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Beginning with the exact Kolmogorov power spectrum for an extended random medium (such as interstellar

space), the structure function is first expressed as an inverse Fourier-Bessel transform. An approximate

series representation involving fractional powers of the transverse coordinate is then optimized by an

equivalent Gaussian expansion up to two terms using the Rayleigh-Ritz technique. The domains of validity

as well as the coherence profile of the resulting analytical solution of the two-point electric field correlation

function are examined. It is shown that the correlation in both the transverse and longitudinal directions

persists over distances up to a few orders of magnitude greater than that for a medium described by a Gaussian

structure function.

1. Introduction

The propagation of optical or radio waves through
random turbulent media has been studied for various
physical systems.1-8 These have included weak and
strong stellar scintillations, plasma fluctuations,
source and image jitters, atmospheric turbulence, and
sonar transmissions. The origin of the medium ran-
domness may be associated with various factors, name-
ly, electron density and refractive index variations,
variations in atmospheric constituents, and aerosols.

The study of such propagation problems normally
involves deriving and solving a differential equation
for the amplitude correlation function or the intensity
covariance function of the electric field. While much
numerical studies have gone into the understanding of
both, it turns out that finding exact analytical solu-
tions often remains a prohibitive task. Lerche9 ob-
tained a closed solution for the two-point amplitude
correlation at two frequencies by assuming a Gaussian
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power spectrum and a corresponding Gaussian struc-
ture function. Such a Gaussian description is an over-
simplification of the realistic power spectra (which, for
astrophysical scintillations in particular, are more
closely described by a Kolmogorov density); moreover,
to obtain an analytical solution, it was necessary to
expand the Gaussian structure up to the quadratic
term only, thereby restricting the valid range of the
solution in the transverse direction. Lee and Joki-
pii10-12 obtained numerical solutions in the so-called
intermediate range; however, their series expansion of
the structure function around the transverse coordi-
nate p = 0 appears to be invalid for a power law spec-

trum.
We start from the Kolmogorov power spectral densi-

ty function and express the medium structure function
in terms of a Fourier-Bessel transform. To obtain an
analytical solution of the resulting integral, the Gauss-
ian term in the integrand is then expanded to two
terms (thereby restricting the region of validity to p >
1, where I is the inner microscale of fluctuations). This
leads to a series expansion up to p2 , including fractional
powers of p. To use this structure to solve for the
electric field correlation in a closed form, we apply a
Rayleigh-Ritz optimization to express it as an expand-
ed Gaussian in a preselected range. The final analyti-
cal solution, therefore, has the same form as in Lerche,9

with the exception that the range of applicability and
the equivalent scale lengths are quite different from
the Gaussian case.

In Sec. II, we briefly discuss the Lerche and Lee and
Jokipii methods and their limitations as a prelude to
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our own approach. The derivation of the approximate
structure function and its equivalent expanded Gauss-
ian representation by the Rayleigh-Ritz technique are
presented in Sec. III. An analytical solution for the
two-point two-frequency electric field correlation, its
domain of validity, and other implications are also
discussed in this section. Section IV concludes this
paper.

II. Truncated Gaussian and Intermediate Range
Methods

A. Gaussian Power Spectrum and Approximate Analytical
Solution for r1 ,

Following Lerche, 9 we assume a medium with a
Gaussian power spectral density

PG(q) = BG exp(-q 2
/q'), (1)

where LG 2/qG is the coherence scale of the fluctua-
tions, and BG is a constant given by12

B = 128 7 1 2(r/lkqG)(N2), (2)

where r = e2/mc2 is the classical electron radius, (N,2)
is the mean-squared electron density fluctuations, and
k is the wavenumber.

Using Eq. (1), one can readily obtain the medium
structure function

AG(p) = (Bk 4 q2I4ur) exp(-p 2 qC/4). (3)

Next, one defines the two-point two-frequency electric
field correlation as

r,,(z,p,k1,k2 ) (E(z,r1,k)E*(z,r 1 + p,k2 )), (4)

where k and k2 are the wavenumbers corresponding to
two monochromatic waves originating from two points
in the transverse domain, and * denotes the complex
conjugate of the field amplitude. With the definition

rl = exp[-zAG(O)(1 - R) 24k 2rD(zpklk2), (5)

where R = k/k 2, the relevant differential equation,
under a quasioptical or parabolic approximation, be-
comes

arD/aZ = j[( - R)2k]v2 rD

-[RAG(0)/2k 2[ - a(p)IrD, (6)

where a(p) = AG(P)/AG(O) is the normalized structure
function, and v2 is the transverse Laplacian operator.

An expansion of [1 - a(p)] from Eq. (3) so that

1(p) _ 2/L', (7)

leads to an analytical solution for D in Eq. (6) given
by 9

rD(77,) = sec[27 exp(jr/4)] expf-0.54 2

X exp(-jir/4) tan[2n exp(jir/4)]), (8)

where and are normalized p and z variables, respec-
tively, given by

= z(2kLG)-l[R(R - 1)A(O)]12 k-112, (9a)

= ptkL2(R - 1)[RAG(0)]l-11
1

4. (9b)

The solution (8) may be readily derived by substitut-
ing

rD(n,) = C)D[42X(7)] (10)

into the approximated and normalized form of Eq. (6).
The expansion in Eq. (7) indicates that Eq. (8) is

valid only in the range 0 < P << LG, where for strong
interstellar scintillations LG is between 1014 and 1015
cm. It turns out that Lee and Jokipii 1 basically stud-
ied the same equation as Eq. (6) in the Gaussian case,
but with the additional restriction that 1 - RI << 1,
which essentially means that the two frequencies in-
volved in the second moment are virtually degenerate.
Lerche's derivation indicates that such a restriction on
R is in fact not necessary.

B. Kolmogorov Spectrum: Power Law Approximation

Lee and Jokipii 0-12 have studied the angular and
temporal broadening of pulsar signals as well as inten-
sity fluctuations (the fourth moment r22) by assuming
a Kolmogorov power density. The medium was as-
sumed to be extended (more realistic than a thin
screen model). The fluctuation in the refractive index
was given a Markov approximation (Tatarskil). It
was also shown that the strong scintillation problem
was not always reducible to the far field approximation
(in fact, in many cases, z << L2/X), so that Mercier's
formula1 for a Gaussian spectrum in the Fraunhofer
region was not applicable.

In their approach, Lee and Jokipii begin with the
modified power law spectrum

PK(q) = BK exp(-q2 /q )
(1 + q /q0)

(11)

which is Kolmogorov when ao = 11/3. In Eq. (11), BK is
a constant which is given by

BK = 128-7/2(r 2/k4q )(6,)[r(a/2)/r(a/2 -3/2)], c > 3, (12)

and I = 1/q, is defined as the inner scale of fluctuations,
while LK = 1/qo is the coherence scale. In general, qO
<< q, and the spectrum in Eq. (11) has an approximate
shape as shown in Fig. 1. Typically, I and LK lie in the
105-107- and 1017-1021-cm ranges, respectively.

For more realistic results than the Gaussian case,
Lee and Jokipii then assume a power law approxima-
tion of Eq. (11) so that for q << q1,

PK(q) BK(l + q2/q2) -a/2. (13)

Equation (13) leads to an exact structure function
AK(P), which, by restricting p to the intermediate range

<< P << LK, may be shown to be

AK(P) (BKq k4 )/[4r( - 2)11

x 1 - [r(2 - /2)/r(a/2)(qop/2)a-21, a > 3. (14)

However, at this point, Lee and Jokipii attempt to
express AK(P) in a MacLaurin expansion around p = 0
to remove the restriction on the lower limit of p. Such
an expansion is not valid because Eq. (14) was derived
assuming a strictly intermediate range for p. Further-
more, the rest of their analysis pertaining to rl and
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F22, particularly for the strong scintillation limit (char-
acterized by the scintillation index m2 = (I2)/(I)2
1), with the exception of asymptotic solutions, is essen-
tially based on numerical integration methods. Our
effort, therefore, has been to obtain an analytical solu-
tion for F1 1 over a wider range than the intermediate,
while also being closer to the Kolmogorov power spec-
trum than the Gaussian.

Ill. Approximate Structure Function for Kolmogorov

Power Density and Rayleigh-Ritz Optimization

First, we define (p,q) to be the transform variables in
the transverse space domain and the spatial wave-
number domain, respectively. By assuming cylindri-
cal (polar) geometry, we express the structure function
A(p) of a medium with a power spectral density P(q) by

means of a Fourier-Bessel transform (analogous to
circular aperture problems, Goodman13):

A(p)/k 4 = (1/27) 1 qP(q)JO(pq)dq, (15)

where J0 (-) is the zeroth-order Bessel function of the
first kind. It is fairly straightforward to show that
both Eq. (3) for the structure function for a Gaussian
spectrum and Eq. (14) for a power law spectrum may
be derived using Eq. (15).

Substituting Eq. (11) for PK(q) in Eq. (15), we have,

AK(P) = (BKk4/27r) J q exp(-q 2
/q)(1 + q2/q0)-a/sJo(pq)dq

(16)

Closed analytical solutions of Eq. (16) are not avail-
able. Hence we shall expand the Gaussian term in Eq.
(16) to two terms (which resembles Lerche's ap-
proach); however, we shall retain the power law in the
denominator.

We thus have, assuming q << qj,

AK(P) = (BKk4/2ir) J q(l - q2 /q )

X (1 + q2/q2)-,/2J (pq)dq,

= (BKk4/21r)(Il - I2), (17)

where the integrals I, and I2 are shown to be14

= [q11/3/2r(11/6)1[q-5/3r(5/6)lF 2 (1;1/6,1;p2 q2/4)

+ (p/2)s/3 (-5/6)1F2(11/6;11/6,11/6P2 q/4)], (18)

I= (qll//q)(Iq~l3r(2)r(-1/6)/[2r(l)r(11/6)1}

X lF2 (2;7/6,1;p
2 q,/4)

+ [(p/2)1/3r(1/6)/r(5/6)]IF2 (l/6;5/6,5/6;p q/4)). (19)

In Eqs. (18) and (19), r(-) are gamma functions, and
lF2(-) are hypergeometric functions. It is interesting
to note that such hypergeometric functions have been
derived recently by Baram et al.15 for the slope of the
covariance function in the context of remote wind
sensing in the presence of atmospheric turbulence with
a Kolmogorov spectrum. Their analysis appears to be
valid in the intermediate range (qo << q << qj).
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Fig. 1. Kolmogorov power density spectrum with qo << qj.
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Fig. 2. Structure functions AK(P) and AK(p).

Using Eqs. (18) and (19) in Eq. (17) and assuming qO
<< q, we finally obtain

AK(P) - a + a-1 /3p-1 /3 + a5/3p513 + a 2p
2,

where

ao = (3/5)(k 4BK/27r)q0,

a-1/3 -21/3[r(1/6)/r(5/6)(q l/3/q2)(k4 BK/27r),

a5/3 = (-9/50)21/3[r(l/6)/r(5/6)](q l/3) (k4 B/27r),

a2 = (9/10)(k 4BK/27r)q4. (21)

Equation (20) indicates that AK(P) has a singularity at
p = 0. However, the expansion of the Gaussian term in
Eq. (16) implies that Eq. (20) is valid only for p >> 1 (the
inner scale). Thus the expansion in Eq. (20) does not
include p = 0.

To find I 11, we must now substitute Eq. (20) for
AK(P) into Eq. (6). Due to the presence of fractional
powers of p, the resulting equation cannot be analyti-
cally solved without considerable difficulty. Since an
exact solution for the case where 1 - a(p) has the form
P2/L2 has already been derived, we next optimize Eq.
(20) in the form AK(p), as shown in Fig. 2, by using a
Rayleigh-Ritz technique.

Accordingly, we write
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and minimize the area under the square of the differ-
ence from Eq. (20) between two arbitrary points Pa and
Pb with respect to the unknown coefficients bo and b2.
Thus letting

9I/0bo = I/Ab2 = 0, (23)

where

I = b [AK(P) - (P)]2dp,
Pa

(24)

we obtain two simultaneous linear equations in bo and
b 2.

Now from Eq. (22) we have the normalized structure
function

ak(p) = 1 + (b2/bO)p2. (25)

Comparing Eq. (25) with the truncated Gaussian ex-
pansion in Eq. (7), we may define an effective coher-
ence scale for the Kolmogorov case by

Leff = (-bo/b2)" 2, (26)

so that

- a(p) = p2/L2ff. (27)

The solution of Eq. (6) with Eq. (27) has exactly the
same form as Eq. (8) with the only exception being that
Leff replaces LG. Thus the above technique has en-
abled us to express the solution for the two-point two-
frequency electric field correlation for the Kolmogorov
power density in the same form as that obtained by
Lerche for the Gaussian case with two important dif-
ferences. First, our optimized Kolmogorov solution
extends from p to Pb (where Pa >> 1 and Pb 194LK,
where the upper bound on Pb comes about for reasons
explained later), whereas Eq. (8) applies in the range 0

p LG. Second, the scale lengths of the resulting
correlation functions are Leff and LG, respectively, and
(as will be shown later) are quite different.

In order that the above optimization procedure
yields a meaningful effective coherence length, it is
necessary to test if the expression in Eq. (26) is real for
all choices of Pa and Pb. By using the following set of
realistic numerical values, Pa = 1010 cm, Pb = 1018 cm,
so that Pa >> I and Pb LK, we find that the ratio (-b 2/
bo), given by

= 02(Pb - Pa) (Pb Pa

02(Pb - Pa)/3 - 1 (W - P)5
(28)

where fl and 2 are functions of Pa and Pb, becomes
-0.0998qll/3 7/3 4 0~6 (9-b2/b = -0098 3

1 Pb~ + 0.08qOPb 29
-0.0533q2p + 0.004q' 1 3p 3(3

Testing the relative signs of the numerator and denom-
inator of Eq. (29), it is fairly simple to show that Eq.
(29) is positive for all Pb values (Pb >> Pa >>1), except for
a narrow window given by 1.94/qo < Pb < 4.73/qo, or
equivalently

1.9 4 LK < Pb < 4 7 3LK, (30)

G * Gaussian
IR Intermediate Range

RR - Rayleigh-Ritz

IR R

m E~~~,RR

102 106 1010 1014 1018 22 - P (1g scale)

I f f
e L, LK

Fig. 3. Domains of validity for (a) approximated Gaussian, (b)
intermediate power law, and (c) approximated Kolmogorov.

where the ratio in Eq. (29) is negative, and Leff becomes
imaginary. This window of inadmissible p values has
been confirmed by programming Eq. (28) in its exact
form on a computer. The reason for its existance is not
clear. The formalism described by the optimization as
in Eqs. (25) and (26) is further restricted to the lower
region, Pb < 1.94LK, because AK(0) [or equivalently bo
as in Eq. (22)] must be positive in order for and (the
normalized z and p variables) to be real. While Lff
becomes real again in the region Pb > 4.73LK, bo is
negative in this region, thus resulting in an invalid
value for A(O)-

To put the various ranges in perspective, we show
the domains of validity of the three methods discussed
in this paper in Fig. 3. It is clear that while the Gauss-
ian approach includes p = 0, it extends only up to p <<
LG. The intermediate range results apply (without
any analytic solution) in the range 1 << p << LK, and the
Rayleigh-Ritz optimization method applies to the
range 1 << p < Pb, where Pb may approach but not exceed
1.94LK.

Finally, to get a feel for the dependence of rF1 (p,z) on
the coordinates p and z, we have plotted the magnitude
of rD(1,) as a function of the normalized variables 
and . This is shown in Fig. 4. For this plot, the
following set of values was chosen:

R = kl/k2 = 10, LG = 1014 cm,
x = 0.10X2 = 30 cm, LK = 1018 cm,

re = 10-13 cm,

(M) = 10-4 cm 6 ,
= 106 cm.

From Fig. 4, we find that the correlation magnitude
remains relatively constant over 4 orders of magni-
tude of (at = 0) from q = 0 through - = 0.1 and then
drops off fairly rapidly for > 0.1. The halfwidths
along the cross section, on the other hand, decrease by
a factor of 2 for every decade increase in ( > 10-4).
We may also note that at = 0 (the plane of origin of
the random medium), IrDI = 1, and the halfwidth is
infinite, as expected. To see how the normalized dis-

1776 APPLIED OPTICS / Vol. 28, No. 10/ 15 May 1989

A�(P = bo + bP2 (22)



IV. Conclusion

Although other approximation methods, including
Pade and power law, have been used previously, we
obtained a structure function which corresponds more
closely to the exact Kolmogorov power density spec-
trum. To construct an analytical solution for the sec-
ond moment of the electric field, we used the Rayleigh-
Ritz method, thereby defining an effective coherence
scale of fluctuations and extending the range of the
valid analytical solution to -adistance somewhat higher
than the outer scale of fluctuations for the Kolmogorov
spectrum. This is an improvement over both the
Gaussian spectrum and the intermediate range ap-
proximation. Similar techniques may be applied to
the evaluation of fourth moments as well.

The authors would like to thank Steven Spangler,
University of Iowa, for suggesting this problem.

Fig. 4. Spatial evolution of IrDi as a function of normalized coordi-

nates of and t.

tances translate to actual distances in the Gaussian
and approximated Kolmogorov cases, we have tabulat-
ed the denormalized longitudinal and transverse dis-
tances as well as the correlation magnitude and half-
width in Table I. We find from the table that the
correlation persists over distances of -2 orders of mag-
nitude higher along the propagation direction and an
order of magnitude higher in the transverse direction
for the approximated Kolmogorov compared with the
Gaussian case. The longitudinal distances over which
the electric fields at two points and two frequencies
remain correlated are of the order of 1021 cm or less
(hence still well below the Fraunhofer limit at X = 30
cm).

Table 1. Magnitude and Effective Width of rD and Corresponding
Transverse and Longitudinal Distances

IrDl Halfwidth z(LG) z(Leff)

77 1Q = 0) (in ) (cm) (cm)

0 1.0 X 0 0

1.0 X 10-4 1.0 3.4 4.2829 X 10'4 3.5488 X 1016

1.0 X 10-3 1.0 1.9 4.2829 X 10'5 3.5488 X 1017

1.0 X 10-2 0.9999999 1.0 4.2829 X 1016 3.5488 X 1018

1.0 X 10-1 0.9998667 0.45 4.2829 X 1017 3.5488 X 10'9

1.0 X 100 0.5151086 0.2 4.2829X 1018 3.5488 X 1020

I'D1 P(LG) P(Leff)

(77 = 10-2) (cm) (cm)

0 0.9999999 0 0
1.0 0.332040 9.5928 X 109 8.7320 X 1010

2.0 5.0062 X 10-8 1.9186 X 1010 1.7464 X 1011

3.0 0.0 2.8778 X 1010 2.6196 X 1011

4.0 0.0 3.8371 X 1010 3.4928 X 10"

5.0 0.0 4.7964 X 1010 4.3660 X 1011
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