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Computational Algebraic Geometry Applied to Invariant Theory

Ryan Michael Shifler

(ABSTRACT)

Commutative algebra finds its roots in invariant theory and the connection is drawn from a
modern standpoint. The Hilbert Basis Theorem and the Nullstellenstatz were considered
lemmas for classical invariant theory. The Groebner basis is a modern tool used and is

implemented with the computer algebra system Mathematica. Number 14 of Hilbert’s 23
problems is discussed along with the notion of invariance under a group action of GLn(C).
Computational difficulties are also discussed in reference to Groebner bases and Invariant

theory.The straitening law is presented from a Groebner basis point of view and is
motivated as being a key piece of machinery in proving First Fundamental Theorem of

Invariant Theory.
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0.1 Introduction

The audience of the thesis is directed toward students who have successfully passed a se-
nior level abstract algebra course with minimal coding experience. The thesis is mostly
self-contained (i.e. all the the theory needed is either known in a previous course or stated
usually with proof).

An ideal I contained in C[x1, · · · , xn] is finitely generated. It is algorithmically possible
to a find Groebner basis G for I which is a computationally preferable generating set of I.
This allows us to algorithmically decide whether an arbitrary polynomial in C[x1, · · · , xn] is
an element of I. G can be used to find the roots of the generators of I. A Groebner basis
in the single variable polynomial ring case is the greatest common divisors of the generators
of I. Also, a Groebner basis and reduced Groebner basis are analogous to echelon form
and reduced echelon from, respectively. In addition Buchbergers algorithm is the analog of
Gauss-Jordan elimination. An explantation of Buchberger’s algorithm will be given and is
programmed into virtually all computer algebra systems, in particular Mathematica. Appli-
cations for Groebner bases exist in robotics, graph theory, and, for our purposes, invariant
theory.

For an introduction to invariant theory consider the quadratic polynomial f(x) = ax2+bx+c
over R. Suppose the discriminant b2 − 4ac > 0 giving the equation f(x) = 0 two distinct
soluctions x1 and x2. Let g : R → R be a change of variables, that is g is a one-to-one
and onto map. Let us consider the solutions to f(g(x)) = 0. Since there must exist distinct
x′1, x

′
2 ∈ R where g(x′1) = x1 and g(x′2) = x2. That is f(g(x)) has exactly two distinct

solutions. Similarly if b2 − 4ac = 0 we have f(x) = 0 and f(g(x)) = 0 have exactly one
solution, of multiplicity 2, and if b2−4ac < 0 then we have f(x) = 0 and f(g(x)) = 0 have no
solutions. The point is the sign of the discriminant and the number of solutions remain the
same under a change of coordinates [9]. Also note that the actual values of the discriminant
and the roots are probably different. Another example of the importance of invariance is in
hyperbolic geometry. We need a metric which does not change with an analytic change of
variables. It can be shown that

|g′(z)dz|
1− |g(z)|2

=
|dz|

1− |z|2

for any analytic self-conformal map g of the unit disk which gives rise to the desired metric [8].

Another notion of invariance presented is finding the Groebner bases of ideals where σ(f) ∈ I
for all f ∈ I and for all σ in some subgroup of Sn. The action, of course, being the permuta-
tion of indices of the indeterminates of f . One issue that occurs in finding a Groebner basis
of an ideal with the aforementioned property is that the symmetry can be lost and sometimes
the Groebner basis cannot be solved or is complicated. Examples will be presented.
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Invariant theory and commutative algebra have been tied together from the start of the
earliest research in the fields. Two well known theorems the Hilbert Basis Theorem and the
Nullstellensatz in commutative algebra were lemmas for David Hilbert’s work in invariant
theory. In the 1960’s Bruno Buchberger provided an algorithm to find a Groebner basis
which is an application to commutative algebra. The major part of the thesis is going full
circle and having commutative algebra solve problems in invariant theory.

The main question which will be attacked is a case of number 14 of Hilbert’s 23 problems.
The question asked is the ring of invariants of an algebraic group acting on a polynomial
ring always finitely generated? The answer is, in general, no with a counterexample provided
by Masayoshi Nagata in 1959. In the case presented, however, the answer is yes and our
interest is an algorithm to determine the generators.

The final topic studied will be a Groebner basis approach to the Straightening Algorithm.
The Straightening Algorithm is a key tool used to prove the First Fundamental Theorem of
Invariant Theory. Letting SLn(C), the set of all n × n matrices where the determinant is
one, act on C[xi,j] we are able to find the finite generating set. Moreover, this topic will put
the notion of a Groebner basis in a more general setting along with a more general notion
of Monomial Theory.

Throughout the thesis examples of Mathematica code will be given to emphasis the power of
the GroebnerBasis command. The code is given at the basis level where knowledge of For,
Do, and While loops may be the hardest aspect as far as coding is concerned. The literature
I found on the material seems to be light on actual implementation and as a result, this
thesis attempts to cross that bridge.

Groebner bases, Invariant theory, and computer implementation on mathematica are im-
portant in physical application, on the one hand with Groebner basis, but also from a pure
stand point with invariant theory. An interesting focus, during the time of the original in-
variant theory research, was the notion of constructivism. For example, the Hilbert Basis
Theorem is merely an existence statement which some mathematicians, like Leopold Kro-
necker, thought was inadequate.

The intertwined topics of invariant theory and commutative algebra-in particular compu-
tational algebraic geometry-will be examined throughout the thesis as the topics are fully
developed and explained with examples. As a result the reader will have a new perspective of
the connections between the topics studied with the motivations being purely mathematical.



Chapter 1

Groebner Bases

1.1 Ideals and Varieties

A subset of K[x1 · · · xn] is an ideal if (i) 0 ∈ I, (ii) if f, g ∈ I then f + g ∈ I, and (iii) if
f ∈ I and h ∈ K[x1 · · ·xn] then hf ∈ I.

The ideal generated by a set of polynomials is the algebraic structure that is used to find
the solution set, known as the affine variety. The affine variety is a geometric structure that
describes the solutions to all of our polynomial equation. Let K be a field and consider the
set, which is an ideal by contruction,

I = 〈f1, f2, · · · , fs〉 =

{
s∑
i=1

hifi : hi ∈ K[x1x2x3 · · ·xn]

}

The affine variety of I is

V (I) = {(a1, · · · , an) ∈ Kn : fi(a1, · · · , an) = 0 for all 0 ≤ i ≤ s}

The following is a theorem which connects the notions of ideals and varieties from [2].

Theorem: If 〈g1, g2, · · · , gt〉 = 〈f1, f2, · · · , fs〉 then V (g1, g2, · · · , gt) = V (h1, h2, · · · , hs).

Proof: Let 〈g1, g2, · · · , gt〉 = 〈h1, h2, · · · , hs〉. Let a ∈ V (g1, g2, · · · , gt) so 0 = gi(a) for
all 1 ≤ i ≤ t. Now each fj =

∑s
i=1 hjigi, for 1 ≤ j ≤ s, since fj ∈ 〈g1, g2, · · · , gs〉.

Then fj(a) =
∑s

i=1 hji(a)gi(a) = 0. Therefore, a ∈ V (f1, f2, · · · , ft). By a symmetric ar-
gument interchanging fj and gi, and s and t we prove the reverse inclusion. Therefore,
V (g1, g2, · · · , gt) = V (h1, h2, · · · , hs).QED.

So, if we have two different generating sets of the same ideal, then the affine variety of

3
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the generating sets are the same.

A similar definition for V (I) is as a follows: Let V ⊂ Kn be an affine variety. Then we
set

I(V ) = {f ∈ K[x1, · · · , xn] : f(a1, · · · , an) = 0 for all (a1, · · · , an) ∈ V }

1.2 Monomial Ordering

This section comes mostly from [2] and [3]. The multidegree of a monomial is a vector that
is used to describe the exponents in a monomial and is defined as follows. If xα = xr00 · · · x

rm−1

m−1 ,
then α = multidegree(xr11 · · ·xrnn ) = (r1, · · · , rn) ∈ Zn≥0

A monomial order is a rule used to order the terms in each polynomial. A monomial
order is a well ordering, a total ordering, and respects multiplication. An example of what it
means to respect multiplication is if x > y then xz > yz. Infinitely many monomial orders
exist in the multivariable case; lexicographical, graded lexicographical, and graded reverse
lex order are the most common.

Lexicographical Order: Let α = (α1, · · · , αn), β = (β1, · · · , βn) ∈ Zn≥0. We say α >lex β
if, in the vector difference α− β ∈ Zn, the leftmost nonzero entry is positive.

Lexicographical order is a dictionary order. This works by comparing two monomials by
first comparing the exponents of x1. If the exponents are different, then the monomial with
the largest exponent corresponding to x1 is the greatest. If the exponents are equal, move
on to x2 and repeat the same procedure this will either terminate, or move on to x3. The
process is repeated until a difference in exponents is found.

Graded Lex Order: Let α, β ∈ Zn≥0. We say α >grlex β if |α| =
∑n

i=1 αi > |β| = µni=1βi, or
|α| = |β| and α >lex β.

Graded Lex Order first compares the total degree of the monomial (recall the total de-
gree of xr11 · · ·xrnn is r1 + · · · + rn) and takes the monomial with the largest total degree to
be the greatest. If two monomials have the same total degree, then Lexicographical order is
used as a tie breaker.

Graded Reverse Lex Order: Let α, β ∈ Zn≥0. We way that α >grevlex β if |α| =
∑n

i=1 αi >
|β| =

∑n
i=1 βi, or |α| = |β| and the right most nonzero entry for α− β ∈ Zn is negative.

Graded Reverse Lex Order first compares total degree. Then, Lex order is used where
the variables are reordered so the largest is now the smallest, the second largest is the sec-
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ond smallest, and so on. In other words, lexicographical order uses xn > xn−1 > · · · > x2 >
x1 > x0 as the order on the variables.

The leading term of a polynomial g, LT (g), is the greatest term in a polynomial under
the respective monomial order. Naturally, the leading term will usual depend on the mono-
mial order. For example, let g = x3y+ xy2z2 + x2y2z with x > y > z. Then x3y, x2y2z, and
xy2z2 are the leading terms under lexicographical, graded lexicographical, and graded reverse
lex orders, respectively. From this point forward x > y > z and x0 > x1 > x2 > · · · > xn
will be the order placed on the variables.

All monomials orders can be described from a set of weight vectors. For an example let
~w1, · · · , ~ws be a set of weight vectors that guarantee a monomial order. Given 2 mono-
mials xr11 x

r2
2 x

r3
3 · · ·xrnn and xs11 x

s2
2 x

s3
3 · · ·xsnn we must find the multidegree associated with

the monomial. So, the α = multidegree(xr11 x
r2
2 x

r3
3 · · ·xrnn ) = (r1, r2, r3, · · · , rn) and β =

multidegree(xs11 x
s2
2 x

s3
3 · · ·xsnn ) = (s1, s2, s3, · · · , sn). To use the weight vectors we first do

w1 · α and w1 · β. If ~w1 · α > ~w1 · β then α > β. If the dot products are equal then do
the same computation on ~w2. Repeat this process until a strict inequality is reached moving
from ~wk to ~wk+1. Since this is a monomial order the process will terminate [3].

For example lexicographical order can be described with the weight vectors

~w1 = (1, 0, 0)

~w2 = (0, 1, 0)

~w3 = (0, 0, 1)

Now consider the monomials x3y2z2 and x3yz100. Note α = multidegree(x3y2z2) = (3, 2, 2)
and β = multidegree(x3yz100) = (3, 1, 100). Then α · ~w1 = 3 = β · ~w1 so then we move onto
~w2. Since α · ~w2 = 2 > 1 = β · ~w2 we conclude x3y2z2 > x3yz100 under this ordering.

The following is a lemma that proves the monomials xm1 , x
m
2 , · · · , xmn have the same or-

der under every monomial order. The proof uses the fact that all monomial orders can be
described with weight vectors.

Theorem (Example of using weight vectors): If a monomial order has the restric-
tion x1 > x2 > x3 > · · · > xn, then xm1 > xm2 > xm3 > · · · > xmn .

Proof:
Let ~w1, ~w2, · · · , ~ws be weight vectors that guarantee a monomial order such that x1 > x2 >
x3 > · · · > xn. Let α = multidegree(xi) and β = multidegree(xj) for 1 ≤ i < j ≤ n. Then
either ~w1 ·α > ~w1 · β or ~wl ·α = ~wl · β for 1 ≤ l < k ≤ s and ~wk ·α > ~wk · β since α > β. Let
~wl = (wl1 , · · · , wln). For the first case we have w1i > w1j which implies w1i ·m > w1j ·m.
For the second case we have wli = wlj for 1 ≤ l < k and wki > wkj . Then, wli ·m = wlj ·m
for 1 ≤ l < k and wki ·m > wkj ·m. This shows multidegree(xmi ) > multidegree(xmj ), or
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xmi > xmj .QED

1.3 Multivariable Division Algorithm

This section comes from [2]. We move to another important preliminary idea, the multivari-
able division algorithm. The algorithm will be necessary for many computations and theory
in this paper. The algorithm is analogous to the single variable division algorithm learned
in high school. Division of

f ∈ K[x1x2 · · ·xn]

by

f1, f2, · · · , fs ∈ K[x1x2 · · ·xn]

allows for f to written as

f = c1f1 + c2f2 + · · ·+ csfs + r

where the leading term of r is not divisible by the leading term of any of the divisors.

Consider x3yz+x3y2z2 divided by {x2yz + yz, xy + xyz2} under lexicographical order. Then,

x3yz + x3y2z2 = (x+ xyz)(x2yz + yz) + (−y)(xy + xyz2) + xy2 − xyz.

Now after seeing what it does we will state the algorithm as presented in [2]. The first step
is to fix a monomial order and the proceed as below.

Input: f1, · · · , fs, f
Output: a1, · · · , as, r
a1 := 0, · · · , as := 0; r = 0
p := f
WHILE p 6= 0 DO
i := 1
divisionoccured := false
While i ≤ s AND divisionoccured = false DO
IF LT (fi) divides p THEN
ai := ai + LT (p)/LT (fi)
p := p− (LT (p)/LT (fi))fi
divisionoccured := true
ELSE
i := i+ 1
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IF divisionoccured = false THEN
r := r + LT (p)
p := p− LT (p)

This invokes a new definition. Let f and f1, · · · , fs be as they are in the algorithm. Let
F = {f1, · · · , fs}. Then f̄F is the remainder output by the algorithm above.

The following is the example above being computed in Mathematica. The output of the
PolynomialReduce command is {{a1, · · · , as}, r} based on the notation in the algorithm.

In[1]:= f = x3 ∗ y ∗ z + x3y2z2;
F = {x2 ∗ y ∗ z + y ∗ z, x ∗ y + x ∗ y ∗ z2};

In[2]:= PolynomialReduce[f, F, {x, y, z}, MonomialOrder − > Lexicographic]

Out[2]= {{x+ xyz,−y}, xy2 − xyz}

This concludes our short study of the multivariable division algorithm.

1.4 Hilbert Basis Theorem

We continue this introduction to Groebner basis with some famous results that many texts,
including [2], [3], [7], [1], call theorems. However, these famous results in commutative al-
gebra were actually lemmas in David Hilbert’s study on invariant theory. We will call these
famous results lemmas and we will see their power in our study on invariant theory.

The first is the Hilbert Basis Lemma. This says every ideal of K[x1 · · ·xn] is finitely gener-
ated. Care needs to be taken when looking at generators of a polynomials ring of an ideal.
For example, the ideal I = 〈x2, y3〉 = {h1x

2 + h2y
3 : h1, h2 ∈ K[x1 · · · xn]} . If we let h1 = 0

and h2 = y, we have y4 ∈ I. However, y4 can not be written in terms of the indeterminates
x2 and y3. So, I 6= K[x2, y3].

To present the Hilbert Basis Lemma two lemmas will be presented whose results are rel-
evant to the study of Groebner bases. The first is known as Dickson’s Lemma and is a first
glimpse at finite generation of an ideal. The proof can also be found in [2].

Dickson’s Lemma: Let
〈
xα : α ∈ A ⊂ Zn≥0

〉
. Then I can be written in the form I =〈

xα(1), · · · , xα(s)
〉
, where α(1), · · · , α(s) ∈ A. In particular, I has a finite basis.
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Proof by induction on the number of variables: Let n = 1 and I = 〈xα|α ∈ A ⊂ Z〉. Choose
β ≤ α for all α ∈ A. Thus, I =

〈
xβ
〉
.

Let n > 1 and suppose the theorem holds for n − 1. We will work in K[x1, · · · , xn−1, y]
so every monomial has the form xαyp where α ∈ Zn−1

≥0 and p ∈ Z.

Let I =
〈
xαyp : (α, p) ∈ A ⊂ Zn≥0

〉
⊂ K[x1, · · · , xn−1, y] be a monomial ideal.

Let J = 〈xα : xαym ∈ I for some m ∈ Z≥0〉. Our inductive hypothesis holds so
J =

〈
xα(1), · · · , xα(s)

〉
. For each i between 1 and s we have xα(i)ymi ∈ I for some mi ≥ 0.

Let m = max{mi}. Now consider Jk =
〈
xβ : xβyk ∈ I for some m ∈ Z≥0

〉
for each k, 0 ≤

k ≤ m− 1. Then hour theorem holds in this case so Jk =
〈
xαk(1), · · · , xαk(sk)

〉
. The claim is

I is generated by some subset of

D = {xα(1)ym, · · · , xα(s)ym}
⋃(

m−1⋃
k=0

{xαk(1)yk, · · · , xαk(sk)yk}

)
.

Now we claim that every monomial in I is divisible by some element in D. Let xαyp ∈ I.
If p ≥ m then xαyp is divisible by some xα(i)ym by the construction of J . If p ≤ m − 1
then xαyp is divisible by some element of Jp by construction. Thus we have proven the ever
monomial in I is divisible by some element in D thus 〈D〉 = I.

Now we know that I =
〈
xδ1 , · · · , xδj

〉
where xδi ∈ D. (Note the difference in notation

δ ∈ Zn≥0). Now xδi ∈ I thus xδi is divisible by some xα(i)yp(i) with (α(i), p(i)) ∈ A. Thus

I =
〈
xα(1)yp(1), · · · , xα(j)yp(j)

〉
. Thus the theorem is proven.QED.

Thus we have proven finite generation for ideals with the form
〈
xα : α ∈ A ⊂ Zn≥0

〉
. We

now follow with the next important lemma. The proof can also be found in [2]

Lemma: Let I ⊂ K[x1 · · ·xn] be an ideal. Then there exists a set A where 〈LT (I)〉 =〈
xα : α ∈ A ⊂ Zn≥0

〉
and there exist g1, · · · , gt ∈ I such that 〈LT (I)〉 = 〈LT (g1), · · · , LT (gt)〉.

Proof: The leading monomials LM(g) of elements g ∈ I − {0} generate the ideal
〈LM(g) : g ∈ I − {0}〉. Since LM(g) and LT (g) differ by a nonzero constant, this ideal
equals 〈LT (g) : g ∈ I − {0}〉 = 〈LT (I)〉 .

Since 〈LT (I)〉 is generated by the monomials LM(g) for g ∈ I − {0}, Dickson’s Lemma
assures use that 〈LT (I)〉 = 〈LM(g1), · · · , LM(gt)〉 for finitely many g1, · · · , gt ∈ I. Since
LM(gi) differs from LT (gi) by a nonzero constant, it follows that
〈LT (I)〉 = 〈LT (g1), · · · , LT (gt)〉. QED.

We now present the Hilbert Basis Lemma. The proof of the following theorem can also
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be found in [1] and [2].

Hilbert Basis Lemma: Every ideal I ⊂ K[x1 · · ·xn] has a finite generating set. That
is I = 〈g1, · · · , gt〉 for some g1, · · · , gt ∈ I.

Proof: If I = {0}, we take our generating set to be {0}, which is finite. If I contains some
nonzero polynomial, then a generating set g1, · · · , gt for I can be constructed as follows. By
the above proposition, there are g1, · · · , gt ∈ I such that 〈LT (I)〉 = 〈LT (g1), · · · , LT (gt)〉.
We claim that I = 〈g1, · · · , gt〉.

First note that 〈g1, · · · , gt〉 ⊂ I since g1, · · · , gt ∈ I. Let f ∈ I be any polynomial. If
we apply the division algorithm to divide f by {g1, · · · , gt}, then we get an expression of the
form f = a1g1 + · · ·+ atgt + r where no term of r is divisible by any of LT (g1), · · · , LT (gt).
We claim that r = 0. To see this, note that r = f − a1g1 − · · · − atgt ∈ I. If r 6= 0, then
LT (r) ∈ 〈LT (I)〉 = 〈LT (g1), · · · , LT (gt)〉. By the proof of Dickson’s lemma it follows that
LT (r) must be divisible by some LT (gi). This contradicts what it means to be a remainder,
consequently r must be zero. Thus f ∈ I.QED.

1.5 Groebner basis

Everything in this section is found from [2]. Given a set of polynomials, g1, g2, · · · , gq, find-
ing the variety of I = 〈g1, g2, · · · , gq〉 can be computationally difficult for certain generators.
This leads to the notion of a Groebner Basis.

Groebner basis: Fix a monomial order >.A finite set of polynomials {h1, · · · , ha} ⊂ I
is a Groebner basis if 〈LT (h1), · · · , LT (ha)〉 = 〈LT (I)〉 where 〈LT (I)〉 is the ideal generated
by all the leading terms in the ideal I.

Theorem: (i)Every ideal I ⊂ K[x1 · · ·xn] has a Groebner basis G under any monomial
order and (ii)I = 〈G〉.

Proof: (i) is an immediate result of the Proposition immediately proceeding Hilbert’s Basis
(Theorem) Lemma. (ii) is by the construction of the Hilbert Basis (Theorem) Lemma’s
proof.QED.

A Groebner basis for an ideal I can be arrived at algorithmically. A Groebner basis for
an ideal I is a set of polynomials that is easier to work with in computational setting with
few exceptions. Groebner bases are usually dependent on the monomial order. For example,
consider I = 〈x− z4, y − z5〉. The Groebner bases under lexicographical and graded lexico-
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graphic order are respectively {x− z4, y − z5} and
{xz − y, z4 − x, yz3 − x2, y2z2 − x3, x4 − y3z}.

One example of a Groebner basis is a linear set of equations in echelon form. Another
example is in the single variable case. Let f, g ∈ K[x] where K is a field. Then, {gcd(f, g)}
is a Groebner basis of 〈f, g〉.

A reduced Groebner basis for an ideal I ⊂ K[x1 · · ·xn] is a Groebner basis G for I
such that for all distinct p, q ∈ G, no monomial appearing in p is a multiple of LT (q). We
follow with another definition which will be of use later. A monic Groebner basis is a
reduced Groebner basis in which the leading coefficients of every polynomial is 1, or is empty
if I = 〈0〉[3].

1.6 Buchberger’s Criterion and Algorithm

Everything in this section can be found in atleast [2]. Buchberger’s criterion is satisfied for
set of polynomials if and only if the set is a Groebner basis. Buchberger’s criterion will be
used to be sure that our sets of polynomials is a Groebner basis. The S-Polynomial is
defined as

S(gi, gj) =
yα

LT (gi)
gi −

yα

LT (gj)
gj

where yα = LCM(LT (gi), LT (gj)).

Theorem: Let I be a polynomial ideal. Then a basis G = {g1, · · · , ga} for I is a Groebner
basis for I if and only if for all pairs i 6= j, the remainder on division of S(gi, gj) by G is
zero.

Proof: This proof can be found on page 85 of [2].

Theorem: Given a finite set G ⊂ k[x1, · · · , xn], suppose that we have f, g ∈ G such
that the leading monomials of f and g are relatively prime, then we know the remainder on
division of S(f, g) by G is zero.

Proof: This proof can be found on page 104 of [2].

Buchberger’s Algorithm is let I = 〈f1, · · · , fs〉 6= {0} be a polynomial ideal. Then a Groeb-
ner basis for I can be constructed in the following way:

Input: F = (f1, · · · , fs)
Output: a Groebner basis G = (g1, · · · , gt) for I, with F ⊂ G
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G := F
REPEAT G′ := G
FOR each pair {p, q}, p 6= q in G′ DO

S := ¯S(p, q)
G

IF S 6= 0 THEN G := G ∪ {S}
UNTIL G = G′.

The following is an example of computing a Groebner basis in the computer algebra system
Mathematica. First we give two examples for ways to compute reduced Groebner bases for
both, Lexicographical and graded reverse lexicographic order. The first uses the built in
mathematical monomial order, and the second uses weight matrices. The rows in the weight
matrices are the weight vectors discussed above with w1 being row one, w2 being row two
and so on.

In[1] := F = {x− z4, y − z4};
V = {x, y, z};

In[2]:= GroebnerBasis[F, V, MonomialOrder − > Lexicographic]

Out[2] = {y − z4, x− z4}

In[3]:= M = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

In[4]:= GroebnerBasis[F, V, MonomialOrder − > M]

Out[4] = {y − z4, x− z4}

In[5]:= GroebnerBasis[F, V, MonomialOrder − > DegreeReverseLexicographic]

Out[5] = {−x+ y,−y + z4}

In[6]:= M1 = {{1, 1, 1}, {0, 0, -1}, {0, -1, 0}};

In[7]:= GroebnerBasis[F, V, MonomialOrder − > M1]

Out[7] = {−x+ y,−y + z4}

Recall that we have assumed x > y > z as the order on the variables, the Groebner Basis
command returned a reduced Groebner bases, and Groebner bases are dependent on mono-
mial orders. Finally, a result that may be found in [2] states a reduced Groebner basis for a
given monomial order is unique up to scalar multiplication.



Chapter 2

Symmetric Ideals with an Original
Result

2.1 Definitions and Examples of Desired Result

Everything in this section and the next is from [12]. We discuss how invariants and Groebner
bases are related beginning with a result we will spend the next few pages proving. In this
section we will consider K[x0 · · ·xm−1] where K is a field. The results examples and results
are true for any monomial order with x0 > x1 > · · · > xm−1 by using the Theorem on
page 5. Let Sm act on K[x0 · · ·xm−1] in the natural way. Let σ ∈ Sm then we say an ideal
I ⊂ K[x0 · · ·xm−1] is σ-Symmetric if σ(I) = I. For example I = 〈x2

0 + x2
1 + x2

2, x0x1x2〉 is
(0, 1, 2)-Symmetric.

We will move on to the specific case when σ = (0, 1, · · · ,m − 1) and the ideal is generated
by the orbits of the polynomial xn0 +xnd , that is Imd = 〈σ(xn0 + xnd) : σ ∈ 〈(0, 1, · · · ,m− 1)〉〉 .
From the construction Imd is a (0, 1, 2, · · · ,m− 1)-Symmetric ideal. Now define an identical
ideal but in a different way using modular arithmetic. We will see this is beneficial when
trying to prove our big result for this section.

Let 1 ≤ d ≤ m
2

be the distance between variables where d = d(xi, xj) = |j − i| or
d = m− d(xi, xj). Let the ideal generated by a circulant system of polynomials be

Fm
d =

〈
xni − xndi : 0 ≤ i ≤ m− 1, di ≡ i+ d(mod m)

〉
Nothing is lost restricting d to be between 1 and m

2
. If d > m

2
, then using m− d will lead to

the same results. For example, the m = 6 and d = 4 case is

12
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0 = −xn0 +xn2
0 = −xn1 +xn3
0 = −xn2 +xn4
0 = −xn3 +xn5
0 = xn0 −xn4
0 = xn1 −xn5

Each polynomial equation in this system is a polynomial in the m = 6 and d = 2 case
multiplied by −1. So the d = 2 and d = 4 cases for m = 6 results in the same system.

It is not difficult to see that Imd = Fm
d for 1 ≤ d ≤ m

2
.

Example 1:
Continuing with the circulant system of polynomials previously discussed

0 = xn0 −xn2
0 = xn1 −xn3
0 = xn2 −xn4
0 = xn3 −xn5
0 = −xn0 +xn4
0 = −xn1 +xn5

In this case m = 6 and d = 2 and the ideal we are working with is

F = 〈xn0 − xn2 , xn1 − xn3 , xn2 − xn4 , xn3 − xn5 ,−xn0 + xn4 ,−xn1 + xn5 〉 .
Let F ′ = {xn0 − xn2 , xn1 − xn3 , xn2 − xn4 , xn3 − xn5 ,−xn0 + xn4 ,−xn1 + xn5}

We will now check to see if F ′ is a Groebner basis. As already stated if two polynomials
have relatively prime leading terms, the division of the corresponding S-polynomial by F ′

results in a remainder of 0. Hence, it is only necessary to check polynomials with the same
leading terms. Notice how the first two and last two equations in our list share leading
terms while the rest are in the middle. Inorder to generalize this method for any d and m,
let A = {xn0 − xn2 , xn1 − xn3}, B = {xn2 − xn4 , xn3 − xn5}, and C = {xn0 − xn4 , xn1 − xn5} so that
F = 〈A ∪B ∪ C〉. So now we must only check the polynomials in A and C. To finish we
will find the two S-polynomials and divide them by F ′ and check to see if the remainder is
0. First,

S(xn0 − xn2 , xn0 − xn4 ) = −xn2 + xn4

and −xn2 + xn4 = −1(xn2 − xn4 ) + 0. As for our second two polynomials,

S(xn1 − xn3 , xn1 − xn5 ) = −xn3 + xn5
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and −xn3 +xn5 = −1(xn3 −xn5 ) + 0. So we have a remainder of 0 for both and hence we have a
Groebner basis. The division of the S-polynomial by F ′ only used polynomials in B, and as
it turns out, the size of B is what forces F ′ to be a Groebner basis. A Universal Groebner
basis is a Groebner basis under every monomial ideal. So, F is a universal Groebner basis.
Then, we can find a reduced universal Groebner basis for F . This is a simple computation
in this case and we find {xn0 − xn4 , xn1 − xn5 , xn2 − xn4 , xn3 − xn5}.

Example 2:
Let m = 7 and d = 2 for F . We claim the set of generators of F is not a Groebner basis. We
will use a similar construction to a more general proof like we did in the previous example.
The corresponding polynomial equations are

0 = xn0 −xn2
0 = xn1 −xn3
0 = xn2 −xn4
0 = xn3 −xn5
0 = xn4 −xn6
0 = −xn0 +xn5
0 = −xn1 +xn6

The ideal we are concerned with is

F = 〈xn0 − xn2 , xn1 − xn3 , xn2 − xn4 , xn3 − xn5 , xn4 − xn6 ,−xn0 + xn5 ,−xn1 + xn6 〉 .
Let F ′ = {xn0 − xn2 , xn1 − xn3 , xn2 − xn4 , xn3 − xn5 , xn4 − xn6 ,−xn0 + xn5 ,−xn1 + xn6}

Like we did early, we will divide up F ′ into three sets like we did in the previous example. Let
A = {xn0 − xn2 , xn1 − xn3}, B = {xn2 − xn4 , xn3 − xn5 , xn4 − xn6}, C = {xn0 − xn5 , xn1 − xn6}. So now
we have F = 〈A ∪B ∪ C〉. We must check to see that the S-polynomials of two polynomials
in F does not result in 0. Lets choose the first equation in A and B.

S(xn0 − xn2 , xn0 − xn5 ) = −xn2 + xn5

Proceed using the multivariable division algorithm we find

−xn2 + xn5 = −1(xn2 − xn4 )− 1(xn4 − xn5 )

= −1(xn2 − xn4 )− 1(xn4 − xn6 )− 1(xn6 − xn5 )

Now we can see that the remainder is xn5 − xn6 since no polynomial in F ′ has xn5 as a leading
term. So now we can conclude that F ′, when m = 7 and d = 2, is not a Groebner basis.

The following lemmas and proposition show F ′ is a universal Groebner basis if and only
if d divides m. Redefining the generators of F into 3 disjoint sets will allow the proofs to be
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completed. Let A =
{
xni − xni+d : 0 ≤ i ≤ d− 1

}
, B =

{
xni − xni+d : d ≤ i ≤ m− d− 1

}
, and

C =
{
xni − xni+(m−d) : 0 ≤ i ≤ d− 1

}
. Now we have F = 〈A ∪B ∪ C〉 and F ′ = A∪B∪C. In

order to prove this final result we must distinguish between m < 3d and m ≥ 3d. Proposition
1 and 2 will cover the case of when m < 3d and are relatively straightforward computations.

2.2 Main Results

Proposition 1: Let m < 3d. If m = 2d+ r where 1 ≤ r ≤ d− 1, then F ′ is not a Groebner
Basis.

Proof:
Proceeding with checking Buchberger’s criterion, consider S(xn0−xnd , xn0−xnm−d) = xnd−xnm−d.
Since m = 2d+ r where 1 ≤ r ≤ d− 1 we know xnd − xn2d ∈ B. So by the division algorithm
we have

xnd − xnm−d = (xnd − xn2d) + (xn2d − xnm−d).

Since m < 3d implies m− d < 2d, the leading term of xn2d − xnm−d is xnm−d. Since xnm−d − xn2d
is a none zero remainder in F ′ since xnm−d is not the leading term of any polynomial in F ′.
So F ′ is not a Groebner Basis.Q.E.D.

Propostion 2: If m = 2d, then F ′ is a universal Groebner basis.

Proof:
First note

〈
xni − xndi : 0 ≤ i ≤ m− 1, di ≡ i+ d(mod m)

〉
= 〈A

⋃
C〉 since m = 2d so B is

empty. Also, we see each polynomial in A is the same as one in C and vice versa. So, we can
eliminate each polynomial in C since they are redundant and consider 〈A〉. Since each leading
term is disjoint from the other so A is a Groebner basis. Then, F ′ is a Groebner basis.Q.E.D.

So now we know that if m < 3d then F is a universal Groebner basis if and only if m = 2d.

For the m ≥ 3d case we start of with two preliminary lemmas that will be used to be
sure that each step in the multivariable division algorithm can be made and that the algo-
rithm terminates.

Lemma 2: Let m = (q + 2)d for some positive integer q, equivalently d divides the or-
der of B, and 0 ≤ i ≤ d−1. If 1 ≤ w ≤ q then i+wd < i+(m−d) and d ≤ i+wd ≤ m−d−1.

Proof:
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Let 1 ≤ w ≤ q then, i + wd ≤ i + qd < i + (q + 1)d = i + (q + 2)d − d = i + m − d and
d ≤ i+ wd ≤ i+ qd = i+m− 2d ≤ m− d− 1 for 0 ≤ i ≤ d− 1.

Lemma 3: If m = (q + 2)d + r for 1 ≤ r ≤ d − 1, then d ≤ kd ≤ m − d − 1 for
1 ≤ k ≤ q + 1 and m− d < (q + 2)d.

Proof:
Let 1 ≤ k ≤ q+1 then, d ≤ kd ≤ (q+1)d < (q+1)d+1 ≤ (q+1)d+r = (q+2)d+r−d = m−d.
Also, m− d = (q + 1)d+ r < (q + 2)d.

Lemma 2 is used in the forward direction of Proposition 3 and Lemma 3 is used for the
converse. The converse is proved by the contrapositive.

Proposition 3: Let m ≥ 3d. m = (q + 2)d for some positive integer q if and only if
F ′ is a university Groebner basis.

Proof:
First, Lemma 1 shows there is only one way to order the terms in each polynomial so we
need to show that F ′ is a Groebner Basis. Also, since division of the S-polynomial by F ′ of
polynomials with relatively prime leading terms results in a remainder of zero, it suffices to
check polynomials with the same leading term.

S(xni − xni+d, xni − xni+(m−d)) = xni+d − xni+(m−d) for 0 ≤ i ≤ d− 1.

Let Rk = xni+kd−xni+(m−d), so in the first iteration of the multivariable division algorithm we
have

xni+d − xni+(m−d) = 1 ∗ (xni+d − xni+2d) + (xni+2d − xni+(m−d))

We can see the previous equations takes on the form R1 = 1 ∗ f +R2 for some f ∈ B.

Does Rk = 1 ∗ g +Rk+1 for some g ∈ B provided k ≤ q? We have

xni+kd − xni+(m−d) = 1 ∗ (xni+kd − xni+(k+1)d) + (xni+(k+1)d − xni+(m−d))

According to Lemma 2, (xni+kd − xni+(k+1)d) ∈ B since k ≤ q. So now in our multivariable
division algorithm we have a sequence of “remainders” R1, R2, · · · , Rs. The following shows
that Rq+1 = 0,

xni+qd − xni+(m−d) = 1 ∗ (xni+qd − xni+(q+1)d)

Since m − d = (q + 2)d − d = (q + 1)d, so Rq ∈ B. So now we can conclude that F is a
universal Groebner basis.
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For the converse let m = (q + 2) + r where q is positive integer and 1 ≤ r < d − 1.
Consider the division of S(xn0 − xnd , xn0 − xnm−d) = xnd − xnm−d by F ′. Then proceeding with
the first iteration of the multivariable division algorithm we have

xnd − xnm−d = (xnd − xn2d) + (xn2d − xnm−d).

We know from Lemma 3, xnd − xn2d ∈ B. Now consider xnkd − xnm−d for 1 ≤ k ≤ q + 1. Using
the division algorithm we have

xnkd − xnm−d = (xnkd − xn(k+1)d) + (xn(k+1)d − xnm−d).

We know (xnkd−xn(k+1)d) ∈ B by Lemma 3. We will eventually need to divide xn(q+1)d−xnm−d.
So by the division algorithm that we have,

xn(q+1)d − xnm−d = (xn(q+1)d − xn(q+2)d) + (xn(q+2)d − xnm−d).

Once again by Lemma 3 we know xn(q+1)d − xn(q+2)d ∈ B. Also, we have xnm−d − xn(q+2)d as the
remainder since the leading term is xnm−d from Lemma 3 and no other polynomial in F ′ shares
the same leading term. Hence, F ′ is not a Groebner basis. We have now shown the following:

Theorem: The generators of F , which is denoted by F ′, is a universal Groebner basis
if and only if d divides m.

For an example for finding the reduced Groebner basis, let’s consider F for m = 9 and
d = 3. The polynomials are listed below.

xn0 −xn3
xn1 −xn4

xn2 −xn5
xn3 −xn6

xn4 −xn7
xn5 −xn8

−xn0 +xn6
−xn1 +xn7

−xn2 +xn8

We know from the previous theorem we have a universal Groebner basis. We will now
construct a reduced universal Groebner basis. Since the last 3 polynomials share a leading
term with the first three polynomials, we can remove them and be left with

xn0 −xn3
xn1 −xn4

xn2 −xn5
xn3 −xn6

xn4 −xn7
xn5 −xn8
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No monomial in any polynomial can be the leading term of another polynomial. So xn0 , xn1 ,
xn2 , xn3 , xn4 , xn5 may only exist in this system as leading terms. So to remove xn3 from the first
polynomial, we will add (xn0 − xn3 ) + (xn3 − xn6 ) = xn0 − xn6 to the system and remove xn0 − xn3 .
So the Groebner basis is now

xn0 −xn6
xn1 −xn4

xn2 −xn5
xn3 −xn6

xn4 −xn7
xn5 −xn8

To remove xn4 and xn5 from their respective polynomials are similar process will be used. So
we will add (xn1 −xn4 ) + (xn4 −x7

n) = xn1 −xn7 and (xn2 −xn5 ) + (xn5 −x8
n) = xn2 −xn8 and remove

xn1 − xn4 and xn2 − xn5 . So the system is now

xn0 −xn6
xn1 −xn7

xn2 −xn8
xn3 −xn6

xn4 −xn7
xn5 −xn8

All the conditions necessary to be a reduced Universal Groebner basis are satisfied. The
corollary builds off this example and the proof is parallel to the example above.

Corollary: If m = (q + 2)d for some positive integer q, then F has a reduced Universal

Groebner basis(RUGB) taking the form
{
xnl+kd − xnl+(m−d) : 0 ≤ l ≤ d− 1, 0 ≤ k ≤ m

d
− 2
}

.

Proof:
From the theorem we know F ′ is a universal Groebner basis. Also, since the polynomials in
C have the same leading terms as those in A, we can eliminate each polynomial in C. So
now we have F =

〈
xni − xni+d : 0 ≤ i ≤ m− d− 1

〉
. Define fl = xnl − xnl+d for simplicity. We

will now construct a reduced Groebner basis.

fl+kd + fl+(k+1)d + fl+(k+2)d + · · ·+ fl+qd = xnl+kd − xnl+(q+1)d = xnl+kd − xnl+(m−d)

for 0 ≤ l ≤ d− 1 and 0 ≤ k ≤ |B|
d

= m
d
− 2. So we now have{

xn0+kd − xn0+(m−d), x
n
1+kd − xn1+(m−d), x

n
2+kd − xn2+(m−d), · · · , xn(d−1)+kd − xnm−1 : 0 ≤ k ≤ m

d
− 2
}
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and we must check to be sure it is infact a Reduced Groebner Basis. With the use of the
following inequality,

xn0 < xn1 < · · · < xn(d−1)+(m
d
−2)d = xnm−d−1 < xnm−d < xn1+(m−d) · · · < xnm−1

we can see that the criteria necessary for a Reduced Groebner Basis has been satisfied.Q.E.D.

2.3 Symmetric Ideals and Computational Difficulties

See [11] for more information on what this section is presenting. To a more general and
interesting connection between Groebner bases and (0, 1, · · · ,m − 1)-Symmetric ideals we
consider the ideal generated by the following polynomials:

x0 + · · ·xm−1

x0x1 + x1x2 + · · ·+ xm−2xm−1 + xm−1x0

...

x0x1 · · · xm−2 + x1x2 · · ·xm−1 + · · ·+ xm−2xm−1 · · ·xm−4 + xm−1x0 · · ·xm−3

x0 · · ·xm−1 − 1.

This ideal is called cyclic(n) and the variety V (cyclic(m)) are called cyclic n-roots. Finding
a Groebner bases for m greater than 7 is computationally difficult and Stefan Steidel makes
use of the fact cyclic(n) is a (0, 1, · · · ,m− 1)-Symmetric ideal in [S] to compute a Groebner
basis for m = 9.

There are other systems that carry on this notion of circulation that are much more elaborate.
One such example is

0 = ynxm +xnym +znzm

0 = znxm +ynym +xnzm

0 = xnxm +znym +ynzm

Notice in this system xm, ym, and zm are fixed while yn, xn, and zn are shifted.

The following is an image of the graphs of each of the three polynomials above with n = 3
and m = 4.
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Figure 2.1: Graph for n = 3 and m = 4 case

The variety of these polynomials is the intersection of these three graphs. The circulation
in the original polynomial system seems to have a connection with the graphical symmetries
seen above. The following is the list of the polynomials that compose the reduced Groebner
basis under graded lexicographical order.

y7 + x4z3 + x3z4, x4y3 + x3y4 + z7, x7 + y4z3 + y3z4, x2y7z − xy7z2 + 2y7z3 + y6z4 + y4z6 +
x2yz7−xy2z7 +2y3z7,−y10 +x3y4z3−x3y3z4 +z10, x3y7 +y7z3 +y6z4−x3z7 +x2yz7−xy2z7 +
y3z7, xy10 +y11−xz10−z11, xy7z3 +y8z3 +xy6z4 +2y7z4 +x3z8,−y8z3−y7z4 +xy4z6 +x3yz7−
x2y2z7 +2xy3z7 +y4z7 +y3z8, xy8z3 +y9z3 +xy7z4 +3y8z4 +y7z5−xy4z7 +x2y2z8−2xy3z8−
y4z8−y3z9, x2y4z6 +xy5z6 +x2y3z7 +3xy4z7 +y5z7 +xy3z8 +y4z8, xy8z3 +x2y6z4 +4xy7z4 +
y8z4+xy6z5−y7z5−y6z6−y4z8−x2yz9+xy2z9−2y3z9, 5y13+7y12z+7y11z2+9y10z3+6y9z4+
2xy7z5 +2y8z5 +y7z6−2xy5z7−y6z7−2y5z8−6y4z9−9y3z10−7y2z11−7yz12−5z13,−27y13−
39y12z− 39y11z2− 57y10z3 + 12xy8z4− 40y9z4− 6y8z5 + 6xy6z6− 3y7z6 + 26xy5z7 + 9y6z7 +
18xy4z8 + 20y5z8 + 2xy3z9 + 32y4z9 + 45y3z10 + 39y2z11 + 39yz12 + 29z13, ?9y13 + 13y12z +
13y11z2+4xy9z3+27y10z3+28y9z4+6y8z5−6xy6z6+y7z6−26xy5z7−7y6z7−30xy4z8−20y5z8−
6xy3z9−20y4z9−15y3z10−13y2z11−13yz12−11z13, 3y12z+3y11z2 +3y10z3 +y9z4 +3xy6z6 +
3y7z6+4xy5z7+9y6z7+3xy4z8+4y5z8+xy3z9+y4z9+3x2z11−3xyz11−3yz12−2z13,−9y13−
15y12z − 15y11z2 − 21y10z3 − 16y9z4 + 6xy6z6 + 15y7z6 + 8xy5z7 + 9y6z7 + 6xy4z8 + 8y5z8 +
2xy3z9 + 20y4z9 + 6x2yz10− 6xy2z10 + 27y3z10 + 15y2z11 + 15yz12 + 11z13, 48y13z+ 73y12z2 +
74y11z3+23y10z4+6y9z5+5y8z6−5y6z8−6y5z9−23y4z10−74y3z11−73y2z12−48yz13, 24y14−
19y12z2− 14y11z3 + 43y10z4 + 30y9z5 + y8z6− y6z8− 30y5z9− 43y4z10 + 14y3z11 + 19y2z12−
24z14,−115y12z2+1858y11z3+6355y10z4−642y9z5+1033y8z6−48y7z7+935y6z8+3618y5z9+
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2717y4z10 + 542y3z11 + 115y2z12 + 4512xz13 + 2112yz13 + 10416z14, 1577y12z2 + 730y11z3 −
8873y10z4− 4026y9z5 + 469y8z6− 48y7z7 + 1499y6z8 + 7002y5z9 + 4512xy3z10 + 17945y4z10 +
6182y3z11 − 1577y2z12 + 2112yz13 + 5904z14,−167y12z2 − 166y11z3 + 1447y10z4 + 454y9z5 −
187y8z6+48y7z7−277y6z8+1504xy4z9−422y5z9−1495y4z10−730y3z11+167y2z12−608yz13−
1392z14, 91y12z2+158y11z3−1939y10z4−1542y9z5−121y8z6−168y7z7+1128xy5z8+241y6z8+
678y5z9+979y4z10+346y3z11−91y2z12+624yz13+1488z14,−51y12z2−510y11z3+2099y10z4+
2174y9z5+105y8z6+1504xy6z7+528y7z7+807y6z8−318y5z9−1123y4z10−322y3z11+51y2z12−
672yz13− 1776z14, 1197y9z6− 2459y8z7− 7490y7z8− 29252y6z9− 53363y5z10− 33881y4z11−
9260y3z12 − 5198y2z13 − 19649yz14 − 23705z15, 63y10z5 + 130y8z7 + 364y7z8 + 1426y6z9 +
2587y5z10 + 1612y4z11 + 439y3z12 + 253y2z13 + 931yz14 + 1105z15, 1197y11z4 − 1867y8z7 −
5047y7z8 − 20287y6z9 − 37273y5z10 − 22945y4z11 − 6196y3z12 − 4042y2z13 − 13993yz14 −
15502z15, 399y12z3 − 27y8z7 − 574y7z8 − 1607y6z9 − 3051y5z10 − 2341y4z11 − 767y3z12 +
198y2z13 +35yz14−905z15, 717y6z10 +2615y5z11 +1997y4z12 +488y3z13−320y2z14 +298yz15 +
1090z16, 717y7z9−5191y5z11−4282y4z12+1352y3z13+5731y2z14+4105yz15−812z16, 717y8z8+
2546y5z11+1238y4z12−7657y3z13−15008y2z14−12983yz15−4088z16, y3z14+6y2z15+6yz16+
5z17, y4z13 − yz16, y5z12 − 7y2z15 − 6yz16 − 6z17, y2z16 + yz17 + z18

Groebner bases are usually computationally preferable, however the reduced Groebner basis
is large. The complexity is of interest since the original polynomial system is clean and has
nice graphical symmetries.



Chapter 3

More Computational Algebraic
Geometry

3.1 Elimination Theory

Everything from this section can be found in [2]. Other useful references are [1] and [3].
Thus far we have discussed a what a Groebner basis is, but why do we care. One easy reason
is the ideal member problem. Let I ⊂ K[x1 · · ·xn] be an ideal. Let f ∈ K[x1 · · · xn]. Is
f ∈ I? To answer this question we compute a Groebner basis G of I and find f̄G. Then the
theorem below answers the question.

Theorem: Let {g1, · · · , gt} be a Groebner basis for an ideal I ⊂ K[x1, · · · , xn] and let
f ∈ K[x1, · · · , xn]. Then there is a unique r ∈ K[x1, · · · , xn] with the property that there is
a g ∈ I with f = g + r.

Proof: Using the division algorithm we have f = a1g1 + · · · + atgt + r where a1, · · · , at ∈
K[x1, · · · , xn]. Then let g = a1g1 + · · ·+ atgt ∈ I. So f = g + r.

For the uniqueness of r let f = g + r = g′ + r′ where g, r, g′, r′ are found using the di-
vision algorithm. Then r − r′ = g − g′ ∈ I. If r 6= r′ then LT (r − r′) ∈ LT (I). So
LT (gi)|LT (r − r′). for some gi. But this is a contradiction so r = r′.QED.

So we can infer from above that f ∈ I if and only if f
G

= 0, since r was found by us-
ing the division algorithm.

Another important reason to study Groebner bases is finding solution sets, the varieties,
corresponding to a system of polynomials. For an easy example, let’s consider the system in

22
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C[xyz]

x2 + z = 0

y2 − z = 0

z2 − 1 = 0.

One can readily check that that {x2 + z, y2 − z, z2 − 1} is a reduced Groebner basis under
lexicographic order with x > y > z since the GCD of the leading terms for any pair is 1. In
addition neither x2, y2, z2 divide z.

Now we will consider {x2 + z, y2 − z, z2 − 1} ∩ C[z] = {z2 − 1}. So we now have z2 − 1 =
0 if z = ±1. Then for {x2 + z, y2 − z, z2 − 1} ∩ C[yz] = {y2 − z, z2 − 1} we have
(1, 1), (1, 1), (i,−1), (−i,−1) as the solution set for y2 − z = 0 and z2 − 1 = 0. Fi-
nally by repeating the step above one more time we find that V (x2 + z, y2 − z, z2 − 1) =
{(i, 1, 1), (−i, 1, 1), (i,−1, 1), (−i,−1, 1), (1, i,−1), (1,−i,−1), (−1, i,−1), (−1,−i,−1)}.

The procedure seen above does generalize with a much deeper theory known as elimination
theory. We begin with a definition given I = 〈f1, · · · , fs〉 ⊂ K[x1 · · · xn] the lth elimination
ideal Il is the ideal of K[xl+1 · · ·xn] defined by Il = I ∩K[xl+1 · · ·xn]. For a check, I and
K[xl+1 · · ·xn] are subrings of K[x1 · · ·xn] so Il is a ring. Let f ∈ Il and h ∈ K[xl+1 · · ·xn].
Since f ∈ I we may say that f · h ∈ I since h ∈ K[xl+1 · · ·xn] ⊂ K[x1 · · · xn]. Also
f · h ∈ K[xl+1 · · ·xn] since K[xl+1 · · ·xn] is a ring. So Il is an ideal in K[xl+1 · · ·xn].

We follow with a theorem that gives the relationship between Groebner bases and elimi-
nation ideals. This will be a first glimpse to understand the general strategy of the example
given above. This result can also be found in [2].

The Elimination Theorem: Let I ⊂ K[x1 · · ·xn] be an ideal, let 0 ≤ l ≤ n and let G be
a Groebner basis of I with respect to a monomial ordering where any monomial involving
x1, · · · , xl is greater than all monomials inK[xl+1 · · ·xn]. Then the set Gl = G∩K[xl+1 · · ·xn]
is a Groebner basis of the l-th elimination ideal Il. When using lexicographic order with
x1 > x2 > · · ·xn the theorem is true for all 0 ≤ l ≤ n.

Proof: Let 0 ≤ l ≤ n and note that Gl = G ∩ K[xl+1 · · ·xn] ⊂ I ∩ K[xl+1 · · ·xn] = Il
since I ⊂ G. We need to show that 〈LT (Il)〉 = 〈LT (Gl)〉 to satisfy the definition of a
Groebner basis. Let f ∈ 〈LT (Gl)〉. So LT (gi) divides f for some gi ∈ Gl. Since gi ∈ Il as
well, we see that f ∈ 〈LT (Il)〉, thus proving the easy inclusion 〈LT (Gl)〉 ⊂ 〈LT (ll)〉.

Let f ∈ 〈LT (li)〉, that is f = LT (f ′) for some f ′ ∈ Il. Now f ′ ∈ I which indicates
LT (g) divided LT (f ′) for some g ∈ G. Since f ′ ∈ Il, this means that LT (G) involves only
the variables xl+1, · · · , xn. Since we are using an order in which any monomial involving
x1, · · · , xl is greater than all monomials in K[xl+1 · · ·xn], LT (g) ∈ K[xl+1 · · ·xn] implies
g ∈ K[xl+1 · · ·xn]. Thus we may say that g ∈ Gl. So we have proven the desired equality.



Ryan Shifler Computational Algebraic Geometry Applied to Invariant Theory 24

QED

3.2 Extension Theorem

Relating this theorem back to the previous example we see that {z2−1} and {y2− z, z2−1}
are Groebner bases of 〈x2 + z, y2 − z, z2 − 1〉 ∩K[z] and 〈x2 + z, y2 − z, z2 − 1〉 ∩K[yz], re-
spectively. There is another theorem, the Extension Theorem [2], that is used as a second
part to elimination theory and will be stated and not proved. The geometric version of
the Extension Theorem will then be stated and not proved so we can then prove Hilbert’s
Nullstellensatz, David Hilbert’s Lemma in invariant theory that is taken as a theorem in
commutative algebra.

The Extension Theorem: Let K̄ be an algebraically closed field. Let I = 〈f1, · · · , fs〉 ⊂
K̄[x1 · · ·xn] and let I1 be the first elimination ideal of I. For each 1 ≤ i ≤ s, write fi in
the form fi = gi(x2, · · · , xn)xNi1 + terms in which x1 has degree < Ni, where Ni > 0 and
gi ∈ C[x2 · · ·xn] is nonzero. Suppose that we have a partial solution (a2, · · · , an) ∈ V (I1). If
(a2, · · · , an) /∈ V (g1, · · · , gs), then there exists a1 ∈ C such that (a1, · · · , an) ∈ V (I).

With this theorem we can justify the steps we took to find the solutions in the exam-
ple above by first finding the solution to z2 − 1 = 0, y2 − z = z2 − 1 = 0, and finally
x2 + z = y2 − z = z2 − 1 = 0.

Geometric Extension Theorem: Give V = V (f1, · · · , fs) ⊂ K̄n, let gi be as the Ex-
tension Theorem. If I1 is the first elimination ideal of 〈f1, · · · , fs〉, then we have the equality
in K̄n−1

V (Il) = π1(V ) ∪ (V (g1, · · · , gs) ∩ V (l1)),

where π1 : K̄n → K̄n−1 is a projection onto the last n− 1 components.

3.3 Nullstellensatz

We start with the statement and proof of the Weak Nullstellensatz which will then be used
to prove the Hilbert Nullstellensatz.

Weak Nullstellensatz: Let K̄ be an algebraically closed field and let I ⊂ K̄[x1 · · ·xn]
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be an ideal satisfying V (I) = ∅. Then I = K̄[x1 · · ·xn].

Proof by induction: If n = 1 and I ⊂ K̄[x] satisfies V (I) = ∅ which means I = 〈c〉
where c is a nonzero constant since K̄[x] is a P.I.D and k̄ is algebraically closed. Then
1 = c · · · (1/c) ∈ I. So I = K̄[x].

Assume the result has been proved for the polynomial ring in n − 1 variable, which we
write as K̄[x2 · · ·xn]. Consider any ideal I = 〈f1, · · · , fs〉 ⊂ K̄[x1 · · ·xn] for which V (I) = ∅.
We may assume that f1 is not a constant since, otherwise, there is nothing to prove. So,
suppose f1 has total degree N ≥ 1. We will next change coordinates so that f1 has an
especially nice form. Namely, consider the linear change of coordinates

x1 = x̃1,

x2 = x̃2 + a2x̃1,
...

xn = x̃n + anx̃1.

where ai are as-yet-to-be-determined constants in K̄. Substitute for x1, · · · , xn so that f1

has the form

f1(x1, · · · , xn) = f1(x̃1, x̃2 + a2x̃1, · · · , x̃n + anx̃1)

= c(a2, · · · , an)x̃1
N + terms in which x̃1 has degree < N.

Since K̄ is a field, it does not have zero divisors, or else, f1 does not have degree N . So
c(a2, · · · , an) is nonzero for some a2, · · · , an.

With this choice of a2, · · · , an, under the coordinate change above every polynomial f ∈
K̄[x1 · · ·xn] goes over to a polynomial f̃ ∈ K̄[x̃1 · · · x̃n]. Note that we still have V (Ĩ) = ∅
since if the transformed equations had solutions, so would the original ones. Furthermore,
if we can show that 1 ∈ Ĩ, then 1 ∈ I will follow since constants are unaffected by the tilde
operation.

By the previous paragraph f1 ∈ Ĩ transforms to f̃1 ∈ Ĩ with the property

f̃1(x̃1, · · · , x̃n) = c(a2, · · · , an)x̃1
N + terms in which x̃1 has degree < N,

where c(a2, · · · , an) 6= 0. This allows us to use the Geometric Extension Theorem, to

relate V (Ĩ) with its projection into the subspace K̄ with coordinates x̃2, · · · , x̃n. Let
π1 : K̄n → K̄n−1 be the projection mapping onto the last n − 1 components. If we set
Ĩ1 = Ĩ ∩ K̄[x̃2 · · · x̃n] as usual, then parital solutions in K̄n−1 always extend. By the in-

duction hypothesis, it follows that I1 = K̄[x̃2 · · · x̃n]. But this implies 1 ∈ Ĩ1 ⊂ Ĩ, and this
completes the proof.QED.



Ryan Shifler Computational Algebraic Geometry Applied to Invariant Theory 26

Hilbert Nullstellensatz: Let K̄ be an algebraically closed field. If f, f1, · · · , fs ∈ K̄[x1 · · ·xn]
are such that f ∈ I(V (f1, · · · , fs)), then there exits an integer m ≥ 1 such that fm ∈
〈f1, · · · , fs〉(and conversely).

Proof: Given a nonzero polynomial f which vanishes at every common zero of the polynomial
f1, · · · , fs, we must show that there exists an integer m ≥ 1 and polynomials A1, · · · , As
such that fm =

∑s
i=1 Aifi.

Consider the ideal Ĩ = 〈f1, · · · , fs, 1− yf〉 ⊂ K̄[x1 · · · xny], where f, f1, · · · , fs are as above.

We claim that V (Ĩ) = ∅. To see this, let (a1, · · · , an, an+1) ∈ K̄n+1. Either (i) (a1, · · · , an)
is a common zero of f1, · · · , fs, or (ii) (a1, · · · , an) is not a common zero of f1, · · · , fs.

In case (i) f(a1, · · · , an) = 0 since f vanishes at any common zero of f1, · · · , fs. Thus the
polynomial 1−yf takes the value 1−an+1f(a1, · · · , an) = 1 6= 0 at the point (a1, · · · , an, an+1).

In particular (a1, · · · , an, an+1) /∈ V (Ĩ).

In case (ii), for some i, 1 ≤ i ≤ s, we must have fi(a1, · · · , an) 6= 0. Viewing fi as a function of
n+1 variables which does not depend on the last variable, we have fi(a1, · · · , an, an+1) 6= 0. In

particular, we again conclude that (a1, · · · , an, an+1) /∈ V (Ĩ). Since (a1, · · · , an, an+1) ∈ K̄n+1

was arbitrary, we conclude that V (Ĩ) = ∅ as claimed.

Now apply the Weak Nullstellensatz to conclude that 1 ∈ Ĩ. That is,

1 =
s∑
i=1

pi(x1, · · · , xn, y)fi + q(x1, · · · , xn, y)(1− yf)

for some polynomials pi, q ∈ K̄[x1 · · ·xny]. Now set y = 1/f(x1, · · · , xn). Then relation
above implies that

1 =
s∑
i=1

pi(x1, · · · , xn, 1/f)fi.

Multiply both sides of this equation by a power fm, where m is chosen sufficiently large
to clear all the denominators. This yields fm =

∑s
i=1 Aifi, for some polynomials Ai ∈

K̄[x1 · · ·xn]. QED.

Radical ideals and their relationship with Groebner bases have an important application
to invariant theory. An ideal is a I is radical if fm ∈ I for some integer m ≥ 1 implies that
f ∈ I. As a consequence let V be a variety and fm ∈ I(V ). If x ∈ V then fm(x) = 0 if and
only if f(x) = 0, so f ∈ I(V ). So I(V ) is a radical ideal [2].

We will denote and define the radical ideal of and ideal I ∈ K[x1 · · ·xn] by
√
I = {f : fm ∈ I for some integer m ≥ 1}
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Theorem: Let I ∈ K[x1, · · · , xn] be an ideal, then
√
I is an ideal and I ⊂

√
I.

Proof: First 0 ∈ I, thus 0 ∈
√
I by definition.

Let f, g ∈
√
I. So, f i, gj ∈ I for some i, j ∈ Z+. Then every term in the expansion

(f + g)i+j has the form fmgn. Either m ≥ i or n ≥ j since m < i, and n < j implies
m + n < i + j since we should have m + n = i + j. Thus, either fm or gn is in I so each
term is in I. Thus (f + g)i+j ∈ I. We may conclude f + g ∈

√
I.

Let f ∈
√
I and h ∈ K[x1 · · ·xn]. So f i ∈ I for some i ∈ Z+ and hi ∈ K[x1 · · ·xn].

Thus (fh)i = f ihi ∈ I. So, fh ∈
√
I. Therefore

√
I is an ideal.

Let f ∈ I, then f 1 ∈ I which implies f ∈
√
I. So I ⊂

√
I.QED.

We have developed enough machinery to present our next major theorem.

Nullstellenstaz Theorem: Let K be an algebraically closed field. If I ⊂ K[x1 · · ·xn] is
an ideal then I(V (I)) =

√
I.

Proof: Let K be an algebraically closed field and I ⊂ K[x1 · · ·xn] be an ideal. Let f ∈
√
I.

Then f i ∈ I for some i ∈ Z+. So f i vanishes on V (I) be definition and as a consequence f
vanishes on V (I). So f ∈ I(V (I)).

Let f ∈ I(V (I)). Then f vanishes on V (I) be definition. Now, by the Hilbert Nullstel-
lensatz, there exist i ∈ Z+ such that f i ∈ I. So f ∈

√
I by definition.

We have proven both directions of the inclusion so I(V (I)) =
√
I.QED.

We have now presented and proven the two lemmas necessary for our study of invariant
theory. Moreover, notice that we used Hilbert’s Basis Lemma to prove theorems about
Groebner basis, and then used Groebner basis theory to justify a step in the proof of the
Hilbert Nullstellensatz.



Chapter 4

Invariant Theory

4.1 Invariant Rings

This paper is about invariant theory using Groebner bases as an aid, but first it is impor-
tant to mention that invariant theory is useful for the study of Groebner basis. Examples
can be found in [7] chapter 2.6, and in many papers. One such example is [11] where an
alternative algorithm is presented for finding a Groebner basis when certain invariant condi-
tions are satisfied. We now discuss the key ideas of this invariant theory related to this paper.

We are working in the polynomial ring K[x1 · · ·xn], and let ~x = (x1, · · · , xn). For nota-
tional purposes, for all f ∈ K[x1 · · ·xn] we define f(~x) := f(x1, · · · , xn). Let G be a group
that acts on {~x}. We will say K[x1 · · ·xn]G is the set of all polynomials f ∈ K[x1 · · ·xn]
where f(σ~x) = f(~x) for all σ ∈ G.

We will define a polynomial f to be symmetric if f ∈ K[x1 · · ·xn]Sn were f(σ~x) :=
f(xσ(1), · · · , xσ(n)) for all σ ∈ Sn. Let GLn(K) denote the general linear group of n × n
matrices with entries coming from K. We let GLn(K) act on {~x} by matrix multiplica-
tion as A · ~xT for all A ∈ GLn(K). An immediate question that one can ask is: what are
K[x1 · · ·xn]Sn and K[x1 · · ·xn]GLn(K)? This is one of the main questions in invariant theory.
To answer this question satisfactorily, we must find f1, · · · , fs ∈ K[x1 · · ·xn], a finite number
s, such that K[x1 · · ·xn]Sn = K[f1 · · · fs], a similar notion for a finite subgroup of GLn(K),
and for GLn(K). Part of this notion is a case of Hilbert’s 14th problem which asks “Is the
ring of invariants of an algebraic group acting on a polynomial always finitely generated?”
We will eventually see that the answer to this question is yes for both Sn and finite subgroups
of GLn(K). We wish to find these generators.

We define S := {σr =
∑

i1<i2<···<ir xi1 · · ·xir : 1 ≤ r ≤ n} to be the set of elementary

symmetric polynomials and P = {sk = xk1 + · · ·+ xkn : 1 ≤ k ≤ n} to be the set of power

28
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sums. By our construction we have S,P ⊂ K[x1 · · ·xn]Sn .The answer for Sn is elementary
involving S and P for two different solutions which will be presented later. The answer is
not simple for a finite subgroup GLn(K) and GLn(K) in general. Heavier mathematical
machinery is needed and these solutions, non-constructive and constructive, will eventually
be presented.

4.2 Preliminary Results

These results can all be found [2] as either a stated result or problem.

Theorem: K ≤R K[x1 · · · xn]G ≤R K[x1 · · · xn].

Proof: (i) First note that K[x1 · · ·xn]G contains K since the group G acts on the inde-
terminates, thus all constant polynomials must be invariant.

(ii) It suffices to show that K[x1 · · ·xn]G is nonempty, which was shown by part (i), and
closed under subtraction and multiplication. Let f, g ∈ K[x1 · · ·xn]G. Let σ ∈ G, and
σ(x1, · · · , xn) = (xi1 , · · · , xin) then

((f − g)(σ(x1, · · · , xn))) = (f − g)(xi1 , · · · , xin))

= f(xi1 , · · · , xin))− g(xi1 , · · · , xin))

= f(x1, · · · , xn)− g(x1, · · · , xn)

= (f − g)(x1, · · · , xn).

Therefore, f − g ∈ K[x1 · · ·xn]G. Also,

((fg)(σ(x1, · · · , xn))) = (fg)(xi1 , · · · , xin))

= f(xi1 , · · · , xin))g(xi1 , · · · , xin))

= f(x1, · · · , xn)g(x1, · · · , xn)

= (fg)(x1, · · · , xn).

Therefore fg ∈ K[x1, · · · , xn]G. So, K[x1 · · ·xn]G ≤R K[x1 · · ·xn].QED.

Defintion: A polynomial f ∈ K[x1 · · · xn] is homogeneous of total degree k provided
that every monomial appearing in f has total degree k.

As an easy example of this definition, f(x, y, z) = x2y2z + x5 + y2z3 is a homogeneous
polynomial of degree 5. We follow with a theorem that connects the notion of homogenous
and symmetric polynomials. A homogeneous component is the sum of all the mono-
mials that share the same degree. For example f(x, y, z) is a homogeneous component of
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g(x, y, z) = x2y2z + x5 + y2z3 + xy + x4yz + yz + xz.

Theorem: A polynomial f ∈ K[x1 · · ·xn] is symmetric if and only if all of its homoge-
neous components are symmetric.

Proof: Given a symmetric polynomial f , let xi1 , · · · , xin be a permutation of x1, · · · , xn.
This permutation takes a term of f of total degree k to one of the same total degree. Since
f(xi1 , · · · , xin) = f(x1, · · · , xn), it follows that the k-th homogenous component must also
be symmetric. The converse is true since symmetric polynomials are closed under addition
as seen in the proof above.QED.

The following theorem is important since we can, in some situations, only worry about
homogeneous components which will simplify certain questions.

Theorem: A polynomial f ∈ K[x1 · · ·xn] is invariant under a group G ⊂ GLn(K) if
and only if its homogeneous components are.

Proof: ⇐Let f ∈ K[x1 · · ·xn] and the homogeneous components of f be invariant under
a group G ⊂ GLn(K). Then f is invariant under G since its homogeneous components are
invariant, and we have already proved closure under addition.

⇒ As for the converse, let f be invariant under G. Write f =
∑

1≤k≤n fk where fk is
the homogeneous component of degree k. The claim is fk(A~x) is a homogeneous polynomial
of degree k for all A ∈ G. Therefore, it suffices to show if xi11 · · ·xinn is monomial of total
degree k = i1 + · · ·+ in then (a1,1x1 + · · · a1,nxn)i1 · · · (an,1x1 + · · ·+an,nxn)in is a homogenous
polynomial of degree k. The justification is that fk(A~x) will be a homogeneous polynomial
of degree k since all the monomials change to homogeneous polynomials of degree k.

Let A = (ai,j). Then,

(a1,1x1 + · · · a1,nxn)i1 · · · (an,1x1 + · · ·+ an,nxn)in =

[∑
α∈i1

bi1αX
α

]
· · ·

[∑
α∈in

binαX
α

]
=

∑
αj∈ij

(bi1α · · · binα)Xα1 · · ·Xαn

where ij = {α ∈ Zn≥0 : α is the multinomial of a monomial in (aj,1x1 + · · · aj,n)in expanded}
and bijα is the respective coefficient. Finally, since Xαij is of degree j, then we have
Xα1 · · ·Xαn has degree k. The the theorem is proved.QED.

Theorem: Let A1, · · · , Am generate a group G. Then, f ∈ K[x1 · · ·xn]G if and only if
f(~x) = f(Ai~x) for all 1 ≤ i ≤ m.
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Proof:⇒ Let f ∈ K[x1 · · ·xn]G. Since A1, · · · , Am ∈ G then f(~x) = f(Ai~x) for all 1 ≤ i ≤ m.

⇐ Let f(~x) = f(Ai~x) for all 1 ≤ i ≤ m. Let A ∈ G, then A = B1 · · ·Bt where Bi ∈
{A1, · · · , Am} for each i. The proof precedes by induction. Then, f(A~x) = f(B1~x) = f(~x)
which is true by assumptions. Now suppose that f(B1 · · ·Bt−1~x) = f(~x). Then,

f(A) = f((B1B2 · · ·Bt−1)Bt~x)

= f(Bt~x)

= f(~x).

Therefore, f ∈ K[x1 · · ·xn]G and our theorem is proved.QED.

4.3 Examples, Solutions, and a New Theorem

We will first show that K[x1 · · ·xn]Sn = K[S] by proving a well known theorem found in [2],
and [4]. This theorem was initially proved by Gauss on his way to a second proof of the
Fundamental Theorem of Algebra. The earliest known statement of lex order was for the
theorem to follow.

Fundamental Theorem of Symmetric Polynomials: Every symmetric polynomial in
K[x1 · · ·xn] can be written uniquely as a polynomial in the elementary symmetric functions
σ1, · · · , σn.

Proof: Let f ∈ K[x1 · · ·xn] be any symmetric polynomial. Then the following algorithm
rewrites f uniquely as a polynomial in σ1, · · · , σn. We fix a monomial order < to be graded
lex order.

For any monomial xα1
1 · · ·xαnn occuring in the symmetric polynomial f also all its images

xα1
σ1 · · · xαnσn under any permutation σ of the variables occurring in f . This implies that
LT (f) = c · · ·xγ11 x

γ2
2 · · · xγnn of f satisfies γ1 ≥ γ2 ≥ · · · ≥ γn.

In our algorithm we now replace f by the new symmetric polynomial
f̃ := f−c·σγ1−γ21 σγ2−γ32 · · · σγn−1−γn

n−1 σγnn , we store the summand c·σγ1−γ21 σγ2−γ32 · · · σγn−1−γn
n−1 σγnn ,

and, if f̃ is nonzero, then we return to the beginning of the previous paragraph.

This process will terminate and here is why. By construction, the leading monomial of
c·σγ1−γ21 σγ2−γ32 · · ·σγn−1−γn

n−1 σγnn equals LT (f). Hence, in the difference defining f̃ the two lead-

ing monomial cancel, and we get LT (f̃) < LT (f). The set of monomials {m : m < LT (f)}
is finite because their degree is bounded and by well ordering. Thus, the algorithm must
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terminate.

For uniqueness, we will fix the monomial order to be lex. So suppose, in K[x1 · · ·xn] we
have g1(σ1, · · · , σn) = g2(σ1, · · · , σn) and then define g = g1 − g2. For a contradiction,
suppose g 6= 0 in K[y1 · · · yn]. If we write g =

∑
β aβy

β, then g(σ1, · · · , σn) is a sum

of the polynomials gβ = aβσ
β1
1 · · ·σβnn , where β = (β1, · · · , βn). Furthermore, LT (gβ) =

aβx
β1+···βn
1 xβ2+···βn

2 · · ·xβnn . Also note that (β1, · · · , βn) 7→ (β1 + · · · + βn, β2 + βn, · · · , βn) is
injective. Thus, the gβ’s have distinct leading terms. If we pick β such that LT (gβ) > LT (gγ)
for all γ 6= β, then LT (gβ) will be greater than all monomial terms of the gy’s. It follows
that nothing can cancel with LT (gβ) and we arrive at the contradiction g(σ1, · · · , σn) 6= 0.
QED.

With this we can conclude K[x1 · · · xn]Sn = K[S] and each f ∈ K[x1 · · · xn]Sn is written
in terms of S uniquely. We will now follow with computer implementation using Mathe-
matica. The command SymmetricReduction will rewrite polynomials in terms of sigk where
sigk := σk.

In[1] := f = x1 ∗ x2 ∗ x3 ∗ x42 + x1 ∗ x2 ∗ x32 ∗ x4 + x1 ∗ x22 ∗ x3 ∗ x4 + x12 ∗ x2 ∗ x3 ∗ x4;

In[2]:= SymmetricReduction[f, {x1, x2, x3, x4}, {sig1, sig2, sig3, sig4}]

Out[2]= {sig1 sig4, 0}.

The output is an ordered pair and 0 to the right of the comma in the output signifies f
is a symmetric polynomial. Moreover, the output also tells us f = σ1 · σ4.

To show that generators of K[x1 · · ·xn]Sn are not unique we will prove P is also a viable
set of generators. This result is found in [2].

Theorem: Let Q ⊂ K. Every symmetric polynomial in k[x1 · · ·xn] can be written as
polynomials in the power sums Sk for 1 ≤ k ≤ n.

Proof: From the Fundamental Theorem of Symmetric Polynomials it suffices to show that
every element of S can be written in terms of elements of P. We will now introduce the
well-known Newton Identities namely

sk − σ1sk−1 + · · ·+ (−1)kσk−1s1 + (−1)kkσk = 0, 1 ≤ k ≤ n

sk − σ1sk−1 + · · ·+ (−1)n−1σn−1sk−n+1 + (−1)σnsk−n = 0, k > 0.

To complete this proof. We will now proceed by induction. For k = 1, s1 and σ1 are defined
to be equal summands.

For the inductive hypothesis assume our claim is proved for 1, 2, · · · , k − 1, then directly
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from the Newton identities we see that

σk = (−1)k−1 1

k
(sk − σ1sk−1 + · · ·+ (−1)k−1σk−1s1).

We can divide by k since Q ⊂ K. Now, by our inductive hypothesis, we have prove that σk
can be written in terms of elements in P, thus our theorem is proved.QED.

As an example, we find generators for K[xy]K4 , where K4 =

〈(
−1 0
0 1

)
,

(
1 0
0 −1

)〉
.

(K4 is actually the Klein-4 group.) This example can be found on page 332 of [2].

First note that

(
−1 0
0 1

)(
x
y

)
=

(
−x
y

)
and

(
1 0
0 −1

)(
x
y

)
=

(
x
−y

)
. So

f ∈ K[xy]K4 if and only if f(x, y) = f(−x, y) = f(x,−y). Now we will write f =
∑

ij aijx
iyj.

Then we have the following

f(x, y) = f(−x, y)

⇔
∑
ij

ai,jx
iyj =

∑
ij

ai,j(−x)iyj

⇔
∑
ij

ai,jx
iyj =

∑
ij

ai,j(−1)ixiyj

⇔ ai,j = (−1)iai,j for all i, j

⇔ ai,j = 0 when i is odd.

Similarly,

f(x, y) = f(x,−y)

⇔
∑
ij

ai,jx
iyj =

∑
ij

ai,jx
i(−y)j

⇔
∑
ij

ai,jx
iyj =

∑
ij

ai,j(−1)jxiyj

⇔ ai,j = (−1)jai,j for all i, j

⇔ ai,j = 0 when j is odd.

Thus f ∈ K[xy]K4 if and only if f can be written in terms of x2 and y2. Therefore, we may
conclude K[xy]K4 = K[F] where F := {x2, y2}.

For another example we will find a set of generators for K[xy]G1 where G1 =

〈(
2 0
0 2

)〉
.

So now, doing a similar procedure, f ∈ K[xy] if and only if f(x, y) = f(2x, 2y). Then we
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will write f =
∑

ij ai,jx
iyj. So,

f(x, y) = f(2x, 2y)

⇔
∑
ij

ai,jx
iyj =

∑
ij

ai,j(2x)i(2y)j

⇔
∑
ij

ai,jx
iyj =

∑
ij

2i+jai,jx
iyj

⇔ ai,j = 2i+jai,j

⇔ ai,j = 0 or 2i+j = 1

So i + j = 0 which implies i = j = 0 since i, j ≥ 0. Thus f ∈ K[xy]G1 if and only if f is
constant. That is, K[xy]G1 = K[F1] where F1 = {1}.

Now for another less trivial example, we will find a set of generators for K[xy]G2 where

G2 =

〈(
2 0
0 1

2

)〉
.So now f ∈ K[xy] if and only if f(x, y) = f(2x, 1

2
y). Then we will write

f =
∑

ij ai,jx
iyj. So,

f(x, y) = f(2x,
1

2
y)

⇔
∑
ij

ai,jx
iyj =

∑
ij

ai,j(2x)i(
1

2
y)j

⇔
∑
ij

ai,jx
iyj =

∑
ij

2i−jai,jx
iyj

⇔ ai,j = 2i−jai,j

⇔ ai,j = 0 or 2i−j = 1

So i − j = 0 which implies i = j since i, j. Thus f ∈ K[xy]G1 if and only if f is written in
terms of xy. That is, K[xy]G1 = K[F2] where F2 = {xy}.

Let’s take a closer look at K4, G1, and G2. First, K4 =

〈(
−1 0
0 1

)
,

(
1 0
0 −1

)〉
={(

1 0
0 1

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 −1

)}
is finite.

ForG1 =

〈(
2 0
0 2

)〉
=

{(
2 0
0 2

)j
: j ∈ Z

}
=

{(
2j 0
0 2j

)
: j ∈ Z

}
. It is true

(
2j1 0
0 2j1

)
=(

2j2 0
0 2j2

)
implies j1 = j2 and

(
2j1 0
0 2j1

)(
2j2 0
0 2j2

)
=

(
2j1+j2 0

0 2j1+j2

)
Likewise for G2 =

〈(
2 0
0 1

2

)〉
=

{(
2 0
0 1

2

)j
: j ∈ Z

}
=

{(
2j 0

0 1
2

j

)
: j ∈ Z

}
. It
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is true

(
2j1 0

0 1
2

j1

)
=

(
2j2 0

0 1
2

j2

)
implies j1 = j2 and

(
2j1 0

0 1
2

j1

)(
2j2 0

0 1
2

j2

)
=(

2j1+j2 0

0 1
2

j1+j2

)
.

Thus φ1 : Z 7→ G1 defined by φ1(n) =

(
2n 0
0 2n

)
and φ2 : Z 7→ G2 defined by φ2(n) =(

2n 0
0 1

2

n

)
are both isomorphisms. So G1

∼= Z ∼= G2. The first point is that G1 and G2 are

infinite matrix groups. The second point is that even though these group are isomorphic,
the associated generators were different, that is F1 6= F2. The following is a new theorem
that was motivated by the examples above.

Theorem: Let n ∈ Z+ ∪ {0}. For all m ≥ n there exists G ∈ GLm(K) where G ∼= Z and
K[x1, · · · , xm]G ∼= K[x1, · · · , xn].

Proof: Let n ∈ Z+ ∪ {0} and m ≥ n. Choose primes with p1 < p2 < · · · < pm−n. Let

G =

〈


1
p1

0 · · · 0 0 0 · · · 0

0 1
p2
· · · 0 0 0 · · · 0

0 0
. . . 0 0 0 · · · 0

0 0 · · · 1
pm−n

0 0 · · · 0

0 0 · · · 0 Πm−n
i=1 pi 0 · · · 0

0 0 · · · 0 0 1 · · · 0

0 0 · · · 0 0 0
. . . 0

0 0 · · · 0 0 0 · · · 1



〉
.

Now the claim is K[x1, · · · , xm]G = K[x1, · · · , xn]. To see that note that f ∈ K[x1, · · · , xm]G

if and only if f( 1
p1
x1,

1
p2
x2, · · · , 1

pm−n
xm−n,Π

m−n
i=1 pixm−n+1, xm−n+2, · · · , xm) = f(x1, · · · , xm).

Then ∑
i1,··· ,im

ai1,··· ,im(
1

p1

x1)i1(
1

p2

x2)i2 · · · ( 1

pm−n
xm−n)im−n(Πm−n

i=1 pixm−n+1)im−n+1(xm−n+2)im−n+2 · · · (xm)im

=
∑

i1,··· ,im

ai1,··· ,im(x1)i1(x2)i2 · · · (xm−n)im−n(xm−n+1)im−n+1(xm−n+2)im−n+2 · · · (xm)im

⇔ ai1,··· ,im(
1

p1

)i1(
1

p2

)i2 · · · ( 1

pm−n
)im−n(Πm−n

i=1 pi)
im−n+1 = ai1,··· ,im

⇔ ai1,··· ,im = 0 or i1 = · · · = im−n+1.

So K[x1, · · · , xm]G = K[x1 · · ·xm−n+1, xm−n+2, · · · , xm]. To check to make sure we have the
correct number of indeterminates, note that m−(m−n+1)+1 = n. Thus K[x1, · · · , xm]G ∼=
K[x1, · · · , xn]. Finally, since G is generated by a diagonal matrix, G ∼= Z. Q.E.D.



Chapter 5

Groebner Bases and Invariant Theory

5.1 Invariant Rings and Decidability Theorems

These results and proofs can be found in [2]. The following theorem gives a way to rewrite a
symmetric polynomial in K[x1, · · · , xn] in terms of the elementary symmetric polynomials.
As we will see, an analogous result exists for GLn(K).

Theorem: In the ring K[x1 · · · xny1 · · · , yn], fix a monomial order where any monomial
involving one of x1, · · · , xn is greater than all monomials in K[y1 · · · yn]. Let G be a Groeb-
ner basis of the ideal 〈σ1 − y1, · · · , σn − yn〉 ⊂ K[x1 · · ·xny1 · · · yn]. Given f ∈ K[x1 · · ·xn].
Then:

(i) f is symmetric if and only if f̄G ∈ K[y1 · · · yn].

(ii) If f is symmetric, then f = f̄G(σ1, · · · , σn) is the unique expression of f as a poly-
nomial in the elementary symmetric polynomials in σ1, · · · , σn.

Proof: In the ring K[x1, · · · , xn, y1, · · · , yn], fix a monomial order where any monomial in-
volving one of x1, · · · , xn is greater than all monomials in K[y1, · · · , yn]. Let G = {g1, · · · , gt}
be a Groebner basis of the ideal 〈σ1 − y1, · · · , σn − yn〉 ⊂ K[x1 · · ·xny1 · · · yn]. Let f ∈
K[x1 · · ·xn]. Then, after division by G,

f = h1g1 + · · ·+ htgt + f̄G where h1, · · · , ht ∈ K[x1 · · · xny1 · · · yn].

We may assume g 6= 0 for all g ∈ G.

First for (i). First suppose f̄G ∈ K[y1 · · · yn]. Let yi := σi for each i in the formula
above. Note that f will not change since f is a function of the indeterminates x1, · · · , xn.
Now, 〈σ1 − y1, · · · , σn − yn〉 = 〈0〉, thus g1 = · · · = gt = 0. So we can now see that

36
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f = f̄G(σ1, · · · , σn). In other words, f is symmetric.

Let f ∈ K[x1 · · ·xn] be symmetric. Then f = g(σ1, · · · , σn) for some g ∈ K[y1 · · · yn].
We want to show g = f̄G. First we have in K[x1 · · ·xny1 · · · yn]

σα1
1 · · ·σαnn = (y1 + (σ1 − y1)α1 · · · (yn + (σn − yn)αn

= yα1
1 · · · yαnn +B1(σ1 − y1) + · · ·+Bn(σn − yn)

for some B1, · · · , Bn ∈ K[x1 · · ·xny1 · · · yn]. Then g(σ1, · · · , σn) can be written in the mono-
mials given above. Thus

f = g(σ1, · · · , σn) = C1(σ1 − y1) + · · ·+ Cn(σn − yn) + g(y1, · · · yn)

where C1, · · ·Cn ∈ K[x1, · · · , xn, y1, · · · , yn] by grouping in an appropriate way.

For a contradiction, suppose there is a term of g is divisible by an element of LT (G), that
is suppose for some i, LT (gi) divides a term of g. This immediately implies gi ∈ K[y1 · · · yn]
by our choice of monomial order and since g ∈ K[y1, · · · , yn]. Now define yi := σi. Since
gi ∈ 〈σ1 − y1, · · · , σn − yn〉, we have already seen that gi equals zero after f the substitution
given above. Then gi ∈ K[y1 · · · yn] means gi(σ1, · · · , σn) = 0. Thus, the uniqueness guaran-
teed by the Fundamental Theorem of Symmetric Polynomials implies that gi = 0, which is
a contradiction. So, no term of g is divisible by an element of LT (G). Thus, by the division
algorithm, g = f̄G.

As for (ii), this is true by the construction of (i).QED.

The following theorem is analogous to the one above and shows that we can use Groeb-
ner bases to rewrite polynomials in terms of the generators.
Theorem: Suppose that f1, · · · fm ∈ K[x1 · · ·xn] are given. Fix a monomial order where
any monomial involving one of x1, · · · , xn is greater than all monomials in K[y1 · · · yn].
Let G be a Groebner basis of the ideal 〈f1 − y1, · · · , fn − yn〉 ⊂ K[x1 · · ·xny1 · · · yn]. Let
f ∈ K[x1 · · ·xn]. Then:

(i) f ∈ K[f1 · · · fm] if and only if f̄G ∈ K[y1 · · · yn].

(ii) If f is symmetric, then f = f̄G(f1, · · · , fn) is the unique expression of f as a poly-
nomial in the elementary symmetric polynomials in f1, · · · , fn.

Proof: In the ring K[x1, · · · , xn, y1, · · · , ym], fix a monomial order where any monomial in-
volving one of x1, · · · , xn is greater than all monomials inK[y1, · · · , ym]. LetG = {g1, · · · , gt}
be a Groebner basis of the ideal 〈f1 − y1, · · · , fm − ym〉 ⊂ K[x1, · · · , xn, y1, · · · , ym]. Let
f ∈ K[x1 · · · xn]. Then, after division by G,

f = h1g1 + · · ·+ htgt + f̄G where h1, · · · , ht ∈ K[x1, · · · , xn, y1, · · · , ym].



Ryan Shifler Computational Algebraic Geometry Applied to Invariant Theory 38

We may assume g 6= 0 for all g ∈ G.

First for (i). First suppose f̄G ∈ K[y1 · · · ym]. Let yi := fi for each i in the formula above.
Now f will not change since f is the indeterminates x1, · · · , xn. Now, 〈f1 − y1, · · · , fm − ym〉 =
〈0〉, thus g1 = · · · = gt = 0. So we can now see that f = f̄G(f1, · · · , fm), in other words
f ∈ K[f1 · · · fm].

Let f ∈ K[f1 · · · fm]. Then f = g(f1, · · · , fn) for some g ∈ K[y1 · · · yn]. We want to
show g = f̄G. First we have in

σα1
1 · · ·σαnn = (y1 + (σ1 − y1)α1 · · · (yn + (σn − yn)αn

= yα1
1 · · · yαnn +B1(σ1 − y1) + · · ·+Bn(σn − yn)

for some B1, · · · , Bn ∈ K[x1, · · · , xn, y1, · · · , yn]. Then g(σ1, · · · , σn) can be written in the
monomials given above. Thus

f = g(σ1, · · · , σn) = C1(σ1 − y1) + · · ·+ Cn(σn − yn) + g(y1, · · · yn)

where C1, · · ·Cn ∈ K[x1 · · ·xny1 · · · yn] by grouping in an appropriate way.

Unlike before, f̄G need not equal g. To remedy this, let G′ = G ∩ K[y1 · · · ym]. Thus
G′ = {g′1, · · · , g′s}. Dividing g by G′ we find

g = D1g1 + · · ·+Dsgs + g′ where B1, · · · , Bs, g
′ ∈ K[y1 · · · ym].

Since for each i gi ∈ 〈f1 − y1, · · · fm − ym〉, we can combine the two previous equation and
fine

f = C ′1(f1 − y1) + · · ·+ C ′m(fm − ym) + g′(y1, · · · ym).

The claim is g′ = f̄G. For a contradiction and using the division algorithm, suppose there is
a term of g′ is divisible by an element of LT (G), that is suppose, for some i, LT (gi) divides
a term of g′. This immediately implies gi ∈ K[y1 · · · ym] by our choice of monomial order
and g′ ∈ K[y1, · · · , ym]. So gi ∈ G′. Since g′ is a remainder on division by G′, LT (gi) cannot
divide any term of g′ which is a contradiction. So, g′ = f̄G.

As for (ii), this is true by the construction of (i).QED.

We have two theorems which are implemented in Mathematica in the next section. The
results in the section are both intriguing and computationally useful.
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5.2 Decidability Algorithms Based on the Previous The-

orems

The first Algorithm is for the first Theorem in the previous section. We define a function
gbsym and f is the polynomial we wont to rewrite and n is the number of variables.

gbsym[f , n ]:=Do[{X = Union[Array[a, n],Array[sym, n]],gbsym[f , n ]:=Do[{X = Union[Array[a, n],Array[sym, n]],gbsym[f , n ]:=Do[{X = Union[Array[a, n],Array[sym, n]],

F = {},F = {},F = {},

Do[{F = Union[{SymmetricPolynomial[j,Array[a, n]]− sig[j]}, F ]}, {j, 1, n}],Do[{F = Union[{SymmetricPolynomial[j,Array[a, n]]− sig[j]}, F ]}, {j, 1, n}],Do[{F = Union[{SymmetricPolynomial[j,Array[a, n]]− sig[j]}, F ]}, {j, 1, n}],

{b, c} = PolynomialReduce[f,GroebnerBasis[F,X], X];{b, c} = PolynomialReduce[f,GroebnerBasis[F,X], X];{b, c} = PolynomialReduce[f,GroebnerBasis[F,X], X];

Print[c]}, {k, 0, 0}];Print[c]}, {k, 0, 0}];Print[c]}, {k, 0, 0}];

gbsym[a[1]∧10 + a[2]∧10 + a[3]∧10, 3]gbsym[a[1]∧10 + a[2]∧10 + a[3]∧10, 3]gbsym[a[1]∧10 + a[2]∧10 + a[3]∧10, 3]

sig[1]10−10sig[1]8sig[2]+35sig[1]6sig[2]2−50sig[1]4sig[2]3+25sig[1]2sig[2]4−2sig[2]5+10sig[1]7sig[3]−
60sig[1]5sig[2]sig[3]+100sig[1]3sig[2]2sig[3]−40sig[1]sig[2]3sig[3]+25sig[1]4sig[3]2−60sig[1]2sig[2]sig[3]2+
15sig[2]2sig[3]2 + 10sig[1]sig[3]3

The output above rewrites a[1]10 + a[2]10 + a[3]10 in terms of the elementary symmetric
polynomials. The next Algorithm is for the second theorem in the previous section. We
define a function gbinv. Where f is the polynomial we want to write in terms of F in n
variables.

gbinv[f , n ,F ]:=gbinv[f , n ,F ]:=gbinv[f , n ,F ]:=

Do[{X = Union[Array[a, n],Array[y,Length[F ]]], S = {},Do[{X = Union[Array[a, n],Array[y,Length[F ]]], S = {},Do[{X = Union[Array[a, n],Array[y,Length[F ]]], S = {},

Do[S = Union[S, {inv[j]}], {j, 1,Length[F ]}],Do[S = Union[S, {inv[j]}], {j, 1,Length[F ]}],Do[S = Union[S, {inv[j]}], {j, 1,Length[F ]}],

{b, c} = PolynomialReduce[f,GroebnerBasis[F − S,X], X];{b, c} = PolynomialReduce[f,GroebnerBasis[F − S,X], X];{b, c} = PolynomialReduce[f,GroebnerBasis[F − S,X], X];

Print[c]}, {k, 0, 0}]Print[c]}, {k, 0, 0}]Print[c]}, {k, 0, 0}]

F = {a[1]∧2 + a[2]∧2, a[1]∧3a[2]− a[1]a[2]∧3, a[1]∧2a[2]∧2};F = {a[1]∧2 + a[2]∧2, a[1]∧3a[2]− a[1]a[2]∧3, a[1]∧2a[2]∧2};F = {a[1]∧2 + a[2]∧2, a[1]∧3a[2]− a[1]a[2]∧3, a[1]∧2a[2]∧2};
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gbinv[a[1]∧8 + 2 ∗ a[1]∧6 ∗ a[2]∧2− a[1]∧5 ∗ a[2]∧3 + 2 ∗ a[1]∧4a[2]∧4 + a[1]∧3a[2]∧5+gbinv[a[1]∧8 + 2 ∗ a[1]∧6 ∗ a[2]∧2− a[1]∧5 ∗ a[2]∧3 + 2 ∗ a[1]∧4a[2]∧4 + a[1]∧3a[2]∧5+gbinv[a[1]∧8 + 2 ∗ a[1]∧6 ∗ a[2]∧2− a[1]∧5 ∗ a[2]∧3 + 2 ∗ a[1]∧4a[2]∧4 + a[1]∧3a[2]∧5+

2 ∗ a[1]∧2a[2]∧6 + a[2]∧8, 2, F ]2 ∗ a[1]∧2a[2]∧6 + a[2]∧8, 2, F ]2 ∗ a[1]∧2a[2]∧6 + a[2]∧8, 2, F ]

inv[1]4 − 2inv[1]2inv[3]− inv[2]inv[3]

gbinv[a[1]∧2 + a[2]∧2, 2, F ]gbinv[a[1]∧2 + a[2]∧2, 2, F ]gbinv[a[1]∧2 + a[2]∧2, 2, F ]

inv[1]

We give two samples of output above to verify the algorithm works. So now we can com-
putationally, using Groebner bases, rewrite polynomials in terms of the invariant generators
for Sn and finite subgroups of GLn(K).

5.3 Finding Invariants

The next definition and theorem can be found in [7].

Definition: Given a finite matrix group G ⊂ GLn(K), the Reynolds operator of G
is the map RG : K[x1 · · ·xn]→ K[x1 · · · xn] defined by REYG(f)(~x) = 1

|G|
∑

A∈G f(A · ~x) for

f(~x) ∈ K[~x].

Theorem: The Reynolds operator on a finite group has the following properties:

i)RG(λf + vg) = λRG(f) + vRG(g) for all f, g ∈ K[x1 · · ·xn] and λ, v ∈ K;
ii)RG|G is the identity map;
iii) RG(fI) = RG(f) · I for all f ∈ K[x1 · · ·xn] and I ∈ K[x1 · · ·xn]G.

Proof: Let G ⊂ GLn(K) be a finite group.

Let f, g ∈ K[x1 · · ·xn] and λ, v ∈ K. Then

REYG(λf + vg)(~x) =
1

|G|
∑
A∈G

(λf + vg)(A · ~x)

=
1

|G|
∑
A∈G

λf(A · ~x) + vg(A · ~x)

=
λ

|G|
∑
A∈G

f(A · ~x) +
v

|G|
∑
A∈G

f(A · ~x)

= λREYG(f) + vREYG(g).
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So i) is proven true.

Let f ∈ K[~x]G then f(A · ~x) = f(~x) for all A ∈ G. Then we see that

REYG(f)(~x) =
1

|G|
∑
A∈G

f(A · ~x) =
1

|G|
∑
A∈G

f(~x) = f(~x).

So ii) is proved.

Let f ∈ K[x1 · · ·xn] and I ∈ K[x1 · · ·xn]G. Then

REYG(fI)(~x) =
1

|G|
∑
A∈G

(fI)(A · ~x)

=
1

|G|
∑
A∈G

(f(A · ~x))(I(A · ~x))

=
1

|G|
∑
A∈G

(f(A · ~x))(I(~x))

= I(~x)
1

|G|
∑
A∈G

(f(A · ~x))

= (I ·REYG(f))(~x).

So, iii) is proved and we now know that G is reductive. QED.

A nonconstructive theorem that proves finite generation for K[~x]G when G is finite will
be presented which uses the Hilbert Basis Lemma. This result can be found in [4] and [7].

Hilbert Finiteness Theorem: The invariant ring K[~x]G of a finite matrix group G ⊂
GLn(K) is finitely generated.

Proof: Let K[~x]G+ denote the set of all homogeneous invariants of positive degree. From the
Hilbert Basis (Theorem) Lemma we see that

〈
K[~x]G+

〉
= 〈I1, · · · , Im〉 for some I1, · · · , Im ∈

K[~x]G+. Now it will be shown that K[~x]G = K[I1, · · · , Im].

For a contradiction suppose I ∈ K[~x]G − K[I1, · · · , Im] and where I is homogeneous of
minimum degree. Then I =

∑m
i=1 fiIi since I ∈ 〈I1, · · · , Im〉 for homogeneous polynomials

fi ∈ K[~x] and deg(fi) < deg(I). Now we see applying the Reynolds operator

I = REYG(I) = REYG

(
m∑
i=1

fiIi

)
=

m∑
i=1

REYG(fi)Ii.

Note that deg(REYG(fi)) = deg(fi) < deg(I). This means REYG(fi) ∈ K[I1, · · · , Im] and as
a consequence I ∈ K[I1, · · · , Im] which is a contradiction. So K[~x]G ⊂ K[I1, · · · , Im] since we
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proved it suffices to only consider homogeneous polynomials. Also, K[I1, · · · , Im] ⊂ K[~x]G

by construction. QED.

Since any I ∈ K[~x]G takes on the form I =
∑m

i=1 REYG(fi)Ii, as we see in the proof,
and by the linearity of REYG I can be written in terms of {REYG(xα) : α ∈ Zn≥0}. A
theorem proved by Noether provides a way to find all the invariants algorithmically. This
new process does not yet use Groebner bases and is inefficient for large groups. Moreover,
redundancies are likely to exist. This result is found in [2] and [7].

Noether’s Degree Bound: Given a finite matrix group G ⊂ GLn(K), we have k[~x]G =
K[REYG(xβ) : |β| ≤ |G|].

Proof: First note that (x1 + · · ·+ xn)k =
∑
|α|=k aαx

α where aα ∈ Z+.

Let Ai denote the ith row of A so Ai~x =
∑n

j=1 ai,jxj. Let α = (α1, · · · , αn) ∈ Zn≥0 and
define (A~x)α := Πn

i=1(Ai~x)αi . Now we can see

REYG(xα) =
1

|G|
∑
A∈G

[
Πn
i=1(aAi,1x1 + · · ·+ aAi,nxn)αi

]
=

1

|G|
∑
A∈G

[Πn
i=1(Ai~x)αi ]

=
1

|G|
∑
A∈G

(A~x)α.

Now we will introduce the new indeterminates u1, · · · , un and substitute uiAi~x for each xi.
Then we have

(u1A1x1 + · · ·+ unAnxn)k =
∑
|α|=k

aα(u1A1~x)α1 · · · (unAn~x)αn

=
∑
|α|=k

aα(A~x)αuα.

Then

Sk : =
∑
A∈G

(u1A1~x+ · · ·+ u1An~x)k

=
∑
|α|=k

aα

(∑
A∈G

(A~x)α

)
uα

=
∑
|α|=k

|G|aαREYG(xα)uα.

Now let UA = u1A1~x + · · · + u1An~x where Ai is the ith row of A ∈ G. Any symmetric
function in terms of the UA can be written in terms of Sk by a previous theorem. Now Sk is
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a symmetric polynomial in terms of UA, so Sk = F (S1, · · · , S|G|). Now substituting we find

∑
|α|=k

|G|aαREYG(xα)uα = F

∑
|β|=1

|G|aαREYG(xβ)uβ, · · · ,
∑
|β|=|G|

|G|aαREYG(xβ)uβ


Expanding the right side and equating the coefficients of uα, it follows that |G|aαREYG(xα)
is a polynomial in REYG(xβ) where |β| ≤ |G|. Since k has characteristic zero, then |G|aα is
nonzero, and hence REYG(xα) has the desired form.QED

The implementation presented above is not efficient if G is large, but it will work and ter-
minate based on the theorems above.

5.4 Finding Invariants with Groebner Bases

This entire section is pulled from [7]. We are looking for a set of fundamental invariants
{θ1, · · · , θn, η1, · · · , ηt} where each I ∈ C[~x] can be written uniquely as I(~x) =

∑t
i=1 ηi(~x) ·

pi(θ1(~x), · · · , θn(~x)) where p1, · · · , pt are n-variant polynomials. We will define the Hironaka
decomposition

⊕t
i=1 ηi · C[θ1, · · · , θn] to be the set of polynomials of the form

∑t
i=1 ηi(~x) ·

pi(θ1(~x), · · · , θn(~x)) where p1, · · · , pt are n-variant polynomials. We will call θ1, · · · , θn to
be primary invariants and η1, · · · , ηt be secondary invariants. So to restate our goal given a
finite group G we want to find {θ1, · · · , θn, η1, · · · , ηt} so C[~x]G =

⊕t
i=1 ηi · C[θ1, · · · , θn].

Let’s take G = {1} then C[x]G = C[x] = C[x2]
⊕

xC[x2]. The first equality is a result
from previous sections and the second is a direct result from the paragraph above. This
establishes the fact that Hironaka decompositions are not unique for G in general and in fact
the example given before has infinitely many decompositions.

Now that us prove a lemma that will be used in an algorithm for finding {θ1, · · · , θn, η1, · · · , ηt}.

Lemma: Let G ⊂ GLn(C) be any finite matrix group, and let

IG = 〈I ∈ C[~x] : I(A · ~x) = I(~x) for all A ∈ G, deg I > 0〉

Then
√

(IG) = 〈x1, · · · , xn〉.

Proof: Let the assumptions be as above. It suffices to show V (IG) = V (〈x1, · · · , xn〉).
Once this is accomplished we have I(V (IG)) = I(V (〈x1, · · · , xn〉)). Then using the Hilbert
Nullstellensatz we have

√
IG = I(V (IG)) = I(V (〈x1, · · · , xn〉)) = 〈x1, · · · , xn〉.
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Let ~a ∈ Cn − {0}. Define G~a = {A · ~a : A ∈ G}. Since G is finite then G~a is finite
thus we can find a polynomial f ∈ Cn where f(0) = 0 and f(A ·~a) = 1 for all A ∈ G. Then
consider f ∗(x) = 1

|G|
∑

A∈G f(A · ~x) which lies in IG since f ∗(0) = 0, thus deg f ∗ > 0. Then

f ∗(a) = 1 so we may say that a /∈ V (IG). So V (IG) = V (〈x1, · · · , xn〉) and our desired result
is proven.QED.

Now we can begin to develop our first algorithm for finding a set of fundamental invari-
ants. This process will use Groebner bases, is algorithmic, and will be more efficient than
the brute force effort already presented.

We will start off with the study of the Hilbert series. Hilbert series will help us avoid
making frivolous checks and will save on computation time. We define the Hilbert series to
be

ΦG(z) =
∞∑
d=0

dim(C[~x]Gd )zd

where C[~x]Gd is the set of all homogeneous invariants of degree d. Now the claim is

ΦG(z) =
1

|G|
∑
A∈G

1

det(In − zA)
.

The invariant of degree d exists if and only if the coefficients of zd are nonzero since the
coefficient is dim(C[~x]Gd ). To prove our claim above we begin with a lemma. The following
is the code for computing the Hilbert series in Mathematica

HilbertSer[G , n , S ]:=HilbertSer[G , n , S ]:=HilbertSer[G , n , S ]:=

Do[Do[Do[Print[Print[Print[Series[Series[Series[Together[(1/Length[G]) ∗ Sum[1/CharacteristicPolynomial[L[i], z], {i, 1,Length[G]}]],Together[(1/Length[G]) ∗ Sum[1/CharacteristicPolynomial[L[i], z], {i, 1,Length[G]}]],Together[(1/Length[G]) ∗ Sum[1/CharacteristicPolynomial[L[i], z], {i, 1,Length[G]}]],

{z, 0, S}]], {k, 0, 0}]{z, 0, S}]], {k, 0, 0}]{z, 0, S}]], {k, 0, 0}]

Lemma: Let G ⊂ GLn(C) be a finite matrix group. Then the dimension of the invariant
subspace V G = {~v ∈ Cn : A~v = ~v for all A ∈ G} is equal to 1

|G|
∑

A∈G trace(A).

Proof: Let PG = 1
|G|
∑

A∈GA. This linear map is a projection onto the the invariant sub-

space V G. Since the matrix PG defines a projection, we have PG = P 2
G, which means that

PG has only the eigenvalues 0 and 1. Therefore the rank of PG equals the multiplicity of its
eigenvalues 1, and we fine dim(V G) = rank(PG) = trace(PG) = 1

|G|
∑

A∈G trace(A).QED.

This leads us to the proof of our claim above.
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Theorem: The Hilbert series of the invariant ring C[~x]G equals ΦG(z) = 1
|G|
∑

A∈G
1

det(In−zA)
.

Proof: We write C[~x]d for the
(
n+d−1

d

)
-dimensional vector space of d-forms in C[~x]. For

every linear transformation A ∈ G there is an induced linear transformation Ad on the vec-
tor space C[~x]d. In this linear algebra notation C[~x]Gd becomes precisely the invariant sub-
space of C[~x]d with respect to the induced group {Ad : A ∈ G} of

(
n+d−1

d

)
×
(
n+d−1

d

)
-matrices.

In order to compute the trace of an induced transformation Ad, we identify the vector space
Cn with its linear forms C[~x]1. Let lA,1, · · · , lA,n ∈ C[~x]1. be the eigenvectors of A = Ad, and
ρA,1, · · · , ρA,n ∈ C denote the corresponding eigenvalues. Note that each matrix A ∈ G is
diagonalizable over C because it has finite order.

The eigenvectors of Ad are precisely the
(
n+d−1

d

)
d-forms ld1A,1 · · · l

dn
A,n where d1 + · · ·+ dn = d.

The eigenvalues of Ad are therefore the complex numbers ρd1A,1 · · · ρ
dn
A,n where d1 + · · ·+dn = d.

Sine the trace of a linear transformation equals the sum of its eigenvalues, we have the equa-
tion

trace(Ad) =
∑

d1+···+dn=d

ρd1A,1 · · · ρ
dn
A,n.

By the previous lemma, the dimension of the invariant subspace C[~x]Gd equals the average
of the traces of all group elements. Rewriting this dimension count in terms of the Hilbert
series of the invariant ring, we get

ΦG(z) =
∞∑
d=0

1

|G|
∑
A∈G

( ∑
d1+···dn=d

ρd1A,1 · · · ρ
dn
A,n

)
zd

=
1

|G|
∑
A∈G

∑
(d1,··· ,dn)∈Nn

ρd1A,1 · · · ρ
dn
A,nz

d1+···+dn

=
1

|G|
∑
A∈G

1

(1− zρA,1) · · · (1− zρA,n)

=
1

|G|
∑
A∈G

1

det(I − zA)
.QED.

A Graded Ring is a the direct sum of additive subgroups: S = S0 ⊕ S1 ⊕ S2 ⊕ · · · such
that SiSj ⊆ Si+j

Lemma: Let p1, p2, · · · , pm be algebraically independent elements of C[~x] which are ho-
mogeneous of degrees d1, · · · , dm repectively. Then the Hilbert series of the graded subring
R := C[p1, p2, · · · , pm] equals

H(R, z) :=
∞∑
d=0

(dimCRd)z
d =

1

(1− zd1) · · · (1− zdm)
.
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Proof: Let Rd denote the C-vector space of degree d elements in R. By the algebraic indepen-
dence of p1, · · · , pm we have {pi11 pi22 · · · pimm : i1, · · · , im ∈ N and i1d1 + i2d2 + · · ·+ imdm = d}
is a basis for Rd. This implies dim(Rd) = |Ad| where Ad = {(i1, i2, · · · , im) ∈ Nm :
i1d1 + · · ·+ imdm = d}.

So
∞∑
d=0

(dimCRd)z
d =

∞∑
d=0

|Ad|zd

=
∞∑
d=0

∑
(i1,··· ,im)∈Ad

zd

=

(
∞∑
i1=0

zi1d1

)
· · ·

(
∞∑

im=0

zimdm

)

=
1

1− zd1
· · · 1

1− zdm

=
1

(1− zd1) · · · (1− zdm)

which is exactly what we wanted to show. QED.

If R =
⊕t

i=1 ηiC[θ1, · · · , θn] then by the previous lemma

R =

(
t⊕
i=1

ηiC

)
⊕

 ⊕
(i1,··· ,in)∈Nn−{0}

t⊕
i=1

ηiθ
i1
1 · · · θinn C


we see that the Hilbert series for R is∑t

i=1 z
deg ηi

Πn
j=1(1− zdeg θj)

.

.

Then we conclude the following theorem immediately from the results above.

Theorem: ΦG(z) · Πn
j=1(1− zdeg θj) =

∑t
i=1 z

deg ηi .

The significance of the theorem above is that it allows us to know the degrees of the sec-
ondary invariants.

This section gives all the preliminary mathematical development in order to give and under-
stand an algorithm for finding and computing the primary and secondary invariants.
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5.5 Algorithms

Algorithm 2: Let I := 〈f1, · · · , fm〉. Let G be a Groebner basis of 〈f1, · · · , fm, gz − 1〉, where
z is a new ordered after all the previously existing variables. Then g ∈

√
I if and only if 1 ∈ G.

Proof: Let 1 ∈ G then

1 =
s∑
i=1

pi(x1, · · · , xn, y)fi + q(x1, · · · , xn, y)(1− yf)

for some pi, q ∈ K[x1, · · · , xn, y]. Let y = 1
f(x1,··· ,xn)

and the equation above implies

1 =
s∑
i=1

pi(x1, · · · , xn,
1

f
)fi

Choose m ∈ Z+ so that when fm is multiplied by the equation above on both sides that the
denominator is cleared. So we have

fm =
s∑
i=1

hifi ∈ I

for some hi ∈ K[x1, · · · , xn]. So f ∈
√
I.

Let f ∈
√
I. Then fm ∈ I ⊂ G for some m ∈ Z+. Note that 1− yf ∈ G so

1 = ymfm + (1− ymfm) = ymfm + (1− yf)(1 + yf + · · ·+ ym−1fm−1) ∈ G.

Therefore the algorithm with is implemented will work. QED.

Alg2[F , g , n ]:=Alg2[F , g , n ]:=Alg2[F , g , n ]:=

Do[{G = GroebnerBasis[Append[F, g ∗ z − 1],Append[Array[a, n], z]],Do[{G = GroebnerBasis[Append[F, g ∗ z − 1],Append[Array[a, n], z]],Do[{G = GroebnerBasis[Append[F, g ∗ z − 1],Append[Array[a, n], z]],

If[Length[G]==1, p = 1, p = 0],Print[p]}, {i, 1, 1}]If[Length[G]==1, p = 1, p = 0],Print[p]}, {i, 1, 1}]If[Length[G]==1, p = 1, p = 0],Print[p]}, {i, 1, 1}]

Algorithm 3: Compute the Groebner basis G for an ideal I = 〈f1, · · · , fm〉. Then
√
I =

〈x1, · · · , xn〉 if and only if a monomial of the form xjii occurs among the initial monomials in
G for every i, for 1 ≤ i ≤ n.

Proof: ⇒ Suppose
√
I = 〈x1, · · · , xn〉. Then we have G = I ⊃ {xj11 , · · · , xjnn } wich im-

mediatly implies LM(G) ⊃ {xj11 , · · · , xjnn }.

⇐ The key is to use the fact f1, · · · , fm are homogeneous and consider the monomial order
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as Lexicographic. First we must have xjnn ∈ G since xjnn is the leading term. Then we see that

xn = 0. Now suppose xk+1 = · · · = xn = 0. Then xjkk +
∑

i1+···+in=jk
akx

ik+1

k+1 · · ·xinn is a poly-
nomial in G by hypothesis for some ak ∈ C. But by our inductive hypothesis sum summand
equals zero so xjkk = 0. Therefore, x1 = · · · = xn = 0 so

√
I =
√
G = 〈x1, · · · , xn〉.QED.

Alg3[F , n ]:=Alg3[F , n ]:=Alg3[F , n ]:=

Do[{LmF = {}, A = GroebnerBasis[F,Array[a, n]],Do[{LmF = {}, A = GroebnerBasis[F,Array[a, n]],Do[{LmF = {}, A = GroebnerBasis[F,Array[a, n]],

While[A 6= {}, {f = Take[A, 1], A = Delete[A, 1],While[A 6= {}, {f = Take[A, 1], A = Delete[A, 1],While[A 6= {}, {f = Take[A, 1], A = Delete[A, 1],

LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}], H = {},LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}], H = {},LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}], H = {},

While[LmF 6= {}, {h = Take[LmF, 1],LmF = Delete[LmF, 1],While[LmF 6= {}, {h = Take[LmF, 1],LmF = Delete[LmF, 1],While[LmF 6= {}, {h = Take[LmF, 1],LmF = Delete[LmF, 1],

If[Length[Variables[h]] == 1, H = Flatten[Append[H, h]]]}],If[Length[Variables[h]] == 1, H = Flatten[Append[H, h]]]}],If[Length[Variables[h]] == 1, H = Flatten[Append[H, h]]]}],

If[Length[H] == n,Print[1],Print[0]]}, {i, 1, 1}]If[Length[H] == n,Print[1],Print[0]]}, {i, 1, 1}]If[Length[H] == n,Print[1],Print[0]]}, {i, 1, 1}]

Algorithm 1: Fix a monomial order m1 < m2 < m3 < · · · which refines the partial order
given by the total degree on the set of monomials of C[~x]. Let M = 〈x1, · · · , xn〉

0. Let t := 1 and Q := ∅.

1. While m∗t /∈ Rad(〈Q〉) let t = t+ 1.

2. Let Q := Q ∪ {m∗t}.

3. If |Q| < n and
√
〈Q〉 6= M then return to 1.

4. Either Q is a primary set of generators P or Q can be modified to an algebraically
independent set of primary generators P of n invariants with

√
〈P 〉 = M . See [10] for more

on this piece of the algorithm.

5. Find secondary invariants which are linearly independent module the ideal generated
by P .

Proof: The termination of steps one and two is guaranteed by the lemma above. First note
that V (Q) = {~0}. From this we see that {xd11 , · · · , xdnn } ⊂ 〈Q〉 for some d1, · · · , dn ∈ Z+.
Then we can see

C[~x] = {r1a1 + · · ·+ rmam : ri ∈ C[Q] and aj ∈ A}

where A = {xjii : 0 ≤ ji < di for all 0 ≤ i ≤ n}. A similar statement can be made about
C[~x]G thus |Q| ≥ n. Then we are able to determine P using Algorithm 3 which is stated
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below. Step 5 will work by taking Noether’s bound into account.QED

For step 1, to check if m∗t /∈ Rad(〈Q〉) use algorithm 2. Moreover, the Hilbert series can be
used to skip the power that will not be included.

For step 2, to check if
√
〈Q〉 6= M use algorithm 3.

For step 4, let Q = {q1, · · · , qm}, dj = deg(qj) now find a n × m-matrix matrix (ai,j)
where √√√√〈 m∑

j=1

a1,jq
d/dj
j , · · · ,

m∑
j=1

an,jq
d/dj
j

〉
= M.

This can be verified using algorithm 2.

For step 5, use ΦG(z) · Πn
j=1(1 − zdeg θj) =

∑t
i=1 z

deg ηi and the Reynolds operator to find
the secondary invariants η1, · · · , ηt which are linearly independent modulo the ideal gener-
ated by P . Let GB be a Groebner basis of 〈P 〉 then ηj

GB = 0 if and only if ηj is linearly
independent modulo the ideal generated by P . It was discussed early on how to make this
computation.

See the Appendix for code.

5.6 Algorithm Implementation

The algorithm is used to study cyclic and dihedral groups which can be represented by 2× 2
matrices. Recall

D2m =

〈(
1 0
0 −1

)
,

(
cos θ − sin θ
sin θ cos θ

)〉
where θ = 2π

m
. Also the cyclic group of order m is

Cm : =

〈(
cos θ − sin θ
sin θ cos θ

)〉
.

The generators of C[x, y]D2m and C[x, y]Cm are interesting and, at first glance, unexpectedly
related. For some values ofm, for example 5 and 7, Mathematica has computational difficulty.
The following tables presents the findings.
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Table 5.1: Primary and secondary generators for Cm. (F means there was a computational
fail)

m Primary Secondary
2 x2, y2 1, xy
3 x2 + y2, x3 − 3xy2 1
4 x2 + y2, x4 + y4 1
5 F F
6 x2 + y2, 11x6 + 15x4y2 + 45x2y4 + 9y6 1
7 F F
8 x2 + y2, 9x8 + 28x6y2 + 70x4y4 + 28x2y6 + 9y8 1
9 F F
10 F F
11 F F
12 x2 + y2, 463x12 + 2706x10y2 + 7425x8y4 + 8316x6y6 + 7425x4y8 + 2706x2y10 + 463y12 1

Table 5.2: Primary and secondary generators for D2m.(F means there was a computational
fail)

m Primary Secondary
2 x2, y2 1
3 x2 + y2, x3 − 3xy2 1
4 x2 + y2, x4 + y4 1
5 F F
6 x2 + y2, 11x6 + 15x4y2 + 45x2y4 + 9y6 1
7 F F
8 x2 + y2, 9x8 + 28x6y2 + 70x4y4 + 28x2y6 + 9y8 1
9 F F
10 F F
11 F F
12 x2 + y2, 463x12 + 2706x10y2 + 7425x8y4 + 8316x6y6 + 7425x4y8 + 2706x2y10 + 463y12 1

An analysis of the tables 6.1 and 6.2 us that even though the dihedral groups and cyclic
groups are structurally different and have different orders for each m our generators are
the same for all but one case. For cases three through twelve which worked this is easily
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explained by the fact that the flip,

(
1 0
0 −1

)
, which is a generator of D2m, tells us that

y must be an even power. In each of the aforementioned cases y has an even power. For
the case m = 2 y can not have and odd power so the secondary invariant is, in a sense,
eliminated from Cm to D2m.

An another intriguing aspect is the radicals of each of the ideals generated by the primary
invariants is equal to 〈x, y〉 and this is known immediately from the algorithm, and is true
in general.

An interesting continuation would be to attempt to write this program in a more suitable
computer algebra system and study C[x, y]D2m and C[x, y]Cm and see if the patter continues
for m = 5, 7, 9, 10, 11 and m > 12. The program may have implication issues when it comes
to mathematica but the algorithm is implementable. Also, this rises the question if we have
a set of generators can we always find which groups will give us these generators? We have
satisfied one of the goals and have given the solution to a special case of Hilbert’s Fourteenth
Problem.



Chapter 6

Generalized Groebner Basis Theory
and The Straightening Law

6.1 Generalized Groebner Basis Theory

Generalized Groebner basis theory, as it pertains to us, can be found in [9]. So far we have
seen the notion of a Groebner basis in a the setting of a polynomial ring over a field. This
chapter is a consequence of a more general theory. Groebner basis theory can be applied to
non-commutative rings, infinite dimensional algebras, and, in our case, bracket rings. The
initial goal is to introduce Groebner bases in a more general setting and to state its equiv-
alence to the case that has been used up to this point of the thesis. The second goal is to
prove the so called Straightening Law. The Straightening Law gives us a C-vector basis for
the Bracket ring which is a key tool in proving the Fundamental Theorem of Invariant Theory.

Consider C[x1, · · · , xn] with the ordering x1 < · · · < xn. Now consider the set M =
{xi11 · · ·xinn : for all ij ≥ 0}. A total ordering on M is said to be admissible if 1 ≤ m
for all m ∈ M, and for all p, q, r ∈ M we have p < q implies p · r < q · r. The monomial
orders presented earlier are all examples of admissible orders.

Let F ⊂ C[x1, · · · , xn] and g, h ∈ C[x1, · · · , xn]. If h = g − b · u · f for some f ∈ F, b ∈ C,
and u ∈M where b · u ·LM(f) is a monomial of g then g is defined to reduce to h, denoted
g →F h. Moreover, h is in reduced form provided there does not exist h′ where h →F h

′.
If there exists a sequence of reduction

g →F h1 →F · · · →F hk →F h

where h is in reduced form then h is the normal form of g. Now it is important to note
that h is not necessarily unique. In the case where F is finite the normal form of g is simply
the remainder upon the division of F .

52
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F is a “Generalized” Groebner basis of 〈F 〉 if g ∈ C[x1, · · · , xn] has a unique normal
form modulo F . The thoerem below shows a Groebner basis is a “Generalized” Groebner
basis.

Theorem: Let F = {f1, · · · , fj}. Then The following are equivalent:

i) F is a “Generalized” Groebner basis for 〈F 〉

ii) For all f, g ∈ K[x1, · · · , xn], f + 〈F 〉 = g + 〈F 〉 if and only if the normal forms, re-
duced using F , of f and g are equal.

(iii) LM(〈F 〉) = LM(F )

Proof: (i)⇔(ii) The result follows immediately from definition.

(iii) ⇒(i) Let LM(〈F 〉) = LM(F ). Let f, g ∈ C[x1, · · · , xn] with f + 〈F 〉 = g + 〈F 〉 and
f, g are both in reduced form. First note that LM(f), LM(g) /∈ LM(F ), else either f or g
would be reducible.

Now by definition f − g ∈ 〈F 〉 which implies LM(f − g) ∈ LM(〈F 〉) = LM(F ). Thus
we can conclude that LM(f) = LM(g) and LC(f) = LC(g).

Let f ′ = f −LC(f) ·LM(f) and g′ = g−LC(g) ·LM(g). If f ′ were reducible then LM(fi),
for some i, would divide some monomial of f ′, and consequently f . So f is irreducible. By
analogous reasoning g′ is irreducible. So we may conclude, after repeating the steps above,
that f = g. Therefore we have F is a Generalized Groebner basis.

(i)⇒(iii) can be found in [9]. QED.

6.2 Straightening Law in Terms of Groebner Bases

This final section is drawing connections between topics covered in [7] and [6]. Let X = (xi,j)
be a n × d-matrix. A maximal minor of X is the determinate of the d × d matrix using d
rows from X. We define all the maximal minors of X to be the Plücker coordinates of X.
The Ring of Plücker Coordinates is the polynomial ring generated by the Plücker Co-
ordinates.

First Fundamental Theorem of Invariant Theory: Let C[xi,j]
SLd(C) = {f ∈ C[xi,j] :
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f(X · A) = f(X) for all A ∈ SLd(C)}. The ring C[xi,j]
SLd(C) equals the ring of Plucker

coordinates of X.

Example: Let P (xi,j) ∈ C[xi,j] be a Plücker coordinate. Now, by defintion, P (xi,j) = detM
where M is some maximal minor of (xi,j). Let A ∈ SLd(C) then we see that P (A · (xi,j)) =
det(A ·M) = detA ·detM = detM = P (xi,j). So P (xi,j) ∈ C[xi,j]

SLd(C). So we can conclude
that the Plücker coordinates are invariants.

To help motivate the technique and theory used to prove the statement above we’ll con-
sider an analogous case in a setting made familiar in this paper.

Let K[x1, · · · , xn]G = K[f1, · · · , fm] where G is a finite subset of GLn(K). Define φ :
K[y1, · · · , ym]→ K[x1, · · · , xn]G by φ(g) = g(f1, · · · , fm). φ is well-defined by construction.
Let g, h ∈ K[y1, · · · , ym] then

φ(g + h) = (g + h)(f1, · · · , fm)

= g(f1, · · · , fm) + h(f1, · · · , fm)

= φ(g) + φ(h).

which establishes φ as a homomorphism. φ is an onto map sinceK[x1, · · · , xn]G = K[f1, · · · , fm].
Now it is enough to say that K[y1, · · · , ym]/ kerφ ∼= K[x1, · · · , xn]G.

Now by definition kerφ = {h ∈ K[y1, · · · , ym] : h(f1, · · · , fm) = 0 in K[x1, · · · , xn]}. kerφ
establishes the relationships between elements of K[y1, · · · , ym]. Let g1, g2 ∈ K[y1, · · · , ym]
then g1(f1, · · · , fm) = g2(f1, · · · , fm) if and only if (g1− g2)(f1, · · · , fm) = 0. Thus g1− g2 ∈
kerφ.

Let Λ(n, d) = {Xλ1,··· ,λd : 1 ≤ λ1 < λ2 < · · · < λd ≤ n}. Let π ∈ Sd then Xλπ(1),··· ,λπ(d) =
sign(π) ·Xλ1,··· ,λd .

Let θn,d : C[Λ(n, d)]→ C[xi,j] be defined by

Xλ1,··· ,λd 7→ det


xλ1,1 xλ1,2 · · · xλ1,d
xλ2,1 xλ2,2 · · · xλ2,d

...
...

. . .
...

xλd,1 xλd,2 · · · xλd,d

 .

This the image of θn,d is the ring of Plucker coordinates. By properties of determinant we
have θn,d is a homomorphism. In addition we see that C[Λ(n, d)]/ ker θn,d ∼= Im(θn,d).

Let’s discuss how to use Groebner bases to find the generators of kerφ for an arbitrary
ring homomorphism φ. To see how this can be done we present the following theorem.
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Theorem: LetK[x1, · · · , xn]G = K[f1, · · · , fm], and consider the ideal J = 〈f1 − y1, · · · , fm − ym〉 ⊂
K[x1, · · · , xn, y1, · · · , ym].

Then kerφ is the n-th elimination ideal of J , and so kerφ = J ∩K[y1, · · · , ym].

Proof: Let p ∈ J. Note if we substitute yi 7→ fi for all i then J = 〈0〉. Therefore
p(x1, · · · , xn, f1, · · · , fm) = 0.

Let p(x1, · · · , xn, f1, · · · , fm) = 0 in K[x1, · · · , xn]. Now let yi = fi − (fi − yi) for all i.
Consider the following monomial

xa11 · · ·xann y
b1
1 · · · ybmm = xa11 · · ·xann (f1 − (f1 − y1))b1 · · · (fm − (fm − ym))bm

= xa11 · · ·xann
[
yb11 · · · ybmm +B1(f1 − y1) + · · ·+Bm(fm − ym)

]
for some B1, · · · , Bm ∈ K[x1, · · · , xn, y1, · · · , ym]. Multiplying by an appropriate constant
and adding over the exponents appearing in p we arrive at

p(x1, · · · , xn, y1, · · · , ym) = p(x1, · · · , xn, f1, · · · , fm) + C1(f1 − y1) + · · ·+ Cm(fm − ym)

For some C1, · · · , Cm ∈ K[x1, · · · , xn, y1, · · · , ym]. Since p(x1, · · · , xn, f1, · · · , fm) = 0 we
have

p(x1, · · · , xn, y1, · · · , ym) = C1(f1 − y1) + · · ·+ Cm(fm − ym) ∈ J.

Now we have established p ∈ J if and only if p(x1, · · · , xn, f1, · · · , fm) = 0. Taking intersec-
tions we now have p ∈ J ∩K[y1, · · · , ym] if and only if p(f1, · · · , fn) = 0 in K[x1, · · · , xn].
Therefore kerφ = J ∩K[y1, · · · , ym].QED.

Corollary: Fix a monomial order in K[x1, · · · , xn, y1, · · · , ym] where any monomial in-
volving x1, · · · , xn is great than all monomials in K[y1, · · · , ym] and let G be a Groebner
basis of J . Then G∩K[y1, · · · , ym] is a Groebner basis for I in the induced monomial order
induced on K[y1, · · · , ym].

Proof: The result follows immediately from work already presented on elimination theory.

The two results above give us an algorithm for finding the generators of kerφ. Now how do
we find the generators of ker θn,d.

Let us identify Xλ1,··· ,λd with [λ1 · · ·λd] = λ. We will now introduce the van der Waer-
den syzygy with it’s associated notation. First let λ ∈ Λ(n, d) then λc ∈ Λ(n, n − d) with
[λ] ∪ λc = {1, · · · , n}. Let (λ, λc) = sign(π) where π is the permutation where λi 7→ i for
i = 1, · · · , d and λcj 7→ d+ j for j = 1, · · · , n− d.
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Let s ∈ {1, · · · , d}, α ∈ Λ(n, s − 1), βΛ(n, d + 1), and γ ∈ Λ(n, d − s). Then the Van
der Waerden syzygy is

[[αβ̄γ]] =
∑

τ∈Λ(d+1,s)

(τ, τ c) · [α1 · · ·αs−1βτc1 · · · βτcd+1−s
] · [βτ1 · · · βτd+1−sγ1 · · · γd−s].

For an example of what these look like let d = 5, s = 4 and n large enough and considering

α = [α1α2α3] ∈ Λ(n, 3)

β = [β1β2β3β4β5β6] ∈ Λ[n, 6]

γ = [γ1] ∈ Λ(n, 1).

We then have

[[αβ̄γ]] = [α1α2α3β̄1β̄2β̄3β̄4β̄5β̄6γ1]

= (τ1, τ
c
1)[α1α2α3β5β6][β1β2β3β4γ1]

+ (τ2, τ
c
2)[α1α2α3β4β6][β1β2β3β5γ1]

+ (τ3, τ
c
3)[α1α2α3β4β5][β1β2β3β6γ1]

+ (τ4, τ
c
4)[α1α2α3β3β6][β1β2β4β5γ1]

+ (τ5, τ
c
5)[α1α2α3β3β5][β1β2β4β6γ1]

+ (τ6, τ
c
6)[α1α2α3β3β4][β1β2β5β6γ1]

+ (τ7, τ
c
7)[α1α2α3β2β6][β1β3β4β5γ1]

+ (τ8, τ
c
8)[α1α2α3β2β5][β1β3β4β6γ1]

+ (τ9, τ
c
9)[α1α2α3β2β4][β1β3β5β6γ1]

+ (τ10, τ
c
10)[α1α2α3β2β3][β1β4β5β6γ1]

+ (τ11, τ
c
11)[α1α2α3β1β6][β2β3β4β5γ1]

+ (τ12, τ
c
12)[α1α2α3β1β5][β2β3β4β6γ1]

+ (τ13, τ
c
13)[α1α2α3β1β4][β2β3β5β6γ1]

+ (τ14, τ
c
14)[α1α2α3β1β3][β2β4β5β6γ1]

+ (τ15, τ
c
15)[α1α2α3β1β2][β3β4β5β6γ1]

Just note that
(

6
4

)
= 15 is the number of brackets being summed. Now let’s compute

(τ1, τ
c
1). First note that τ1 = [1, 2, 3, 4] so τ c1 = [5, 6]. So the associated permutation

π1 =

(
1 2 3 4 5 6
1 2 3 4 5 6

)
= (1). Thus (τ1, τ

c
1) = 1 since π1 is the identity.

Let’s compute (τ2, τ
c
2). First note that τ2 = [1, 2, 3, 5] so τ c1 = [4, 6]. So the associated

permutation π2 =

(
1 2 3 4 5 6
1 2 3 5 4 6

)
= (4, 5). Thus (τ2, τ

c
2) = −1 since π2 is an odd

permuation.
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For a final example let’s consider (τ3, τ
c
3). First note that τ3 = [1, 2, 3, 6] and τ3 = [4, 5].

So π3 = (6, 4, 5) which is even. So (τ3, τ
c
3) = 1.

So we have established what the van der Waerden syzygiess are and an example of what they
look like. A van der Waerden syzygy is called a straightening syzygy provided αs−1 < βs+1

and βs < γ1. Let

Sn,d = {[[αβ̄γ]] : αs−1 < βs+1 and βs < γ1}

The claim is Sn,d is a Groebner basis for In,d. This result is a stronger condition than the
Second Fundamental Theorem of Invariant Theory.

Lemma: Let I be any ideal and < be any monomial order on C[x1, · · · , xn]. The set

S := {m+ I : m /∈ LM(I)} is a C-vector space basis for the ring C[x1,··· ,xn]
I

.

Proof: Let g + I ∈ C[x1,··· ,xn]
I

where g =
∑k1

i=1 cix
αi +

∑k1
i=1 dix

βi where xαi + I ∈ S and
xβj + I /∈ S. So we have

g + I =

(
k1∑
i=1

cix
αi +

k2∑
i=1

dix
βi

)
+ I

=

k1∑
i=1

(cix
αi + I) +

k2∑
i=1

(
dix

βi + I
)

=

k1∑
i=1

(cix
αi + I) +

k2∑
i=1

(0 + I)

=

k1∑
i=1

(cix
αi + I)

So every element of C[x1,··· ,xn]
I

can be represented from elements of S.

Let 0 + I =
∑k1

i=1 (cix
αi + I). Then

∑k1
i=1 cix

αi ∈ I. Now every polynomial in I must
have a monomial m, by definition, where m+ I /∈ S. This implies ci = 0 for all i and hence
unique representations from elements in S. Therefore we have established S is a vector space
basis. QED.

Define <T to be the ordering on Λ(n, d) where [λ] <T [µ] provided there exists m, 1 ≤ m ≤ d,
such that λj = µj for 1 ≤ j ≤ m − 1 and λm < µm. <T ordering the elements of Λ(n, d)
lexicographically.

<T can be generalized to an order on C[Λ(n, d)] and we’ll call <T the tableaux order. Define
T = [λ1] · · · [λk] where [λi] = [λi1 · · ·λid], [λ1], · · · , [λk] ∈ Λ(n, d), and [λ1] <T · · · <T [λk]. We



Ryan Shifler Computational Algebraic Geometry Applied to Invariant Theory 58

will say T is standard provided λ1
s ≤ · · ·λks for all s. Otherwise T is nonstandard.

Let T be as above and T ′ = [µ1] · [µl] where k ≤ l. Then we define T < T ′ if either
k < l or there exists r ∈ {1, 2, · · · , k} and s ∈ {1, · · · , d} such that λij = µij for all i and j
such that i < r or i = r and j < s, and λrs < µrs.

Lemma: The polynomials [[αβ̄γ]] are contained in the ideal In,d.

The ideal of this proof is to show that [[αβ̄γ] in the the kernal of ker θn,d.QED

The significance of the Lemma is to show that we have a subset of In,d and the Groebner
basis for In,d are elements of the form [[αβ̄γ]] with an additional property that αs−1 < βs+1

and βs < γ1. This is set is denoted by Sn,d and an element is called a straightening sygyzy.
The following theorem is the formal statement.

Theorem: The set Sn,d of straightening syzygies forms a Groebner basis for the syzygy
ideal In,d with respect to the tableaux order.

Proof: Follows from the previous Lemma by the definition of Groebner basis. It is shown
that the set M of monomial idea generated by the initial tableaux of the elements of Sn,d
contains LM(In,d). It is shown that all nonstandard tableau are elements of M and then it
is proven that each monomial in LM(In,d) is a nonstardard tableau. QED.

The following theorem makes an important connection with the notion of leading mono-
mials and standard tableaux. It also allows us to know the form of a leading monomial and
is key to proving the straightening algorithm.

Theorem: T is a standard tableaux if and only if T /∈ LM(In,d).

Proof: Follows from the same line of reasoning as the proof above.QED.

We have a Groebner basis of In,d we can state the following result. The importance is
we can write any bracket in terms of standard tableaux uniquely and as a result simplifies
many proofs to a single case.

Corollary (Straightening Law): The standard tableaux form a C-vector space basis
for the Plucker ring.

Proof: Follows immediately from the previous Lemmas and Theorems.QED.

The corollary is an essential piece of invariant theory and is a key piece of machinery, which
was developed using Groebner basis theory, when proving the First Fundamental Theorem
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of invariant theory.

This section presents, not only, higher level Invariant theory, but also an example of a
generalized notion of a Groebner basis.



Chapter 7

Appendix A

7.1 Code for algorithm 1

We begin by declaring the group. The L[i] represent the group elements and G is the group
so this first part finds the primary invariants.

Clear[“Global̀*”]Clear[“Global̀*”]Clear[“Global̀*”]

L[1] = {{1, 0}, {0, 1}};L[1] = {{1, 0}, {0, 1}};L[1] = {{1, 0}, {0, 1}};

L[2] = {{−1, 0}, {0,−1}};L[2] = {{−1, 0}, {0,−1}};L[2] = {{−1, 0}, {0,−1}};

L[3] = {{0,−1}, {1, 1}};L[3] = {{0,−1}, {1, 1}};L[3] = {{0,−1}, {1, 1}};

L[4] = {{−1,−1}, {1, 0}};L[4] = {{−1,−1}, {1, 0}};L[4] = {{−1,−1}, {1, 0}};

L[5] = {{0, 1}, {−1,−1}};L[5] = {{0, 1}, {−1,−1}};L[5] = {{0, 1}, {−1,−1}};

L[6] = {{1, 1}, {−1, 0}};L[6] = {{1, 1}, {−1, 0}};L[6] = {{1, 1}, {−1, 0}};

G = {L[1], L[2], L[3], L[4], L[5], L[6]};G = {L[1], L[2], L[3], L[4], L[5], L[6]};G = {L[1], L[2], L[3], L[4], L[5], L[6]};

Now we declare what n, LG, P, and B[i] are for future use.

n = 2;n = 2;n = 2;

LG = Length[G];LG = Length[G];LG = Length[G];

P = {};P = {};P = {};

Do[B[i] = L[i], {i, 1,Length[G]}]Do[B[i] = L[i], {i, 1,Length[G]}]Do[B[i] = L[i], {i, 1,Length[G]}]

60
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Now we are constructing P to equal integer partitions of i into at most n integers.

Do[P = Union[IntegerPartitions[i, n], P ], {i, 1,LG}];Do[P = Union[IntegerPartitions[i, n], P ], {i, 1,LG}];Do[P = Union[IntegerPartitions[i, n], P ], {i, 1,LG}];

This piece of the code is parameterizing the integers partitions found above by s[i] into the
list S. This code is also permuting the elements so we have, for example, {0,1} and {0,1}.

S = {};S = {};S = {};

Now we are taking the integer partitions of S and using them as weight vectors and creating
a long polynomial composed of all the monomials.

M = 0;M = 0;M = 0;

L is the list of monomials in the polynomial above in reverse graded lexicographic order.

L = Flatten[MonomialList[M,Array[x, n], “NegativeDegreeLexicographic”]];L = Flatten[MonomialList[M,Array[x, n], “NegativeDegreeLexicographic”]];L = Flatten[MonomialList[M,Array[x, n], “NegativeDegreeLexicographic”]];

In this piece of code we are parameterize the monomials of L by m[i]

i = 1;i = 1;i = 1;

Here we are parameterizing the entries of the matrices after multiplication.

U = {};U = {};U = {};

k = 1;k = 1;k = 1;

While[G 6= {}, {U = Flatten[Take[G, 1], 1], i = 1,While[G 6= {}, {U = Flatten[Take[G, 1], 1], i = 1,While[G 6= {}, {U = Flatten[Take[G, 1], 1], i = 1,

While[U 6= {}, {U1 = Flatten[Take[U, 1], 1], j = 1,While[U 6= {}, {U1 = Flatten[Take[U, 1], 1], j = 1,While[U 6= {}, {U1 = Flatten[Take[U, 1], 1], j = 1,

While[U1 6= {}, {w[k][i][j] = Flatten[Take[U1, 1], 1],U1 = Drop[U1, 1],While[U1 6= {}, {w[k][i][j] = Flatten[Take[U1, 1], 1],U1 = Drop[U1, 1],While[U1 6= {}, {w[k][i][j] = Flatten[Take[U1, 1], 1],U1 = Drop[U1, 1],

j = j + 1}], U = Drop[U, 1], i = i+ 1}], G = Drop[G, 1], k = k + 1}];j = j + 1}], U = Drop[U, 1], i = i+ 1}], G = Drop[G, 1], k = k + 1}];j = j + 1}], U = Drop[U, 1], i = i+ 1}], G = Drop[G, 1], k = k + 1}];
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Do[Do[x[j][i] = Sum[w[j][i][j1] ∗ x[j1], {j1, 1, n}],Do[Do[x[j][i] = Sum[w[j][i][j1] ∗ x[j1], {j1, 1, n}],Do[Do[x[j][i] = Sum[w[j][i][j1] ∗ x[j1], {j1, 1, n}],

{i, 1, n}], {j, 1,LG}];{i, 1, n}], {j, 1,LG}];{i, 1, n}], {j, 1,LG}];

This is the Reynold’s operator using the above construction and code. Note that the reynolds
operator only works in two variables.

F = {0};F = {0};F = {0};

t = 0;t = 0;t = 0;

While[Length[F ] == 1,While[Length[F ] == 1,While[Length[F ] == 1,

{t = t+ 1,Do[mo[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}],{t = t+ 1,Do[mo[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}],{t = t+ 1,Do[mo[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}],

{j, 1,LG}],{j, 1,LG}],{j, 1,LG}],

g[t] = (1/LG) ∗ Sum[mo[j][t], {j, 1,LG}], F = Union[F, g[t]]}];g[t] = (1/LG) ∗ Sum[mo[j][t], {j, 1,LG}], F = Union[F, g[t]]}];g[t] = (1/LG) ∗ Sum[mo[j][t], {j, 1,LG}], F = Union[F, g[t]]}];

This piece of code is the algorithm above. Algorithm 2 and Algorithm 3, presented as well,
are also included in this piece of the code.

p = 1;p = 1;p = 1;

q = 1;q = 1;q = 1;

While[q==1, {While[p!=1;While[q==1, {While[p!=1;While[q==1, {While[p!=1;

{t = t+ 1,Do[mo[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}],{t = t+ 1,Do[mo[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}],{t = t+ 1,Do[mo[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}],

{j, 1,LG}],{j, 1,LG}],{j, 1,LG}],

g[t] = (1/LG) ∗ Sum[mo[j][t], {j, 1,LG}],g[t] = (1/LG) ∗ Sum[mo[j][t], {j, 1,LG}],g[t] = (1/LG) ∗ Sum[mo[j][t], {j, 1,LG}],

g1[t] = (z/LG) ∗ Sum[mo[j][t], {j, 1,LG}],g1[t] = (z/LG) ∗ Sum[mo[j][t], {j, 1,LG}],g1[t] = (z/LG) ∗ Sum[mo[j][t], {j, 1,LG}],

G = GroebnerBasis[Append[F,Part[g1[t], 1]− 1],Append[Array[x, n], z]],G = GroebnerBasis[Append[F,Part[g1[t], 1]− 1],Append[Array[x, n], z]],G = GroebnerBasis[Append[F,Part[g1[t], 1]− 1],Append[Array[x, n], z]],

If[Length[G]==1, p = 0, p = 1], If[p==1, F = Union[F, {Part[g[t], 1]}]]}],If[Length[G]==1, p = 0, p = 1], If[p==1, F = Union[F, {Part[g[t], 1]}]]}],If[Length[G]==1, p = 0, p = 1], If[p==1, F = Union[F, {Part[g[t], 1]}]]}],



Ryan Shifler Computational Algebraic Geometry Applied to Invariant Theory 63

LmF = {}, A = GroebnerBasis[F,Array[x, n]],LmF = {}, A = GroebnerBasis[F,Array[x, n]],LmF = {}, A = GroebnerBasis[F,Array[x, n]],

While[A 6= {}, {f = Take[A, 1], A = Drop[A, 1],While[A 6= {}, {f = Take[A, 1], A = Drop[A, 1],While[A 6= {}, {f = Take[A, 1], A = Drop[A, 1],

LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}],LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}],LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}],

H = {},While[LmF 6= {}, {h = Take[LmF, 1],LmF = Delete[LmF, 1],H = {},While[LmF 6= {}, {h = Take[LmF, 1],LmF = Delete[LmF, 1],H = {},While[LmF 6= {}, {h = Take[LmF, 1],LmF = Delete[LmF, 1],

If[Length[Variables[h]] == 1, H = Flatten[Append[H, h]]]}],If[Length[Variables[h]] == 1, H = Flatten[Append[H, h]]]}],If[Length[Variables[h]] == 1, H = Flatten[Append[H, h]]]}],

If[Length[H] == n, q = 0, q = 1]If[Length[H] == n, q = 0, q = 1]If[Length[H] == n, q = 0, q = 1]

}];}];}];

F1 = Drop[F, 1];F1 = Drop[F, 1];F1 = Drop[F, 1];

Print[F1]Print[F1]Print[F1]{
1
6

(2x[1]2 + (−x[1]− x[2])2 + 2x[2]2 + (x[1] + x[2])2) , 1
6

(2x[1]6 + (−x[1]− x[2])6 + 2x[2]6 + (x[1] + x[2])6)
}

The output below is the expected output through step 3 of Algorithm 1.

Now we cover the case when the above returns a list with 3 or more elements. First we are
going to choose a matrix of size 2 by the size of the list above where R[i] is the i row.

R[1] = {1, 0};R[1] = {1, 0};R[1] = {1, 0};

R[2] = {0, 1};R[2] = {0, 1};R[2] = {0, 1};

This next piece is parameterizing the degrees of the polynomials found above by d[i].

Do[Do[Do[

{y[j] ={y[j] ={y[j] =

Part[Part[Flatten[Part[CoefficientRules[Take[F1, 1],Array[x, n]]], 1], 1],Part[Part[Flatten[Part[CoefficientRules[Take[F1, 1],Array[x, n]]], 1], 1],Part[Part[Flatten[Part[CoefficientRules[Take[F1, 1],Array[x, n]]], 1], 1],

1], d[j] = 0,1], d[j] = 0,1], d[j] = 0,

While[y[j] 6= {}, {d[j] = Take[y[j], 1] + d[j], y[j] = Drop[y[j], 1]}]},While[y[j] 6= {}, {d[j] = Take[y[j], 1] + d[j], y[j] = Drop[y[j], 1]}]},While[y[j] 6= {}, {d[j] = Take[y[j], 1] + d[j], y[j] = Drop[y[j], 1]}]},

{j, 1,Length[F1]}];{j, 1,Length[F1]}];{j, 1,Length[F1]}];
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This is find the least common multiple of the degrees.

Do[{c = d[1], c = LCM[c, d[j]]}, {j, 1,Length[F1]}];Do[{c = d[1], c = LCM[c, d[j]]}, {j, 1,Length[F1]}];Do[{c = d[1], c = LCM[c, d[j]]}, {j, 1,Length[F1]}];

This is taking each of the polynomials found above and raising them to the c/d[j] power.

F2 = {};F2 = {};F2 = {};

Now we multiply by our previous choice of matrix.

F1 = {R[1].F1, R[2].F1};F1 = {R[1].F1, R[2].F1};F1 = {R[1].F1, R[2].F1};

The final part uses algorithm 3 to decided whether F1 has the trivial ideal as its radical.

LmF = {};LmF = {};LmF = {};

A = GroebnerBasis[F,Array[x, n]];A = GroebnerBasis[F,Array[x, n]];A = GroebnerBasis[F,Array[x, n]];

While[A 6= {}, {f = Take[A, 1], A = Delete[A, 1],While[A 6= {}, {f = Take[A, 1], A = Delete[A, 1],While[A 6= {}, {f = Take[A, 1], A = Delete[A, 1],

LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}];LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}];LmF = Flatten[Append[LmF,Take[MonomialList[First[f ]], 1]]]}];

H = {};H = {};H = {};

1{
1
6

(2x[1]2 + (−x[1]− x[2])2 + 2x[2]2 + (x[1] + x[2])2) , 1
6

(2x[1]6 + (−x[1]− x[2])6 + 2x[2]6 + (x[1] + x[2])6)
}

The output above is 1 if our matrix worked. The output is 0 if the matrix did not work. We
also get our new list of polynomials as an output.

Now our goal is to find the secondary invariants. The first part parameterizes the degrees of
the primary invariants.
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Do[Do[Do[

{y[j] ={y[j] ={y[j] =

Part[Part[Flatten[Part[CoefficientRules[Take[F1, 1],Array[x, n]]], 1], 1],Part[Part[Flatten[Part[CoefficientRules[Take[F1, 1],Array[x, n]]], 1], 1],Part[Part[Flatten[Part[CoefficientRules[Take[F1, 1],Array[x, n]]], 1], 1],

1], d[j] = 0,1], d[j] = 0,1], d[j] = 0,

While[y[j] 6= {}, {d[j] = Take[y[j], 1] + d[j], y[j] = Drop[y[j], 1]}]},While[y[j] 6= {}, {d[j] = Take[y[j], 1] + d[j], y[j] = Drop[y[j], 1]}]},While[y[j] 6= {}, {d[j] = Take[y[j], 1] + d[j], y[j] = Drop[y[j], 1]}]},

{j, 1,Length[F1]}];{j, 1,Length[F1]}];{j, 1,Length[F1]}];

Now we are finding the polynomial described in step 5 of algorithm 1.

Pr = Expand[Flatten[Product[1− z∧{d[i]}, {i, 1,Length[F1]}]]];Pr = Expand[Flatten[Product[1− z∧{d[i]}, {i, 1,Length[F1]}]]];Pr = Expand[Flatten[Product[1− z∧{d[i]}, {i, 1,Length[F1]}]]];

HIl =HIl =HIl =

Together[(1/Length[G]) ∗ Sum[Pr /CharacteristicPolynomial[B[i], z],Together[(1/Length[G]) ∗ Sum[Pr /CharacteristicPolynomial[B[i], z],Together[(1/Length[G]) ∗ Sum[Pr /CharacteristicPolynomial[B[i], z],

{i, 1,Length[G]}]];{i, 1,Length[G]}]];{i, 1,Length[G]}]];

Now we are find the monomial list for the polynomial above.

Mon = Flatten[MonomialList[HIl, z]];Mon = Flatten[MonomialList[HIl, z]];Mon = Flatten[MonomialList[HIl, z]];

Now we are parameterizing the degrees of the monomials in the polynomial above.

a = 1;a = 1;a = 1;

SecD = {};SecD = {};SecD = {};

Now we are finding the integer partitions for the degree of the monomials above with at
most n integers.

P1 = {};P1 = {};P1 = {};
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This piece of the code is parameterizing the integers partitions found above by r[i] into the
list S1. This code is also permuting the elements so we have, for example, {0,1} and {0,1}.

P2 = P1;P2 = P1;P2 = P1;

S1 = {};S1 = {};S1 = {};

Now we are taking the interger partitions of S1 and using them as weight vectors and creating
a long polynomial composed of all the monomials.

M1 = 0;M1 = 0;M1 = 0;

L1 is the list of monomials in the polynomial above in reverse graded lexicographic order.

L1 = Flatten[MonomialList[M1,Array[x, n], “NegativeDegreeLexicographic”]];L1 = Flatten[MonomialList[M1,Array[x, n], “NegativeDegreeLexicographic”]];L1 = Flatten[MonomialList[M1,Array[x, n], “NegativeDegreeLexicographic”]];

In this piece of code we are parameterizing the monomials of L1 by m[i2]

i2 = 1;i2 = 1;i2 = 1;

Here we are are parameterizing the entries of the matrices after multiplication.

U2 = {};U2 = {};U2 = {};

k = 1;k = 1;k = 1;

While[G1 6= {}, {U2 = Flatten[Take[G1, 1], 1], i2 = 1,While[G1 6= {}, {U2 = Flatten[Take[G1, 1], 1], i2 = 1,While[G1 6= {}, {U2 = Flatten[Take[G1, 1], 1], i2 = 1,

While[U2 6= {}, {U3 = Flatten[Take[U2, 1], 1], j = 1,While[U2 6= {}, {U3 = Flatten[Take[U2, 1], 1], j = 1,While[U2 6= {}, {U3 = Flatten[Take[U2, 1], 1], j = 1,

While[U3 6= {}, {w[k][i2][j] = Flatten[Take[U3, 1], 1],U3 = Drop[U3, 1],While[U3 6= {}, {w[k][i2][j] = Flatten[Take[U3, 1], 1],U3 = Drop[U3, 1],While[U3 6= {}, {w[k][i2][j] = Flatten[Take[U3, 1], 1],U3 = Drop[U3, 1],

j = j + 1}],U2 = Drop[U2, 1], i2 = i2 + 1}],G1 = Drop[G1, 1], k = k + 1}];j = j + 1}],U2 = Drop[U2, 1], i2 = i2 + 1}],G1 = Drop[G1, 1], k = k + 1}];j = j + 1}],U2 = Drop[U2, 1], i2 = i2 + 1}],G1 = Drop[G1, 1], k = k + 1}];

Do[Do[x[j][i] = Sum[w[j][i][j1] ∗ x[j1], {j1, 1, n}],Do[Do[x[j][i] = Sum[w[j][i][j1] ∗ x[j1], {j1, 1, n}],Do[Do[x[j][i] = Sum[w[j][i][j1] ∗ x[j1], {j1, 1, n}],
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{i, 1, n}], {j, 1,LG}];{i, 1, n}], {j, 1,LG}];{i, 1, n}], {j, 1,LG}];

This is the Reynold’s operator using the above construction and code. Note that the reynolds
operator only works in two variables.

F = {0};F = {0};F = {0};

t = 0;t = 0;t = 0;

Do[{Do[mo1[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}], {j, 1,LG}],Do[{Do[mo1[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}], {j, 1,LG}],Do[{Do[mo1[j][t] = Flatten[m[t]/.{x[1]→ x[j][1], x[2]→ x[j][2]}], {j, 1,LG}],

g2[t] = (1/LG) ∗ Sum[mo1[j][t], {j, 1,LG}], F = Union[F, g[t]]},g2[t] = (1/LG) ∗ Sum[mo1[j][t], {j, 1,LG}], F = Union[F, g[t]]},g2[t] = (1/LG) ∗ Sum[mo1[j][t], {j, 1,LG}], F = Union[F, g[t]]},

{t, 1,Length[P2]}];{t, 1,Length[P2]}];{t, 1,Length[P2]}];

The last piece of code reduces the secondary invariants modulo the Groebner basis of the
primary set of invariants to remove redundancy.

GB = GroebnerBasis[F1,Array[x, n]];GB = GroebnerBasis[F1,Array[x, n]];GB = GroebnerBasis[F1,Array[x, n]];

F2 = {};F2 = {};F2 = {};

Do[{{{Q,R[t]}} = PolynomialReduce[g2[t],GB,Array[x, n]],Do[{{{Q,R[t]}} = PolynomialReduce[g2[t],GB,Array[x, n]],Do[{{{Q,R[t]}} = PolynomialReduce[g2[t],GB,Array[x, n]],

F2 = Union[F2, {R[t]}]}, {t, 1,Length[P2]}];F2 = Union[F2, {R[t]}]}, {t, 1,Length[P2]}];F2 = Union[F2, {R[t]}]}, {t, 1,Length[P2]}];

{0, 1}

The output above is the secondary set of invariants.



Chapter 8

Appendix B

8.1 Explanations of Certain Mathematica Commands

Explanations and examples of Mathematica commands used. The explanations and more
examples can be found in the documentation center in Mathematica under help. The ex-
amples I give are very specific but are the most relevant to how I used the commands.

Clear[”Global*”] clears all the variables globally.

Length[G] outputs the length of G. For example if G = {1, 1, 7} then the output would
be 3.

IntegerPartitions[i,n] returns all the partitions of i in at most n integers. For example if
i = 3 and n = 5 the output would be {{3}, {2, 1}, {1, 1, 1}}.

Flatten[A] takes a layer of parenthesis off A. If A = {{1, 3, 4}} then the output would
be {1, 3, 4}.

MonomialList[f ] gives all the monomials of the polynomial f . If f = x2y + yz + z4 then the
output would be {x2y, yz, z4}.

Take[A,1] returns the first element in the list A. So if A = {5, 4, 6} then the output would
be 5.

Drop[A,1] deletes the first element of a list. So if A = {5, 4, 6} then the output would
be {4, 6}.

Append[A, x] includes x at the end of the list of A. If A = {a, b, c, d} then the output

68
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would be {a, b, c, d, x}.

CoefficentRules[f, {x,y}] gives a list of vectors which represent monomials and correspond
the monomials to the respective coefficient. If f = x2y + 6x3y + 92y + 8x4 then the output
would be {{2, 1}− > 1, {3, 1}− > 6, {0, 1}− > 92, {4, 0}− > 8}.

Part[A,1] is similar to the command Take but works in a more general fashion. For exam-
ple if A = {{2, 1}− > 1, {3, 1}− > 6, {0, 1}− > 92, {4, 0}− > 8} then the output will be
{2, 1}− > 1.

GroeberBasis[F,{x,y,z}] returns a reduced Groebner basis of F using lexicographic order-
ing with x > y > z.
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