
An Ambulatory Monitoring Algorithm to Unify Diverse
E-Textile Garments

by

Madison T. Blake

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Thomas L. Martin, Co-Chair

Mark T. Jones, Co-Chair

Cameron D. Patterson

February 12, 2014

Blacksburg, Virginia

Keywords: Activity Classification, Wearable Computing, User-independence

Copyright 2014, Madison T. Blake

An Ambulatory Monitoring Algorithm to Unify Diverse E-Textile Garments

Madison T Blake

(ABSTRACT)

In this thesis, an activity classification algorithm is developed to support a human ambulatory

monitoring system. This algorithm, to be deployed on an e-textile garment, represents the

enabling step in creating a wide range of garments that can use the same classifier without

having to re-train for different sensor types. This flexible operation is made possible by basing

the classifier on an abstract model of the human body that is the same across all sensor types

and subject bodies. In order to support low power devices inherent for wearable systems,

the algorithm utilizes regular expressions along with a tree search during classification.

To validate the approach, a user study was conducted using video motion capture to record

subjects performing a variety of activities. The subjects were randomly placed into two

groups, one used to generate the activities known by the classifier and another to be used

as observation to the classifier. These two sets were used to gain insight on the performance

of the algorithm. The results of the study demonstrate that the algorithm can successfully

classify observations, so as long as precautions are taken to prevent the activities known

by the classifier to become too large. It is also shown that the tree search performed by

the classification can be utilized to partially classify observations that would otherwise be

rejected by the classifier. The user study additionally included subjects that performed

activities purely used for observations to the classifier. With this set of recordings, it was

demonstrated that the classifier does not over-fit and is capable of halting the classification

of an observation.

Acknowledgments

I am indebted to many people for the completion of this work:

To the participants of the user study who endured performing many repetitive tasks with

little quarrel.

To the CCM Lab for the many games of foosball games and Friday lunches.

To my Co-Advisor Dr. Martin for his support and refusal of the words “i’ll try”.

To my Co-Advisor Dr. Jones for the many long meetings about various forms of abstract

math.

iii

This material is based in part upon work supported by the National Science Foundation

under Grant Number IIS-1116669. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Organization . 4

2 Background 5

2.1 User Independence . 5

2.2 Approximate String Matching . 7

2.3 Wearable Systems . 8

3 Model 11

3.1 Segments . 11

3.2 Rotation . 12

3.3 Pose . 14

4 Method 16

4.1 Algorithm Element: The Activity’s Archetype 16

4.1.1 Computing Activity Archetype (Step 1) 19

Cycle Extraction (Step A) . 20

Estimating Alignment Parameters (Step B) 21

Computing the Continuous Activity Function (Step C) 26

Computing Weights (Step D) . 28

v

4.1.2 Finding Alphabet and Regular Expression (Step 2) 32

4.1.3 Matching Observed to Regular Expression (Step 3) 37

4.2 Algorithm Element: Grouping Similarity . 38

4.3 Algorithm Element: Removing Redundancy 41

5 Experiment 43

5.1 Implementation . 43

5.1.1 Finding Single Cycle . 44

5.1.2 Sequence Alignment . 45

5.1.3 Activity Archetype Construction . 45

5.2 Testing Framework . 46

5.3 Experiment Set Up . 48

6 Results 55

6.1 Archetype Computation . 56

6.2 Example Set Size Convergence . 57

6.3 Inside Activity Recognition on Flat Structure 59

6.4 Outside Observations on Flat Structure . 62

6.5 Inside Activity Recognition on Tree . 63

6.6 Outside Activity Recognition on Tree . 67

7 Conclusion 69

7.1 Future Work . 70

Bibliography 72

APPENDICES 74

A Segment Lengths 75

B Quaternion Rotations 77

vi

C Segment Positions 79

D Implementation Testing of MUAC 81

D.1 Cycle Detection . 81

D.2 Cyclic Sequence Alignment . 82

D.3 Non-Cyclic Sequence Alignment . 85

D.4 Minimal Bounding Circle . 87

D.5 Alphabet Computation . 88

vii

List of Figures

3.1 A nine-segment body model, with the segments labeled on one side and quater-
nions for the joints shown on the other. This body model is used for the
experimental results in this thesis, but the method is not limited to a specific
model. 13

4.1 A sequence of segmented body model poses in which the subject is walking.
Generated by video motion capture data publicly available via CMU Graphics
Laboratory: http://mocap.cs.cmu.edu, 2012. 17

4.2 An outline of steps to create an use an activity archetype to classify an ob-
servation in a real time environment. 18

4.3 An outline of components required to create an activity archetype from an
example set. 19

4.4 The angle of each dimension for a single period found by the Cycle Extraction
algorithm applied to a recording of Shoulder Circles activity. 22

4.5 The top set of nine graphs show the angle of each dimension in respect to time
for ten unaligned and unscaled examples of the ShoulderCircle. The bottom
set of nine graphs shows the angle of each dimension after α∗ and φ∗ have
been applied in respect to time normalized by the φ∗ parameter. 24

4.6 The top set of nine graphs show the angle of each dimension in respect to
time for ten unaligned and unscaled examples of the LeftStep. The bottom
set of nine graphs shows the angle of each dimension after α∗ and φ∗ have
been applied in respect to time normalized by the φ∗ parameter. 25

4.7 Applying the minimum bounding circle algorithm on a set of rotations. The
top graph shows the XYZ result of rotating the unit vector by the quaternions.
The bottom graph shows the respective parametric parameters. The green
point on both graphs indicates the point in the minimal bounding circle. . . 27

viii

http://mocap.cs.cmu.edu

4.8 A representation of the amount of allowed variation as defined by the weights
on each dimensions for the ShoulderCircles activity. The larger the cone on a
segment, the more variations allowed on that segment’s dimension. 30

4.9 A representation of the amount of allowed variation as defined by the weights
on each dimensions for the LeftStep activity. The larger the cone on a segment,
the more variations allowed on that segment’s dimension. 31

4.10 A simple example of an alphabet for a two dimensional function in R space. 33

4.11 Superposed graph and created alphabet for the LeftStep Activity on all dimen-
sions. Each horizontal line represents a character. A green line marked with
two dots indicates the dimensions which caused the creation of the character. 35

4.12 Superposed graph and created alphabet for the ShoulderCircles Activity on
all dimensions. Each horizontal line represents a character. A green line
marked with two dots indicates the dimensions which caused the creation of
the character. 36

6.1 The mean match of observations shown by the blue stair plot and the amount
of new variations added as the example size increases shown by the green stem
plot for the activities used in this thesis. In each plot, a value to the right
is a new example added to the example set. The impact is converted into a
measurable dimension by applying the normalized difference onto an average
human male height of 175.76 cm (69.2 in). 58

6.2 The tree structure generated by the inside activities. Branch nodes are marked
with a circle while leaf nodes are marked by a square. A solid segment on
the stick figure inside each branch node indicates that dimension was used to
create the node. 64

6.3 Detail on where each inside observation classified to on the tree structure.
The number inside each node indicates the percentage of observations which
were classified as that node. If no number is given, then no observations were
classified. Portions of the tree were omitted for readability if no observations
were classified to a parent. 65

6.4 Detail on where each observation of the outside activities classified to in the
tree structure. The number inside each node indicates the percentage of ob-
servations which were classified as that node. If no number is given, then no
observations were classified. Portions of the tree were omitted for readability
if no observations classified to a parent. 68

D.1 Each cyclic curve before and after the alignment parameters are aligned. . . 84

D.2 Each non-cyclic curve before and after the alignment parameters are aligned. 86

ix

D.3 Characters found for the given function using a radius of one. The vertical
bars represent each character and the range on Φ(x) which the character is
responsible for. 89

x

List of Tables

3.1 Segments used to express the human body 12

5.1 Points required to construct the pose of the user 48

5.2 The interaction between the activity sets and recording partitions. 49

6.1 Minimum, mean, and maximum match score of all observations when us-
ing the minBoundQuat approach introduced in this thesis and a classical
mean/variance approach. 57

6.2 Confusion matrix when classifying on the flat structure. Each cell is the
percentage that the row’s activity as an observation gets confused as the
column’s activity archetype. 60

6.3 Overlapping dimensions between each activity. Each cell indicates the number
of dimensions that the row’s activity overlaps when matched to the column’s
activity. The maximum possible overlap is 9 dimensions. 60

6.4 Confusion matrix when classifying outside activities on the flat structure.
Each cell is the percentage that the row’s activity as an observation gets
confused as the column’s activity archetype. 63

6.5 Number of matches that must be computed to reach each leaf activity on the
tree defined in Figure 6.2. 66

6.6 Number of matches that must be computed to reach each branch node on the
tree in Figure 6.2. 66

A.1 Average and normalized lengths of human body 76

D.1 The alignment of five cyclic curves and the resulting distance from the average
of all aligned curves . 83

D.2 The alignment of five non-curves and the resulting distance from the average
of all aligned curves . 85

xi

D.3 The resulting mean and standard deviation of the error at different set sizes 87

xii

List of Algorithms

1 Compute the alphabet from an activity archetype 34
2 Recursively compute hierarchy for A, the set of activities 40
3 Eliminate redundant examples from a set . 42
4 Algorithm to compute the pose from a set of points on the body. Refer

to Appendix B for the definition of VectorRotate and VectorQuaternion

functions. 47
5 Rotate a vector by a quaternion . 78
6 Find the quaternion between two points . 78
7 Finding position of a given segment . 80

xiii

Chapter 1

Introduction

1.1 Motivation

This thesis presents a user and sensor independent automatic activity classification scheme.

The goal is to develop classifier that can be deployed with a set of garments for ambulatory

medical monitoring without requiring re-training for each sensor and garment type. This

approach is motivated by the need for ambulatory monitoring garments that can work across

a wide range of patients without training on an individual and for developing a set of garments

for a variety of medical monitoring applications without having to create a new classifier for

each new type of garment.

Because it is not feasible for a doctor to fully assess a patient’s health during a short visit

to a clinic, and because many health events happen outside the clinic [1], ambulatory mon-

itoring has emerged as an attractive and economical solution to remotely monitor patients

with minimal or no distraction from the patient’s daily living. The envisioned ambulatory

monitoring solution is comprised of a set of wearable sensors which are used to monitor the

1

2

patient, and an activity classifier used to recognize the patient’s physical activity. Activities

for which such a system could be used include automatic creation of a patient’s activity

diary while wearing a Holter Monitor [2] and recognition of a patient’s physical therapy

routine [3]. In addition to medical applications, an activity classifier can be used in a variety

of applications such as gesture recognition [4] and factory assembly lines [5].

This work is the enabling step in developing a broad range of ambulatory monitoring gar-

ments, each of which may be targeted toward a different form of ambulatory monitoring and

physically implemented using different types of sensors. For such a system to be feasible,

four desirable traits have been identified: sensor-independent, user-independent, scalable,

and simple.

Sensor-independence characterizes the system’s ability to operate on a range of garments,

allowing the knowledge of activities to be shared across a wide range of possible sensor types.

User-independence characterizes the system’s ability to operate on a range of different

people, allowing it to be given to the patient without having to be trained or configured

for that specific patient. Scalability characterizes the system’s ability to operate across a

range of activities, allowing it to operate efficiently even as the number of activities to be

classified grows. Finally, simplicity characterizes the system’s computational performance

requirements, allowing it to run on the low-power devices on which this work is targeted

to operate. The work presented in this thesis describes an algorithm designed to take into

account these four properties in order to construct an activity classification system suitable

for an ambulatory monitoring garment.

3

1.2 Contributions

This thesis describes the Model-based User-independent Activity Classifier (MUAC), a clas-

sifier that utilizes a high-level model of the body, is user-independent, and is designed for

low-power operation, all while retaining accurate classification on similar activities. The

MUAC is based upon a common intermediate body model which describes the orientation

of the subject’s body and limbs. A recording is compared to a set of known activities to

determine what, if any, activities it classifies to. These activities are derived from multiple

users and are independent of the particular sensor platform or user.

This thesis makes the following contributions:

1. An algorithm to create a user-independent, sensor-independent activity representation

that can be used to match an observation to an activity. To achieve sensor indepen-

dence a body model is used as the mathematical space that MUAC operates on, as

discussed in Chapter 3. This is in contrast to many previous wearable systems, as

discussed in Chapter 2, where the classifier operates on sensor values. The method is

carefully designed such that it can handle a large number of dimensions, in this work

nine dimensions are used by the model. Chapter 4 presents the mathematical oper-

ations performed to construct the activity representation and the regular expression

used to compute the match to an observed sequence. The use of a string matching

approach is chosen because of its simplicity in matching two sequences, as shown in

other works discussed in Chapter 2.

2. An algorithm to structure the set of activities into a hierarchy based on the order of

similarity. Such a hierarchy allows for a tree search to be performed instead of a linear

search. The algorithm to construct the hierarchical tree is given in Chapter 4.

4

3. A MATLAB implementation of the algorithm used to create the representation of an

activity, and a C implementation of the string matching algorithm. The correctness of

these implementations is shown in Chapter 5.

4. A testing framework which accepts either data from a video motion capture system[6]

or the Microsoft Kinect[7] to generate body model sequences. This allows the use of

publicly available motion capture data as well as the ability to perform user studies

for specific activities. This framework is detailed in Chapter 5.

1.3 Thesis Organization

The remainder of this thesis is outlined as follows. Chapter 2 gives background and related

work. Chapter 3 describes the model used to represent the human body and mathemati-

cal operations on the model. Chapter 4 presents the algorithms to create each activity’s

representation, construct the hierarchical tree, and generate an activity from a set of ex-

amples. Chapter 5 discusses experiments performed to test the quality of the contributions

outlined above. Chapter 6 gives results and discussion of the experiments performed. Finally

Chapter 7 discusses conclusions and provides directions for future work.

Chapter 2

Background

This chapter presents previous work which the MUAC relies on or improves upon. Sec-

tion 2.1 describes user-independence and contrasts some classification schemes to achieve

user-independence. Section 2.2 describes approximate string matching, an important con-

cept used by this thesis. Finally Section 2.3 contrasts the MUAC to many existing wearable

classification approaches.

2.1 User Independence

User-independence is an important characteristic of many classifiers because it often desired

to give the classifier to users which it was not specifically trained for. User-independence is

achieved when the classifier is able to classify the variations of the population performing

the same activity [8]. Variations across the population has two causes:

1. Anthropometric Variations are differences between each subject’s movement through

three dimensional space. These differences may be due to a difference in body geom-

5

6

etry, or by a specific body part that is non-essential to the activity. For example, it

has been shown that a subject’s arms can cause error in classifying the activity of

walking [9].

2. Performance Speed Variations are differences between each subject’s movement

through time. Subjects performing an activity will not only perform each activity

somewhat differently, but will also perform the activity at different speeds [8].

A method that is often used to account for performance speed variations is a technique called

dynamic time warping [10][11]. Dynamic time warping (DTW) takes two sequences of length

m and n and finds the path through an m× n matrix, which results in a nonlinear mapping

of one sequence onto the other [12]. With DTW, the number of adjacent steps allowed

is restricted, which ultimately allows for variations in execution speeds. The MUAC uses a

specific form of DTW that does not allow insertions to perform approximate string matching.

Insertions are not needed because instead of relying on performing DTW on each exemplar

in the training data, MUAC constructs a single regular expression to an observation to.

A common approach to detect variations is to give the classifier multiple examples of subjects

performing the same activity. These multiple examples make up the activity’s example set,

also called training set, which is used to create a user-independent classifier. Ideally the

example set will contain every possible variation for that activity; realistically, the example

set is constructed such that there can be some confidence that it contains a sufficient amount

of variations. The MUAC uses such an example set to find variations in an activity, which

it uses to create a user-independent representation of that activity.

What makes the MUAC unique is how it overcomes the variations in an activity. Many

activity classifiers use a large training set that contains many examples with some metric

to compute a statistic of similarity between an observation and each item in the example

7

set [11][8][13]. To match the observation to an activity, the observation is compared to all the

examples of the activity in the training set. The MUAC instead uses a single representation

of the activity, as opposed to others because it is computationally intensive and is at odds

with the goal of efficient operation.

One proposed camera-based approach takes into account both forms of variations by using a

metric similar to DTW, and a matrix of weights to represent anthropometric variations [4].

This approach also uses a similar concept of a model to express the human body and aims

to classify similar activities. The approach uses a training set, examples of an activity

being performed, and a heuristic metric of similarity, similar to Dynamic Time Warping,

to determine similarity within the example set. Mahalanobis distance is used to measure

the distance between an observed sequence and a single “centroid” sequence, where the

centroid sequence is chosen as the training set instance most similar to all the others. In this

approach, the anthropometric differences are resolved using the Mahalanobis distance and

performance speed variations are resolved using the similarity measurement. The MUAC

uses a metric related to the Mahalanobis distance; however, the MUAC uses all examples to

compute the “centroid” activity, instead of relying on a sufficiently “central” example being

present in the example set. Additionally, instead of using statistical variances to compute

the variation parameters, the MUAC uses a minimal bounding circle algorithm. As shown

in Chapter 5, this difference results in a more predictable distance metric because it is not

affected by a repetitively occurring aspect of an activity.

2.2 Approximate String Matching

One major concern for low-power operation of activity classifiers is the computational com-

plexity required to match two sequences of data. String matching has been shown to be an

8

approach that can efficiently line up sequences of data, and has been used with success in

computational biology, signal processing, and even wearable computing [14][5]. Some key

definitions used by string matching are the following:

� Σ- A finite alphabet of characters.

� P ∈ Σ∗- A set of characters that represents the pattern to match to.

� T ∈ Σ∗- A text to match to the pattern.

� ε- An empty string.

� d : Σ∗ × Σ∗ → R- A distance function between two characters in the alphabet.

Utilizing regular expressions, performance speed variations can be compensated for by for-

mally defining how many times a specific character in a given text is allowed to match a

character in the pattern [15]. This approach is used by MUAC during real time operation

to efficiently compute a match while also taking into account performance speed variations.

2.3 Wearable Systems

There have been many systems that aim to do activity classification on a wearable device

similar to the target device of this thesis. One class of wearable activity classifiers employs

a single inertial sensor located on the trunk of the user. These techniques use a variety of

classifier algorithms and have been shown to be effective at classifying general locomotive

motions including walking, jogging, bicycling on a stationary bike, and sitting [16][17]. Such

an approach, however, cannot distinguish the very similar everyday activities such as Brush-

ing Teeth and Eating because a single inertial sensor on the trunk will not be able to give

any accurate information on a limb’s position.

9

One approach uses an inertial sensor held by the subject to perform one hand gesture recog-

nition such as drawing shapes or playing card movements [18]. This work benefited from

knowing that the motion sensed by the system is important to the gesture. This benefit does

not apply to the activities used in this thesis. Some activities contain movement that is not

important for that activity, for example the arms while taking a step. The MUAC is designed

to recognize unimportant dimensions and ignore them while classifying observations.

It is known that a garment moves relative to the skin [19] and it has been shown that

movement of sensors can negatively affect the accuracy of a classifier [20]. When using the

MUAC, the component that generates the body model from the sensed values is responsible

for compensating for any sensor drift. The MUAC operates under the assumption that if

two subjects are in the same body position with sensors drifted into different positions, the

same body model will still be generated.

The relationship between sensor values and body model distinguishes the MUAC from many

approaches that use inertial measurement sensors placed around the human body. In these

approaches, the recorded sensor data of a subject performing an activity is used to train

the system for that activity, using a particular classification algorithm. Algorithms such as

Bayesian classifiers [21], decision tree [22], support vector machines [23], string matching [5],

and Dynamic Time Warping [11] have been used to achieve a similar accuracy performance

to the work in this thesis. In each of these approaches, it is required that the same sensors

that were used to collect training data are used to observe the subject. The overarching

difference between each of these approaches is the MUAC’s use of a body model to represent

the human body. As to be described in Chapter 3, each sensor type translates its sensor

values into an abstract model of the human body. The body model relieves the need to

re-collect data and re-train the classifier when the sensor types are changed. This approach

is different than translating from one sensor type to another sensor type as previous work

10

has done between inertial measurement units and Kinect points [24]. As long as each sensor

type is able to create the same body model given the same orientation of the human body,

the sensor types can be used interchangeably by the MUAC.

Chapter 3

Model

This chapter discusses the model used by this thesis to represent the human body and

introduces the basic mathematical operations required by the MUAC. Overall, a model of

the human body based upon the rotation of segments is used to represent the torso, arms,

and legs of a person. Section 3.1 discusses segments, dimensions of lengths used to represent

human limbs. Section 3.2 discusses the rotation of segments and how it is expressed. Finally,

Section 3.3 combines the segments and rotations to introduce the mathematical space which

this thesis uses to describe the human body.

3.1 Segments

In this thesis, an eight-segment model of the human body, the left/right upper arm, left/right

forearm, left/right thigh, and left/right shin. Each segment extends from a joint which it

rotates about. The segment labels and originating joints are given in Table 3.1. Additionally,

each segment has a length based on the normalized human body; these lengths are discussed

in Appendix A, and do not effect the operation of MUAC.

11

12

Label Description Originating Joint
LUA Left Upper Arm Left Shoulder
LFA Left ForeArm Left Upper Arm
RUA Right Upper Arm Right Shoulder
RFA Right ForeArm Right Upper Arm
LT Left Thigh Left Hip
LS Left Shin Left Thigh
RT Right Thigh Right Hip
RS Right Shin Right Thigh

Table 3.1: Segments used to express the human body

3.2 Rotation

The upper segments’ (LUA, RUA, LT, RT) coordinate system is defined by the x axis

protruding out of the shoulder/hip, the z axis pointing toward the head, and the y axis

pointing the direction the torso is facing. Each segment on the model is put into position

by applying a rotation onto the vector [1 0 0] extending out of the joint. Therefore, the fore

segments’ (LFA, RFA, LS, RS) coordinate system is the upper segments’ coordinate system

rotated by the upper segments’ rotation. The fore segment’s position is dependent on the

rotation of the upper segment that it is connected to. If a subject were to extend both their

left upper arm and left fore arm straight out in line with the shoulders, both the left upper

arm and left forearm would have the same rotation. If the subject were to raise their arm,

keeping the forearm fully extended, only the left upper arm’s rotation would be changed,

while the forearm’s rotation will remain unchanged.

The segment’s coordinate system is designed such that rotation is defined relative to what the

segment is attached to. If the upper segment’s rotation is changing while the fore segment

remains still, with respect to the upper segment, the fore segment’s rotation will not be

changing. Additionally, in this approach, a vertically symmetric body will have identical

rotations for both the left and right side.

The rotation of a segment is represented by a quaternion, a hypercomplex number system

13

Forearm

Shin

Upper arm

Thigh

qRUA

Torso
qRFA

qRUA

qRT

qRS

qT

Figure 3.1: A nine-segment body model, with the segments labeled on one side and quater-
nions for the joints shown on the other. This body model is used for the experimental results
in this thesis, but the method is not limited to a specific model.

in H space. Quaternions are useful because each quaternion provides a unique rotation to a

point in space, they are more efficient than other rotation representation schemes [25], and it

is simple to interpolate between two quaternions. Appendix B provides a detailed discussion

on how to convert a segment’s vector into a quaternion and vice versa.

14

3.3 Pose

Segments and rotations are used together to define the pose, an instantaneous measurement

in the particular way which a human subject orients its body and limbs. The pose is

constructed using a set of nine quaternions; one quaternion expressing the rotation of the

torso in the environment, and eight quaternions expressing the rotation of each segment.

The pose, p ∈ H9, is written as

p = [qT qLUA qLFA qRUA qRFA qLT qLS qRT qRS] . (3.1)

Figure 3.1 shows graphically how the segments and quaternions together construct the pose.

The torso quaternion, qT , is a rotation that is applied to all other quaternions in the pose. It is

used to rotate the coordinate system of body onto the coordinate system of the environment.

If two poses were only different in how the subject positioned their body in the environment

then it would be expected that all other quaternions in the pose would be identical. Refer

to Appendix C for a more detailed discussion of how to determine the subject’s spatial

orientation from a pose.

The distance between two quaternion in a pose, q1 and q2, is expressed as the function

θ : [q1, q2]→ R, (3.2)

and defined as

θ (q1, q2) =

√
(q1 − q2)(q1 − q2). (3.3)

A size N vector of distances between two poses, p1 and p2, is computed by the function

d : [p1,p2]→ RN . (3.4)

15

Element i of d is computed by

di (p1,p2) = θ (p1i , p2i) (3.5)

where p1i is the ith quaternion of the p1 pose.

The use of the pose as the basis for classification is pivotal towards the sensor-independence

characteristic of MUAC. Instead of using raw sensor data that could be different across

sensor types, the raw data is converted to the pose representation introduced in this section.

Since the MUAC operates purely on poses rather than raw sensor values, two distinct sensor

types can be used interchangeability; observations from one sensor type can be matched to

the activity representations created from another sensor type. The use as a pose also allows

for the MUAC to be user-independent. Each subject is fitted to the same normalize body

model, regardless of body size, shape, or sex. Since each subject is fitted to the same pose,

their pose sequences can also be used interchangeably among other subjects.

Chapter 4

Method

This chapter outlines MUAC’s methodology to generate the user-independent representation

of activities that is used to compute an observation’s match in both a scalable and simple

manor. Section 4.1 introduces how to compute and use the activity’s archetype, the user-

independent representation of the activity built from performances of the activity. Section 4.2

introduces a technique to reduce complexity of matching an observation by applying a tree

search among a set of already constructed activities. Finally, section 4.3 discusses how to

analyze the importance of each recording used to construct the archetype, and how to remove

unnecessary recordings from the set.

4.1 Algorithm Element: The Activity’s Archetype

The first element of the MUAC addresses the creation and use of the activity archetype.

The archetype is created from an example set, a set of pose sequences which are given to

represent variations of performing the activity. The example set is analogous to the training

set used by approaches in Section 2. The pose sequences can be generated from any source,

16

17

Figure 4.1: A sequence of segmented body model poses in which the subject is walking.
Generated by video motion capture data publicly available via CMU Graphics Laboratory:
http://mocap.cs.cmu.edu, 2012.

such as a video motion capture system that is capable of producing the spatial coordinates of

many locations on a subject’s body for every frame of video captured (see Figure 4.1). This

section is only concerned with how to use a given example set to construct the archetype.

Refer to Section 4.3 for a metric of the impact each example makes on the resulting archetype

and Section 5.1.3 for how an example set can be analyzed. The algorithm discussed here

can be used with any mathematical model; as such, this chapter will refer to a general N

dimensional model instead of the specific 9 dimensional model introduced in Chapter 3.

Throughout this section examples will be given of each component using two activities,

LeftStep and ShoulderCircle, which are used in Chapter 5 for experimental analysis. LeftStep

is an activity where the subject was asked to take a single step forward with the left foot.

For the ShoulderCircle activity the subject was asked to stand with arms extended and

rotate both arms around the shoulder together. From the subject’s point of view, the left

http://mocap.cs.cmu.edu

18

Examples of
subjects

performing an
activity

Match of obseration
to activity

Observation of
subject performing

activity

Construction of the activity archetype

Construction of alphabet and
assosiated regular expression

String matching algorithm

Offline

Online

Step 1

Step 2

Step 3

Figure 4.2: An outline of steps to create an use an activity archetype to classify an observation
in a real time environment.

arm rotates clockwise, and the right arm counterclockwise. Chapter 5 gives more details

on what these activities are and how they were recorded. These two activities were chosen

to demonstrate components because they are significantly different and can illustrate the

flexibility that the MUAC offers.

An outline of creating and using an activity’s representation from an example set is shown

in Figure 4.2. In the figure, the offline steps, any computations that can be performed prior

to system deployment, are marked in red and surrounded by a solid box. The online steps,

any computations that must be performed real time, are marked in blue and surrounded by

a dashed box. Discussion of each step outlined in Figure 4.2 follows.

19

4.1.1 Computing Activity Archetype (Step 1)

The first step discussed in Figure 4.2 is the creation of the activity archetype. This step is

computationally intensive and is to be performed offline, prior to system deployment. The

archetypical activity is computed using four components outlined in Figure 4.3, with details

on each component following.

Examples of
subjects

performing an
activity

Activity Archetype

Extract a single cycle from the examples.
(If applicable)

Compute parameters which align example
sequences to one another.

Create a single continuous activity function
from the aligned examples.

Step A

Step B

Step C

Compute variation parameters to represent
the importantance of each dimension.

Step D

Figure 4.3: An outline of components required to create an activity archetype from an
example set.

Each of the components requires an example set containing sequences of the activity being

performed. The example set, e, is a set of M examples where the jth example is a continuous

20

function in quaternion space defined as

ej : t→ HN , (4.1)

and contains a distance metric defined as

δ (p1,p2) =
∑

d (p1,p2) . (4.2)

Cycle Extraction (Step A)

Some activities that the MUAC may be asked to identify can be cyclic, meaning that the

same movement is repeated multiple times. Walking is an example of a cyclic activity.

Given an example set of a cyclic activity, which has at least two cycles, a single cycle is first

extracted from the example.1 The single cycle is then used as the example set in the rest of

the steps to construct the archetypical activity. If the activity is not cyclic then this step is

not performed.

Given that ej has a length of |ej| and belongs to a cyclic activity, a single cycle is extracted

by computing the point, x, which

x = min
t∈[0, 0.5·|ej |]

t∫
0

V ar

([
ej (x+ 0t) , ej (x+ 1t) , . . . , ej

(
x+

⌊
L

t

⌋
t

)])
dx. (4.3)

For this thesis, the minimization is computed utilizing MATLAB’s fmincon function while

the integral is computed using the quad function.

Because Equation 4.3 is based on the variance between two or more periods, it is required

1Detecting if an activity is cyclic or not is not required, cyclic activities are labeled manually for the
MUAC.

21

that the recording contain at least two cycles. With the computed x, the example is replaced

by a single cycle of the example

ej = ej(t) : 0 ≤ t ≤ x. (4.4)

The cycle extraction algorithm is demonstrated in Figure 4.4 on a single recording containing

three full cycles of the ShoulderCircle activity. The three full cycles and one partial cycle

contained on the recording are plotted such that each cycle starts at the same point. In

the ShoulderCircle activity, the arms are moving in a circle while the rest of the body stays

relatively still. In Figure 4.4, the second and fourth dimension (left and right upper arm)

display significant cyclic behavior which the algorithm used to determine the length of single

cycle.

Estimating Alignment Parameters (Step B)

In order to use the example set, the relative alignment on the example set must be computed.

For a cyclic activity, such as ShoulderCircles, the alignment is necessary to account for

different phases of the single period extracted from the cyclic recording. For a non-cyclic

activity, such as LeftStep, alignment is necessary to account for the reaction delay between

start of recording and start of performance as well as subjects performing the activity at

different speeds. The method computes the alignment by finding two vectors; the scaling

vector α∗, and phase translation vector φ∗, which minimize

‖G(α,φ)‖. (4.5)

22

0 20 40 60
3

4

5

6

7

8
Dimension 1

0 20 40 60
0

10

20

30

40

50

60

70
Dimension 2

0 20 40 60
0

5

10

15

20

25

30
Dimension 3

0 20 40 60
0

20

40

60

80
Dimension 4

0 20 40 60
0

5

10

15

20

25
Dimension 5

0 20 40 60
88.5

89

89.5

90

90.5

91

91.5
Dimension 6

0 20 40 60
4.5

5

5.5

6

6.5

7

7.5

8
Dimension 7

0 20 40 60
86

87

88

89

90

91
Dimension 8

0 20 40 60
5

5.5

6

6.5

7

7.5

8

8.5
Dimension 9

Figure 4.4: The angle of each dimension for a single period found by the Cycle Extraction
algorithm applied to a recording of Shoulder Circles activity.

23

G is a matrix which represents the difference between each example for given alignment

vectors α and φ. Entry j, k of the matrix G is expressed as

1∫
0

δ (ej (αj (t+ φj)) , ek (αk (t+ φk)))
2 dt (4.6)

The two vectors’ define the start and time scaling of each example that best aligns the

examples. The starting point on ej (t) is expressed as αj (0 + φj) while the ending point

is expressed as αj (1 + φj). In this thesis, the minimization is computed by MATLAB’s

fmincon function utilizing the interior-point algorithm, while the integral in Equation 4.6

is computed computed by MATLAB’S quad function. Further, at the solution point, the

entries of G(α∗,φ∗) can be examined to verify that all of the sequences are aligned, where

entries much larger than the others indicate an issue.

Figure 4.5 and Figure 4.6 show this alignment being applied to ten examples of Shoulder-

Circles and LeftStep activities.

24

0 0.5 1
0

5

10

Dimension 1

0 0.5 1
0

50

100

Dimension 2

0 0.5 1
0

50

Dimension 3

0 0.5 1
0

50

100

Dimension 4

0 0.5 1
0

50

100

Dimension 5

0 0.5 1
80

90

100

Dimension 6

0 0.5 1
0

10

20

Dimension 7

0 0.5 1
80

90

100

Dimension 8

0 0.5 1
0

10

20

Dimension 9

0 25 50 75
0

5

10

Dimension 1

0 25 50 75
0

50

100

Dimension 2

0 25 50 75
0

50

Dimension 3

0 25 50 75
0

50

100

Dimension 4

0 25 50 75
0

50

100

Dimension 5

0 25 50

85

90

Dimension 6

0 25 50 75
0

10

20

Dimension 7

0 25 50 75
80

90

100

Dimension 8

0 25 50 75
0

10

20

Dimension 9

Figure 4.5: The top set of nine graphs show the angle of each dimension in respect to time
for ten unaligned and unscaled examples of the ShoulderCircle. The bottom set of nine
graphs shows the angle of each dimension after α∗ and φ∗ have been applied in respect to
time normalized by the φ∗ parameter.

25

0 0.5 1
0

10

20

Dimension 1

0 0.5 1
50

100

150

Dimension 2

0 0.5 1
0

100

200

Dimension 3

0 0.5 1

60

80

100

Dimension 4

0 0.5 1
0

50

Dimension 5

0 0.5 1
50

100

150

Dimension 6

0 0.5 1
0

20

40

Dimension 7

0 0.5 1
50

100

150

Dimension 8

0 0.5 1
0

50

Dimension 9

0 25 50 75 100
0

10

20

Dimension 1

0 25 50 75 100
50

100

150

Dimension 2

0 25 50 75 100
0

100

200

Dimension 3

0 25 50 75 100

60

80

100

Dimension 4

0 25 50 75 100
0

50

Dimension 5

0 25 50 75 100
50

100

150

Dimension 6

0 25 50 75 100
0

20

40

Dimension 7

0 25 50 75 100
50

100

150

Dimension 8

0 25 50 75 100
0

50

Dimension 9

Figure 4.6: The top set of nine graphs show the angle of each dimension in respect to time
for ten unaligned and unscaled examples of the LeftStep. The bottom set of nine graphs
shows the angle of each dimension after α∗ and φ∗ have been applied in respect to time
normalized by the φ∗ parameter.

26

Computing the Continuous Activity Function (Step C)

With an aligned example set, the activity archetype is now ready to be created. The activity

archetype, a, is formally defined as a continuous function of time t in quaternion space,

where

a : t→ HN (4.7)

The continuous activity function is computed using the minimal bounding circle on the para-

metric surface of all M aligned quaternion rotation sequences. A function, minBoundQuat,

accepts a vector of quaternions β and computes a single quaternion qmid which satisfies

qmid = arg min
q

max
j

θ (q, βj) . (4.8)

When that equation is satisfied, qmid will be set to the quaternion that is a minimal distance

away from the furthest quaternion in β.

Figure 4.7 shows the minimal minBoundQuat technique being applied to the left shin of 10

subjects standing. The top graph of Figure 4.7 shows 10 quaternion’s rotation of a unit

vector, while the bottom graph shows each quaternion’s parametric representation.

Using the minBoundQuat function, the ith dimension of the activity archetype is expressed

as

a(t)i = minBoundQuat ([e1 (α1 (t+ φ1))i , e2 (α2 (t+ φ2))i , . . . , eM (αM (t+ φM))i]) (4.9)

where ej (t)i ∈ H expresses the ith dimension of the jth example at time t.

Using a minimal bounding circle to compute the archetype is preferred over the simpler ap-

proach of taking the statistical mean of the examples. The issue that arises with a statistical

27

0.98 0.985 0.99 0.995 1

−0.2−0.100.10.2
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

1.58

1.6

1.62

1.64

1.66

1.68

1.7

Figure 4.7: Applying the minimum bounding circle algorithm on a set of rotations. The
top graph shows the XYZ result of rotating the unit vector by the quaternions. The bottom
graph shows the respective parametric parameters. The green point on both graphs indicates
the point in the minimal bounding circle.

28

mean is that the result could be skewed by redundant examples in the set. When building

the archetype, it is desired to represent all variations of the activity; the mean being skewed

toward any particular value is detrimental to this goal. Using the minimal bounding circle is

an approach that places the archetype such that it minimizes the maximum distance to any

variation seen in the example set. The minimal bounding circle approach is not affected by

any redundant examples that may be present in the example set.

Computing Weights (Step D)

To account for anthropometric variations among the example set, a set of weights are used

in conjunction with a distance metric on the archetype. The weights directly indicate how

important a particular joint’s rotation is in identifying the activity. For example, in observed

walking sequences, leg segments have a consistent, cyclic behavior across all subjects, but

the movement of the arm segments exhibits little consistency across subjects. Therefore, the

weights computed for the rotation of the arm segments would be much lower than weights

assigned to the rotation of the leg segments.

The weights are defined as

w ∈ RN , w ≥ 0, (4.10)

A distance metric on the archetype uses the weights to compute the distance between two

poses p1 and p2. The distance metric is defined as

η (p1,p2)w = max (w� d (p1,p2)) (4.11)

where � indicates the Hadamard Product.

A maximum in the distance metric is used because it is desired to know any time the metric

29

is outside the variation defined by the weights. Consider two poses where the distance

between them is barely inside the weights for each dimension. Now consider two poses

where the distance between them is outside the weights for one dimension and equal on the

rest. Because the second scenario contained a dimension outside the weights, it is desired

that the score be larger than the first. Using the maximum is the only metric which can

generally indicate when the distance between the two poses is outside the variation allowed

for the activity in any dimension.

The activity archetype a(t) computed above, the ith element of the weight vector is expressed

as

1

wi
=

∫ 1

0

max
j∈[1, M]

di (a(t), ej (αj (t+ φj))) dt, (4.12)

the average of the maximum distance the archetype is from any aligned example at time t.

Figure 4.8 and Figure 4.9 show a visualization of the weights for ShoulderCircle and LeftStep

activity respectively. The ShoulderCircles activity contains more variation in the moving arm

dimensions, which are performing the circles at a variety of angles, compared to the relatively

static dimensions of the standing legs. The LeftStep activity contains more variation in

the arm dimensions, which are not necessary to perform the action, compared to the leg

dimensions, which must move in a certain manner to perform the action. Additionally

because the LeftStep activity was performed with the right side of the subject facing the

Kinect, as will be described in Section 5.3, there was more error in detecting the subject’s

far side (left). Therefore LeftStep weights have more variation on the left side for both the

arms and legs.

30

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 4.8: A representation of the amount of allowed variation as defined by the weights
on each dimensions for the ShoulderCircles activity. The larger the cone on a segment, the
more variations allowed on that segment’s dimension.

31

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 4.9: A representation of the amount of allowed variation as defined by the weights
on each dimensions for the LeftStep activity. The larger the cone on a segment, the more
variations allowed on that segment’s dimension.

32

4.1.2 Finding Alphabet and Regular Expression (Step 2)

In order to match an observation to an archetype, the same optimization of alignment pa-

rameters discussed in the previous section could be used. However, this approach is compu-

tationally demanding and not well suited for real-time use on a wearable system. Instead,

the following describes the second step towards creating and using an activity archetype,

the generation of an alphabet and associated regular expression using the continuous curve,

a, and weights, w, computed above. The regular expression allows the use of a less com-

putationally intensive matching algorithm based on string matching [14]. The generation of

the regular expression is performed offline; the regular expression itself is used in the online

string-matching operation.

The alphabet, Σ, used by the string matching algorithm, is comprised of a set of characters

Σ =
[
c1 c2 . . . c|Σ|

]
(4.13)

where each character is a hypersphere in HN space. The size of the characters is determined

by a single parameters ρ which can be varied to determine the size of the alphabet. Given

a time t in an activity, a, it is required that the associated alphabet satisfy

t ∃ (c ∈ Σ) | η(a(t), c)Wk
≤ ρ. (4.14)

Figure 4.10 illustrates the basic concept by displaying 7 characters of an alphabet for a 2

dimensional function in R space. In this example dimension 2 has larger weight than dimen-

sion 1, allowing dimension 1 to vary more before forming a new character. When viewed

with unweighted distance, as plotted in the figure, the region surrounding each character is

an ellipsoid.

33

Dim1

c1

c2

c3

c4

c5

c6

c7

Dim2

Figure 4.10: A simple example of an alphabet for a two dimensional function in R space.

For a given archetype, a and radius ρ, Algorithm 1 computes the set of characters c and

lengths of each character l. The run-time complexity of the algorithm depends on how much

the shape of the activity archetype after its weights have been applied. For the character

cn ∈ c, the minimum, ξn, and maximum, λn, length is computed as

ξn = ln −
(

max
j∈[1, M]

|ej| − min
j∈[1, M]

|ej|
)

λn = ln +

(
max

j∈[1, M]
|ej| − min

j∈[1, M]
|ej|
)
,

(4.15)

where |ej| is the length of the jth example. The regular expression is then constructed as,

R = u1u2 . . . u|Σ| (4.16)

where un is expressed as

un = cξnn
(
ε | c1

n | c2
n | . . . | c(λn−ξn)

n

)
. (4.17)

34

Algorithm 1 Compute the alphabet from an activity archetype

function computeAlphabet(a, ρ)
start← 0
end← 1
c← {}
l← {}
while start < end do

x← min
t∈[start, end]

η (a (start) , a (t))w ≥
ρ

2
if x ≤ end then

y ← end
else

y ← min
t∈[x, end]

η (a (x) , a (t))w ≥
ρ

2
end if
c← c ∪ a (x)
l← l ∪ (y − x)
start← y

end while
return [c, l]

end function

The creation of a new character can be invoked by any dimension of the model. A new

character will often be caused by important dimensions whose value is non-constant. For

example, the left and right upper arm during Shoulder Circles (second and fourth dimension

in Figure 4.12) force the creation of a new character, as does the left and right shin in

LeftStep activity (seventh and ninth dimension in Figure 4.11).

35

0 0.5 1
4

5

6

7

8

Dimension 1

0 0.5 1
76

78

80

82

84

Dimension 2

0 0.5 1
0

5

10

15

Dimension 3

0 0.5 1
68

70

72

74

Dimension 4

0 0.5 1
20

25

30

35

Dimension 5

0 0.5 1
75

80

85

90

Dimension 6

0 0.5 1
0

10

20

30

Dimension 7

0 0.5 1
80

85

90

95

100

Dimension 8

0 0.5 1
0

10

20

30

40

Dimension 9

Figure 4.11: Superposed graph and created alphabet for the LeftStep Activity on all di-
mensions. Each horizontal line represents a character. A green line marked with two dots
indicates the dimensions which caused the creation of the character.

36

0 0.5 1
3

4

5

6

7

Dimension 1

0 0.5 1
0

20

40

60

Dimension 2

0 0.5 1
0

5

10

15

Dimension 3

0 0.5 1
0

20

40

60

Dimension 4

0 0.5 1
5

10

15

20

Dimension 5

0 0.5 1
88

88.5

89

Dimension 6

0 0.5 1
5.5

6

6.5

7

Dimension 7

0 0.5 1
88

88.5

89

89.5

90

Dimension 8

0 0.5 1
3

4

5

6

Dimension 9

Figure 4.12: Superposed graph and created alphabet for the ShoulderCircles Activity on all
dimensions. Each horizontal line represents a character. A green line marked with two dots
indicates the dimensions which caused the creation of the character.

37

4.1.3 Matching Observed to Regular Expression (Step 3)

The third and final step toward creating and using an activity archetype in MUAC uses the

regular expression associated with the activity, Ra, to find the match of an observation to

the activity in real-time. Given a discrete observed sequence in the form of

o : t→ HN , (4.18)

a vector of how well the observation matches to an activity is computed with the function

M : [o, Ra]→ RN . (4.19)

Taking the maximum element of the vector returned gives the minimal edit distance of o to

a pattern allowed by the regular expression Ra. This function is a standard string match-

ing algorithm that allows substitutions of an observed character to the activity characters

and deletion of an observed character. In general the computational complexity of editing

an observation to an pattern is O (|o||Ra|). In practice, this complexity is limited by the

min/max characters allowed by the regular expression. The cost of editing the character ι

in the observation to character τ in the regular expression is expressed as

Cι,τ = d (o[ι], cτ)�w. (4.20)

Finally, a criteria T is defined as the maximum value the observation is allowed to match. If

an observation matches above the threshold for some activity, then the observation cannot

be classified as that activity. The computation of T is application specific and discussed in

Section 5.3.

38

4.2 Algorithm Element: Grouping Similarity

The methodology described in Section 4.1 is used to construct the inside set, a set of

activities which the MUAC is expected to be able to classify. A simple approach toward

classifying an observation computes the match of the observation to each inside activity.

This classification approach is the flat structure; it is organized such that each activity

is equal compared to each other. Classifying using the flat structure is comparable to a

linear search in complexity. To reduce this complexity, this section introduces the tree

structure. The tree is organized as a hierarchy based on the inside activities’ similarity

to one another. For example, brushing hair and brushing teeth both involve standing up;

therefore, the dimensions associated with the legs are expected to overlap. Classifying on the

tree structure is comparable to a tree search, entire branches of activities can be disregarded

with one match score. The use of the tree counteracts the increased complexity as more

activities are added into the inside set, which in turn allows the MUAC to be scalable.

The similarity between two activities is quantified as the number of dimensions that overlap

with one another. The overlap is determined between two activities, a1 and a2, by a function

overlap : (a1, a2)→ RN . (4.21)

An algorithm, shown in Algorithm 2, uses the overlap function and a set of K activities,

A = {a1, a2, . . . , aK}, to construct the tree structure tree. This algorithm has an overall

complexity of O (|A|2) because each pair of activities overlap must be investigated. The tree

is organized by the number of dimensions that are shared between the children activities.

The deeper any two activities share an ancestor indicates a greater number of dimensions

that overlap between the activities. The activities contained in A used to create the tree are

leaf nodes on the tree structure. An branch node on the tree is itself an activity created by

39

combining the examples of all the leaf activities under the node. An observation is classified

by doing a tree search on the structure. A child node of the root whose match is both below

the node’s threshold and minimum among all the root’s node is selected. If that is in turn

itself an branch node then this process repeats until a leaf node is selected, or no leaf node

can be selected.

Using such a tree structure has two benefits:

� Complexity Reduction - The amount of activities that must be checked for each

observation can be reduced since many similar activities can be eliminated at one time.

� Proximity of Unknown - When given an unknown activity that does not match into

any activity in A, the tree can be used to determine how similar the unknown activity

is to a known activity.

40

Algorithm 2 Recursively compute hierarchy for A, the set of activities

Require: topNodes− Thesetofnodeswhichhavenoparent.
Require: D −Dimensionrequiriment, initiallysettoN.
Require: T − Thresholdcriteria.

function createTree(topNodes, D, T)
Nodes← {}
for all node1 ∈ topNodes do

for all node2 ∈ topNodes do
if node1 == node2 then

continue;
end if
a1 ← node1.leafNodes
a2 ← node2.leafNodes
Signature← zero array(N) . Empty Signature
for i← 1 to N do

if max
α∈a1, β∈a2

overlap (α, β) ≤ T then

Signature[i]← 1 . Set signature for this dimension
end if

end for
if sum (Signature) ≥ D then

if Node ∈ Nodes and Set.Signature == Signature then
if node1 ∈ Node then

Node = Node
⋃
node2

else if node2 ∈ Node then
Node = Node

⋃
node1

else
Node = Node

⋃
node1

Node = Node
⋃
node2

end if
else . Create new set

NewNode← {node1, node2}
NewNode.Signature← Signature
Nodes = Nodes

⋃
NewNode

end if
end if

end for
end for
TopNodes← topLevelNodes() . Get all top level nodes
if TopNodes.Count > 1 and D > 1 then . Defines when to stop recursion

createTree(topLevelNodes(), D − 1, T)
end if

end function

41

4.3 Algorithm Element: Removing Redundancy

The construction of a user-independent archetype detailed in Section 4.1 relies on using

an example set that expresses the variations of the population performing an activity. In

this section, a metric is introduced that is used to measure how much variations a specific

example contributes to the example set. The metric is used during the construction of

an example set and has no bearing on the archetype created by an example set. This

section also introduces a method to remove examples that do not sufficiently contribute new

variations. Removing non-important examples during the construction of an example set

is not absolutely necessary since the minBoundQuat algorithm is not affected by repeating

elements; however, the removal of such examples is beneficial by simplifying the creation of

an activity archetype.

The importance of a specific example among a set of M examples, E = e1, e2, . . . , eM ,

is determined by the ratio of the archetype’s weights constructed with and without the

example. Given the two weight vectors are wwith, the weights of the full example set and

wwithout, the weights of the example set with example i removed, the importance of example

i is expressed as

impact (E, i) = 1−min wwithout � ŵwith, (4.22)

where � indicates the Hadamard product operation and ˆ indicates the Hadamard inverse

operation. The result of this function is a single number in R space that represents the

relative change in the weights with and without example i.

Using the impact function, Algorithm 3 gives an algorithm to remove non-important exam-

ples in E, using a threshold, ∆, to decide if an example’s impact is enough to keep. This

algorithm has a computational complexity of O (|E|), the impact of each example in the

example set is computed by this algorithm. If multiple examples have an impact less than

42

Delta, the example with the smallest impact is selected and removed. This process is then

repeated on the modified example set until no example is found to have an impact less than

Delta.

Algorithm 3 Eliminate redundant examples from a set

function removeRedundant(E,∆)
for j = 1→M do

dj ←impact(E, j)
end for
if min d > ∆ then

return E
else

E
′ ← E ∩ Earg mind

return removeRedundant
(
E

′
)

end if
end function

Chapter 5

Experiment

This chapter details the implementation of the MUAC and introduces experiments done on

various characteristics of the MUAC method. This chapter is organized as follows: Sec-

tion 5.1 describes how each component discussed in Chapter 4 was implemented and the

constraints placed on the implementation. Section 5.2 describes the framework developed to

allow data collection of human poses. Finally Section 5.3 describes the activities tested, the

data collection process, and the experiments done in order to test the quality of the MUAC

method.

5.1 Implementation

This section describes how each component of the MUAC method was implemented such that

the method could be used to perform experiments. Section 5.1.1 gives details on the Cycle

Extraction component described in Section 4.1.1. Section 5.1.2 gives details on the Sequence

Alignment component described in Section 4.1.1. Finally, Section 5.1.3 gives details on the

creation of the archetype and alphabet.

43

44

5.1.1 Finding Single Cycle

The Cycle Extraction component is responsible for the implementation of Equation 4.3 from

Section 4.1.1, which is used to extract a single cycle from a cyclic recording. Given a cyclic

function of four or more periods, there may exist multiple solutions at harmonies of the

cyclic function. For example, a sin(t) will minimize Equation 4.3 when t = i · 2π i > 0.

Because the underlying curve may contain many cycles, it is necessary to make sure that only

a single cycle has been extracted. The global minimum, x∗, and the value of Equation 4.3

at that point, y∗, are parameters computed after the first minimization. A smaller harmony

is found by searching for the parameters, x and y, which satisfies

y ≤ 1.1y∗

x∗ > x+
x

2
.

(5.1)

The parameters are selected such that x is outside the global min and evaluates to a value

that is at least 90% of the global min y∗. This step is repeated until the above criteria cannot

be satisfied.

For some activities it may be desired to have multiple cycles. It is known from the activity

the example set represents how many cycles of a cyclic activity are needed. To extract N

cycles, the above steps are performed to extract a single activity, then two parameters xN

and yN are found which satisfy

yN ≤ 1.1y∗

xN > (N − 1) · x+
x

2

xN < (N + 1) · x− x

2
.

(5.2)

45

xN is selected such that its value is within 10% of the global minimum, and it is inside the

appropriate harmony.

5.1.2 Sequence Alignment

The sequence alignment component is responsible for the implementation to perform the

minimization of Equation 4.6, which is used to align a set of curves in respect to one another.

When minimizing Equation 4.5, it is necessary to have some constraints on the alignment

parameters, without constraints the parameters could create unintended alignments. For

example, without constraints a set of non-cyclic curves could be aligned such that the scaling

parameter is very small where all the curves happen to have the same value.

In this thesis the constraint is achieved by selecting a single curve as a reference. For the

reference curve, the phase translation parameter, φ, is set to zero and the scaling parameter,

α, is set to the length of the curve. The parameters for the remaining curves are solved by

minimizing Equation 4.5. This process is done iteratively, with each curve being considered

as the reference. The reference curve which produces the best alignment, as determined

by the lowest evaluation of Equation 4.5, is used as the ultimate alignment of the curves.

By iterating over all possible reference curves, it is ensured that no curve is held above the

others.

5.1.3 Activity Archetype Construction

An activity archetype is constructed iteratively from a bin of potential examples. First, a

random ten examples are pulled from the bin and are aligned with respect to each other.

Algorithm 3 is applied to remove any unnecessary examples according to a ∆ value of zero.

With a value a zero, an example would only be removed if it contributes no new information.

46

Next an additional random example is chosen, and the new curve and the previously aligned

step are aligned with each other. Algorithm 3 is applied again on the new example set,

removing any unnecessary examples. This process is repeated until all examples have been

considered; this final archetype is what is used as the archetype. With the constructed

archetype the alphabet is computed using a radius ρ = 0.5. This value was specifically

chosen such that the diameter of each character would be 1.

5.2 Testing Framework

In order to perform experiments on the MUAC, a framework was developed that utilizes

a data-source to construct pose sequences of activities. This thesis uses a motion capture

system to convert a set of XYZ points on the human body to generate the pose, as defined

in Chapter 4. The framework was developed in C++ and can accept two data-sources: C3D

files using the interface provided by C3DServer[6], and a Microsoft Kinect using the interface

provided by Microsoft’s Kinect For Windows SDK[7].

Both C3D and Kinect for Windows SDK provide a vector, v, of 14 XYZ positions points on

the human body. Table 5.1 details what point on the body each entry in v corresponds to.

With v, the pose, as defined in Chapter 3, is constructed by using the algorithm given in

Algorithm 4.

47

Algorithm 4 Algorithm to compute the pose from a set of points on the body. Refer to
Appendix B for the definition of VectorRotate and VectorQuaternion functions.

function GetPose(v)
qT ← a quaternion which satisfies the following assertions.
R Hip← VectorRotate (qT , v10)
L Hip← VectorRotate (qT , v7)
C Hip← VectorRotate (qT , v13)
C Sho← VectorRotate (qT , v14)
assert (L Hip1 > R Hip1, L Hip2 = R Hip2, L Hip3 = R Hip3)
assert (C Sho1 = C Hip1, C Sho2 = C Hip2, C Sho3 > C Hip3)

v∗ ← Each element in v rotated by qT .
[qLUA, qLFA]← LimbQuaternions (v∗1, v∗2, v∗3)
[qRUA, qRFA]← LimbQuaternions (v∗4, v∗5, v∗6)
[qLT , qLS]← LimbQuaternions (v∗7, v∗8, v∗9)
[qRT , qRS]← LimbQuaternions (v∗10, v∗11, v∗12)
p← [qT qLUA qLFA qRUA qRFA qLT qLS qRT qRS]
return p

end function

function LimbQuaternions(Start, Mid, End)
qU ← VectorQuaternion (Start,Mid)
Mid∗ ← VectorRotate (qU , Mid)
End∗ ← VectorRotate (qU , End)
qF ← VectorQuaternion (Mid∗, End∗)
return [qU , qF]

end function

48

vi Point on Body
1 Left Shoulder
2 Left Elbow
3 Left Wrist
4 Right Shoulder
5 Right Elbow
6 Right Wrist
7 Left Hip
8 Left Knee
9 Left Ankle
10 Right Hip
11 Right Knee
12 Right Ankle
13 Center Hip
14 Center Shoulder

Table 5.1: Points required to construct the pose of the user

5.3 Experiment Set Up

The framework discussed above is utilized in this section to collect data of subjects perform-

ing various activities. The activities investigated in this thesis are split into two sets. The

inside set contains activities for which an archetype is constructed using the methodology

described in Chapter 4. Any observation of an inside activity should be matched to an

archetype known by the classifier. The outside set contains activities whose archetype is

not constructed. Any observation of an outside activity should classified by the MUAC as

unknown, the observation does not match to any archetype.

All recordings of a subject’s trials are placed into one of two partitions. The example

partition contains recordings which are used to construct the archetype for the inside ac-

tivities. The observed partition contains recordings which are used as observations in the

experiments of this thesis. Refer to Table 5.2 for a breakdown of the interaction between

the inside/outside set and example/observed sequences. Because each partition contains

different subjects, any conclusions drawn in the results of this thesis are user-independent.

Ideally, publicly available motion capture data would have been used as the data source;

49

Observed Partition Example Partition
Inside Set Observations to the classifier that should

match to an archetype.
Examples to construct archetypes with.

Outside Set Observations to the classifier that should
match as “unknown” or to a branch node.

N/A

Table 5.2: The interaction between the activity sets and recording partitions.

however, such data does not consistently contain recordings of multiple subjects performing

the same activity multiple times. Therefore a user study was performed using the Microsoft

Kinect as a motion capture system. As a motion capture system, the Kinect has a view

capability of 57.5◦ horizontally and 43.5◦ vertically with a depth of 1.2 to 3.5 meters [26].

Due to this limited field of view, the activities chosen had to be contained in this space.

Running or walking could not be done since the subject would move out of view before the

entire activity could be recorded by the Kinect.

A total of 25 subjects were recorded performing each activity five times. Of the 25 subjects,

18 of them were male while 7 were female. The subjects tested had an average age of 29 years

old, an average weight of 156 pounds, and an average height of 69 inches. Any recording

which the subject failed to follow instructions or the moderator failed to capture the subject’s

activity were removed from the data set. For each inside activity, a random 10 subjects are

selected and all the trials the selected subjects were placed into the example partition. The

remaining 15 subject’s trials are placed into the observed partition.

For each of the 25 subjects the following eight activities were recorded. The activities

were chosen because they are activities which a physical therapist may ask a patient to

perform [27][28] or are activities which a doctor may be interested in knowing if and when

a subject performed [2]. Another consideration in choosing the activities was activities that

are similar to others to test MUAC’s ability to distinguish similar activities. Cyclic activities

are marked by “cyclic”, if no text is given the activity is non-cyclic. Unless otherwise noted,

a single period was extracted from the cyclic activities.

50

� LeftStep - The subject performs a single step forward with their left foot.

� LeftStepUp - The subject performs a single step forward with their left foot, onto a

ten inch high step stool placed at a distance natural to the subject.

� ShoulderCircles[cyclic] - Standing with arms extended, the subject rotates both

arms around shoulder together. From the subject’s point of view, the left arm rotates

clockwise, and the right arm counterclockwise. The subject is asked to maintain a 45◦

angle to the rotation axis, and to perform one rotation in 2 seconds.

� RightShoulderRotation - Standing with the right elbow pinned at the hip and the

left hand across belly, the subject rotates the shoulder as far as comfortable keeping

the elbow on hip. Then the subject returns the hand to the starting position. The

subject is asked to perform this in about 3 seconds, without significantly pausing when

changing directions bringing the arm back.

� DrivingTwoHands[cyclic] - The subject sits in a chair and is asked to behave like

driving, feet at pedals and both hands on steering wheel.

� RightBrushHair[cyclic] - While standing, the subject makes a motion as if they are

brushing their hair with their dominant hand. For consistency across a range of hair

styles, subjects were told to brush as if they had short, Caesar cut length hair. If the

subject is left handed, this activity is mirrored.

� RightBrushTeeth[cyclic] - While standing the subject makes a motion as if they

are brushing their teeth with their dominant hand. If the subject is left handed, this

activity is mirrored. For this activity two cycles were extracted such that the length

is consistent with the other activities.

� RightEat[cyclic] - Sitting down at a table, the subject acts like they are eating soup

51

from a bowl with their dominant hand. If the subject is left handed, this activity is

mirrored.

In addition, ten subjects performed nine activities that are only inserted into the example

partition; none of the recordings of these activities act as observations. The purpose of these

activities is to add a more diverse set of inside activities in order to more thoroughly investi-

gate any confusion that can occur when classifying. More inside activities also cause the tree

created to be larger, which can allow a better analysis of the tree structure’s performance

gains. The activities included in this set are:

� StandHorizShoulderCircles[cyclic] - While standing with the arms extended, the

subject swings their arms forward and back in unison keeping them parallel to the

floor. The subject is asked to swing a maximum of 45◦, and to perform one rotation

in 2 seconds.

� StandPutDishesAway[cyclic] - While standing, the subject acts as if grabbing a

dish from a table and placing the dish in an overhead cabinet.

� StandButtonShirt - While standing, the subject acts as if buttoning three buttons;

one at belly button, one in the sternum, and one on the neck.

� SitComputerUsage - While sitting, the subject acts as if typing on a computer, then

reaches with right hand and use a mouse for about two seconds, then returns to typing

position.

� SitVertShoulderCircles[cyclic] - While sitting with the arms extended, the subject

swings their arms forward and back in unison keeping them perpendicular to the floor.

The subject is asked to swing a maximum of 45◦, and to perform one rotation in 2

seconds.

52

� LeftShoulderRotation - This activity is a vertical mirror of RightShoulderRota-

tion.

� LeftBrushHair[cyclic] - While standing, the subject makes a motion as if they are

brushing their hair with their dominant hand. If the subject is right handed, this

activity is mirrored.

� LeftBrushTeeth[cyclic] - While standing the subject makes a motion as if they are

brushing their teeth with their dominant hand. If the subject is right handed, this

activity is mirrored. For this activity two cycles were extracted such that the length

is consistent with the other activities.

Finally, ten subjects also performed the following seven outside activities, which are only

inserted into the observed partition.

� StandVertShoulderCircles[cyclic] - While standing with the arms extended, the

subject swings their arms forward and back in unison keeping them perpendicular to

the floor. The subject is asked to swing a maximum of 45◦, and to perform one rotation

in 2 seconds.

� StandArmsBySide - The subject is asked to stand with their arms by their side

� StandComputerUsage - While standing, the subject acts as if typing on a computer,

then reaches with right hand and use a mouse for about two seconds, then returns to

typing position.

� SitHorizontalShoulderCircles[cyclic] - While sitting with the arms extended, the

subject swings their arms forward and back in unison keeping them parallel to the

floor. The subject is asked to swing a maximum of 45◦, and to perform one rotation

in 2 seconds.

53

� SitRightAnswerPhone - The subject sits as if both arms are resting on a desk. The

subject then reaches out to pick up a phone and brings the phone to their ear.

� SitArmsBySide - The subject sits with their arms by their side

� SitButtonShirt - While sitting, the subject acts as if buttoning three buttons; one

at belly button, one in the sternum, and one on the neck.

The classification criteria, T , is computed using the chi-square distribution at a confidence

interval of 95%. Among a set of activities s, an observation O is classified as activity a ∈ s

if the following criteria are true

M(O, a) < T and,

M(O, a) ≤M(O, b) ∀ b ∈ s,

(5.3)

where M (·, ·) is the function to compute the score of a match, as defined in Equation 4.19.

When using the flat structure to classify observations of inside activities, a successful classi-

fication occurs when the observation is classified to the respective archetype. If this does not

occur for an observation, it is an instance of failure by the classifier. There are two types of

failures can occur which can result in an inside observation not being matched to an activity.

� Confusion - An observation is classified as the wrong activity.

� Unknown Classification - An observation is classified as belonging to no activity.

Section 6.3 presents the rates at which the inside observations were classified to the set of

inside activities using the flat structure. When classifying the outside observations on the flat

structure, a successful classification occurs when the observations is classified as unknown,

ensuring that the classifier does not over-fit to the inside activities. Section 6.4 presents the

classification rates of the outside observations on the flat structure.

54

When using a tree the same criteria above is applied multiple times recursively, effectively

changing the set of activities being matched to as the classification moves inside branches

along the tree. If a node in the current set satisfies Equation 5.3 and is a branch node, the

set of child nodes are considered as the new activity set. This process is repeated until a leaf

activity is selected, or no activity in the set can be selected. Like when classifying on the flat

structure, an observation of an inside leaf activity should be classified as that leaf activity,

otherwise it is a point of confusion by the classifier. Section 6.5 and Section 6.6 presents the

same inside and outside observation sets used above being classified on the tree structure.

For both sets the tree is shown to improve performance and allow for a partial classification

to be done when an observation is classified as unknown.

Chapter 6

Results

This chapter discusses results gathered from the experiments detailed in Chapter 5. Sec-

tion 6.1 illustrates why the minBoundQuat algorithm is preferred to a more classical approach

of using the mean and variance. Section 6.2 demonstrates how the archetypes grow during

the iterative building of the example set. Section 6.3 demonstrates the ability of the MUAC

to classify observations of the inside activities. Of all the inside observations, a 84.8% rate

of classifying the observation to the correct activity was achieved. Section 6.4 demonstrates

the the MUAC classifying the outside observations to the inside activities. Of all the outside

observations, a 69.1% rate of classifying the observation as unknown was achieved. Sec-

tion 6.5 provides the tree structure built for the inside set of activities and its effect on the

classification scheme. Using the tree structure reduces the computations required by 35.1%

and has no effect on the accuracy of classification. Finally Section 6.6 demonstrates how

information can be gained from an outside observation classifying to a specific branch node

in the tree structure.

55

56

6.1 Archetype Computation

To demonstrate the benefit of using the minimal bounding circle to construct the activity

archetype, the approach is compared to a mean and variance used in previous systems [4].

First the minBoundQuat algorithm is used to construct the set of activities defined in Sec-

tion 5.3. With these archetypes and the iterative approach defined in Section 5.1.3, the min,

mean, and max match score of the example set is recorded.

Next the minBoundQuat algorithm is replaced with an approach that uses the statistical

mean to compute the continuous curve and statistical variance to compute the weights. The

archetypes are re-created with this modified method and the min, mean, and max match

score of the example set is again recorded.

When using the minBoundQuat approach the score of the examples to the archetype is

found to be always less than one, as demonstrated in the third column of Table 6.1. The

minBoundQuat algorithm creates an archetype where the distance of the maximum variation

in the example set to the archetype is exactly one.1 Since it is not required, or expected,

that a single example always be a maximum variation for its entire length, no single example

matched to the archetype with a score of exactly one.

When using a mean/variance approach, the match score of the examples to the archetype

is difficult to predict, as demonstrated in the last column of Table 6.1. The mean/variance

approach results in an archetype where the distance to the maximum variation of the ex-

ample set is not constant. This is due to both the mean and variance being influenced by

commonly recurring aspects of an activity. This unpredictability does not exist when using

the minBoundQuat approach, illustrating the benefit of that approach as the basis for the

weights.

1This score is achieved by integrating the maximum variation to the distance metric η.

57

Activity
minBoundQuat mean/variance

Approach Approach
Min Mean Max Min Mean Max

LeftStep 0.30 0.52 0.90 0.85 2.40 13.16
LeftStepUp 0.36 0.55 0.86 0.84 3.09 17.76
ShoulderCircles 0.28 0.59 0.92 0.86 2.55 6.05
Rt.ShoulderRot 0.16 0.60 0.99 1.23 3.29 12.52
BrushTeeth 0.41 0.71 0.94 1.29 2.62 6.08
BrushHair 0.31 0.70 0.93 0.58 2.33 6.64
Driving 0.24 0.63 0.96 0.72 3.23 10.67
Eating 0.29 0.51 0.94 0.73 2.67 8.14

Table 6.1: Minimum, mean, and maximum match score of all observations when using the
minBoundQuat approach introduced in this thesis and a classical mean/variance approach.

6.2 Example Set Size Convergence

To demonstrate the iterative archetype building process discussed in Section 5.1.3, each it-

eration recorded the impact of each new example and the mean match score to the observed

partition. In general, the mean score decreased as more examples were added, a behavior

demonstrated by the stair plots in Figure 6.1. As more examples are added, the archetype

contains more variations of the activity. More variations in turn cause larger weights and

reduces the match score between the observations and activity. For both Driving and Right-

BrushHair activity a significant reduction in the mean error occurred early in the iterative

creation when the new example had a large impact on the example set. This indicates that

the new variations the example added were important to appropriately represent variations

in the activity. This property is not universally true, i.e., an example that exhibits a large

impact does not have to cause a resulting reduction in the mean error. As introduced in

Section 4.1.1, the distance metric on the archetype is based on the maximum across each

dimension, the variation that causes a large impact on the example set can occur on a di-

mension already deemed unimportant in the distance metric. The mean error also does not

have to be monotonically decreasing as more variations are added into the archetype. This

is due to the imprecise nature of the regular expression, and because a new variation can

58

0

1

2

3
LeftStep

m
ea
n
ob
se
rv
ed

er
ro
r

0

5

10

15

0

2

LeftStepUp

0

5

0

2

ShoulderCircles

0

5

ne
w
in
fo
rm

at
io
n
(c
m
)

0

5

10

RightShoulderRotation

m
ea
n
ob
se
rv
ed

er
ro
r

0

2

4

6

0

2

4
Driving

0

20

0

5
RightBrushTeeth

0

5

ne
w
in
fo
rm

at
io
n
(c
m
)

0

1

2

3
RightBrushHair

m
ea
n
ob
se
rv
ed

er
ro
r

0

5

10

15

0.5

1

1.5

RightEat

0

10

20

ne
w
in
fo
rm

at
io
n
(c
m
)

Figure 6.1: The mean match of observations shown by the blue stair plot and the amount
of new variations added as the example size increases shown by the green stem plot for the
activities used in this thesis. In each plot, a value to the right is a new example added
to the example set. The impact is converted into a measurable dimension by applying the
normalized difference onto an average human male height of 175.76 cm (69.2 in).

59

cause the archetype to move away from some specific examples (but still be contained inside

the weights).

In general, the examples that add the most variations occur early on in the construction

process. When the example set is small, a new example can make a larger impact because

the variations it contains has not been introduced yet. As discussed above, these early

large-impact additions often also cause a reduction in the mean match score. Occasionally,

toward the end of the example set construction, a new example will be added that makes a

large impact and has little change in the mean match score. Such behavior was seen toward

the end of RightShoulderRotation and RightBrushHair activities. While these variations

are new to the example set, the variations occur on a dimension that does not carry much

significance in the archetype; and thus have little effect on the mean match score. The spike

that occurred towards the end of RightShoulderRotation activity was caused by a variation

on the right thigh. No match score of a RightShoulderRotation observation was determined

by the right thigh for the steps before or after the example being added. Therefore, the new

variation added by the example had little effect to the mean observation score for the step.

6.3 Inside Activity Recognition on Flat Structure

The performance of the MUAC at classifying on the flat, non-tree structure is determined

by computing the match of the observations of the inside activities to the inside activities’

archetype. See Section 5.3 for a detailed discussion on how these sets are made and what

activities are recorded for each set. The rate of classifying observations to each inside activity

is shown in Table 6.2. The number of overlapping dimensions between the inside activities

are shown in Table 6.3. This table is created during the tree generation by Algorithm 2

60

Archetypes

O
b

se
rv

at
io

n
s L
ef
tS

te
p

L
ef
tS

te
p
U
p

S
h
o
u
ld
er
C
ir
cl
es

R
t.
S
h
o
u
ld
er
R
o
t

D
ri
v
in
g

R
ig
h
tB

ru
sh

T
ee
th

R
ig
h
tB

ru
sh

H
a
ir

R
ig
h
tE

a
t

L
ef
tS

h
o
u
ld
er
R
o
t

L
ef
tB

ru
sh

T
ee
th

L
ef
tB

ru
sh

H
a
ir

S
ta
n
d
H
o
ri
zS

h
.C

ir
cl
es

S
ta
n
d
P
u
tD

is
h
es
A
w
a
y

S
ta
n
d
B
u
tt
o
n
S
h
ir
t

S
it
C
o
m
p
u
te
rU

sa
g
e

S
it
V
er
tS

h
.C

ir
cl
es

U
n
k
n
o
w
n

LeftStep 92.0 6.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3
LeftStepUp 0 94.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.4
ShoulderCircles 0 0 96.0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.0
RightSh.Rotation 0 0 1.4 95.8 0 0 0 0 0 0 0 0 0 0 0 0 2.8
Driving 0 0 0 0 80 0 0 17.3 0 0 0 0 0 0 0 0 2.7
RightBrushTeeth 0 0 0 0 0 48.6 44.3 0 0 0 0 0 0 0 0 0 7.1
RightBrushHair 0 0 0 0 0 4.6 80.3 0 0 0 0 0 0 0 0 0 15.1
RightEat 0 0 0 0 7.4 0 0 89.7 0 0 0 0 0 0 0 0 2.9

Table 6.2: Confusion matrix when classifying on the flat structure. Each cell is the percentage
that the row’s activity as an observation gets confused as the column’s activity archetype.

L
ef
tS

te
p

L
ef
tS

te
p
U
p

S
h
o
u
ld
er
C
ir
cl
es

R
t.
S
h
o
u
ld
er
R
o
t

D
ri
v
in
g

R
ig
h
tB

ru
sh

T
ee
th

R
ig
h
tB

ru
sh

H
a
ir

R
ig
h
tE

a
t

L
ef
tS

h
o
u
ld
er
R
o
t

L
ef
tB

ru
sh

T
ee
th

L
ef
tB

ru
sh

H
a
ir

S
ta
n
d
H
o
ri
zS

h
.C

ir
cl
es

S
ta
n
d
P
u
tD

is
h
es
A
w
a
y

S
ta
n
d
B
u
tt
o
n
S
h
ir
t

S
it
C
o
m
p
u
te
rU

sa
g
e

S
it
V
er
tS

h
.C

ir
cl
es

LeftStep 9 9 6 7 3 7 7 2 7 7 7 6 6 7 3 2
LeftStepUp 9 9 7 7 6 6 6 4 8 6 7 6 7 7 3 2
ShoulderCircles 5 4 9 6 3 6 6 1 5 6 6 9 5 5 1 5
RightShoulderRotation 8 8 5 9 4 7 7 1 6 6 6 5 5 7 4 1
Driving 4 5 5 5 9 5 4 9 5 5 4 4 7 6 9 7
RightBrushTeeth 7 6 6 7 6 9 9 3 6 5 5 6 5 6 3 2
RightBrushHair 7 7 7 8 5 9 9 3 6 5 5 7 5 6 4 2
RightEat 3 6 3 4 9 4 5 9 3 2 2 3 2 5 9 7
LeftShoulderRotation 7 7 5 6 4 6 6 2 9 7 7 5 6 7 4 1
LeftBrushTeeth 4 6 6 6 5 5 5 3 7 9 9 6 6 6 4 2
LeftBrushHair 6 8 7 6 5 5 5 3 8 9 9 7 5 6 3 3
StandHorizontalShoulderCircles 6 5 9 4 3 5 6 1 5 5 5 9 5 5 1 4
StandPutDishesAway 2 2 5 4 3 5 5 1 5 5 5 5 9 5 1 1
StandButtonShirt 6 7 5 8 5 6 6 4 7 7 6 5 6 9 5 1
SitComputerUsage 3 4 1 4 9 3 3 9 3 2 2 3 3 5 9 6
SitVerticalShoulderCircles 2 3 3 2 5 3 2 5 1 1 1 5 1 1 5 9

Table 6.3: Overlapping dimensions between each activity. Each cell indicates the number
of dimensions that the row’s activity overlaps when matched to the column’s activity. The
maximum possible overlap is 9 dimensions.

in Section 4.2 used in the next section; however, the table contains information about the

inside activities useful in this section.

An overall success rate of 84.8% was achieved using the MUAC to classify the inside ob-

servations to the inside activities. Unknown classification occurred in 5.06% of the inside

observations, attributing to 33.33% of the failures. The low unknown classification rate

demonstrates the user-independence of MUAC since subjects used to generate the activities

were separate from the subjects used as observations. Confusion occurred in 10.12% of the

61

observations, attributing to 66.67% of the total failures. Of the confusion that occurred in

the experiment, 99.83% percent of it was caused by activities with a full nine dimensions of

overlap (see Table 6.3). This high success rate demonstrates that the MUAC is capable of

accurately distinguishing between activities that are well separated by 1 or more dimensions.

Of the activities with a full nine dimensions of overlap, three distinct sets of similar activities

will now be investigated. The LeftStep and LeftStepUp activities are a pair of activities

that share a full nine dimensions of similarity. The MUAC was capable of classifying an

observation of these two activities for 92% of LeftStep observations and 94.6% of LeftStepUp

observations. This correct classification occurred because the method was able to identify

and use the difference of movement in the left shin, which must lift up during the LeftStepUp

activity.

Driving, RightEat, and SitComputerUsage are three activities which also all overlap with

nine dimensions. The difference between these activities is due to the outstretched arms of

driving, and the right arm being raised to the mouth during eating. The MUAC was able to

correctly classify observations of Driving 80% of the time and of RightEat 89.7% of the time.

Driving was confused as RightEat at a rate of 17.3%, a rate significantly higher than other

confusion seen. This is because some subjects held the steering wheel close to their body, the

resulting pose was very similar to poses in the eating motion, causing a miss-classification.

RightBushHair and RightBrushTeeth are the final pair of activities which overlap with each

other in nine dimensions. For observations of RightBrushTeeth, confusion to RightBrushHair

occured at a rate of 44.3%, this confusion failure alone accounted for 35.6% of all failures in

the experiment. No instruction was given to the subject on how to brush their teeth, among

the example set there were a variety of angles in which subjects held their elbow ranging

from straight out their shoulder, to subjects who pinned their elbow against their side. This

62

variation caused the weights of the RightBrushHair activity to be large and overwhelm the

similar RightBrushTeeth activity.

6.4 Outside Observations on Flat Structure

The performance of classifying the outside observations defined in Section 5.3 on the flat

structure is shown in Table 6.4. Overall, a 69.1% success rate was achieved at classifying

an observation of an outside activity as unknown. 45.3% of the error was due to Stand-

VerticalSoulderCicles observations being classified into the ShoulderCircles activity. In the

ShoulderCircle example set, there were examples of subjects rotating their arms in a variety

of ellipsoids. Because the activity archetype expresses all variations in the example set, all el-

liptical performances, including narrow performances of ShoulderCircles, are represented by

the archetype. Therefore, StandVerticalShoulderCircles observations, which in essence are

an extremely narrow ShoulderCircle activity, classify closely to the ShoulderCircle activity.

This behavior also explains why observations of the outside activity SitHorizontalShoulder-

Circles matched to the inside activity SitVerticalShoulderCircles, which attributed to 20.4%

of the outside observations that were classified to an activity. The examples of SitVertical-

ShoulderCircles contained a variety of maximum angles in of the activity. When classifying

observations of SitHorizontalShoulderCircles, the error caused by the orthogonal movement

was not enough to overcome the large angle variations allowed by SitVerticalShoulderCircles.

63

Archetypes

O
b

se
rv

at
io

n
s L
ef
tS

te
p

L
ef
tS

te
p
U
p

S
h
o
u
ld
er
C
ir
cl
es

R
t.
S
h
o
u
ld
er
R
o
t

D
ri
v
in
g

R
ig
h
tB

ru
sh

T
ee
th

R
ig
h
tB

ru
sh

H
a
ir

R
ig
h
tE

a
t

L
ef
tS

h
o
u
ld
er
R
o
t

L
ef
tB

ru
sh

T
ee
th

L
ef
tB

ru
sh

H
a
ir

S
ta
n
d
H
o
ri
zS

h
.C

ir
cl
es

S
ta
n
d
P
u
tD

is
h
es
A
w
a
y

S
ta
n
d
B
u
tt
o
n
S
h
ir
t

S
it
C
o
m
p
u
te
rU

sa
g
e

S
it
V
er
tS

h
.C

ir
cl
es

U
n
k
n
o
w
n

StandVerticalSh.Circles 0 0 98 0 0 0 0 0 0 0 0 0 2 0 0 0 0
StandArmsBySide 0 0 0 2.0 0 0 0 0 16.0 0 0 0 0 0 0 0 82.0
StandComputerUsage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
SitHorizontalSh.Circles 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 94.0 6.0
SitRightAnswerPhone 0 0 0 0 24.0 0 0 22.0 0 0 0 0 0 0 0 0 54.0
SitArmsBySide 0 0 0 0 10.0 0 0 0 0 0 0 0 0 0 10.0 0 40.0
SitButtonShirt 0 0 0 0 0 0 0 6.0 0 0 0 0 0 0 0 0 94.0

Table 6.4: Confusion matrix when classifying outside activities on the flat structure. Each
cell is the percentage that the row’s activity as an observation gets confused as the column’s
activity archetype.

6.5 Inside Activity Recognition on Tree

With the same inside set used above, Algorithm 2 in Section 4.2 is applied in order to find

the tree structure of the inside activities. The overlap, defined in Section 4.2, between each

activity during the algorithm and shown in Table 6.3. The resulting tree, shown in Figure 6.2,

found a total of 12 branch nodes. As the dimension constraint in Algorithm 2 decreased,

activities with less overlap were grouped together under a branch node. For example, the

last grouping, which occurred at one dimension, finally allowed the grouping of the sitting

and standing activities, which share only one dimension of the torso pointing up.

The advantage to building the tree is to reduce the number of matches that must be computed

for each observation. Table 6.5 gives the number of regular expression matches that must

be computed to arrive at each leaf activity, while Table 6.6 gives the number of matches

that must be computed to arrive at each branch node. When matching the inside set on the

observed partition an average of 10.37 matches had to be computed, a 35.1% improvement

compared to the flat structure required match computation of 16 activities per observation.

When using the tree structure results in the same 91.6% classification accuracy when using

the flat structure. The confusion when using the tree structure (Figure 6.3) is not affected

64

Node12
LeftStep
LeftStepUp
ShoulderCircles
RightShoulderRotation
Driving
RightBrushTeeth
RightBrushHair
RightEat

LeftShoulderRotation
LeftBrushTeeth
LeftBrushHair
StandHorizontalShoulderCircles
StandPutAwayDishes
StandButtonShirt
SitComputerUsage
SitVerticalShoulderCirlces

Node10
Driving
RightEat
SitComputerUsage
SitVerticalShoulderCirlces

Node11
LeftStep
LeftStepUp
ShoulderCircles
RightShoulderRotation
RightBrushTeeth
RightBrushHair

Node3
Driving
RightEat
SitComputerUsage

SitVertical
ShoulderCircles

Driving SitComputer
Usage

RightEat

Node7
LeftStep
LeftStepUp
LeftShoulderRotation
LeftBrushTeeth
LeftBrushHair

Node9
ShoulderCircles
RightShoulderRotation
RightBrushTeeth
RightBrushHair
StandHorizontalShoulderCircles
StandPutAwayDishes
StandButtonShirt

LeftShoulder
Rotation

Node4
LeftStep
LeftStepUp

Node5
LeftBrushTeeth
LeftBrushHair

LeftStep LeftStepUp LeftBrushTeeh LeftBrushHair

Node8
ShoulderCircles
RightShoulderRotation
RightBrushTeeth
RightBrushHair
StandHorizontalShoulderCircles
StandButtonShirt

StandPut
AwayDishes

Node6
RightShoulderRotation
StandButtonShirt

Node2
ShoulderCircles
StandHorizontalShoulderCircles

Node1
RightBrushTeeth
RightBrushHair

RightBrushTeeth RightBrushHair ShoulderCircles
StandHorizontal
ShoulderCircles

RightShoulder
Rotation

StandButtonShirt

LeftShoulderRotation
LeftBrushTeeth
LeftBrushHair
StandHorizontalShoulderCircles
StandPutAwayDishes
StandButtonShirt

Figure 6.2: The tree structure generated by the inside activities. Branch nodes are marked
with a circle while leaf nodes are marked by a square. A solid segment on the stick figure
inside each branch node indicates that dimension was used to create the node.

65

1.3

6.692.0

LeftStep LeftStepUp

5.4

94.6

4.1

95.9

2.8

95.81.4

RightShoulderRotation

1.3

97.3

7.1

44.248.6

Driving

15.2

80.34.6

92.77.4

RightBrushTeeth RightBrushHair

RightEat

ShoulderCircles

Figure 6.3: Detail on where each inside observation classified to on the tree structure. The
number inside each node indicates the percentage of observations which were classified as
that node. If no number is given, then no observations were classified. Portions of the tree
were omitted for readability if no observations were classified to a parent.

66

Activity Computations Activity Computations

LeftStep 10 LeftStepUp 10
ShoulderCircles 12 RightShoulderRotation 9
LeftSoulderRotation 8 RightBrushTeeth 12
RightBrushHair 12 Driving 8
Eating 8 StandHorizShoulderCircles 12
StandPutDishesAway 6 StandButtonShirt 9
SitComputerUsage 8 SitVertShoulderCircles 5
LeftBrushHair 10 LeftBrushTeeth 10

Table 6.5: Number of matches that must be computed to reach each leaf activity on the tree
defined in Figure 6.2.

Branch Node Computations Branch Node Computations

Node 12 1 Node 11 3
Node 10 3 Node 9 5
Node 8 7 Node 7 5
Node 6 10 Node 5 8
Node 4 8 Node 3 5
Node 2 10 Node 1 10

Table 6.6: Number of matches that must be computed to reach each branch node on the
tree in Figure 6.2.

compared to the flat structure. This is to be expected because the tree does not modify the

activity archetypes, and therefore does not affect the confusion.

When using the tree structure, inside observations that are not classified as any leaf activ-

ity can still classify to a node inside the tree. This partial classification can be used be

used to determine some characteristics of the observation. For example, the observations

of RightBrushHair activity that were classified as unknown on the flat structure were clas-

sified instead to Node8 (ShoulderCircles, RightShoulderRotation, RightBrushTeeth, Right-

BrushHair, StandHorizontalShoulderCircles, StandButtonShirt) on the tree structure. For

both structures, the observations contained some variation not seen in the example set of

RightBrushHair. These variations inhibited these observations classifying to the correct leaf

activity. By looking at the dimensions that caused Node8 to form, it can be determined that

the variation is from either the left upper arm, the right forearm, or the left forearm.

67

6.6 Outside Activity Recognition on Tree

To demonstrate the classifier’s ability to partially classify an observation that is not known

by the classifier, the same outside observations used in Section 6.4 are classified to the tree

structure in Figure 6.2. The classification, visualized in Figure 6.4, achieved the same 69.1%

success rate at classifying an unknown observation to a branch node as the flat structure

classifying the observation as unknown (Section 6.4). With the tree structure, an average

of 8.6 matches were computed per observation. This number of matches is lower compared

to the inside observations because more outside observations are able to stop classifying at

branch nodes and do not continue further down into the tree.

Similar to Section 6.5, the branch node classification of an an observation can be used to

gain more information on the observation compared to the unknown classification given by

the flat structure. For example, the SitButtonShirt observations were classified to Node3

(Driving, RightEat, SitComputerUsage) 94% of the time. This branch node classification

indicates that the SitButtonShirt observations are of a subject sitting down in a chair with

their arms in front of them, a characteristic shared between the activities used to create

Node3. Another example is the StandArmsBySide observations, which were classified to

either Node4 (LeftStep, LeftStepUp), Node7 (LeftStep, LeftStepUp, LeftShoulderRotation,

LeftBrushTeeth, LeftBrushHair), or Node6 (RightShoulderRotation, StandButtonShirt). It

could be determined that the observations were of the subject’s body being upright and the

right upper arm down by the subjects side, since that is the commonly occurring aspect of

the classifications. It may seem peculiar that some of the observations of StandArmsBySide

classified to Node4, a branch node created by two stepping activities. The stepping activities

in Node4 both start and stop with the subject standing with their arms by their side.

Because of this, StandArmsBySide observations match very close to Node4, especially at the

beginning and end of the activity, causing some observations to be classified to Node4.

68

298

StandVerticalShoulderCircles

30

44

26

StandArmsBySide

100

StandComputerUsage

56 44

SitHorizontalShoulderCircles

0

54

2422

80

1010

SitRightAnswerPhone SitArmsBySide

SitButtonShirt

94

6

Figure 6.4: Detail on where each observation of the outside activities classified to in the tree
structure. The number inside each node indicates the percentage of observations which were
classified as that node. If no number is given, then no observations were classified. Portions
of the tree were omitted for readability if no observations classified to a parent.

Chapter 7

Conclusion

This thesis introduced the MUAC, an activity classification algorithm targeted for deploy-

ment on a wearable garment. The method is based on an abstract model of the human

body, allowing the system to be independent of any specific sensor set that can express the

users pose with a model. From a set of examples of an activity being performed, a sin-

gle representation is constructed that expresses the variations of the activity. The example

set includes different subjects performing the activity differently, allowing the system to be

independent of any specific user. A regular expression is constructed from the single repre-

sentation and a string matching algorithm is used to compute the match of an observation

to the activity. String matching algorithms have been shown to be very efficient at sequence

alignment. Finally, using the activities to be classified, a tree is generated, which reduces

the task of matching an activity from a linear search to a tree search. The tree allows the

MUAC method to be scalable as additional activities are added into the classifier.

A user study was performed using the Microsoft Kinect to record the subject’s motion.

Twenty five participants recorded a core eight everyday activities, of the twenty five subjects,

ten subjects recorded an additional nine activities. These are the activities known by the

69

70

classifier and were constructed from ten randomly chosen subjects. A 84.8% success rate of

matching an observation to an activity inside the classifier was achieved. Ten subjects out

of the twenty five participants also recorded seven activities whose activity representation

was not constructed. A 69.1% success rate of not matching one of these observations to an

activity known by the classifier was achieved.

The MUAC excels at identifying variations in order to ignore unimportant aspects of an

activity. Most of the failure seen in this thesis demonstrates a weakness of using the MUAC

method. If the activity contains significant variations on how to perform that activity, the re-

sulting representation will be large, possibly too large in which it may engulf other activities.

When using MUAC it is important to identify any significant variations in performing an ac-

tivity and consider splitting the activity into multiple parts. For example, in the experiments

in this thesis, it may of been advantageous to create two distinct RightBrushTeeth activities,

one with the arm extended out, and one with the arm pinned in. It would have also been

advantageous to give stricter parameters on subjects performing the various ShoulderCircle

activities. The wide range of angles performed by subjects meant the activity representation

contained a lot of variations. The similar movement of other forms of shoulder circles were

close enough to the large variations to cause the observation to match closely to the other

forms.

7.1 Future Work

The future work includes to applying the algorithm introduced into this thesis into a wearable

garment. This garment must be able to construct the body model from sensed values.

With such a garment, sensor independence could be demonstrated by using two different

sensor domains to construct the activities and record observations. A use case of sensor

71

independence is to use an accurate sensor domain, such as motion capture, to record examples

and create each activity’s representation. A less accurate sensor domain, which a garment

is expected to be, can then be used as observations matching to the activities constructed

from a more accurate source.

Bibliography

[1] R. Marchiando and M. Elston, “Automated ambulatory blood pressure monitoring:
clinical utility in the family practice setting.,” American family physician, vol. 67, no. 11,
p. 2343, 2003.

[2] Danbury Hospital, “Holter monitor diary instructions,” 2010. http://www.

danburyhospital.org/~/media/Files/Patient%20Education/patiented-english/

pdf_Diagnostic/HolterMonitorDiaryInstructions.ashx.

[3] West Health Institute, “About reflexion,” 2013. http://www.westhealth.org/

institute/our-innovations/reflexion.

[4] C. Tran and M. Trivedi, “3-d posture and gesture recognition for interactivity in smart
spaces,” Industrial Informatics, IEEE Transactions on, vol. 8, pp. 178 –187, feb. 2012.

[5] T. Stiefmeier, D. Roggen, G. Troster, G. Ogris, and P. Lukowicz, “Wearable activity
tracking in car manufacturing,” Pervasive Computing, IEEE, vol. 7, pp. 42 –50, April-
June 2008.

[6] C3DServer, “C3Dserver Software,” 2012. http://www.c3dserver.com/.

[7] Microsoft, “Kinect For Windows,” 2012. http://www.microsoft.com/en-us/

kinectforwindows.

[8] Y. Sheikh, M. Sheikh, and M. Shah, “Exploring the space of a human action,” in
Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 1,
pp. 144–149, IEEE, 2005.

[9] A. Vahdatpour, N. Amini, and M. Sarrafzadeh, “On-body device localization for health
and medical monitoring applications,” in Pervasive Computing and Communications
(PerCom), 2011 IEEE International Conference on, pp. 37–44, IEEE, 2011.

[10] A. Corradini, “Dynamic time warping for off-line recognition of a small gesture vo-
cabulary,” in Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time
Systems, 2001. Proceedings. IEEE ICCV Workshop on, pp. 82–89, IEEE, 2001.

72

http://www.danburyhospital.org/~/media/Files/Patient%20Education/patiented-english/pdf_Diagnostic/HolterMonitorDiaryInstructions.ashx
http://www.danburyhospital.org/~/media/Files/Patient%20Education/patiented-english/pdf_Diagnostic/HolterMonitorDiaryInstructions.ashx
http://www.danburyhospital.org/~/media/Files/Patient%20Education/patiented-english/pdf_Diagnostic/HolterMonitorDiaryInstructions.ashx
http://www.westhealth.org/institute/our-innovations/reflexion
http://www.westhealth.org/institute/our-innovations/reflexion
http://www.c3dserver.com/
http://www.microsoft.com/en-us/kinectforwindows
http://www.microsoft.com/en-us/kinectforwindows

73

[11] M. H. Ko, G. West, S. Venkatesh, and M. Kumar, “Using dynamic time warping for on-
line temporal fusion in multisensor systems,” Information Fusion, vol. 9, no. 3, pp. 370–
388, 2008.

[12] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping,”
Knowledge and information systems, vol. 7, no. 3, pp. 358–386, 2005.

[13] B. Yao and L. Fei-Fei, “Modeling mutual context of object and human pose in human-
object interaction activities,” in Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pp. 17–24, IEEE, 2010.

[14] G. Navarro, “A guided tour to approximate string matching,” ACM Computing Surveys,
vol. 33, p. 2001, 1999.

[15] Y.-S. Chung, C. Lu, and C. Tang, “Efficient algorithms for regular expression
constrained sequence alignment,” in Combinatorial Pattern Matching, pp. 389–400,
Springer, 2006.

[16] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer, “Energy-efficient
continuous activity recognition on mobile phones: An activity-adaptive approach,” in
Wearable Computers (ISWC), 2012 16th International Symposium on, pp. 17–24, 2012.

[17] J. Farringdon, A. Moore, N. Tilbury, J. Church, and P. Biemond, “Wearable sensor
badge and sensor jacket for context awareness,” in Wearable Computers, 1999. Digest
of Papers. The Third International Symposium on, pp. 107–113, 1999.

[18] K. Murao, T. Terada, A. Yano, and R. Matsukura, “Evaluating gesture recognition by
multiple-sensor-containing mobile devices,” in Wearable Computers (ISWC), 2011 15th
Annual International Symposium on, pp. 55–58, 2011.

[19] G. Gioberto and L. Dunne, “Garment positioning and drift in garment-integrated wear-
able sensing,” in Wearable Computers (ISWC), 2012 16th International Symposium on,
pp. 64–71, 2012.

[20] H. Bayati, J. del R Millan, and R. Chavarriaga, “Unsupervised adaptation to on-body
sensor displacement in acceleration-based activity recognition,” in Wearable Computers
(ISWC), 2011 15th Annual International Symposium on, pp. 71–78, 2011.

[21] N. Kern, B. Schiele, and A. Schmidt, “Multi-sensor activity context detection for wear-
able computing,” in Ambient Intelligence, pp. 220–232, Springer, 2003.

[22] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen, “Activity
classification using realistic data from wearable sensors,” Information Technology in
Biomedicine, IEEE Transactions on, vol. 10, no. 1, pp. 119–128, 2006.

74

[23] J. P. Varkey, D. Pompili, and T. A. Walls, “Human motion recognition using a wireless
sensor-based wearable system,” Personal and Ubiquitous Computing, vol. 16, no. 7,
pp. 897–910, 2012.

[24] O. Banos, A. Calatroni, M. Damas, H. Pomares, I. Rojas, H. Sagha, J. del R Millán,
G. Troster, R. Chavarriaga, and D. Roggen, “Kinect= imu? learning mimo signal map-
pings to automatically translate activity recognition systems across sensor modalities,”
in Wearable Computers (ISWC), 2012 16th International Symposium on, pp. 92–99,
IEEE, 2012.

[25] J. Funda, R. H. Taylor, and R. P. Paul, “On homogeneous transforms, quaternions,
and computational efficiency,” Robotics and Automation, IEEE Transactions on, vol. 6,
no. 3, pp. 382–388, 1990.

[26] “Kinect for windows human interface guidelines,” tech. rep., Microsoft, 2012. http:

//go.microsoft.com/fwlink/?LinkID=247735.

[27] M. Musé, B. LeFew, and M. Shafiei, Exercise for the chronic pain patient.

[28] T. Ellenbecker, Shoulder Rehabilitation: Non-operative Treatment. Thieme Publishers
Series.

[29] H. Dreyfuss, Designing for People. W. W. Norton, 2003.

http://go.microsoft.com/fwlink/?LinkID=247735
http://go.microsoft.com/fwlink/?LinkID=247735

Appendix A

Segment Lengths

The length of a segment on the body model is based upon normalized lengths of average

human limb lengths. Table A.1 shows fully grown male and female average lengths of the

human body as well as the lengths normalized to height [29]. Due to the little difference

of the normalized lengths between male and female, a single set of parameters can be used

to express both male and female normalized limb lengths. The shoulder and hip joints are

offset from the body center by half the shoulder/hip breadth and half the torso height. This

in effect means that each limb itself is offset from the center of the body by the offset of the

shoulder/hip joint it connects to. These lengths have no bearing on the operation of MUAC,

however; they are needed in order to convert a pose into a set of 3D positions, which is useful

in order to display the pose.

75

76

Male Female Male Norm Female Norm Together
Length (in) Length (in)

Height 69.2 63.2 1 1 1
Torso 17.5 17.5 0.2529 0.2769 0.2649
Thigh 18 16.6 0.2601 0.2627 0.2614
Shin 16 15.1 0.2312 0.2389 0.2351
Upper Arm 12 12.2 0.1734 0.1930 0.1832
Forearm 10.4 9.7 0.1503 0.153 0.1519
Shoulder Width 11.5 10.8 0.1662 0.1709 0.1685
Hip Breadth 6.8 7 0.0983 0.1108 0.1045

Table A.1: Average and normalized lengths of human body

Appendix B

Quaternion Rotations

To rotate a Euclidean vector, v, by a quaternion, q, Algorithm 5 is applied, making use of

quaternion conjugation and quaternion multiplication. To find the quaternion which rotates

a Euclidean vector v1 to another vector v2, Algorithm 6 is applied, making use of quaternion

cross product and quaternion dot product.

Algorithm 6 constructs a quaternion to represent the segments Y and Z rotation from the

coordinate system it is connected to. No X axis rotation is represented, each dimension has

two degrees of freedom.

This approach gives the rotation of the fore segment two degrees of freedom, a joint which

physically only has one degree of freedom. This is necessary to prevent an ambiguous rotation

that can arise when when using a model which assigns 3 degrees of freedom to the upper

segment and 1 degree of freedom to the fore segment. Under that approach, if the fore

segment extends directly out of the upper segment (a rotation of [1 0 0 0]), then there are

infinite quaternions for the upper segment which will describe the same body orientation.

77

78

Constricting each segment to two degrees of freedom, the Y and Z axis, prevents this from

happening. Insuring that each unique pose corresponds to a unique body orientation.

Algorithm 5 Rotate a vector by a quaternion

function RotateVector(v, q)
qvw ← 0
qvx ← vx
qvy ← vy
qvz ← vz
q ← (q∗)(qv)(q) . ∗ indicates Quaternion Conjugation
vx ← qx
vy ← qy
vz ← qz
return v

end function

Algorithm 6 Find the quaternion between two points

function VectorQuaternion(v1, v2)
v ← v2 − v1

Halfv ← v
Halfvx ← Halfvx + ‖v‖
Halfv ← Halfv

‖Halfv‖
λ← v ×Halfv . × indicates Vector Cross Product
qw ← v ·Halfv . · indicates Vector Dot Product
qx ← λx
qy ← λy
qz ← λz
return q

end function

Appendix C

Segment Positions

To determine a segment’s position relative to the body’s center, Algorithm 7 is applied

on the pose. To get the position of an upper segment, the offset of the upper segment’s

shoulder/hip joint are added to the vector resulting from the upper segment’s rotation.

To get the position of a fore segment, a more complicated steps are required due to the

rotation, and therefore position, of a fore segment being dependent on the rotation of the

upper segment. The rotation of the fore segment, relative to the body, is the product of the

fore segment’s quaternion to the upper segment’s quaternion. This new rotation results in

the vector of the fore segment from the end of the upper segment in the body’s coordinate

system. To get position of the fore segment relative to the body, this vector is added to the

position of the upper segment. Finally, to determine a segment’s orientation relative to the

environment, the vector resulting from Algorithm 7 is rotated by the torso’s quaternion qT .

79

80

Algorithm 7 Finding position of a given segment

function Position(Segment)
QRot← Segment.Q
P ← Segment.Parent
while P 6= NULL do

QRot← QRotSegment.Q
P ← P.Parent

end while
V rot.x← Segment.Length
V Rot.y ← 0
V Rot.z ← 0
V Rot←Rotatevector(V Rot, QRot)
if Segment.Parent == NULL then

V Rot← V Rot+ Segment.Limb.OffsetV ector
else

V Rot← V Rot+Position(Segment.Parent)
end if
return V Rot

end function

Appendix D

Implementation Testing of MUAC

This section tests the implementation of the MUAC as discussed in Chapter 5. To test

the hypotheses simple test consisting of elementary functions were performed. The use of

elementary functions are used so that there exists an exact solution with an error of zero,

which allows for the precision of the implementation to be measured. In addition, for many

of the components, there is a specific example of the component operating on some of the

activities defined in Chapter 5.

D.1 Cycle Detection

The implementation of the cycle detection component defined in Section 4.1.1 is demon-

strated by finding the period of sinusoidal functions. The sinusoid is of the form

f (x) = sin (λx+ φ) . (D.1)

81

82

A set of 100 curves bounded by 0 ≤ x ≤ ρ were constructed by randomly selecting 1 ≤

λ ≤ 10, 0 ≤ phi ≤ 2π, and 2 ≤ ρ ≤ 10.1 The cycle detection component of MUAC is used

to compute the period for each sinusoidal. Among all 100 trials, the maximum difference

between the period found by the cycle detection algorithm and the theoretical period was

6.6e-7. This is consistent with the optimizer used to solve the equation whose constraint

tolerance is set to 1e-6.

D.2 Cyclic Sequence Alignment

The implementation of the sequence alignment component defined in Section 4.1.1 is demon-

strated on cyclic curves by aligning a set of elementary functions in R space. Alignment is

performed over a set of five curves in the form of

sin (λx+ φ) (D.2)

where λ and φ are random integer bounded by 1 ≤ λ · 100 ≤ 1000 and 0 ≤ φ · 100 ≤ 10000.

The curves in both aligned and unaligned states are shown in Figure D.1. The distance that

each aligned curve is from the ideal aligned curve is found to be less than the constraint on

the optimizer of 1e-2 (Table D.1). This shows that the implementation done for this thesis

is capable of using the MUAC to align a set of cyclic examples.

1ρ in this case defines the number of periods. As stated in Chapter 4, at least 2 cycles are needed to find
the period.

83

Function α φ
Distance

from Ideal
sin(4.70t+ 2.30) 1.34 0.10 9.57e-04
sin(8.44t+ 1.94) 0.74 0.16 1.43e-03
sin(2.25t+ 1.70) 2.79 0.20 1.02e-03
sin(2.27t+ 4.35) 2.77 -0.22 1.47e-03
sin(3.11t+ 9.23) 2.02 0.00 9.30e-04

Table D.1: The alignment of five cyclic curves and the resulting distance from the average
of all aligned curves

84

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1
Unaligned Curves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1
Aligned Curves

Figure D.1: Each cyclic curve before and after the alignment parameters are aligned.

85

D.3 Non-Cyclic Sequence Alignment

The implementation of the sequence alignment component defined in Section 4.1.1 is demon-

strated on non-cyclic curves by aligning a set of elementary functions in R space. Alignment

is performed over a set of five curves in the form of the piecewise function

Λ(λx+ φ) =

(λx+ φ)e(2−(λx+φ)), if x ≥ 1− φ

λ

−((λx+ φ)− 2)e(2+((λx+φ)−2)), if x <
1− φ
λ

(D.3)

where λ and φ are random integer bounded by 100 ≤ λ · 100 ≤ 400 and −700 ≤ φ · 100 ≤

−2000. Note that the bounds placed on the parameters are arbitrary.. The curves in both

aligned and unaligned states are shown in Figure D.2. The distance that each aligned curve

is from the ideal aligned curve is found to be less than the constraint on the optimizer of

1e − 2 (Table D.2). This shows that the implementation done for this thesis is capable of

using the MUAC to align a set of non-cyclic examples.

Function α φ
Distance

from Ideal
Λ(3.40t+−7.38) 3.75 0.00 3.54e-03
Λ(3.78t+−16.50) 3.52 0.66 2.91e-02
Λ(2.46t+−14.53) 5.22 0.55 2.58e-03
Λ(1.71t+−12.97) 7.35 0.45 1.44e-02
Λ(3.88t+−14.11) 3.24 0.54 1.43e-02

Table D.2: The alignment of five non-curves and the resulting distance from the average of
all aligned curves

86

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3
Unaligned Curves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
Aligned Curves

Figure D.2: Each non-cyclic curve before and after the alignment parameters are aligned.

87

D.4 Minimal Bounding Circle

The implementation of the minimal bounding circle algorithm defined in Section 4.1.1 to

find an “ideal” quaternion is demonstrated by running the algorithm on a set of random

rotations. A set of quaternions q are constructed which randomly deviate from “center”

quaternion qc = [1 0 0 0] at a maximum angle of 45◦. That is, qj is allowed to be any

rotation so as long as the rotation 45◦ or less away from qc. This angle choice is arbitrary

but must be less than 90◦ because any greater angle will give the minimal bounding circle

algorithm to approximately pick either [1 0 0 0] or [−1 0 0 0].

With a set of random quaternions, qa is computed by

qa = minBoundCircle(q) (D.4)

and should be an approximation of qc. Table D.3 shows the mean and standard deviation

of the angle of qa to qc for 10000 q sets at a variety of sizes. To get a perfect qa only

two quaternions orthogonal to each other and at the same angle are required. This is

exceptionally rare, therefore as more points are added into q more points close to the 45◦

edge are contained within the set, therefore the quaternion that defines the minimal bounding

circle is closer to qc. This shows that the minBoundCircle algorithm can correctly find the

quaternion which minimizes the maximum distance among some quaternion set.

q Mean Angle Std-dev
Set Size From Ideal From Ideal

2 22.8 10.2
20 7.5 3.8
200 2.41 1.25
2000 0.7 0.4

Table D.3: The resulting mean and standard deviation of the error at different set sizes

88

D.5 Alphabet Computation

The ability for the implementation to correctly construct an alphabet sequence is shown by

using Euclidean distance and a piecewise function in R space to find the alphabet. Elemen-

tary functions are again used because the exact alphabet can be computed and compared to

the output of the implementation. The piecewise function given by

Φ(x) =

0, if x ≤ 10

x− 10, if 10 < x ≤ 20

−x+ 30, if 20 < x ≤ 30

0, if 30 ≤ x

(D.5)

The alphabet from 0 ≤ x ≤ 40 is computed using a radius of one. It is therefore known

that the theoretical characters should occur when Φ(x) is equal to 11, 13, 15, 17, 19, 23, 25,

27, and 29. The maximum error of the calculated alphabet(shown in Figure D.3) to these

expected values was found to be 6.02e − 6, which is consistent with the optimizer used to

solve the minimization in Equation 1 constrained to 1e− 6.

89

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

7

8

9

10

Figure D.3: Characters found for the given function using a radius of one. The vertical bars
represent each character and the range on Φ(x) which the character is responsible for.

	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background
	User Independence
	Approximate String Matching
	Wearable Systems

	Model
	Segments
	Rotation
	Pose

	Method
	Algorithm Element: The Activity's Archetype
	Computing Activity Archetype (Step 1)
	Cycle Extraction (Step A)
	Estimating Alignment Parameters (Step B)
	Computing the Continuous Activity Function (Step C)
	Computing Weights (Step D)

	Finding Alphabet and Regular Expression (Step 2)
	Matching Observed to Regular Expression (Step 3)

	Algorithm Element: Grouping Similarity
	Algorithm Element: Removing Redundancy

	Experiment
	Implementation
	Finding Single Cycle
	Sequence Alignment
	Activity Archetype Construction

	Testing Framework
	Experiment Set Up

	Results
	Archetype Computation
	Example Set Size Convergence
	Inside Activity Recognition on Flat Structure
	Outside Observations on Flat Structure
	Inside Activity Recognition on Tree
	Outside Activity Recognition on Tree

	Conclusion
	Future Work

	Bibliography
	APPENDICES
	Segment Lengths
	Quaternion Rotations
	Segment Positions
	Implementation Testing of MUAC
	Cycle Detection
	Cyclic Sequence Alignment
	Non-Cyclic Sequence Alignment
	Minimal Bounding Circle
	Alphabet Computation

