
Team 4: Final Presentation
Under the guidance of Dr. Fox

SMEs: Bipasha Banerjee, Sareh Ahmadi

Team: Abhilash Neog, Aditya Shah, Deepak Nanjundan, Deval
Srivastava, Dharneeshkar Jayaprakash, Kaushik Ganesan

Blacksburg, VA 24061
Dec. 19, 2022

● Milestones

● Overall Flow

● Segmentation

● Parse and Clean

● Summarization

● Classification

● Pipeline Integration

● User Interface

● Deliverables

 AGENDA

MILESTONES

USER STORIES

Lorem ipsum dolor sit amet at nec
at adipiscing03

● Donec risus dolor porta venenatis
● Pharetra luctus felis
● Proin in tellus felis volutpat

Lorem ipsum dolor sit amet at nec
at adipiscing02

● Donec risus dolor porta venenatis
● Pharetra luctus felis
● Proin in tellus felis volutpat

Lorem ipsum dolor sit amet at nec
at adipiscing01

● Donec risus dolor porta venenatis
● Pharetra luctus felis
● Proin in tellus felis volutpat

USER STORY 404
● As an experimenter, I want to access all the

above mentioned services with a User
Interface.

USER STORY 303
● As an experimenter, I want to provide a

chapter text and obtain the discipline labels of
the chapter.

USER STORY 202
● As an experimenter, I want to provide a

chapter text and obtain summarized version of
the chapter.

USER STORY 101

● As an experimenter, I want to segment the
ETD into chapters. The entire ETD PDF is the
input and the generated chapter PDFs are the
output.

OVERALL FLOW

OVERALL FLOW DIAGRAM

SEGMENTATION

SEGMENTATION

SEGMENTATION-METHODOLOGY

1.
Input ETD

● The input to the
segmentation pipeline
is a single ETD PDF.

● Currently the system
supports only digital
documents.

Page images &
texts

● The given ETD is split
into page images and
the text is extracted for
each page.

● Input to the model is
page images and page
texts.

Model
Prediction

For each page, the model
predicts a classification
label.

● 0: “FM PAGE”,
● 1: “FMSTART”
● 2: “CH START”
● 4: “CH PAGE”
● 3: “EM START”
● 5: “EM PAGE”

Saving chapter
PDFs

The generated chapter PDFs
are saved as digital objects in
Team 1’s database and file
system.

Chapter
Boundary

● Approach 1:
Traverse the prediction array
and find the page numbers of
one “CH START” to the next
one and save it as a chapter.
● Approach 2:

Traverse the prediction array
and subarrays when more than
6 consecutive “CH PAGE” are
saved as a chapter.

SEGMENTATION-PROGRESS

● Packaged the code and set up in team 1’s container.

● Completed running segmentation on 5000 digital ETDs.

● Stored segmentation results in the file system and database.

● Containerized the service.

● Added segmentation service to team 5’s workflow automation (Experimenter page).

SEGMENTATION-FUTURE WORK

● Experiment Chapter Captor approach

● Increasing dataset size

● Hyper parameter tuning

● Unit testing

CLEAN AND PARSE

CLEAN AND PARSE
Methodology:

○ Parses the chapter PDF.

○ Removes figures and tables.

○ Saves cleaned text into .txt file.

○ Library Used: pdfplumber.

Clean and Parse as a service:

● Cleaned chapter text is an input for summarization and classification pipelines.

● We deployed a standalone service to parse and clean the script and store it in the database so that this

process is not repeated.

CLEAN AND PARSE-FUTURE WORK

● Improve our clean and parse script so that it also removes equations.

● The output of pdfplumber is sometimes erratic, i.e., it doesn’t convert its character dictionary back

to ASCII.

● To avoid junk characters in the output of cleaned text, we can either manually convert the

characters which weren’t converted or else use some other library to parse the PDF.

SUMMARIZATION

SUMMARIZATION - FLOW

SUMMARIZATION-METHODOLOGY
SUMMARIZATION PIPELINE

● Sets the required parameters - model, summary length, etc.

● Passes a chapter text as input to the pipeline.

● Summarizes the chapter text using the model selected.

● Generates a summary JSON.

MODELS SUPPORTED

● Extractive models - TextRank, LexRank, LSA.

● Abstractive models - Hugging Face Transformer Models.

● Model used for generating summaries to be stored in DB - TextRank.

SUMMARIZATION-MODEL OUTPUTS

Above: Transformer Summary; Below: TextRank Summary

SUMMARIZATION - CHALLENGES

● Model Evaluation - Given most of the ground-truth data consists of newly generated summaries, the

evaluation results would be biased toward abstractive models.

● Time - Transformer models (like Big Bird) need around seven to ten minutes to generate a single chapter

summary compared to TextRank (that takes a few seconds). Hence, TextRank was chosen for summary

generation for 5k ETDs.

SUMMARIZATION - FUTURE WORK

● Generating human-like summaries using abstractive models (transformer) - the current pipeline supports

transformer models.

● Fine-tuning of pre-trained transformer models on ETD-relevant dataset.

● Exploring summary generation at multiple granularity level - section, paragraphs.

CLASSIFICATION

CLASSIFICATION FLOW

CLASSIFICATION-DATASET

● Ran the segmentation pipeline and collected chapters from around 1500 ETDs.

● The segmentation pipeline yielded 4000 chapters in total.

● Chapter-by-chapter PDF files were parsed and cleaned using the standalone Clean and Parse

service.

● For a few chapters, the parsed output was not ideal because of flaws in the pdfplumber library.

● After eliminating the subpar chapter texts, we had 3742 chapters left with which we fine-tuned

the models.

CLASSIFICATION-DATASET

● The “Discipline” feature in the metadata was used to generate the classification labels for the

chapters in the ETDs.

● When the discipline labels were not available we used the department field as the label for the

chapter.

● We utilized a training set to test set ratio of 85% to 15% to train and evaluate the models that

were trained.

● Models were fine tuned on a training set and evaluated on a test set taken from a dataset of over

3500 chapters more than what was used for our previous evaluation.

● The chapter classification model trained can predict 27 different classes.

CLASSIFICATION- BERT and
SciBERT

Implementation:
● Used BERT to generate representation and classify the chapter text.
● Also, trained SciBERT to classify the chapters.
● Selected top two predictions of the models trained as output.
● Since we hypothesized that chapter text would be longer than 512 tokens on average, we have also trained

BERT and SciBERT on Text Rank summaries generated by our summarization team.
● However, average length of chapter text was less than 512 tokens.
● Since the probability of the chapter text being less than 512 tokens is remote, further assessments will be needed

in the future.
● Models trained on summaries did not give us expected boost in performance.

Models Used: BERT-base and SciBERT

CLASSIFICATION- LongFormer

Implementation:
● Since we hypothesized that chapter text would be longer than 512 tokens on average, we have

trained Longformer on chapter text as an alternative to BERT and SciBERT trained on chapter

summaries.

● As average length of chapter text was less than 512 tokens, the performance of Longformer

wasn’t great when compared to BERT and SciBERT.

● For smaller texts, Longformer was highly inefficient and took a longer time to train.

CLASSIFICATION- SVM AND
RANDOM FOREST

Implementation:
● Experimented with traditional ML approaches to set a baseline.
● Replicated Palakh’s experiments:

○ Apply lemmatization, stop word removal, etc.
○ Generate embeddings for the text using Doc2Vec/Fasttext.
○ Apply models on the embeddings to classify.
○ Experimented by running the code on PQDT dataset [1].

Models Used: SVM, Random Forest
Performance was not satisfactory on the PQDT dataset collected by Palakh [1].

[1] Palakh Mignonne Jude. “Increasing Accessibility of Electronic Theses and Dissertations
(ETDs) Through Chapter-level Classification”. June 2020, MS thesis, Computer Science,
Virginia Tech, Blacksburg, VA 24061, http://hdl.handle.net/10919/99294.

CLASSIFICATION- TRAINING FLOW

● We have developed our model training and implementation code in PyTorch and Hugging Face.

● Overall the training pipeline follows the following steps:

○ Read the Chapter or summary text dataset with target labels.

○ Split the dataset into training and testing.

○ PyTorch DataLoader is set up which facilitates training.

○ Tokenizer is called within the DataLoader and it generates input text tokens.

○ The model is initialized and a pre-trained model is loaded in memory.

○ Optimizers and LR schedulers are initialized for training.

○ Model is trained and prints the losses periodically.

● Finally, once the model is trained, we save the final weights and perform evaluation.

CLASSIFICATION- EVALUATION

Model Name F-1 Score (%) Accuracy (%) Trained on
(Chapter/Summary)

BERT 56.28 64.75 Chapter

SciBERT 77.5 80.77 Chapter

SciBERT 67 70.89 Summary

BERT 54.41 63.01 Summary

Discussion of Results
● Results clearly show that, across the board, classification models trained on chapters are better than

models trained on summaries.

● Since the average text in the chapter was less than 512 tokens in most cases, loss of information was

not taking place.

● After applying summarization on chapter text we condensed the information even more leading to

loss of some accuracy.

● It should also be noted that the summaries were generated via TextRank based method so were not of

the highest quality.

● Keeping these points in mind we used SciBERT based on chapters for processing the 5k documents.

● At last we also tested the Longformer models but their performance was significantly worse than

BERT based models.

CLASSIFICATION- PROGRESS

● We have successfully stored the results for 5000 ETDs subset in the database.

● We have used SciBERT model to store the results.

● Classification results were stored in the objects table under the type “cleaned_text”.

● Both the model used (name) and two labels predicted by the classification model were stored in the

database.

● Classification service was also integrated with workflow automation and user interface.

CLASSIFICATION- FUTURE WORK
● Since the probability of the chapter text being less than 512 tokens is remote, further assessments will be

needed in the future.
● We have successfully prepared a pipeline to train and evaluate models for metadata classification but did not

execute it due to lack of time.
● We can also use chapter classification models to generate labels for metadata.
● Knowledge distillation of larger models trained (BERT, SciBERT) will greatly reduce the inference time and

training time - if the models are retrained in the future.
● Classifying intent behind the citations can be very useful.
● Finding the purpose of a citation helps to determine the publication’s influence and direct users towards

additional readings.
● Citation Intent can be classified as Background, Methodology and Result Comparison similar to SciCite.
● Tuning methodologies such as Prompt Tuning can be explored for all models.

PIPELINE INTEGRATION

PIPELINE INTEGRATION-
WORKFLOW AUTOMATION

 0: "curl-get-etd"
 1: "segmentation"
 2: "curl-save-chapters"
 3: "clean-chapters"
 4: "summarization"
 5: "classification"
 6: "save-summarization"
 7: "save-classification"
 8: "save_cleaned_chapters"

ACCESSING TEAM 4 SERVICES

Segmentation:
● Pull the image: docker pull dharneeshkar/segmentation:0.4
● To run the segmentation pipeline use: python segmentation.py --input-path ./data/

--output-path ./out
Summarization:

● Pull the image: docker pull dharneeshkar/summarization:0.9
● To run the summarization pipeline use: python summarization.py --input-path ./data/

--output-path ./out
Classification:

● Pull the image: docker pull dexuiz/classification:0.0.3
● To run the classification pipeline use: python3 classifier.py --input-path ./data/chap.txt

--output-path ./out
Clean and Parse:

● Pull the image: docker pull dharneeshkar/parse_and_clean:0.1
● To run the clean and parse pipeline use: python parse_and_clean.py --input-path

./data/chapters --output-path ./out

USER INTERFACE

EXPERIMENTER PAGE

https://docs.google.com/file/d/1gKi-Q558GRz_6ux4lFwtZ4OpWEk6z1zb/preview

DOCUMENT VIEW PAGE

https://docs.google.com/file/d/1t1gPopuUB3ikHSU872d1VbT1Bnz9eRQg/preview

USER INTERFACE

USER INTERFACE

DEMONSTRATION VIDEOS

● File team4_documentView_demo.mp4 - Document View Page of User Interface Demo Video

● File team4_experimenter_demo.mp4 - Experimenter Page User Interface Demo Video

FINAL DELIVERABLES

FINAL DELIVERABLES

Deliverable File System/ DB Can be Retrieved by

Segmentation File System https://team-1-flask.discovery.cs.vt.edu/v1
/etds/<etd-id>/objects?type=chapter

Cleaned Chapter Text File System https://team-1-flask.discovery.cs.vt.edu/v1
/etds/<etd-id>/objects?type=cleaned_text

Summarization DB https://team-1-flask.discovery.cs.vt.edu/v1
/etds/<etd-id>/objects?type=cleaned_text

Classification DB https://team-1-flask.discovery.cs.vt.edu/v1
/etds/<etd-id>/objects?type=cleaned_text

UI Integrating all the subsystems
mentioned

- -

https://team-1-flask.discovery.cs.vt.edu/v1/etds/
https://team-1-flask.discovery.cs.vt.edu/v1/etds/
https://team-1-flask.discovery.cs.vt.edu/v1/etds/
https://team-1-flask.discovery.cs.vt.edu/v1/etds/

FINAL DELIVERABLES

IR3

Build Backend Flask app

Finalize APIs

Create required dataset

Train and evaluate models

Containerize Service
Final Report

Extend the dataset

API Implementation

End-to-end final Integration

Model Refinement

Workflow Automation Support

IR1

Assign User Stories

Identify Milestone

Data Exploration

Initial Setup
IR2

Set up GPU-enabled containers

Data pre-processing

Implemented baseline models

Built baseline UI

THANK YOU

