
An Object-Oriented Framework for the Creation of
Customized Expert System for CAD

by

Parasuram Narayanan

Thesis Submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

APPROVED:

S fropoam
Dr. S. Miah tam, Chairman

Lewitt hg C4 Poh
Dr. A. Myklebust Dr. C.F. Reinholtz 0

December 1993

Blacksburg, Virginia

1

mn, we ee

or) \O at

LOST
LAA %
M372

Com

An Object-Oriented Framework for the Creation of
Customized Expert System for CAD

by

Parasuram Narayanan

Committee Chairman: Dr. S. Jayaram

Mechanical Engineering

(ABSTRACT)

With the advancements in the fields of Computer Aided Design (CAD) and Artificial

Intelligence (AI), a number of CAD systems that are developed have built-in expert

systems to aid the designer in the design process. Recently there has been a trend in

industries and research organizations to custom create CAD software to satisfy specific

in-house needs. But there are not enough tools available to custom create expert systems

to meet the needs of CAD. Expert systems currently have to be developed from basics

using languages that are not in everyday use by the CAD programmers. Expert system

Shells available in the market do not have the flexibility or portability to support the

creation of an expert system for mulli-disciplinary parametric design. Thus there ts a lack

of repeatable use software to support the creation of customized expert systems to meet

the special needs of parametric deign in CAD.

In this thesis, the design of an object oriented framework which will aid in the creation of

customized expert systems for CAD applications is presented. This framework, known

as the Expert Consultation Environment, provides the CAD programmer with tools to

create the expert system. This framework consists of various object-oriented classes

which the programmer could use. The central part of this framework is the Expert

Technician (ET) class. This class represents an expert in a real world situation. Each

expert created by the programmer would have its own methods and knowledge in a

domain of design. The ET would thus assist the designer using the expert system in that

particular domain. The ET would be able to interact with the user in several different

modes. These modes are the Consultant, the Transactor, the Observer, the Teacher and

the Student modes. The method of interaction between the designer and the ET depends

on the mode of operation of the ET.

A programmer of the expert system would be able to create these experts by providing

knowledge and the design parameters to the ETs. In the case of a multi-disciplinary

design the programmer would provide each ET with the knowledge regarding the specific

domain of the design. In the case of concurrent engineering, each ET would be provided

with knowledge regarding the a domain involved in the product cycle of a component.

The object-oriented design for the framework has been discussed in detail including class

descriptions of all the classes in the framework. A prototype of the framework was

developed using C++. The creation of an expert system using this prototype for a multi-

disciplinary design application is also discussed in this thesis.

Acknowledgments

I would like to thank my wonderful parents A. P. Narayanan and Bhanumathi Narayanan

without whose inspiration and support this graduate studies would never have been

possible. I would also like to thank my sisters, Uma and Priya for all the encouragement

and being there in times of need.

I would like to thank my advisor Dr. S. Jayaram for the support and guidance throughout

my graduate studies. I would also like to thank Dr. Arvid Myklebust for the financial

support and for agreeing to serve on my committee. I would like to thank Dr. C. F.

Reinholtz for serving on this graduate committee.

I would like to thank Venky, Satya, Watson, Dilip, Ravi, Krishna, Srinivas, Suresh, Sai,

Saikat and Vinita for making my stay in Blacksburg enjoyable. For taking the monotony

away from all the work at the lab, thanks to John, Francisco, David, Andy, Jiewen and

Scott. Finally thanks to all the frends from my Roorkee days who kept in touch.

iv

Table of Contents

1. Tmtroduction ou... ccccceceecessecceceeeessceeeeeeceseeesnancecececeesesaceeceeresessecaneaeeseeesesvessscageaeaseess]

2. Literature ROVICW .00.......ccccccccececssseseeceseceeececececececececececececaceeaaeaesaesereeseesseeneeeeaeqeugagenenes 4

Artificial Intelligence and CAD 000.0... ceee te cececcecceceencscecececeseceeecesecsseceersestacseeeeneaes 5

Object -Oriented Design and Programming g...........ceecceecceceeseenenceeeeceeeeeneecececeeeeees 9

3. Problem Definition and Research Objectives:cccccescecececeeseneeeeeeeeeeeeeceeseanees 10

A, Object-Oriented Design 0.0... eeeecesccececeeeesecseeecececeececscceeeecerceseescnssacaeaeceseeeeeteeeeeeees 15

Classes and ODJeCIS 200.0... ceccceccescsesceeecececececececececceececaeaensaeeeecececeeeeeeeanseeganseeeeeeess 16

Encapsulationccccccccescscceessseceesscsneecescsecececesscesececseccecesecsusaceeseesssanereesseasegeseenes 18

INO ritancCe 2.0... eceseceeecececeeesssceceeeeceescnacceceeeeeeesnscecececeesensecsaceeeceeeseseeeeeseenseeees 19

POlyMOrphism 20.0.0... cecececeeecescsseeeeneceecececececeseceesentsenesesceasneaceasecaeaeaneeaneeenaeeneees 20

5. Requirements for the Frameworkccsccccceeseseececeeeececeecsenececeesenaececeeesnaneeceenenans 23

6. Expert Consultation EnvirOnMe nt........0...cecsccesesssccececesneeceeseeseeceseessnesesceensneeeeeeeeenes 29

An Object-Oriented Framework for the ECE 0.0.0.0... ceeccceececeeeeeeeeneneceeeeeeseesenes 31

7. Class DeSCTIPLIONS 00... ccecececcesessssececeeseeesensnsnceesesenenenaeseeeceesessaeeeaeseeeereeesseenananaees 44

The Session Manager Classccccseccccsesssscceesencececesscceeeceeneneeceseseeeeeeereecaeaeeees 44

The Session_Interface Class 2.0.0... eceeeeceeeeseececcescececcecssscccucessecesserecccssececcauceeecs 46

The Exit Dialog Class 0.2.0... cccceccccccccesssseccecececeesnaneecececsenensnsneecececeecenecessnaeeeeens 47

The Expert_Manager Classcccssccsssccesseecsscceesceeesccecesseecaccenceneceseteceeneeeseneeas 47

The Expert_Setup Class .0.......ccccccscccesseecesseccecssnceessnseceeseccececncecesnaeeecsensesessenteesenes 52

The Delete _Menu Class .0..... ccs ceeeecccessceceecnecesnsecesaceesesneeeesscececseceeceenensecsssseeeees 53

The Design_Parameter ClaSS .0.........ccccccsecessscceesseeeenesceceseeeecssacecssnscceceesaececseaeeess 54

Table of Contants

8. Expert Technician and the Operating Mode Classes 200.0... eeeseeseesseceeeseeeeeesneeeeees 56

The ET Clas .0......ccccccccsssseceesscsececesscneececsesneecsescneececeesececeenscaneesesesseneeeseesseeeeeeses 56

The Consultant Classeccccceescccesssecereenceesceaecessceeeosceeeecsaceesesseeenssseesesesseeeeees 64

The Consult_Popup CaS 00.0... ceceeesceeesseececeeecececeseeceeeecesseeuceeeeeesessaeeeseesseneeeeees 68

The Observer Class .0..........cssscsscecessesscessceececessccsneececececesescacceseeeeeceasenecseceeeeesecees 69

The Observe_Popup ClaSS:csesccecesesnccceesseceecescscaecesescsaceeecevececeeesesntceeeeeees 71

The Transactor Class .0.......cessccscesseeeessecesssccecssneeecesueceseeneesessseesenseesesesaceecessseeeeens 72

The Transact_Popup Classc.cccccecesssccecececeensesnnececececessesenccecceeeeseeseeeneeeeaeaees 74

The Teacher Classcececeeeceesceeccecccecececececesecesesseeeceseeseusesnesessagesagaaaaaeaeeaaees 75

The Teach_Popup Classcccesssssssccsscccccececececececeeeseesecesesenestessteestesnensausaaaqanas 77

The Student Class 2.0.0.0... .ccececseeeseesseceecncncececececeseceseeesesseeeeeeetesssteesteenesseeeeneeeaeaeas 78

The Learn_Popup Cass 200.02... ceeeecceessceeeseeecesseeeeesececnssceeesesnaecneseeeseesseeeseesaeeess 80

9. Knowledge Base and Inference Emginecccececesssecececeeeeneeensncnenceceeeeeesssceeseners 81

The Rule Classecccescceceessececeesenceceseccnecececnaceececcenceeecesecseeeeeesesssneeeseeeaseeeeeess 81

The Inference Engine Class 2.0... ...ccccccccesssscecessesceeesssneececeessccececesseeesececeecneaeeeceeses 85

10. Example of an Expert System SeSSiION............cccccscssssscccceceeeceeseecsneencecececeseesnsensnaneees 88

11. Implementation and Results 0.0.0... ccesssscsscececeesssseeececececeeeesssanseceeeceesesssesenseeseees 101

12. Using the Frameworkcccccscsccccccccecesececeseceenenssscncananecseneasanseeccececececeeesececeeeneeees 12]

13. Conclusionsececececcceseeeceesseeceeeeseceeceensnceeeenscaeeecssccesececseseneeeeecsnaesececesteneesessenseeees 127

14, References 0.2... ceccce essence ceeessecsececese ce ssscaeeeceeesseaanaecececesessesensaaacecectestesstenenseeserss 129

Appendix A : Detailed Class Descriptions .0........ccccccceesscceesescceceseeeececssecsaeeeceenenseeeeeenes 134

OVEIVICW oo. cecccescececcececessneeecesecsenesuaenseseesesesnaauaesececeesesesseaeeeseseeseeesesanessecseeeeeess 135

Session _Manager Class.......c.ccccccecscceceesseccceesseseeeesenaeeecessencececscneaaesececsesasaeerenseaees 136

Session_Interface Class... eee ceeescccessccencccceccecccccescecscscceseccecseecenscecasesesserecenes 137

Exit_Dialog Class ccc ccccccessscceceecesessnaccecec cescanaececececsensnsnenaecececsesenenenscanseeeeees 138

Expert_Manager Class 20........cccccccccccseeessssccececeessnscsecececececsessneaeseeeceesesensanaeaceeeees 139

Table of Contants vi

Expert Setup Classcccccccceceecceeeseencecesceeceseaececeaneeceeneececsaeeeessnsecsaceeeesenaeeeeees 146

Delete_ Menu Class 200... ceccccceesscccccscescuccceeseccccscucececeseesasceceuscesecsenscesseasesceaceesses 147

Parameter Classcccecccesesssccecetssceececeseeneeeeseseceescesseneeeecesceeaecesetessaneneesesseraceees 148

ET CaSccccccesssececeesecceceesscseceessecececescsceecettccaceecesseneecesesceceeeseesseaaeessesssnaneesesnes 151

Consult Class........cccccccccceessecssseceesseececssneesecnaeceeceeeseseeesesscesecseceeenecseeesteseeensesneeeees 156

Consult_Popup Classccccccecsessececsssenceessesscececesceeeeceesseaececssaeeeecsensaeeeeceesenas 159

Observe Classccccccccceessseccececeeesecssneececeensccssaecececeesesescacececeeeevenessceeaeaeeeeesenseees 163

Observe _POpup ClaSSccccccccsscscsccccececececeseeseeescnessnsnsnanaceeaaaesececeacceceseceeeeeeeeees 164

Transact Classccccecssceceesssacceceesenceeeesecencecesceaeecececsaeeeceeseseeeeceseesenaeeeeesseneeeeess 165

Transact_POpup Class .0.........ccccccsscececessessscecececeseecsaceceecececeessceneesececaeeesesesssnnensees 169

Teach Class .0......cccecccccesssscceessnecceesecneneceeesneececseenncecesseuececececsueeeceesesansecessequeneeeeees 172

Teach _Popup Casscccecsssseceseseececescencecerseceeeccsesaeeeeeseesuececeseseaneeeeceseeeaeeesees 174

Student Classcceccecssccessseceesececesecececnaneeseseeecseseeceesueceensaeeceesareeseeesecesseceeeeeeaees 175

Learn_Popup ClaSS .0.......cccccccssescececeeseseceececeesenensceeceeceensssnacaeeececeseseesensnensneesece 176

Rule Class oo... ecccccecsescessseceseseceessececessaeceeacececsaneecseneeseccasecceaceecseaeeeeneceeeeeneeaeeeeeas 177

Appendix B :Example Problem Listing .0..........ccccecesseeeceeeesscececeeeseeeeeeseseneeceesensaeeeeeeneaes 178

OVELVICW 0... cececsesseceesssaeeeeseneececsessesececsenaececsesaceecesseaseeeceecnacseeceenenaesesessesatseeecesaas 179

VLA eee ce eseceeceeeecesuececeneccesasecsccecseneeseacaececssnseceecsecseseeeesseeeecesneecessasteceesanseceeeeeeeseeees 18]

Table of Contants Vii

List of Illustrations

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Representation of a Transportation Problem ...0.0............eeseeeececeeeeeeeeneeees 17

Interaction Between User and Expert Systemc:sceeccceeeeeesessseneees 26

A Typical Expert System Sessioncceccceeseeececeseceeeceeneeceseeecesesneees 27

Class Diagram for the Framework...0........cccceseceesssceceeeseceseeeteceensseeceeseees 33

Notations Used in Object-Oriented Design .00.. eee eee eeeeeeceeseeeeceeeeeees 35

Class Diagram with User Interface Classes ..0.........::ccsceceeeeecceeeenseeeeeeeeees 36

Class Diagram with User Interfaces - Continued0....cceeeeeeeeeteeees 37

Class Diagram for the Initial Design of Frameworkceeeeeseeeees 40

Class Diagram of an Intermediate Design eee eee eeeceeeeeteeeeeceeeees 41

Linked lists in the Expert_Manager ClaSsccccccessscessenceccccececeeeeeeeee 49

ET Class Representationccccceecsceceeeesceseeececececeenseeeaaececeeterseeeeneneees 60

The Rule Class wo... ccccccccscceceeseneseceeceeeeeencceanceceseceesesesnaeeeseseeseeeceneeeeas 84

Sketch of the Gear Train DeSignccccccececeeeeseeneeeececeeesesessanseaeaeenes 89

Flow Control for a Sample Session ..0........ceeeceeecceceeeceeeeecesesecrenseesenseeees 98

Main Screen of the Expert SyStemeccccecececeeeecseeeceeeceeeeetesssceneesees 104

Pull-down Menu for Creation of an Operating Mode of an Expert........ 106

Parameters Belonging to the Strength Expert...........ccceeeecceceeeeeesseeneees 108

Parameters Belonging to the Kinematics Expertec:ecceeeesseeeeeeeeees 109

Pulldown Menus for the Consult Operating Mode of an Expertt............ 111

Pop-up Menu for Entering a New Value for a Parameter 112

Pop-up Menus for the Observe Mode of an Expett.............ccceccseccceeeeees 113

Pop-up for Confirmation from the User to Exit the Session04 115

List of IHustrations Vili

Figure 23 Expert System Scenario for Multi-Disciplinary Design of Aircraft...

Figure 24 Expert System Scenario for Concurrent Engineering............ecsceeeeeeseees

Figure 25 Sample Program to Create an Expert System from Framework

List of Illustrations 1x

1. Introduction

The field of Computer Aided Design (CAD) has come a long way in the recent years in

aiding the designers of engineering systems. The initial CAD systems that were

developed and were available in the market mainly aided only in the drafting and drawing

and in the visualization of the component or the system being designed. With the

advancement in the field of the CAD, current systems are able to aid the designer in

various fields of engineering analysis, finite element modeling and analysis, geometric

modeling and manufacturing of the components being designed. Moreover, inroads made

in the field of computer hardware and software have made current CAD systems faster

and more efficient compared to the early CAD systems that were available. Thus,

performing engineering design on CAD systems has become attractive to industry in

terms of both cost and turnaround time.

Engineering design problems have always been domain specific. Designers performing a

design require expert knowledge and information in specific domains of design to carry

out the design process. Recent research in the field of Artificial Intelligence(AI) and

Expert Systems have attacked this problem of providing the designer with the knowledge

and information necessary to carry out design in a particular domain of engineering.

Domain-specific knowledge in the form of design methodologies, constraints, equations,

facts, design rules and rules of thumb are acquired from the experts in the field and stored

in the system in the form of rules. Decisions regarding the design are made by the user or

Introduction 1

the computer with the help of these rules. Research is also being carried out in the field

of machine learning wherein the computer would be able to learn to make decisions by

acquiring knowledge from the application being used. With specific reference to

engineering design, the computer would be able to capture domain-specific knowledge

from the design being carried out and store it as a part of the computer knowledge. Thus,

in later designs, the knowledge from the earlier designs would be used to make decisions

regarding the design leading to an efficient design and reducing the time required for the

design.

With the advancements in the fields of CAD and AI, there have been a number of CAD

systems which have integrated expert systems to aid the designer in the design process.

Since design process is domain-specific, these systems are created in-house and are

tailored to comply with the functional requirements of the design. Since no CAD system

can be so versatile as to satisfy the requirements of mechanical design needs of all

companies and other organizations, these applications programs are custom-created to

satisfy the needs of each domain.

In spite of these advancements in the fields CAD and AI, the high costs brought about by

the creation of in-house software cannot be avoided since the requirements for these

systems are so diverse. These costs are brought about because the software is developed

from scratch and the turnaround time for the development for such software is usually

high. Even though this activity of developing custom software to satisfy the specific

needs of an organization is usually unavoidable, the cost and time can be greatly reduced

by the creation of repeatable-use software. Research in this field is concentrating on the

easy creation of specialized software, rather than the creation of large general purpose

CAD software. Emergence of tools which aid the programmers in the easy creation of

such software has become significant in recent years. Tools for the easy creation of

Introduction 2

graphics, user interfaces, etc. has greatly reduced the burden on the programmers.

Emergence of tools like GKS and PHIGS as ISO standards for graphics have greatly

enhanced the capabilities of custom CAD systems by providing full 3-D functionality

along with device-independence.

Although the field of CAD has come a long way in recent years, the integration of CAD

with engineering/mechanical design, especially the integration of CAD with conceptual

design, has not been provided the importance that it deserves. Tools which facilitate the

custom development of conceptual CAD software are still not available.

This is especially true in the case of intelligent CAD systems. This thesis describes the

philosophy and design of a framework which will facilitate the creation of expert systems

to support parametric, conceptual design. A full implementation of the framework would

provide CAD programmers with a set of high-level tools for customizing expert systems

for multi-disciplinary, conceptual parametric design.

Introduction 3

2. Literature Review

In order to meet the specific in-house needs, industries and organizations have in recent

years shown a tendency to develop their own custom CAD/CAM software. In a recent

survey of 26 Fortune 500 companies, 88.5% of the surveyed companies reported

development of custom CAD/CAM software to meet their special requirements [Penn91].

The advancements made in the field of hardware technology have made the computers

powerful enough to meet the complex needs of CAD. Kidwell has discussed how

workstations can be used to save time during the conceptual design stage of an aircraft,

thereby reducing the cost of the aircraft [Kidw87]. CAD systems have come a long way

in recent years. Advancements have been made in the fields of design, analysis and

visualization. Research in the field of application of artificial intelligence to CAD has

received a significant thrust in recent years. This is evident from the availability of

publications regarding the research being done in this field. Research in this field is

mainly concentrating on the application of knowledge-based and rule-based systems to

CAD. This includes the development of expert systems to aid the designers using CAD

systems.

CAD and Knowledge Based System (KBS) tools are changing the way mechanical

engineering design is being carried out. Ullman and Dietterich have reviewed CAD and

KBS systems and have detailed the current design methodology used for mechanical

design [Ullm87]. The process of mechanical design right from the initial phase of

Literature Review 4

problem definition until the final solution is discussed. The main thrust areas for CAD-

KBS development are listed. These include design methodology where the system guides

the user through the design process and design history recording where the various design

stages are recorded. The authors also emphasize that the areas that the research should

concentrate on are the integration of KBS and CAD tools and configuration of KBS tools

for CAD.

This chapter reviews publications regarding research in the application of expert systems

to CAD systems. The first section discusses the application of expert systems to

engineering design. The second section discusses object-oriented design and

programming especially with relation to Al.

Artificial Intelligence and CAD

While a number of conceptual design systems exist, artificial intelligence and expert

systems technology have been recently applied to manage complexity and integrate these

large design systems. Ohsuga has discussed the necessity for CAD systems to be

intelligent and suggestions to make intelligent CAD systems useful [Ohsu87]. Bouchard

et al have explored the possibilities of application of artificial intelligence technology to

aeronautical system design [Bouc88]. This technology can be applied in automating the

geometry for parametric design by the use of solid modeling and surface geometry and

the use of object-oriented technology for the definition of geometry. The analysis of

design space can also be automated using artificial intelligence techniques for search,

Literature Review 5

performance relations, computational trees and constraint propagation. Optimization is

another prime candidate for automation. An automated aircraft system would therefore

consist of an advisor for selection of analysis methods, a design space analysis system

and an optimization system.

An aircraft design system incorporating quasi-procedural methodology has been

developed by Kroo and Takai [Kroo88]. This system consists of various procedural

analysis routines. A computational path is generated using the inputs available and the

outputs desired. A rule-based system working on a set of if-then rules, serves as a

warning system and reports violations of design rules, constraints and analysis routines

by examining the database at every stage of design. A knowledge-based system suggests

solutions to identified problems by examining the database, rule-base and the warnings

posted. The rule-base also advises on selection of analysis procedures. Integration of

numerical optimization with the quasi-procedural methods using sequential quadratic

programming and genetic algorithms has also been investigated by Kroo [Kroo92].

A system has been developed by Gillam [Gill192] wherein a knowledge-based paradigm is

used to represent and use information to assist and guide the design of large space

systems. Explicit storing of information makes the browsing of available information

possible and makes the system model more credible, transparent and accessible. This

also helps in the follow-up of a decision through the conclusion arrived at from the

decision, or vice versa. This is done by evaluation of the conclusion and tracing back to

the decisions and assumption on which they are based thus evaluating the impact of the.

decisions.

To facilitate in making conceptual design systems flexible, a constraint-based modeling

system has been developed by Kolb [Kolb88, Kolb92] in which object-oriented

Literature Review 6

techniques have been used to define design components. The components are described

in terms of their attributes and their constraints and each component is an instance of the

component class. To integrate the various components, design links, also defined as

objects, relate the attributes of different components which govern common constraints.

Constraint propagation methods are used to manage mathematical relationships which

govern the geometry and physics of the components. Tong et al [Tong92] have

integrated artificial intelligence and numerical optimization for the design and

optimization of aerospace systems with the use of object-oriented techniques, expert

systems and genetic algorithms.

Shortening of information feedback loops for the purpose of analysis and evaluation of

design and presenting the information to the designer has been demonstrated in a system

developed by Talukdar et al. [Talu90]. It consists of autonomous programs, called critics,

each of which keeps track of a specific area of design. For example, the mechanical

strength critic keeps track of the structural integrity aspects and the kinematic critic keeps

track of the motion of the assembly and the tolerance between parts. As the designer

creates a new design, each critic observes the progress of the design and evaluates the

design independently by executing analysis programs where appropriate. If new and

useful information is obtained or if flaws are detected in the design, the critics provide

feedback to the designer by providing appropriate information.

A generic set of decision rules for the synthesis of new products, processes and

manufacturing systems have been developed by Kim and Suh [Kim86]. An expert

system architecture, “Axioms” has been developed and has been specialized to a

particular domain. Design and Manufacturing advisor, a system with specific production

knowledge has been developed using the Axiomatics advisor.

Literature Review 7

Yerramareddy and Lu have developed a system which refines the large initial design

space through a series of multi-objective optimizations [Yerr93]. This aids the CAD

systems in arriving at a fully specified design space. This system, known as HIDER, uses

statistical techniques and machine learning to arrive at models which are then used for the

multi-objective optimization. Thus, this system aids in the decision making process by

reducing the time to proceed from the initial specifications to the final design.

Lu and Wilhelm have developed a system for automating tolerance synthesis that would

take into account the various features of the part that is being designed [Lu91]. This

system, CASCADE-T uses the constraint propagation method to evaluate the various

parameters of design. The evaluation of parameters is defined through a network of

constraints where the relationships are defined in terms of constraints. Calculating the

values of parameters are carried out by propagating values through the constraint

network. Subramaniam and Lu have discussed a methodology for the development of a

CAD system for the design of components manufactured in small and medium lot sizes

[Subr91]. This system uses the concept of simultaneous engineering wherein the design

is carried out with the intention of keeping the manufacturing cost low. A knowledge

based system is used wherein the knowledge regarding manufacturing is captured and

stored in the system. This intelligent computer environment would advise the designers

on the problems related to manufacturing during the design stage.

Modeling of the design is important from the point of view of the evaluation of the design

obtained from CAD. Tcheng and Lu have described a methodology wherein models are

represented as layered models with different levels of abstraction [Tche91]. Evaluation

of the models could be done at different layers of abstraction. A system has been

developed which uses AI techniques for the development of these layered models. The

Literature Review 8

system uses inductive learning algorithms for the development of new models which

would build models from examples.

Object -Oriented Design and Programming

A semantically rich object-oriented analysis method for the migration of existing systems

using semantic object modeling approach has been detailed by Graham [Grah93]. This

method, called SOMA, uses strongly encapsulated objects combined with expert system-

like rules for object-oriented analysis. The various steps for performing analysis of

existing systems are described.

Ibrahim and Woyak have described an object-oriented environment for the integration

different programming paradigms [Ibra90]. This system, known as EDS/OWL, uses an

object-oriented approach to program AI applications using different paradigms. The

authors use the word paradigms in this paper to refer to the techniques of a particular

method of programming. This system allows integration of various programming

methods. New and exploratory paradigms for AI problems could be implemented using

this environment.

Franke describes how features of object-oriented languages can facilitate the integration

of applications and rule inferencing [Fran90]. Methods to imbed rule inferencing in

applications is described in detail. A system known as CAD Inference Engine (CADIE)

has been developed for integrating rule-based inferencing capabilities to CAD tools

developed using object-oriented languages such as C++.

Literature Review 9

3. Problem Definition and Research Objectives

The development of custom CAD software involves the time-consuming development of

functions such as user interfaces, modeling routines, etc. The future of CAD depends on

the creation of tools or repeatable use software which aid in the easy creation of custom

CAD software. These tools should be created to relieve the programmer of CAD systems

from repetitive tasks. Repeatable use functions would be available as a part of the tool

and these functions would be used by the programmer who will not need to build these

functions from scratch whenever it is needed. PHIGS is an example of such repeatable-

use software which allows the programmer to use the functions available to visualize the

geometry of a design. The necessity to build tools for the easy creation of software is

important especially in the case of Al-based CAD systems in which the user needs to

provide all the functions of an AI system in the CAD environment. That is, AI functions

such as the inference engine, search routines and management of the knowledge base

have to be built by the programmer whenever there is a necessity to use such functions.

The importance of expert systems in CAD has grown in recent years. This is evident

from the abundance of research being done in this field and the explosion of publications

available. The process of designing a component or part requires expert knowledge in the

particular domain in which the component is being designed. For example, the design of

a kinematic linkage would involve knowledge in kinematics, structures, and possibly

knowledge about materials, among other topics. A designer who is involved in the

Problem Definition and Research Objectives 10

design would need knowledge of all the different domains to make decisions regarding

the design.

With the help of an Al-based or a knowledge-based system, expert knowledge about the

different domains can be incorporated into the system and would be utilized to make

decisions regarding the design of a particular component. Expert knowledge in the form

of rules, equations, facts, rules of thumb, design methodology, etc. could be acquired

from the experts in particular domains and stored in the system as expert knowledge.

This knowledge could be used by the computer or the user to make decisions about the

design.

Currently, expert systems for CAD applications are developed from basic principles

using AI languages such as LISP and Prolog or have to be programmed using a general

purpose expert system shell. AI languages have a long learning curve and are not the

everyday languages used by engineers who develop CAD systems. A programmer using

these languages has to create functions for user interfaces and inferencing into the system

being developed. Since these languages are different from the languages the CAD

systems are built in, integration of the CAD system and the AI methods would be

extremely difficult. General purpose expert system shells have the functions of user

interfaces and inferencing built into them. But these shells are normally system-

dependent. These are closed systems and do not allow integration with the overall CAD

system. An ideal architecture for a CAD-based expert system would be a multiple-

domain expert system but these shells do not provide the programmer with the flexibility

to separate the expertise of the different experts within the same expert system.

This is especially true in the case of parametric, multi-disciplinary design in which the

design process revolves around the manipulation of various parameters of the design.

Problem Definition and Research Objectives 11

Each of the parameters might directly belong to a different domain in the sense that the

parameter would have the maximum effect in the determination of the final parameters of

that particular domain of design. Separating out the different domains and their

parameters is a difficult task in a conventional expert system shell or using an AI

language.

Expert systems developed for a CAD application rarely emulate a real-world situation. In

this situation the designer would have available to him the knowledge of experts in

different domains. The designer would be able to delve into the expertise of the experts

to arrive at decisions that need to be made regarding the design. Taking the earlier

mentioned example for the design of a kinematic linkage, the designer would be able to

discuss with a kinematics expert and make use of his knowledge and expertise regarding

that particular domain. Similarly, the designer would be able to use the knowledge, data

and experience of a strength expert to gain expertise in that domain and, finally, using the

above knowledge from both the domains the designer would be able to make decisions

regarding the overall design. In this situation it has to be noted that the knowledge and

data of different domains are always kept separate and final decisions are arrived at

taking into consideration both the domains and the interrelationships between them.

Most of the expert systems for design which are developed currently seldom try to keep

the knowledge of different domains apart.

The availability of a high-level programming environment will reduce the burden on the

programmer by removing the task of writing support software and other functions thereby

reducing both the cost and the time for the development for custom CAD software. A

collection of high-level CAD programming tools will provide an environment for easier,

faster and efficient development of CAD applications and will allow the programmers to

concentrate on the development of the overall system and the technology involved.

Problem Definition and Research Objectives 12

Research in the Computer Aided Laboratory at VPI has led to the design of a suggested

high-level, device-independent programming environment to facilitate the development

of custom CAD/CAM software. The environment has been named CADMADE

(Computer Aided Design and Manufacturing Applications Development Environment)

[Jaya89, Jaya90, Jaya93]. An implementation of this environment should include a

library of procedures, class libraries, data structures and other CAD/CAM programming

aids, and may be viewed as a high-level language for design and manufacturing

applications programmers. This overall environment is divided into a number of sub-

environments: User Interface Environment (UIE), PHIGS+ Environment, Design and

Modeling Environment (DME), Virtual Manufacturing Environment (VME) and the

Expert Consultation Environment (ECE). The central part of this ECE are the Expert

Technicians (ET) who are the experts in different disciplines of design and would assist

the designer by providing the knowledge and information regarding the design. Research

is being carried out on the other environments [LinW93, Woya93, Uhor93a, Uhor93b,

Flem92, Flem93]. This thesis involves the design and implementation of the ECE.

There is a growing interest in the industry in areas related to customized expert systems

for CAD applications. The focus of this research is to develop a programming

environment in which a programmer would be able to create an expert system for such an

application.

The objectives of this research were:

1. To define the requirements for an object-oriented framework to support the creation of

an expert system especially suited to the requirements of parametric CAD systems.

2. To design a high-level programming environment (framework) to aid in the creation

of custom expert systems for CAD.

Problem Definition and Research Objectives 13

3. Create the requirements for the Expert Technicians, their operating modes, rule base

and the inference engine.

4. Define the user interface methods to be built into the ECE.

5. Define and create a prototype of the framework and the Expert Consultation

Environment

Problem Definition and Research Objectives 14

4. Object-Oriented Design

The art of programming depends on the breaking down of large problems into smaller

components which makes development of software for the solution of the problem

simpler. Until recent years programmers used to breakdown large codes into modular

programs called subroutines, each of which represents a subset of the task performed by

the whole program. This task of breaking down of the large code into smaller

components is known as decomposition. Traditionally computer programs have always

been “functionally” modular wherein large programs are decomposed into smaller tasks

and sub-tasks.

In recent years, this process of decomposition of a large problem has shifted focus from

tasks to objects. This approach, known as Object-Oriented Programming, concentrates

on the representation of the problem by decomposition into objects. This represents a

new method of thinking about the problem closely approximating the way problems are

solved in a real-world situation. In this situation, objects are self-contained entities

having their own data and methods. The data and methods of an object exist as internal

details to the object and are not available to other objects in the program. This

philosophy of keeping the data and methods of each object private to that particular

object is known as encapsulation. Encapsulation is done so that the rest of the application

program is insulated from the internal implementation details of the object. An object

Object-Oriented Design 15

that needs to access the internals of another object merely sends a message to that object

requesting it to carry out a specific process. The object that receives a message, executes

a function that operates on data that is internal to itself.

To further illustrate the concepts of object oriented design and programming let us

consider an example of representation of people-movers i.e. all modes of transportation

used by people to go from one place to another. This example is illustrated by figure 1.

People-movers can be broken down further into Land-based and Non land-based modes

of transportation. Land-based transportation could be further classified as tracked and

road vehicles. Non Land-based vehicles would be further classified into sea-vehicles or

ships and planes.

In this case the representation of the problem has been decomposed using the object-

oriented methods. In the rest of this chapter the key concepts of Object-Oriented design

are further explained.

Classes and Objects

Classes represent groups of objects that are nearly identical. In other words objects are

instances of classes. Classes contain all the bare data and methods that are common to a

set of objects that are similar. In the example considered, all models of cars are objects of

the class Cars. The class Cars would be contain all the methods and the data for the

objects but the objects themselves would have specific values for the data. Consider the

Object-Oriented Design 16

—_ ~

oa

/)
People Mover /

“Non Land- Based , Land-Based

Tracked Road)
ay C

~ 7

7 Aircrafts , Ships ,
NL VL

—~—~ — -

— = — ~

7 7

f Buses f Cars
NL Nae

~ —~

Figure 1 Representation of a Transportation Problem

Object-Oriented Design 17

class Cars having a variable representing the horsepower of the engine of the cars. The

objects of that class would have a specific value for the variable.

Thus all the common methods and data for a set of objects are collectively represented as

a class. When an object needs to be created, message is sent to that particular object to

create an instance of itself, thus creating an object. The variables in the class known as

class variables have no value attached to them, but the variables in the objects which are

instances of the class variables have specific values. The methods of the classes are

directly instanced in the objects without any changes.

Two different classes can inherit from another class. For example, Tracked vehicles and

Road vehicles are derived from the Land-based vehicles class. The Land-based vehicles

class is known as the base class and the Tracked and Road vehicles classes the derived

classes. Similarly the People-Movers class is the base class for the Land-based and the

Non Land-based vehicles class and the latter the derived classes. The base class contains

the data and methods common to all the derived classes and these are inherited by the

derived classes. Inheritance is discussed in detail in a following section.

Encapsulation

This is a method in which some of the data and functions of a particular class are hidden

from the rest of the application. In effect, the implementation details of the class are

insulated from the rest of the program. If an object wants to access the data or the

Object-Oriented Design 18

method of another object a message is sent to the latter requesting the value of the data or

requesting execution of a function. This is done such that the rest of the application

program need not worry about the way data and functions are handled inside the object.

For example, in the case of an aircraft, the number of passengers is calculated from the

internal size of the length and width of the passenger deck of the aircraft. If the

application program needs the number of passengers, it sends a message to the object of

the class to calculate the number of passengers it can carry. This function to calculate the

number of passenger is hidden inside the object and the rest of the program is insulated

from this implementation. If the aircraft is modified to have two passenger decks, the

function that determines the number of passengers the aircraft can carry might be

changed. Still any other part of the program that requires this information will send the

same message as earlier and does not need to know that the internal details of the object

have changed. Thus the program can be adapted to future changes giving the

programmer ease of maintenance of the code.

Inheritance

Inheritance is a mechanism in which data and methods are shared among different

classes. Inheritance allows the data and methods of a super class or a base class to be

inherited and used by a derived class or a subclass. As shown in figure 1, in object-

oriented design, the problem is represented as a hierarchy of classes and subclasses. As

we go down the hierarchy, the classes get more specific. Through the mechanism of

Object-Oriented Design 19

inheritance, methods and data common to two or more classes are put in another class

which will be the base class for these classes. The derived classes will further contain

data and methods that makes them different from the base class.

In the example shown, the base class for the whole representation, the People Mover

class, could contain the data common to all the subclasses derived from it. It could

contain variables for the number of passengers, the data about the distance it can cover

before refueling, the type of fuel used, methods for calculation of the total weight it can

carry etc. These data and methods are inherited by the subclasses, Land-Based and the

Non Land-Based vehicles. Further the Land-based vehicles class could have data and

methods of its own, such as the number of wheels on the vehicle.

A class can inherit from a single class or multiple classes. For example if one wanted a

class to represent an amphibious vehicle, it could be built from inheriting from both the

Land-Based and the Non Land-Based vehicles class. Inheritance is thus a very powerful

mechanism that is not found in the procedural type of programming. It helps in the

abstraction of class by allowing the representation of classes as a hierarchy.

Polymorphism

Each object in an object-oriented environment responds to a message which it receives.

The response of different objects to the same message might be different depending on

the implementation of the class. This mechanism is known as polymorphism. For

Object-Oriented Design 20

example, in the objects of all the classes shown if figure 1, calculate_weight might be a

function that calculates the overall weight of the vehicle. Even though the message to all

the objects to calculate the weight might be the same, the method in which the weight is

calculated might be different for each case and is dependent on the internal

implementation of the methods in each class. The method common to most of the classes

is usually defined and made a part of the base class. Since all the other classes inherit

from this class, the objects requiring a different method of calculation usually redefines

the function. This coupled with inheritance provides a powerful method to abstract and

build classes easily.

Object-oriented design and programming thus provide methods in which the

representation of the problem can be more closely approximated to the way in which the

objects exist and interact with each other in the actual world. The ideology of

development of software shifts from programming tasks to programming objects and

their individual behavior. Each of these objects exist as self-contained entities with their

own data and methods which dictate the behavior of the objects. The objects interact

with each other through messages sent from one object to another. Similar objects can be

instantiated from the same class reducing the amount of code to be written for each

program or software. The concepts of classes, inheritance, polymorphism, and

encapsulation provide several advantages to object oriented programming and design,

some of which are listed below.

Reusability: Classes are self-contained entities whose existence is not dependent on

other parts of the program. Objects can be created from classes easily by instantiation.

Object-Oriented Design 21

Thus objects can be plugged into the code wherever necessary by creating instances of

the class. If classes are well designed they could be used and reused wherever necessary.

Maintainability: Since classes and objects are self-contained, changes made to any of

these do not affect the rest of the code. Thus the interaction between objects are not

affected whenever the internal implementation details of objects are changed. This

makes maintenance of the program an easier and simpler task.

Extendibility: New objects can be built and introduced into the program with the least

amount of effort. Declaration of classes as data types provides a powerful mechanism by

which new objects can be easily introduced. Development of new classes could also be

done by using older classes and making necessary changes to them. Inheritance provides

a powerful mechanism by which new classes can be built by inheriting from older

classes.

Conceptual Consistency: With careful design of the problem, objects can be made to

approximate the way objects exist in the real world. This makes the problems easier to

represent, program and understand.

Object-Oriented Design 22

5. Requirements for the Framework

The tools which are created to help in the development of the expert system should

relieve the programmer of time consuming activities like building of inference engines,

forward and backward chaining techniques, etc. These should be built as a part of the

system and the programmer should be able to invoke such functions rather than create

one whenever it is necessary. The expert system created from such tools should emulate

a real-world situation or the design session from such an expert system should closely

approximate the way experts are consulted by a designer/engineer to design a particular

component or system. This necessitates the separation of knowledge and data of different

domains of expertise. In other words, there should be an expert for every domain of

expertise and these experts should be self-contained in every sense. The experts should

carry their knowledge and data regarding the design, their own user interfaces allowing

them to interact with the user independently and their own methods which will allow

them to reply to the queries of the user. Thus, the user will be able to get expert advise

from all the different experts and arrive at a decision regarding the design.

The experts created should be able to emulate the behavior of real world “experts”. This

necessitates that the each expert should have the expertise pertaining to a specific domain

of design. Thus, the user of the expert system can directly interact with these experts

regarding problems and queries about the design. The experts should be designed in a

manner that the interaction between the user and the experts should simulate the

Requirements for the Framework 23

interaction between a designer and an expert in the real world. This means that the

experts should be able to reply to all the queries of the user, warn the user if the

parameters of the design are not compatible with the system and lead the expert through a

design process so as to teach him the concepts of design pertaining to that particular

domain of design. To make the system more adaptable and flexible, the experts should

be able to learn from the design process being carried on so that the knowledge from

previous design experiences are stored and could be used in later designs.

Each expert should be able to act in the different modes described above and contribute to

the design process based on the knowledge and methods contained in each expert. The

expert system developed using this framework should be tailored to meet the special

needs and requirements of a CAD system, especially a parametric design system. The

expert system developed using these tools should have methods to manipulate the

parameters being used for the design process. It should have methods to get and store

values of the parameters, calculate the values of the different parameters at any given

time, should have equations for the calculations of the different parameters and maybe

even be able to optimize the value of a parameter based on the design constraints.

The parameters to be used for the design and the equations and methods to calculate the

different parameters should be input to the system by the programmer and should be

stored as the knowledge of the different experts depending upon the domains which are

affected by the parameters. The application programming environment should provide

the programmer with the tools and the flexibility to perform the above-mentioned

functions. The user interfaces which would include menus to setup and delete the various

experts, menu items for the different experts, pop-up menus for the experts and dialogue

areas for the interaction with the experts should be built into the system. Thus the

programmer would have all the different user interfaces for the end user to interact with

Requirements for the Framework 24

the experts available to him and would not have to go through the time-consuming tasks

of building the user interfaces for the system.

The language chosen to develop this framework should provide the flexibility to allow

the easy creation different domain-specific experts who are self-contained with their own

knowledge and methods. Figure 2 shows the structure of the expert system that would be

developed from the framework. This figure shows the knowledge, parameters, inference

engine and the user interfaces belonging to the ET and interacting with the user. Figure 3

shows the interaction between the user and the experts in the expert system in a typical

session. The framework developed should be able to create experts by using domain

specific knowledge. These experts should be able to interact with the user to aid in the

design. The language should also be one which is easily understood and used by a

programmer/engineer. The language used to develop this system is important in the sense

it should allow easy integration of the expert system developed with the overall CAD

application being developed.

In summary, the requirements for the framework are:

1. The expert system created using the framework should closely approximate a real-

world design process by having separate experts in separate domains. The experts should

also be self-contained in the sense that each expert should have its own knowledge and

methods about the design.

2. The experts should be able to interact with the user in different modes namely the

consult, transact, observe, Teacher and the Student modes.

3. The programming environment should be developed using a language which is easily

understood and used by engineers and programmers.

Requirements for the Framework 25

Knowledge

Expert 1
Design

Methods (Fmt)
Parameters

User Interface

Design
Methods

User Expert 2 (Knowledge
Interface

Parameters

Design Parameters

Methods

Expert 3 Knowledge

Figure 2 Interaction Between User and Expert System

Requirements for the Framework 26

ET

ET

NN

> User 4

bo | (° S 3

oC

Figure 3 A Typical Expert System Session

Requirements for the Framework 27

4. The programmer should be able to tailor the expert system to satisfy the requirements

of parametric design in CAD systems.

5. The tools should have functions for user interfaces and inference engines built into

them.

6. The expert system created should allow the programmer to easily integrate it with the

overall custom CAD/CAM system that is being built to suit specific needs of a particular

company or organization.

Requirements for the Framework 28

6. Expert Consultation Environment

To meet the requirements of industry, academic institutions and research organizations

that develop custom CAD systems, an Application Programming Interface [API] was

suggested by Jayaram [Jaya89, Jaya90, Jaya93]. This design of the API is called

CADMADE (Computer Aided Design and Manufacturing Application Development

Environment). An implementation of CADMADE would allow the programmer of

CAD/CAM systems to develop applications with the least amount of time and effort.

CADMADE suggests that a set of high-level routines and programming interfaces be

built into the system which a programmer would be able to use to set up the CAD system.

These routines and interfaces are designed for repeatable use and would aid the

programmer in getting rid of the ttme consuming tasks of having to build these routines

from basics every time a CAD system is created. CADMADE is made up of a number of

programming environments with corresponding data structures and two database

managers, all of which can be accessed by the applications program. These environments

are the User Interface Environment (UIE), PHIGS+ Environment, Design and Modeling

Environment (DME), Virtual Manufacturing Environment (VME) and the Expert

Consultation Environment (ECE). The UIE provides the applications programmer with

procedures to create the graphical interface for the CAD/CAM application. The DME

has procedures which can be used by the programmer for geometric modeling, design and

analysis. The VME assists the programmer in creation of computer-aided manufacturing

Expert Consultation Environment 29

software and the ECE allows the programmer to create an expert system for CAD/CAM

application.

The ECE would aid the programmer in developing an expert system as a part of the

integrated CAD system. This environment would have methods to support forward and

backward chaining, inference engines, search strategies and knowledge base containing

rules for the custom expert systems. The expert system created using these tools would

have the capability to provide replies to the queries of the user and provide expert

suggestions based on the design parameters.

The central part of the ECE is the Expert Technician (ET). This ET consists of two parts

that usually make up an expert system, the knowledge base and the inference engine. The

knowledge base of the ET consists of the knowledge necessary for the ET to provide

guidance to the designer about the design process. Typically this knowledge base would

consist of information about the design in the form of definitions, equations, rules of

thumb, design methodology, etc. This knowledge provides the ET with the expertise in a

particular field of design.

An application using CADMADE has a knowledge base of its own and this knowledge is

accessed with the routines available with the knowledge base manager. This knowledge

base would typically consist of two parts - the rules and the parameters of design. The

parameters which are used in the design process could be sent to the knowledge base with

the use of the routines in the knowledge base manager. Each of these parameters could

be given additional information in the form of constraints such as maximum and

minimum values, default value, etc. The rules which are sent to the knowledge base are

typically in the form of relationships between parameters. The rules are defined using an

English like syntax.

Expert Consultation Environment 30

The inference engine would consist of methods for forward and backward chaining and

other search strategies. These methods built as a part of the ECE would be used by the

programmer for reasoning and problem solving in the expert system. The inference

engine would use the rules in the knowledge base and would directly act on the

parameters of design to provide the user with the information for design.

CADMADE also suggests that the ET interact with the user in several different modes.

These modes include the Transaction mode, the Dialog mode, the Observer mode, the

Learn mode and the Teach mode. The transact mode is single-query single-reply mode.

The consult mode is a multiple query-multiple reply mode wherein the expert replies to

one or multiple queries with multiple replies . In the observe mode the expert acts as a

person observing the design process and interrupts the design process with suggestions

and warnings whenever necessary. In the case of the teach mode, the user teaches the ET

about the design which in effect means that the knowledge is forced into the ET by the

user. In the Learn mode the ET itself selectively adds to the knowledge base “learns” by

using the output from the design process. These definitions of the “learn” and ‘teach

mode” have been changed in this thesis .

An Object-Oriented Framework for the ECE

Based on the requirements for a high-level programming environment for the

development of an expert system especially suited to meet the needs of the CAD industry

and the guidelines provided by ECE in CADMADE, an object-oriented framework was

Expert Consultation Environment 31

designed. The framework is depicted in figure 4 which represents the class diagram for

the framework. An object-oriented design specifically meets the requirements since one

of the main objectives of the design was to emulate a real-world situation. This situation

necessitates that the Expert Technician be the central part of the system and that each ET

should be self-contained with its own data and methods. The expertise of the ET should

be in a specific domain of design and for this the ET needs to carry the knowledge about

the particular domain. Development of an ET class would aid the CAD programmer to

setup experts for design by simply creating instances of the ET class. This would

simplify the creation of the overall expert system for design.

This definition of the ET class closely approximates the real-world situation. Each

instance of the ET represents a real “expert” who has the knowledge of a specific field of

engineering. This “expert” has its own knowledge and methods for drawing inferences

based on this knowledge. “Experts” also have their own methods for acquiring new

knowledge and methods for teaching others. The communication skills of a person is

also very important for communicating the knowledge to others. Since the methods are

inherent in a person, they can be best simulated in the expert system by defining each

expert or ET as an object with “skills” and knowledge built into them.

A programmer using this environment would just need to create instances of the classes

to create an application suited to his needs. The functions necessary for the normal

functioning of the system are built into the classes. This reduces the burden on the

programmer every time an expert system needs to built. Functions for user interfaces,

forward and backward chaining, etc. are built into the classes which can be used by the

programmer and the designer wherever necessary. Moreover, an object-oriented approach

would provide all the advantages listed in the previous chapter during the implementation

of the software.

Expert Consultation Environment 32

“ -~

/ “N

{ Session_Manager \

\ /
NX Y

- ~

/
/ Design
\ Parameter

“ — — —

\

/

(>
Student \ Teacher

\ / | /

NLU Ye NC Le

— } 1 _
“ — - —~, ~

(. (
Transactor Observer \

\ / \ /

N _ 2 1 XN _/- —_—_ — td —_ —
“ ~~

/ “N

[\
Consultant

\ /
NN. UY

Figure 4 Class Diagram for the Framework

Expert Consultation Environment 33

The class diagrams used in this thesis follow the standard representation of class

diagrams in an object-oriented design that is explained in a great detail by Booch

[Booc91]. Some of the main notations used are shown by figure 5. The blob represents a

class in the design. This class would have data and methods but this data would not have

any specific instance values. The arrow represents an inheritance. This means that the

class towards which the tail of the arrow is pointing inherits all the data and the methods

from the class at the head of the arrow. The other two notations represents a situation in

which one class uses the data and the functions in the other class. In both these notations,

the circle is placed at the class which is using the other class. The notation with the filled

circle means that the class is using the other class, uses it for its implementation. That is

the definition of the class would have one or more objects as a part of the data that is

maintained. The notation with the hollow circle specifies that the class uses the other

class for its interface.

Figure 4 represents the class diagram of the main classes in the framework. The user

interface classes are not shown in this figure. Figures 6 and 7 show the complete class

diagram. A class has been designed for each of the objects that is a part of the expert

system. As mentioned earlier, the ET is the central part of the expert system that will be

developed using this framework. The ET class will contain data and methods for the

functioning of an expert developed by instantiation of this class. The ET needs to operate

in several different modes as specified by the requirements of the design. Each of these

operating modes, namely, Consult, Transact, Observe, Teach and the Learn modes are

implemented through classes with functions built into them that will make the operation

of the ETs in these modes possible. The definitions of the Learn and the Teach classes

are different from the definitions in ECE of CADMADE. These classes are a part of the

ET and would also contain the functions necessary for the user interfaces for the

Expert Consultation Environment 34

(a) Blob - Represents a Class

— >

(b) Arrow - Represents Inheritance

oO

(c) Uses for Implementation

OC

(c) Uses for Interface

Figure 5 Notations Used in Object-Oriented Design

Expert Consultation Environment 35

- _~

/ N

! Session Interface \

\ /
NN _/

1

- 7 ~
/ N

| Session_Manager }

- ~ ~ N _ / ~N

/ \ 1 { Expert_Setup \
Delete_Menu \ Menu /

1 -
~ _ —_

—~ J

1 I

- ~

1

| Expert_Manager |

\ /
N _

1 a-S
/

| Interface \

Ao ~N _Z7”
n 7 —

-“- 7 ~ /

/ ~ 7

\ /
NX ae

Figure 6 Class Diagram with User Interface Classes

Expert Consultation Environment 36

~~ ~—

/ ~“

- aT SN | Inference Engine * -_ TT ~
/ ™~ \ / /

[Design \ SL ad | Rule \
\ Parameter n 1 /

~ _e n~— oe”

- TOS 1v- - ~ - 7 OTN

/ ~ of ~
| Learn_Popup ET Teach_Popup \

/

“Ar
L

~

(Student Teacher '
\) /

~N _ ._- 7” 7

1

- ~
/ ‘“N

| Transactor \ Observer
\ / : ;
N Ls 1 | NL Y

- TN
/ ~“

I \
Consultant

“ _~ N y “ — ~

/ ~ -7- /
Transact_Popup ' _ v Observe_Popup \

Le / ' Le
Consult_Popup

\ /
NLU Ye

Figure 7 Class Diagram with User Interfaces - Continued

37 Expert Consultation Environment

interaction between the user and the ET. The ET also uses a Design Parameter class.

Objects (instances) of this class would be parameters used by the design system for the

design of the component. The parameter class does not only represent a parameter data

value but also has other methods for error checking, limit checking, etc. A Rule class is

for creating objects of all the rules that an ET contains as a part of the knowledge. These

rules could be equations, facts, design methodology, rules of thumb, etc. Objects of the

rule class belong to the ET as a part of the knowledge of the ET.

The Inference Engine class is instantiated by the ET. This class contains all the methods

for inferencing (forward and backward chaining), non-procedural parameter value

determination, rule interpretation, etc. The inference engine uses the rules in the

knowledge of the ET to which it belongs.

The framework also contains other classes which aid in the proper functioning of the

expert system that would be built using these classes. These include the

Session_Manager and the Expert_Manager classes. The Session_Manager class manages

each session of the expert system. It should have functions built into it for the user

interface such as the main window, dialog areas, main menus, etc. An Expert_Manager

object is responsible for the managing of all the ETs that are created. It has functions for

the creation and deletion of ETs, keeping track of all the ETs that are available and some

of the interaction between the ETs and the user. A detailed description of the

responsibilities of these classes and the functions to be built into these classes are

available in the following chapters.

To create an Expert System, the programmer using this framework would create instances

of the Session_Manager and Expert_Manager classes. The programmer would also need

to create instances of the ET class to setup the various experts for the different domains of

Expert Consultation Environment 38

design. While creating the ET objects the programmer would need to specify the

operating mode of the ET and the domain knowledge in the form of rules. Design

Parameter objects are also created and are attached to various experts depending on the

domain the parameter is likely to affect the most.

The user of the system can interact directly with the ET through their operating modes

object. Each ET in a particular operating mode would have a menu item on the main

window attached to it. Selecting these menu items would pop-up the various menus for

the particular ET in the operating mode. The menu choices for the ETs would depend

upon the operating mode of the ET. The user can query the ETs using these menus. The

operating mode objects pass on the queries to the ET objects. The ETs make use of the

knowledge available to them in the form of rules and searches through the knowledge for

the information necessary to reply to the user’s query. In this process the ET might also

make use of the inference engine object. The reply to the users query is then written out

to the user in the dialog area of the main window. Functions would be available to enable

the user to pose a question to all the ETs that are active. This would be handled by the

Expert_Manager which would pass on the query to all the ETs. Figures 6 and 7 show the

complete class diagram for the framework.

The final design for the framework that is mentioned above has undergone a number of

iterations. Through this iterative process the design for the framework has undergone a

number of changes. Two of the earlier designs that were used for the framework earlier

are shown in figures 8 and 9. Figure 8 shows the initial design for the framework. In this

design of the framework, the user interface designed as a single class whose data and

methods would be inherited by all the other classes that need to interact with the user.

But the user interface function requirements for all the other classes is not common. For

example, the ET needs to interact with the user through the operating mode classes. The

Expert Consultation Environment 39

f TECHNICIANS

~,

/ N,
(USER --~

INTERFACE ~~
\ 1 / \

NL. SESSION \
MANAGER

/
\ _ 7-7

~

Na 1
EXPERT

MANAGER le—-~ _

\

O_ aw

N

{ MULTI_DISCIPLINARY |
\ ANALYSIS

\ _7

¥.

/

(CONSULTANT

~“ —_

1
n

_
oe

‘\N
DISCIPLINE
ANALYSIS

\ MODULE /
N 4
se

Figure 8 Class Diagram for the Initial Design of Framework

Expert Consultation Environment 40

7 \ a Te ~

| Session_Interface ws \

\ / Session_Manager
™ 1 LU le Oo

\ /

“~ oe —_— =“

2-07 Te

/ N

| Expert_Setup

\ / -— ~
~ WWE ft ~— ~

¢ \
Expert_Manager

— /

y ~ SL LL ee
{ Delete_Menu

XN /
™ 2. woo

7 ~.

(‘ Expert_List
\

° aS ~ — — —

- TOT -
~ ~

/ N /
Inference T {| ET_Interface | { Engine ransact

\

“9 Expert_Technician

—_— lee ~\

~ Le’

Figure 9 Class Diagram of an Intermediate Design

Expert Consultation Environment

/ \ /
~ UH Le ~— -_-

| - ~

~

- aT Ye ~ \

/ Learn }

| Rule

—_—_ ——_ —™

9
0
0
0
 0

41

interaction of these operating modes of the ET with the user is different, thus, the user

interfaces should be different. So it was decided that all the ETs should have different

user interface functions built into them depending on the needs of the ET. In this case,

the Session_Manager and the Expert_Manager are created by the programmer. This

might lead to inconsistencies because the Expert_Manager takes care of all the ETs and

the operating mode classes and creating two objects of this class would cause the splitting

of information regarding the ETs between these two objects. In this design the

Technician class is inherited by the operating mode classes. This would necessitate that

the knowledge of an expert be stored in all the objects of the operating mode classes.

This would mean that multiple copies of the knowledge would need to be created. A part

of the knowledge of this class would be the design modules being used as a part of the

CAD system. The operating mode classes would use the design modules for the

calculation of parameters. The final design has a rule class wherein the equations used to

calculate the parameters in the design module could be made an object of the rule class.

This object would be used to determine the parameters of the design. The Data class in

this design is used to store data pertaining to the domain of design. This could be

handbook data such as material data, manufacturing data, etc.

Figure 9 shows an intermediate version of the design wherein the user interfaces are

designed as separate classes and are inherited by the classes that need them. The

interface methods in these classes are created to suit the needs of the classes that inherit

them. A rule class and an inference engine class are used by the ET class for the

implementation. The ET class is then inherited by the operating mode classes. This

would create problems of maintaining several copies of the knowledge base in different

operating mode classes. The Expert List class was designed to have information

regarding the operating mode classes. This class would maintain a linked list of all the

Expert Consultation Environment 42

operating mode classes that are created. Later this class data and methods were merged

with the Expert_Manager class since the manager should be keeping track of all the

experts that are created.

Expert Consultation Environment 43

7. Class Descriptions

This chapter and the following chapters explain in detail all the classes and the functions

of these classes. The responsibilities of each class in the expert system that will be

developed using this system are detailed along with the data and the functions that are

present in these classes.

The Session_Manager class

This class manages the overall session of the expert system that will be developed using

this framework. This class will be responsible for the starting of the expert system

session and the setting up of the various user interfaces necessary for the functioning of

the expert system. An object of this class is created by the programmer for each of the

sessions of the expert system that needs to be invoked.

This class is also responsible for the creation of an object of the Expert_Manager class.

This Expert_Manager class manages all the experts that are created in the expert system.

If more than one session of the expert system is running at any given time, and if these

sessions are working on the same design problem, the Expert_Manager object that is

Class Descriptions 44

created in each of these Session_Manager objects needs to be the same. That is if more

than one designer is working on the same problem, more than one session of the expert

system needs to be invoked. For this reason the Session_Manager class has functions to

get the Expert_Manager object from one session and store it as the Expert_Manager

object in another session. This ensures that both the sessions will run using the experts

with the same data and knowledge.

The user interface functions are built into another class, the Session_Interface class. The

Session_Manager class inherits all the data and methods from this class. All through the

design of this framework the user interface functions have been separated from the other

functions as far as possible to keep the design simple, easy to understand and easily

maintainable. This also allows for easy changes in the future where better user interface

can be used to replace old ones.

Public Functions

Constructor: The constructor for this class creates the Expert_Manager object

and the Session_Interface object. All the user interfaces are

setup in the constructor of the Session_Interface class.

Get_Manager: This function will return the Expert_Manager object being used

in the expert system session.

Add_Manager: This function adds the Expert_Manager object that is passed in as

the Expert_Manager object for the session.

Class Descriptions 45

Manager: This data member is an instance of the Expert_Manager class.

This object is created in this class and passed out to other

sessions if any.

The Session_Interface class

This class acts as a supporting class for the Session_Manager class in the sense that all

the user interface functions necessary for the Session_Manager class are created by this

class. This class is then inherited by the Session_Manager class. This class is

responsible for opening the main window for the expert system session. It has methods

to open the main window, put up menus necessary for the operation of the expert system

and open up dialog windows necessary for the interaction between the user and the

experts. The experts output their replies to the user in the dialog window. It also has

methods for the creation of windows within the main window where the menu items for

the experts will come up. It also creates an exit menu item on the main menu of the

system, selecting which, the system exits from the expert system session.

Public Functions

Constructor: The constructor for this class creates the various user interface

objects specified in the previous section. As mentioned earlier,

an exit menu item is created on the main menu area. Selecting

Class Descriptions 46

this menu item creates an object of the Exit_Dialog class. The

Exit_Dialog class allows the user to exit the system.

The Exit_Dialog Class

An object of this class is created when the exit menu item on the main menu is selected.

This class then has functions to close all the windows, delete all the existing objects in the

system and ending the expert system session.

Public Functions

Constructor: The constructor deletes all the existing objects of the

Expert_Manager class, the ET class and the Session_Manager

class and closes the window of the application and exits the

system.

The Expert_Manager Class

An object of this class is created by the Session_Manager class. This class is responsible

for managing all the ETs that are created by the user. It keeps track of the number of ETs

Class Descriptions 47

that are created and their modes of operation. This class includes functions for creating

new ETs, deleting ETs and creating and deleting the operating mode behavior of each of

these classes. Since the Expert_Manager keeps track of all the experts, it is necessary

that for the sake of consistency the same Expert_Manager object is used wherever

information regarding the ETs is necessary. This is the reason that while using multiple

sessions of the expert system, the same Expert_Manager object is used in all the sessions

and this object is passed to all the sessions in use.

The Expert_Manager keeps track of the ETs and their modes of operation by maintaining

linked lists for each of these and is shown by figure 10. It maintains a linked list of the

ETs which have been created. Whenever a new ET is created it is added to the linked list

maintained by this object. The Expert_Manager also maintains a linked list for each of

the operating modes of the ETs . Since each of the operating modes 1s a class of its own,

when the ET is interacting with the user in a particular mode, it creates an object of that

operating mode class in the ET object. A linked list of these objects are maintained in the

Expert_Manager object. This linked list is maintained in the Expert_Manager object to

keep track of the operating modes of each of the ETs and the number of each of these

operating modes objects that are created.

The responses to the user from each of the ETs is sent to the Expert_Manager object. It is

the responsibility of the Expert_Manager to present it to the user. This class has

functions to write out to the dialog window. Since the responses from all the ETs are

being output to the user through this function, a history of the expert system session could

be maintained. Even the queries that are posed by the user to the different user are

echoed back to the user by displaying it on the dialog window. Thus even the queries

posed to the ETs can be saved to the file providing the designer with a complete history

of the expert system session.

Class Descriptions 48

Expert_Manager

ET
Link List

Consultant
Link List

Transactor

Link List

Observer
Link List

Teacher
Link List

Student
Link List

Figure 10 Linked lists in the Expert_Manager Class

Class Descriptions 49

Since the Expert_Manager is responsible for the creation and the deletion of the ETs and

their operating modes, the menus necessary for these functions should be carried by the

Expert_Manager. To keep the user interface functions separate from the other functions

for the operation of the expert system, these are built into separate classes and the

Expert_Manager class uses these classes. The Expert_Setup_Menu class is responsible

for the user interface for the creation of the operating modes of the ETs. The

Delete_Menu class is responsible for the creation of menus for the deletion of the expert

modes.

Public Functions

Constructor:

Write_To_User:

Add_Consult:

Add_ Observe:

Add_ Transact:

Class Descriptions

This function initializes all the variables that keep track of the

number of ETs and the operating modes that are created. It also

initializes the various linked lists maintained in the object.

This function writes to the user the responses of the ETs to the

user’s query. It writes the string sent to it by the ETs to the

dialog window.

Adds a Consultant to the linked list of Consultant class objects

maintained by this class object.

Adds an Observer mode object to the linked list of Observer

objects maintained by this class object.

Adds a transact class object to the linked list of Transactor mode

objects maintained by this class object.

50

Add_ Teach:

Add_Learn:

Remove_Consult:

Remove_Observe:

Remove_Transact:

Remove_Teach:

Remove_Learn:

Add_ET:

Get_First_ET:

P_Value_Changed:

Class Descriptions

Adds a teach expert object to the linked list of Teacher mode

objects maintained by this class object.

Adds a Student object to the linked list of Student mode objects

maintained by this object.

Removes the Consultant object from the linked list of Consultant

mode objects maintained by this object.

Removes the Observer object from the linked list maintained by

this object.

Removes the Transactor object from the linked list maintained by

this object.

Removes the Teacher mode object from the link list maintained

by this object.

Removes a Student mode object from the linked list maintained

by this class object.

Adds an ET object to the linked list of ET objects maintained by

this object.

Returns the first ET object in the linked list of ET objects.

This function is called by the Transactor and the Consultant ET

when the value of a particular design parameter is changed. This

function in turn accesses all the Observer objects from the linked

51

list that 1t maintains and sends a message to each one of them

that the value of a parameter has changed.

Get_Value: Returns the value of a particular parameter. It searches through

the linked list of ETs for the parameter. Once the parameter is

located, it sends a message to the parameter to return its value

and passes on the value to the ET that requested it.

The Expert_Setup Class

This class is responsible for the creation of the user interface to create an operating mode

object in the ET. As mentioned earlier, the ETs operate in different modes. Each of these

modes is a class and if the user needs a specific ET in a particular mode, an instance of

that particular operating mode class is created in the ET. An object of the

Expert_Setup_Menu class includes user interfaces for each of the ETs that are available.

These include menus in which each of the inactive modes of the ET has a menu item.

selecting the menu item would create an operating mode object in the ET. This class has

methods which call the specific functions in the ET class to create an object of an

operating mode class. This class is used by the Expert_Manager class.

Class Descriptions 52

Public Functions

Constructor: The constructor creates the menu items on the main menu,

selecting which displays all the available ETs.

Update_Setup: This function updates the menu which displays all the ET’s and

the available modes whenever an operating mode class object is

created in an ET. This is because this menu displays only those

operating modes which have not yet been created in the ET.

The Delete_Menu class

This class is similar to the Expert_Setup_Menu class except that it is menu used for the

deletion of a particular operating mode of the ET. This has functions to put up menu

items for each of the ET and the modes in which the ET is presently operating. Selecting

these menu items deletes the object of the operating mode class. This class is also used

by the Expert_Manager class.

Public Functions

Constructor: This function puts up a delete menu item on the main menu of

the application.

Class Descriptions 53

Update_Delete: This function updates the delete menu. Since only the current

modes in which the ET is operating in is displayed in this menu,

whenever an operating mode class object is created or deleted,

this function is called to update the delete menu.

The Design_Parameter class

Since one of the objectives of this framework was to support parametric design, this class

was designed. An instance of this class would represent a parameter that is being used

for the design. The Parameter object not only represents the data value of the parameter

but also has methods for constraint checking, error checking, etc. This object belongs to

a specific expert (ET) depending on the domain this parameter is expected to affect the

most. A linked list of Parameters is maintained in each of the ETs to keep track of all the

parameters that belong to a certain ET. The Parameter object is created during the

creation of the ET object by the programmer who specifies the default value for the

parameter. This is done by reading in a stored object during the creation of the ET

objects. The programmer is responsible for the creation of this stored object.

A parameter being used for design might be of any data type. For accommodating this

flexibility has been provides to make an object of this class either to have a float or a

String value. The programmer while creating the Parameter object specifies what type of a

parameter it is. The class has functions to store both character and float values. It also

has functions to return both type of values.

Class Descriptions 54

The Design_Parameter is more than just a design space. This class has been provided

such that the user can create any type of parameter that is needed. For example this

design parameter could be a float or a string. This also provides flexibility to the

programmer developing the expert system to create any number of these in the ETs by

just creating objects of this class. At a later stage when the expert system needs to be

integrated into the overall CAD environment, functions could be built into this class to

retrieve data from the database of the system or from an analysis routine that calculates

the value of the parameter.

Public Functions:

Constructor:

Get_Value:

Get_Char_Value:

Put_Value:

Put_Char_ Value:

Set_To_ Default:

Class Descriptions

This function creates an object of this class. While creating the

object, the system has to know what kind of a parameter it is. A

default value has also to be sent in to this constructor to be

stored. Each parameter has a name and this string is passed into

this constructor.

This functions returns the current float value of the parameter.

This function returns the character value of the parameter, if the

parameter happens to be of the type character.

This function stores as the current float value the value that is

passed into this function.

This function stores as the current character value, the string that

1s passed in.

Sets the value of the parameter to its default value.

55

8. Expert Technician and the Operating Mode Classes

This chapter explains in detail the Expert Technician (ET) class, the operating mode

classes, namely the Consultant class, the Transactor class, the Observer class, the Teacher

class and the Student class and all the related classes.

The ET Class

This class represents the expert in a particular domain of the design. An instance of this

class is self-contained with the knowledge and methods for a particular domain of design.

The programmer creates an object of this class in the main program of the application.

During creation, this object is supplied with the knowledge base and this knowledge base

contains the rules in the form of equations, rules of thumb, design methodology, etc.

pertaining to a specific domain of design.

One of the objectives of the design of the framework was to create these ETs such that

their operation closely approximates the way experts interact with designers in a real-

world situation. One method for accomplishing this was to have the ETs interact with the

user in different modes referred to earlier as the operating modes. The different operating

Expert Technician and the Operating Mode Classes 56

modes that are required were identified earlier [Jaya89, Jaya91, Jaya93]. These operating

modes are the Consult mode, the Transact mode, the Observe mode, the Teach mode and

the Learn mode. Of the five above mentioned modes the first three actually interact with

the user and provide replies to queries, suggestions, warnings etc. The latter two have

been provided to give the expert system more flexibility and adaptability.

These modes are different in the way they interact with the user and aid in the design

process. While operating in the consult mode and the transact mode, the ET replies to the

various queries from the user. The user poses the queries using the pop-up menus for the

experts. The consult mode can be described as a multiple query - multiple reply mode in

which the ET may reply the multiple queries with a single reply or a single query with a

multiple reply. In the transact mode the session is more of a single query - single reply

mode. Upon the receiving the query the ET searches through its knowledge for the rules

that would provide a solution to the query. The search through the knowledge is carried

out with the use of the inference engine. The way this search is carried out and replies

are given to the user depends on the mode in which the ET is operating. The exact

method of interaction between the ET operating in a particular mode is detailed in the

class descriptions of these operating modes.

In the observe mode, the ET acts as an Observer to the design process and provides useful

suggestions and warnings about the design process as and when necessary. The ET in

this mode has access to all the design parameters pertaining to the particular domain of

design and an independent analysis of the design is carried out by the ET. Based on the

results of the independent analysis and the various rules and constraints available to the

ET in the knowledge base, the ET arrives at independent conclusions about the design.

Based on these conclusions the ET interrupts the design process with suggestions and

warnings.

Expert Technician and the Operating Mode Classes 57

The teach mode and the learn mode are designed to provide more flexibility and

adaptability to the system. In the teach mode the ET guides the user through the design

process. This is done by making use of the rules in the knowledge-base and since these

rules are a collection of design methodology, equations, rules of thumb, constraints etc.,

the system would be able to guide the user through the design process based on the

requirements of the user for the design.

In the learn mode, the system learns from the ongoing design process. For example if the

design process is being carried out by an experienced person in the particular field, the

system would be able to query the user for the reasons for the decisions that were taken

during the design. These decisions and reasons could be stored as a part of the

knowledge and are used in later designs. In effect, what is being done here is that the

knowledge of experienced designers could be stored as a part of the knowledge of the

system, thus capturing the experience of these designers. There are two methods in which

the systems acts in the Learn mode, the voluntary learn and the forced learning. The user

decides on which of these modes the learn expert acts. During the involuntary learning

process, the system tries and learns all the important decisions and queries the user for the

reasons. This is a case of a classic AI machine learning process. In the forced learning

process, the system lets the user input knowledge as rules directly into the system. This

is done during the design process and the user need not exit the system to alter the

knowledge base.

To integrate the expert system with the overall CAD system being developed, knowledge

has to be received from the analysis modules of the CAD system to the expert system.

This interface could be provided by declaring the rest of the CAD system as an expert,

inheriting the methods and data of the ET class and redefining all the functions of the ET

class to suit the analysis module. This has been represented as an Interface class in the

Expert Technician and the Operating Mode Classes 58

class diagram in figure 6. The other ETs would be able to receive knowledge and

information from this interface class ET through the Expert_Manager object. If the user

wants to use just a function from the analysis module, this function could be declared as a

rule.

The programmer using this framework creates the ET objects in the main program of the

application. While creating this object, the knowledge and the parameters for the object

are read in from an archived object which the programmer creates. As the rules are read

in, objects of the rule class are created and stored as linked lists in the ET. Similarly, as

the parameters are being read in, objects of the Parameter class are created and stored as a

linked list in the ET. Thus each ET created has its own knowledge and data about the

design that is being carried out. The rules give the ET expertise in a certain domain of

design.

To operate in a particular mode, the ET creates an object of the operating modes class

inside the ET object. A representation of the ET class is shown by figure 11. The object

of the operating modes class interacts with the ET in the sense that the user queries the

ET through these operating modes class. In effect only two of the operating modes class

interact with the user - the consult class and the transact class in a manner that questions

are posed to them and reply to these users queries. These class objects have pop-up

menus that have choices for the user to select and to query the ET. This query is then

passed on to the ET which uses the inference engine to search through and arrive at a

decision regarding the query. This reply is then displayed to the user using the functions

in the Expert_Manager object. When the user wants the ET to cease acting in a particular

mode, the object of that particular mode maintained in the ET is deleted.

Expert Technician and the Operating Mode Classes 59

ET Class

Parameter

Link List

Knowledge

Rule
Link List

Inference Engine

Observer

Figure 11 ET Class Representation

Expert Technician and the Operating Mode Classes 60

The ET class maintains a linked list of Parameters being used in the design process.

These Parameters are those which tend to affect that particular domain in which the ET

has the expertise in. These Parameters are created at the time the ET object is created by

the programmer. There are functions built into this class that also allow the ET to add

another Parameter to the linked list whenever necessary.

Public Functions:

Constructor: The constructor for this object reads in the knowledge base that

contains the rules and the Parameters. An object of the operating

modes class is also created in this function for the mode through

which the programmer wants the ET to operate initially. The

default for this is the consult mode.

Create_Expert: This function creates an object of the operating mode specified

by the parameter passed into this function. An indicator for that

mode is then set to “active” in the ET. This indicator specifies

which of the modes the ET is presently acting in.

Delete_Expert: This function deletes an object of the operating mode that the

user wants the ET to stop operating in. The indicator is then set

to “‘inactive’’ for that mode.

Get_Name: Returns the name of the ET.

Get_ID: Returns the identifying number of the ET.

Add_Parameter: This function creates a Parameter object and adds it to the linked

list

Expert Technician and the Operating Mode Classes 61

Add_Rule:

Get_Value:

What_Is:

This function would be called by the Student object in the ET to

add a rule to the knowledge base that has been “learned”. An

object of the rule class is created in this ET and added to the

linked list of rules maintained by the ET.

Returns the value of a parameter. This parameter might be a

Parameter maintained by this ET object or any other ET object.

It searches through its own Parameter linked list to find the

parameter. If the parameter is found then the ET returns the value

of the parameter. If it is not able to find the particular parameter

in its own linked list, it sends a message to the Expert_Manager

object for the value of the parameter. The Expert_Manager

object in turn sends a message to other ETs for the value of the

parameter.

This function is called by the Transactor and the Consultant

when this menu item is picked from the pop-up menus for the

operating mode. This function gets the current value of the

parameter and displays it to the user.

This function is called by the Transactor and the Consultant

when this menu item is selected from the pop-up menu. This

function displays all the current values of the design parameters

and sends a message to the inference engine to display all the

rules that were used to arrive at the last decision of the ET.

Expert Technician and the Operating Mode Classes 62

How: This function would be called by the Transactor and the

Consultant objects when the user wants to know how a particular

reply was arrived at. The ET displays its name to let the user

know where the reply came from.

Determine: This is a menu choice with the Transactor and the Consultant.

This message is received when the user wants to calculate the

value of a parameter. If this function is called from the

Transactor, the value of the parameter is calculated using the

rules and the inference engine and the ET lets the user know

what the new value of the parameter is. If this function is called

from the then calculates the values of all the other parameters

affected by this change and displays to the user values of all

these parameters.

Increase: This is a menu choice in the Transactor and the Consultant

objects. Upon selection of this menu choice this function in the

ET is called. This function increases the value of the parameter

by the user specified amount. Then the values of the other

parameters is calculated. In the transact mode, the user would

then use the “Determine” menu choice to determine how this

change has affected other parameters. In the consult mode, the

ET would determine the values of all the other parameters and

display this to the user.

Expert Technician and the Operating Mode Classes 63

Decrease:

Validate:

Teach_User:

This function is similar to the “Increase” function except that the

parameter value is reduced by the user specified amount.

This function would be called by the Observer object. This

function sends a message to the inference engine object to check

if any of the constraint rules are violated. If any of the rules are

violated, the ET warns the user about the violation. Suggestions

are provided by this function to avoid the violation of rules if

possible.

This function would be called by the Teacher object when it is

set active by the user. This function would send a message to the

inference engine object to start a forward chaining process to

trace the parameters from the input parameters until the output

parameters are reached. Appropriate equations and constraint

rules are also output to the user to “teach’’ him the knowledge

about the domain of design.

The Consultant Class

An object of the ET class is required to interact with the user in several modes. The

Consultant class represents one of those operating modes. An object of this mode would

aid the user to interact with the expert in the consult mode. The consult mode is a

Expert Technician and the Operating Mode Classes 64

multiple query - multiple reply mode. In this mode of operation, the ET might choose to

reply to a single query of the user with multiple replies or multiple queries of the user

with a single reply. An object of this class belongs to an object of the ET class. When

the ET wants to operate in this particular mode, an object of this class is created in the ET

object. The user interacts with the Consultant object and the Consultant object passes on

the queries to the ET which makes use of the inference engine object and the knowledge

base to reply to the user’s queries.

The Consultant object has methods to create the user interfaces which lets the user

interact with the ET. The Consultant object, as it is created in the ET object, creates a

menu item for itself and posts it on the main window of the expert system application.

Selecting this menu item displays the pop-up menus for the ET operating in this

particular mode. The user queries the ET using the menu choices on the pop-up menu.

The consult object on receiving the queries through the pop-up menus, passes these

queries to the ET object. Thus an object of this class would just facilitate the interaction

of the ET with the user. When an object of this class is created within the ET, the object

is added to a linked list of Consultant objects maintained in the Expert_Manager object.

The menu choices on the main pop-up menu for the Consultant ET are as follows :

What is: When the user selects this menu choice, another pull-down menu with a list of

all the parameters belonging to that expert is displayed. If the user selects any of the

parameters, a small description regarding the parameter along with the current value of

the parameter is displayed on a pop-up window.

Why: This menu choice is for the user to find out how the system arrived at a particular

reply. The Consultant object displays to the user the values of the various parameters and

the rules that the system used to arrive at the decision. For this the inference engine

Expert Technician and the Operating Mode Classes 65

would keep track of all the rules that were fired and would display to the user all these

rules and the parameters used in these rules.

How: This menu choice would display to the user a list of the experts which were used

to arrive at the reply to the query.

Increase: This menu choice is available to the user to determine the impact of increasing

the value of a particular parameter on the other parameters or the design. Selecting this

menu item would display a list of parameters that belong to a particular expert. Selecting

any of the parameters would display a window with the current value of the parameter

and a request for the user to enter the new value or a percentage increase.

Decrease: This menu choice is similar to the Increase menu choice except that the user

will receive a reply on the impact of decreasing the value of the parameter on other

parameters.

Determine: Selecting the Determine menu item would display a list of parameters

belonging to this particular ET object. Selection of one or more of the parameters would

send a message to the ET object to determine the value of the parameters. The value of

the parameters are calculated anew from the rules that determine the values of the

parameters. A message is sent to all the Parameter objects, whose values are determined

from the parameter that had just been changed, that the value that they currently hold is

invalid. The new calculated value of the parameter that was selected earlier is then

displayed to the user. If the user wants to determine the values of all the parameters, a

menu choice is available to the user which would allow him to do so. All the data and

methods are inherited by this class for its user interfaces.

Expert Technician and the Operating Mode Classes 66

Public Functions

Constructor:

Get_Name:

What_Is:

Why:

How:

Determine:

The constructor creates an object of this class. It also creates a

menu item for the ET object operating in the consult mode in

the main window. All the data and methods of the

Consult_Popup class are inherited.

This function returns the name of the expert that this consult

mode belongs to.

This function is called when the user selects the “What is” menu

item from the pop-up window of the Consultant object. This

function sends a message to the ET object to display the value of

the parameter selected.

This function is called when the “Why” menu item is selected

from the pop-up menu of the ET. This functions sends a

message to the ET object that this object belongs, to display to

the user the values and the rules used to arrive at the last

decision.

This function is called when the user selects the “How” menu

choice from the pop-up menu of the Consultant. This calls the

How function of the ET object.

This menu choice would be selected by the user to determine the

values of one or more design parameters. This function is called

when this menu choice is selected. This function sends a

Expert Technician and the Operating Mode Classes 67

message to the ET object that this Consultant belongs to

determine the value of the parameter.

Increase: This function is called when the user needs to increase the value

of a parameter. The value of the parameter would be increased

by a percentage amount that is specified by the user. When the

user selects the menu choice for this, this function displays a

prompt window where the user inputs the percentage amount the

parameter value needs to be increased by.

Decrease: This function is similar to the previous function except that the

user would decrease the value of the parameter.

The Consult_Popup Class

An object of this class is inherited by the Consultant class. This class creates all the user

interfaces necessary for the interaction between the user and the ET operating in the

consult mode. This class has functions to create the pop-up menus. The pop-up menus

contain the necessary menu choices for the user to query the ET.

Expert Technician and the Operating Mode Classes 68

Public Functions

Create_Popup: Creates the main pop-up menus for the Consultant class objects.

Create_Pulldown: This function creates the pull-down menus which are attached to

the main pop-up menus. These pull-down menus would contain

further menu choices and would depend on what the main pop-up

menu choice was.

Create_Increase: Creates a window where the user specifies the amount by which

the value of the parameter has to be increased by.

Create_Decrease: Creates a window where the user specifies the amount by which

the value of the parameter has to be decreased by.

The Observer Class

An object of the Observer class is responsible for providing suggestions and warnings to

the user during the design process. This object observes the design process being carried

out and has access to all the Parameters and the rules. If the user exceeds any of the

design constraints or violates any of the rules this object interrupts the user and warns

him of the constraint violation. The way this is carried out is, whenever the user makes a

change to any of the parameter values or executes a process that changes the values of the

parameters, a message is sent to the Expert_Manager object that a parameter value has

Expert Technician and the Operating Mode Classes 69

changed. The Expert_Manager in turn sends a message to all the Observers that a value

of a parameter in a specific ET has changed. The ET object, through the inference engine

checks the validity of the parameters or if any of the rules have been violated and warns

the user about it.

This class inherits all the user interfaces functions from the Observe_Popup class.

Selecting the menu item for the ET operating in this mode displays the pop-up menus for

this ET. There are menu items available for either activating or deactivating the observe

mode ET. Activating the ET would cause it to start “observing” the design process. It

would then start interrupting the designer with warnings and suggestions. Deactivating

the ET would stop it from operating in this mode. The Observer class object is not

deleted but it stops providing warnings to the user.

Public Functions

Constructor: The constructor for this class creates an object of this class and

creates a menu item for itself on the main window.

Get_Name: This function returns the name of the ET that this operating mode

class object belongs to.

Set_Inactive: This function is called when the user wants to set this object

inactive. When this object is set inactive, it stops providing

warnings and suggestions to the user.

Set_Active: This function is called when the user wants the Observer to start

providing suggestions and warnings.

Expert Technician and the Operating Mode Classes 70

Validate: When the Observer receives a message from the Expert_Manager

object that the value of a parameter is changed, this function is

called to make sure that none of the constraints are violated.

This function sends a message to the inference engine class to

validate the value of the changed parameter.

The Observe_Popup Class

This class is responsible for creating all the user interfaces necessary for the operation of

the ET in the observe mode. It creates a pop-up menu for the ET which is displayed once

the menu item for the ET on the main window is selected. This class creates all the menu

items for various menu options which are displayed on the pop-up menu. This class is

then inherited by the Observer class.

Public Functions

Create_Popup: This function creates the pop-up menus for the interaction

between the user and the ET. This function creates the pop-up

menu and creates menu items for activating or deactivating the

observe mode ET on it.

Expert Technician and the Operating Mode Classes 71

The Transactor Class

This class is similar to the Consultant expert in the sense that it interacts with the user in

replying to his queries. This class object will transact with the user in providing replies to

his queries about the domain of the design that the ET has the expertise in. It 1s different

from the consult mode in the sense that this is a single query - single reply mode. For

each of the user’s query, it accesses the knowledge base and replies with a single reply.

When the ET receives the query, the knowledge base is accessed and searched for the

reply. The ET does not reply to the user what further implications that reply will have on

the other domains or parameters. Thus, it replies to the users queries with specific replies

and does not provide further suggestions.

The user interacts with the Transactor ET using the pop-up menus for the Transactor

class. This transact mode ET creates a menu item for itself on the main window of the

application. Selecting this menu item would create pop-up menus for the ET. The ET

has several menu items on the pop-up menus which the user would use to query the ET.

These menu choices are also similar to the ones in the Consultant class. But replies to the

users queries are different in this class. For example in the Consultant class if the user

changes the value of one of the parameters, the values of all other design parameters that

belong to the ET are also updated. But in this case only the value of the design parameter

that was changed would be updated.

Expert Technician and the Operating Mode Classes 72

Public Functions

Constructor:

Get_Name:

What_Is:

How:

Determine:

The constructor for this class creates a menu item for itself on

the main window of the application. All user interface functions

are inherited from the Transact_Popup class.

This function returns the name of the ET that this operating mode

belongs to.

This function is called when the user selects the ““What is” menu

item from the pop-up window of the Transactor object. This

function sends a message to the ET object to display the value of

the parameter selected.

This function is called when the “Why” menu item is selected

from the pop-up menu of the ET. This functions sends a

message to the ET object that this object belongs, to display to

the user the values and the rules used to arrive at the last

decision.

This function is called when the user selects the “How” menu

choice from the pop-up menu of the Consultant. This calls the

How function of the ET object.

This menu choice would be selected by the user to determine the

value of a design parameters. This function is called when this

menu choice is selected. This function sends a message to the

Expert Technician and the Operating Mode Classes 73

ET object that this Transactor belongs, to determine the value of

the parameter.

Increase: This function is called when the user needs to increase the value

of a parameter. The value of the parameter would be increased

by a percentage amount specified by the user. When the user

selects the menu choice for this, this function displays a prompt

window where the user inputs the amount the parameters value

needs to be increased by.

Decrease: This function is similar to the previous function except that the

user would decrease the value of the parameter.

The Transact_Popup Class

This class is responsible for the creation of the user interfaces for the Transactor class

object. This class has functions to create the pop-up menus and the pull-down menus

necessary for the interaction of the transact mode ET with the user. A pop-up menu is

created which is displayed when the menu item for the ET is selected from the main

window. This pop-up menu has several menu items which the user can choose to query

the ET. Some of these menu items have pull-down menus which have further menu

choices depending on the menu item on the main pop-up menu that was selected.

Expert Technician and the Operating Mode Classes 74

Public Functions

Create_Popup: This function creates a pop-up menu for the ET operating in the

transact mode. Menu items are created for the user to query the

ET

Create_Pulldown: Pull-down menus are created in this function. The pull-down

menus will have further menu items depending on the menu

choice on the main pop-up menu.

Create_Increase: Creates a window where the user specifies the percentage

amount by which the value of the parameter has to be increased.

Create_Decrease: Creates a window where the user specifies the percentage

amount by which the value of the parameter has to be decreased.

The Teacher Class

This class has been designed to lead the user of the expert system through a design

process. This class has functions to access the knowledge base of the ET and the

Parameters that belong to the ET. Using these the teach mode ET provides methods and

rules to the user to manipulate the parameters to arrive at the final design solution. This

class has been designed to use the knowledge that has been captured from experienced

designers by the learn mode to teach novice users about the domain of design. Thus, this

Expert Technician and the Operating Mode Classes 75

mode provides new users with the experience and knowledge to perform a design in a

domain that they are not familiar with.

The teach mode ET starts with the initial parameters of the design. It displays to the user

these parameters and the intermediate parameters that will be calculated from these

parameters. For this it accesses the rules in the knowledge base of the ET. With the

knowledge of the initial parameters and the rules the system would exactly know which

of the intermediate parameters to calculate. Thus it proceeds through the hierarchy of

parameters until the final parameters are reached. All through this process the ET lets the

user know what parameters are needed to calculate the intermediate and final parameters.

The equation rules, control rules and any other rules regarding the parameters in use or

those being calculated are displayed to the user. Thus the ET shows the steps that are

required for the calculation of the final design parameters from the starting parameters.

Public Functions

Constructor: The constructor for this class creates a menu item for the ET on

the main window of the application. Selection of this menu item

would pop-up the menu for the ET. User interface functions are

inherited from the Teach_Popup class.

Get_Name: Returns the name of the ET that an object of this class would

belong to.

Lead_Thru: This function is called when the user wants the teach mode ET to

lead through a design process. This function sends a message to

the ET to use its inference engine to lead it through a design

process.

Expert Technician and the Operating Mode Classes 76

Set_Active: This function would activate the Teacher object and lead the

user through a design process.

Set_Inactive: This function is called when the user selects the menu choice to

deactivate the Teacher object. This sets the Teacher object

inactive without destroying the object itself.

The Teach_Popup Class

This class is responsible for the creation of the user interfaces for the ET operating in the

teach mode. This class creates a pop-up menu for the teach mode object which is

displayed upon the selection of the menu item for the ET object on the main screen. An

ET operating in this mode would have menu items for activating or deactivating the teach

mode ET. Activating the teach mode would prompt the user to specify the initial

parameters of the design and would lead the user to the final design parameters.

Deactivating the teach mode would make the stop the interaction with the user but would

not delete this object.

Public Functions

Create_Popup: Creates a pop-up menu for the ET operating in this mode. Menu

items are created for activating or deactivating the teach mode.

Expert Technician and the Operating Mode Classes 77

The Student Class

This class is responsible for capturing new knowledge regarding the domain of design

from experienced designer and users of the expert system. The knowledge thus captured

is stored in the knowledge base of the ETs and could be used for aiding the designers in

further designs. There are two modes of learning that the Student mode ET operates in.

The first is the voluntary learning process. In this case the ET queries the user of the

system for the reasons for certain decisions that are taken during the design process.

When the user replies to the ET, it stores these reasons in the form of rules in its

knowledge. The ET would also be capable of learning from its own decisions regarding

the design. This process would be coordinated by the Expert_Manager object. As

mentioned earlier the ET operating in the Consultant or the Transactor mode are replying

to the user queries constantly. The replies are made from the search through the

knowledge base of the ET. During this process, the ET might come across relationships

or control rules that are not in the knowledge base of the system but are obtained as a

result of the manipulation of the parameters and inference of the knowledge. If these

decisions are sent to the user and they are not in the knowledge base, the Expert_Manager

object sends a message to the ET in the Student mode to add the reply as a rule in the

knowledge base of the ET.

The second mode of learning is the forced learning. In this process, the user is allowed to

enter rules directly into the knowledge base of the ET. When the Student ET is set to this

mode, it pops up a window on the screen for the user to enter the rule. This is then added

to the rule base of the system.

Expert Technician and the Operating Mode Classes 78

Public Functions

Constructor:

Get_Name:

Force_Learn:

Voluntary_Learn:

The constructor for this class creates an object and the user

interfaces for the ET operating in this mode. The user interfaces

for the ET are inherited from the Learn_Popup class.

This function returns the name of the ET that it belongs to.

This function is called when the user selects the menu choice to

forcibly make the Student “learn”. This function displays a pop-

up window for the user to enter the rule. This functions then

sends the rule to the ET object that it belongs, to add to its

knowledge.

This function sets the mode of operation of this object to

voluntarily learn from the design process that is being carried on.

It pops up a window for the user to enter the reason for a decision

that was taken regarding the design. When the user enters the

reason, this object sends a message to the ET object to add this as

a rule to its knowledge-base.

Expert Technician and the Operating Mode Classes 79

The Learn_Popup Class

This class creates the user interface functions necessary for the interaction of the user and

the ET operating in this mode. A pop-up menu is created which is displayed when the

menu item for the ET is selected on the screen. The menu items for the ET sets the

Student mode either to the voluntary learn mode or the forced learn mode.

Public Functions

Create_Popup: Creates the pop-up menus for the ET object operating in

this mode. Menu items for setting the learn mode voluntary

or forced are also created.

Create_Rule_Popup: Creates a pop-up window for the user to enter the rule

during the forced learning process.

Create_Voluntary_Popup: Creates a pop-up for the user to enter a rule during a

voluntary learning process.

Expert Technician and the Operating Mode Classes 80

9. Knowledge Base and Inference Engine

The Rule Class

This chapter discusses the Rule class and the Inference Engine classes. Both these

classes belong to the ET and provide it with the knowledge and the methods to aid the

designer in the design process. As mentioned earlier, the knowledge base of the expert

would consist of rules in the form of parametric equations, control equations, constraints,

heuristics and empirical relationships. All these different types of rules would be objects

of the rule class. This chapter initially discusses the requirements for the rule class. The

rule class should be flexible enough to accommodate all the above mentioned types of

rules as an instance. The chapter further discusses the actual design of the rule class

along with the functions that should be a part of the rule class design. The final section of

the chapter discusses the requirements and the design of the inference engine class. An

object of this class would search the knowledge of the expert using specific search

Strategies to reply to the users queries. Search strategies like forward and backward

chaining would be built into this class for that purpose.

The ET object which represents the expert in the expert system should have knowledge

regarding the domain of the design. The knowledge of the expert should specifically suit

Knowledge Base and Inference Engine 81

parametric design. Parametric design performed by current CAD systems are procedural

in nature wherein the parameters are manipulated to obtain the final parameters of design.

The design system starts with the initial parameters and uses these to calculate the

intermediate parameters and from these intermediate parameters calculate the final design

parameters. This process is procedural in the sense that the calculations of the parameters

follows a certain order. The user enters the initial parameters and the system provides the

user with the final design parameters. In this case the user has no control over the

intermediate and the final parameters. The user would not be able to change the values of

these and easily observe the changes brought about to the other parameters by this

change.

Figure 12 shows the structure of the rule class. The base class for the rules would have

the constructor and the common data and methods for the rule class. The other derived

rule classes inherit the data and the methods from this Rule class. The derived classes are

the Data_Rule class, the Parametric_Equation class, Control_Rule class, Heuristic_Rule

class and the Constraint_Rule class. Any rule that needs to be entered into the

knowledge-base of the ET would be made an instance of one of these rule classes. The

programmer would specify at the time of creation of the ET class which rule class needs

to be instanced to create a rule that would be stored in the knowledge-base of the ET.

The Data_Rule class would contain rules in the form of tables of values, values from a

graph, etc. Rules regarding the domain of design that obtained through experience or that

have come about through empirical methods would be instances of this class. An

example of this rule would be the relationship between parameters that specifies that if

the value of parameter A increases, the value of parameter B decreases.

Calculation of the parameters are done by the parametric equations. Parametric equations

are those equations that calculate the value of a parameter from the values of other

Knowledge Base and Inference Engine 82

parameters. The parametric equations that are used to calculate the values of the

parameters are governed by the control rules. For example a control rule might use a

particular equation to calculate the value of a parameter based on the value of another

parameter. A typical control rule might be represented using an if-then-else statement in

a procedural program. Constraints might be in the form of limitation to the maximum

and the minimum value of a parameter based on constraints of design. For example the

stress parameter in the design might have a maximum limiting value depending upon the

material being used or the length of a structural member might have a maximum and a

minimum value depending on the geometric constraints. Rules of thumb might also need

to be entered as knowledge to the ET. These might be in the form of relationships

between parameters or storing a particular value to a parameter depending upon the

conditions for design.

As mentioned earlier, if the user wants to use a function of another module, for example,

the analysis module, as a part of the knowledge of any ET, flexibility should be provided

such that this function could be declared as a rule. This rule, shown as the Interface rule,

would be similar to the equation rule in the sense that the inference engine would be able

to fire this rule.

The rule class should be able to accommodate all the above mentioned forms of rules.

Most of these rules would use the parameters for calculating or defining relationships.

So, these rules should be able to access the parameters and change the values of the

parameters. Rule objects would be used by the inference engine to arrive at decisions

regarding the design. The rule objects should allow easy access to the inference engine.

This rule class has been further designed and implemented by Scott Angster [Angs93].

Knowledge Base and Inference Engine 83

” —e

- ~

/
‘\

Rule Class \

, Oe
” = ~ _ _ ~ — 7 — ~

f ~/ Interface
Data Rule \

((Rule
\ / ~ /

— ma — _m_ «”

7 — —

/ ~ /
Constraint Rule!

7 —,

/

~N

’ Parametric | (
Equation

XN / / —~ .— -
eel ll

a ~
(ControlRule ! | Heuristic Rule!

~N / ~ /
we ell —— ell

Figure 12 The Rule Class

Knowledge Base and Inference Engine 84

Public Functions

Constructor: The constructor for this class would have methods to create an

object of one of the rule classes mentioned above. This function

would then add the rule object created to the linked list of rules

maintained in the ET. This function would also prepare the rule

for firing.

The Inference Engine Class

This class would be responsible for the chaining and searching strategies through the

knowledge-base of the ET. The chaining process typically used in an inference engine

would be the forward and the backward chaining. Forward chaining is a data-driven

reasoning method while backward chaining is a goal-reasoning method. If a rule

specifies IF A THEN B, the forward and the backward chaining processes differ in the

method of firing this rule. In a forward chaining process the left-hand side of the

equation, that is the data is matched with all the data of all the available rules and the

rules are chosen to fired based on this data. Actions are taken consequent to the results of

the rules that are fired. Thus in this case the data of A is selected from a previous rule

and B is determined. In the case of backward chaining, B is the goal and A is the data

that needs to be verified. The facts that establish A are searched for and fired. If such

Knowledge Base and Inference Engine 85

facts cannot be found in the rule base, then A is treated as a sub-goal and the chaining

continues [Dym91]

The inference engine class designed would support the forward and backward chaining

processes. This class would have functions that can perform both data-driven and goal

driven searches. The search strategies and the firing of the rules is tailored for the

specific needs of parametric design. An object of this class would belong to the ET

object and the functions in these classes would be used for the determination of the final

parameters of design. The inference engine object would directly act on the rules

available in the knowledge-base of the of the ET. For this purpose the inference engine

has access to the linked list of rule objects that is maintained by the ET. To determine the

values of the parameters, this object would need values of some of the parameters that

belong to the other ETs. For this purpose, the inference engine sends a message through

the ET to the Expert_Manager to return the value of a parameter belonging to another ET.

Public Functions

Determine_Parameter: This function determines the value of a parameter. For this

purpose, it uses the equations in the Parametric_Equation objects.

The equation that is used is dictated by a Control_Rule wherever

applicable.

Update_All: This function updates the values of all the parameters. In this

case, the user defined values for the input parameters are used

and the values of all the intermediate and final parameters are

determined.

Knowledge Base and Inference Engine 86

Validate:

Interpret_Heuristics:

Activate_Rules:

Deactivate_Rules:

Check_Control:

Select_From_Data:

This function would typically be used by the Observer object.

This function is called if the Observer receives a message from

the Expert_Manager that the value of a certain parameter has

been changed. This function then checks to see if the value of

that particular parameter violated any of the constraint rules. It

then displays warnings about violations and suggests solutions to

the violation.

This function would be used to parse a heuristic rule that is

normally in the form of a string. To fire such a rule, it needs to

be parsed which is done when this function is called.

A control rule would normally determine the parametric equation

that would be used for the calculation of a certain parameter.

Based on the result of firing of the control rule, a particular

equation that is used for the calculation of the parameter is

activated. If there are other equations that determine the value of

the same parameter, they are deactivated.

This function is called to deactivate Parametric_Equation rules

that would not be used for the calculation of a certain parameter

under a certain condition dictated by a control rule.

This function fires the control rules and determines which of the

parametric equation rules need to be activated and deactivated.

This function selects data from the data rules which normally

holds data values from tables, graphs, charts, etc.

Knowledge Base and Inference Engine 87

10. Example of an Expert System Session

The example considered for an expert system session is the parametric design of a two

gear drive train. The drive train consists of two gears mounted on separate shafts with

keys. One of the shafts is an input shaft and power is transmitted through the gears to the

output shaft. For a parametric design of the system, an input parameter might be the

power that needs to be transmitted. The design of this system involves determination of

the various parameters that define this drive train. Some of the parameters for this system

are shown in figure 13 and the rest of the parameters are listed below.

N1,N2: No of teeth on the input and output gears

KW1, KW2: Width of keys

KL1, KL2: Length of keys

KH1, KH2: Height of the keys

The design process involved in this case could be a multi-disciplinary, parametric design.

The different domains involved for this system are (a) kinematics which deals with the

geometry and the angular velocities of the system and (b) strength which deals with the

power transmitted and the strength considerations of keys, etc. To make the design

complete from the point of view of manufacturing of the various components, a

manufacturing domain, which deals with the issues of manufacturing is also introduced.

Example of an Expert System Session 88

key [

\ r Output

rrr a d2 w (SESS SHH

Cc

ee
J rl Input

key

Figure 13 Sketch of the Gear Train Design

Example of an Expert System Session 89

The various ETs that would be created for the expert system would be experts in the

above mentioned domains. The programmer creating the expert system would provide

the ET with the necessary knowledge and information regarding the domain of design

that they are experts in.

The ET that deals with the kinematics domain, the kinematics expert, deals with the

equations, constraints, etc. affecting the various kinematics parameters. This expert

would “own” the following parameters that directly deal with the kinematics domain of

the design. These parameters are the angular velocities, radii of the gears, number of

teeth in each gear, ratios of angular velocities, center distance between the gear shafts and

the module of the gear. The ET, as a part of its knowledge, would contain rules in the

form of equations, constraints, rules of thumb, etc. which deal with the determination and

manipulation of the parameters that belong to this ET.

The strength expert would deal with the rules regarding the strength considerations of

design. Parameters that belong to this expert would primarily affect the design in this

particular domain. The power transmitted would probably an input parameter in this

domain. Depending on the power transmission through the drive train, the parameters

that determine the size of the key and the key way are obtained. The reason for attaching

the parameters such as the size of the keys and key ways to this expert is because these

parameters would be directly affected by the maximum power transmission possible. The

width of the gear would also determined by the power transmitted and thus would belong

to this expert. This expert would have the rules to determine these parameters as a part of

its knowledge base.

The manufacturing expert in this case would not own any of the design parameters. This

is because none of parameters used in this domain need to be determined directly from

Example of an Expert System Session 90

the knowledge of this expert. This expert would contain rules that directly affect the

manufacturability of the components designed. For example it would have rules that

have the sizes of the cutters available to machine the key way on the shafts. If the

calculation of the width of the key way yields a dimension that is impossible to

manufacture, this expert would warn the user about it. This expert could also have rules

that specify the number of teeth that could be manufactured on a blank of a particular

diameter and the standard modules for the gears. Thus, if the user or the kinematics

expert changes some of the values in the kinematics expert in a manner which is

inconsistent from the manufacturing point of view, this expert would able to warn the

user.

Thus, with all the parameters and rules input to the ETs of this system, a user of the

expert system would be able to interact with the ETs and obtain replies to various queries.

The user would be able to change the value of the parameters and observe the effect of

these changes on other parameters of the system. The determination and the

manipulation of the parameters would be performed by the rules that belong to the ETs.

The expert would be able to interact with the user in different modes of operation. The

modes in which the ETs interact with the user is at the discretion of the user. The

programmer of the expert system creates the ETs but it is the user who decides which of

the modes of the experts the user wants to interact with. For example in this case, the

user would most probably want the manufacturing expert to act in the observe mode since

this ET does not “own” any parameters and does not have any rules to determine any of

the parameters. This expert just has rules that would be constraints, rules of thumb and

standard values. Thus the user would want this expert to observe the design and to

provide suggestions and warnings regarding the parameters from a manufacturing point

of view. This ET should be able to obtain the values of the parameters that belong to

Example of an Expert System Session 91

other ETs. These values would then be compared to the values and constraints available

in the knowledge of this ET. Thus, based on this comparison, the ET would be able to

provide suggestions and warnings to the user. For example, this ET would have a rule

that has the dimensions of gears those are already being manufactured in the particular

company. If the user comes up with a design of a gear whose dimensions are close to the

gears those are already being manufactured, this expert would be able to suggest to the

user to change the dimensions, if possible, to match the one being already manufactured.

This expert would also have the standard sizes of the components and the standard sizes

of machine tools that are available. For example if the strength ET determines the values

of the parameters that specify the size of the keys, this expert would then output to the

user the dimensions of the closest standard key that is available. For this expert would

contain the values of standard dimensions of keys as rules in its knowledge-base. If the

user comes up with a dimension of a component that is difficult to manufacture, this

expert would warn the user about this.

If the kinematics expert is operating in the transact mode, this expert would provide a

single reply to all the users queries. The user would be able to query this expert with the

help of the pop-up menus that belong to this expert. This expert contains rules that deal

directly with the kinematics domain of the design. For example one of the equations

would be the equation relating the ratio of the number of teeth to the ratio of the input to

output angular velocities. If the user changes the input angular velocity and wants to see

how this has affected the number of teeth in the gears, the user would use the

“Determine” menu of the ET. This would calculate the value of the parameter from the

equation that is a part of its knowledge-base. Thus, this ET would be able to reply to all

the queries of the user by searching through its knowledge. The user would be able to

determine the values of the various parameters that belong to this ET and observe the

Example of an Expert System Session 92

changes to other ETs. The user would also be able to increase or decrease the value of a

parameter and observe the changes to any other parameter to determine the relationship

between the parameters. This is done using the equations in the knowledge of the ET.

This would be a part of the chaining process of the rules in the ETs.

If the strength expert is operating in the consult mode, this expert would be able to

provide multiple replies to a single query of the user. For example, if the user changes

the power transmitted through the gear train, the expert would calculate all the parameters

that are affected by this change. The expert would then let the expert know values of the

parameters that were calculated and would let the user know the size of the keys needed

to transmit the power input by the user. It would also let the user know the width of the

gear that is necessary to transmit this power.

The parameters of design would belong to various experts depending on the domain of

the design. Given below are the list of the parameters that belong to the various experts.

Kinematics Expert:

No of teeth in the gears: N1, N2

Angular velocities: wl, m2

Ratio of angular velocities @1/a2

Radii of gears rl, r2

Center distance between the shafts C

Module m

Example of an Expert System Session 93

Strength Expert:

Length of keys:

Width of keys:

Height of keys:

Width of gears:

Power transmitted:

Diameter of the shafts:

kl1, kl2

kwl, kw2

kh1, kh2

Ww

P

di, d2

The knowledge of an ET would contain among other things equations to calculate the

values of some parameters. These equations are a part of the knowledge of a particular

expert depending on the parameter that is being calculated. For example the equation to

calculate the radius of the gear would be a part of the knowledge of the kinematics expert.

The equations that are used in this for the calculation of the parameters are listed below.

Some of the parameters could be calculated using several different equations.

Kinematics Expert:

NI:

N2

Ni = 22 N2
al

Mie wt
m

No=2i my
@2

N2 = 2r2
m

Example of an Expert System Session 94

wl:

w2:

rl:

r2:

C=rl+r2

Example of an Expert System Session

- 10

- 11

- 12

- 13

-14

-~ 15

- 16

-17

95

A constraint equation for this expert could be the equation for the minimum number of

teeth for meshing of the gears without interference. If the calculation of the number of

teeth yields a value that is lesser than this value, this expert would warn the user about it.

34.2k? —N1
N2 min: N2... = ——_——

mn. min“ 2* N1—34.2k

Strength Expert:

kl: kl=W

kw: kw = f(P,@,d)

T: T = f(P,d)

W: W= f(P)

These equations would be a part of the knowledge of the expert system. The expert

would use these equations for the calculation of the parameters and reply to the users

queries. Some of the parameters have more than one equation that determine the value.

In these cases the programmer should specify priorities for the order in which the

equations will be calculated. For example for the calculation of the parameter rl, the

equation with the highest priority would be equation 9 followed by equations 10, 11 and

12. The system would then try to calculate the value of parameter rl from 9. If this is

not possible in a case where the value of C is not specified and value of r2 is known, the

system would use equation 10 to calculate the value of the parameter. Thus the

determination of the value of the parameter would be in the order of the priority of the

equations. This priority itself would be a rule for the expert.

Example of an Expert System Session 96

If the user specifies the values of the ratio of the angular velocities and the center distance

between the two shafts, the system would first calculate the values of rl and r2 from

equations 9 and 13. Knowing the values of rl and r2 then the expert would calculate the

values of wl and w2. From these values, parameters N1 and N2 are determined. Thus,

as the user inputs the values of the parameters, the expert would try to determine the

values of all the other parameters that are owned by it. If the user now changes the value

of one of the parameters, the values of the other parameters that are affected are

calculated. For example, if the user now changes the value of C, the center distance, the

expert would automatically update the values of the parameters rl and r2 which are

directly obtained from this parameter. Once the value of rl and r2 are changed, the

expert updates the values of wl and w2. The values of N1 and N2 are also updated.

Thus, changing one of the values of the parameters starts a process of updating values of

other parameters affected by this change and is continued until the values of all the

parameters are updated. Thus, the user would be able to observe the changes that are

brought about by changing the values of parameters and would be able to determine the

relationships between the parameters.

Once these parameters are calculated, the manufacturing expert would be able to suggest

changes based on the standard gears available. Similarly with the strength expert, once

the power transmitted and the width of the gear is known, the expert would be able to

calculate the size of the keys needed. Based on this, the manufacturing expert would be

able to suggest a key of standard size from the rules in the knowledge-base.

Figure 14 shows the flow of control in a sample session. The user changes the value of C

in the kinematics ET. Based on this change the ET calculate the values of the other

parameters affected by this change. For this purpose the ET uses the inference engine

object. This inference engine object uses the various rules available in the knowledge-

Example of an Expert System Session 97

 Parameters
Values

Changed

Expert
Manager

Manufacturing

Parameters Expert

Values (Observer)
Changed

Get Get
Parameter Values

Values ¥

Strength

Kinematics :

Expert xper

ransacto Determine Consultant

Key
Dimensions Suggest

Change and

Warn

Calculate

other
parameters

; Caiculate

Design Design Other
Parameter arameter, Parameters

Owns

Owns

W Strength
Uses xper as Expert Has

IE Knowledge Uses nowledge

IE
Rulel Rulel

Inference Inference Rule2 Engine Rule2

Rule3 Rule3

Calculate Ruled Calculate Ruled
Parameters RuleS Parameters RuleS

Rule6 Rule6

Figure 14 Flow Control for a Sample Session

Example of an Expert System Session 98

base to calculate the values of all the other parameters. The kinematics ET then sends a

message to the Expert_Manager object specifying that the values of its parameters have

changed. Upon receiving this message, the Expert_Manager object sends a message to

the manufacturing expert operating in the observe mode. This ET then accesses its rule

base to see if any of the rules are violated to warn the user. For this purpose, it would

need the values of the parameters in the other ET which it retrieves by sending a message

to the appropriate ET. For example, the kinematics ET, based on the value of C input by

the user, would have come up with a value for the module which is not standard. This ET

would have the values of the standard values of the modules for gears. Based on this

value, it will warn the user and suggest a new value for the module of the gear.

The strength ET in this example is operating in the consult mode. If the user changes the

value of the power transmitted, the ET calculates the values of all the other parameters

and outputs the values of these parameters to the user. The ET uses the inference engine

object which accesses the rules in the knowledge-base for the calculation of the

parameters. When these values are changed, the ET sends a message to the

Expert_Manager object which in turn sends a message to the manufacturing ET object.

The manufacturing ET, as earlier, checks to see if any of its rules are violated, which it

then warns the user. Changing the value of the power transmitted would change the

dimensions of the key being used for the design. The strength expert would send a

message to the Expert_Manager that the dimensions of the keys have changed which in

turn is sent to the manufacturing expert. This expert has dimensions of standard keys and

suggests to the user that the dimensions of the keys might be changed to be consistent

with the standard.

Thus the expert system that is developed from this framework would aid the designer

during the design process by letting the designer observe the changes brought to the

Example of an Expert System Session 99

design by changing the value of a particular parameter. It would also provide the

designer with suggestions and warnings regarding the design so that costly changes are

avoided during the latter part of the design process. The expert system would also let the

designer deal with experts in different domains simulating a real-world design process.

Example of an Expert System Session 100

11. Implementation and Results

A prototype of the object-oriented framework designed was implemented using C++.

C++ is a language that supports object-oriented programming. The platform used for the

development of this framework was IBM RS/6000, using the AIX operating system. The

C++ compiler used for the implementation was xlC. The user interfaces for the

framework were implemented using OSF/Motif, an application programming

environment using X Windows environment. The version of Motif used was release 1.1

and the X11 Release 5 version of the X windows was used.

C++ is a language gaining wide acceptance and popularity in the object-oriented

programming world. It is a language that supports all the features of object-oriented

design such as encapsulation, inheritance, polymorphism, etc. One of the main objectives

of the thesis was to develop this framework using a language that is used and understood

by programmers and engineers. This necessitated that the language used for the

implementation should be a language that is in everyday use by the programmers of CAD

systems. C++ has gained popularity among the programmers and is widely being used to

develop CAD applications. The expert system developed from this framework would

need to be integrated with the overali CAD system and an implementation of the

framework using C++ would make the task of integration easier.

The user interfaces for the framework were implemented using OSF/Motif. Motif is

based on X Window System. It is a graphical interface programming toolkit. It provides

Implementation and Results ; 101

the user interface objects as widgets and provides these to the user through a library. This

library includes several objects such as windows, push buttons, dialog boxes, lists, text

windows, scrolled windows, etc. that can be used to develop a user interface for any

application. A programmer using this toolkit for the creation of such user interfaces has to

call the functions provided in the library to create these objects. Parameters are passed

into these functions which affect the appearance and the location of these objects when

they are displayed on the screen.

Motif was used for the implementation of this object-oriented framework because it

provides a library of user interface objects which are easy to use and implement. Since it

is based on X Window System, Motif is portable across all the platforms that run the X

window system. The user interfaces have been designed to be as separate classes in this

framework. Other classes requiring these interfaces inherit from these classes. This is to

aid in the implementation and future expansion of the framework wherein only these

classes need to altered or changed to accommodate any new graphical user interface

toolkit.

Since one of the objectives of this thesis was to only develop a prototype of the

framework that was designed, all the classes that were designed were not implemented.

The following paragraphs detail the classes that were implemented and to what extent

these classes were implemented.

The classes that were fully implemented based on the design were the Session_Manager

class, the Session_Interface class, the Expert_Manager class, the Delete_Menu class, the

Expert_Setup class, the ET class, the Parameter class, the Transactor class, the Consultant

class and the Observer class. The classes which were designed and were partially

implemented include the Teacher class and the Student class. They have methods to

Implementation and Results 102

create the class object but do not have any functions built into them for the designed

interaction with the user. The user interface classes for these operating mode classes

have been implemented. These classes typically contain the pop-up menus required for

the interaction between the user and these operating mode objects. The Rule class was

further designed and implemented by Angster [Angs93]. The Inference engine class was

designed but was not implemented as a part of this thesis.

The implementation details are given below.

Session_Manager: As explained in the previous chapter this class creates an

Expert_Manager object. Since this Expert_Manager object needs to be an external

object, a new Expert_Manager object is created an set to be an external Expert_Manager

object. All the variables that keep track of the ETs and the operating mode objects are

initialized in this class. The functions for returning and accepting an Expert_Manager

object have also been implemented into this class.

Session_Interface: This class has functions implemented which create all the user

interface objects for the proper functioning of the expert system created from the

framework. This class uses Motif function calls to create these objects. The Motif

application is initialized and a main window is initially created. A menu bar is created as

a child of the main window and the buttons for exit, setting up experts and deleting of

experts are created in this class. A scroll-window where the push buttons for the ETs are

placed is also created in this class. The dialog window where the replies of the experts

are posted is also created in this class. Figure 15 shows the initial screen for the example

problem described in the earlier chapter. Other objects such as frames for the

Implementation and Results 103

Expert Systes Led eek

ee eee |

atics - Transact

Figure 15 Main Screen of the Expert System

Implementation and Results 104

creation of other objects is also created in this class. Some of these user interface objects

are defined as global objects and the reason for this is explained later in this chapter.

Expert_Manager: This class keeps track of all the ETs and their operating modes. All

the functions described in the earlier chapter have been implemented for this class.

Variables which keep track of the number of ETs and the operating modes have been

implemented. This class maintains a linked list of all the ETs and the operating modes. A

pointer to the first and last object in the linked list is always maintained by this class.

Thus searches through the linked list use the first object pointer to start the search.

Adding new objects to the linked list makes use of the pointer to the last object in the

linked list.

Expert_Setup: This class displays the menus for the creation of a new operating mode

for the ETs and is inherited by the Expert_Manager class. Motif function calls are made

for the creation of a button on the menu bar in the main window for this purpose. This

button has a pull-down menus attached to it. A push button is displayed on this pull-

down menu for each existing ET. Each of these ET buttons have a second level of pull-

down menus on which a push button is created for each of the operating mode of the ET.

Push buttons are created only for those operating modes which are not yet active.

Selecting these buttons sends a message to the Expert_Manager object to create the

operating mode object in the ET. Figure 16 shows the menus for the creation of the

operating modes of experts.

Delete_Menu: This class has functions which are similar to those in the Expert_Setup

class except that the operating modes for which push buttons are created on the menus are

those modes in which the ET is currently interacting with the user. Selecting these

Implementation and Results 105

ee eee

ei
Teach ee es ee

ea #

Figure 16 Pull-down Menu for Creation of an Operating Mode of an Expert

Implementation and Results

106

push buttons call functions in the Expert_Manager object to delete the operating mode

object in the ET.

Parameter: This class was implemented completely as described in the earlier chapter.

Figure 17 shows all the parameters that belong to the strength expert of the example

problem described in the earlier chapter. Figure 18 shows all the parameters that belong

to the kinematics expert in the example problem.

ET: This class represents the expert to be used in the expert system. An instance of this

class is created by the programmer in the application. The expert is designed to interact

with the user is different modes. Each of these modes is a class and the ET class has

pointers to the different operating modes classes. When this class object is operating in a

particular mode, a new object of the operating mode class is created and the pointer is set

to that object. Each operating mode has a flag in the ET which specifies whether that

mode is active or not. If the flag is set to active it means that the ET is operating in that

particular mode. When the ET ceases to act in that particular mode, the operating mode

object is deleted in this class and the flag is set to inactive.

The knowledge base and the parameters that belong to an object of this class are defined

during the creation of the object. The parameters and rules for the class may be stored in

a file which is read in. As the parameters are being read into the ET object, objects of the

parameter classes are created with the defined values. These parameters are stored in the

form of a linked list. A pointer to the first parameter in the linked list is available to the

ET class. Similarly as the rules are defined in objects of the rule classes are created.

These rule objects make up the knowledge base of the ET.

Consultant: This class has not yet been fully implemented. Currently the constructor

for this class just creates an object and the required user interfaces. The functions

Implementation and Results 107

ae

Figure 17 Parameters Belonging to the Strength Expert

Implementation and Results 108

Figure 18 Parameters Belonging to the Kinematics Expert

Implementation and Results 109

necessary for an object of this class to interact with the user have not been built into the

class. This class carries pointers to the next and previous consult objects for the linked list

of the consult object maintained in the Expert_Manager object. The Motif functions for

this object are inherited from the Consult_Popup class.

Consult_Popup: This class has Motif functions for the pop-up menus that are displayed

when the menus for the ET objects are selected. There are three levels of menus on the

pop-ups for the experts in this mode. Figure 19 shows the three levels of menus for

strength expert of the sample problem operating in the consult mode. The screen shown

in this figure is displayed when the user wants to enter a new value of a parameter

belonging to the strength expert. Figure 20 shows the pop-up menu which is displayed

for the user to enter the new value of the parameter selected.

Observe: This class has also been partially implemented. The constructor for this class

has been implemented and as with the other operating mode classes, the pop-up menus

are inherited from the Observe_Popup class. The constructor of this class just creates an

object of this class. The functions discussed in the earlier chapter have not been

implemented.

Observe_Popup: This class creates the pop-ups for the observe mode object. The pop-

up for this class has buttons for setting the observe mode active or inactive. Figure 21

shows the menus for this ET.

Transact: The constructor of this class creates an object of this class. The functions

designed for this class have not been implemented.

Implementation and Results 110

| Cause ares r

a a ee ee

ercten ad a % Decrease *

|New Vaiue [Kit
ee ss

ea
ao

i
ed

Figure 19 Pulldown Menus for the Consult Operating Mode of an Expert

Implementation and Results 111

SET
matics - Consult

| — Consut

jitanufacturing - Const |

tee Bey

1000
bec ne eee

Figure 20 Pop-up Menu for Entering a New Value for a Parameter

Implementation and Results 112

et

Figure 21 Pop-up Menus for the Observe Mode of an Expert

Implementation and Results 113

Transact_Popup: The pop-up menu for the Transact class is implemented in this class.

It uses Motif functions for the implementation and the menu choices for this class are

similar to the ones for the Consultant class.

Teacher: The constructor for this class has been implemented. The functions for this

class have not been implemented.

Teach_Popup: Pop-ups for the Teach class have been implemented in this class. The

menus has buttons for setting an object of this class to be active or inactive.

Student: Constructor for this class has been implemented but the functions have not

been built into this class.

Learn_Popup: The pop-up menus for the Student class have been implemented in this

class. There are two buttons for the learn class on the pop-up for the class object one

each for the forced learning and automatic learning.

Exit_Dialog: This class creates the menu for the user to confirm whether the user really

wants to exit the session or not. This class has been implemented completely and deletes

the objects of all the classes, closes the Motif application and exits the expert system

session. Figure 22 shows the pop-up window for the confirmation from the user to exit

the system.

During the implementation of these classes a number of problems were encountered.

Even though implementation details were considered during the design stage of this

framework, some problems could not be envisioned during this period. Due to these

problems, the framework underwent minor design changes even during the

implementation stage. As in any design, the iterative processes of design and

implementation were carried out throughout this thesis. Even though the framework has

Implementation and Results 114

Figure 22 Pop-up for Confirmation from the User to Exit the Session

Implementation and Results 115

been designed taking into consideration future developments and expansion, some

implementation details will necessitate changes to the design.

Most of the problems that were encountered during the implementation relates to the use

of Motif as the user interface tool kit working within C++ classes. Even though Motif is

an object-oriented toolkit, it has been implemented using C. C routines could be used as

a subset of C++ classes, but the parameter passing for the function calls in Motif has been

designed for C. The parameter passing in C is not as rigid as it is in C++. This created

problems mainly in the callback functions of Motif. Callback functions are those

functions which are called when an event is generated in the application program. Events

might be generated when a push button is selected, an item from a list is selected or by

any other action that necessitates the call of a function. These callbacks are attached to

buttons or items when they are created so that when these are selected the callback

functions are called.

While using Motif within C++ classes, these callback functions have to be declared as

static functions returning the data type (void). A single instance of the static member

exists independently of any object of the class. This makes it illegal for any non-static

member to be present in the static member function in C++. This restriction poses

problems in using variables or objects of other classes in these member functions.

Variables and objects of other classes have to either be recreated in these functions or

have to be declared as external in these static functions.

The Expert_Manager class object carries all the information regarding the various ETs

and the operating mode objects. This manager object is constantly used in the call back

functions of the Motif widgets to perform various tasks required by the user. To be used

in the callback functions, the Expert_Manager object has to created as a new object in the

Implementation and Results 116

callback functions or has to declared as an external object. The former is not feasible

since we need to have only a single copy of the Expert_Manager object for the sake of

consistency. This forced the declaration of the Expert_Manager object to be an external

object in a number of other classes where it is being used in the callback functions. This

satisfies the needs of Motif implemented within C++ classes and the requirement of this

design to have a single copy of the Expert_Manager object for the sake of consistency.

The definition of this Expert_Manager object is done in the Expert_Manager class and is

declared as an external object in the other classes that need to use this object.

Motif follows the techniques of hierarchy in the creation of its objects. The main window

is created first and all the objects in the main window are created as children of the main

window. This hierarchy continues during the creation of other objects wherein parents

have to be specified for the objects that are being created. Since these user interface

objects are created in the various classes of the framework, using objects created in other

classes as parents posed a problem of passing these objects around. This necessitated that

a user interface object that is a parent of another object created in a different class be

declared using global widgets. These widgets have been defined in a file Global.h file

along with all the Motif include files.

Each ET created operates in different modes in interacting with the user. Each of the ET

in a particular operating mode has a push button which appears on the window for the

expert system. Selecting these buttons displays pop-up menus available for the ETs. The

user interacts with the ETs using the choices on the pop-up menus available. It was

desired that the pop-up menus appear on the buttons for the ETs. But during

implementation it was observed that the pop-up menus appeared on the top left hand

corner of the screen and changing the location of the pop-up menus by passing in location

parameters only changed their location with reference to the whole screen of the terminal.

Implementation and Results 117

To rectify this an event handler was written using X windows calls which specifies the

location of the cursor when the event is generated and positions the pop-up menus at the

correct location.

The expert system that would be developed from this framework would support non-

procedural multi-disciplinary analysis of designs. Figure 23 shows how the this

framework could be used to create experts in different domains of an aircraft design

system. The programmer developing the expert system would create experts in different

domains of aircraft design. In the figure four domain experts are shown - economics,

geometry, aerodynamics, and weights have been created by the programmer. A designer

using the design system, in this case ACSYNT, a aircraft conceptual design system,

would interact directly with the ETs. Thus these ETs would aid in the design process by

providing replies to the users queries.

This framework would also support concurrent engineering techniques wherein experts

involved at different stages in a product cycle get involved in the design process. This

would aid the designer in taking into consideration the issues dealing with the different

Stages of the product cycle. An expert system that would be built for the CAD

application could have experts created for the domains that deal with the product cycle.

Figure 24 shows these experts in a session with the user. The expertise of these domains

of the product cycle could be incorporated with the ETs and these ETs would aid the

designer in the design process. As shown in the figure, these ETs could be experts in the

domains of assembly, marketing, fabrication and maintenance. These expert would assist

the designer to design the component by taking into consideration the whole product

development cycle.

Implementation and Results 118

AR
Increase the | ~~
aspect ratio CL Yn

Alph
The cost The weight

will change will increase

Geom lo [| Aero

Econ ACSYNT Weight

User

Figure 23 Expert System Scenario for Multi-Disciplinary Design of Aircraft

Implementation and Results 119

Marketing

abrication

Concurrent Engineering
Assembly

Maintenance

A
y Designer

|

o Oo O fe} O 0

L ead inal

o— 3

Figure 24 Expert System Scenario for Concurrent Engineering

Implementation and Results 120

12. Using the Framework

This chapter explains how this framework may be used to develop an expert system from

the classes that have been created. This chapter further explains how the expert system

developed from this framework may be used. There are two "users" that this chapter

refers to. The first is the person who is involved in the development of the expert system

from this framework and is referred to as the programmer throughout this chapter. The

second is the final user of the expert system and is referred to as the user in this chapter.

The programmer using the framework makes uses of the classes implemented to create

the expert system that will meet his specific needs. This chapter explains how the

programmer needs to use the classes to create the expert system. Typically the

programmer makes use of only three of the classes which were developed, to create the

expert system. The three classes are the Session_Manager class, the Expert_Manager

class and the ET class. The Expert_Manager class needs to be used by the programmer

only if the programmer wishes to use more than a single session for the expert system.

The number of sessions in use would be dictated by the number of users who want to use

the expert system to work on the same problem at the same time.

To create an expert system from the framework the programmer needs to create a main

program where the above mentioned classes will be used. Before using these classes the

programmer has to include the files where these classes have been defined. The include

files typically would be the Session_Manager.h and the ET.h files.

Using the Framework 121

#include "Session_Manager.h”

#include "ET.h"

The Expert_Manager class definition has been included in the Session_Manager.h file

and even if the programmer needs to use this class, the Expert_Manager.h file need not

be included.

The programmer needs to create an object of the Session_Manager class in the main

program. The syntax for this is

emearseeeseescesons

This creates a Session_Manager object called ses_manager. This Session_Manager

object creates an Expert_Manager object. The Session_Manager object also initializes

the Motif application for the user interfaces and creates all the user interface objects such

as the main window, dialog boxes, etc. This object controls the expert system session

that is created using the framework. A function of the Session_Manager class needs to be

used in the main program. This function is handle_events. Typically this function cal! is

the last line in the main program. Using the ses_manager object the syntax for this would

be

ses_manager.handle_events();

Using the Framework 122

This function provides the loop back for the events generated in the application. After all

the objects are created in the main program this function waits for the user to generate an

event by selecting one of the push buttons on the screen. This makes sure that the main

program is not exited until the exit button is selected on the main window of the

application.

The programmer has to create all the experts needed for the expert system by creating

objects of the ET class. This is done nght after the Session_Manager object is created in

the main program. The ET is the central part of the expert system created by using this

framework. The programmer creates an ET for each of the domains of design. These

ETs would have knowledge and methods regarding a certain domain of the design and

would represent an expert in that domain.

The parameters that are passed in while the ET object is being created are the name of the

ET and an operating mode in which the programmer requires that ET to interact with the

user initially. If the operating mode is not specified, then the ET uses the default

operating mode to interact with the user. Currently the default operating mode for the ET

is the Consult mode.

ET aero{"aero”, "Observe");

ET geom("geom");

ET wht("weight", "Transact");

The above lines would create three experts. The first expert is an aerodynamics expert

with the name aero. This would initially interact with the user in the observe mode. The

geom expert that is created next would default to the Consult mode since an operating

mode is not specified in the constructor of the ET class. Each ET has a name variable

which is set to the name that is passed in. This might be different than the identifier for

Using the Framework 123

the object itself. Thus, putting all the above lines together to create a sample main

program and is shown by figure 25.

These ETs that are created need to be fed with the knowledge. This knowledge would

contain the rules and the parameters that belong to that ET. The knowledge for the ET is

input through a stored object that the programmer creates. There is one stored object for

each of the ET created. This object would contain all the parameters, their values and the

rules that belong to each of the ET. This stored object is created while the ET object is

being created by reading information from a file.

There is a separate stored object that needs to be created for each of the ET object

containing the parameters and rules belonging to that expert. The name of the file should

be the name of the ET with an extension kb. In the example shown above, the knowledge

object for the aero expert would be aero.kb and the wht expert would be weight.kb.

While the ET object is being created, the system looks for a stored object with the name

of the expert and a kb extension. This stored object is read in and the parameters and the

rules in the object are created as objects of the parameter and the rule classes.

The stored object may contain the parameters and rules in any order. The only restriction

is that each parameter and rule must be entered in a new line in the file. The format for a

parameter in the file would be

Parameter Aspect_ratio float 20.50

The first word in the line specifies that itis a parameter. The second word specifies the

name of the parameter. The next word specifies the type of parameter. Two types of

parameters are allowed namely float and string. The value of the parameter is specified

Using the Framework 124

#include “Session_Manager.h”

#include “ET.h”

main() {

Session_Manager ses_manager = new Session_Manager();

// Creates a new session manager object

// Session Manager creates a Expert Manager object

ET aero({“aero”, “Observe’”’);

// Creates an aerodynamics expert in observe mode

ET geom(“geom’”’);

// Creates a geometry expert in the default consult mode

ET wht(“Weight”, “Transact”’);

// Creates a weights expert in transact mode

ses_manager.handle_events();

// Waits for an input from the menu

Figure 25 Sample Program to Create an Expert System from Framework

Using the Framework 125

next. If the type of the parameter is string, the value could be an actual string. For

example

Parameter Aircraft_Type string fighter

All the words in each line of the knowledge file are separated by a tab. As the parameters

are being read in, instances of the parameter class are created in the ET. These

parameters are then added to the linked list maintained in the ET object.

After the main program of the expert system is created, it should be compiled and the

executable created. The user of the expert system would use the executable code to run a

session of the expert system.

Using the Framework 126

13. Conclusions

An object-oriented framework for the customized creation of expert systems for CAD

was designed in this thesis. The requirements for the design of this framework were

specified, the object-oriented design of the framework was completed and a prototype of

the framework was created using C++. The central part of the expert system that will be

created using this framework are the ETs which represent the experts in domains of

design in real-world. These experts would be able to interact with the user as a

Consultant, a Transactor, an Observer, a Teacher or a Student. The knowledge for the

ETs in this expert system would be fed by the programmer during the creation of these

ETs. The knowledge for the ETs are in the form of rules. These rules could be

parametric equations, control equations, constraints, heuristic rules and data for the

design parameters. These rules would operate on the design parameters of the design.

The design parameters that are being used in the design belong to an ET depending on the

domain of the parameter. Thus, the expert system developed from this framework would

support parametric design.

CAD systems have traditionally used procedural methods to implement parametric

design. Incorporating the procedural programming methods in an object-oriented

environment has been a difficult task. Moreover, imbedding the procedures used in a

traditional CAD applications as knowledge-based methods in an expert system proved to

be difficult. The equations, constraints, control equations used in a procedural parametric

Conclusions 127

design system can be embedded as rules in an expert system created using this

framework.

The framework created would enhance the power of the CAD application and aid the

users of the CAD system in designing better components faster. This framework would

aid the programmers of CAD systems to build expert systems that are tailor-made for

parametric conceptual design in a CAD application. A programmer using this framework

would have tools to create expert systems that can be easily integrated with the overall

CAD application and would be implemented in a language that is in everyday use by

engineers.

Conclusions 128

14. References

[Angs93] Angster, S. R., “An Object Oriented, Knowledge-Based, Non-Procedural

Approach to Multi-Disciplinary Parametric Conceptual Design“, M.S. Thesis, Department

of Mechanical Engineering, Virginia Polytechnic Institute and State University, July 19,

1993.

[Booc91] Booch, G., “Object-Oriented Design with Applications’, The Benjamin

Cummings Publishing Company, Inc., CA., 1991.

[Bouc88] Bouchard, E. E., Kidwell, G. H. and Rogan, J. E., “The Application of

Artificial Intelligence Technology to Aeronautical System Design”, AIAA-88-4426,

presented at the AJAA/AHS/ASEE Aircraft Systems and Operations Meeting, September

7-9, 1988, Atlanta, GA.

[Dym91] Dym, C. L., and Levitt, R. E., “Knowledge Based Systems In Engineering

- 1 ed”, McGraw Hill Inc., 1991.

[Flem91] Fleming, S. and Myklebust, A., “Utilizing the graPHIGS API for CAD

Application”, Proceedings of the Second International graPHIGS User’s Group

Conference and Workshop, Blacksburg, Virginia, Oct 20-23, 1991, pp. 3-10.

[Flem92] Fleming, S. and Myklebust, A., “The Enhancement of PHIGS+ B-Spline

Functionality for Geometric Modeling”, presented at the Fourth IFIP WG5.2 Workshop

on Geometric Modeling in Computer Aided Design, Rensselaerville, New York, Sept. 27

- Oct. 1, 1992.

References 129

[Fran90] Franke, D. W., “Imbedding Rule Inferencing in Applications”, JEEE

Expert , Intelligent Systems and Their Applications, December 1990, pp 8-14.

[Gill92] Gillam, A., “A Knowledge-Based, Extensible Architecture for Space

System Design’, AIAA-92- 1115, presented at the 1992 Aerospace Design Conference,

February 3-6, 1992, Irvine, CA.

{[Grah93] Graham, I., “Migration Using SOMA: A semantically rich method of

object oriented analysis’, Journal of Object Oriented Programming, Vol 5, No9,

February 1993, pp 31-42.

[Tbra90] Ibrahim, M. H., and Woyak, S. W., “An Object-Oriented Environment for

Multiple AI Paradigms”, IEEE Conference on Tools for Artificial Intelligence’, Herndon,

VA, Nov 6-9, 1990.

[Jaya89] Jayaram, S., "CADMADE - An Approach Towards a Device-Independent

Standard for CAD/CAM Software Development", Ph.D. Dissertation, Mechanical

Engineering Department, Virginia Polytechnic Institute and State University, April 29,

1989.

[Jaya90] Jayaram, S., and Myklebust, A., “Towards a Standardized Environment for

the Creation of Design and Manufacturing Software", Proceedings of the International

Conference on Engineering Design (ICED), Dubrovnik, Yugoslavia, August 28-31, 1990.

[Jaya93] Jayaram, S., and Myklebust, A., “Device Independent Programming

Environments for CAD/CAM Software Creation”, Computer Aided Design, Volume25,

No 2, February 1993, pp 94-105.

References 130

[Kidw87] Kidwell, G. H., “Workstations Take Over Conceptual Design”, Aerospace

America, January 1987.

[Kim86] Kim, S. H., and Suh, N. P., “On a Consultive Expert System for Design

Axiomatics”, Journal of Robotics and Computer Integrated Manufacturing, Vol 3, 1986.

[Kolb92] Kolb, M. A., “Constraint-Based Component Modeling for Knowledge-

Based Design”, AIAA-92-1192, presented at the 1992 Aerospace Design Conference,

February 3-6, 1992, Irvine, CA.

[Kolb88] Kolb, M. A., “A Flexible Computer Aid for Conceptual Design Based on

Constraint Propagation and Component Modeling”, AIAA-88-4427.

{Kroo88] Kroo, I. and Takai, M., “A Quasi-Procedural, Knowledge-Based System

for Aircraft Design’, AIAA-88-4428, presented at the AJAA/AHSASEE Aircraft Design

Systems and Operations Meeting, September 7-9, 1988, Atlanta, GA.

[Kroo92] Kroo, I., “An Interactive System for Aircraft Design and Optimization”,

AIAA-92-1190, presented at the 1992 Aerospace Design Conference, February 3-6,

1992, Irvine, CA.

[LinW93] Lin, W. and Myklebust, A., “A Constraint driven Solid Modeling Open

Environment’, accepted for presentation at the Second ACM/IEEE Symposium on Solid

Modeling and Applications, Montreal, Canada, May 19-21, 1993.

[Lipp91] Lippman., S. B., “C++ Primer - 2 ed”, Addison-Wesley Publishing

Company, Inc., 1991.

References 131

[Lu91] Lu, S. C-Y., and Wilhelm, R., “Automating Tolerance Synthesis: a

Framework and Tools’, Journal of Manufacturing Systems, Society of Manufacturing

Engineers, Vol 10, No 4, 1991, pp 279-296.

[Nye90] Nye, A., and O’Reilly, T., “X Toolkit Intrinsics Programming Manual - 2

ed for X11 R4”, O’Reilly & Associates, Inc., 1990.

{Ohsu87] Ohsuga, S., “A Consideration to Intelligent CAD Systems”, Intelligent

CAD - I, North-Holland, 1989.

[OSF91] Open Software Foundation, “OQSF/Motif Programmers Reference”,

Prentice Hall, NJ, 1991.

[Penn91] Pennington, S. L., "A Software Engineering Approach to the Integration of

CAD/CAM Systems", Ph.D. Dissertation, Mechanical Engineering Department, Virginia

Polytechnic Institute and State University, Blacksburg, Virginia, 1991.

[Subr91] Subramanyam, S., and Lu, S. C-Y., “Computer Aided Simultaneous

Engineering for Components Manufactured in Small and Medium Lot Sizes”, ASME

Transactions, Journal of Engineering for Industry, Vol 113, No 4, 1991, pp 450-464.

[Talu90] Talukdar, S. N., Sapossnek, M., Hou, L., Woodbury, R., Sedas, S., Saigal,

S. and Jaeger, J., “Autonomous Critics”, Second National Symposium on Concurrent

Engineering, Concurrent Engineering Research Center, West Virginia University,

Morgantown, WV, February 7-9, 1990.

[Tche91] Lu, S. C-Y., and Tcheng, D. K., “Building Layered Models to Support

Engineering Decision Making: A Machine Learning Approach’, ASME Transactions,

Journal of Engineering for Industry, Vol 113, No 4, 1991, pp 1-9.

References 132

[Tong92] Tong, S. S., Powell, D. and Goel, S., “Integration of Artificial Intelligence

and Numerical Optimization Techniques for the Design of Complex Aerospace Systems”,

AJAA-92-1189, presented at the 1992 Aerospace Design Conference, February 3-6,

1992, Irvine, CA.

[Uhor93a]_ Uhorchak, S., “An Object-Oriented Class Library for Creating

Engineering Graphs Using PHIGS”, Presented at the First Annual PHIGS User’s Group

Conference, Orlando, Florida, March 21-24, 1993.

[Uhor93b] Uhorchak, S., “An Object-Oriented Class Library for the Creation of

Engineering Graphs”, M.S. Thesis, Department of Mechanical Engineering, Virginia

Polytechnic Institute and State University, May 3, 1993.

(Ullm87] Ullman, D. G., and Dietterich, T. A., “Mechanical Design Methodology:

Implications on Future Developments of Computer-Aided Design and Knowledge Based

Systems”, Engineering with Computers, Vol 2, 1987, pp 21-29.

[Winb90] Winbald, A. L., Edwards, S. D., and King, D. R., “Qbject Oriented

Software’, Addison-Wesley Publishing Company, Inc., 1990.

[Woya93] Woyak, S., “A Motif-Like Object-Oriented Interface Framework Using

PHIGS”, Presented at the First Annual PHIGS User’s Group Conference, Orlando,

Florida, March 21-24, 1993.

[Yerr93] Yerramareddy, S., and Lu, S. C-Y, “Hierarchical and Interactive Decision

Refinement Methodology for Engineering Design”, Knowledge Based Engineering

Systems Research Laboratory, University of Illinois at Urbana-Champaign.

References 133

Appendix A : Detailed Class Descriptions

Appendix A : Detailed Class Descriptions 134

Overview

Included in this appendix are the detailed descriptions of all the class members and

functions that are used in all the classes in this framework. The classes that are included

in this appendix are those that have been implemented and have been provided as a

reference to those who wish to use the framework. It is assumed that those wishing to

use this framework have knowledge of C++ and OSF/Motif. Some of the classes that

were designed as a part of this thesis had not been implemented by the time this thesis

was written and were later implemented by Scott Angster. For a detailed description of

these classes refer to [Angs93].

Appendix A : Detailed Class Descriptions ~ 135

Session_Manager Class

Class Description .
This class creates the Expert_Manager object and creates various user interface
objects for the interaction of the experts with the user.

Class Inheritance
Session_Interface class

Private Variables

Expert_Manager* the_manager Pointer to the Expert_Manager object that is
created

Public Functions

Session_Manager()

Function Description
Creates the Expert_Manager object and all the user interface
objects through inheritance.

Argument Description
None.

Expert_Manager* Get_Manager()

Function Description
Returns a pointer to the expert manager object that is created in
this class.

Argument Description

None.

void Add_Expert_Manager (Expert_Manager *manager)

Function Description
Adds the expert manager object that is passed in to the session that
is created.

Argument Description
manager Pointer to the expert manager object

Appendix A : Detailed Class Descriptions 136

Session_Interface Class

Class Description
This class initializes Motif application and creates all the main user interface objects
like the menu bar, the main menu, dialog windows, scrolled windows, etc.

Class Inheritance
None.

Private Variables

Arg all] Argument list for creation of the Motif
widgets.

int ac Counter for the above argument list.

Widget sw Scrolled window widget for dialog between
user and the experts.

Widget workArea Work area form widget for the main
window.

Widget bbframe Bulletin board widget frame widget for the
dialog window.

Private Functions

Widget Create_Menu_Bar (Widget parent)

Function Description
Creates the main menu bar for the main menu of the expert system

Argument Description
parent Parent for the widget, the main window

widget is passed in.

static void MenuCB (Widget, XtPointer, XtPointer)

Function Description
Function provides a call back for the exit button on the main menu.
Creates an object of the exit dialog class in the call back.

Argument Description
None.

Appendix A : Detailed Class Descriptions 137

Protected Variables

Widget mainWindow The main window widget.

Widget menuBar The main menu bar widget

Widget frame Frame widget for the scrolled window

XtAppContext app_context The application context for the initialization
of Motif application

Public Functions

Session_Interface()

Function Description
Class constructor which creates all the widgets and initializes the
Motif application

Argument Description
None.

void handle_events()

Function Description
This function provides a loop back for the application to wait for
an event to be generated.

Argument Description
None.

Exit_Dialog Class

Class Description
This class object is created when the exit button on the main menu is selected. This
class closes the Motif application and exits the program.

Class Inheritance
None.

Private Variables

Arg all] Motif argument

int ac Argument counter for the above

Appendix A : Detailed Class Descriptions 138

Private Function

static void DialogCB (Widget, XtPointer client_Data, XtPointer)

Function Description
Call back function for the OK button on the exit dialog window.
Closes the Motif application and exits the program.

Argument Description
client_Data Button ID for the OK button

Public Functions

Exit_Dialog()

Function Description
This function creates a question box for confirmation on whether
the user really wants to exit the system. If yes then the call back
for the OK button is called.

Argument Description
None.

Static void show_exitdialog()

Function Description
Manages the question box widget for the exit dialog.

Argument Description
None.

Expert_Manager Class

Class Description
This class manages all the experts that are created by the user. It keeps track of all the
experts, processes requests from them and provides functions for them to interact with
the user.

Class Inheritance
Expert_Setup, Delete_Menu

Private Variables

XFontStruct *newfont Font structure for output font

Appendix A : Detailed Class Descriptions 139

XmFontList newfontlist

Arg all]

int ac

Widget windowtext

char *output_string

int No_of_Consult_Experts_Created

int No_of_Observe_Experts_Created

int No_of_Transact_Experts_Created

int No_of_Teach_Experts_Created

int No_of_Learn_Experts_Created

Consult* first_consult

Observe* first_observe

Transact *first_transact

Teach *first_teach

Learn *first_learn

Consult* curr_consult

Observe* curr_observe

Transact *curr_transact

Teach *curr_teach

Learn *curr_learn

Appendix A : Detailed Class Descriptions

List of fonts

Motif argument list

Argument counter for the list

Widget for the text window

Output string that is written to the text
window

No of consult objects created in all the ETs

No of observe objects created in all the ETs

No of transact objects created in all the ETs

No of teach objects created in all the ETs

No of teach objects created in all the ETs

Pointer to the first consult object in the
linked list maintained by the manager

Pointer to the first observe object in the
linked list maintained by the manager

Pointer to the first transact object in the
linked list maintained by the manager

Pointer to the first teach object in the linked
list maintained by the manager

Pointer to the first learn object in the linked
list maintained by the manager

Pointer to the last consult object in the
linked list maintained by the manager

Pointer to the last observe object in the
linked list maintained by the manager

Pointer to the last transact object in the
linked list maintained by the manager

Pointer to the last teach object in the linked
list maintained by the manager

Pointer to the last learn object in the linked
list maintained by the manager

140

ET *first_ET Pointer to the first ET object in the linked
list maintained by the manager

ET *curr_ET Pointer to the last ET object in the linked list
maintained by the manager

int No_of_ETs No of ET objects created by the user

Public Functions

Expert_Manager()

Function Description
Sets the name of the expert and initializes all the variables to keep
track of the experts that are created

Argument Description
None

void Add_Consult (Consult *cons)

Function Description
Adds the consult expert passed in to the linked list of consult
objects maintained

Argument Description
cons Pointer to the consult object that needs to be

added to the linked list

void Add_Observe (Observe *obs)

Function Description
Adds the observe expert passed in to the linked list of observe
objects maintained

Argument Description
obs Pointer to the observe object that needs to be

added to the linked list

void Add_ Transact (Transact *trans)

Function Description
Adds the transact expert passed in to the linked list of transact
objects maintained

Argument Description
trans Pointer to the transact object that needs to be

added to the linked list

Appendix A : Detailed Class Descriptions 141

void Add_ Teach (Teach *teach)

Function Description
Adds the teach expert passed in to the linked list of teach objects
maintained

Argument Description
teach Pointer to the teach object that needs to be

added to the linked list

void Add_Learn (Learn *learn)

Function Description
Adds the learn expert passed in to the linked list of learn objects
maintained

Argument Description
learn Pointer to the learn object that needs to be

added to the linked list

void Write_To_User (char *msg)

Function Description
Writes the string that is passed in to the dialog window

Argument Description
msg String that needs to be written to the user

void Remove_Consult (Consult *cons)

Function Description
Removes the consult expert passed in from the linked list

Argument Description
cons Pointer to the consult expert needed to be

removed from the linked list

void Remove_Observe (Observe *obs)

Function Description
Removes the observe expert passed in from the linked list

Argument Description
obs Pointer to the observe expert needed to be

removed from the linked list

Appendix A : Detailed Class Descriptions 142

void Remove_Transact (Transact *trans)

Function Description
Removes the transact expert passed in from the linked list

Argument Description
cons Pointer to the transact expert needed to be

removed from the linked list

void Remove_Teach (Teach *teach)

Function Description
Removes the teach expert passed in from the linked list

Argument Description
teach Pointer to the teach expert needed to be

removed from the linked list

void Remove_Learn (Teach *learn)

Function Description
Removes the learn expert passed in from the linked list

Argument Description
learn Pointer to the learn expert needed to be

removed from the linked list

int Get_No_of_Consult()

Function ription
Returns the number of consult experts created

Argument Description
None

int Get_No_of_Observe()

Function Description
Returns the number of observe experts created

Argument Description
None

int Get_No_of_Transact()

Function Description
Returns the number of transact experts created

Argument Description
None

Appendix A : Detailed Class Descriptions 143

int Get_No_of_TeachQ)

Function Description
Returns the number of teach experts created

Argument Description
None

int Get_No_of_Learn()

Function Description
Returns the number of learn experts created

Argument Description
None

void Add_ET (ET *et)

Function Description
Adds the ET object passed in to the linked list maintained

Argument Description
et Pointer to the ET object that needs to be

added to the linked list

int Get_No_of_ETs()

Function Description
Returns the number of ET objects that have been created by the
user

Argument Description
None

ET *Get_First_ETQ)

Function Description
Returns a pointer to the first ET in the linked list of ETs

Argument Description
None

float Get_ Value (char *param_name)

Function Description
Returns the value of the parameter, the name of the parameter is
passed in

Argument Description
param_name Pointer to the name of the parameter

Appendix A : Detailed Class Descriptions 144

char *Get_Char_Value (char *param_name)

Function Description
Returns the character value of the parameter, a pointer to whose
name is passed in

Argument Description
param_name A pointer to the name of the parameter

char *Get_Type (char *param_name)

Function Description
Returns “float” if the parameter is of the type float or “string” if the
parameter is of the type string

Argument Description
param_name A pointer to the name of the parameter

whose type is needed

int Is_Present (char *param_name)

Function Description
Returns a 1 if the parameter whose name is passed in is a member
of any of the ETs

Argument Description
param_name A pointer to the name of the parameter

void Put_ Value (char *param_name, float value)

Function Description
Sets a float value passed in to a parameter

Argument Description
param_name Pointer to the name of the parameter
value Value that needs to be set to the parameter

Void Put_Char_ Value (char *param_name, char *value)

Function Description
Sets a string to a String parameter

Argument Description
param_name Pointer to the name of a parameter
value Pointer to the string that needs to stored

Appendix A : Detailed Class Descriptions 145

Expert_Setup Class

Class Description
Creates the user interfaces for the creation of a particular operating mode of the ET

Class Inheritance
None

Public Variables

Arg all] Motif Argument list

int ac Counter for the Motif argument list

Widget *setupchildren Button widgets for the operating modes of
the ET

int noofsetupchildren No of buttons for the operating modes

Public Functions

Expert_Setup()

Function Description
Creates the user interface menu for the creation of the operating
mode objects of the ETs

Argument Description
None

void Update_Setup()

Function Description
Updates the menus whenever a new ET or a new operating mode
object of an ET is created or deleted

Argument Description
None

static void Create_Expert (Widget, XtPointer client_Data, XtPointer)

Function Description
Call back for the buttons to create the operating modes of the
experts

Argument Description
client_Data IDs of the ET and the operating mode

Appendix A : Detailed Class Descriptions 146

Delete_Menu Class

Class Description
Creates the user interfaces for the deletion of a particular operating mode of the ET

Class Inheritance
None

Public Variables

Arg all[] Motif Argument list

int ac Counter for the Motif argument list

Widget *deletechildren Button widgets for the operating modes of
the ET

int noofdeletechildren No of buttons for the operating modes

Public Functions

Delete_Menu()

Function Description
Creates the user interface menu for the deletion of the operating
mode objects of the ETs

Argument Description
None

void Update_Delete()

Function Description
Updates the menus whenever a new ET or a new operating mode
object of an ET is created or deleted

Argument Description
None

static void Delete_Expert (Widget, XtPointer client_Data, XtPointer)

Function Description
Call back for the buttons to delete the operating modes of the
experts

Argument Description
client_Data IDs of the ET and the operating mode

Appendix A : Detailed Class Descriptions 147

Parameter Class

Class Description
Class represents a design parameter used in the design, could be of the type float or
string.

Class Inheritance
None

Private Variables
float curr_value

float changeable

char *curr_char_value

char *owner

float minimum

float maximum

Public Variables

char type[]

char name[]

Parameter *next

Appendix A : Detailed Class Descriptions

The current float value of the parameter

Represents whether the parameter value is
user changeable or not.
1 = user changeable
0 = user cannot change the value of the
parameter

If the parameter is of the type string, the
value of the parameter

Pointer to the name of the ET that owns the
parameter

The minimum float value of the parameter

the maximum float value of the parameter

The type of the parameter, whether float or
string

The name of the parameter

Pointer to the next parameter in the linked
list of parameters that is maintained by the
ET

148

Public Functions

Parameter (char *pname, char *ptype, float value, float changeable_value,
float min_value, float max_value)

Function Description
Constructor for the float type parameter

Argument Description
pname Pointer to the name of the parameter

ptype Pointer to the type of the parameter

value Float value of the parameter

changeable_value User changeable flag

min_value Minimum float value of the parameter

max_value Maximum value of the parameter

Parameter (char *pname, char *ptype, char* value, float changeable_value,
float min_value, float max_value)

Function Description
Constructor for the string type parameter

Argument Description
pname Pointer to the name of the parameter

ptype Pointer to the type of the parameter

value String value of the parameter

changeable_value User changeable flag

min_value Minimum float value of the parameter

max_value Maximum value of the parameter

char* get_type()

Function Description
Returns the type of the parameter

Argument Description
None

Appendix A : Detailed Class Descriptions 149

char* get_name()

Function Description
Returns the name of the parameter

Argument Description
None

float get_type()

Function Description
Returns the current float value of the parameter

Argument Description
None

float get_changeable()

Function Description
Returns 1 if the parameter value is user changeable and 0 if it is not

Argument Description
None

char* get_char_value()

Function Description
Returns the string value of the parameter

Argument Description
None

void put_value (float value)

Function Description
Stores the float value passed in as the value of the parameter

Argument Description
value float value of the parameter that is passed in

void put_value (char *value)

Function Description
Stores the string value passed in as the value of the parameter

Argument Description
value Pointer to a string that needs to be stored as

the value of the parameter

Appendix A : Detailed Class Descriptions 150

float get_max()

Function Description
Returns the maximum value of the parameter

Argument Description
None

float get_min()

Function Description
Returns the minimum value of the parameter

Argument Description
None

ET Class

Class Description
Represents an expert in a particular domain of design

Class Inheritance
None

Private Variables

char *name

int No_of_Parameters

int No_of_Changeable

Consult *cons

Observe *obs

Transact *trans

Teach *teach

Learn *learn

Appendix A : Detailed Class Descriptions

Name of the ET

No of parameters belonging to the ET

No of parameters that the user can change
the values of

Pointer to the consult operating mode object

Pointer to the observe operating mode object

Pointer to the transact operating mode object

Pointer to the teach operating mode object

Pointer to the learn operating mode object

151

Private Functions

void Read_KBQ)

Function Description
Reads in the knowledge of the ET, stored in the form of rules,
parameters belonging to the ET, etc.

Argument Description
None

Public Variables

Rule *first_rule

int No_of_Rules

int id

Parameter *first_parameter

Parameter *p_ll

int active_modes[]

ET *next

Arg all]

int ac

Widget max_warning

Widget min_warning

XmString warning_string

char *string

Appendix A : Detailed Class Descriptions

Pointer to the first rule in the linked list of
rules maintained by the ET

No of rules in the rule linked list

ID of the ET

Pointer to the first parameter in the linked
list of parameters maintained by the ET

Pointer to a parameter in the parameter
linked list

Each of the item in the array indicates
whether a particular mode in the ET is active
or not. 1 indicates the operating mode is
active and 0 indicates the operating mode is
inactive

Pointer to the next ET in the linked list of
ETs maintained by the Expert_Manager

Motif argument list array

Counter for the above array

Widget for the warning box to warn the user
that the value of a parameter is exceeding
the maximum value

Widget for the warning box to warn the user
that the value of the parameter is lower than
the minimum value

String written to the user in the warning box

Warning string

152

w
i
,

Public Functions

ET (char *expertname, char *expertmode)

Function Description
Class constructor creates the expert object and sets one of the
operating modes specified by the user active

Argument Description
expertname Pointer to the name of the expert

expertmode Pointer to the initial active mode of the ET

void Create_Expert_Mode (char *expertmode)

Function Description
Creates an operating mode object of the ET

Argument Description
expertmode Pointer to the string specifying the operating

mode of the ET that is to be created

void Delete_Expert_Mode (char *expertmode)

Function Description
Deletes an operating mode object of the ET

Argument Description
expertmode Pointer to the string specifying the operating

mode of the ET that is to be deleted

char *Get_Name()

Function Description
Returns the name of the ET

Argument Description

None

int Get_No_Parameters()

Function Description
Returns the number of parameters that belong to the ET

Argument Description
None

Appendix A : Detailed Class Descriptions 153

int Get_No_Changeable()

Function Description
Returns the number of parameters whose values could be changed
by the user

Argument Description
None

int Get_ID()

Function Description
Returns the ID of the ET

Argument Description
None

void Add_Parameter (char *param_name, char *type, char* value,
char* user_changeable char* max_value, char* min_value)

Function Description
Creates a parameter object and adds it to the linked list

Argument Description
param_name Pointer to the name of the parameter

type Type of parameter - string or float

value Value of the parameter

user_changeable Pointer to string specifying whether
parameter is user changeable or not
1 - user changeable
0 - not user changeable

min_value Minimum value of the parameter

max_value Maximum value of the parameter

void Put_Value (Parameter *parametr, float value)

Function Description
Stores the value of a parameter

Argument Description

parametr Pointer to the parameter whose value has to
be changed

value Value that has to be stored

Appendix A : Detailed Class Descriptions 154

float Get_Min_Value (Parameter *parametr)

Function ription

Returns the minimum value of the parameter

Argument Description
parametr Pointer to the parameter whose minimum

value is required

float Get_Max_Value (Parameter *parametr)

Function ription
Returns the maximum value of the parameter

Argument Description
parametr Pointer to the parameter whose maximum

value is required

float Get_Value (char *param_name)

Function Description
Returns the float value of the parameter of type float

Argument Description
param_name Pointer to the name of the parameter

char* Get_Char_Value (char* param_name)

Function Description
Returns the string value of the parameter of the type string

Argument Description
param_name Pointer to the name of the parameter

int Is_Present (char* param_name)

Function Description
Returns a 1 if the parameter is present in a linked list maintained
by any of the ETs else returns a 0

Argument Description
param_name Pointer to the name of the parameter

int Check_String (char *str)

Function Description
Checks if the string is a mathematical function name or a regular
string. If the string is a mathematical function name this function
returns a 1 else a 0

Appendix A : Detailed Class Descriptions 155

Argument Description
str Pointer to the string that needs to be checked

int Format_Type (char vall[])

Function Description
Checks if the string passed in is a character string or a numerical
String. If it is an alpha character string, this function returns a |
and if the string is a numerical string a 0 is returned

Argument Description
val[] String that needs to be checked

Consult Class

Class Description
This class represents the Consult operating mode of the ET

Class Inheritance
Consult_Popup

Private Variables

Arg al{] Motif argument list

int ac Counter for the above argument list

int current_no ID of the expert

char *name Pointer to the name of the ET

char * param_name Temporary name of parameter

float param_value Value of the above parameter

Private Functions

static void Button_CallBack (Widget, XtPointer call_data, XtPointer)

Function Description
Call back function for the ET button on the main scrolled window.
Displays all the menus for the ET

Argument Description
call_data ID for the ET

Appendix A : Detailed Class Descriptions 156

Public Variables

Widget button Button widget for the ET on the main
window

Consult* previous Pointer to the previous Consult object in the
doubly linked list of consult objects
maintained by the Expert_Manager

Consult* next Pointer to the next consult object on the
doubly linked list of consult objects
maintained by the Expert_Manager

Public Functions

Consult (char* expert_name)

Function Description
Constructor for the consult class

Argument Description
expert_name Pointer to the name of the expert

~Consult()

Function Description
Destructor for the consult class

Argument Description
None

char *Get_Name()

Function Description
Returns the name of the expert

Argument Description
None

Static void Param_Whatis (Widget, XtPointer call_data, XtPointer)

Function Description
Call back function for ““What Is” button on the menu for the
Consultant. Displays all the parameters in a pull-down menu and
displays information on the parameter that is selected

Appendix A : Detailed Class Descriptions 157

Argument Description
call_data ID for the parameter that is selected

static void Param_Effect_Increase (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect increase button

Argument Description
call_data ID of the ET and parameter selected

static void Param_Effect_Descrease (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect decrease button.

Argument Description
call_data ID of the ET and parameter selected

static void Param_Effect_Maximize (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect maximize button.

Argument Description
call_data ID of the ET and parameter selected

static void Param_Effect_Minimize (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect minimize button.

Argument Description
call_data ID of the ET and parameter selected

static void Param_Effect_New_Value (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect new value button.

Argument Description
call_data ID of the ET and parameter selected

Static void Receive_prompt_value (Widget, XtPointer Client_Data,
XtPointer sel_struct)

Function Description
Receives the new value of the parameter entered by the user in the
prompt window

Appendix A : Detailed Class Descriptions 158

Argument Description

Client_Data Pointer to the consult object that calls the
function

sel_ struct Pointer to the structure with the new value
entered

static void Receive_prompt_increase (Widget, XtPointer Client_Data,
XtPointer sel_struct)

Function Description
Receives the percentage increase of the parameter entered by the
user in the prompt window

Argument Description
Client_Data Pointer to the consult object that calls the

function

sel_struct Pointer to the structure with the percentage
increase entered

static void Receive_prompt_value (Widget, XtPointer Client_Data,
XtPointer sel_struct)

Function Description
Receives the percentage decrease of the parameter entered by the
user in the prompt window

Argument Description
Client_Data Pointer to the consult object that calls the

function

sel_struct Pointer to the structure with the percentage
decrease entered

Consult_Popup Class

Class Description
This class contains all the user interface functions for the consult class

Class Inheritance
None

Private Variables

Arg all] Motif argument list

Appendix A : Detailed Class Descriptions 159

int ac

Widget popupbutton

XmString label

Widget popup_pulldown_pane[]

Widget param_pulldown_pane[}

Widget changeable_pulldown_pane[]

Widget enter_text

char *name

int ETID

int no_parameter

int no_changeable

char **p_list

char **user_list

Widget popupwindow

int no_on_list

int no_of_changeable_panes

Private Functions

void Get_Param_list()

Function Description

Counter for the above list

Button widget for the pop-up buttons

Label string for the buttons

Main pull-down panes for the menus

Pull-down panes where the parameters are
listed

Pull-down panes where the user changeable
parameters are listed

Widget for the prompt window

Pointer to the name of the ET

ID of the ET

No of parameters owned by the ET

No of changeable parameters owned by the
ET

List of parameter names for display on the
menus

List of user changeable parameter names

Pop-up window for the parameters

No of parameters in the list of parameters

No of pull-down panes on which the user
changeable parameters are listed

Gets the list of parameters belonging to this ET

Argument Description
None

Appendix A : Detailed Class Descriptions 160

void Get_Changeable_List()

Function Description
Gets the list of user changeable parameters belonging to this ET

Argument Description
None

void Create_Parameter_Pulldown()

Function Description
Creates pull-down panes with all the parameters as separate push
buttons

Argument Description
None

int Create_Changeable_Pulldown()

Function Description
Creates puli-down panes with all the user changeable parameters as
push buttons. Returns the no. of panes needed to display all the
parameters

Argument Description
None

void Create_Determine_Pulldown()

Function Description
Creates pull-down panes for the “Determine” menu choice and
displays all the user changeable parameters on the pull-down pane

Argument Description
None

Protected Variables

float entered_number The value entered by the user in the prompt
window

float new_value Value entered by the user to change the
current value of a parameter or the value
changed as a result of percentage increase or
decrease

float percentage Percentage increase or decrease entered by
the user

Appendix A : Detailed Class Descriptions 161

struct effect_callback_struct{ Structure used to pass information regarding
the parameter to the call back function

int ETID ID of the parameter

int parameter_no ID of the parameter

Consult_Popup *this_pointer Pointer to the object calling the call back
function

} *params

Protected Function

Widget Prompt_user (char* msg, char* msg?2, char *reason)

Function Description
Prompts the user for a new value of the parameter or the
percentage increase or decrease of the parameter

Argument Description
msg Message on the prompt window

msg2 Message to enter string

reason Whether a new value or percentage increase
or decrease

Public Functions

Consult_Popup (char* ETname)

Function Description
Constructor for the Consult_Popup class

Argument Description
ETname Pointer to the name of the ET

void Create_Consult_Popup()

Function Description
Creates the main pop-up menus for the consult mode expert

Argument Description
None

Appendix A : Detailed Class Descriptions 162

void Create_Consult_Popup_Pulldown()

Function Description
Creates the pulldown menus for the pop-up buttons in the main
menu of the consult mode ET

Argument Description
None

Observe Class

Class Description
This class represents the observe mode expert.

Class Inheritance
Observe_Popup

Private Variables

Arg all] Motif argument list

int ac Counter for the above list

int current_no ID for the ET

char *name Pointer to the name of the ET

Private Function

Static void Button_CallBack (Widget, XtPointer call_data, XtPointer)

Function Description
Call back function for the ET button on the main menu. Displays
the pull-down menu for the ET

Argument Description
call_data ID for the ET and the expert mode

Public Variables

Widget button Button widget for the observe mode ET on
the main menu

Appendix A : Detailed Class Descriptions 163

Observe *previous Pointer to the previous observe mode expert
in the doubly linked list maintained by the
Expert_Manager

Observe *next Pointer to the next observe mode expert in
the doubly linked list maintained by the
Expert_Manager

Public Functions

Observe (char *ETname)

Function Description
Constructor for the observe operating mode

Argument Description
ETname Pointer to the name of the ET

~Observe()

Function Description
Destructor for the class

Argument Description
None

char* Get_Name()

Function Description
Returns the name of the ET that this observe mode object belongs
to

Argument Description
None

Observe_Popup Class

Class Description
This class has all the user interface functions for the observe operating mode ET

Class Inheritance
None

Private Variables

Arg all[] Motif argument list

Appendix A : Detailed Class Descriptions 164

int ac Counter for the above argument

Widget popupbutton Button widget for the pop-up pane menu
items

XmString label Label for the menu items

Widget popup_pulldown_pane Pop-up pull-down pane for the menu items
for this operating mode

Public Functions

Observe_Popup()

Function Description
Constructor for the class. Creates all the menus for the observe
mode expert

Argument Description
None

void Create_Observe_Popup()

Function Description
Creates the pop-up panes and the main menu for the observe mode
ET

Argument Description
None

Transact Class

Class Description
This class represents the transact operating mode of the ET

Class Inheritance
Transact_Popup

Private Variables

Arg all{] Motif argument list

int ac Counter for the above argument list

int current_no ID of the expert

Appendix A : Detailed Class Descriptions 165

char *name Pointer to the name of the ET

char * param_name Temporary name of parameter

float param_value Value of the above parameter

Private Functions

static void Button_CallBack (Widget, XtPointer call_data, XtPointer)

Function Description
Call back function for the ET button on the main scrolled window.
Displays all the menus for the transact mode ET

Argument Description
call_data ID for the ET

Public Variables

Widget button Button widget for the ET on the main
window

Transact* previous Pointer to the previous transact object in the
doubly linked list of transact objects
maintained by the Expert_Manager

Transact* next Pointer to the next transact object in the
doubly linked list of transact objects
maintained by the Expert_Manager

Public Functions

Transact (char* expert_name)

Function Description
Constructor for the transact class

Argument Description
expert_name Pointer to the name of the expert

~Transact()

Function Description
Destructor for the transact class

Appendix A : Detailed Class Descriptions 166

Argument Description
None

char *Get_Name()

Function Description
Returns the name of the expert

Argument Description
None

static void Param_Whatis (Widget, XtPointer call_data, XtPointer)

Function Description
Call back function for “What Is’’ button on the menu for the
Transactor. Displays all the parameters in a pull-down menu and
displays information on the parameter that is selected

Argument Description
call_data ID for the parameter that is selected

static void Param_Effect_Increase (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect increase button

Argument Description
call_data ID of the ET and parameter selected

static void Param_Effect_Descrease (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect decrease button.

Argument Description
call_data ID of the ET and parameter selected

static void Param_Effect_Maximize (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect maximize button.

Argument Description
call_data ID of the ET and parameter selected

Static void Param_Effect_Minimize (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect minimize button.

Appendix A : Detailed Class Descriptions 167

Argument Description
call_data ID of the ET and parameter selected

Static void Param_Effect_New_Value (Widget, XtPointer call_data, XtPointer)

Function Description
Call back for the effect new value button.

Argument Description
call_data ID of the ET and parameter selected

Static void Receive_prompt_value (Widget, XtPointer Client_Data,
XtPointer sel_struct)

Function Description
Receives the new value of the parameter entered by the user in the
prompt window

Argument Description
Client_Data Pointer to the transact object that calls the

function

sel_struct Pointer to the structure with the new value
entered

Static void Receive_prompt_increase (Widget, XtPointer Client_Data,
XtPointer sel_struct)

Function Description
Receives the percentage increase of the parameter entered by the
user in the prompt window

Argument Description
Client_Data Pointer to the transact object that calls the

function

sel_struct Pointer to the structure with the percentage
increase entered

static void Receive_prompt_value (Widget, XtPointer Client_Data,
XtPointer sel_struct)

Function Description
Receives the percentage decrease of the parameter entered by the
user in the prompt window

Argument Description
Client_Data Pointer to the transact object that calls the

function

Appendix A : Detailed Class Descriptions 168

sel_ struct

Transact_Popup Class

Class Description

Pointer to the structure with the percentage
decrease entered

This class contains all the user interface functions for the transact class

Class Inheritance
None

Private Variables

Arg alf]

int ac

Widget popupbutton

XmString label

Widget popup_pulldown_pane[]

Widget param_pulldown_pane[]

Widget changeable_pulldown_pane[]

Widget enter_text

char *name

int ETID

int no_parameter

int no_changeable

char **p_list

char **user_list

Widget popupwindow

Appendix A : Detailed Class Descriptions

Motif argument list

Counter for the above list

Button widget for the pop-up buttons

Label string for the buttons

Main pull-down panes for the menus

Pull-down panes where the parameters are
listed

Pull-down panes where the user changeable
parameters are listed

Widget for the prompt window

Pointer to the name of the ET

ID of the ET

No of parameters owned by the ET

No of changeable parameters owned by the
ET

List of parameter names for display on the
menus

List of user changeable parameter names

Pop-up window for the parameters

169

int no_on_list No of parameters in the list of parameters

int no_of_changeable_panes No of pull-down panes on which the user
changeable parameters are listed

Private Functions

void Get_Param_List()

Function Description
Gets the list of parameters belonging to this ET

Argument Description
None

void Get_Changeable_List()

Function Description
Gets the list of user changeable parameters belonging to this ET

Argument Description
None

void Create_Parameter_Pulldown()

Function Description
Creates pull-down panes with all the parameters as separate push
buttons

Argument Description
None

int Create_Changeable_Pulldown()

Function Description
Creates pull-down panes with all the user changeable parameters as
push buttons. Returns the no. of panes needed to display all the
parameters

Argument Description
None

void Create_Determine_Pulldown()

Function Description
Creates pull-down panes for the “Determine” menu choice and
displays all the user changeable parameters on the pull-down pane

Appendix A : Detailed Class Descriptions 170

Argument Description
None

Protected Variables

float entered_number

float new_value

float percentage

struct effect_callback_struct{

int ETID

int parameter_no

Transact_Popup *this_pointer

} *params

Protected Function

The value entered by the user in the prompt
window

Value entered by the user to change the
current value of a parameter or the value
changed as a result of percentage increase or
decrease

Percentage increase or decrease entered by
the user

Structure used to pass information regarding
the parameter to the call back function

ID of the parameter

ID of the parameter

Pointer to the object calling the call back
function

Widget Prompt_user (char* msg, char* msg2, char *reason)

Function Description
Prompts the user for a new value of the parameter or the
percentage increase or decrease of the parameter

Argument Description
msg

msg2

reason

Appendix A : Detailed Class Descriptions

Message on the prompt window

Message to enter string

Whether a new value or percentage increase
or decrease

171

Public Functions

Transact_Popup (char* ETname)

Function Description
Constructor for the Transact_Popup class

Argument Description
ETname Pointer to the name of the ET

void Create_Transact_Popup()

Function Description
Creates the main pop-up menus for the transact mode expert

Argument Description
None

void Create_Transact_Popup_Pulldown()

Function Description
Creates the pulldown menus for the pop-up buttons in the main
menu of the transact mode ET

Argument Description
None

Teach Class

Class Description
This class represents the teach mode expert.

Class Inheritance
Teach_Popup

Private Variables

Arg allf] Motif argument list

int ac Counter for the above list

int current_no ID for the ET

char *name Pointer to the name of the ET

Appendix A : Detailed Class Descriptions 172

Private Function

static void Button_CallBack (Widget, XtPointer call_data, XtPointer)

nction Description
Call back function for the ET button on the main menu. Displays
the pull-down menu for the teach mode ET

Argument Description

call_data ID for the ET and the expert mode

Public Variables

Widget button Button widget for the teach mode ET on the
main menu

Teach *previous Pointer to the previous teach mode expert in
the doubly linked list maintained by the
Expert_Manager

Teach *next Pointer to the next teach mode expert in the
doubly linked list maintained by the
Expert_Manager

Public Functions

Teach (char *ETname)
Function Description

Constructor for the teach operating mode

Argument Description
ETname Pointer to the name of the ET

~Teach()

Function Description

Destructor for the class

Argument Description
None

char* Get_Name()

Function Description
Returns the name of the ET that this teach mode object belongs to

Argument Description
None

Appendix A : Detailed Class Descriptions 173

Teach_Popup Class

Class Description
This class has all the user interface functions for the teach operating mode ET

Class Inheritance
None

Private Variables

Arg all] Motif argument list

int ac Counter for the above argument

Widget popupbutton Button widget for the pop-up pane menu
items

XmString label Label for the menu items

Widget popup_pulldown_pane Pop-up pull-down pane for the menu items
for this operating mode

Public Functions

Teach_Popup(Q)

Function Description
Constructor for the class. Creates all the menus for the teach mode
expert

Argument Description
None

void Create_Teach_Popup()

Function Description
Creates the pop-up panes and the main menu for the teach mode
ET

Argument Description
None

Appendix A : Detailed Class Descriptions 174

Student Class

Class Description
This class represents the Student mode expert.

Class Inheritance
Learn_Popup

Private Variables

Arg all] Motif argument list

int ac Counter for the above list

int current_no ID for the ET

char *name Pointer to the name of the ET

Private Function

static void Button_CallBack (Widget, XtPointer call_data, XtPointer)

Function Description
Call back function for the ET button on the main menu. Displays
the pull-down menu for the learn mode ET

Argument Description
call_data ID for the ET and the expert mode

Public Variables

Widget button Button widget for the teach mode ET on the
main menu

Learn *previous Pointer to the previous Student mode expert
in the doubly linked list maintained by the
Expert_Manager

Learn *next Pointer to the next Student mode expert in
the doubly linked list maintained by the
Expert_Manager

Appendix A : Detailed Class Descriptions 175

Public Functions

Learn(char *ETname)

Function Description
Constructor for the Student operating mode

Argument Description
ETname Pointer to the name of the ET

~Learn()

Function Description
Destructor for the class

Argument Description
None

char* Get_Name()

Function Description
Returns the name of the ET that this Student mode object belongs
to

Argument Description
None

Learn_Popup Class

Class Description
This class has all the user interface functions for the Student operating mode ET

Class Inheritance
None

Private Variables

Arg all[] Motif argument list

int ac Counter for the above argument

Widget popupbutton Button widget for the pop-up pane menu
items

XmString label Label for the menu items

Appendix A : Detailed Class Descriptions 176

Widget popup_pulldown_pane Pop-up pull-down pane for the menu items
for this operating mode

Public Functions

Learn_PopupQ

Function Description
Constructor for the class. Creates all the menus for the Student
mode expert

Argument Description
None

void Create_Learn_Popup()

Function Description
Creates the pop-up panes and the main menu for the Student mode
ET

Argument Description
None

Rule Class

Class Description
This class contains the knowledge of the experts in the form of rules. These rules are
maintained as linked lists inside this class. This class has been designed in detail and
implemented by Scott Angster [Angs93]

Appendix A : Detailed Class Descriptions 177

Appendix B :Example Problem Listing

Appendix B : Example Problem Listing 178

Overview

The list of parameters input as knowledge to the experts created are shown in the

following pages. The rules in the knowledge of the experts are not shown as the rule

class was not developed as a part of this thesis. The different types of rule classes were

developed later by Scott Angster and examples of these class objects are listed by him

[Angs93]. Listed in here is also the main program used to create the experts for the

example problem.

Knowledge for the Kinematics Expert

Filename

Knowledge :

Parameter
Parameter
Parameter
Parameter
Parameter
Parameter
Parameter
Parameter
Parameter

Appendix B : Example Problem Listing

Nl
N2
Omegal
Omega2
Ratio
Rad1
Rad2
C-Dist
Module

float
float
float
float
float
float
float
float
float

Kinematics.kb

179

Knowledge for the Strength Expert

Filename Strength.kb

Knowledge

Parameter KL1 float 10
Parameter KL2 float 10
Parameter KW1 float 1
Parameter KW2 float 1
Parameter KH1 float 1
Parameter KH2 float 1
Parameter Gear-Wid float 10
Parameter Power float 100
Parameter Dial float 5
Parameter Dia2 float 5

Main Program for the Example Problem

Filename main.C

#include “Session_Manager.h”
#include “ET.h”

main()

Session_Manager *ses_manager = new Session_Manager();

KET kinematics(“Kinematics’, “Transact’);

ET strength(“Strength”)

ET manufacturing(“Manufacturing”, “Observe’”’);

ses_manager->handle_events();

Appendix B : Example Problem Listing 180

Vita

Parasuram Narayanan was born on the 8th of February, 1967 in Tirupattur, Tamil Nadu,

India. He grew up in Madras, India where he completed his high school. He completed

his undergraduate studies in Mechanical Engineering from the University of Roorkee,

India. After graduation he worked for the Earthmoving Equipment Division of M/S

Larsen & Toubro, Bangalore, India as an engineer trainee for a year. He then decided to

pursue graduate studies in Mechanical Engineering at the Virginia Polytechnic Institute

and State University where he specialized in Computer Aided Design. After graduation

he is interested in pursuing a career in CAD especially in the areas of geometric

modeling, user interfaces and graphics

Parasuram A. Narayanan

Vita 181

