitoring system. This section

summarizes the data transfer between the XUPV5 board and the PC component of the
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monitoring system in terms of the software process (executed on the PC) and the hardware

process (executed on the FPGA). The software and hardware processes are described next.

4.3.1 Software Process

The data streaming and monitoring process is controlled by a software process running on the
PC. The software process updates various software buffers and routes data to and from exter-
nal devices (such as the DP system and the DRSUs) attached to the PC. A flow chart for the

software process is shown in Figure 4.8 and the data transfer loop is provided in Appendix A.3.

Tnitiate a PCle DMA transfer |———

Y
Receive from 10GbE T

h 4
Write to write-to-FPGA buffer |

l * DMA transfer

l in progress

Read from read-from FPGA buffer

—

—>| Foll the control register of the BMD

ho Transfer

Done

Figure 4.8: Flow Chart for the Software Process.



Sushrutha Vigraham Chapter 4. System Implementation 46

The software process first initiates a PCle transfer to the FPGA. The FPGA then takes
control of the bus and performs a DMA transfer of data between the FPGA and the PC.
While the DMA transfer is in progress, the software process prepares the next transfer by

updating:

(a) The receive-from-DP software buffer with the data obtained via the 10GbE link,

(b) The write-to-PCle kernel buffer with the contents of the receive buffer that will be sent

in the next transfer, and

(¢) The transmit-to-DRSU buffer with the contents of the read-from-PCle kernel buffer

which was obtained from the previous transfer.

After updating the buffers, the process waits for the DMA transfer to end after which a new
transfer is initiated. The status of the DMA transfer is obtained by polling the control register
on the FPGA. Using interrupts instead of polling is a more efficient way of determining the
end of the data transfer between the PC and the FPGA. Attempts to make use of interrupts
to determine the end of transfer were unsuccessful. Exploring ways of implementing an

interrupt-driven transfer is left to future work.

The software process is sequential and is not multi-threaded. The write-to-FPGA and
read-from-FPGA buffers are updated once every transfer through blocking function calls. As
there is only one FPGA per PC, the software process does not benefit form a multi-threaded
implementation and a single-thread implementation using blocking calls works efficiently.
For the receive from 10GbE function, the data received per transfer is routed to the FPGA.
Moreover, the rate at which the data is received into the recv-from-10GbE buffer should be
lower than the rate at which the data transfer happens in the FPGA (see Section 5.8.2 of
Chapter 5). Thus, the software process done not benefit from multi-threading and hence the

sequential single threaded implementation is sufficient.
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4.3.2 Hardware Process

The hardware process (DMA transfer) occurs in parallel to the software process as shown
in Figure 4.8. The hardware process has the PCle framework, the bridge platform and the
data monitoring plug-in module implemented on the FPGA executing in parallel. The data
monitoring plug-in is connected to the PCle framework through a data monitoring wrapper

which isolates the data monitoring module from the PCle protocol implementation.

The PCle framework consists of the the xapp1052 application provided by Xilinx [14]. The
xappl052 application encompasses the PCle core, which connects to the physical layer of the
PCle link, and provides a transaction layer interface through the TX and RX engines. The
TX and RX engines regulate the flow of data to and from the FPGA via the PCle link. In
this thesis, a bridge platform is developed which connects to the TX and RX engines. The
bridge platform buffers the data obtained from the RX engine and the data generated by
the data monitoring plug-in which will be sent out of the FPGA through the TX engine.
After a transfer is initiated on the FPGA, the data transfer process in the FPGA splits into
two parallel processes each of which is controlled by the TX engine and the RX engine state

machines.

TX and RX Engines: Section 4.2.2 discusses the role of TX and RX engines in the PCle
framework. Figure 4.9 describes the TX engine state machine. The TX engine sends the MRd
REQs (MRd Requests) when in the MRd REQ state and the MWr REQs (MWr Requests)
when in the MWr REQ state. The MRd REQ requests a TLP from the PC. The RX engine
receives MRd CPLDs (MRd Completions with Data) as responses to the MRd REQs sent
by the TX engine. The data obtained from the MRd CPLDs are transferred to the data
monitoring module. Data generated by the data monitoring module is sent out of the FPGA
to the PC through MWr REQ TLPs. A MWr REQ TLP is available when the data monitoring
module has generated data equivalent to the size of one TLP. The MWr REQ state has a
higher priority than the MRd REQ state. The state machine enters the MWr REQ state if
there is a TLP available to be sent out of the FPGA, otherwise it enters the MRd REQ state.
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This process is repeated until all the MRd and MWr REQs, specified by the transfer size
from the software process, are sent out to the PC. Apart from the DMA transfer, the TX
and RX engines also process PIO requests made by the PC. The RX engine receives the P1O
read and write requests made by the PC. The data sent to the FPGA through a PIO write is
used to update appropriate registers in the FPGA such as the control registers and the TLP
size and count registers. In response to a PIO read request, the TX engine sends out data

requested by the PC.

» Reset <
Pending Serve PIO N
PIO transfer Request
4
TLP MWr REQ »
available
Pending MRd REQ _
MRd REQs "

Figure 4.9: TX engine state machine.

The TX and RX engines are connected to the FIFO interface of the bridge platform developed
in this thesis. The RX engine loads the received data into the in-FIFO whereas the TX
engine fetches data to be transmitted from the out-FIFO. The FIFO interface is connected to
the data monitoring wrapper which acts as a user interface between the PCle framework and
the data monitoring module. The data monitoring module obtains DP system raw data from

the in-FIFO, processes it, and sends the monitored data to the out-FIFO which is eventually
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sent out to the PC by the TX engine.

4.4 Synthetic Data Generator

In order to test the prototype data monitoring system, a synthetic data generator has been
developed. The data generator is basically a Ethernet transmitter that sends data to the
prototype system through a 10GbE link. Similar to the configuration process discussed in
Section 4.2.1, the socket () function creates a Ethernet transmit socket. The sendto ()
function transmits data to the receive socket identified by the IP address of the receive
socket. In this thesis, the synthetic data generator is used merely as an input data source
that transmits data via a 10GbE link and does not follow the format of the output of the DP
system of the LWA station. In this thesis, the synthetic data generator outputs random data
at a rate of 175 MB/s with a packet size of 4096 bytes. Controlling the output data rate
of the synthetic data generator is performed by using a software timer [20]. A data rate of
175 MB/s is chosen in order to not limit the throughput of the data monitoring system (see
Section 5.4) and a packet size of 4096 bytes is selected as the DP system of the LWA outputs

data in packets of size 4096 bytes.



Chapter 5

Results and Analysis

This chapter discusses the factors affecting the throughput of the data monitoring system.
Section 5.1 discusses the data transfer process in the FPGA and Section 5.2 lists the parameters
of the data monitoring system. The throughput of the data monitoring system has been
modelled based on the system parameters and the throughput equation is derived in Sections
5.3 and 5.4. Section 5.9 gives the measured values of throughput with respect to the system
parameters and compares the measured throughput of the data monitoring system with the

modelled values obtained from the equation derived in Section 5.4.

5.1 Analysis of the Data Transfer Process in the FPGA

The data transfer process within the FPGA is divided into three phases depending on the
state of the TX engine.

Phase 1: After the transfer process is initiated, the TX engine starts sending MRd REQs.
After a certain delay, the MRd CPLD response is received by the RX engine. The first part
of the transfer process occurs until the arrival of the first MRd CPLD. The data monitoring
module is inactive in this phase due to the lack of sufficient data in the in-FIFO. The out-FIFO

20
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is empty in this phase and hence no MWr REQs will be sent by the FPGA. Thus the first
phase of transfer is the period of time for which only the MRd REQs are sent to the PC.

Phase 2: When the in-FIFO has sufficient data from the MRd CPLDs, the data monitoring
module becomes active and starts filling the out-FIFO with processed data. The TX engine
starts sending the MWr REQ state when the out-FIFO has data equivalent to the size of one
TLP. As the MRd REQ state has a lower priority than the MWr REQ state, MRd REQs
are sent to the PC when MWr REQ is not possible, i.e. when the out-FIFO does not have
sufficient amount of data. In the second phase both the MRd and MWr REQ states are

active.

Phase 3: The third phase is the period of transfer after all the MRd REQs are sent to the
PC and only the MWr REQs are pending. This phase corresponds to the period of transfer
where the MWr REQs are either waiting for data (in the out-FIFO) from the monitoring
module or being sent one after the other. The end of the last MWr REQ marks the end of a

transfer.

5.2 System Parameters That Affect the DMA Transfer
in the FPGA

The amount of time spent at each phase of the data transfer process depends on the following

system parameters measured in terms of PCle clock cycles.

5.2.1 PCle Transfer Parameters

The following PCle parameters are set by the user based on the required transfer size:

e S, is the number of 32-bit words in one TLP sent from the FPGA to the PC, and must

be an even number.
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e N, is the total number of TLPs sent from the FPGA to the PC in one transfer.

e S, is the number of 32-bit words in a TLP sent from the PC to the FPGA, and must

be an even number.
e N, is the total number of TLPs sent from the PC to the FPGA in one transfer.
Let B, be the total number of bytes transferred from the FPGA to the PC in one transfer,
and B, be the total number of bytes sent from the PC to the FPGA in one transfer. We

observe that

B,=4-5, Ny

B, =4-5,-N,

In this thesis, all experiments were performed by fixing S,, or S, to 32, the maximum value
supported by the selected hardware. As the value of S, or S, decreases, the overheads
associated with every MWr REQ and MRd CPLDs increases which decreases the throughput

of the entire system.

5.2.2 PCle Framework Parameters

The following parameters are specific to the hardware (XUPV5 board) and the xapp1052
base design used in this thesis. Py refers to the frequency of the clock used by the PCle core
and the PCle framework, which is set to 62.5 MHz in the current design. Pr is the time
period of the clock used by the PCle core and the PCle framework,

Py = 62.5 MHz

PTzl/Pf:16 ns

A 64-bit PCle transmit link and a 64-bit PCle receive link are used in this design which
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means that 64 bits of data can be transferred in one PCle clock cycle. The number of clock
cycles required to complete one MWr REQ is a function of S,,. The sequence of events to

complete one MWr REQ is as follows:

(i) While in the reset state, check if a MWr REQ can be sent.

(ii) If a MWr REQ can be sent, transmit the first 64-bits of the MWr REQ header.
(i) Transfer the remaining bits of the header and the first 32-bit word.
(iv) Transfer (S,-2) 32-bit words at the rate of 64 bits per PCle clock.

(v) Transfer the last 32-bit word and the 32-bit trailer and go back to the reset state.

Thus, the total number of clock cycles required for one MWr REQ is:

merfreq = (Sw/2) +2

The MRd REQ is independent of the transfer size and occurs in the following sequence:

(i) While in reset state, check if a MRd REQ can be sent.
(ii) If a MRd REQ can be sent, send the first 64-bits of the MRd REQ.

(iii) Transmit the remaining bits of the MRd REQ and go back to reset state.

Thus, the total number of clock cycles required for one MRd REQ is

Cmv“d—req =2

Irrespective of the size of the TLP, the MRd CPLDs are sent to the PC in batches of 64
bytes of data with a 32-bit header and a 32-bit trailer. The number of clock cycles to receive
64 bytes of data from the PC is

Cmrd—cpld—64 =9
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After a transfer is initiated, the FPGA starts sending MRd REQs to the PC. Let Cyeiqy refer
to the number of clock cycles elapsed between the transmission of the first MRd REQ and
the reception of the first MRd CPLD represented. It is observed that Cgeqy is a constant:

Clelay = 140

5.2.3 Bridge Platform Parameters

BW,;,,_inrrro represents the input bandwidth of the in-FIFO and is defined as the number
of bytes loaded into the in-FIFO in one PCle clock cycle. BW . inrrro represents the
output bandwidth of the in-FIFO and is defined as the number of bytes unloaded from the
in-FIFO by the data monitoring module in one PCle clock cycle. BW;,_,utrrro represents
the input bandwidth of the out-FIFO and is defined as the number of bytes loaded by the data
monitoring module into the out-FIFO in one PCle clock cycle. BWoui—outrrro represents the
output bandwidth of the out-FIFO and is defined as the number of bytes unloaded by the
TX engine (MWr REQ state) from the out-FIFO in one PCle clock cycle.

5.2.4 Data Monitoring Module Parameters

The data monitoring plug-in is a user-defined module which can be interfaced with the bridge
platform through the data monitoring wrapper. The data monitoring wrapper provides
a 64-bit input and a 64-bit output data interface to the data monitoring module. Data
monitoring modules are processing blocks operating on data streams whose behaviour can be

modelled using the following parameters [20]:

(i) Load (1): The number of clock cycles required to load the inputs into the data monitoring
module. Due to the 64-bit interface to the data monitoring module, the number of
bytes that can be loaded in one cycle is 8. The minimum value of [ corresponds to the

number of clock cycles required to load 8 bytes. Hence [ > 1 since it takes at least one



Sushrutha Vigraham Chapter 5. Results and Analysis 5%)

(i)

(i)

clock cycle to load 8 bytes.

Process (p): The number of clock cycles required to process the inputs to produce

outputs, where p > 0.

Unload (u): The number of clock cycles required to unload data from the data monitoring
module. Due to the 64-bit data interface to the out-FIFO, the number of bytes that
can be unloaded in one clock cycle is 8. The minimum value for u corresponds to the
number of clock cycles required to unload 8 bytes of data. Hence, u > 1 since it takes

at least one clock cycle to unload data from the data monitoring module.

Wait (z): The number of clock cycles required for the data monitoring module to load
the next set of inputs after loading the previous set of inputs. For parallel processing
algorithms, z will be the negative of the sum of p and u since there will be no wait
between loading of the inputs into the data monitoring module. Hence, z > 1 for serial

algorithms, and z = —(p + u) for parallel algorithms.

Bytes in (Bi,pr): The number of bytes consumed by the data monitoring module in
one load process. Due to the 64-bit data interface between the in-FIFO and the data
monitoring module, B;,pr is always a multiple of 8. Hence, B;,pr = 8n where n is an

integer greater than or equal to 1.

Bytes out (Boupr): The number of bytes produced by the data monitoring module for
one unload process. Due to the 64-bit data interface between the out-FIFO and the
data monitoring module, B,,;pr is always a multiple of 8. Hence, B,,;pr = 8m where

m is an integer greater than or equal to 1.

For a sequential processing block, the above described processes occur one after the other as

shown in Figure 5.1. For parallel algorithms, all the processes overlap as shown in Figure 5.2.
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Figure 5.2: Parallel data monitoring algorithms.

The data monitoring module is separated from the PCle framework by asynchronous FIFOs,
and hence can function at a clock frequency different from the one used by the PCle framework.
Let DRy be the frequency of the data monitoring clock. Clock Factor, CF, is defined as the
ratio of the frequency of the clock of the data monitoring module and the frequency of the

PCle clock. Thus, CF = DR/ P.
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The above definitions of [, p, u, z represent the load, unload, process and wait stages of the
data monitoring module in terms of data monitoring module clock. Let L, P, U, Z represent

the parameters I, p, u, z respectively in the PCle clock domain.

X =
CF

where X = L, P, U, Z for x = [, p, u, z respectively.

The period (Cpgr) of the data monitoring module is defined as the number of clock cycles
required to load and process B;,pr bytes by the data monitoring module in order to produce

Bouipr bytes of data.

Cor=L+U+P+7Z

The input bandwidth (BW;,pgr) of the data monitoring module is defined as the number
of bytes loaded into the data monitoring module in one period. The output bandwidth
(BWouwpr) of the data monitoring module is the number of bytes produced by the data

monitoring module in one period:

Bin
BWipr = C;R
BOU
BWounr = =4 el
DR

The in-FIFO and out-FIFO connect to the data monitoring module through a 64-bit interface.
This limits the maximum input and output bandwidth of the data monitoring module to 8
bytes per PCle clock. Also, the BW;,, .nr1ro can be less than BW;,pgr, which will result in a
lower BW;,,pr limited by BW;,,_inrrro. Thus, the effective BW;,,pr, BWinpr—eys is defined
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as

BWinpr—ecff = Minimum(BW,;,pr, BWin—inriro)

If BW;_inriro < BWi,pr, the number of cycles required to load data increases as the data
monitoring module waits for the data in the in-FIFO. As a result, the period of the data
monitoring module increases due to the extended load cycle. Thus, the effective period of

the data monitoring module is

BinDR

CDRcff = 57—
pl=el] BWinDRfeff

The effective output bandwidth of the data monitoring module is defined as

B . BoutDR
outDR—eff — CDR it
—e

5.3 Time Required for One DMA Transfer in the FPGA

The following intermediate variables are defined to model the three phases of the data transfer

process described in Section 5.1:

e (yuit: the number of PCle clock cycles elapsed between two MWr REQs,

e N, . the number of MRd REQs that can be sent from the FPGA to PC in Cyu

Twait *

PCle cycles,

e N,i, N,5: the number of MRd REQs sent from the FPGA to the PC in phase 1 and

phase 2 respectively,

e N, Ny3: the number of MWr REQs sent from the FPGA to the PC in phase 2 and

phase 3 respectively,
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o Cpni, Cpna, Cpps: the total number of PCle clock cycles elapsed in phase 1, phase 2 and
phase 3 respectively,

o Cyw: the total number of PCle clock cycles required for the FPGA to complete one

transfer,

e Ty the total time in seconds taken by the FPGA to complete a transfer.

As discussed in Section 5.1, the data transfer in the FPGA occurs in three phases. The time

elapsed in each phase is calculated as follows:

(i) Phase 1: The number of clock cycles consumed in phase 1 will be the sum of the number
of clocks elapsed between the start of the transfer and the start of the first MWr REQ.
Let F' be the number of clock cycles consumed by the data monitoring module in order

to produce the number of bytes equal to the size of one MWr TLP (.S, words of data).

Number of bytes required for one MWr TLP

Number of bytes produced by the data monitoring module in PCle clock cycle
4.5,
BWoutDR—cfs

F =

Cpn1 is the sum of the initial constant delay, Cgeay, the number of PCle clock cycles

required to load and process the first set of inputs and F. Thus,

Cphl = Cdelzzy +L+P+ F (51)

Number of PCle clock cycles elapsed in phase 1 Con

N’f' - =
"™ Number of PCle clock cycles required per MRd REQ  Chird—req

(ii) Phase 2: Cpa is the total number of PCle clock cycles required to finish sending all the
MRd REQs to the PC. The total number of MRd REQs left from phase 1 that are to

be sent out in phase 2,
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(i)

N, — N,y for N, > N,
er - (52)
0 for N, < Npq
F PCle clock cycles are required to produce one outgoing TLP. The difference between

F and Chpr—req Will determine the amount of time for which the MWr REQ state is
stalled due to insufficient data in the out-FIFO. Thus,

Cwait =F - me’r—req

o Owait
featt Cmrd—req
N,,.... can also be defined as the number of MRd REQs sent for every MWr REQ. The

total number of MRd REQs sent in phase 2 is same as the number of number MRd
REQs sent from FPGA to the PC for N, MWr REQs. Thus,

N2 = Nryoie - Nuz (5.3)
From Equations 5.2 and 5.3,
N, — N,
Ny = =11

Cpne 1s same as the number of PCle clock cycles required by the data monitoring module

to produce data required for N,» MWr REQs. Hence,

Cpha = I - Nyo (5.4)

Phase 3: Cpp3 is the number of PCle clock cycles required to complete all the remaining
MWr REQs,
Cph3 =F- Nw3 + Omwr—req (55)

where N3 = Ny — Nyo.
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From Equations 5.1, 5.4 and 5.5,

Cuw = Cpn1 + Cpra + Cpps (5.6)

Thus,

Tuw = Cuw - Pr
Ny, +1

- P 5.7
BWoutDR—eff g ( )

L+P+4- Sw . [ :| + (Cdelay + Omwr—req)

From the equation, the total time per transfer in the FPGA is a function of the constant
PCle framework parameters, Cp,rg—req a0d Cryypr—req, the output transfer size, B,, and the

data monitoring parameters, L, P, and BW,uipr—cff-

5.4 Throughput of the Data Monitoring System

The total time per transfer is defined as the time elapsed from the start of one transfer until
the start of the next transfer. Figure 5.3 shows the data transfer cycle in the data monitoring
system. The start of a transfer is marked by the initiate transfer signal sent by the PC to the
FPGA, and the end of the transfer is marked by the transfer done flag of the control register
in the FPGA. During the DMA transfer, the software process prepares for the next transfer
after which the control register in the FPGA is polled continuously. When the transfer done

status is asserted, the PC sends a initiate transfer signal to the FPGA to start a new transfer.
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Figure 5.3: Data transfer cycle in the data monitoring system.

Each individual step of the data transfer process is described as follows:

(a) Initiate a PCle transfer by:

L

Poll the control
Fegister

(i) Resetting the hardware process for the new transfer by writing to the reset register

(i)

in the FPGA.

Updating the hardware addresses of the read and write data buffers used for the

DMA transfer. In the current design, the PCle driver uses two read and two write

data buffers for DMA transfers. This allows the software process to operate on

one set of read/write buffers while the other set is being used for the ongoing

DMA transfer. At the start of every transfer, the buffers are swapped and the

corresponding hardware addresses are updated on the FPGA. Two PIO writes to

S,
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the FPGA are made in order to update the hardware addresses of the read and

write data buffers.

(iii) Clearing the transfer done flag of the control register by writing to the control
register in the FPGA (one PIO write to FPGA), which will trigger the start of a
new transfer in the FPGA.

Let T}, be the amount of time taken to initiate a transfer and 7}, be the time
required to complete one PIO write to the FPGA. T}, depends on the PCle driver

and the PC on which the driver is installed. For the hardware set up used in this thesis,

Tpio—wr = 160 ns

,I;m't =95 Tpio—wr = 800 ns

Prepare for the next transfer: While the DMA transfer is in progress, the software process
prepares for the next transfer after which the control register is polled. From Section
4.3.1, the total time, Ty, required by the PC to prepare for the next transfer will be

the sum of the individual buffer updates as shown in Equation 5.8.

TSW - Trecv + Twrite + Tready (58)

where T}, is the time required to receive data (sufficient for one DMA transfer between
the PC and the FPGA of the data monitoring system) from the DP system through the
10GbE link, T}, is the time required to write data to the PCle kernel buffer, and T4

is the time required to read data from the PCle kernel buffer.

Let 6 be the excess time consumed by the software process over the hardware process

before the control register is polled.

5 TSW — THW for TSW > THW

0 for TSW < THW
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(c) Poll the control register: The contents of the control register of the FPGA are read via
PIO transfers. When no DMA transfer is in progress, a PIO read consumes one clock
cycle in the FPGA. While the DMA transfer is in progress, the PIO read is blocked
if there is an ongoing MWr REQ or a MRd REQ after which the PIO read request is
served. Every poll can thus delay the transfer by a clock cycle. As the software process
consumes a significant amount of time, the number of times polled per transfer is less

and hence the delay due to polling is ignored.

Let T},on be the time taken for the last poll of the control register which corresponds to the
time spent after the transfer is done. T,oi = Tpio—read; Where Tpio_reqq is the time taken
by the software process to finish one PIO read from FPGA. For the current hardware set
up, Thio—read = 2000 ns. Hence,

Tpoll = Tpio—read = 2000 ns

The total time required to complete a single transfer, T}, can be modelled as

T;fotal - ,I%nit + THW +0+ Tpoll

— D46+
N, +1

—_— - P, 5.9
BWoutDRfeff g ( )

L+P+4-Sw-{

:| + (Cdelay + Omwr—req)

where D = Tt + Tpou, which is constant for the hardware set-up. Thus, the total time
taken for one transfer is a function of the output transfer size, B,,, the output bandwidth of
the data monitoring module, BWypr—cff, and time required exclusively for the software

process, Tsy .

The input throughput of the data monitoring system, T hrpt;,, is defined as the number of
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bytes transferred from the DP system to the data monitoring system per unit time:

B
Th tm = .
rp T

total

The output throughput of the data monitoring system, Thrpt,,;, is defined as the number of

bytes transferred from the data monitoring system to the DRSUs in unit time:

By,
Thrptgu = T (5.10)
total

The effective throughput of the data monitoring system, Thrptpg, is

Thrptpr = Minimum (Thrpt;,, Thrpt.) (5.11)

5.5 Maximum Achievable PCle Input Bandwidth

BW,;,_inrrro is the rate at which data arrives at the in-FIFO, i.e. the rate at which the
MRd CPLDs are received by the RX engine. In order to achieve the maximum BW;, _;.rrro,
the PC should always have pending MRd CPLDs to send back to the FPGA in such a way
that there is no delay between MRd CPLDs because of lack of MRd REQs. Hence, the MRd
REQs should be sent as quickly as possible so that the PC always has pending MRd CPLDs
to send back to the FPGA. As mentioned previously, a 64-bit PCle link has been used in
this design. Hence, theoretically, the maximum BWj, ;,rrro is 8 bytes per PCle clock. The
hardware used in this thesis uses a PCI Express 1.0 bus (PCle physical link) which limits the
maximum theoretical BW;,, _i,rrro to 4 bytes per PCIE clock (250 MB/s). Experimentally, it
is observed that the maximum possible BW;,_;.rrro is lower than the theoretical limit. This
decrease in the maximum BWj, _;,rrro is due to the latency associated with each transfer
due to stalling of the transfer by the PC. Section 5.9.1 discusses more about the nature of

the latencies and its effect on the input bandwidth of the data monitoring system. The
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experimental maximum of BW,, _;,rrro is measured for transfer sizes varying from 4096

bytes to 4194304 bytes and is approximately:

BWin—inF1Fo,,,, = 2.63 bytes per PCle clock (5.12)

Thus, the maximum input throughput of the PCle link, Thrptin—mazpe;.

Number of bytes transferred to the FPGA
time elapsed

Th/rptin—m(ll’PC[e -

B in—inFIFO
= et 5.13
b (513)

= 164.37 MB/s (5.14)

5.6 Maximum Achievable PCle Output Bandwidth

The number of bytes generated by the data monitoring module in one period is always less
than or equal to number of bytes loaded into the data monitoring module in one period.

From the definitions of BWiy,_ouriro, BWoutpr—efr and BWi,pr—csy,

BWin—outriro < BWin_inriro

BW oui—outrrro is the rate at which the TX engine (MWr REQ state) unloads data from the
out-FIFO. The TX engine enters the MWr REQ state only if there is sufficient data in the
out-FIFO. Thus, BW .i—ouwtrrro also depends on BW,_ouiriro:

BWoutfoutFIFO S BWinfoutFIFO

and

BWout—outFIFO S BVVin—inFIFO
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with
BWout—outriro,,,, = 2.63 bytes per PCle clock = 164.37 MB/s
Therefore, the maximum output throughput of the PCle link, Thrptout—maz pey. > 19

Number of bytes transferred to the FPGA
time elapsed

Tthtout—ma:vpcze =
BWout—outFIFOmaz
Pr
= 164.37 MB/s

5.7 Constant PCle Input Bandwidth

The input bandwidth of the PCle link is constant irrespective of the data monitoring module
parameters and the PCle transfer parameters. In order to derive the constant BW;, _i.rrro,

BW oui—outrrro is first determined based on the following two conditions:

(i) The out-FIFO can be unloaded only when there is data in it. Thus, BWou—ouriro 18
always less than or equal to the rate at which the out-FIFO is loaded BW;,_outrrro-

BWout—outFIFO S BVVin—outFIFO

(ii) The out-FIFO is unloaded by the TX engine and hence BW . outrrro also depends on
the rate at which the TX engine can unload data (BWou—outrirory ) BWout—outFrro

is always less than or equal to the rate at which the TX engine can unload the data.

BWout—outFIFO S BWout—outFIFOTX

Thus,

BWout—outFIFO = Minimum (BVVZ'n—outFIFOa BWout—outFIFOTX) (515)
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Assuming that the out-FIFO always has sufficient data, the maximum rate at which the TX

engine can unload data,

Number of bytes unloaded from the out-FIFO for one MWr REQ

Number of PCle clock cycles for one MWr REQ
4.5y,

BWout—outF]FOTX

mer—req

8
— . (5.16)
1+,

It BWout—owtriro = BWout—outrirosy, the MWr REQs are continuously sent to the PC
without any wait period between two MWr REQs. As the MWr REQs have a higher priority
over the MRd REQs, the MRd REQs are blocked until all the MWr REQs are sent which in
turn block the MRd CPLDs from the PC. This will result in a decrease in the BW,,,_inriro

below the maximum value, BW,,,_inrrro

max *

From the definitions of BW;,,_ourrro and BW,uipr—cff,

BWin—outriro < BWin_inriro (5.17)

From Equation 5.16 and 5.12,

BWoutfoutFIFOTX > BI/VinfinFIFOmaz for all Sw > 2 (518)

From Equations 5.15, 5.17 and 5.18,

BWout—outFIFO = BWin—outFIFO S BWout—outFIFOTX for all Sw > 2

Thus, for all S,, > 2, there always exists a wait period between two MWr REQs corresponding
to loading of out-FIFO with sufficient data. Pending MRd REQs will be sent to the PC
during the wait period. Thus, the MRd REQ queue at the PC never empties during the
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transfer since for a data monitoring system, the BWo pr—cfs is always less than or equal to

BWinpr—eff- Hence, the in-FIFO always operates at the constant maximum bandwidth,

BWin—inriro = BWin_inriro,,,., for all Sy, > 2.

5.8 Buffer Overflows

FIFOs are fixed sized memories which are used to store data and retrieve it when needed. As
the FIFOs get loaded with data continuously, there is a possibility that they become full and
can no longer load new data elements. Any new data element provided to the FIFO when it
is full will be ignored/discarded and the buffer is said to have overflowed beyond its limit.
Buffer overflows can be avoided if the rate at which the FIFO is emptied is always greater

than or equal to the rate at which the FIFO is loaded.

5.8.1 PCle Buffers on the FPGA

The PCle framework is connected to two FIFOs: in-FIFO to buffer the incoming data from
the PC, and the out-FIFO to buffer the outgoing data obtained from the data monitoring
module. As discussed in Section 5.7, the TX engine always unloads data from out-FIFO at a

rate faster than the BW;,_,..rrro. Hence, the out-FIFO does not overflow for all S,, > 2.

In case of the in-FIFO, BW;,_;.rrro is constant whereas the BW,,;_inrrro depends on the

data monitoring module. From the definition of BW;,pr—css and BWout—inrrro,

BWoutfinFIFO = BVV'mDRfeff-

If BWinpgr—cff < BWin—inriro, the in-FIFO fills up faster than the rate at which it is
unloaded. The data monitoring system operates on data streams and hence the in-FIFO will

overflow for transfers exceeding a specific limit. Let B,4 be the number of bytes retained in
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the in-FIFO for one PCle clock:

BWinpr—e ff — BWip—inrrro for BWinpr—c < BWin—inrrro
Bgg = (5. 19)
0 for BWinwpr—eft > BWin—inrrro

Let IN-FIFO-SIZFE represent the total number of bytes the in-FIFO can store. Cop is the
number of PCle clock cycles required to fill the in-FIFO with IN-FIFO-SIZFE number of
bytes beyond which the in-FIFO will overflow.

IN-FIFO-SIZFE
Cor = (5.20)
Bada

Let Beo—or be the number of bytes that can be sent to the FPGA (in-FIFO) from the PC in
Cor clock cycles i.e. the maximum number of bytes that can be sent to the FPGA without
causing an overflow.

Be_or = Cor - BWin_inrrro- (5.21)

From 5.19, 5.20 and 5.21, the total number of bytes that can be sent to the FPGA per
transfer without causing an overflow of the in-FIFO, B,_,,_or, should be less than or equal

to Be_or

IN-FIFO-SIZE BWinpr—efs
, where R = ——F———
1-R BWin—inr1ro

BrfnofOF < (522>

Thus buffer overflow depends on the size of the in-FIFO and the output bandwidth of the
data monitoring module. The lower the output rate of the data monitoring system, the higher
will be the required in-FIFO size in order to avoid buffer overflows. At any point, the number
of words available in the FIFO is obtained making a PIO read request to the FPGA. Buffer

overflow is detected by reading the buffer overflow flag of the control register during polling.
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5.8.2 10GDbE Buffer

The current system is developed as a plug-in to the already existing data streaming system
used in the LWA station. The data streams received via the 10GbE link are stored in a
10GbE kernel buffer. If the data monitoring system does not unload the 10GbE buffer at a
sufficient rate, the 10GbE overflows and a few packets from the DP system will be lost. In
order to avoid packet drops, the time taken to finish processing the set of inputs received

from the DP system should be greater than or equal to the time taken to receive the inputs.

notal - Trecv

IA

T7’€CU ?

Ttotal < 2 Trecv

In terms of throughput,
Thrptiocre

Th?“ptDR 2 9

where Thrptiogpe is the throughput of the 10GbE receiver of the data monitoring system.
The DP system outputs data to the data monitoring system at a maximum rate of 112 MB/s

with a packet size of 4096 bytes. In order to avoid packet misses,

120
Thrptpr > - MB/s > 60 MB/s

5.9 Measurements and Analysis

This section presents the measured throughput of the data monitoring system as a function
of the PCle transfer parameters and the data monitoring module parameters. The measured
values are compared with the throughput calculated from the modelled equation derived
in Section 5.4. The maximum transfer size up to which no PCle buffer overflows occur is

calculated from Equation 5.22 and compared with the experimental values.
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5.9.1 Throughput of the Data Monitoring System

As discussed in Section 5.7, Thrptin—mazpe,. 18 constant and does not vary with the data
monitoring or the PCle parameters. The Thrpt;,—mazpe,. is @ function of the data monitoring

parameters and can reach a maximum of 165.375 MB/s. From Section 5.5 and 5.6,

Thrptpg = Minimum (Thrpt,, Thrptg.)

= Thrptou (5.23)

From Equations 5.23 and 5.10, the overall throughput of the data monitoring system, Thrpt pg,
is a function of By,, BW,upr—efs and 0. This section compares the results obtained from the
modelled equation with the actual measured values for the throughput of the data monitoring
system. In order to model the effect of the bridge platform parameters, all the measurements
in this section were made with 0 = 0 i.e. the software process completes preparration for the

next transfer before the hardware process completes the corresponding DMA transfer.

(a) Input throughput: As mentioned in Section 5.5, the data monitoring system delivers a
maximum throughput of 164.37 MB/s. The decrease in the maximum input throughput
below the theoretical limit (250 MB/s) is due to the latencies associated with the transfer
of data from the PC to the FPGA. The input bandwidth is a function of the latencies due
to the PCle DMA transfer. PCle read latency (@) is measured as the difference between
the theoretical and the measured number of PCle clock cycles required to transfer B,
bytes from the PC to the FPGA. Figure 5.4 shows that the measured latencies increase
linearly with the increase in the input transfer size (B,) due to the PCle delivering a

constant maximum BW;, _,rrro of 164.37 MB/s irrespective of the transfer size.
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Figure 5.4: PCle read latency versus input transfer size.

(b) Effect of B, on Thrptpg: In order to measure the effect of B, on Thrptpg, the data
monitoring system was tested with a loopback mode. In the loopback mode, the output
of the in-FIFO is directly routed to the input of the out-FIFO. The loopback mode will
thus give an estimate of the maximum possible throughput for a particular transfer size,
B,,. Figure 5.5 shows the plot of Thrptpg versus B,,. The effect of overheads associated
with initiating a transfer are higher for lower values of B,,. As B, increases, the total
time required per transfer increases due to the constant overhead decreasing. Thus, the
throughput increases with increase in the transfer size, and reaches the maximum value

of 164 MB/s as expected.
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(c) Effect of data monitoring module parameters on Thrptpg: As discussed in Section 5.4,

Thrptpr varies with BW,tpr—cff. An 8-point FF'T block with a data width of 8 bits

and an FIR filter of order 21 and data width 32 bits have been used as a sample data

monitoring building blocks to quantify the effect of the data monitoring parameters on

Thrptpgr. Table 5.1 lists the parameters of FFT and FIR processing blocks.

s p! ut i BinDR | BoutDR CF Cb‘f:; ;D:r{_;’i[e
(btes) | (bytes) clock cycle)
FFT* 11 48 11 -59 8 8 1 0727273
FFT* 11 48 11 -59 8 8 2 145455
FFT* 11 48 11 -59 8 8 3 218182
FFT* 11 48 11 -59 8 8 4 263
FIR? 3 28 3 -31 8 8 1 263

1 -1 u, p, z are measured in data monitoring module clock cycles
2 - S-point FFT with an input and output data width of § bits

3 - FIR filter of order 21 with an input and output data width of 32 bits

Table 5.1: Parameters of FFT and FIR processing blocks.
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Figure 5.6 shows the effect of BW,upr—crr on the throughput of the system. As
BWoupr—efs increases, Thrpt pr also increases and reaches the maximum for BW,yipr—ctf
= BWip—in—rrro. From Figure 5.6, for B,, = 4096 bytes and BW.pr—cff = BWin—in—riro,
Thrptpr = 123 MB/s, which is approximately equal to the Thrptpg for B, = 4096
bytes, is 125 MB/s from Figure 5.5.

140

120 +

100
Bw = 4096 bytes

B0 ¥
Thrptor
(MB/s) 60 #FFT

20 Py +FIR

20

D T T T T T 1
0 05 1 15 2 25 3
BWoutDE-eff
( bytes per PCle clock)

Figure 5.6: Throughput of the data monitoring system versus output bandwidth of the data

monitoring module.

Figure 5.7 compares the Thrptpg delivered by the FFT and FIR blocks with the same
BWoupr—efs- Thus, the measurements also show that Thrptpg is controlled by the
BW,utpr—cfs parameter of the data monitoring module irrespective of the nature of the

algorithm and the other parameters mentioned in Section 5.2.4.
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Figure 5.7: Throughput delivered by FF'T and FIR blocks with same BW,pr—cfs-

(d) Combined effect of B,, and BWyupr—cfr on Thrptpg: Figure 5.8 shows a plot of the
combined effect of B,, and BW,pr—cff on Thrptpr. From Equation 5.10, Thrptpr
decreases as B,, increases and as BW,;pr—efs increases which is also demonstrated by
the measured values. Figure 5.8 also plots the modelled T'hrptpgr obtained from Equation
5.10 for varying B,, and BWopr—efs values. The modelled value closely predicts the
Thrptpg.
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Figure 5.8: Effect of B,, and BW,,tpr—efs on the throughput of the data monitoring system.

Bw (Bytes) Percentage error between Modelled and Measured Thrptor

BoutDR-eff = 0.727 BoutDR-eff=1.454  |BoutDR-eff=2.182 [BoutDR-eff = Bin-in-FIFO
4096 -1.365407746 -3.533545108 -10.35354478 -14.86123619
8192 -1.989972015 -2.464766901 -7.730442177 -12.18142868
16384 -0.603249831 -2.379258401 -2.408389209 -6.828804348
32768 -0.315578337 -0.94964515 -1.888372801 -3.638410085
65536 -0.541829119 -0.839865622 -2.18247208
131072 -0.53037037 -0.777096115
26214 -0.291065398
524288 -0.361985398
1048576 -0.527541205
2097152 -0.30404582
4194304 -0.350620891

BoutDR-eff is measured in bytes per PCle clock cycle

Table 5.2: Percentage error between the modelled and measured ThrptDR.

From Table 5.2, it is observed the percentage error between the modelled and the measured

value averages to 3%. The effect of overheads is higher for lower values of B,,. Due to

the non-deterministic nature of the multi-core PC, the software overheads show a high

variance leading to higher errors for lower values of B,, which yield higher Thrptpg.
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5.10 Effect of 6 on Throughput

0 is the excess time consumed by the software process after the DMA transfer is completed
by the FPGA. For varying values of B, § was calculated and the modelled Thrptpg is
obtained as shown in Figure 5.9. From Equation 5.10, as § increases, the Thrptpr decreases

as observed in Figure 5.9.
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(MB/s) 130 + §=0forlogio(Bw) >6

120 + &=0forall Bw

110

100
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Figure 5.9: Effect of 6 on the throughput of the data monitoring system.

Twrite and T...q are fairly constant for a specific transfer size. T..., depends on Thrptioces
which had a high variance. Moreover, if Ty <<< Tyw, the software process should wait for
a specific period before polling the control register which otherwise would cause a decrease in
Thrptpr because of polling delays. Due to the non-deterministic nature of the multi-core PC
used in this thesis, the wait process in software could not be precisely modelled. Modelling

software delays is an area to be explored further.
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5.11 Maximum Transfer Size for No Buffer Overflows

in the FPGA

The maximum transfer size in order to avoid PCle buffer overflow has been calculated for

a FIFO size of 32760 bytes depth 8190 and width 32-bits) and plotted as a function of

BWouwpr—cff as shown in Figure 5.10. The experimental values obtained by using the FFT

block for varying BW,pr—cfs are tabulated along with the modelled values in Table 5.3

which predict the Bo_op with high accuracy.
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Figure 5.10: Maximum transfer size for no PCle buffer overflows.

Bout IN-FIFO-SIZE | Modelled LOG10(Bc-0F) | Measured LOG10(Bc-0F)
(bytes per PCle clock) (bytes) (bytes) (bytes)
0.727273 32760 4.65 4.61
145455 32760 485 482
2.18182 32760 523 5.23

Table 5.3: Modelled and measured Bo_oF.
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5.12 Summary

This chapter lists the parameters of the data monitoring system. Section 5.2.4 defines the
parameters of the data monitoring plug-in irrespective of the nature of the algorithm. The
total time taken per transfer is derived in terms of the system parameters in Sections 5.3
and 5.4. The effect of the system parameters on the total throughput of the data monitoring
system is discussed in Section 5.9. The conditions for avoiding buffer overflows is derived in

Section 5.8.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The developed system is a generic data-centric system that can be used to monitor data streams
in real-time. The data-centric system is developed to evaluate FPGAs for implementing data
monitoring algorithms in LWA. The FPGA-based data monitoring system allows assesment
of data captured by the LWA and provides the flexibility of implementing various monitoring
algorithms. In this thesis, a XUPV5 board with a Virtex-5 FPGA has been selected as it

was readily available and had the features necessary for the data monitoring system.

The PC component of the data monitoring system sends data to and from the XUPV5.
Screened data can be routed to output devices such as storage units. In the modified design
of the MCS-DR system, the DP system sends data to the MCS-DR PC which routes it to the
XUPV5 board. Data from the XUPV5 board may be routed to the DRSUs. In order to not
discard packets from the DP system, the entire data monitoring system should function at a
rate greater than or equal to the output data rate of the DP system. The DP system can
send data to the MCS-DR PC at a maximum rate of 112 MiB/s (TBN/TBW systems). In

order to avoid losing data from the DP system, the data monitoring system should function
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at a rate of at least 112 MiB/s. This thesis aims at modelling the throughput of the data

monitoring system and identify the parameters that affect its throughput.

The throughput of the data monitoring system depends on the rate at which the FPGA can

process and transfer data back to the DRSUs. This thesis models the throughput of the data

monitoring system as a function of the parameters specific to the PCle communication and

the data monitoring plug-in. From the modelled equations, the following observations are

made:

(i)

(i)

As the amount of data sent out of the FPGA per transfer increases, the maximum
throughput of the data monitoring system increases rapidly up to the transfer sizes

32768 bytes and then averages to 160 MB/s beyond the transfer size of 65536 bytes.

Irrespective of the nature of the algorithm, any data monitoring module can be modelled
using the number of clock cycles required to load one set of inputs, process them, unload
the corresponding outputs and wait until the next set of inputs. The throughput of the
data reduction module can be obtained from the number of bytes per load and unload

cycle.

The overall throughput of the PCle link is limited only if the throughput of the data
monitoring module is less than the throughput that can be delivered by the PCle link

for the specified data transfer size.

The throughput of the data monitoring system decreases as the time consumed by the

software processes increase beyond the time taken by the hardware process for one

DMA transfer.

The maximum possible throughput for the hardware used in this thesis is ~160 MB/s
obtained for transfer sizes greater than 65536 bytes in cases where the throughput of
the data monitoring module alone is greater than 160 MB/s and the time consumed by

software process is less than the time required to complete the DMA transfer.
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It is observed that the latencies involved with the transfer of data to the FPGA vary linearly
with the increase in the transfer size, thus delivering a constant maximum throughput of the
PCle link irrespective of the transfer size. But the overall throughput of the data monitoring
system is low for smaller transfer sizes due to the software overheads associated with each
transfer. DSP building blocks such as an 8-point FFT and an FIR filter of order 21 were
developed in XSG and plugged into the design. The experimental values for throughput and
the condition for no buffer overflows closely match the predicted values. The throughput of
the data monitoring module and the excess time consumed by the software process are the

major factors that affect overall throughput.

In LWA, the MCS-DR PC acts as an interface between the data monitoring unit (FPGA),
and the DP and DRSU systems. The FPGA implements the PCle protocol and the data
monitoring algorithm. This thesis provides a framework on which algorithms can be plugged-in
and does not develop realistic algorithms. Real data monitoring algorithms can be developed

independently by the users and plugged-in to the framework developed in this thesis.

6.2 Future Work

Some of the areas for future work are:

o Compatibility of the data monitoring system with the DRSUs: In LWA, the MCS-DR
PC receives inputs from the DP system via a 10GbE link and transmits outputs to
the DRSUs via an eSATA link. The PC is configured to accept data via a 10GbE
port which is sent to the XUPV5 board. Data from the XUPV5 board to the PC is
discarded. Configuring the PC of the data monitoring system for an eSATA output
link to the DRSUs will complete the data flow chain in the MCS-DR.

e Using advanced development boards: A Xilinx Virtex-5 FPGA has been used in the
prototype developed in this thesis. The XUPV5 board used in this thesis uses a PCle
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1.0 bus which can theoretically function at 250 MB/s. Boards with newer version PCle
buses 2.0 can deliver higher performance. In this thesis, a single lane PCle link has
been used. Boards supporting multiple lanes yield higher throughput. Hence using
advanced development boards with multiple lanes and larger capacity FPGAs with
more logic, DSP and BRAM resources is a solution for applications limited by the

throughput of the PCle link.

e Unblocked input and output PCle transfers in FPGA: In the current design, the data
to the FPGA is continuous irrespective of the processing speed of the data monitoring
module. However,the outgoing data from the FPGA depends on the throughput of
the data monitoring module. The PCle framework is blocked by the data monitoring
module until it generates sufficient outputs and thus the throughput of the PCle link
is regulated by the data monitoring module. Modifying the PCle framework on the
FPGA for unblocked read and write states and determining the effect of unblocked

states on throughput is an interesting area for future work.

o Modelling software delays: In the current design, the throughput was measured by
varying the hardware parameters (on the FPGA). Throughput can also be modelled
with respect to the software process. Due to the non-deterministic nature of the PC
process scheduling the accuracy of the results decreases. Modelling the throughput in

terms of software parameters and software latencies is another area of future work.



Appendix A

Bridge Platform Logic and Data

Transfer Loop Software

A.1 FIFO Interface Logic

//

//— Filename: manage_fifo_in_out.v
//— Author: Sushrutha Vigraham, Virginia Tech
//— Last Updated: Jan 25th 2011

//— Description: Instantiates four FIFOs, two child FIFOs for in—FIFO
and two child FIFOs for the oult—FIFO receives enable signals

//— Instatiates the bridge_fifo_plugin module in which the data
monitroing plug—in module is inserted

//— This module gets data from the RX engine and places it in in—
FIFO

//— This module gets monitored data from the data monitoring plug—

in and placed it in out—FIFO

//— This module asserts write enable and read enable to in—FIFo
and out—FIFO based on the enable signals received from the RX and TX
engines respectively

//— Alternates between the two child FIFOs of the in and out child
FIFOs
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//

module manage_fifo_in_out (

clk ,

pcie_rst ,

out_FIFO_.rd_en,

read_update ,

k,

fifo_in_data ,

fifo_outO ,

fifo_outl ,

full ,

empty
total_datacount_in_infifos ,
total_datacount_in_outfifos ,

trn_rd

//———Input Ports

input clk;

input pcie_rst;

input [1:0] out_FIFO_rd_en;

input [1:0] read_-update;

input k; // Current FIFO that has to be read/written
input [63:0] fifo_.in_data;

input [63:0] trn._rd;

//————Output Ports

output [31:0] fifo_outO;

output [31:0] fifo_outl;

output [1:0] empty;

output [1:0] full;

output [20:0] total_datacount_in_infifos;
output [20:0] total_datacount_in_outfifos;

wire [63:0] trn_rdl;
wire [1:0] wr_ack;

wire [1:0] valid;
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wire [1:0] wr_en;
wire [31:0] data_-in[1:0];
reg fifo_in_select ;

wire plugin_clk;
//————FIFO ports

wire [31:0] transfer_data[1:0];

wire [20:0] fifoin_data_count [1:0];
wire [20:0] fifoout_data_count [1:0];
wire [1:0] fifoin_empty;

wire [1:0] fifoin_full;

wire [1:0] fifoout_empty ;

wire [1:0] fifoout_full;

wire [63:0] din64;

wire [63:0] dout64;

wire [1:0] fifoin_rd_en;

wire [1:0] fifoout_wr_en;

wire [20:0] fifoin_other_count [1:0];
wire

20:0] fifoout_other_count [1:0];

wire

[

wire [20:0] infifo_other_count;
[20:0] outfifo_other_count;
[

wire

20:0] in_fifo_count;

initial begin

fifo_in_select = 1’b0;

end

J//—————FIFO Interface Logic
assign full = fifoin_full;

assign empty = fifoout_full;

assign trn_rdl = {trn_rd [07:00],trn_rd [15:08], trn_-rd[23:16], trn_rd
[31:24], trn_rd [39:32],trn_rd[47:40], trn_rd[55:48], trn_rd
(63:56]}; // Data from the PC (MCS-DR PC)

assign din64 = {transfer_data[l], transfer_data[0]}; // Data from the

data monitoring module

assign total_datacount_in_infifos = (fifoin_-data_count [0] +

fifoin_data_count [1]);
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assign total_datacount_-in_outfifos = (fifoout_-data_count[0] +

fifoout_data_count [1]) ;

assign wr_en[0] = ( (read_update = 2’b11) ? 1 : (((fifo_in_select = 0)
&& (read_update != 2’b00)) ? 1 : 0) );
assign wr_en[1l] = ( (read_update = 2’bl11) ? 1 : (((fifo_-in_select = 1)

&& (read_update != 2’b00)) 7 1 : 0) );

assign data_in [0] = ( (read_-update = 2’bll) ? ((fifo_-in_select = 1’b0)
? (fifo_in_data[31:0]) : ((fifo-in_select = 1’bl) ? (fifo_-in_data
[63:32]) : 32°h0000))
( (fifo_-in_select == 1’b0) ? ((read_update =— 2’b01) ? (
fifo_in_data [31:0]) : ((read_update = 2’b10) ? (

fifo_in_data [63:32]) : 32’h0000)) : 32’h0000) );

assign data_in[1] = ( (read_-update = 2’bl1l) ? ((fifo_-in_select = 1’bl)
? (fifo_in_data[31:0]) : ((fifo_-in_select = 1’b0) ? (fifo_-in_data
[63:32]) : 32°h0000))
( (fifo-in_select = 1’bl) ? ((read_update =— 2’b01) ? (
fifo_in_data [31:0]) : ((read_update = 2’b10) ? (

fifo_in_data [63:32]) : 32’h0000)) : 32’h0000) );

always @ (posedge clk)
begin
if (pcie_rst)
begin
fifo_in_select <= 0;
end
else
begin
if( (read_update = 2’b01) || (read_-update = 2’b10) )
fifo_in_select <= fifo_in_select + 1;
else
fifo_in_select <= fifo_in_select;
end

end

//——— FIFO Instances

//——in—FIFO—child1
fifo_generator_-v5_3_std in_fifo_0 (
.rst(pcie_rst),
.wr_clk (clk),
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//———in—FIFO—child2
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.rd_clk (plugin_clk),

.din(data-in[0]), // Bus [31 : 0]
.wr_en(wr_en[0]) ,

.rd_en(fifoin_rd_en [0]) ,

.dout (transfer_data[0]), // Bus [81 : 0]
Cfull (fifoin_full [0]),

.empty (fifoin_empty [0]) ,

.rd_data_count (fifoin_other_count [0]) ,

.wr_data_count (fifoin_data_count [0])

)

fifo_generator_v5_3_std in_fifo_1(

//———out—FIFO—child1

.rst(pcie_rst),

.wr_clk (clk),

.rd_clk (plugin_clk),

.din(data_in[1]) ,

.wr_en(wr_en[1]),

.rd_en (fifoin_rd_en [1]),

.dout (transfer_data[1l]),

full (fifoin_full [1]),

.empty (fifoin_empty [1]),
.rd_data_count (fifoin_other_count [1]),

.wr_data_count (fifoin_data_count [1])

)

fifo_generator_v5_3_fwft out_fifo_0 (

//

.rst(pcie_rst),

.wr_clk (plugin_clk),

.rd_clk (clk),

.din(dout64[31:0]) ,
.wr_en(fifoout_wr_en [0]),
.rd_en(out_-FIFO_rd_en [0]) ,

.dout (fifo_out0),

.full(fifoout-full [0]),

.empty (fifoout_empty [0]) ,
.rd_data_count (fifoout_data_count [0]) ,

.wr_data_count (fifoout_other_count [0])

)

out—FIFO—child?2

fifo_generator_v5_3_fwft out_fifo_1 (
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.rst(pcie_rst),

.wr_clk (plugin_clk),

.rd_clk (clk),

.din(dout64[63:32]) ,
.wr_en(fifoout_wr_en[1]),

.rd_en (out_FIFO_rd_en[1]),

.dout (fifo_outl),

full (fifoout_full [1]),

.empty (fifoout_empty [1]) ,
.rd_data_count (fifoout_data_count [1]),

.wr_data_count (fifoout_other_count [1])

)

//

//——Bridge FIFO (Data Monitoring Wrapper Code) Instance

br

/)

End FIFO

Instances

idge_fifo_plugin bridge(
.pcie_clk (clk),
.plugin_clk (plugin_clk),
.plugin_rst(pcie-rst), //plugin_rst
.din64 (din64) ,
.fifoin_rd_en (fifoin_rd_en),
.dout64 (dout64),
.fifoout_wr_en (fifoout_wr_en),
.fifoin_empty (fifoin_empty),
.fifoin_full (fifoin_full),
.fifoout_full (fifoout_full)

endmodule

VY

/)

and changing the following module declarations

/)

dma_performance_demo/fpga/BMD)

child—in—FIFO

module fifo_generator_v5_3_std (

FIFOs are different size can be used by generating ngc files

90
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rst ,

wr_clk ,
rd_clk ,

din ,

wr_en ,

rd_en ,

dout ,

full ,

empty ,
rd_data_count ,

wr_data_count) ;

input rst;

input wr_clk;

input rd-_clk;
input [31 : 0] din;

input wr_en;

input rd_en;

output [31 : 0] dout;

output full;

output empty;

output [11 : 0] rd-data_count;

output [11 : 0] wr_data_count;

endmodule

//

child—out—FIFO

module fifo_generator_v5_3_fwft (

rst ,

wr_clk ,

rd_clk ,

din ,

wr_en ,

rd_en ,

dout ,

full |

empty ,
rd_data_count ,

wr_data_count) ;
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input
input
input
input
input
input
output
output
output
output
output

Appendix A

rst;

wr_clk;

rd_clk;

[31 : 0] din;

wr_en;

rd_en;

[31 : 0] dout;

full;

empty ;

[12 : 0] rd-data_count;
[12 : 0] wr_data_count;

endmodule
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A.2 Data Monitoring Wrapper Logic

//

//— Filename: bridge_fifo_plugin.v

//— Author: Sushrutha Vigraham, Virginia Tech

//— Last Updated: Jan 25th 2011

/)=

//— Description: Instatiates the data monitoring wrapper

J/— Receives signals from the data monitoring plugin and asserts
read enable and write enable to in—FIFO and out—FIFO respectively

//— Instantiates the DCM primitive to generate the clock signal
for the data monitoring module

/)=

//

module bridge_fifo_plugin (

pcie_clk ,
plugin_rst ,
din64 ,
fifoin_empty ,
fifoin_full ,
plugin_clk ,
dout64 ,
fifoin_rd_en ,
fifoout_wr_en ,

fifoout_full

)
//—————Input Ports
input pcie_clk;
input plugin_rst;
input [63:0] din64;
input [1:0] fifoin_empty;
input [1:0] fifoin_full;
input [1:0] fifoout_full;
//—————— Output Ports
output plugin_clk;
output [63:0] dout64;
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output [1:0] fifoin_rd_en;

output [1:0] fifoout_wr_en;

//

To plugin

reg data_read;

reg data_written;

wire

wire

//

wire

clear_data_read; //
clear_data_written; //

From plugin
update_data;
data_ready ;

//

wire

plugin_clk_frm_dcm ;

assign plugin_clk = plugin_clk_frm_dcm;

assign fifoin_ready = ( (fifoin_empty==2"b00) ? 1’bl
assign fifoin_rd_en = ( (update._data && fifoin_ready ) ? 2’bll
assign fifoout_ready =

assign fifoout_-wr_en =

(
(

)

always @ (posedge plugin_clk)

begin

if (plugin_rst)

begin

data_-read <= 1’b0;
data_written <= 1’b0;

end

else

begin

if (fifoin_rd_en)
data_read <= 1’bl;
else
data_read <= clear_data_read; //
if (fifoout_wr_en)
data_written <= 1’bl;
else

data_written <= clear_data_written; //

end

end

(fifoout_full == 2’b00) ? 1’bl
(data_-ready && fifoout_-ready) ? 2’bll

1°b0);

1’b0 );
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/ /- Data Monitoring Module Clock from DCM

wire clkfx;
wire clk2x;
wire clkdv;
wire clkfb;

wire clkin;

assign clkin = pcie_clk;

DCMBASE # (.CLKIN_PERIOD(10.0) , // Specify period of input clock in ns
from 1.25 to 1000.00
.CLKDV.DIVIDE(2), // Divide by:
1.5,2.0,2.5,8.0,83.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,_

or 16.0
.CLKFX DIVIDE(2) , // Can be any integer from 1 to 32
.CLKFX MULTIPLY (2) , // Can be any integer from 2 to 32

.CLKIN_DIVIDE_BY_2("FALSE” ), // TRUE/FALSE to enable CLKIN divide by
two feature

.CLK FEEDBACK(”1X”) , // Specify clock feedback of NONE, 1X or 2X

.DFSFREQUENCY_MODE (”HIGH” )

DCM _for_plugin_clk (
.CLKO( clkfb), // 0 degree DCM CLK ouptput
.CLKFX(clkfx), // DCM CLK synthesis out (M/D)
.CLKFB( clkfb), // DCM clock feedback
.CLKIN( clkin), // Clock input (from IBUFG, BUFG or DCM)
.RST(plugin_rst) // DCM asynchronous reset input

)i

BUFG bufg (.I(clkfx), .O(plugin_clk_frm_dem)); // clock drive buffer

//————————Data Momnitoring Wrapper

plugin_wrapper_cw plugin (

.clk (plugin_clk),
.rst(plugin_rst),
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.data_read (data.read),
.data_written (data_written),
.din64 (din64) ,

.dout64 (dout64) ,

.update_data (update_data) ,
.data_ready (data_ready),
.clear_data_read (clear_data_read),

.clear_data_written (clear_data_written)

/)

endmodule

//——Use this only if plugin_wrapper_cw.ngc file is used for the data

monitorign plugin

/ /- else, if wusing a verilog module i.e plugin_wrapper_cw module,
comment this module declaration
J//————————Instatiate the plugin module

module plugin_wrapper_cw (
clk ,
rst ,
clear_data_read ,
clear_data_written ,
data_read ,
data_ready ,
data_written ,
din64 ,
dout64 ,
update_data

input clk;

input [0:0] rst;

input [0:0] data_read;

input [0:0] data_written;

input [63:0] din64;

output [0:0] clear_data_read;
output [0:0] clear_data_written;
output [0:0] data_ready;

output [63:0] dout64;

output [0:0] update_data;

endmodule
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A.3 Software Process Data Transfer Loop

if (ioctl(xbmd-_descriptors.g_-devFile, INIT_TRANSFER, dmacr_reg) < 0)

{
printf (”INIT_TRANSFER Failed\n”);

return CRIT_ERR;

for (int recv_packet = 0; recv_packet < a0; recv_packet++)

{
if ((recv_bytes = recvfrom(sock, recv_buffer , MESSAGE_SIZE,O , (

struct sockaddr *) &DP_sock, &DP_sock_len)) < 0)

printf (”\nERROR: Failed to receive message throught he DP_sock\n
")
return —1;

}
// Place the contents of the recv_buffer in a FIFO or a Ring Queue

(Future Work)
// Update WriteBuffer with received data from the DP Subsystem
WriteData (xbmd_descriptors.g_devFile, (charx) gWriteData, BUF_SIZE);
// Update ReadBUffer with previously obtained data from the FPGA
ReadData(xbmd_descriptors.g_-devFile, (char %) gReadData, (wrwdmatlps

* wrwdmatlpc * 4));

while (ioctl (xbmd_descriptors.g_-devFile , RDDDMACR, &reg_valuel) >= 0)

{
if (reg_valuel = compare_value)
{
break;
}
else if((reg-valuel & 0x80000000) != 0)
{

if (ioctl (xbmd_descriptors.g_devFile , RDINFIFOCOUNT, &reg_valuel)
>=0)
printf(”\nData available in the IN FIFOS before start of %d
transfer = %d” ,ii, reg-valuel);
printf (” \nBUFFER OVERFLOW @ %ld Transfer: Increase the

Computation speed or decrease the Buffer Size or increase
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the PCle FIFO BUFFER Size” ,ii);

return —1;
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Nomenclature

10GbE 10 Gigabit Ethernet

ASIC Application-Specific Integrated Circuit
ASP Analog Signal Processor

BDTI Berkeley Design Technology Inc
BFU Beam-Forming Unit

BMD Bus Master DMA Engine

CLB Configurable Logic Block

CPLD Completion with Data

DIG Digitizer

DMA Direct Memory Access

DP Digital Processor

DRSU Data Recorder Storage Unit
DRX Digital Receiver

DSP Digital Signal Processor

FFT Fast Fourier Transform

FIFO First-In-First-Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array
GPP General Purpose Processor
GPU Graphics Processing Unit
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HDL
I0B

P

LUT
LWA
MCS-DR
MCS-DR PC
MRd
MWr
NCD
NGC
NGD
pPC
PCle
PIO
REQ
RFI
RTL
RX
TBN
TBW
TLP
TX
UCF
XSG
XUPV5

Nomenclature

Hardware Description Language

Input Output Block
Intellectual Property
Look-Up Table

Long Wavelength Array radio telescope

Monitor and Control System Data Recorder

Personal Computer of the Monitor and Control System Data Recorder

Memory Read

Memory Write

Native Circuit Description
Native Generic Circuit
Native Generic Database

Personal Computer

Peripheral Component Interconnect Express

Programmable Input Output
Request

Radio Frequency Interference
Register-Transfer Level
Receive

Narrow-Band Transient Buffer
Wide-band Transient Buffer
Transaction Layer Packet
Transmit

User Constraints File

Xilinx System Generator

Xilinx University Program board with a Virtex-5 FPGA
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