
Design and Analysis of a Real-time Data Monitoring Prototype for

the LWA Radio Telescope

Sushrutha Vigraham

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Approved by:

Cameron D. Patterson, Co-Chair

Paul E. Plassmann

Disapproved by:

Steve W. Ellingson, Co-Chair

February 1, 2011

Blacksburg, Virginia

Keywords: FPGA, data streaming, PCIe, data-centric computing

Copyright 2010, Sushrutha Vigraham

Design and Analysis of a Real-time Data Monitoring Prototype for the LWA

Radio Telescope

Sushrutha Vigraham

ABSTRACT

Increasing computing power has been helping researchers understand many complex scientific

problems. Scientific computing helps to model and visualize complex processes such as

molecular modelling, medical imaging, astrophysics and space exploration by processing large

set of data streams collected through sensors or cameras. This produces a massive amount

of data which consume a large amount of processing and storage resources. Monitoring the

data streams and filtering unwanted information will enable efficient use of the available

resources. This thesis proposes a data-centric system that can monitor high-speed data

streams in real-time. The proposed system provides a flexible environment where users

can plug-in application-specific data monitoring algorithms. The Long Wavelength Array

telescope (LWA) is an astronomical apparatus that works with high speed data streams,

and the proposed data-centric platform is developed to evaluate FPGAs to implement data

monitoring algorithms in LWA. The throughput of the data-centric system has been modelled

and it is observed that the developed data-centric system can deliver a maximum throughput

of 164 MB/s.

To Amma and Appa

iii

Acknowledgments

I profusely thank my primary advisor, Dr. Cameron Patterson, for providing me the opportu-

nity to work on a very interesting project and offering invaluable guidance throughout my

thesis. I thank Dr. Ellingson, for inducting me to the LWA project. I am grateful to Dr.

Paul Plassmann for consenting to be a member of my thesis committee. This research was

supported in part via contract N00014-07-C-0147 from The Office of Naval Research.

I am highly indebted to Christopher Wolfe, without whom this thesis would not have

materialized as well as it has now. I thank him for imparting his profound knowledge and

extraordinary advice. I am very thankful to Gautham Chavali for reviewing my thesis and

nudging me to complete my thesis well and on time. His patience and moral support has

strengthened me immensely during the tough times.

I would like to thank Piyush Garyali and Athira Chandrasekharan for guiding me through

the initial phase of my Masters. I am grateful to Guruprasad Subbarayan and Tannous

Frangieh for their timely advice. Special thanks to my colleagues, Karthick Lakshmanan,

Ramya Priyadarshini, Sureshwar Rajagopalan, Mrudula Karve, Rohit Asthana, Umang Parek

and Karl Pereira for creating an enjoyable work environment.

My heartfelt thanks to my good friend, Saparya Krishnamoorthy, for her immense support

and the memorable time she created, at Virginia Tech.

I am very grateful to Pavithra Sekhar for being a wonderful roommate and offering constant

support all through my thesis. I would like to thank Abirami Srinivasan, Karthik Ganesan,

iv

Srinivasa Raghavan Santhanam and Praveen Kumar for all the fun times together.

Last but the best, I am blessed to have two great friends, my mom and my dad, who have

been my role models and the reason behind my every success. I am highly indebted to them

for their unconditional love, support and encouragement because of whom, I am what I am

now.

Sushrutha Vigraham

Blacksburg

Feb 1, 2011.

v

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Thesis Organization . 5

2 Background 6

2.1 The Long Wavelength Array (LWA) . 6

2.2 LWA Station Architecture . 7

2.2.1 Analog Signal Processor (ASP) . 9

2.2.2 Digital Processor (DP) . 9

2.2.3 Monitor and Control System Data Recorder (MCS-DR) 10

2.3 High-Performance Digital Devices . 12

2.4 Features of FPGAs . 12

2.5 XUPV5 Development Board . 13

2.6 Communication Interfaces . 15

vi

2.6.1 10 Gigabit Ethernet Interface . 16

2.6.2 PCIe Interface . 17

3 FPGA Development 20

3.1 Field Programmable Gate Arrays . 20

3.1.1 FPGA Features . 21

3.2 FPGA Design Flow . 23

3.2.1 Design Entry . 24

3.2.2 Design Synthesis . 25

3.2.3 Design Implementation . 25

3.2.4 Device Programming . 27

3.2.5 Design Verification . 27

4 System Implementation 29

4.1 Hardware Setup . 29

4.2 Data Monitoring System . 31

4.2.1 Communication Through the 10GbE Interface 32

4.2.2 Communication Through the PCIe Interface 32

4.2.3 Data Monitoring Framework in the XUPV5 Board 39

4.2.4 Modifications made to the PCIe framework 42

4.2.5 FPGA Resource Utilization . 42

4.3 Data Transfer Process in the Data Monitoring System 44

4.3.1 Software Process . 45

4.3.2 Hardware Process . 47

4.4 Synthetic Data Generator . 49

vii

5 Results and Analysis 50

5.1 Analysis of the Data Transfer Process in the FPGA 50

5.2 System Parameters That Affect the DMA Transfer in the FPGA 51

5.2.1 PCIe Transfer Parameters . 51

5.2.2 PCIe Framework Parameters . 52

5.2.3 Bridge Platform Parameters . 54

5.2.4 Data Monitoring Module Parameters 54

5.3 Time Required for One DMA Transfer in the FPGA 58

5.4 Throughput of the Data Monitoring System 61

5.5 Maximum Achievable PCIe Input Bandwidth 65

5.6 Maximum Achievable PCIe Output Bandwidth 66

5.7 Constant PCIe Input Bandwidth . 67

5.8 Buffer Overflows . 69

5.8.1 PCIe Buffers on the FPGA . 69

5.8.2 10GbE Buffer . 71

5.9 Measurements and Analysis . 71

5.9.1 Throughput of the Data Monitoring System 72

5.10 Effect of δ on Throughput . 78

5.11 Maximum Transfer Size for No Buffer Overflows in the FPGA 79

5.12 Summary . 80

6 Conclusions and Future Work 81

6.1 Conclusions . 81

6.2 Future Work . 83

viii

A Bridge Platform Logic and Data Transfer Loop Software 85

A.1 FIFO Interface Logic . 85

A.2 Data Monitoring Wrapper Logic . 93

A.3 Software Process Data Transfer Loop . 97

Bibliography 99

ix

List of Figures

1.1 Current LWA station set-up. 4

1.2 Modified LWA station set-up with FPGA based data monitoring capability. . 4

2.1 Aerial view of LWA-1, the first LWA station set up in New Mexico, USA. . . 7

2.2 Close-up view of an LWA-1 crossed-dipole antenna. 8

2.3 Signal flow in a LWA station. 8

2.4 Analog Signal Processing: LWA antennas to ASP. 9

2.5 Digital Signal Processing: Digital Processor (DP). 10

2.6 Monitoring and Control System–Data Recorder (MCS-DR). 11

2.7 MCS-DR PC with an FPGA. 11

2.8 XUPV5 board with a Virtex-5 FPGA. 14

2.9 Communication interfaces between the components of the data monitoring

system. 16

2.10 PCIe slot on the motherboard of a computer. 18

x

2.11 Data transfer between host computer and a PCIe device. 19

3.1 Block diagram of a Xilinx FPGA. 21

3.2 FPGA design flow. 23

3.3 Design flow using Xilinx System Generator. 25

3.4 FPGA design implementation. 26

4.1 Components of the data monitoring system. 30

4.2 Components of the PCIe framework. 33

4.3 Flow chart for the PCIe software program. 35

4.4 Block diagram of the Integrated Endpoint Block Plus in Virtex-5 FPGA. . . 36

4.5 High-level view of the BMD architecture. 37

4.6 BMD architecture. 38

4.7 Bridge Platform. 41

4.8 Flow Chart for the Software Process. 45

4.9 TX engine state machine. 48

5.1 Sequential data monitoring algorithms. 56

5.2 Parallel data monitoring algorithms. 56

5.3 Data transfer cycle in the data monitoring system. 62

5.4 PCIe read latency versus input transfer size. 73

xi

5.5 Throughput of the data monitoring system versus output transfer size. . . . 74

5.6 Throughput of the data monitoring system versus output bandwidth of the

data monitoring module. 75

5.7 Throughput delivered by FFT and FIR blocks with same BWoutDR−eff . . . 76

5.8 Effect of Bw and BWoutDR−eff on the throughput of the data monitoring

system. 77

5.9 Effect of δ on the throughput of the data monitoring system. 78

5.10 Maximum transfer size for no PCIe buffer overflows. 79

xii

List of Tables

4.1 Configuration options chosen for the FIFO generator core. 40

4.2 FPGA resource utilization for the PCIe framework provided by Xilinx. . . . 43

4.3 FPGA resource utilization for the base design (PCIe framework and Bridge

Platform with FIFOs). 44

5.1 Parameters of FFT and FIR processing blocks. 74

5.2 Percentage error between the modelled and measured ThrptDR. 77

5.3 Modelled and measured BC−OF . 79

xiii

Chapter 1

Introduction

Real-time data streaming plays a crucial role in various data-intensive applications. Scientific

activities such as astronomical observations using telescopes, intensive simulations in biological

research, and weather prediction in meteorology require real-time data analysis. On a

commercial scale, vehicle navigation systems providing directions based on the vehicle location

and security surveillance using various sensors also have a need for real-time processing. In all

these applications, the processed data streams are to be sent to appropriate output devices

such as display screens in navigation systems or storage units for further processing as in

astronomical observations. Recent advancements in high performance computing devices

such as FPGAs and GPUs, and high-speed communication interfaces such as Peripheral

Component Interconnect Express (PCIe) and 10 Gigabit Ethernet(10GbE), have led to the

design of high performance data streaming systems.

In this thesis, a data-centric system is developed to stream and monitor data in real-time.

Data-centric systems acquire, analyze and store data streams originated from inputs such

as antennas [1]. The data-centric system is developed as a prototype for a data monitoring

system in the Long Wavelength Array (LWA) telescope. LWA is an astronomical instrument

being built in New Mexico for radio astronomy [2]. The proposed data-centric system will

help in monitoring the celestial emissions captured by LWA antennas may help in mitigating

1

Sushrutha Vigraham Chapter 1. Introduction 2

radio frequency interference (RFI). In this thesis, data-centric system and data monitoring

system are synonymous.

1.1 Motivation

LWA station captures celestial radio emissions through its antennas. Data acquired by the

stations are routed to the storage units. Capturing unusable data (such as data with a high

amount of RFI) might result in wasteful consumption of storage capacity and processing

power utilized for recording and processing of unwanted data. The proposed data monitoring

system provides a framework that can be used to detect RFI in the radio signals captured by

an LWA station, and discard unusable data. The advantages of the new data monitoring

system for LWA can be summarized as follows:

• Efficient utilization of storage capacity: Every LWA station has dedicated data storage

units. Due to long periods of observation, the storage disks frequently run out of space

and need to be replaced with empty disks. A large amount of storage resources and

increased LWA station maintenance are required to replace the disks. Monitoring data

helps in detecting unusable data which can be discarded. Reducing the amount of

unusable data before storage will enable efficient use of the available storage space and

minimize the costs associated with extra storage and LWA station maintenance.

• Efficient utilization of processing time and power: Data recorded in the storage disks

of an LWA station are processed at a central unit, usually a computer cluster. These

computers are high performance shared computing resources that consume a large

amount of power. Filtering data at the LWA stations avoids processing of unnecessary

data and hence saves the processing time and power along with the costs involved in

utilizing the high performance resources.

Sushrutha Vigraham Chapter 1. Introduction 3

The prototype data monitoring system developed in this thesis is used to evaluate FPGAs

for monitoring data in an LWA station. The developed data-centric system might also be

used for data monitoring and analysis in real-time streaming applications such as computer

surveillance systems to monitor Internet traffic.

1.2 Contributions

A generic FPGA-based data-centric system that can be integrated with any PC-based

streaming application is developed in this thesis. The data-centric system is developed as a

prototype FPGA-based data monitoring system for LWA in order to evaluate FPGAs for

implementing data monitoring algorithms in LWA. The data-centric system is not tied to

a specific application but provides a framework to which data monitoring algorithms can

be plugged-in. Using Xilinx System Generator (XSG), a model-based tool for developing

algorithms on FPGA, DSP functions such as a 8-point Fast Fourier Transform (FFT) block

and a Finite Impulse Response (FIR) block of order 21 are developed. The FFT and FIR

blocks developed using XSG are used to test the data-centric system and demonstrate its

plug-in capability, but are not intended as the goal data monitoring algorithms. A synthetic

data generator developed in this thesis generates random data and mimics an input data

source which transmits data-to-be-monitored to the the data-centric system via a 10GbE

link.

In the current design of an LWA station, the data generated by the Digital Processor (DP)

system is routed to the Monitoring and Control System Data Recorder (MCS-DR) system

which records data in storage disks known as Data Recorder Storage Units (DRSUs). The

FPGA component of the developed data monitoring system is inserted into the already

existing MCS-DR Personal Computer (MCS-DR PC). Figure 1.1 shows the LWA station

current design and Figure 1.2 shows the modified design with an FPGA for data monitoring.

Sushrutha Vigraham Chapter 1. Introduction 4

Figure 1.1: Current LWA station set-up.

Figure 1.2: Modified LWA station set-up with FPGA based data monitoring capability.

This thesis makes the following contributions:

1. A generic data-centric system that can stream and monitor data in real-time is developed

in this thesis. The data-centric system is used to evaluate FPGAs as a possible data

monitoring device in LWA.

2. A plug-in capability has been provided for the data-centric system which allows its

users to develop monitoring algorithms in their preferred development environment and

integrate them with the developed data-centric system.

3. A synthetic data generator is developed to mimic an input data source which transmits

data-to-be-monitored to the the data-centric system via a 10GbE link. The synthetic

data generator is basically a 10GbE transmitter that transmits random data to the

data centric system.

Sushrutha Vigraham Chapter 1. Introduction 5

4. Establishing communication links:

a) A 10GbE receiver is configured on the data-centric system. In this thesis, the 10GbE

receiver is used to receive data from the synthetic data generator (10GbE transmitter)

and establishes a one-way communication link between the synthetic data generator

and the data-centric system.

b) A PCIe link between the FPGA and a PC.

1.3 Thesis Organization

This thesis is organized into six chapters. Chapter 2 briefly describes the related components

of the LWA architecture and discusses the features of the FPGA and the selection criteria for

the XUPV5 board used in this thesis. An overview of the PCIe and 10GbE interfaces is also

presented in Chapter 2. Chapter 3 provides the information required to develop algorithms

on FPGAs. Chapter 4 describes the implementation of the proposed data monitoring system

in detail. An analysis of the data monitoring system and the factors affecting its throughput

is provided in Chapter 5. Chapter 6 presents conclusions and discusses future work.

Chapter 2

Background

This chapter provides the background information about the LWA station architecture and

the communication interfaces used in the data monitoring system and the selection criteria

for the XUPV5 board chosen in this thesis. Section 2.2 gives a brief description of the systems

of an LWA station relevant to this thesis. Section 2.3 lists the available high performance

digital devices capable of implementing data monitoring algorithms, and Section 2.4 lists

the features of FPGAs. The selection criteria for the XUPV5 board used in this thesis is

mentioned in Section 2.5. An overview of the communication interfaces used between various

systems of the data monitoring system is discussed in Section 2.6.

2.1 The Long Wavelength Array (LWA)

Astronomy, the study of outer space, has made a significant contribution in expanding human

knowledge about the universe. The branch of astronomy that studies radio emission from

celestial bodies is called radio astronomy. Astronomical instruments called radio telescopes

are used in radio astronomy. Radio telescopes consist of a radio receiver and an antenna

system used to detect radio-frequency radiation emitted by celestial radio sources such as

6

Sushrutha Vigraham Chapter 2. Background 7

radio galaxies. LWA is a large radio telescope being constructed in New Mexico which will

expand the knowledge of the energetics and properties of many cosmic objects and events,

the solar system, and the ionosphere [2]. LWA will consist of 53 stations distributed over a

region 400 km in diameter, with each station consisting of an array of 256 dipole antennas

and will operate in the frequency range of 10 to 88 MHz. Figure 2.1 shows an aerial view

of the first LWA station, LWA-1 and Figure 2.2 gives a close-up view of the crossed-dipole

antenna.

Figure 2.1: Aerial view of LWA-1, the first LWA station set up in New Mexico, USA.

Outputs from the antennas are amplified and filtered to the frequency range of interest. The

filtered signals are digitized and transmitted to a the DP system. The outputs of the DP

system are recorded to storage disks. The signal flow in a LWA station is summarized in

Figure 2.3.

2.2 LWA Station Architecture

A LWA station is divided into subsystems which handle various functions of the station. A

detailed description of the LWA station architecture and its subsystems is specified in [3]. A

Sushrutha Vigraham Chapter 2. Background 8

Figure 2.2: Close-up view of an LWA-1 crossed-dipole antenna.

Figure 2.3: Signal flow in a LWA station.

Sushrutha Vigraham Chapter 2. Background 9

brief description of the relevant subsystems is given below.

2.2.1 Analog Signal Processor (ASP)

As shown in Figure 2.4, the LWA antennas capture radio signals and transmit them to the

ASP (Analog Signal Processor) which amplifies the raw radio signals and filters them to the

frequency range of interest to enable further processing of the signal.

Figure 2.4: Analog Signal Processing: LWA antennas to ASP.

2.2.2 Digital Processor (DP)

The outputs of the ASP are digitized by the Digitizer (DIG) subsystem (set of analog to

digital converters) and distributed to the Beam Forming Units (BFUs), the Narrow-Band

Transient Buffer (TBN) and the Wide-band Transient Buffer (TBW) of the DP system. Each

BFU forms a beam in the desired pointing direction and transmits it to the corresponding

Digital Receiver (DRX). The TBN and TBW systems record the outputs of the DIG for

later recovery and analysis. Figure 2.5 shows a block diagram of the DP system in an LWA

station.

The DRXs route the corresponding BFU outputs to MCS-DR or alternative backends such as

RFI and survey monitoring backends or spectrometers. The TBN and TBW systems help in

the analysis and diagnosis of the LWA station in which they are installed and will also help

Sushrutha Vigraham Chapter 2. Background 10

Figure 2.5: Digital Signal Processing: Digital Processor (DP).

in all-sky imaging and monitoring. The system developed in this thesis provides a framework

for a backend system on which data from DRXs and TBW/TBN can be monitored. The

developed framework is a part of the MCS-DR which is discussed in the next section.

2.2.3 Monitor and Control System Data Recorder (MCS-DR)

Each MCS-DR PC receives the output of the DP system and records it to a DRSU. As shown

in Figure 2.6, MCS-DR consists of five identical PCs with each connected to its respective

DRSU. A DRSU is a hard disk array which can record up to 5 TB of data. The PC component

of the MCS-DR receives inputs from the DP system via a 10GbE link and sends outputs to

the DRSUs via an eSATA link. In the current design, all data acquired by an MCS-DR PC

is streamed directly to its associated DRSU. More information about MCS-DR can be found

in [4].

Sushrutha Vigraham Chapter 2. Background 11

Figure 2.6: Monitoring and Control System–Data Recorder (MCS-DR).

In this thesis, the developed data monitoring system consists of a PC and a FPGA. When

using the data monitoring system with LWA, the PC component of the data monitoring

system refers to MCS-DR PC. The FPGA is an inserted between the PC and the DRSUs as

shown in Figure 2.7.

Figure 2.7: MCS-DR PC with an FPGA.

Sushrutha Vigraham Chapter 2. Background 12

2.3 High-Performance Digital Devices

Some of the digital devices capable of implementing data monitoring algorithms include

General Purpose Processors (GPPs), Digital Signal Processing (DSP) processors, Graphics

Processing Units (GPUs), FPGAs, and ASICs. GPPs are easy-to-use, re-programmable

platforms that can perform a wide range of operations. With advances in clock technology

and multi-core architectures, PCs are able to function at high clock speeds (up to ∼3.3GHz)

and are being used for high-performance computing. GPUs consist of a number of parallel

processing units which distribute the workload in a data-parallel manner. The performance

delivered by a GPU varies with the type and size of applications [5] [6]. DSP processors

can be viewed as GPPs with a fixed number of DSP hardware blocks to perform common

DSP operations (such as FFT, IIR filtering, and Viterbi decoding) efficiently. FPGAs are

parallel processing devices with flexible hardware whose features are discussed in Section 2.4.

Berkeley Design Technology Inc. (BDTI) Communication benchmark (OFDM) results show

that FPGAs yield a higher performance per cost than DSP processors for highly parallel

algorithms [7]. ASICs are high performance devices which are optimized in area, power and

performance but are tied to a specific design and cannot be modified. ASICs have a rigid

nature and associated with high costs. As this thesis aims at evaluating FPGAs for data

monitoring, even though all the above devices are capable of implementing data monitoring

algorithms, FPGAs have been selected. FPGAs possess the following features which makes

them suitable for the proposed system:

2.4 Features of FPGAs

The architecture of FPGAs and the development process is discussed in Chapter 3. The

features of FPGAs are summarized as follows:

• FPGAs have flexible hardware which makes them scalable and best suited for high-

Sushrutha Vigraham Chapter 2. Background 13

performance, parallel applications.

• FPGAs provide massive, low-level parallelism. Such parallelism makes FPGAs well-

suited to real-time data streaming applications.

• Modern FPGAs come with dedicated DSP cores which ease the design process and

deliver high performance for DSP applications.

• Model-based tools such as XSG provide simpler and faster development of designs on

FPGAs.

• Designs developed on FPGAs can be easily ported to other FPGAs.

• Modern FPGAs support various communication interfaces such as PCIe and Gigabit

Ethernet which allows FPGAs to be integrated with other systems.

FPGA advantages come at the cost of design time. In fixed architecture devices (such as

the GPPs, GPUs and DSP processors), the user writes software on tested stable hardware

whereas in FPGAs, the user implements designs on the user-configured hardware. Designing

on FPGAs is a time-consuming process and requires specialized skills to design and test the

user-configured hardware. Model-based tools reduce the development time on FPGAs but

presently have a limited set of library functions. Developments in FPGA design tools and

library functions should improve productivity [8]. More about programming using FPGAs is

discussed in Chapter 3.

2.5 XUPV5 Development Board

FPGAs are generally not stand-alone devices, but rather are integrated with devices such as

display controllers, off-chip memories, switches, and LEDs placed on a printed circuit board.

The capabilities of these FPGA boards vary from vendor to vendor. In this thesis, the Xilinx

XUPV5 development board with a Virtex-5 FPGA has been selected for the data monitoring

Sushrutha Vigraham Chapter 2. Background 14

system. The features of Virtex-5 FPGAs can be found at [9]. Figure 2.8 shows a picture of

the XUPV5 board.

Figure 2.8: XUPV5 board with a Virtex-5 FPGA.

The selection criteria for the XUPV5 board is summarized as follows:

• Compatible interface with the PC: The Virtex-5 has an integrated PCIe block (compliant

with the PCI Express Base Specification 1.1) which supports x1, x4, or x8 lanes per

block [9]. The XUPV5 board is connected to a PC which controls and regulates data

to and from the XUPV5 board. In LWA, PC refers to the MCS-DR PC to which the

XUPV5 board can be plugged in through a PCIe slot.

• Data Rate: The DRXs of the DP system output data at a maximum rate of 80

MiB/s whereas the TBN/TBW can output data at a maximum rate of 112 MiB/s.

Sushrutha Vigraham Chapter 2. Background 15

The throughput of the XUPV5 board varies with the data monitoring algorithms.

Theoretically, the maximum throughput of the XUPV5 board is 250 MB/s per lane which

is the theoretical maximum throughput achievable with a PCIe interface. Experimentally,

as discussed in Chapter 5, the XUPV5 board can deliver a maximum throughput of

160 MB/s through its single lane PCIe interface which is higher than the required data

rate of the DP system (maximum of 112 MiB/s through TBN/TBW). The dependence

of the throughput of the XUPV5 board with respect to the parameters of the data

monitoring system is discussed in Chapter 5.

• Off-the-shelf device: The XUPV5 board has been selected over other development

boards as it was readily available and consists of a Xilinx Virtex-5 FPGA which has

the features suited to the monitoring system.

• Ease of installation and algorithm development: The XUPV5 is compact and can be

easily integrated with other systems. It can communicate with other devices through a

PCIe slot or a 1GbE port. Using model-based tools such as XSG, development of data

monitoring algorithms can be made simpler and faster.

• Cost per board: The cost of one XUPV5 board is around $2000 for commercial customers

and $750 for academic customers [10].

• Portability: The monitoring system targeting the Virtex-5 FPGA can be ported to

other FPGA families without too much effort.

2.6 Communication Interfaces

As shown in Figure 2.9, the PC component of the data monitoring system receives data via a

10GbE link. The FPGA receives and transmits data from and to the PC via a PCIe link.

Sushrutha Vigraham Chapter 2. Background 16

Figure 2.9: Communication interfaces between the components of the data monitoring system.

2.6.1 10 Gigabit Ethernet Interface

10GbE is an Ethernet interface (IEEE 802.3ae) which operates at a nominal rate of 10 Gigabits

per second. Ethernet, formally referred to as IEEE 802.3, is a standard communication

protocol that uses packet-switched technology (data is transferred through the interface in

packets). The systems communicating using a Ethernet standard need to have an Ethernet

network interface card installed on them and are usually physically connected to each other

by a cable known as Ethernet cable. The Ethernet card implements the electronic circuitry

required to communicate using an Ethernet standard and acts as an interface between the

Ethernet network and the system on which the Ethernet card is installed. The Ethernet card

provides has a unique ID, known as the Media Access Control (MAC) address, that acts as

an address to the system.

In this thesis, the proposed platform uses a Myricom 10G-PCIE-8B-C Ethernet card. The

Ethernet card communicates with the PC of the data monitoring system (in LWA, MCS-DR)

through a PCIe interface (see Section 2.6.2) and is connected to the synthetic data generator

(in LWA, DP system) through a CX4 cable.

Networking Software: The Ethernet card provides the hardware necessary for data transfer.

Apart from this, the computer on which the Ethernet card is installed should have software

Sushrutha Vigraham Chapter 2. Background 17

that controls and communicates with the hardware in order to establish a connection to

perform a data transfer. The software is typically written in high-level languages such as C,

C++, or Python that support socket programming. Socket programming refers to the use of

a set of functions for sending and receiving data over a network.

2.6.2 PCIe Interface

PCIe is a standard for computer expansion cards and is used to connect personal computers to

peripheral devices attached to them. PCIe makes use of high speed serial link technology and

suits the requirements of advanced processors and I/O technology. PCIe offers advantages

over PCI, the predecessor of PCIe, in terms of increased speed, bandwidth and scalability.

Unlike PCI, PCIe provides a point-to-point full duplex link dedicated to each device. This

means that every device has a link of its own (dedicated) that can transmit and receive at

the same time (full duplex), without interfering with other devices (point-to-point). These

links are called lanes. Each lane transports data between endpoints of a link in packets of

8 bits. The number of lanes between two PCIe devices can be 1, 2, 4, 8, 12, 16 or 32. As

the number of lanes increase, the data load is distributed among all the lanes of equal speed

resulting in higher data transfer rates. Low speed devices require fewer lanes than the high

speed devices.

Every communication interface follows a protocol in order to transfer data. The PCIe protocol

is structured in three layers: physical, data link, and transaction layers. The PCIe lanes,

which determine the physical connection between two PCIe devices, constitute the physical

layer. Each lane consists of two pairs of differential signals, one each for transmitting and

receiving data. The current technology PCIe lanes can transfer data at the rate of 250 MB/s

per lane in either direction. A PCIe slot in which a peripheral is plugged into (interface) is

shown in Figure 2.10.

Sushrutha Vigraham Chapter 2. Background 18

Figure 2.10: PCIe slot on the motherboard of a computer.

The data link layer makes sure that the data packets are reliably transferred across the

PCIe link. The transaction layer receives the read/write requests and creates responses to

the request. The requests received may correspond to PCIe configuration or data transfer

between the host computer and the connected device. A PCIe device responds either with

data, or data acknowledgement, or both.

PCIe compatible devices are plugged into the PCIe slot of a personal computer. Data transfer

between the host computer and a PCIe device takes place as shown in Figure 2.11. The

computer, during its boot up, identifies and initializes all the PCIe devices by allocating

system resources such as memory and I/O space. This makes the device available for data

transfer. Data can then be transferred to and from the PCIe device using software programs

written in high-level languages. These applications communicate to the PCIe device through

device drivers (low-level software programs). Device drivers act as translators between the

hardware and the high-level PCIe software programs. The PCIe software program configures

the PCIe for the type and size of data transfer, initiates a transfer and performs data transfer

by providing/accepting data to/from buffers allocated by the OS during initialization.

Sushrutha Vigraham Chapter 2. Background 19

Figure 2.11: Data transfer between host computer and a PCIe device.

Chapter 3

FPGA Development

This chapter provides information necessary to develop algorithms on Xilinx FPGAs. Section

3.1 gives an overview of the architecture of a Xilinx FPGA and Section 3.2 discusses the

steps involved in the development of algorithms on FPGAs,

3.1 Field Programmable Gate Arrays

FPGAs are re-configurable digital devices available in the form of integrated circuits (ICs)

that can be programmed to implement digital functions. FPGAs stand in between generic

microprocessors and application-specific ICs (ASICs) in terms of performance and cost. In

microprocessors, designs adapt to the existing hardware where as in FPGAs and ASICs,

underlying hardware adapts to the design. This hardware adaptability produces high-speed

models of a design and plays an important role in applications which demand high performance.

Though FPGAs and ASICs seem similar with respect to hardware adaptability, they differ in

terms of architecture and re-configurability. FPGAs are user-configurable devices capable of

modelling multiple designs as opposed to ASICs which are customized devices, manufactured

for a specific design. This means that, on FPGAs, users can modify, update and test designs

20

Sushrutha Vigraham Chapter 3. FPGA Development 21

any number of times at a lower cost unlike rigid and expensive ASICs, fabricated for a specific

user design by a manufacturer. Due to their reconfigurable nature, FPGAs are used in rapid

prototyping of ASICs and in performance critical, high-speed applications where dynamic

changes in the designs may be necessary. FPGAs are widely used in the fields of digital signal

processing, software-defined radios, image and speech processing, and radio astronomy.

3.1.1 FPGA Features

FPGAs have a grid-like structure with logic elements that can be connected together to realize

a digital circuit as shown in Figure 3.1. The basic elements of a FPGA include Configurable

Logic Blocks (CLBs), Input Output Blocks (IOBs), clock management resources and routing

channels [11]. Modern FPGAs also have on-chip memories and dedicated resources for DSP

functions. Xilinx is among the leading FPGA manufacturers and the features of Xilinx FPGA

are briefly described below.

Figure 3.1: Block diagram of a Xilinx FPGA.

Sushrutha Vigraham Chapter 3. FPGA Development 22

Configurable Logic Blocks (CLBs): The basic logic elements of FPGAs are called CLBs. A

CLB consists of memory elements (generally SRAMs) which function as Look Up Tables

(LUTs), selection circuitry (multiplexers), flip-flops, arithmetic gates. LUTs accepts binary

inputs (usually 4 or 6) and can implement a Boolean function stored in the form of a truth

table. Each CLB is capable of implementing combinatorial logic, shift registers or RAM. By

connecting together various CLBs, it is possible to realize designs with complex functionality.

Routing and I/O resources: Connections between CLBs are made through programmable

switch-like routing resources. The grid-like structure of a FPGA is formed by the interconnects

as shown in Figure 3.1. The routing resources can be programmed to connect various CLBs

in such a way as to implement the desired functionality. Apart from CLBs interconnections,

the routing resources also connect to the IOBs (Input Output Blocks). The IOBs support a

variety of interface standards providing a flexible interface between the FPGA package pins

and the configurable logic.

Memories and other resources : Most of the designs implemented on the FPGA interact with

external devices such as a host computer or other processor chips. To support such designs,

FPGAs have on-chip Block RAMs that can be used to store and buffer data. Modern FPGAs

come with hard and soft IP (Intellectual Property) cores that can be integrated with a user

design to expedite the design process. Hard IP cores are dedicated chunks of hard-wired

logic present in an FPGA whereas soft IP cores refer to optimized logic that can be used

to program a FPGA for the required functionality. Embedded processors, DSP slices, and

gigabit transceivers are examples of hard IP cores available on modern FPGAs. A variety of

soft IP cores are provided by FPGA vendors for implementation of various communication

protocols (bus interfaces), FIFOs, DSP and math functions. Inside the FPGA, the dedicated

resources (such as on-chip memories, hard IPs) are placed at fixed locations as shown in

Figure 3.1.

Sushrutha Vigraham Chapter 3. FPGA Development 23

This section discussed the basics of FPGA and how digital circuits are realized on it. From

an FPGA user’s perspective, it is important to know how the logic elements of FPGA are

programmed and the skills needed to work with FPGAs. Programming FPGAs involves a

series of steps as discussed in Section 3.2.

3.2 FPGA Design Flow

The FPGA design process involves a series of steps: design entry, synthesis, design implemen-

tation and device programming, as shown in Figure 3.2. Design verification is performed at

various stages of the design flow.

Figure 3.2: FPGA design flow.

FPGA vendors offer tools that integrate all these processes making it easier for the designer.

Sushrutha Vigraham Chapter 3. FPGA Development 24

Xilinx provides an integrated FPGA development tool known as the Integrated Software

Development (ISE) Design Suite to automate the design process [12]. A brief description of

the design processes using Xilinx ISE is provided in the following sections.

3.2.1 Design Entry

Designs that are to be implemented on the FPGA are generally captured in Hardware

Description Languages (HDLs) such as Verilog or VHDL. HDLs insulate designers from the

details of hardware implementation. Some of the EDA tools allow design description in

high-level software languages such as C and C++ which are eventually converted to HDL

designs. Designs can also be captured using model-based tools such as the Xilinx System

Generator (XSG) which convert schematic models to HDL descriptions.

XSG allows users with little or no HDL background to work with FPGAs. XSG uses

MATLAB’s Simulink tool to model designs by connecting hardware blocks together. Hardware

blocks are IP cores or pieces of tested logic supplied by Xilinx. XSG relieves the designer

from low-level algorithmic complexity and helps to implement designs. The XSG library has

a set of DSP hardware blocks that can perform complex functions such as FFT, FIR filter

design, or Viterbi decoding. XSG uses the Xilinx ISE design suite to automate HDL code

generation which can then be integrated with other designs or used as a stand-alone design.

Figure 3.3 gives design flow using XSG.

Sushrutha Vigraham Chapter 3. FPGA Development 25

Figure 3.3: Design flow using Xilinx System Generator.

3.2.2 Design Synthesis

Synthesis tools take in HDL designs as inputs, check the code syntax, and create a Register-

Transfer Level (RTL) description of the design. The RTL description is an optimized version

of a design described in terms of basic logic gates. The XST (Xilinx Synthesis Technology)

tool combines the RTL description with Xilinx-specific optimization and creates a file known

as Native Generic Circuit (NGC) netlist. The NGC file contains the logical design data in

terms of LUTs along with constraints specific to Xilinx FPGAs. The NGC file is passed on

to the next step of design process, design implementation.

3.2.3 Design Implementation

Design implementation occurs in three steps: Translate, Map, and Place and Route. NGDBuild,

MAP and PAR are Xilinx ISE programs that perform these design implementation steps.

Figure 3.4 lists the three steps of design implementation along with the files generated at

each step.

Sushrutha Vigraham Chapter 3. FPGA Development 26

Figure 3.4: FPGA design implementation.

Translate: In the Translate phase, the netlists generated by the synthesis tool are combined

together with a User Constraints File (UCF) to form a single logic design file. UCF contains

information about the physical elements (such as pins) related to the packaging of the targeted

FPGA obtained from the FPGA vendor. The translate tool assigns the input/output ports

of a design to the physical elements of the FPGA. NGDBuild combines all the NGC files

provided by the synthesis tool along the UCF provided by the user, to a single file called

Native Generic Database (NGD) file.

Map: Mapping refers to fitting the design to the underlying FPGA architecture. The Map

process divides the whole design into small logic elements and maps them to the logic blocks

(such as CLBs, IOBs, hard IP cores) of the target FPGA. Xilinx’s MAP program maps the

design defined by NGD file to the target FPGA and produces a Native Circuit Description

(NCD) file which is a physical representation of the design on the FPGA.

Place and Route: PAR places the logic functions of a design into the logic blocks of the target

FPGA (similar to the MAP program) and also connects the logic blocks together. The MAP

program maps the design into the available resources on the target device whereas PAR

Sushrutha Vigraham Chapter 3. FPGA Development 27

is an iterative process which places the logic onto the FPGA and routes connections until

all constraints (such as timing and power) are satisfied. If the PAR tool fails to route the

design or meet all constraints, an error is generated. In this case, design should be modified

accordingly and the whole design process is repeated. The result of the PAR tool is an

optimized (with respect to area, performance and power) and completely routed NCD file

which meets all the constraints.

3.2.4 Device Programming

The NCD file generated by the PAR tool has all the necessary placement and routing

information for the implementation of the design on the selected target FPGA. This should be

converted to a format that can be used to program the FPGA. The BITGEN program converts

the routed NCD file to a bitstream (a file with a ”.bit” extension). Using a programming

cable, the bitstream can be downloaded from the host computer to the FPGA to configure it

for the design. The iMPACT tool allows the selection of a configuration mode and aids the

configuration download process.

3.2.5 Design Verification

Design verification refers to testing of the design for functional correctness and performance

requirements. The verification process can be broadly categorized into three steps: simulation,

static timing analysis, and in-circuit verification. Simulation of a design is performed by

simulators such as ModelSim. Functional simulation checks the logical correctness of the design

before it is implemented on a device. It is performed on HDL designs (pre-synthesis) or NCD

files (post-translate) and helps in correcting the design at an earlier stage. Simulators also

perform timing simulation. Timing simulation is performed after the design is implemented

in order to verify the design speed under worst-case conditions.

Static timing analysis performs quick timing checks of a design after the MAP or the PAR

Sushrutha Vigraham Chapter 3. FPGA Development 28

process. It lists the delays derived from the design logic and routing to help evaluate timing

performance. Once the design is tested for functional and timing correctness, the bitstreams

can be downloaded on to the FPGA and verified for in-circuit operation.

Chapter 4

System Implementation

In this thesis, a prototype for the FPGA-based data monitoring system for LWA is developed.

This chapter discusses the implementation aspects of the prototype data monitoring system.

The details of the hardware and the communication interfaces which constitute the proposed

system are discussed in Section 4.1. The implementation of the system, which involves estab-

lishing communication links (through the Ethernet and the PCIe interfaces) and configuring

the PC and FPGA for data transfer is described in Section 4.2.

4.1 Hardware Setup

As shown in Figure 4.1, the hardware used to implement the prototype data monitoring

system includes:

1. A host computer with a quad-core 2.66 GHz Core i7-920 CPU,

2. A Myricom 10G-PCIE-8B-C Ethernet Card and a 10GbaseCX4 Ethernet cable,

3. XUPV5 development board with a programming cable.

29

Sushrutha Vigraham Chapter 4. System Implementation 30

Figure 4.1: Components of the data monitoring system.

The monitoring system is inserted between the data source and the data sink as shown in

Figure 4.1. Data from the data source (DP subsystem) is routed to the Ethernet card via a

10GbaseCX4 cable. The Ethernet card, inserted into the host computer (MCS-DR PC) via a

PCIe slot, transfers the output of the data source to the software process running on the host

computer [4]. The software process accepts data from the Ethernet card (DP subsystem)

and routes it to the XUPV5. The XUPV5 board is connected to the host computer through

another PCIe slot and monitors the data obtained from the data source. The output data

from the XUPV5 board is then transferred back to the software process which routes it to

the data sink (DRSU). Thus, the host computer acts as a data manager and routes data

between the appropriate units.

MCS-DR system is an already existing system in an LWA station which routes the data

obtained from the DP system directly to the DRSU [4]. In this thesis, an XUPV5 board

Sushrutha Vigraham Chapter 4. System Implementation 31

is attached to the MCS-DR in order to evaluate FPGAs to implement data monitoring

algorithms in an LWA station.

In order to test the prototype monitoring system, another computer with a quad-core 2.66

GHz Core i7-920 CPU is used to generate synthetic DP subsystem output. The synthetic data

generator computer is connected to the host computer (Ethernet card) using a 10GbaseCX4

cable. Both the computers have the Ubuntu 8.10 64-bit Linux operating system installed on

them. The next section discusses in detail the implementation of the data monitoring system.

4.2 Data Monitoring System

As shown in Figure 4.1, implementation of the FPGA-based data monitoring system consists

of three main parts.

(1) Communication through the 10GbE interface,

(2) Communication through the PCIe interface,

(3) Data monitoring framework in the XUPV5 board.

Communication through the 10GbE interface is controlled by the software process running

on the host computer. Communication through the PCIe interface requires the installation of

the PCIe driver on the host computer and the necessary PCIe core logic on the FPGA. The

software process running on the host computer initiates a DMA transfer, and the hardware

process (on the XUPV5 board) responds to the commands from the host computer. Data

monitoring is performed by the FPGA and is entirely a hardware process. Sections 4.2.1,

4.2.2 and 4.2.3 discuss the data monitoring system implementation in detail. Section 4.3 gives

an overview of the data transfer process in the data monitoring system in terms of software

and hardware processes.

Sushrutha Vigraham Chapter 4. System Implementation 32

4.2.1 Communication Through the 10GbE Interface

An Ethernet socket is configured by the software process on the PC using the socket pro-

gramming functions defined in the ANSI C library. The socket() and bind() functions

are used to create a Internet Protocol version 4 (IPv4) UDP receive socket on the PC [13].

The recvfrom() function puts the receive socket into a listen mode where the socket waits

for data. When the socket detects incoming data directed towards it, the receive buffer is

updated with the received data. The receive buffer is then used to update the transfer to the

data monitoring unit (FPGA). In this thesis, the required device driver for the Ethernet card

has been developed and provided by Myricom. The next step discusses in detail the data

transfer process through the PCIe link.

4.2.2 Communication Through the PCIe Interface

The necessary code required for the communication between the PC component of the data

monitoring system and the XUPV5 board is provided by Xilinx’s xapp1052 application [14].

In this thesis, the code provided by Xilinx, which includes the software driver, the PCIe

software program and the Bus Master DMA engine (BMD), are collectively referred to as the

PCIe framework.

Communication between the host computer and the XUPV5 board is controlled by the PC

component of the data monitoring system and is performed by the BMD on the XUPV5

board. This section discusses the PCIe framework (provided by Xilinx) required to establish

the connection and transfer data between the host computer and the XUPV5 through the

PCIe link. As shown in Figure 4.2, the PCIe framework includes three main components:

Sushrutha Vigraham Chapter 4. System Implementation 33

Figure 4.2: Components of the PCIe framework.

a. PCIe driver installation: The PCIe driver for the XUPV5 board is obtained from Xilinx

through the xapp1052 application [14]. The driver is a low-level software program (written

in C) installed on the host computer that links the higher level PCIe software program on

the computer to the data monitoring framework on the XUPV5 board. The driver contains

various routines called by the PCIe software program which are used to communicate with

the hardware via the PCI Express link. After the host computer detects the XUPV5 device,

the PCIe driver is installed for the XUPV5 board as per the instructions mentioned in [14].

The driver first gets the base address of the hardware and maps the hardware bus memory to

the system (host computer) memory. The operating system then allocates memory resources

(data buffers) and loads the modules needed for PCIe link configuration and data transfer.

After registering the device, the driver is loaded after proper hardware initialization and

buffer allocation. The installed driver resides in the kernel memory of the host computer.

The XUPV5 board is now ready to transfer data to and from the host computer.

b. PCIe software program: The PCIe software program is a C program provided through

the xapp1052 application which invokes routines in the driver to perform the necessary data

movements. The PCIe software program reads the PCIe device configuration space and

updates descriptor registers in order to check the status of the PCIe device and initiate data

transfers. The configuration space is the common memory space between the host computer

and the XUPV5 board that has information about the capabilities of the PCIe link such as

Sushrutha Vigraham Chapter 4. System Implementation 34

link speed, link width, and link control. The descriptor registers are used to set up a transfer

and to initialize the BMD design with user-specified information regarding data transfer such

as the payload, size and count of data packets, and read/write enable from/to the XUPV5

board [14]. The PCIe software program also manages and updates the write-to-XUPV5 and

the read-from-XUPV5 endpoint data buffers.

The series of steps involved in making a data transfer to/from the XUPV5 board is shown

in Figure 4.3. The PCIe software program first reads the PCIe device configuration space

and gets the capabilities of the PCIe link. The PCIe software program then checks if the

device (XUPV5) is ready to transfer data and updates various descriptor registers to set

up a transfer. The write-to-XUPV5 data buffer is updated by data obtained from the DP

subsystem via the Ethernet port. The XUPV5 board receives raw data and sends back the

monitored data to the host computer at the same time. Hence, a two-way data transfer is

initiated by updating the control register to enable reads and writes from/to the XUPV5

board. The control register is a descriptor register used to trigger the BMD to start a DMA

transfer and indicate the status of a transfer. The contents of the descriptor registers are

transferred to the BMD through programmable input/output (PIO) transfers which update

the control and status registers of the BMD. On receiving instructions from the host computer

(PCIe driver) to start the data transfer process, the BMD on the XUPV5 board initiates

a DMA request to the host computer. The BMD then takes control of the PCIe bus and

performs a DMA transfer to move data between the endpoint buffers and the system (host

computer) memory. The completion of a DMA transfer is obtained by reading the contents

of the control register using a PIO call to the FPGA.

c. Bus Master DMA engine (BMD) design: The BMD is a Verilog (HDL) design running on

the Virtex-5 FPGA to implement the PCIe protocol, and controls the data transfer between

the host computer and the data monitoring framework [14]. A PCIe link can transfer data

at a theoretical maximum of 8000 MB/s (32 lanes) compared to the 132 MB/s theoretical

maximum throughput of the PCI link. Thus, the evolution of PCIe has led to improved

I/O bandwidth and enabled the use of external devices (such as the XUPV5) with various

Sushrutha Vigraham Chapter 4. System Implementation 35

Figure 4.3: Flow chart for the PCIe software program.

Sushrutha Vigraham Chapter 4. System Implementation 36

capabilities along with PCs in high-speed data streaming applications.

The BMD design is developed over the Virtex-5 FPGA Integrated Endpoint Block for PCI

Express Designs [15] which implements the PCIe protocol on the XUPV5. The Virtex-5

FPGA Integrated Endpoint block is a hard IP core embedded in the Virtex-5 FPGA that

provides the full functionality of the transaction layer, the data link layer, the physical layer,

and the configuration space as per the PCI Express Base 1.1 Specification [16]. The Endpoint

Block connects to the PCIe Fabric through the transceivers [17] embedded in the Virtex-5

FPGA [15] as shown in Figure 4.4. The embedded Integrated Endpoint Block can be accessed

through the LogiCORE IP Endpoint Block Plus v1.13 for PCI Express generated by the

Xilinx’s CoreGen tool [18].

Figure 4.4: Block diagram of the Integrated Endpoint Block Plus in Virtex-5 FPGA.

The Endpoint Block Plus is Verilog code provided by Xilinx which acts as a wrapper to

the Integrated Endpoint Block as shown in Figure 4.4. The Endpoint Block Plus wrapper

connects the transaction layer of the Integrated Endpoint Block to the rest of the BMD design

which receives and transmits data at the transaction layer in the form of transaction layer

packets (TLPs). The BMD control engines connect to the bridge platform and eventually to

Sushrutha Vigraham Chapter 4. System Implementation 37

the data monitoring plug-in module as shown in Figure 4.5.

Figure 4.5: High-level view of the BMD architecture.

Apart from the Integrated Endpoint core, the BMD design contains control engines for the

receive and transmit data path along with various registers and memory interfaces to store

and retrieve data as shown in Figure 4.6. The BMD consists of target logic, control and

status registers, and initiator logic as shown in Figure 4.6. The target logic captures the

Memory Write (MWr) and Memory Read (MRd) TLPs sent to the endpoint via PIO which

are used to monitor and control the DMA hardware.

The target logic updates the status and control registers with the contents of the descriptor

registers discussed in the Section 4.2.2. The control and status registers contain operational

information for the DMA controller about the link capabilities, start and stop of transfer, size

and the count of TLPs, and status of the transfer. The initiator logic contains transmit and

the receive engines, which generate MWr or MRd TLPs based on the upstream (endpoint to

system memory) or the downstream (system memory to endpoint) transfer. A MWr TLP is

generated by the transmit engine (TX engine) and consists of the DMA hardware address,

TLP size, TLP count followed by data to be transferred to the system memory. A MRd

TLP is a read request which has a similar pattern as the MWr TLP except for data. Data

is received by the receive engine (RX engine) in response to a MRd request TLP. The read

and write DMA control and status registers specify the address, size, payload content, and

Sushrutha Vigraham Chapter 4. System Implementation 38

number of TLPs to be received/sent, to construct MRd and MWr TLPs. The data (raw data

from the DP subsystem) received by the RX engine is transferred to the bridge platform,

and the monitored data to be sent is provided by the bridge platform to the TX engine. In

this thesis, a 64-bit transmit and receive PCIe links are used which can transfer 64 bits of

data per PCIe clock.

Figure 4.6: BMD architecture.

Sushrutha Vigraham Chapter 4. System Implementation 39

4.2.3 Data Monitoring Framework in the XUPV5 Board

Data monitoring is performed by the plug-in user module which is built over the bridge

platform. The BMD provides incoming TLPs to the bridge platform. The bridge platform

extracts data from the TLPs and routes it to the data monitoring plug-in logic. The user-

defined plug-in processes the incoming data from the bridge platform and routes it back to the

bridge platform. The bridge platform provides the monitored data to the BMD which forms

outgoing TLPs and eventually transfers them to the host computer. The bridge platform

and the data monitoring plug-in modules are described below:

a. Bridge Platform: The bridge platform, written in Verilog, performs data buffering using

FIFOs and provides a plug-in capability for data monitoring logic through the FIFO interface

and the data monitoring wrapper logic. The FIFO interface logic is provided in Appendix A.1

and the data monitoring wrapper code is provided in Appendix A.2. The bridge platform uses

two FIFOs, one for buffering data received through the RX engine of the BMD (in-FIFO),

and one for buffering data to be transmitted to the TX engine of the BMD (out-FIFO).

The FIFOs are generated by Xilinx’s CoreGen tool [19]. Both the generated FIFOs use

independent clock Block RAM implementations. The in-FIFO uses a standard FIFO read

mode where as the out-FIFO uses a first-word-fall-through read mode which are available

in the FIFO generator core. Each of the parent FIFOs (in-FIFO and the out-FIFO) is

constructed from two FIFOs, called child-FIFOs in this thesis, which are half the depth of

the parent FIFOs with a data width of 32 bits each. The FIFO generator core configuration

options are listed in Table 4.1. FIFOs of different capacity can be used with the design with

modification made to the in-FIFO and out-FIFO instantiations and inserting the NGC file

generated for the new FIFOs.

Sushrutha Vigraham Chapter 4. System Implementation 40

Table 4.1: Configuration options chosen for the FIFO generator core.

The transmit and receive PCIe links used in this thesis are 64-bits wide. The TX and the

RX engines used operate on 32-bits data (if the other 32-bits of the PCIe link are used for

headers) or 64-bit data. The TX and the RX engine of the PCIe framework are modified to

assert appropriate enable signals for selecting one child-FIFO (for 32-bits of data in one PCIe

clock) or both the child-FIFOs (for 64-bits of data in one PCIe clock) in every clock where

data is available. Integrating two 32-bit data width child-FIFOs to form the in-FIFO and the

out-FIFO will provide a 32-bit/64-bit input interface of the in-FIFO and the out-FIFO to

the RX and TX engines respectively, and a 64-bit interface to the data monitoring module.

The write to the in-FIFO and the read from the out-FIFO are synchronized to the BMD

clock with a 32-bit/64-bit data interface, while the read from the in-FIFO and the write to

the out-FIFO are synchronized to the clock of the data monitoring logic with a 64-bit data

interface. The FIFO interface logic routes data between the data monitoring logic and the

FIFOs by asserting appropriate enable signals to the FIFOs and the monitoring logic. The

data monitoring algorithm varies based on the user’s requirement. Hence, in order to provide

a flexible data monitoring platform, a data monitoring wrapper is developed to provide the

plug-in capability for the user-defined data monitoring logic. The data monitoring wrapper

instantiates the user-defined data monitoring module and connects the data monitoring

module to the FIFO interface which in turn connects to the BMD. Thus, the bridge platform

acts as an interface between the BMD and the data monitoring logic.

Sushrutha Vigraham Chapter 4. System Implementation 41

Figure 4.7: Bridge Platform.

b. Data Monitoring Plug-in: The data monitoring logic is developed by the users of the data

monitoring system based on the requirements of the application for which the system is used.

The data monitoring logic should be specified as an HDL module or as a NGC netlist. They

can either be developed in HDLs or using model-based tools such as XSG which can generate

HDL code or an NGC netlist for the user-defined XSG models. The input/output ports of

the user-developed, top-level data monitoring module should match the ports of the data

monitoring wrapper. A top-level Verilog module and a top-level XSG model are provided to

users which can be used to match the data monitoring module to its instantiation in the data

monitoring wrapper. Signals inform the data monitoring logic when the FIFOs are ready.

The data monitoring logic then processes the incoming data from the in-FIFO and provides

monitored data to the out-FIFO. Apart from the data processing, the data monitoring logic

should also respond back to the FIFO interface by asserting acknowledge signals for the reads

from the in-FIFO and the writes to the out-FIFO respectively.

To demonstrate the plug-in feature, DSP functions such as FIR filter and FFT have been

Sushrutha Vigraham Chapter 4. System Implementation 42

developed using XSG. XSG uses a model-based development environment and generates a

netlist using Xilinx ISE tools. The netlist is used along with the data streaming framework

developed in Verilog in order to generate a bitstream for the entire design. The Virtex-5

FPGA is then programmed with the generated bitstream to perform the functionality specified

by the data monitoring plug-in on the input data. An 8-point FFT and a FIR filter of order

21 are developed using XSG. These blocks are developed and plugged into the design in order

to test the plug-in capability of the data monitoring system and do not represent real data

monitoring algorithms. Data monitoring logic should be developed by the user of the of the

data monitoring system.

4.2.4 Modifications made to the PCIe framework

In this thesis, FIFO enable signals are added to the TX and RX control engines of the PCIe

framework provided by Xilinx. Also, the state machine of the TX engine is modified in order

to have blocked write to FPGA triggered by the amount of data available in the out-FIFO.

The PCIe software application and the BMD are modified in order to add descriptor registers

that communiate the status of the FIFOs (data count and buffer overflow). The PCIe driver

is also modified by adding an extra set of PCIe buffers in order to enable swapping of PCIe

buffers. While one DMA transfer is in progress using one set of read and write buffers, the

software process operates on the other set of buffers by updating the write-to-FPGA buffer

for the next transfer and extracting data from the read-from-FPGA buffer obtained from

previous transfer.

4.2.5 FPGA Resource Utilization

Table 4.2 gives the resources consumed by the PCIe framework on the FPGA (default design,

xapp1052, provided by Xilinx). Table 4.3 gives the resource utilization for the base design

developed in this thesis which includes the PCIe framework and the bridge platform along

Sushrutha Vigraham Chapter 4. System Implementation 43

with the FIFOs used and does not include any data monitoring plug-in logic. The in-FIFO

which uses a standard read mode has a depth of 8190 and a width of 32-bits whereas the

out-FIFO with a first-word-fall-through read mode has a depth of 8194 and width of 32-bits

(see Section 4.2.3). The FIFO generator core configuration options are listed in Table 4.1.

More information about FIFOs can be found in [19].

Table 4.2: FPGA resource utilization for the PCIe framework provided by Xilinx.

Sushrutha Vigraham Chapter 4. System Implementation 44

Table 4.3: FPGA resource utilization for the base design (PCIe framework and Bridge

Platform with FIFOs).

4.3 Data Transfer Process in the Data Monitoring Sys-

tem

Section 4.2 discusses the implementation of the data monitoring system. This section

summarizes the data transfer between the XUPV5 board and the PC component of the

Sushrutha Vigraham Chapter 4. System Implementation 45

monitoring system in terms of the software process (executed on the PC) and the hardware

process (executed on the FPGA). The software and hardware processes are described next.

4.3.1 Software Process

The data streaming and monitoring process is controlled by a software process running on the

PC. The software process updates various software buffers and routes data to and from exter-

nal devices (such as the DP system and the DRSUs) attached to the PC. A flow chart for the

software process is shown in Figure 4.8 and the data transfer loop is provided in Appendix A.3.

Figure 4.8: Flow Chart for the Software Process.

Sushrutha Vigraham Chapter 4. System Implementation 46

The software process first initiates a PCIe transfer to the FPGA. The FPGA then takes

control of the bus and performs a DMA transfer of data between the FPGA and the PC.

While the DMA transfer is in progress, the software process prepares the next transfer by

updating:

(a) The receive-from-DP software buffer with the data obtained via the 10GbE link,

(b) The write-to-PCIe kernel buffer with the contents of the receive buffer that will be sent

in the next transfer, and

(c) The transmit-to-DRSU buffer with the contents of the read-from-PCIe kernel buffer

which was obtained from the previous transfer.

After updating the buffers, the process waits for the DMA transfer to end after which a new

transfer is initiated. The status of the DMA transfer is obtained by polling the control register

on the FPGA. Using interrupts instead of polling is a more efficient way of determining the

end of the data transfer between the PC and the FPGA. Attempts to make use of interrupts

to determine the end of transfer were unsuccessful. Exploring ways of implementing an

interrupt-driven transfer is left to future work.

The software process is sequential and is not multi-threaded. The write-to-FPGA and

read-from-FPGA buffers are updated once every transfer through blocking function calls. As

there is only one FPGA per PC, the software process does not benefit form a multi-threaded

implementation and a single-thread implementation using blocking calls works efficiently.

For the receive from 10GbE function, the data received per transfer is routed to the FPGA.

Moreover, the rate at which the data is received into the recv-from-10GbE buffer should be

lower than the rate at which the data transfer happens in the FPGA (see Section 5.8.2 of

Chapter 5). Thus, the software process done not benefit from multi-threading and hence the

sequential single threaded implementation is sufficient.

Sushrutha Vigraham Chapter 4. System Implementation 47

4.3.2 Hardware Process

The hardware process (DMA transfer) occurs in parallel to the software process as shown

in Figure 4.8. The hardware process has the PCIe framework, the bridge platform and the

data monitoring plug-in module implemented on the FPGA executing in parallel. The data

monitoring plug-in is connected to the PCIe framework through a data monitoring wrapper

which isolates the data monitoring module from the PCIe protocol implementation.

The PCIe framework consists of the the xapp1052 application provided by Xilinx [14]. The

xapp1052 application encompasses the PCIe core, which connects to the physical layer of the

PCIe link, and provides a transaction layer interface through the TX and RX engines. The

TX and RX engines regulate the flow of data to and from the FPGA via the PCIe link. In

this thesis, a bridge platform is developed which connects to the TX and RX engines. The

bridge platform buffers the data obtained from the RX engine and the data generated by

the data monitoring plug-in which will be sent out of the FPGA through the TX engine.

After a transfer is initiated on the FPGA, the data transfer process in the FPGA splits into

two parallel processes each of which is controlled by the TX engine and the RX engine state

machines.

TX and RX Engines: Section 4.2.2 discusses the role of TX and RX engines in the PCIe

framework. Figure 4.9 describes the TX engine state machine. The TX engine sends the MRd

REQs (MRd Requests) when in the MRd REQ state and the MWr REQs (MWr Requests)

when in the MWr REQ state. The MRd REQ requests a TLP from the PC. The RX engine

receives MRd CPLDs (MRd Completions with Data) as responses to the MRd REQs sent

by the TX engine. The data obtained from the MRd CPLDs are transferred to the data

monitoring module. Data generated by the data monitoring module is sent out of the FPGA

to the PC through MWr REQ TLPs. A MWr REQ TLP is available when the data monitoring

module has generated data equivalent to the size of one TLP. The MWr REQ state has a

higher priority than the MRd REQ state. The state machine enters the MWr REQ state if

there is a TLP available to be sent out of the FPGA, otherwise it enters the MRd REQ state.

Sushrutha Vigraham Chapter 4. System Implementation 48

This process is repeated until all the MRd and MWr REQs, specified by the transfer size

from the software process, are sent out to the PC. Apart from the DMA transfer, the TX

and RX engines also process PIO requests made by the PC. The RX engine receives the PIO

read and write requests made by the PC. The data sent to the FPGA through a PIO write is

used to update appropriate registers in the FPGA such as the control registers and the TLP

size and count registers. In response to a PIO read request, the TX engine sends out data

requested by the PC.

Figure 4.9: TX engine state machine.

The TX and RX engines are connected to the FIFO interface of the bridge platform developed

in this thesis. The RX engine loads the received data into the in-FIFO whereas the TX

engine fetches data to be transmitted from the out-FIFO. The FIFO interface is connected to

the data monitoring wrapper which acts as a user interface between the PCIe framework and

the data monitoring module. The data monitoring module obtains DP system raw data from

the in-FIFO, processes it, and sends the monitored data to the out-FIFO which is eventually

Sushrutha Vigraham Chapter 4. System Implementation 49

sent out to the PC by the TX engine.

4.4 Synthetic Data Generator

In order to test the prototype data monitoring system, a synthetic data generator has been

developed. The data generator is basically a Ethernet transmitter that sends data to the

prototype system through a 10GbE link. Similar to the configuration process discussed in

Section 4.2.1, the socket() function creates a Ethernet transmit socket. The sendto()

function transmits data to the receive socket identified by the IP address of the receive

socket. In this thesis, the synthetic data generator is used merely as an input data source

that transmits data via a 10GbE link and does not follow the format of the output of the DP

system of the LWA station. In this thesis, the synthetic data generator outputs random data

at a rate of 175 MB/s with a packet size of 4096 bytes. Controlling the output data rate

of the synthetic data generator is performed by using a software timer [20]. A data rate of

175 MB/s is chosen in order to not limit the throughput of the data monitoring system (see

Section 5.4) and a packet size of 4096 bytes is selected as the DP system of the LWA outputs

data in packets of size 4096 bytes.

Chapter 5

Results and Analysis

This chapter discusses the factors affecting the throughput of the data monitoring system.

Section 5.1 discusses the data transfer process in the FPGA and Section 5.2 lists the parameters

of the data monitoring system. The throughput of the data monitoring system has been

modelled based on the system parameters and the throughput equation is derived in Sections

5.3 and 5.4. Section 5.9 gives the measured values of throughput with respect to the system

parameters and compares the measured throughput of the data monitoring system with the

modelled values obtained from the equation derived in Section 5.4.

5.1 Analysis of the Data Transfer Process in the FPGA

The data transfer process within the FPGA is divided into three phases depending on the

state of the TX engine.

Phase 1: After the transfer process is initiated, the TX engine starts sending MRd REQs.

After a certain delay, the MRd CPLD response is received by the RX engine. The first part

of the transfer process occurs until the arrival of the first MRd CPLD. The data monitoring

module is inactive in this phase due to the lack of sufficient data in the in-FIFO. The out-FIFO

50

Sushrutha Vigraham Chapter 5. Results and Analysis 51

is empty in this phase and hence no MWr REQs will be sent by the FPGA. Thus the first

phase of transfer is the period of time for which only the MRd REQs are sent to the PC.

Phase 2: When the in-FIFO has sufficient data from the MRd CPLDs, the data monitoring

module becomes active and starts filling the out-FIFO with processed data. The TX engine

starts sending the MWr REQ state when the out-FIFO has data equivalent to the size of one

TLP. As the MRd REQ state has a lower priority than the MWr REQ state, MRd REQs

are sent to the PC when MWr REQ is not possible, i.e. when the out-FIFO does not have

sufficient amount of data. In the second phase both the MRd and MWr REQ states are

active.

Phase 3: The third phase is the period of transfer after all the MRd REQs are sent to the

PC and only the MWr REQs are pending. This phase corresponds to the period of transfer

where the MWr REQs are either waiting for data (in the out-FIFO) from the monitoring

module or being sent one after the other. The end of the last MWr REQ marks the end of a

transfer.

5.2 System Parameters That Affect the DMA Transfer

in the FPGA

The amount of time spent at each phase of the data transfer process depends on the following

system parameters measured in terms of PCIe clock cycles.

5.2.1 PCIe Transfer Parameters

The following PCIe parameters are set by the user based on the required transfer size:

• Sw is the number of 32-bit words in one TLP sent from the FPGA to the PC, and must

be an even number.

Sushrutha Vigraham Chapter 5. Results and Analysis 52

• Nw is the total number of TLPs sent from the FPGA to the PC in one transfer.

• Sr is the number of 32-bit words in a TLP sent from the PC to the FPGA, and must

be an even number.

• Nr is the total number of TLPs sent from the PC to the FPGA in one transfer.

Let Bw be the total number of bytes transferred from the FPGA to the PC in one transfer,

and Br be the total number of bytes sent from the PC to the FPGA in one transfer. We

observe that

Bw = 4 · Sw ·Nw

Br = 4 · Sr ·Nr

In this thesis, all experiments were performed by fixing Sw or Sr to 32, the maximum value

supported by the selected hardware. As the value of Sw or Sr decreases, the overheads

associated with every MWr REQ and MRd CPLDs increases which decreases the throughput

of the entire system.

5.2.2 PCIe Framework Parameters

The following parameters are specific to the hardware (XUPV5 board) and the xapp1052

base design used in this thesis. Pf refers to the frequency of the clock used by the PCIe core

and the PCIe framework, which is set to 62.5 MHz in the current design. PT is the time

period of the clock used by the PCIe core and the PCIe framework,

Pf = 62.5 MHz

PT = 1/Pf = 16 ns

A 64-bit PCIe transmit link and a 64-bit PCIe receive link are used in this design which

Sushrutha Vigraham Chapter 5. Results and Analysis 53

means that 64 bits of data can be transferred in one PCIe clock cycle. The number of clock

cycles required to complete one MWr REQ is a function of Sw. The sequence of events to

complete one MWr REQ is as follows:

(i) While in the reset state, check if a MWr REQ can be sent.

(ii) If a MWr REQ can be sent, transmit the first 64-bits of the MWr REQ header.

(iii) Transfer the remaining bits of the header and the first 32-bit word.

(iv) Transfer (Sw-2) 32-bit words at the rate of 64 bits per PCIe clock.

(v) Transfer the last 32-bit word and the 32-bit trailer and go back to the reset state.

Thus, the total number of clock cycles required for one MWr REQ is:

Cmwr−req = (Sw/2) + 2

The MRd REQ is independent of the transfer size and occurs in the following sequence:

(i) While in reset state, check if a MRd REQ can be sent.

(ii) If a MRd REQ can be sent, send the first 64-bits of the MRd REQ.

(iii) Transmit the remaining bits of the MRd REQ and go back to reset state.

Thus, the total number of clock cycles required for one MRd REQ is

Cmrd−req = 2

Irrespective of the size of the TLP, the MRd CPLDs are sent to the PC in batches of 64

bytes of data with a 32-bit header and a 32-bit trailer. The number of clock cycles to receive

64 bytes of data from the PC is

Cmrd−cpld−64 = 9

Sushrutha Vigraham Chapter 5. Results and Analysis 54

After a transfer is initiated, the FPGA starts sending MRd REQs to the PC. Let Cdelay refer

to the number of clock cycles elapsed between the transmission of the first MRd REQ and

the reception of the first MRd CPLD represented. It is observed that Cdelay is a constant:

Cdelay = 140

5.2.3 Bridge Platform Parameters

BWin−inFIFO represents the input bandwidth of the in-FIFO and is defined as the number

of bytes loaded into the in-FIFO in one PCIe clock cycle. BWout−inFIFO represents the

output bandwidth of the in-FIFO and is defined as the number of bytes unloaded from the

in-FIFO by the data monitoring module in one PCIe clock cycle. BWin−outFIFO represents

the input bandwidth of the out-FIFO and is defined as the number of bytes loaded by the data

monitoring module into the out-FIFO in one PCIe clock cycle. BWout−outFIFO represents the

output bandwidth of the out-FIFO and is defined as the number of bytes unloaded by the

TX engine (MWr REQ state) from the out-FIFO in one PCIe clock cycle.

5.2.4 Data Monitoring Module Parameters

The data monitoring plug-in is a user-defined module which can be interfaced with the bridge

platform through the data monitoring wrapper. The data monitoring wrapper provides

a 64-bit input and a 64-bit output data interface to the data monitoring module. Data

monitoring modules are processing blocks operating on data streams whose behaviour can be

modelled using the following parameters [20]:

(i) Load (l): The number of clock cycles required to load the inputs into the data monitoring

module. Due to the 64-bit interface to the data monitoring module, the number of

bytes that can be loaded in one cycle is 8. The minimum value of l corresponds to the

number of clock cycles required to load 8 bytes. Hence l ≥ 1 since it takes at least one

Sushrutha Vigraham Chapter 5. Results and Analysis 55

clock cycle to load 8 bytes.

(ii) Process (p): The number of clock cycles required to process the inputs to produce

outputs, where p ≥ 0.

(iii) Unload (u): The number of clock cycles required to unload data from the data monitoring

module. Due to the 64-bit data interface to the out-FIFO, the number of bytes that

can be unloaded in one clock cycle is 8. The minimum value for u corresponds to the

number of clock cycles required to unload 8 bytes of data. Hence, u ≥ 1 since it takes

at least one clock cycle to unload data from the data monitoring module.

(iv) Wait (z): The number of clock cycles required for the data monitoring module to load

the next set of inputs after loading the previous set of inputs. For parallel processing

algorithms, z will be the negative of the sum of p and u since there will be no wait

between loading of the inputs into the data monitoring module. Hence, z ≥ 1 for serial

algorithms, and z = −(p+ u) for parallel algorithms.

(v) Bytes in (BinDR): The number of bytes consumed by the data monitoring module in

one load process. Due to the 64-bit data interface between the in-FIFO and the data

monitoring module, BinDR is always a multiple of 8. Hence, BinDR = 8n where n is an

integer greater than or equal to 1.

(vi) Bytes out (BoutDR): The number of bytes produced by the data monitoring module for

one unload process. Due to the 64-bit data interface between the out-FIFO and the

data monitoring module, BoutDR is always a multiple of 8. Hence, BoutDR = 8m where

m is an integer greater than or equal to 1.

For a sequential processing block, the above described processes occur one after the other as

shown in Figure 5.1. For parallel algorithms, all the processes overlap as shown in Figure 5.2.

Sushrutha Vigraham Chapter 5. Results and Analysis 56

Figure 5.1: Sequential data monitoring algorithms.

Figure 5.2: Parallel data monitoring algorithms.

The data monitoring module is separated from the PCIe framework by asynchronous FIFOs,

and hence can function at a clock frequency different from the one used by the PCIe framework.

Let DRf be the frequency of the data monitoring clock. Clock Factor, CF, is defined as the

ratio of the frequency of the clock of the data monitoring module and the frequency of the

PCIe clock. Thus, CF = DRf/Pf .

Sushrutha Vigraham Chapter 5. Results and Analysis 57

The above definitions of l, p, u, z represent the load, unload, process and wait stages of the

data monitoring module in terms of data monitoring module clock. Let L, P, U, Z represent

the parameters l, p, u, z respectively in the PCIe clock domain.

X =
x

CF

where X = L, P, U, Z for x = l, p, u, z respectively.

The period (CDR) of the data monitoring module is defined as the number of clock cycles

required to load and process BinDR bytes by the data monitoring module in order to produce

BoutDR bytes of data.

CDR = L+ U + P + Z

The input bandwidth (BWinDR) of the data monitoring module is defined as the number

of bytes loaded into the data monitoring module in one period. The output bandwidth

(BWoutDR) of the data monitoring module is the number of bytes produced by the data

monitoring module in one period:

BWinDR =
BinDR

CDR

BWoutDR =
BoutDR

CDR

The in-FIFO and out-FIFO connect to the data monitoring module through a 64-bit interface.

This limits the maximum input and output bandwidth of the data monitoring module to 8

bytes per PCIe clock. Also, the BWininFIFO can be less than BWinDR, which will result in a

lower BWinDR limited by BWin−inFIFO. Thus, the effective BWinDR, BWinDR−eff is defined

Sushrutha Vigraham Chapter 5. Results and Analysis 58

as

BWinDR−eff = Minimum(BWinDR, BWin−inFIFO)

If BWin−inFIFO < BWinDR, the number of cycles required to load data increases as the data

monitoring module waits for the data in the in-FIFO. As a result, the period of the data

monitoring module increases due to the extended load cycle. Thus, the effective period of

the data monitoring module is

CDR−eff =
BinDR

BWinDR−eff

The effective output bandwidth of the data monitoring module is defined as

BoutDR−eff =
BoutDR

CDR−eff

5.3 Time Required for One DMA Transfer in the FPGA

The following intermediate variables are defined to model the three phases of the data transfer

process described in Section 5.1:

• Cwait: the number of PCIe clock cycles elapsed between two MWr REQs,

• Nrwait
: the number of MRd REQs that can be sent from the FPGA to PC in Cwait

PCIe cycles,

• Nr1, Nr2: the number of MRd REQs sent from the FPGA to the PC in phase 1 and

phase 2 respectively,

• Nw2, Nw3: the number of MWr REQs sent from the FPGA to the PC in phase 2 and

phase 3 respectively,

Sushrutha Vigraham Chapter 5. Results and Analysis 59

• Cph1, Cph2, Cph3: the total number of PCIe clock cycles elapsed in phase 1, phase 2 and

phase 3 respectively,

• CHW : the total number of PCIe clock cycles required for the FPGA to complete one

transfer,

• THW : the total time in seconds taken by the FPGA to complete a transfer.

As discussed in Section 5.1, the data transfer in the FPGA occurs in three phases. The time

elapsed in each phase is calculated as follows:

(i) Phase 1: The number of clock cycles consumed in phase 1 will be the sum of the number

of clocks elapsed between the start of the transfer and the start of the first MWr REQ.

Let F be the number of clock cycles consumed by the data monitoring module in order

to produce the number of bytes equal to the size of one MWr TLP (Sw words of data).

F =
Number of bytes required for one MWr TLP

Number of bytes produced by the data monitoring module in PCIe clock cycle

=
4 · Sw

BWoutDR−eff

Cph1 is the sum of the initial constant delay, Cdelay, the number of PCIe clock cycles

required to load and process the first set of inputs and F. Thus,

Cph1 = Cdelay + L+ P + F (5.1)

Nr1 =
Number of PCIe clock cycles elapsed in phase 1

Number of PCIe clock cycles required per MRd REQ
=

Cph1

Cmrd−req

(ii) Phase 2: Cph2 is the total number of PCIe clock cycles required to finish sending all the

MRd REQs to the PC. The total number of MRd REQs left from phase 1 that are to

be sent out in phase 2,

Sushrutha Vigraham Chapter 5. Results and Analysis 60

Nr2 =

 Nr −Nr1 for Nr > Nr1

0 for Nr ≤ Nr1

(5.2)

F PCIe clock cycles are required to produce one outgoing TLP. The difference between

F and Cmwr−req will determine the amount of time for which the MWr REQ state is

stalled due to insufficient data in the out-FIFO. Thus,

Cwait = F − Cmwr−req

Nrwait
=

Cwait

Cmrd−req

Nrwait
can also be defined as the number of MRd REQs sent for every MWr REQ. The

total number of MRd REQs sent in phase 2 is same as the number of number MRd

REQs sent from FPGA to the PC for Nw2 MWr REQs. Thus,

Nr2 = Nrwait
·Nw2 (5.3)

From Equations 5.2 and 5.3,

Nw2 =
Nr −Nr1

Nrwait

Cph2 is same as the number of PCIe clock cycles required by the data monitoring module

to produce data required for Nw2 MWr REQs. Hence,

Cph2 = F ·Nw2 (5.4)

(iii) Phase 3: Cph3 is the number of PCIe clock cycles required to complete all the remaining

MWr REQs,

Cph3 = F ·Nw3 + Cmwr−req (5.5)

where Nw3 = Nw −Nw2.

Sushrutha Vigraham Chapter 5. Results and Analysis 61

From Equations 5.1, 5.4 and 5.5,

CHW = Cph1 + Cph2 + Cph3 (5.6)

Thus,

THW = CHW · PT

=

[
L+ P + 4 · Sw ·

[
Nw + 1

BWoutDR−eff

]
+

(
Cdelay + Cmwr−req

)]
· PT (5.7)

From the equation, the total time per transfer in the FPGA is a function of the constant

PCIe framework parameters, Cmrd−req and Cmwr−req, the output transfer size, Bw and the

data monitoring parameters, L, P, and BWoutDR−eff .

5.4 Throughput of the Data Monitoring System

The total time per transfer is defined as the time elapsed from the start of one transfer until

the start of the next transfer. Figure 5.3 shows the data transfer cycle in the data monitoring

system. The start of a transfer is marked by the initiate transfer signal sent by the PC to the

FPGA, and the end of the transfer is marked by the transfer done flag of the control register

in the FPGA. During the DMA transfer, the software process prepares for the next transfer

after which the control register in the FPGA is polled continuously. When the transfer done

status is asserted, the PC sends a initiate transfer signal to the FPGA to start a new transfer.

Sushrutha Vigraham Chapter 5. Results and Analysis 62

Figure 5.3: Data transfer cycle in the data monitoring system.

Each individual step of the data transfer process is described as follows:

(a) Initiate a PCIe transfer by:

(i) Resetting the hardware process for the new transfer by writing to the reset register

in the FPGA.

(ii) Updating the hardware addresses of the read and write data buffers used for the

DMA transfer. In the current design, the PCIe driver uses two read and two write

data buffers for DMA transfers. This allows the software process to operate on

one set of read/write buffers while the other set is being used for the ongoing

DMA transfer. At the start of every transfer, the buffers are swapped and the

corresponding hardware addresses are updated on the FPGA. Two PIO writes to

Sushrutha Vigraham Chapter 5. Results and Analysis 63

the FPGA are made in order to update the hardware addresses of the read and

write data buffers.

(iii) Clearing the transfer done flag of the control register by writing to the control

register in the FPGA (one PIO write to FPGA), which will trigger the start of a

new transfer in the FPGA.

Let Tinit be the amount of time taken to initiate a transfer and Tpio−wr be the time

required to complete one PIO write to the FPGA. Tpio−wr depends on the PCIe driver

and the PC on which the driver is installed. For the hardware set up used in this thesis,

Tpio−wr = 160 ns

Tinit = 5 · Tpio−wr = 800 ns

(b) Prepare for the next transfer: While the DMA transfer is in progress, the software process

prepares for the next transfer after which the control register is polled. From Section

4.3.1, the total time, TSW , required by the PC to prepare for the next transfer will be

the sum of the individual buffer updates as shown in Equation 5.8.

TSW = Trecv + Twrite + Tread, (5.8)

where Trecv is the time required to receive data (sufficient for one DMA transfer between

the PC and the FPGA of the data monitoring system) from the DP system through the

10GbE link, Twrite is the time required to write data to the PCIe kernel buffer, and Tread

is the time required to read data from the PCIe kernel buffer.

Let δ be the excess time consumed by the software process over the hardware process

before the control register is polled.

δ =

 TSW − THW for TSW > THW

0 for TSW ≤ THW

Sushrutha Vigraham Chapter 5. Results and Analysis 64

(c) Poll the control register: The contents of the control register of the FPGA are read via

PIO transfers. When no DMA transfer is in progress, a PIO read consumes one clock

cycle in the FPGA. While the DMA transfer is in progress, the PIO read is blocked

if there is an ongoing MWr REQ or a MRd REQ after which the PIO read request is

served. Every poll can thus delay the transfer by a clock cycle. As the software process

consumes a significant amount of time, the number of times polled per transfer is less

and hence the delay due to polling is ignored.

Let Tpoll be the time taken for the last poll of the control register which corresponds to the

time spent after the transfer is done. Tpoll = Tpio−read, where Tpio−read is the time taken

by the software process to finish one PIO read from FPGA. For the current hardware set

up, Tpio−read = 2000 ns. Hence,

Tpoll = Tpio−read = 2000 ns

The total time required to complete a single transfer, Ttotal, can be modelled as

Ttotal = Tinit + THW + δ + Tpoll

= D + δ +[
L+ P + 4 · Sw ·

[
Nw + 1

BWoutDR−eff

]
+

(
Cdelay + Cmwr−req

)]
· PT (5.9)

where D = Tinit + Tpoll, which is constant for the hardware set-up. Thus, the total time

taken for one transfer is a function of the output transfer size, Bw, the output bandwidth of

the data monitoring module, BWoutDR−eff , and time required exclusively for the software

process, TSW .

The input throughput of the data monitoring system, Thrptin, is defined as the number of

Sushrutha Vigraham Chapter 5. Results and Analysis 65

bytes transferred from the DP system to the data monitoring system per unit time:

Thrptin =
Br

Ttotal

The output throughput of the data monitoring system, Thrptout, is defined as the number of

bytes transferred from the data monitoring system to the DRSUs in unit time:

Thrptout =
Bw

Ttotal
(5.10)

The effective throughput of the data monitoring system, ThrptDR, is

ThrptDR = Minimum (Thrptin, Thrptout) (5.11)

5.5 Maximum Achievable PCIe Input Bandwidth

BWin−inFIFO is the rate at which data arrives at the in-FIFO, i.e. the rate at which the

MRd CPLDs are received by the RX engine. In order to achieve the maximum BWin−inFIFO,

the PC should always have pending MRd CPLDs to send back to the FPGA in such a way

that there is no delay between MRd CPLDs because of lack of MRd REQs. Hence, the MRd

REQs should be sent as quickly as possible so that the PC always has pending MRd CPLDs

to send back to the FPGA. As mentioned previously, a 64-bit PCIe link has been used in

this design. Hence, theoretically, the maximum BWin−inFIFO is 8 bytes per PCIe clock. The

hardware used in this thesis uses a PCI Express 1.0 bus (PCIe physical link) which limits the

maximum theoretical BWin−inFIFO to 4 bytes per PCIE clock (250 MB/s). Experimentally, it

is observed that the maximum possible BWin−inFIFO is lower than the theoretical limit. This

decrease in the maximum BWin−inFIFO is due to the latency associated with each transfer

due to stalling of the transfer by the PC. Section 5.9.1 discusses more about the nature of

the latencies and its effect on the input bandwidth of the data monitoring system. The

Sushrutha Vigraham Chapter 5. Results and Analysis 66

experimental maximum of BWin−inFIFO is measured for transfer sizes varying from 4096

bytes to 4194304 bytes and is approximately:

BWin−inFIFOmax = 2.63 bytes per PCIe clock (5.12)

Thus, the maximum input throughput of the PCIe link, Thrptin−maxPCIe
,

Thrptin−maxPCIe
=

Number of bytes transferred to the FPGA

time elapsed

=
BWin−inFIFOmax

PT

(5.13)

= 164.37 MB/s (5.14)

5.6 Maximum Achievable PCIe Output Bandwidth

The number of bytes generated by the data monitoring module in one period is always less

than or equal to number of bytes loaded into the data monitoring module in one period.

From the definitions of BWin−outFIFO, BWoutDR−eff and BWinDR−eff ,

BWin−outFIFO ≤ BWin−inFIFO

BWout−outFIFO is the rate at which the TX engine (MWr REQ state) unloads data from the

out-FIFO. The TX engine enters the MWr REQ state only if there is sufficient data in the

out-FIFO. Thus, BWout−outFIFO also depends on BWin−outFIFO:

BWout−outFIFO ≤ BWin−outFIFO

and

BWout−outFIFO ≤ BWin−inFIFO

Sushrutha Vigraham Chapter 5. Results and Analysis 67

with

BWout−outFIFOmax = 2.63 bytes per PCIe clock = 164.37 MB/s

Therefore, the maximum output throughput of the PCIe link, Thrptout−maxPCIe
, is

Thrptout−maxPCIe
=

Number of bytes transferred to the FPGA

time elapsed

=
BWout−outFIFOmax

PT

= 164.37 MB/s

5.7 Constant PCIe Input Bandwidth

The input bandwidth of the PCIe link is constant irrespective of the data monitoring module

parameters and the PCIe transfer parameters. In order to derive the constant BWin−inFIFO,

BWout−outFIFO is first determined based on the following two conditions:

(i) The out-FIFO can be unloaded only when there is data in it. Thus, BWout−outFIFO is

always less than or equal to the rate at which the out-FIFO is loaded BWin−outFIFO.

BWout−outFIFO ≤ BWin−outFIFO

(ii) The out-FIFO is unloaded by the TX engine and hence BWout−outFIFO also depends on

the rate at which the TX engine can unload data (BWout−outFIFOTX
). BWout−outFIFO

is always less than or equal to the rate at which the TX engine can unload the data.

BWout−outFIFO ≤ BWout−outFIFOTX

Thus,

BWout−outFIFO = Minimum (BWin−outFIFO, BWout−outFIFOTX
) (5.15)

Sushrutha Vigraham Chapter 5. Results and Analysis 68

Assuming that the out-FIFO always has sufficient data, the maximum rate at which the TX

engine can unload data,

BWout−outFIFOTX
=

Number of bytes unloaded from the out-FIFO for one MWr REQ

Number of PCIe clock cycles for one MWr REQ

=
4 · Sw

Cmwr−req

=
8

1 + 4
Sw

(5.16)

If BWout−outFIFO = BWout−outFIFOTX
, the MWr REQs are continuously sent to the PC

without any wait period between two MWr REQs. As the MWr REQs have a higher priority

over the MRd REQs, the MRd REQs are blocked until all the MWr REQs are sent which in

turn block the MRd CPLDs from the PC. This will result in a decrease in the BWin−inFIFO

below the maximum value, BWin−inFIFOmax .

From the definitions of BWin−outFIFO and BWoutDR−eff ,

BWin−outFIFO ≤ BWin−inFIFO (5.17)

From Equation 5.16 and 5.12,

BWout−outFIFOTX
> BWin−inFIFOmax for all Sw > 2 (5.18)

From Equations 5.15, 5.17 and 5.18,

BWout−outFIFO = BWin−outFIFO ≤ BWout−outFIFOTX
for all Sw > 2

Thus, for all Sw > 2, there always exists a wait period between two MWr REQs corresponding

to loading of out-FIFO with sufficient data. Pending MRd REQs will be sent to the PC

during the wait period. Thus, the MRd REQ queue at the PC never empties during the

Sushrutha Vigraham Chapter 5. Results and Analysis 69

transfer since for a data monitoring system, the BWoutDR−eff is always less than or equal to

BWinDR−eff . Hence, the in-FIFO always operates at the constant maximum bandwidth,

BWin−inFIFO = BWin−inFIFOmax for all Sw > 2.

5.8 Buffer Overflows

FIFOs are fixed sized memories which are used to store data and retrieve it when needed. As

the FIFOs get loaded with data continuously, there is a possibility that they become full and

can no longer load new data elements. Any new data element provided to the FIFO when it

is full will be ignored/discarded and the buffer is said to have overflowed beyond its limit.

Buffer overflows can be avoided if the rate at which the FIFO is emptied is always greater

than or equal to the rate at which the FIFO is loaded.

5.8.1 PCIe Buffers on the FPGA

The PCIe framework is connected to two FIFOs: in-FIFO to buffer the incoming data from

the PC, and the out-FIFO to buffer the outgoing data obtained from the data monitoring

module. As discussed in Section 5.7, the TX engine always unloads data from out-FIFO at a

rate faster than the BWin−outFIFO. Hence, the out-FIFO does not overflow for all Sw > 2.

In case of the in-FIFO, BWin−inFIFO is constant whereas the BWout−inFIFO depends on the

data monitoring module. From the definition of BWinDR−eff and BWout−inFIFO,

BWout−inFIFO = BWinDR−eff .

If BWinDR−eff < BWin−inFIFO, the in-FIFO fills up faster than the rate at which it is

unloaded. The data monitoring system operates on data streams and hence the in-FIFO will

overflow for transfers exceeding a specific limit. Let Badd be the number of bytes retained in

Sushrutha Vigraham Chapter 5. Results and Analysis 70

the in-FIFO for one PCIe clock:

Badd =

 BWinDR−eff −BWin−inFIFO for BWinDR−eff < BWin−inFIFO

0 for BWinDR−eff ≥ BWin−inFIFO

(5.19)

Let IN -FIFO-SIZE represent the total number of bytes the in-FIFO can store. COF is the

number of PCIe clock cycles required to fill the in-FIFO with IN -FIFO-SIZE number of

bytes beyond which the in-FIFO will overflow.

COF =
IN -FIFO-SIZE

Badd

(5.20)

Let BC−OF be the number of bytes that can be sent to the FPGA (in-FIFO) from the PC in

COF clock cycles i.e. the maximum number of bytes that can be sent to the FPGA without

causing an overflow.

BC−OF = COF ·BWin−inFIFO. (5.21)

From 5.19, 5.20 and 5.21, the total number of bytes that can be sent to the FPGA per

transfer without causing an overflow of the in-FIFO, Br−no−OF , should be less than or equal

to BC−OF

Br−no−OF ≤ IN -FIFO-SIZE

1 −R
, where R =

BWinDR−eff

BWin−inFIFO

(5.22)

Thus buffer overflow depends on the size of the in-FIFO and the output bandwidth of the

data monitoring module. The lower the output rate of the data monitoring system, the higher

will be the required in-FIFO size in order to avoid buffer overflows. At any point, the number

of words available in the FIFO is obtained making a PIO read request to the FPGA. Buffer

overflow is detected by reading the buffer overflow flag of the control register during polling.

Sushrutha Vigraham Chapter 5. Results and Analysis 71

5.8.2 10GbE Buffer

The current system is developed as a plug-in to the already existing data streaming system

used in the LWA station. The data streams received via the 10GbE link are stored in a

10GbE kernel buffer. If the data monitoring system does not unload the 10GbE buffer at a

sufficient rate, the 10GbE overflows and a few packets from the DP system will be lost. In

order to avoid packet drops, the time taken to finish processing the set of inputs received

from the DP system should be greater than or equal to the time taken to receive the inputs.

Ttotal − Trecv ≤ Trecv,

Ttotal ≤ 2 · Trecv

In terms of throughput,

ThrptDR ≥ Thrpt10GbE

2

where Thrpt10GbE is the throughput of the 10GbE receiver of the data monitoring system.

The DP system outputs data to the data monitoring system at a maximum rate of 112 MB/s

with a packet size of 4096 bytes. In order to avoid packet misses,

ThrptDR ≥ 120

2
MB/s ≥ 60 MB/s

5.9 Measurements and Analysis

This section presents the measured throughput of the data monitoring system as a function

of the PCIe transfer parameters and the data monitoring module parameters. The measured

values are compared with the throughput calculated from the modelled equation derived

in Section 5.4. The maximum transfer size up to which no PCIe buffer overflows occur is

calculated from Equation 5.22 and compared with the experimental values.

Sushrutha Vigraham Chapter 5. Results and Analysis 72

5.9.1 Throughput of the Data Monitoring System

As discussed in Section 5.7, Thrptin−maxPCIe
is constant and does not vary with the data

monitoring or the PCIe parameters. The Thrptin−maxPCIe
is a function of the data monitoring

parameters and can reach a maximum of 165.375 MB/s. From Section 5.5 and 5.6,

ThrptDR = Minimum (Thrptin, Thrptout)

= Thrptout (5.23)

From Equations 5.23 and 5.10, the overall throughput of the data monitoring system, ThrptDR,

is a function of Bw, BWoutDR−eff and δ. This section compares the results obtained from the

modelled equation with the actual measured values for the throughput of the data monitoring

system. In order to model the effect of the bridge platform parameters, all the measurements

in this section were made with δ = 0 i.e. the software process completes preparration for the

next transfer before the hardware process completes the corresponding DMA transfer.

(a) Input throughput: As mentioned in Section 5.5, the data monitoring system delivers a

maximum throughput of 164.37 MB/s. The decrease in the maximum input throughput

below the theoretical limit (250 MB/s) is due to the latencies associated with the transfer

of data from the PC to the FPGA. The input bandwidth is a function of the latencies due

to the PCIe DMA transfer. PCIe read latency (Q) is measured as the difference between

the theoretical and the measured number of PCIe clock cycles required to transfer Br

bytes from the PC to the FPGA. Figure 5.4 shows that the measured latencies increase

linearly with the increase in the input transfer size (Br) due to the PCIe delivering a

constant maximum BWin−inFIFO of 164.37 MB/s irrespective of the transfer size.

Sushrutha Vigraham Chapter 5. Results and Analysis 73

Figure 5.4: PCIe read latency versus input transfer size.

(b) Effect of Bw on ThrptDR: In order to measure the effect of Bw on ThrptDR, the data

monitoring system was tested with a loopback mode. In the loopback mode, the output

of the in-FIFO is directly routed to the input of the out-FIFO. The loopback mode will

thus give an estimate of the maximum possible throughput for a particular transfer size,

Bw. Figure 5.5 shows the plot of ThrptDR versus Bw. The effect of overheads associated

with initiating a transfer are higher for lower values of Bw. As Bw increases, the total

time required per transfer increases due to the constant overhead decreasing. Thus, the

throughput increases with increase in the transfer size, and reaches the maximum value

of 164 MB/s as expected.

Sushrutha Vigraham Chapter 5. Results and Analysis 74

Figure 5.5: Throughput of the data monitoring system versus output transfer size.

(c) Effect of data monitoring module parameters on ThrptDR: As discussed in Section 5.4,

ThrptDR varies with BWoutDR−eff . An 8-point FFT block with a data width of 8 bits

and an FIR filter of order 21 and data width 32 bits have been used as a sample data

monitoring building blocks to quantify the effect of the data monitoring parameters on

ThrptDR. Table 5.1 lists the parameters of FFT and FIR processing blocks.

Table 5.1: Parameters of FFT and FIR processing blocks.

Sushrutha Vigraham Chapter 5. Results and Analysis 75

Figure 5.6 shows the effect of BWoutDR−eff on the throughput of the system. As

BWoutDR−eff increases, ThrptDR also increases and reaches the maximum forBWoutDR−eff

=BWin−in−FIFO. From Figure 5.6, forBw = 4096 bytes andBWoutDR−eff =BWin−in−FIFO,

ThrptDR = 123 MB/s, which is approximately equal to the ThrptDR for Bw = 4096

bytes, is 125 MB/s from Figure 5.5.

Figure 5.6: Throughput of the data monitoring system versus output bandwidth of the data

monitoring module.

Figure 5.7 compares the ThrptDR delivered by the FFT and FIR blocks with the same

BWoutDR−eff . Thus, the measurements also show that ThrptDR is controlled by the

BWoutDR−eff parameter of the data monitoring module irrespective of the nature of the

algorithm and the other parameters mentioned in Section 5.2.4.

Sushrutha Vigraham Chapter 5. Results and Analysis 76

Figure 5.7: Throughput delivered by FFT and FIR blocks with same BWoutDR−eff .

(d) Combined effect of Bw and BWoutDR−eff on ThrptDR: Figure 5.8 shows a plot of the

combined effect of Bw and BWoutDR−eff on ThrptDR. From Equation 5.10, ThrptDR

decreases as Bw increases and as BWoutDR−eff increases which is also demonstrated by

the measured values. Figure 5.8 also plots the modelled ThrptDR obtained from Equation

5.10 for varying Bw and BWoutDR−eff values. The modelled value closely predicts the

ThrptDR.

Sushrutha Vigraham Chapter 5. Results and Analysis 77

Figure 5.8: Effect of Bw and BWoutDR−eff on the throughput of the data monitoring system.

Table 5.2: Percentage error between the modelled and measured ThrptDR.

From Table 5.2, it is observed the percentage error between the modelled and the measured

value averages to 3%. The effect of overheads is higher for lower values of Bw. Due to

the non-deterministic nature of the multi-core PC, the software overheads show a high

variance leading to higher errors for lower values of Bw which yield higher ThrptDR.

Sushrutha Vigraham Chapter 5. Results and Analysis 78

5.10 Effect of δ on Throughput

δ is the excess time consumed by the software process after the DMA transfer is completed

by the FPGA. For varying values of Bw, δ was calculated and the modelled ThrptDR is

obtained as shown in Figure 5.9. From Equation 5.10, as δ increases, the ThrptDR decreases

as observed in Figure 5.9.

Figure 5.9: Effect of δ on the throughput of the data monitoring system.

Twrite and Tread are fairly constant for a specific transfer size. Trecv depends on Thrpt10GbE

which had a high variance. Moreover, if TSW <<< THW , the software process should wait for

a specific period before polling the control register which otherwise would cause a decrease in

ThrptDR because of polling delays. Due to the non-deterministic nature of the multi-core PC

used in this thesis, the wait process in software could not be precisely modelled. Modelling

software delays is an area to be explored further.

Sushrutha Vigraham Chapter 5. Results and Analysis 79

5.11 Maximum Transfer Size for No Buffer Overflows

in the FPGA

The maximum transfer size in order to avoid PCIe buffer overflow has been calculated for

a FIFO size of 32760 bytes depth 8190 and width 32-bits) and plotted as a function of

BWoutDR−eff as shown in Figure 5.10. The experimental values obtained by using the FFT

block for varying BWoutDR−eff are tabulated along with the modelled values in Table 5.3

which predict the BC−OF with high accuracy.

Figure 5.10: Maximum transfer size for no PCIe buffer overflows.

Table 5.3: Modelled and measured BC−OF .

Sushrutha Vigraham Chapter 5. Results and Analysis 80

5.12 Summary

This chapter lists the parameters of the data monitoring system. Section 5.2.4 defines the

parameters of the data monitoring plug-in irrespective of the nature of the algorithm. The

total time taken per transfer is derived in terms of the system parameters in Sections 5.3

and 5.4. The effect of the system parameters on the total throughput of the data monitoring

system is discussed in Section 5.9. The conditions for avoiding buffer overflows is derived in

Section 5.8.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The developed system is a generic data-centric system that can be used to monitor data streams

in real-time. The data-centric system is developed to evaluate FPGAs for implementing data

monitoring algorithms in LWA. The FPGA-based data monitoring system allows assesment

of data captured by the LWA and provides the flexibility of implementing various monitoring

algorithms. In this thesis, a XUPV5 board with a Virtex-5 FPGA has been selected as it

was readily available and had the features necessary for the data monitoring system.

The PC component of the data monitoring system sends data to and from the XUPV5.

Screened data can be routed to output devices such as storage units. In the modified design

of the MCS-DR system, the DP system sends data to the MCS-DR PC which routes it to the

XUPV5 board. Data from the XUPV5 board may be routed to the DRSUs. In order to not

discard packets from the DP system, the entire data monitoring system should function at a

rate greater than or equal to the output data rate of the DP system. The DP system can

send data to the MCS-DR PC at a maximum rate of 112 MiB/s (TBN/TBW systems). In

order to avoid losing data from the DP system, the data monitoring system should function

81

Sushrutha Vigraham Chapter 6. Conclusions and Future Work 82

at a rate of at least 112 MiB/s. This thesis aims at modelling the throughput of the data

monitoring system and identify the parameters that affect its throughput.

The throughput of the data monitoring system depends on the rate at which the FPGA can

process and transfer data back to the DRSUs. This thesis models the throughput of the data

monitoring system as a function of the parameters specific to the PCIe communication and

the data monitoring plug-in. From the modelled equations, the following observations are

made:

(i) As the amount of data sent out of the FPGA per transfer increases, the maximum

throughput of the data monitoring system increases rapidly up to the transfer sizes

32768 bytes and then averages to 160 MB/s beyond the transfer size of 65536 bytes.

(ii) Irrespective of the nature of the algorithm, any data monitoring module can be modelled

using the number of clock cycles required to load one set of inputs, process them, unload

the corresponding outputs and wait until the next set of inputs. The throughput of the

data reduction module can be obtained from the number of bytes per load and unload

cycle.

(iii) The overall throughput of the PCIe link is limited only if the throughput of the data

monitoring module is less than the throughput that can be delivered by the PCIe link

for the specified data transfer size.

(iv) The throughput of the data monitoring system decreases as the time consumed by the

software processes increase beyond the time taken by the hardware process for one

DMA transfer.

(v) The maximum possible throughput for the hardware used in this thesis is ∼160 MB/s

obtained for transfer sizes greater than 65536 bytes in cases where the throughput of

the data monitoring module alone is greater than 160 MB/s and the time consumed by

software process is less than the time required to complete the DMA transfer.

Sushrutha Vigraham Chapter 6. Conclusions and Future Work 83

It is observed that the latencies involved with the transfer of data to the FPGA vary linearly

with the increase in the transfer size, thus delivering a constant maximum throughput of the

PCIe link irrespective of the transfer size. But the overall throughput of the data monitoring

system is low for smaller transfer sizes due to the software overheads associated with each

transfer. DSP building blocks such as an 8-point FFT and an FIR filter of order 21 were

developed in XSG and plugged into the design. The experimental values for throughput and

the condition for no buffer overflows closely match the predicted values. The throughput of

the data monitoring module and the excess time consumed by the software process are the

major factors that affect overall throughput.

In LWA, the MCS-DR PC acts as an interface between the data monitoring unit (FPGA),

and the DP and DRSU systems. The FPGA implements the PCIe protocol and the data

monitoring algorithm. This thesis provides a framework on which algorithms can be plugged-in

and does not develop realistic algorithms. Real data monitoring algorithms can be developed

independently by the users and plugged-in to the framework developed in this thesis.

6.2 Future Work

Some of the areas for future work are:

• Compatibility of the data monitoring system with the DRSUs: In LWA, the MCS-DR

PC receives inputs from the DP system via a 10GbE link and transmits outputs to

the DRSUs via an eSATA link. The PC is configured to accept data via a 10GbE

port which is sent to the XUPV5 board. Data from the XUPV5 board to the PC is

discarded. Configuring the PC of the data monitoring system for an eSATA output

link to the DRSUs will complete the data flow chain in the MCS-DR.

• Using advanced development boards: A Xilinx Virtex-5 FPGA has been used in the

prototype developed in this thesis. The XUPV5 board used in this thesis uses a PCIe

Sushrutha Vigraham Chapter 6. Conclusions and Future Work 84

1.0 bus which can theoretically function at 250 MB/s. Boards with newer version PCIe

buses 2.0 can deliver higher performance. In this thesis, a single lane PCIe link has

been used. Boards supporting multiple lanes yield higher throughput. Hence using

advanced development boards with multiple lanes and larger capacity FPGAs with

more logic, DSP and BRAM resources is a solution for applications limited by the

throughput of the PCIe link.

• Unblocked input and output PCIe transfers in FPGA: In the current design, the data

to the FPGA is continuous irrespective of the processing speed of the data monitoring

module. However,the outgoing data from the FPGA depends on the throughput of

the data monitoring module. The PCIe framework is blocked by the data monitoring

module until it generates sufficient outputs and thus the throughput of the PCIe link

is regulated by the data monitoring module. Modifying the PCIe framework on the

FPGA for unblocked read and write states and determining the effect of unblocked

states on throughput is an interesting area for future work.

• Modelling software delays: In the current design, the throughput was measured by

varying the hardware parameters (on the FPGA). Throughput can also be modelled

with respect to the software process. Due to the non-deterministic nature of the PC

process scheduling the accuracy of the results decreases. Modelling the throughput in

terms of software parameters and software latencies is another area of future work.

Appendix A

Bridge Platform Logic and Data

Transfer Loop Software

A.1 FIFO Interface Logic

//

−−

//−− Filename : manage f i f o in ou t . v

//−− Author : Sushrutha Vigraham , Virg in ia Tech

//−− Last Updated : Jan 25 th 2011

//−−

//−− Descr ip t ion : I n s t a n t i a t e s four FIFOs , two c h i l d FIFOs fo r in−FIFO

and two c h i l d FIFOs fo r the out−FIFO re c e i v e s enab le s i g n a l s

//−− I n s t a t i a t e s the b r i d g e f i f o p l u g i n module in which the data

monitroing plug−in module i s i n s e r t e d

//−− This module g e t s data from the RX engine and p l ace s i t in in−

FIFO

//−− This module g e t s monitored data from the data monitoring plug−

in and p laced i t in out−FIFO

//−− This module a s s e r t s wr i t e enab le and read enab le to in−FIFo

and out−FIFO based on the enab le s i g n a l s r e ce i v ed from the RX and TX

engines r e s p e c t i v e l y

//−− Al t e rna t e s between the two c h i l d FIFOs of the in and out c h i l d

FIFOs

85

Sushrutha Vigraham Appendix A 86

//

−−

module manage f i f o i n ou t (

c lk ,

p c i e r s t ,

out FIFO rd en ,

read update ,

k ,

f i f o i n d a t a ,

f i f o o u t 0 ,

f i f o o u t 1 ,

f u l l ,

empty ,

t o t a l d a t a c o u n t i n i n f i f o s ,

t o t a l d a t a c o un t i n o u t f i f o s ,

t rn rd

) ;

//−−−−−−−Input Ports−−−−−−−−−−−

input c l k ;

input p c i e r s t ;

input [1 : 0] out FIFO rd en ;

input [1 : 0] read update ;

input k ; // Current FIFO tha t has to be read/ wr i t t en

input [6 3 : 0] f i f o i n d a t a ;

input [6 3 : 0] t rn rd ;

//−−−−−Output Ports−−−−−−−−

output [3 1 : 0] f i f o o u t 0 ;

output [3 1 : 0] f i f o o u t 1 ;

output [1 : 0] empty ;

output [1 : 0] f u l l ;

output [2 0 : 0] t o t a l d a t a c o u n t i n i n f i f o s ;

output [2 0 : 0] t o t a l d a t a c o u n t i n o u t f i f o s ;

wire [6 3 : 0] t rn rd1 ;

wire [1 : 0] wr ack ;

wire [1 : 0] v a l i d ;

Sushrutha Vigraham Appendix A 87

wire [1 : 0] wr en ;

wire [3 1 : 0] da ta in [1 : 0] ;

reg f i f o i n s e l e c t ;

wire p l u g i n c l k ;

//−−−−−−−−−−FIFO ports−−−−−−−−−−−

wire [3 1 : 0] t r a n s f e r d a t a [1 : 0] ;

wire [2 0 : 0] f i f o i n d a t a c o un t [1 : 0] ;

wire [2 0 : 0] f i f o ou t d a t a c oun t [1 : 0] ;

wire [1 : 0] f i f o i n empty ;

wire [1 : 0] f i f o i n f u l l ;

wire [1 : 0] f i f oout empty ;

wire [1 : 0] f i f o o u t f u l l ;

wire [6 3 : 0] din64 ;

wire [6 3 : 0] dout64 ;

wire [1 : 0] f i f o i n r d e n ;

wire [1 : 0] f i f o o u t w r en ;

wire [2 0 : 0] f i f o i n o t h e r c o u n t [1 : 0] ;

wire [2 0 : 0] f i f o o u t o t h e r c o un t [1 : 0] ;

wire [2 0 : 0] i n f i f o o t h e r c o u n t ;

wire [2 0 : 0] o u t f i f o o t h e r c o un t ;

wire [2 0 : 0] i n f i f o c o u n t ;

i n i t i a l begin

f i f o i n s e l e c t = 1 ’ b0 ;

end

//−−−−−−−−−−−−−−FIFO In t e r f a c e Logic−−−−−−−−−−−−−

assign f u l l = f i f o i n f u l l ;

assign empty = f i f o o u t f u l l ;

assign t rn rd1 = { t rn rd [0 7 : 0 0] , t rn rd [1 5 : 0 8] , t rn rd [2 3 : 1 6] , t rn rd

[3 1 : 2 4] , t rn rd [3 9 : 3 2] , t rn rd [4 7 : 4 0] , t rn rd [5 5 : 4 8] , t rn rd

[6 3 : 5 6] } ; // Data from the PC (MCS−DR PC)

assign din64 = { t r a n s f e r d a t a [1] , t r a n s f e r d a t a [0] } ; // Data from the

data monitoring module

assign t o t a l d a t a c o u n t i n i n f i f o s = (f i f o i n d a t a c o un t [0] +

f i f o i n d a t a c o un t [1]) ;

Sushrutha Vigraham Appendix A 88

assign t o t a l d a t a c o u n t i n o u t f i f o s = (f i f o ou t d a t a c oun t [0] +

f i f o ou t d a t a c oun t [1]) ;

assign wr en [0] = ((read update == 2 ’ b11) ? 1 : (((f i f o i n s e l e c t == 0)

&& (read update != 2 ’ b00)) ? 1 : 0)) ;

assign wr en [1] = ((read update == 2 ’ b11) ? 1 : (((f i f o i n s e l e c t == 1)

&& (read update != 2 ’ b00)) ? 1 : 0)) ;

assign data in [0] = ((read update == 2 ’ b11) ? ((f i f o i n s e l e c t == 1 ’ b0)

? (f i f o i n d a t a [3 1 : 0]) : ((f i f o i n s e l e c t == 1 ’ b1) ? (f i f o i n d a t a

[6 3 : 3 2]) : 32 ’ h0000)) :

((f i f o i n s e l e c t == 1 ’ b0) ? ((read update == 2 ’ b01) ? (

f i f o i n d a t a [3 1 : 0]) : ((read update == 2 ’ b10) ? (

f i f o i n d a t a [6 3 : 3 2]) : 32 ’ h0000)) : 32 ’ h0000)) ;

assign data in [1] = ((read update == 2 ’ b11) ? ((f i f o i n s e l e c t == 1 ’ b1)

? (f i f o i n d a t a [3 1 : 0]) : ((f i f o i n s e l e c t == 1 ’ b0) ? (f i f o i n d a t a

[6 3 : 3 2]) : 32 ’ h0000)) :

((f i f o i n s e l e c t == 1 ’ b1) ? ((read update == 2 ’ b01) ? (

f i f o i n d a t a [3 1 : 0]) : ((read update == 2 ’ b10) ? (

f i f o i n d a t a [6 3 : 3 2]) : 32 ’ h0000)) : 32 ’ h0000)) ;

always @ (posedge c l k)

begin

i f (p c i e r s t)

begin

f i f o i n s e l e c t <= 0 ;

end

else

begin

i f ((read update == 2 ’ b01) | | (read update == 2 ’ b10))

f i f o i n s e l e c t <= f i f o i n s e l e c t + 1 ;

else

f i f o i n s e l e c t <= f i f o i n s e l e c t ;

end

end

//−−−−−−−− FIFO Instances−−−−−−−−−−−−

//−−−−in−FIFO−ch i l d1−−−−−−−−−−−−−−−−−−

f i f o g e n e r a t o r v 5 3 s t d i n f i f o 0 (

. r s t (p c i e r s t) ,

. wr c lk (c l k) ,

Sushrutha Vigraham Appendix A 89

. r d c l k (p l u g i n c l k) ,

. din (da ta in [0]) , // Bus [31 : 0]

. wr en (wr en [0]) ,

. rd en (f i f o i n r d e n [0]) ,

. dout (t r a n s f e r d a t a [0]) , // Bus [31 : 0]

. f u l l (f i f o i n f u l l [0]) ,

. empty (f i f o i n empty [0]) ,

. rd data count (f i f o i n o t h e r c o u n t [0]) ,

. wr data count (f i f o i n d a t a c o un t [0])

) ;

//−−−−in−FIFO−ch i l d2−−−−−−−−−−−−−−−−−−

f i f o g e n e r a t o r v 5 3 s t d i n f i f o 1 (

. r s t (p c i e r s t) ,

. wr c lk (c l k) ,

. r d c l k (p l u g i n c l k) ,

. din (da ta in [1]) ,

. wr en (wr en [1]) ,

. rd en (f i f o i n r d e n [1]) ,

. dout (t r a n s f e r d a t a [1]) ,

. f u l l (f i f o i n f u l l [1]) ,

. empty (f i f o i n empty [1]) ,

. rd data count (f i f o i n o t h e r c o u n t [1]) ,

. wr data count (f i f o i n d a t a c o un t [1])

) ;

//−−−−out−FIFO−ch i l d1−−−−−−−−−−−−−−−−−−

f i f o g e n e r a t o r v 5 3 f w f t o u t f i f o 0 (

. r s t (p c i e r s t) ,

. wr c lk (p l u g i n c l k) ,

. r d c l k (c l k) ,

. din (dout64 [3 1 : 0]) ,

. wr en (f i f o o u t w r en [0]) ,

. rd en (out FIFO rd en [0]) ,

. dout (f i f o o u t 0) ,

. f u l l (f i f o o u t f u l l [0]) ,

. empty (f i f oout empty [0]) ,

. rd data count (f i f o ou t d a t a c oun t [0]) ,

. wr data count (f i f o o u t o t h e r c o un t [0])

) ;

//−−−−out−FIFO−ch i l d2−−−−−−−−−−−−−−−−−−

f i f o g e n e r a t o r v 5 3 f w f t o u t f i f o 1 (

Sushrutha Vigraham Appendix A 90

. r s t (p c i e r s t) ,

. wr c lk (p l u g i n c l k) ,

. r d c l k (c l k) ,

. din (dout64 [6 3 : 3 2]) ,

. wr en (f i f o o u t w r en [1]) ,

. rd en (out FIFO rd en [1]) ,

. dout (f i f o o u t 1) ,

. f u l l (f i f o o u t f u l l [1]) ,

. empty (f i f oout empty [1]) ,

. rd data count (f i f o ou t d a t a c oun t [1]) ,

. wr data count (f i f o o u t o t h e r c o un t [1])

) ;

//−−−End FIFO

Instances−−

//−−−−Bridge FIFO (Data Monitoring Wrapper Code) Instance−−−

b r i d g e f i f o p l u g i n br idge (

. p c i e c l k (c l k) ,

. p l u g i n c l k (p l u g i n c l k) ,

. p l u g i n r s t (p c i e r s t) , // p l u g i n r s t

. din64 (din64) ,

. f i f o i n r d e n (f i f o i n r d e n) ,

. dout64 (dout64) ,

. f i f o o u t w r en (f i f o o u t w r en) ,

. f i f o i n empty (f i f o i n empty) ,

. f i f o i n f u l l (f i f o i n f u l l) ,

. f i f o o u t f u l l (f i f o o u t f u l l)

) ;

//−−−

endmodule

//−−−−−−−FIFO modules (n e t l i s t s are inc luded in i p c o r e d i r / bmd design/

dma performance demo/ fpga /BMD) −−−−−−−−−−−−−−−−−

//−−−−−−−FIFOs are d i f f e r e n t s i z e can be used by genera t ing ngc f i l e s

and changing the f o l l ow i n g module d e c l a r a t i on s

//−−−−−−−ch i l d−in−FIFO−−−−−−−−−−−−−−

module f i f o g e n e r a t o r v 5 3 s t d (

Sushrutha Vigraham Appendix A 91

r s t ,

wr c lk ,

rd c lk ,

din ,

wr en ,

rd en ,

dout ,

f u l l ,

empty ,

rd data count ,

wr data count) ;

input r s t ;

input wr c lk ;

input r d c l k ;

input [31 : 0] din ;

input wr en ;

input rd en ;

output [31 : 0] dout ;

output f u l l ;

output empty ;

output [11 : 0] rd data count ;

output [11 : 0] wr data count ;

endmodule

//−−−−−ch i l d−out−FIFO−−−−−−−−−−−−−−−−

module f i f o g e n e r a t o r v 5 3 f w f t (

r s t ,

wr c lk ,

rd c lk ,

din ,

wr en ,

rd en ,

dout ,

f u l l ,

empty ,

rd data count ,

wr data count) ;

Sushrutha Vigraham Appendix A 92

input r s t ;

input wr c lk ;

input r d c l k ;

input [31 : 0] din ;

input wr en ;

input rd en ;

output [31 : 0] dout ;

output f u l l ;

output empty ;

output [12 : 0] rd data count ;

output [12 : 0] wr data count ;

endmodule

Sushrutha Vigraham Appendix A 93

A.2 Data Monitoring Wrapper Logic

//

−−

//−− Filename : b r i d g e f i f o p l u g i n . v

//−− Author : Sushrutha Vigraham , Virg in ia Tech

//−− Last Updated : Jan 25 th 2011

//−−

//−− Descr ip t ion : I n s t a t i a t e s the data monitoring wrapper

//−− Receives s i g n a l s from the data monitoring p lug in and a s s e r t s

read enab le and wr i t e enab le to in−FIFO and out−FIFO r e s p e c t i v e l y

//−− I n s t a n t i a t e s the DCM pr im i t i v e to generate the c l o c k s i g n a l

f o r the data monitoring module

//−−

//

−−

module b r i d g e f i f o p l u g i n (

p c i e c l k ,

p l u g i n r s t ,

din64 ,

f i f o in empty ,

f i f o i n f u l l ,

p l ug in c l k ,

dout64 ,

f i f o i n r d e n ,

f i f o ou t wr en ,

f i f o o u t f u l l

) ;

//−−−−−−−−−−−−Input Ports−−−−−−−−−−−−−

input p c i e c l k ;

input p l u g i n r s t ;

input [6 3 : 0] din64 ;

input [1 : 0] f i f o i n empty ;

input [1 : 0] f i f o i n f u l l ;

input [1 : 0] f i f o o u t f u l l ;

//−−−−−−−−−−−−Output Ports−−−−−−−−−−−−−−

output p l u g i n c l k ;

output [6 3 : 0] dout64 ;

Sushrutha Vigraham Appendix A 94

output [1 : 0] f i f o i n r d e n ;

output [1 : 0] f i f o o u t w r en ;

//−−−−−−−−−−−−To plug in−−−−−−−−−−−−−−−−−−−−

reg data read ;

reg data wr i t t en ;

wire c l e a r d a t a r e ad ; //

wire c l e a r d a t a w r i t t e n ; //

//−−−−−−−−−−−−From plugin−−−−−−−−−−−−−−−−−−

wire update data ;

wire data ready ;

//−−

wire p lug in c lk f rm dcm ;

assign p l u g i n c l k = plug in c lk f rm dcm ;

assign f i f o i n r e a d y = ((f i f o i n empty==2’b00) ? 1 ’ b1 : 1 ’ b0) ;

assign f i f o i n r d e n = ((update data && f i f o i n r e a d y) ? 2 ’ b11 : 2 ’ b00) ;

assign f i f o o u t r e a d y = ((f i f o o u t f u l l == 2 ’ b00) ? 1 ’ b1 : 1 ’ b0) ;

assign f i f o o u t w r en = ((data ready && f i f o o u t r e a d y) ? 2 ’ b11 : 2 ’ b00)

;

always @ (posedge p l u g i n c l k)

begin

i f (p l u g i n r s t)

begin

data read <= 1 ’ b0 ;

da ta wr i t t en <= 1 ’ b0 ;

end

else

begin

i f (f i f o i n r d e n)

data read <= 1 ’ b1 ;

else

data read <= c l e a r d a t a r e ad ; //

i f (f i f o o u t w r en)

data wr i t t en <= 1 ’ b1 ;

else

data wr i t t en <= c l e a r d a t a w r i t t e n ; //

end

end

Sushrutha Vigraham Appendix A 95

//−−−−−−−−−−−−−−−−−−−−−−−−−−−Data Monitoring Module Clock from DCM

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

wire c l k f x ;

wire c lk2x ;

wire c lkdv ;

wire c l k f b ;

wire c l k i n ;

assign c l k i n = p c i e c l k ;

DCMBASE #(.CLKIN PERIOD(10 . 0) , // Spec i f y per iod o f input c l o c k in ns

from 1.25 to 1000.00

.CLKDV DIVIDE(2) , // Divide by :

1 . 5 , 2 . 0 , 2 . 5 , 3 . 0 , 3 . 5 , 4 . 0 , 4 . 5 , 5 . 0 , 5 . 5 , 6 . 0 , 6 . 5 , 7 . 0 , 7 . 5 , 8 . 0 , 9 . 0 , 10 . 0 , 1 1 . 0 , 1 2 . 0 , 1 3 . 0 , 1 4 . 0 , 1 5 . 0

or 16.0

.CLKFX DIVIDE(2) , // Can be any in t e g e r from 1 to 32

.CLKFX MULTIPLY(2) , // Can be any in t e g e r from 2 to 32

. CLKIN DIVIDE BY 2(”FALSE”) , // TRUE/FALSE to enab le CLKIN d i v i d e by

two f ea t u r e

.CLK FEEDBACK(”1X”) , // Spec i f y c l o c k feedback o f NONE, 1X or 2X

.DFS FREQUENCYMODE(”HIGH”)

)

DCM for plugin c lk (

.CLK0(c l k f b) , // 0 degree DCM CLK ouptput

.CLKFX(c l k f x) , // DCM CLK syn t h e s i s out (M/D)

.CLKFB(c l k f b) , // DCM c lock feedback

.CLKIN(c l k i n) , // Clock input (from IBUFG, BUFG or DCM)

.RST(p l u g i n r s t) // DCM asynchronous r e s e t input

) ;

BUFG bufg (. I (c l k f x) , .O(p lug in c lk f rm dcm)) ; // c l o c k dr i v e b u f f e r

//−−−−−−−−−−−−−Data Monitoring Wrapper−−−−−−−−−−−−

plugin wrapper cw plug in (

. c l k (p l u g i n c l k) ,

. r s t (p l u g i n r s t) ,

Sushrutha Vigraham Appendix A 96

. data read (data read) ,

. da ta wr i t t en (da ta wr i t t en) ,

. din64 (din64) ,

. dout64 (dout64) ,

. update data (update data) ,

. data ready (data ready) ,

. c l e a r d a t a r e ad (c l e a r d a t a r e ad) ,

. c l e a r d a t a w r i t t e n (c l e a r d a t a w r i t t e n)

) ;

//−−−

endmodule

//−−−Use t h i s only i f p lug in wrapper cw . ngc f i l e i s used f o r the data

monitorign p lug in

//−−−e l s e , i f us ing a v e r i l o g module i . e p lug in wrapper cw module ,

comment t h i s module d e c l a ra t i on

//−−−−−−−−−−−I n s t a t i a t e the p lug in module−−−−−−−−−−−

module plugin wrapper cw (

clk ,

r s t ,

c l e a r da ta r e ad ,

c l e a r da t a wr i t t e n ,

data read ,

data ready ,

data wr i t ten ,

din64 ,

dout64 ,

update data

) ;

input c l k ;

input [0 : 0] r s t ;

input [0 : 0] data read ;

input [0 : 0] da ta wr i t t en ;

input [6 3 : 0] din64 ;

output [0 : 0] c l e a r d a t a r e ad ;

output [0 : 0] c l e a r d a t a w r i t t e n ;

output [0 : 0] data ready ;

output [6 3 : 0] dout64 ;

output [0 : 0] update data ;

endmodule

Sushrutha Vigraham Appendix A 97

A.3 Software Process Data Transfer Loop

i f (i o c t l (xbmd descr iptors . g devFi l e , INIT TRANSFER, dmacr reg) < 0)

{

p r i n t f (”INIT TRANSFER Fai l ed \n”) ;

return CRIT ERR;

}

for (int r e cv packe t = 0 ; r e cv packe t < a0 ; r e cv packe t++)

{

i f ((r e cv by t e s = recvfrom (sock , r e c v bu f f e r , MESSAGE SIZE, 0 , (

struct sockaddr ∗) &DP sock , &DP sock len)) < 0)

{

p r i n t f (”\nERROR: Fa i l ed to r e c e i v e message throught he DP sock\n

”) ;

return −1;

}

// Place the content s o f the r e c v b u f f e r in a FIFO or a Ring Queue

(Future Work)

}

// Update WriteBuffer with r ece i v ed data from the DP Subsystem

WriteData (xbmd descr iptors . g devFi l e , (char∗) gWriteData , BUF SIZE) ;

// Update ReadBUffer with p r e v i ou s l y ob ta ined data from the FPGA

ReadData (xbmd descr iptors . g devFi l e , (char ∗) gReadData , (wrwdmatlps

∗ wrwdmatlpc ∗ 4)) ;

while (i o c t l (xbmd descr iptors . g devFi l e , RDDDMACR, ® va lue1) >= 0)

{

i f (r eg va lue1 == compare value)

{

break ;

}

else i f ((r eg va lue1 & 0x80000000) != 0)

{

i f (i o c t l (xbmd descr iptors . g devFi l e , RDINFIFOCOUNT, ® va lue1)

>=0)

p r i n t f (”\nData av a i l a b l e in the IN FIFOS be f o r e s t a r t o f %d

t r a n s f e r = %d” , i i , r e g va lue1) ;

p r i n t f (”\nBUFFER OVERFLOW @ %ld Trans fe r : I n c r e a s e the

Computation speed or dec r ea se the Buf f e r S i z e or i n c r e a s e

Sushrutha Vigraham Appendix A 98

the PCIe FIFO BUFFER Si z e ” , i i) ;

return −1;

}

}

Bibliography

[1] “Data Centric Computing.” URL: https://computation.llnl.gov/casc/dcca-pub/

dcca/Data-centric_architecture.html.

[2] S. Ellingson, T. Clarke, A. Cohen, J. Craig, N. Kassim, Y. Pihlstrom, L. J. Rickard, and

G. Taylor, “The Long Wavelength Array,” Proc. IEEE, vol. 97, pp. 1421–1430, Aug

2009.

[3] S. Ellingson, “Long Wavelength Array Station Architecture Ver.2,” Feb 2009. URL:

http://www.ece.vt.edu/swe/lwa/.

[4] C. Wolfe, S. Ellingson, and C. Patterson, “Interface Control Document for Monitoring

and Control System-Data Recorder (MCS-DR), Ver. 1.0,” Mar 2010. URL: www.ece.

vt.edu/swe/lwavt.

[5] S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive

applications with GPUs and FPGAs,” in Application Specific Processors, 2008. SASP

2008. Symposium on, pp. 101 –107, June 2008.

[6] B. Cope, P. Cheung, W. Luk, and S. Witt, “Have GPUs made FPGAs redundant in the

field of video processing?,” in Field-Programmable Technology, 2005. Proceedings. 2005

IEEE International Conference on, pp. 111 –118, Dec. 2005.

[7] “Comparing FPGAs and DSPs for high-performance DSP applications, BDTI.” URL:

http://www.bdti.com/articles/fpga_article.pdf [Nov. 2010].

99

https://computation.llnl.gov/casc/dcca-pub/dcca/Data-centric_architecture.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Data-centric_architecture.html
http://www.ece.vt.edu/swe/lwa/
www.ece.vt.edu/swe/lwavt
www.ece.vt.edu/swe/lwavt
http://www.bdti.com/articles/fpga_article.pdf

Sushrutha Vigraham Bibliography 100

[8] “The evolving role of FPGAs in DSP applications, BDTI.” URL: http://www.bdti.

com/articles/fpga_article.pdf [Nov. 2010].

[9] “Virtex-5 FPGA family.” URL: http://www.xilinx.com/products/virtex5/index.

htm [Nov. 2010].

[10] “Digilent Inc.” URL: http://www.digilentinc.com/Products/Detail.cfm?NavTop=

2&NavSub=599&Prod=XUPV5 [Nov. 2010].

[11] “FPGA Features.” URL: http://www.xilinx.com/company/gettingstarted/index.

htm.

[12] “FPGA Design Flow.” URL: http://www.xilinx.com/itp/xilinx8/help/iseguide/

html/ise_fpga_design_flow_overview.htm.

[13] “Socket Programming in ANSI C: sys/ socket.h.” URL: http://www.opengroup.org/

onlinepubs/009695399/basedefs/sys/socket.h.html.

[14] “XAPP1052: Bus Master DMA Performance Demonstration Reference Design for the

Xilinx Endpoint PCI Express Solutions.” URL: http://www.xilinx.com/support/

documentation/application_notes/xapp1052.pdf.

[15] “Virtex-5 FPGA Integrated Endpoint Block for PCI Express Designs User Guide.” URL:

www.xilinx.com/support/documentation/user_guides/ug197.pdf.

[16] “PCIe Base Specification 1.1.” URL: http://www.pcisig.com/specifications/

pciexpress/base.

[17] “Virtex-5 FPGA RocketIO GTP Transceiver User Guide.” URL: http://www.xilinx.

com/support/documentation/user_guides/ug196.pdf.

[18] “LogiCORE IP Endpoint Block Plus for PCI Express.” URL: http://www.xilinx.com/

support/documentation/ip_documentation/pcie_blk_plus_ug341.pdf.

http://www.bdti.com/articles/fpga_article.pdf
http://www.bdti.com/articles/fpga_article.pdf
http://www.xilinx.com/products/virtex5/index.htm
http://www.xilinx.com/products/virtex5/index.htm
http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=599&Prod=XUPV5
http://www.digilentinc.com/Products/Detail.cfm?NavTop=2&NavSub=599&Prod=XUPV5
http://www.xilinx.com/company/gettingstarted/index.htm
http://www.xilinx.com/company/gettingstarted/index.htm
http://www.xilinx.com/itp/xilinx8/help/iseguide/html/ise_fpga_design_flow_overview.htm
http://www.xilinx.com/itp/xilinx8/help/iseguide/html/ise_fpga_design_flow_overview.htm
http://www.opengroup.org/onlinepubs/009695399/basedefs/sys/socket.h.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/sys/socket.h.html
http://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf
www.xilinx.com/support/documentation/user_guides/ug197.pdf
http://www.pcisig.com/specifications/pciexpress/base
http://www.pcisig.com/specifications/pciexpress/base
http://www.xilinx.com/support/documentation/user_guides/ug196.pdf
http://www.xilinx.com/support/documentation/user_guides/ug196.pdf
http://www.xilinx.com/support/documentation/ip_documentation/pcie_blk_plus_ug341.pdf
http://www.xilinx.com/support/documentation/ip_documentation/pcie_blk_plus_ug341.pdf

Sushrutha Vigraham Bibliography 101

[19] “LogiCORE IP FIFO Generator.” URL: http://www.xilinx.com/support/

documentation/ip_documentation/fifo_generator_ug175.pdf.

[20] “Personal communication, Christopher Wolfe, Viginia Polytechnic State University, Dec

1, 2010.”

http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf

Nomenclature

10GbE 10 Gigabit Ethernet

ASIC Application-Specific Integrated Circuit

ASP Analog Signal Processor

BDTI Berkeley Design Technology Inc

BFU Beam-Forming Unit

BMD Bus Master DMA Engine

CLB Configurable Logic Block

CPLD Completion with Data

DIG Digitizer

DMA Direct Memory Access

DP Digital Processor

DRSU Data Recorder Storage Unit

DRX Digital Receiver

DSP Digital Signal Processor

FFT Fast Fourier Transform

FIFO First-In-First-Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GPP General Purpose Processor

GPU Graphics Processing Unit

102

Sushrutha Vigraham Nomenclature 103

HDL Hardware Description Language

IOB Input Output Block

IP Intellectual Property

LUT Look-Up Table

LWA Long Wavelength Array radio telescope

MCS-DR Monitor and Control System Data Recorder

MCS-DR PC Personal Computer of the Monitor and Control System Data Recorder

MRd Memory Read

MWr Memory Write

NCD Native Circuit Description

NGC Native Generic Circuit

NGD Native Generic Database

PC Personal Computer

PCIe Peripheral Component Interconnect Express

PIO Programmable Input Output

REQ Request

RFI Radio Frequency Interference

RTL Register-Transfer Level

RX Receive

TBN Narrow-Band Transient Buffer

TBW Wide-band Transient Buffer

TLP Transaction Layer Packet

TX Transmit

UCF User Constraints File

XSG Xilinx System Generator

XUPV5 Xilinx University Program board with a Virtex-5 FPGA

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background
	The Long Wavelength Array (LWA)
	LWA Station Architecture
	Analog Signal Processor (ASP)
	Digital Processor (DP)
	Monitor and Control System Data Recorder (MCS-DR)

	High-Performance Digital Devices
	Features of FPGAs
	XUPV5 Development Board
	Communication Interfaces
	10 Gigabit Ethernet Interface
	PCIe Interface

	FPGA Development
	Field Programmable Gate Arrays
	FPGA Features

	FPGA Design Flow
	Design Entry
	Design Synthesis
	Design Implementation
	Device Programming
	Design Verification

	System Implementation
	Hardware Setup
	Data Monitoring System
	Communication Through the 10GbE Interface
	Communication Through the PCIe Interface
	Data Monitoring Framework in the XUPV5 Board
	Modifications made to the PCIe framework
	FPGA Resource Utilization

	Data Transfer Process in the Data Monitoring System
	Software Process
	Hardware Process

	Synthetic Data Generator

	Results and Analysis
	Analysis of the Data Transfer Process in the FPGA
	System Parameters That Affect the DMA Transfer in the FPGA
	PCIe Transfer Parameters
	PCIe Framework Parameters
	Bridge Platform Parameters
	Data Monitoring Module Parameters

	Time Required for One DMA Transfer in the FPGA
	Throughput of the Data Monitoring System
	Maximum Achievable PCIe Input Bandwidth
	Maximum Achievable PCIe Output Bandwidth
	Constant PCIe Input Bandwidth
	Buffer Overflows
	PCIe Buffers on the FPGA
	10GbE Buffer

	Measurements and Analysis
	Throughput of the Data Monitoring System

	Effect of on Throughput
	Maximum Transfer Size for No Buffer Overflows in the FPGA
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bridge Platform Logic and Data Transfer Loop Software
	FIFO Interface Logic
	Data Monitoring Wrapper Logic
	Software Process Data Transfer Loop

	Bibliography

