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(ABSTRACT)

The core of this project was the development of a column flotation dynamic model
that can reasonably predict the changes in the concentrations of all solid and bubble
species, along the full column height. A dynamic model of a process is normally
composed of a set of partial or ordinary differential equations that describe the state of the
process at any given time or position inside the system volume. Such equations can be
obtained from fundamental material and/or energy balances, or from phenomenological
derivations based on knowledge about the behavior of the system. A phenomenological
approach referred to as population balance modeling was employed here.

Initially, a two-phase model was formulated, which represents the behavior of the
gas phase in a frother solution. The column was viewed as consisting of three main
regions: a collection region, a stabilized froth and a draining froth. Experiments were
carried out, based on conductivity techniques, for obtaining empirical data for model
validation and parameter estimation. After testing the two-phase model, the equations for
the solid species were derived. Consideration of the effects of bubble loading, slurry
density and slurry viscosity on bubble rise velocity and, therefore, on air fraction is
included in the model. Bubble coalescence in the froth is represented as a rate
phenomenon characterized by a series of coalescence efficiency rate parameters. Auxiliary
equations that help describe the settling of free particles, the buoyancy of air bubbles, and
the processes of attachment and detachment, were also developed and incorporated into
the model. The detachment of solids from the bubbles in the froth zones was attributed to
coalescence, and it was assumed to be proportional to the net loss of bubble surface area.

Almost all parameters needed to solve the model equations are readily available.
The set of differential equations that comprise the model can be solved numerically by
applying finite difference approximation techniques. An iteration has to be performed,
which involves calculating the product flowrate at steady state, modifying the tailings rate
and solving the model again until a mass balance is satisfied.
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