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Variational wavefunctions that introduce zeros (vortices) to screen repulsive interactions are typ-
ically difficult to verify in unbiased microscopic calculations. An approach is constructed to insert
vortices into ansatz wavefunctions using a matrix product representation. This approach opens the
door to validation of a broad class of Jastrow-based wavefunctions. The formalism is applied to a
model motivated by experiments on ultracold atomic gases in the presence of synthetic spin-orbit
coupling. Validated wavefunctions show that vortices in atomic Fermi gases with flat Rashba spin-
orbit bands cluster near the system center and should therefore be directly visible in time-of-flight
imaging.

PACS numbers: 03.75.Ss,71.27.+a,73.43.Cd

I. INTRODUCTION

Jastrow factors in variational wavefunctions enable the
tuning of the location of wavefunction vortices to cap-
ture the essential properties of many-body problems1.
While this approach has been highly successful in quan-
tum chemistry and related fields2–4, it has also seen some
success in solving flat band Hamiltonians of the form:

HFB = PVintP, (1)

where P projects the inter-particle interaction, Vint,
into a flat single-particle band. The best known prob-
lems in this class include models of the quantum Hall
(QH) effects5–8. But Eq. (1) describes a broad array
of other compelling problems as well, e.g., electrons in
graphene-based nanostructures9,10, atomic gases under
fast rotation11, atoms in kagome optical lattices12, frac-
tional Chern insulators13, bosons in certain frustrated
lattices14, and spin-orbit coupled (SOC) systems15–18. If
P projects onto a basis with non-commuting density op-
erators, interesting quantum liquids or other states may
arise. But solving such problems can be prohibitive. The
non-perturbative nature of Eq. (1) implies reliance on nu-
merical validation of ansatz wavefunctions to rigorously
define quantitatively accurate solutions.

A well known validation procedure, used in the QH
regime8 to study models in the form of Eq. (1), employs
parent Hamiltonians19. Under this procedure a proposed
wavefunction must be shown to be generated from a par-
ent Hamiltonian and then compared with states of a
physically motivated model using wavefunction overlaps
and energetics. For example, the vortex attachment pro-
tocol defined by the Laughlin state5 was validated with
a parent Hamiltonian8,19. But this process is prohibitive
when studying wavefunctions that do not have simple
parent Hamiltonians. A generic wavefunction validation
procedure would overcome this key difficulty.

Matrix product states20 (or, more generally, tensor
networks) offer numerically efficient representations of
wavefunctions that might serve as alternatives to par-

ent Hamiltonians in validation. Matrix product rep-
resentations have been used to study entanglement in
some QH states21. A general recipe for vortex attach-
ment in terms of matrix products would also offer a
useful tool to validate ansatz states since matrix prod-
uct states are straightforward to work with and re-
lated algorithms (e.g., the density matrix renormalization
group22,23 and other methods24) offer considerable op-
portunity for scale-up. Promising work along these lines
demonstrates a projective construction of Jastrow factors
to compute local averages with local tensor networks25.

I construct a matrix-product representation of Jastrow-
based wavefunctions that offers direct validation of vortex
attachment protocols and avoids using parent Hamiltoni-
ans. The wavefunctions constructed here use the com-
posite fermion ansatz, originally constructed for use in
the fractional QH regime6, but can be directly compared
to numerics on other models, not just QH models. Based
on a formal connection with the QH regime, I expect that
vortex attachment should be useful in solving an example
flat band problem motivated by recent experiments on ul-
tracold atomic gases26. These experiments use lasers to
generate synthetic SOC. Assuming that synthetic Rashba
SOC can be taken to the flat band limit, I find that inter-
actions between fermions favor the clustering of vortices
near the system center (similar to what has been found
in studies of rotating quantum gases, quantum dots, and
bosons with SOC4,15,27–30) and should be experimentally
observable if flat band limits can be reached.

The paper is organized as follows. Section II discusses
a general class of first quantized wavefunctions based on
the composite fermion ansatz6. These wavefunctions use
Jastrow factors to insert vortices to minimize interaction
energy. Section III describes key aspects of these wave-
functions: basis state translation and filling. The cen-
tral result of the paper is then presented in Section IV.
Here the wavefunctions are written in second quantized
form and are recast in the context of matrix products.
Section V uses the matrix product form for the Jas-
trow factor to rewrite a relevant example, the Laugh-
lin wavefunction5. Sections VI and VII study the flat
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band limit of two-dimensional fermions in the presence
of parabolic trapping, Rashba SOC, and slow rotation.
Here a demonstration of the wavefunction validation pro-
cess shows that interactions favor placing vortices at the
center of the system instead of placing vortices on each
particle, as in Laughlin-type states. Section VIII dis-
cusses a physical interpretation of these results and possi-
ble observables in ultracold atomic gas experiments with
fermions.

II. VORTEX ATTACHMENT IN FIRST
QUANTIZATION

I consider ground and excited state wavefunctions
based on the composite fermion ansatz6:

ψν(r1, ..., rN ) = 〈r|Jγ2p|Φν∗〉 (2)

where the Jastrow factor J 2p
γ places 2p vortices in the

constituent wavefunctions, Φν∗ , ofN particles. The num-
ber of particles per basis state (the filling) in the con-
stituent state is ν∗. It is convenient to take Φν∗ to be a
weakly interacting state, e.g., a single Slater determinant.

Vortex insertion changes the filling because it is equiv-
alent to removing a particle from a basis state. J 2p

γ adds
2p vortices and therefore changes the number of basis
states from Nν∗−1 to N(ν∗−1 + 2p). Section III shows
that ψν is a state with ν = ν∗/(2pν∗ + 1) particles per
basis state.

The following first-quantized Jastrow factor inserts 2p
vortices independent of basis10:

Jγ2p =

N∏
j<k,{Λ}

(
T †j − γT

†
k

)2p

, (3)

where T † translates single-particle basis states through
Hilbert space by increasing basis state indices within
a set Λ. For a basis sorted with a single index, n, Λ
corresponds to a 1D graph. The Hilbert space transla-
tion operator then becomes a ladder operator31 in J :
T †φn ∝ φn+1, where φn is a single-particle basis state.
Section III discusses examples of basis state translation.

The variational parameter γ controls two types of vor-
tex insertion. γ = 1 attaches 2p vortices to each particle
thus lowering repulsive interaction energy by separating
particles pair-wise. States with γ = 0 insert 2pN vortices
on the n = 0 basis state to lower occupancy of this basis
state. Wavefunctions with either γ = 0 or γ = 1, will be
studied below.

Trial wavefunctions using Eq. (3) should be energeti-
cally favorable in problems with QH features: 1) φn con-
stitutes a flat band, 2) φn are only quasi-localized (the
density operators between different n do not commute),
and 3) The interaction energy between basis states de-
creases while separating them in the graph, Λ. These
conditions describe the lowest Landau level (LLL) limit8

but can be satisfied, more generally, by other problems
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FIG. 1. Schematic showing particles (circles) occupying basis
states (dashes) for a two particle example of a Jastrow factor,
Eq. (4), acting on a constituent state, Eq. (5). The top row
shows one of two terms in the two particle Slater determinant
constituent state, Eq. (5). The bottom four rows show the
four configurations generated by acting Eq. (4) on the state
in the top row. Acting Eq. (4) on Eq. (5) yields four other
configurations (not shown) that are the same but with the
particle indices exchanged.

as well. I will discuss strong spin orbit coupling as an
additional example.

In the following I consider wavefunctions with Slater
determinant constituent states Φν∗ . A single Slater de-
terminant attaches one vortex (due to Pauli exclusion)
to each particle. The following two sections will show
that with this choice, Eq. (2) reduces to the Laughlin
wavefunction5 at ν = 1/(2p + 1) for γ = 1 if the basis
states are chosen to be LLL wavefunctions.

III. BASIS STATE TRANSLATION AND
FILLING

This section shows that the operators (T †)l map to
translation of single-particle basis states along a graph
representation of the Hilbert space. The graph represen-
tation is used to explicitly construct a two-particle wave-
function. The filling of N -particle wavefunctions con-
structed from T † will also be derived explicitly.

I begin by constructing a two particle wavefunction
using Eq. (2). I consider a degenerate Hilbert space that
can be indexed with an integer: φn, where n = 0, 1, 2, ....
labels each basis state. Fig. 1 depicts these basis states
as horizontal dashes.

The translation operators in this case act as lad-
der operators on a 1D graph. They are defined as:
T †φn = fnφn+1, where fn is a variational functional10

of n. For simplicity I set fn = 1 in this section with-
out loss of generality. The operator representation al-
lows a polynomial construction of Jastrow factors even
though the basis states themselves are not polynomials,

i.e., 〈r1|(T †1 )2|φ0〉 = φ2(r1) but φ2(r1) 6= φ1(r1)φ1(r1).
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N = 2 in Eq. (3) gives:

J 2
γ=1 =

(
T †1 − T

†
2

)2

, (4)

for p = 1. I use this form to construct a two-particle
ansatz wavefunction below.

The operator form of the Jastrow factor allows a di-
rect basis-independent construction of the total wave-
function. I select a two particle determinant state as
the constituent state:

〈r1, r2|Φν∗=1〉 ∝ φ0(r1)φ1(r2)− φ1(r1)φ0(r2), (5)

where the constituent filling is ν∗ = 1 because there is one
particle per basis state. This state is depicted schemati-
cally in the top row of Fig. 1.

I now construct the total N = 2 wavefunction using
Eq. (2). Acting Eq. (4) on Eq. (5) yields:

〈r1, r2|ψν=1/3〉 ∝ φ3(r1)φ0(r2)− 3φ2(r1)φ1(r2)

− φ3(r2)φ0(r1) + 3φ2(r2)φ1(r1). (6)

Here the total wavefunction results from a sum of eight
terms. Four of the terms are depicted schematically in
Fig. 1. The other four terms result from swapping parti-
cle coordinates.

The wavefunction written in Eq. (6) appears to have a
filling different from 1/3. The enumeration of basis states
in Fig. 1 shows that there are only four basis states for
two particles. The filling for the two-particle equation,
Eq. (6), is therefore 1/2. But it can be shown that the
filling of Eq. (2) converges to 1/3 in the large N limit for
p = 1 and ν∗ = 1.

I now show that the filling of Eq. (2) converges to
ν∗/(2pν∗ + 1) in the large N limit6,8. The number of
basis states in any constituent state at filling ν∗ is, by
definition, Nν∗−1 + c1, where c1 is a constant of order
unity. If the Jastrow factor inserts 2p vortices per par-
ticle, each vortex vacates a basis state. The number of
basis states then increases to N(ν∗−1 + 2p) + c2 + c1,
where c2 is also a constant of order unity. This shows
that the number of particles per basis state yields a fill-
ing: ν = ν∗/(2pν∗ + 1), in the large N limit.

The filling can also be derived explicitly from specific
forms for the Jastrow factor and the constituent state.
Consider the largest power in the Jastrow factor defined

in Eq. (3): J 2p
γ = (T †1 )2p(N−1) + ... This shows that

J 2p
γ shifts the largest basis state index by 2p(N − 1),

i.e., c2 = −2p. A single Slater determinant constituent
state can also be written in terms of translation opera-

tors: |Φν∗=1〉 ∝
∏N
j<k

(
T †j − γT

†
k

)
|0〉 = (T †1 )N−1|0〉+ ...,

where the last equality shows that this constituent state
has a basis state index that is at most N − 1. Putting

these two results together, the largest power of the T †1
operator in J 2p

γ |Φν∗=1〉 is (2p + 1)(N − 1). The num-
ber of basis states is therefore (2p+ 1)(N − 1) + 1, with
c2 = −2p and c1 = 0. This leaves the filling, de-
fined as the number of particles per basis state, to be:

ν = N
(2p+1)(N−1)+1 →

N→∞
1

2p+1 . The first equality shows

that, for N = 2 and p = 1, the filling is 1/2 (as shown
schematically in Fig. 1). But the large N limit yields
ν → 1/3 for p = 1.

IV. MATRIX PRODUCT FORMULATION FOR
VORTEX ATTACHMENT

Recasting the Jastrow factors considered above in sec-
ond quantization allows a representation in terms of ma-
trix products. In the following, first-quantized N -body
operators O will be represented in second quantization
by Ô =

∫
Ψ̂†(r1) · · · Ψ̂†(rN )OΨ̂(r1) · · · Ψ̂(rN )dr1 · · · drN ,

where Ψ̂†(r) is a fermion field operator. Expanding the
field operators imposes a specific basis choice in Fock-
space: Ψ̂†(r) =

∑
n φn(r)ĉ†n, where ĉ†n creates a fermion

in the state φn. Using this expansion, Eq. (3) can be
rewritten as sums over T † using Shiota’s formula32 that,
in turn, allows a second-quantized representation (See
Appendix):

Ĵ 2p
γ = (−1)

pN(N−1)
2

N(N−1)∑
k=1

(−1)k

k!
×

∑
n1≥1,...,nk≥1

n1+...nk=N(N−1)

k∏
i=1

1

2ni

nip∑
l=0

(
nip

l

)
(−1)lM̂nip−lM̂l, (7)

where,

M̂l =
∑
n,n′

γln,n′ ĉ
†
nĉn′ (8)

defines a matrix in terms of variational parameters γln,n′ .

For γ = 1 they are given by γln,n′ = 〈φn|
(
T †
)l |φn′〉.

Section VI shows that the γ = 0 limit arises when the
variational parameters γln,n′ are chosen such that γln,n′ ∝
δl,1〈φn|

(
T †
)l |φn′〉.

Eqs. (7) and (8) define the centerpiece of this work.
Wavefunctions constructed from these Jastrow factors
can be compared directly with model diagonalization
without reference to parent Hamiltonians. The matrix
sizes in the above equations can, in some cases, exhibit
a basis-dependent exponential scaling with N which at
first appears prohibitive. Nonetheless, there are two sit-
uations where these relations can be used: 1) In their
exact form, Eqs. (7) and (8) are suited to small system
size validation studies. I demonstrate the validation pro-
cess below. Once validated, the ansatz wavefunctions in
their first-quantized form can be used in larger systems.
2) Writing the Jastrow factor in terms of a product over
matrices also allows use of well known approximations for
optimization, implementation, and validation. Approxi-
mate wavefunctions derived from Eq. (7) using singular
value decomposition will be explored in future work.

I rewrite the ansatz states, Eqs. (2), in second quanti-
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zation using Eq. (7):

|ψ̂1/(2p+1)〉 = Ĵ 2p
γ

N−1∏
n=0

ĉ†n|0̂〉. (9)

This form shows that J 2p
γ can be written as a sum

of matrix products acting on a column vector de-

fined by Φ̂ν∗=1 =
∏N−1
n=0 ĉ

†
n|0̂〉. Excited states can

also be constructed using a different constituent state:

ĉ†N−1+∆M

∏N−2
n=0 ĉ

†
n|0̂〉, where the n = N − 1 state incre-

ments by ∆M . I implement examples below.

V. APPLICATION TO SINGLE COMPONENT
LAUGHLIN STATES

As a useful first example I rewrite the Laughlin ground
state as a product of matrices21. A specific Jastrow fac-
tor and a specific constituent state (a Slater determinant)
are chosen and inserted into Eq. (2). This yields a spe-
cific operator form for the trial state. By choosing LLL
single-particle basis states in the symmetric gauge, the
familiar form for the first quantized Laughlin wavefunc-
tion is recovered. I then compute the matrix elements
used to rewrite the Laughlin wavefunction with Eq. (7)

I start with a specific operator form for the Jastrow
factor:

J 2p
γ=1 =

N∏
j<k

(
T †j − T

†
k

)2p

, (10)

and a specific constituent state:

|Φν∗=1〉 ∝
N∏
j<k

(
T †j − T

†
k

)
|0〉, (11)

where the vacuum is defined by 〈r|0〉 =
∏
j φn=0(rj).

The constituent state |Φν∗=1〉 is equivalent to a Slater de-
terminant. Substituting Eqs. (10) and (11) into Eq. (2)
leads to an operator form for the Laughlin state10,31:

|ψν=1/(2p+1)〉 =

N∏
j<k

(
T †j − T

†
k

)2p

|Φν∗=1〉

∝
N∏
j<k

(
T †j − T

†
k

)2p+1

|0〉. (12)

Here the wavefunctions are written in terms of basis-
independent Hilbert space translation operators. To con-
nect with more familiar forms for the Laughlin state, a
basis must be chosen.

The Laughlin wavefunction was originally constructed
in the symmetric gauge appropriate for a disk geome-
try. The LLL basis states in this gauge are5,8: φD

m =
zm(2π2mm!)−1/2 exp(−|z|2/4), in units of the magnetic
length, where z = x − iy is a complex planar coordi-
nate and m = 0, 1, ... indexes angular momentum. The

a
 b
 c


y
x


FIG. 2. (Color online) a) Schematic of two particles in an
angular momentum eigenstate in the disk geometry. Rings
set an average inter-particle spacing. b) Attaching one wave-
function vortex to each particle accounts for Pauli exclusion.
Attaching two additional vortices (γ = 1 and p = 1 in Eq. (3))
separates them further. c) Placing the two additional vortices
at the center (γ = 0 and p = 1 in Eq. (3)) forces occupancy
of higher angular momenta.

translation operators in this basis give: 〈r|(T †)l|φ0〉 =

fl
√

2ll!φD
l (r) = (2π)−1/2zl exp(−|z|2/4). The choice

fl = 1 yields the Laughlin wavefunction:

〈r|ψν= 1
2p+1
〉 ∝

N∏
j<k

(zj − zk)
2p+1

N∏
i=1

e−|zi|
2/4. (13)

This shows that the familiar form for the Laughlin state
follows from Eq. (2) with specific choices for the Jastrow
factor, the constituent state, and basis. Fig. 2 shows a
schematic for vortex attachment in this basis.

The Laughlin state can now be written in term of ma-
trix products using Eq. (7). To compute the matrix ele-
ments γln,n′ I require the translation operator to act as a
polynomial in z. This can be achieved using m → n to
map the problem to single-particle basis states on a 1D
graph labeled by n. Using

∫
d2rφD

n z
lφD
n′ = Γln′δn,n′+l,

leads to:

γln,n′ → Γln′δn,n′+l
} Laughlin in

Disk Basis.
(14)

where Γln is:

Γln′ ≡
√

2l(n′ + l)!

n′!
. (15)

This choice for the matrix elements completely spec-
ifies the Laughlin state in second quantization [using
Eq. (7), Eq. (9), and (14)] and defines a matrix prod-
uct representation equivalent to those in Ref. 21. I have
checked that the wavefunction amplitudes specified above
reproduce the Laughlin state obtained from the parent
Hamiltonian19.

VI. APPLICATION TO SPIN-ORBIT COUPLED
FERMIONS

In this section I now turn to a flat band problem
with non-polynomial basis states motivated by ultracold
atomic gas experiments26. In such experiments external
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FIG. 3. (Color online) The single-particle basis states as a
function of position for each spin component in Eq. (17) for
α = 100. The inset depicts the mapping between angular
momentum, indexed by m, and a 1D graph indexed by n.

lasers can be used to confine fermionic alkali atoms, e.g.,
40K, to 2D. Two hyperfine levels define a pseudo-spin.
The laser beam waist induces a parabolic trapping while
applied Raman beams have recently demonstrated the
ability to apply synthetic spin-obit coupling26. I first dis-
cuss single-particle properties of a model of Rashba SOC.
I then model interactions within a flat single-particle
band.

I begin with the full 2D model of two-component
fermions14–16,28,30:

Ĥ =

∫
d2rΨ̂†σ(r)

[
−~2∇2

2mp
+
mpωTr

2

2

+ ~λi (∂xσy − ∂yσx) +
gσ,σ

′

2D

2
Ψ̂†σ′(r)Ψ̂σ′(r)

]
Ψ̂σ(r)(16)

where the field operator Ψ̂†σ creates a fermion at r =
(x, y) in spin state σ =↑, ↓, ωT specifies the trapping
frequency due to a parabolic confinement of particles of
mass mp, λ is the strength of the Rashba term, and σ
are the Pauli matrices. For fermions, the interaction term

originates from a contact interaction, g↑,↓2Dδ(r− r′), with

strength g↑,↓2D =
√

8π~2as/mplz, where lz is the harmonic
confinement length along the z-direction and as is the
s-wave scattering length.

I first discuss the non-interacting limit (gσ,σ
′

2D = 0). The
single-particle part of the Hamiltonian can be rewritten:
H0 = (−i~∇+λmpẑ×σ)2/2mp +mpωTr

2/2. This form
shows that the Rashba term appears as a non-Abelian
vector potential that suggests a magnetic field-like inter-
pretation.

Recent work15,16,30 shows that low energy single-
particle basis states of trapped Rashba particles define
a flat band that resembles the LLL for strong SOC. For
ωT = 0 the eigenstates of H0 define a “Mexican-hat”
potential in momentum space. But the trapping gaps
out all but one low energy ring that forms a flat band
for α � 1, with α ≡ lT/lSO, lT ≡ (~/mpωT )1/2, and
lSO ≡ ~/mpλ. The degenerate single-particle energies,
≈ (1 − α2/2)~ωT + O(m2/α2), contribute just to the
zero-point energy. This shows that the flat band limit is
a good approximation for m < α.

The resulting single-particle basis states defining the

lowest energies are well approximated15 by spinor eigen-
states of total angular momentum, Lz + ~σz/2, with
eigenvalues ~(m+ 1/2):

φm(r, θ) =
exp(−r2/2α2)

Nm

(
eimθJm(r)

ei(m+1)θJm+1(r)

)
, (17)

where N2
m ≡ πα2 exp(−α2/2)[Im(α2/2) + Im+1(α2/2)]

defines the normalization, Jm (Im) are the Bessel (modi-
fied Bessel) functions, and lSO is the unit of length. The
φm(r, θ) define a helicity basis because these states are
also eigenstates of the helicity operator, σ · L, where L
is the angular momentum operator.

Adding the following term: −ωTσzLz, to H0 yields
Eq. (17) as exact eigenstates15. This simplifies calcula-
tion of interaction matrix elements but the term is not
straightforward to generate in atomic gas experiments.
It can be shown15 that, in the absence of a −ωTσzLz
term, Eq. (17) is still a good approximate solution to H0

for α� 1.

Eq. (16) is time-reversal invariant. As a result, the
single-particle basis states φm belong to a Kramers de-
generate pair, the other member having the opposite an-
gular momentum. The ansatz wavefunctions discussed
here can be generalized to a two-component basis but as
a first test I restrict the basis to a single component by
breaking time reversal symmetry with slow rotation.

Eq. (16) can be written in a rotating frame of reference.
Under slow rotation I include a term: −ωRLz, to im-
pose a splitting ∼ ~ωRm between the Kramers degener-
ate pairs. Dynamical corrections ∼ ω2

R can be ignored for
slow rotation33. Here I also assume that rotation induced
Zeeman terms discussed in Ref. 15 are canceled with an
applied Zeeman coupling. In this limit the spinors φm
form a basis in a degenerate kinetic energy band at fixed

total angular momentum, M ≡
∑N
i=1mi, for 0 ≤ m < α

and α� 1.

Eq. (17) defines a quasi-localized basis set that ap-
proximate LLL functions for r → 0. For α� 1 the basis
states are Gaussians in r but for α� 1 the Bessel func-
tion imposes an oscillating tail. Fig. (3) shows the peak
of φm increasing along r as m increases.

I now consider interactions, g↑,↓2D > 0 in Eq. (16). Re-
quiring m < α and α� 1 ensures the flat band limit. s-
wave scattering dominates interactions between ultracold

alkali atoms. I therefore use Vint → g↑,↓2Dδ(r − r′), where

g↑,↓2D is an experimentally tunable interaction strength be-
tween fermions of opposite spin34, in Eq. (1) with P pro-
jecting into φn. Projection follows from an expansion in
the flat band basis: Ψ̂† =

∑
m φmĉ

†
m, where ĉ†m creates a

fermion in the helicity eigenstate defined by Eq. (17). I
study the spectrum at fixed M . Working with fixed M
corresponds to a point along the Yrast line4. For fixed
M , the interaction then becomes the only non-constant
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term, thus leaving a Hamiltonian in the form of Eq. (1):

Ĥ ≈
g↑,↓2D

2

∑
{m}

〈φm1 , φm2 |φm3 , φm4〉ĉ†m1
ĉ†m2

ĉm3
ĉm4

, (18)

where the sum is over allowed indices, m1 +m2 = m3 +
m4. This shows that an interaction-only flat band model,
Eq. (1), derives from Ĥ. Eq. (18) also shows the form
of the interaction matrix used to numerically diagonalize

g↑,↓2Dδ(r− r′) in the φm basis.

I now discuss possible wavefunctions designed to cap-
ture the essential properties of the eigenstates of Eq. (18).
Fig. (3) shows that spatially decaying interactions should
decrease in strength as |m−m′| increases. This suggests
that here Eq. (3) [or, equivalently, Eq. (7) with m → n
] will offer an energetically favorable method to impose
vortex attachment because: 1) the basis defines a flat
band, 2) the basis states are only quasi-localized and
therefore define non-commuting density operators, and
3) Hilbert space translation spatially separates particles
to decrease the interaction energy.

To capture the effects of interactions I consider wave-
functions written at ν = 1/(2p+ 1) which correspond to
ground states at M = (2p+1)N(N−1)/2 and 2p+1 vor-
tices per particle. I use the formalism introduced above
[Eqs. (7)-(9)] to write ansatz states in the matrix product
form. I consider two different states (one with γ = 1 and
one with γ = 0) in the helicity basis.

A γ = 1 Laughlin-type state in the helicity basis can
be derived from the r → 0 limit of Eq. (17). I use the def-

inition of the matrices, γln,n′ = 〈φn|
(
T †
)l |φn′〉, in terms

of single-particle basis states. This can be done numeri-
cally for the basis states defined by φm but an analytic
expression is possible by noting that φm defines a LLL-
like Hilbert space of spinors. Using this I derive analytic
expressions for γln,n′ in the helicity basis.

I first note that delta function interactions will em-
phasize the short range part of the basis states. One can
show that, in the r → 0 limit, the upper and lower entries
in the spinor defining φm reduce to lowest Landau level
basis states, φD

m and φD
m+1:

φm →
1√
2

(
φDm,↑
φDm+1,↓

)
, (19)

where I have taken the limit r → 0 with r/α held con-
stant. This simplification allows use of the lowest Lan-
dau level basis states to define the matrix elements with:(
T †
)l |φDm′〉 = fm′Γ

l
m′ |φDm′+l〉, where fm′ is a variational

functional of m′.

Using Eq. (19) I find expressions for γln,n′ for the

Laughlin state in the helicity basis:

〈φm|
(
T †
)l |φm′〉

→
〈φDm,↑|

(
T †
)l |φDm′,↑〉+ 〈φDm+1,↓|

(
T †
)l |φDm′+1,↓〉

2

=
(fm′,↑Γ

l
m′ + fm′+1,↓Γ

l
m′+1)δm,m′+l

2
, (20)

where the arrow indicates the limit r → 0 with r/α held
constant. This expression allows a definition of the ma-
trix elements that define the Laughlin state in the helicity
basis:

γln,n′ → (Γln′ + Γln′+1)δn,n′+l
} Laughlin in

Helicity Basis
(21)

by setting fm′,↑ = fm′,↓ = 2 and m→ n. This choice for
fm simply adjusts the normalization. m dependence in
fm impacts energetics.

Eq. (20) can also be used to derive the matrix elements
for the central vortex state (defined by γ = 0). In setting
γ = 0 I note that the only terms that survive in Eq. (7)
have l = 1. This shows that Eq. (20) gives:

γln,n′ → (Γln′ +
Γl
n′+1√
n+1

)δn,n′+lδl,1

}
Central Vortex
in Helicity Basis

(22)

with l = 1, m→ n, fm′,↑ = 2, and fm′+1,↓ = 2/
√
m′ + 1.

This choice for fm′,↓ prevents the density from vanishing
at the center and was found to give the best overlaps in
numerics.

When these Jastrow factors are inserted into Eq. (9)
they offer distinct ansatz states that can be directly com-
pared with the results of exact diagonalization. Eq. (21)
places three vortices on each particle (γ = 1) to build
the Laughlin state in the helicity basis, Eq. (17). But
Eq. (22) places 2N vortices in the system center and one
on each particle (γ = 0) in the helicity basis. A numerical
routine (provided in EPAPS35) uses the simplicity of the
matrix product representation and matrix multiplication
methods on sparse matrices to generate these states.

VII. NUMERICAL RESULTS

I illustrate validation by comparing results from nu-
merical diagonalization of Eq. (18) with ansatz wavefunc-
tions defined by Eqs. (21) and (22) for p = 1.

Fig. 4 compares the density of the ansatz states with
the exact state. The Laughlin state describes a state with
uniform density near the trap center for large N . The
central vortex state, by contrast, shows a pronounced dip,
detailed in the inset. The density comparison shows good
agreement between the exact state and central vortex
state. The overlaps and energies in Table I also show
good agreement.

Decreasing α induces a transition from the central vor-
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FIG. 4. (Color online) Main Panel: Density as a function
of radial position for α = 100, N = 6 particles, and total
angular momentum M = 45 which corresponds to ν = 1/3.
The solid line results from diagonalization of the interaction-
only model, Eq. (18). The dotted [dashed] line was computed
using Eqs. (9) and (21) [Eqs. (9) and (22)] with p = 1. Inset:
the same as the dashed line but versus x and y.

tex state to a more uniform state. At smaller α, Eq. (21)
has a higher overlap (at most 0.5 at α ≈ 23) because in
this limit the basis states better approximate φD. Here
interactions appear to favor vortex attachment on each
particle. But the limit α ∼ 100 is consistent with the
flat band assumption, m < α. The central vortex state,
Eq. (22), therefore captures the low energy physics for
the physically relevant limit, α > 23.

VIII. INTERPRETATION AND OBSERVABLES

This section discusses the physical implications of the
numerical results. The wavefunction comparison shows
that, for α� 1, attaching three vortices to all N particles
is energetically less favorable than placing 2N vortices in
the system center and one on each particle. Such large
vortex states have been the subject of intense interest in
the literature (For reviews, see Refs. 3, 4, and 36). Here
the formation of a vortex is non-trivial because it mini-
mizes interaction energy only. There is no kinetic energy
in Eq. (18). This energetic competition is akin to the
non-trivial competition between inhomogeneous Wigner
crystals and uniform quantum liquids in the fractional
QH regime.

The energetics of vortex attachment are determined
by the precise form of the interaction and therefore the

TABLE I. Columns list, from left to right: the particle num-
ber, total angular momentum, interaction energy per particle
for the exact state and the central vortex state. The last col-
umn lists the overlap of the exact and the central vortex state.
The exact state was obtained from diagonalizing Eq. (18) and
the trial state from Eqs. (9) and (22) with p = 1 and α = 100.

The energies units are 2g↑,↓2D/l
2
T.

N M Exact Energy Trial State Energy Overlap
4 18 0.06919 0.07028 0.989
4 19 0.06449 0.06511 0.994
5 30 0.08424 0.08531 0.985
5 31 0.08062 0.08140 0.990
6 45 0.09839 0.09949 0.981
6 46 0.09547 0.09640 0.986

basis state functions. For α � 1 the Bessel functions
in φm impose an oscillating tail in r that manifests in
the interaction. The tail builds up an interaction en-
ergy cost as it runs through the rest of the system.
The central vortex state gains in energy by removing
the m = 0 state because the tail of this state overlaps
with the most particles. The numerical results did not
find evidence for a Laughlin-type state for α � 1. Such
uniform density states should be energetically more fa-
vorable for monotonically decreasing interactions estab-
lished by Gaussian-like bases, e.g., φD.

Two-thirds of the wavefunction vortices accumulated
at the system center, rather than on individual parti-
cles (as in Laughlin states). The accumulation of many
(∼ N) wavefunction vortices in one location suppresses
the density. These macroscopic vortices should be visible
in time-of-flight measurements of atomic gas systems4,36.
Such observations would imply the ability to control and
detect interaction-generated vortices as they relocate in
many-body states to minimize interaction energy.

IX. SUMMARY

I introduced an implementation of wavefunction vor-
tex attachment in a general matrix-product representa-
tion. I demonstrated the utility of this formalism by val-
idating wavefunctions constructed to describe a model of
trapped 2D atomic Fermi gases in the presence of syn-
thetic Rashba SOC and slow rotation. The flat band
limit led to a large central vortex.

The exact method introduced here allows straightfor-
ward validation of Jastrow-based ansatz states in small
system sizes. Small system sizes are valuable in study-
ing states with exponentially decaying correlations, e.g.,
topological quantum liquids. To reach larger system
sizes, approximations introducing singular value decom-
position with tensor network-based algorithms24, e.g.,
the density matrix renormalization group22,23, can be
used for scale-up.

I acknowledge support from the ARO (W911NF-12-1-
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0335) and DARPA-YFA (N66001-11-1-4122).

APPENDIX: PROOF OF EQUATION (7)

This section proves that the second-quantized form
of the Jastrow factor, Eq. (7), derives from the first-
quantized form. The proof follows a derivation of Sh-
iota’s formula32 (written in first quantization) and then
second quantizes the operators in this formula.

I start with the first-quantized Jastrow factor:

J 2p
γ=1 =

N∏
j<k

(
T †j − T

†
k

)2p

,

where, without loss of generality, I choose γ = 1. The
translation operators are understood to act on a suitably
chosen state. I have also assumed that the translation
operators act as ladder operators on a basis φn that has
been mapped to a 1D graph so that T †φn ∝ φn+1.

By defining a new operator:

Π ≡
N∏

j,k=1

[
1− ε

(
T †j − T

†
k

)p]
,

where ε is a small number, I can rewrite the Jastrow
factor as:

J 2p
γ=1 = (−1)pN(N−1)/2CoeffεN(N−1) [Π] ,

where CoeffεN(N−1) indicates the coefficient of the
εN(N−1) term in the expansion. Π can then be writ-
ten in terms of sums over translation operators using the
binomial theorem:

Π = exp

 N∑
i,j=1

log
{

1− ε
(
T †i − T

†
j

)p}
= exp

− ∞∑
n=1

εn

n

np∑
l=0

(
np

l

) N∑
i,j=1

(
T †i

)np−l (
−T †j

)l
= exp

[
−
∞∑
n=1

εn

n

np∑
l=0

(
np

l

)
(−1)ltnp−ltl

]
,

where the sum over all translation operators is:

tl ≡
N∑
j=1

(
T †j

)l
.

This form for Π shows that J 2p
γ=1 can be rewritten in

terms of a simple product over operator sums tl.
To find the εN(N−1) coefficient, the exponential can be

expanded:

Π =

∞∑
k=0

1

k!

[
−
∞∑
n=1

εn

n

np∑
l=0

(
np

l

)
(−1)ltnp−ltl

]k
.

By substituting Π into the equation for J 2p
γ=1, the sums

over k and n become finite because there are only a fi-
nite number of terms contributing to the pre-factor of
εN(N−1):

J 2p
γ=1 = (−1)

pN(N−1)
2

N(N−1)∑
k=1

(−1)k

k!
×

∑
n1≥1,...,nk≥1

n1+...nk=N(N−1)

k∏
i=1

1

2ni

nip∑
l=0

(
nip

l

)
(−1)ltnip−ltl.

This form for J 2p
γ is written with operator sums and

can therefore be rewritten in terms of operators in Fock
space.

The aboveJastrow factor can now be rewritten in sec-
ond quantization. I rewrite the operators tl in terms of
the field operators Ψ̂(r):

Ĵ 2p
γ = (−1)

pN(N−1)
2

N(N−1)∑
k=1

(−1)k

k!
×

∑
n1≥1,...,nk≥1

n1+...nk=N(N−1)

k∏
i=1

1

2ni

nip∑
l=0

(
nip

l

)
(−1)lM̂nip−lM̂l,

where the tl operators have become:

M̂l ≡
∫
drΨ̂†(r)

(
T †
)l

Ψ̂(r).

Here
(
T †
)l

Ψ̂(r) implies translation of orthonormal
single-particle basis states in a decomposition of the field
operators. This can be seen by expanding the field oper-
ators in terms of the basis states φn explicitly:

M̂l =
∑
n,n′

〈φn|
(
T †
)l |φn′〉ĉ†nĉn′

=
∑
n,n′

γln,n′ ĉ
†
nĉn′ ,

where ĉ†n creates a fermion in the state φn. Note that by
changing the form for γln,n′ , the γ = 0 limit can be ob-

tained. The matrices defined by M̂l are essentially single-
particle density matrices. The above derivation was spec-
ified to a Jastrow factor written for N single component
particles with basis states that can be mapped to a 1D
graph. The above derivation can be generalized to mul-
ticomponent bases and other graphs, Λ.
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