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(ABSTRACT) 

This research effort is motivated by the need to quickly obtain origin-destination 

(O-D) trip information for an urban area, without expending the excessive time 

and effort usually accompanying survey-based methods. The proposed 

approach aims to exploit the information contained even in a “partial set’ of 

available link volumes to estimate an O-D trip table. 

Recently, a new approach to synthesize a trip table from observed link flows on 

the network was developed at Virginia Tech. This approach employs a linear 

programming formulation and is based on a non-proportional assignment, user- 

equilibrium principle. Tne model is designed to determine a traffic equilibrium 

network flow solution that reproduces the link volume data, if such a solution 

exists. If such alternate solutions exist, then it is designed to find that which 

most closely resembles a target trip table. A modified column generation 

technique is employed to solve the problem. The methodology also 

accommodates a specified prior or target trip table, and drives the solution 

toward a tendency to match this table using user controlled parameters. The 

limitation of this approach is that it needs the specification of a complete set of 

link flows for its accurate operation. Such a requirement limits the applicability 

of this model to real networks, since link volumes are not always available on all 

the links of a network. 

This research work enhances the above linear programming methodology, 

adding the capability to estimate OD trip tables even when only a “partial set” of



link traffic counts are available. The proposed approach formulates a 

sequence of linear programs to approximate a fundamentally nonlinear 

optimization probiem that is employed to estimate origin-destination flows, given 

incomplete network flow information. The research suggests techniques for 

terminating a given linear program in the sequence, as well as criteria for 

terminating the sequences of such LPs, and also develops a procedure for 

continually updating the cost vector from one linear program to the next. 

Modifications in the column generation technique, necessary to soive the revised 

model formulation, are also developed. 

The enhanced model is evaluated and compared with the maximum entropy 

approach, which is a popular approach for OD table estimation. These models 

are evaluated through tests on an artificial network and a real network. The 

tests aim to evaluate these modelis using various sets of link volumes and prior 

table information. The results indicate that the linear programming approach 

performs better than the maximum entropy approach for most cases. 

Conclusions and recommendations for future research are also presented.
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1. Introduction 

1.1 Origin Destination Trip Tables 

An origin-destination (OD) trip table is a two dimensional matrix of elements 

whose cell values represent the number of trips made between various OD zone 

pairs in a given region. An OD table thus captures the travel patterns of trip 

makers within a region. 

The knowledge of such an OD matrix is a basis for several transportation 

planning and traffic engineering studies, as well as for the purposes of route 

guidance and traffic diversion. An important component of transportation 

planning involves an understanding of the impact of a particular plan on the 

travel behavior of motorists. In order to acquire such an understanding it is often 

very necessary to know the travel patterns within the area. Similarly, many 

traffic engineering operations require the knowledge of OD patterns. Effective 

diversion strategies can be devised during an incident, only with the knowledge 

of the destinations of travelers. 

1.2 Establishing OD Trip Tables 

Interest in more effective transportation planning for urban areas led to several 

approaches for OD trip table estimation. These approaches focus on 

establishing OD tables through extensive surveys of the travelers. These 

surveys include home interviews, license plate surveys, road side surveys etc. 

These survey techniques are expensive, time consuming and labor intensive. 

Most of these methods are conducted through sampling and thus make it 

impossible to determine a “real” trip table. Even if all the trips are recorded on a 

particular day, the OD table so determined may not be stable over time, due to 

day to day variations.



In addition, there are other problems associated with conventional methods for 

OD estimation. One of the disadvantages of conventional techniques, is that 

they are too long drawn and elaborate to permit the planners to capture the 

changes in trip pattern that arise due to changes in the factors that influence 

travel patterns. For instance, it is prohibitive to carry out conventional OD 

estimation surveys whenever the land use changes affect the travel patterns, 

thus outdating the previous OD trip table. This will necessitate re-surveying, 

requiring further investment of capital, manpower and time. In addition, several 

small planning agencies are often unable to carry out these surveys due to 

budgetary limitations. | Nevertheless, these agencies require trip table 

information for many planning and management purposes. These reasons led to 

the development of cheaper and quicker techniques for OD estimation. 

1.3 OD Trip Table Estimation Using Link Traffic Volumes 

The reasons outlined in section 1.2 form the motivation for the development of 

theoretical approaches that estimate OD trip tables from link traffic volumes. 

These approaches have evolved since the 1970’s. These approaches attempt 

to predict travel patterns using measurements of the link volumes in a network. 

They were formulated with the idea of exploiting information contained in the link 

volumes. They aim at deriving a trip table that is consistent with the observed 

set of link volumes. The approaches developed utilize different sets of 

techniques ranging from parameter calibration that began in the 1970’s, to fuzzy 

logic and linear programming approaches developed in the 1990’s. These 

approaches are described in greater detail in the literature review described in 

Chapter 2. 

1.4 Linear Programming Approach for OD Table Estimation 

One of the recent approaches developed at Virginia Tech, employs a linear 

programming based formulation for synthesizing a trip table from observed link 

2



flows on the network (Sivanandan [1991] and Sherali et. al [1994]). This 

approach is based on non-proportional assignment and is motivated by user 

equilibrium. The model is designed to determine a traffic equilibrium network 

flow solution which reproduces the link volume data exactly, if such a solution 

indeed does exist. If such alternate solutions exist, then it is designed to find 

that which most closely resembles a specified target trip table. However, it 

recognizes that due to incomplete information, the traffic may not conform to an 

equilibrium flow pattern, and permits for inconsistencies in the link flow data. 

Accordingly, the model permits violations in the equilibrium conditions, and also 

accommodates an inconsistent set of link counts. The model also employs a 

specified seed trip table and allows for controlling the output solution trip table to 

be as close to the seed table as desired. 

However, this model needs the specification of a complete set of link flows for its 

accurate operation. This thesis enhances the model to estimate OD trip tables 

when only a partial set of link volume counts is available. 

1.5 Research Objectives 

The linear programming model developed at Virginia Tech (Sivanandan, [1991] 

& Sherali et al [1994]) assumes the knowledge of link volumes on all the links of 

a network. Such an assumption is necessary for the complete specification of a 

linear objective function, that is one in which the cost vector is not a function of 

the decision variables. Also, the link volumes are used to define the solution 

space for the linear program. Such an assumption places severe limitations on 

the applicability of this model for most real networks. This is because link 

volume data is seldom available for all links within a network. Many planning 

and traffic agencies operate under budgetary constraints that do not permit them 

to collect volume counts on all the links in a network. For the above reasons, 

the enhancement of the linear programming approach is a major objective of this 

research. The validation of this model with tests on real and artificial networks is 

another important objective of this project.



Till date, several approaches have been developed for the purposes of OD 

estimation. The maximum entropy approach is popular and well known among 

these. This approach has been incorporated in several transportation software 

packages. This approach has been tested by many researchers including those 

at Virginia Tech, and in addition this model lends itself to the estimation of OD 

trip tables with only a partial set of link volumes. Thus another objective of this 

research is to evaluate the performance of the enhanced linear programming 

model with that of the maximum entropy model. 

There are two main factors that usually influence the output of OD estimation 

models. The input of known link volumes, is obviously a very important factor, 

since the solution procedure is primarily designed to replicate these volumes. In 

addition, these models employ a seed trip table that is used to reduce the 

degree of underspecification of the problem, and thereby guide the solution. 

The study of the influence of the seed table (prior table) on the OD estimation 

models, is another research objective. 

In light of the above discussion, the specific objectives of this research are to: 

1. Enhance the linear programming model developed by Sivanandan [1991] to 

synthesize a trip table even in the presence of a partial set of available link 

volumes. While retaining the original structure of the model, the 

enhancement was achieved by modifying the formulation and accordingly 

accounting for the changes required to the solution procedure. 

2. Evaluate the performance of the enhanced linear programming approach and 

compare with the maximum entropy model. The evaluation included 

sensitivity of the models to various extents of available link volume 

information and quality of prior (target) trip table information.



1.6 Organization of this Thesis 

The organization of this thesis is as follows. Chapter 2 presents a literature 

review of OD estimation models. Chapter 3 describes the model development 

and solution procedure. The validation of this model and the maximum entropy 

approach is described in detail in chapters 4 and 5. The conclusions and 

recommendations for further research are discussed in chapter 6.



2. LITERATURE REVIEW 

2.1 Introduction 

The early 1970's saw the dawn of theoretical approaches for estimating O-D trip 

tables using link traffic counts.. The interest in these approaches was kindled 

due to a need for a shift in planning philosophy from long term to intermediate 

and short term, necessitated by limitations in budget, time and man power 

resources. Since then, different approaches to accomplish this task have 

evolved, incorporating various desirable features and refinements. Many of 

these are non linear, and are based on the general framework of trip table 

estimation utilizing link volumes. 

Earlier approaches to this problem relied on linear or nonlinear regression 

analysis to construct demand models assuming a gravity type flow pattern, for 

estimating trip table entries. These models, however, required data on zone 

specific variables like population, employment etc. One group of models was 

based on the network traffic equilibrium approach, so that it could account for 

congestion effects. Yet another group, attempted to extract a most likely trip 

table consistent with link volumes, through maximum entropy and/or minimum 

information approaches. Other group of models utilize statistical techniques to 

produce further estimates based on prior information. |The interest in the 

problem continues, as is evident by reports of enhancements and refinements to 

the above procedures. 

This chapter first gives the reader an overview of the literature. Then it 

describes one of the popular models - the maximum entropy approach in greater 

detail. Then the linear programming model developed by Sivanandan(1991] and 

Sherali et al[1994] is described.



2.2 Overview of Existing Approaches. 

The need for obtaining trip tables through cheaper and quicker means was 

fulfilled in the early 1970's, which saw the dawn of theoretical approaches for 

synthesizing trip tables from easily available information regarding traffic 

volumes on links of the road network. In most urban areas, such data is 

collected rather inexpensively on a regular basis using detectors. Essentially, 

the existing approaches for synthesizing trip tables from link counts fall into the 

broad category of one of two types of approaches, namely, parameter calibration 

techniques, and matrix estimation methods (O'Neill, 1987). Parameter 

calibration approaches use linear or nonlinear regression analysis to construct 

demand models assuming a gravity-type flow pattern, in order to estimate the 

trip table entries. However, these methods require zonal data for calibrating the 

parameters of the demand models, and are therefore of limited practical use, 

because zonal data are not only less easily available, but also become outdated 

relatively soon. Willumsen [1978], Nguyen [1984], and O'Neill [1987] review the 

related literature for this-class of methods. On the other hand, matrix estimation 

techniques rely only on link traffic counts, and prior information in the form of a 

trip table, and are easy to implement. There are three types of approaches 

within this category, namely, statistical estimation methods, models based on 

maximum-entropy/minimum-information theory, and network equilibrium based 

techniques. 

The statistical estimation methods produce future estimates based on prior 

information, employing Bayesian inference techniques such as in Maher [1983], 

or using least squares estimation models such as in Carey et al. [1981], 

Cascetta [1984], McNeil and Hendrickson [1985] O'Neill [1987], and Bell [1991]. 

In contrast, the other two types of matrix estimation techniques are based on 

mathematical programming concepts, and are hence more relevant to our 

approach. The first of these two approaches attempts to determine the most 

likely O-D trip table that is consistent with the information contained in the link 

traffic volume data, while either maximizing the entropy or using a minimum 

7



information based objective function with respect to a prior trip table. Willumsen 

[1978] presents the elements of the maximum entropy approach following Wilson 

[1970], while Van Zuylen [1978] discusses the principles of information 

minimization. Models following both these philosophies are further developed 

and analyzed in Van Zuylen and Willumsen [1980]. These models are based on 

a proportional-assignment assumption in which some exogenously determined 

coefficients specify the proportion of trips between each O-D pair that use a 

particular link, for each link in the network. Many researchers, such as Hall et al. 

[1980], Van Zuylen [1981], Van Viiet and Willumsen [1981], Willumsen [1982, 

1984], Bell [1983a, b], Nguyen [1984], and Hamerslag and Immers [1988], 

conducted tests or have proposed improvements and enhancements to this type 

of model. Also, Fisk [1988] has shown how to combine the maximum entropy 

model and the user-optimal assignment into one problem. In a more recent 

approach, Brenninger-Géthe, J6rnsten, and Lundgren [1989] suggest a 

nonpreemptive multiobjective technique in which efficient points are sought that 

compromise between the separation of the solution from the observed traffic 

counts versus its separation from the prior target O-D matrix data. This 

separation is measured using an entropy function. 

In contrast with the proportional-assignment assumption, whenever network 

congestion effects are prominent, a non proportional-assignment approach 

based on the traffic equilibrium principles of Wardrop [1952] becomes more 

appropriate. Nguyen [1977, 1984] develops such an approach via two models 

for deriving O-D trip tables from traffic counts. In the first model, a standard 

traffic equilibrium solution is sought (see Dafermos and Sparrow, 1969) subject 

to the side constraint that the total equilibrium cost computed by using observed 

path impedances should equal the known total observed system cost. Nguyen 

suggests that this model is suitable only for small networks in which there are 

but a few O-D pairs. In the second model, the foregoing side constraint is 

accommodated into the objective function such that the Karush-Kuhn-Tucker 

optimality conditions ensure that for each O-D path flow, the equilibrium based 

impedance equals the observed impedance using the available link traffic data. 

Hence, both models attempt to regenerate observed costs, rather than observed 
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flows. Turnquist and Gur [1979] present an iterative, heuristic solution technique 

for this second model based on the Frank-Wolfe algorithm, and Gur, Turnquist, 

Schneider, LeBlanc, and Kurth [1980] imbed a similar approach in their well 

known LINKOD system. This LINKOD model has been extensively tested and 

validated by Han et al. [1981], Han and Sullivan [1983], and Dowling and May 

[1984]. For all these techniques, there can exist several O-D trip tables that 

reproduce the observed traffic volumes, and so target trip tables are usually 

specified to guide the solution toward more likely flow patterns. Hence, a 

distribution assumption is utilized in order to extract the most likely trip table. 

Nguyen [1984] suggests an alternative approach for selecting the most likely trip 

matrix, and Fisk and Boyce [1983] propose a combined distribution and 

assignment technique based on the model presented by Erlander, Nguyen, and 

Stewart [1979], which also relies on link flow data. In particular, Fisk [1989] has 

shown that the network equilibrium approach, the maximum entropy approach, 

and the combined distribution-assignment-formulation can be expected to 

produce the same results under congested network conditions, wnen observed 

link volumes correspond to an equilibrium flow pattern. Cascetta and Nguyen 

[1988] have also presented a unified framework for estimating or updating origin- 

destination matrices from traffic counts. 

2.3 The Maximum Entropy Approach 

Willumsen (Van Zuylen and Willumsen, 1980) proposed a maximum entropy 

approach for OD estimation. This approach is popular and used by many 

existing planning agencies, and is detailed below. It is based on Wilson's (1970) 

application of the concept of entropy to the O-D trip matrix. Here, the most likely 

trip matrix is defined as the one having the greatest number of micro-states 

associated with it. Attempting to maximize the number of ways of selecting a trip 

matrix, Willumsen formulates the problem as: 

max F(T,T’)=- > >t, (int, / f; -1) 2.1 
i J



subject to 

v= Dd pit, 
ij 

t,= prior (or) old trip matrix 

Ve = DD GPy 
i I 

where, 7represents the matrix of interest, and 7 ” represents a reference matrix, 

vis the volume of traffic on link a, p, \s the proportion of trips between origin i 

and destination 7 using linka 

The derived table would be the most likely that is consistent with information 

contained in the link flows. 

Both the above approaches are shown to reduce to a multiproportional problem. 

In particular, the maximum entropy approach reduces to solving the following 

optimality conditions: 
_;* Py 

ty =t,| | x: 
a 

where, 
x, — > t yi" ev 

i 

and where L denotes the number of counted links, and 2, is the Lagrange 

multiplier corresponding to the count on link a constraint. Van Zuylen and 

Willumsen [1980] also give an algorithm for solving the above problem based on 

Murchland's [1977] algorithm for the multiproportional problem. It is further 

indicated that the coverage of the problem has not been satisfactorily proved. 

Counts on all the links are not necessary. However, a complete set of counts is 

expected to yield better results. It is to be noted that both the above 

formulations require information on link usage proportions. 

O'Neill [1987] summarizes the conditions to be satisfied by the maximum entropy 

model, in order for an estimated trip table to reproduce observed volumes fully, 
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as: (1) consistency of link volumes (flow conservation), (2) consistency of prior 

trip table with observed flows and route choice proportions, and (3) consistency 

of route choice assumption with observed flows. 

Many researchers (Hall et al. [1980], Van Zuylen [1981], Van Vilet and 

Willumsen [1981], Willumsen [1982], Bell [1983], and Nguyen [1984] etc.) have 

conducted tests or have proposed improvements on this type of model. Of 

particular interest, is the attempt to consider the effects of congestion, through 

equilibrium assignment. Willumsen [1982] proposed and tested a heuristic 

model that includes the equilibrium principle. Bromage [1988], while at Central 

Transportation Planning Staff (CTPS), Boston, programmed the maximum 

entropy model, incorporating a capacity restraint procedure for the assignment 

step. This program was enhanced by Beagan [1990], also of CTPS, to include 

an equilibrium assignment option, as proposed by Hall et al. [1980]. Further 

improvements to the model were carried out to the model by Ed Bromage in 

1994. The improved versions of the model were in fact used in this research to 

test the maximum entropy approach. 

2.4 The Linear Programming Approach 

In contrast with the nonlinear network equilibrium approaches described so far, 

the linear programming approach of Sivanandan[1991] and Sherali et al [1994] 

employs the non proportional-assignment assumption, and that finds a user 

equilibrium solution which reproduces the observed link flows whenever such a 

solution exists, but one which is a linear programming model. The model 

recognizes that due to incomplete information, although the individual user is 

driven by the choice of a least impedance path, the actual flow may not exactly 

conform to a user equilibrium solution. \Moreover, due to inherent 

inconsistencies in the link traffic data, there might not exist a trip table that can 

exactly duplicate the link flows. Accordingly, these features are accommodated 

into the model through suitable artificial variables and objective penalties. 
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Variations in these penalties can also be used to reflect biases in selecting 

amongst alternative viable O-D trip tables. However, if there does exist a user 

equilibrium solution that reproduces the link flows, the model, with suitable 

penalty parameters, will determine such a solution along with the corresponding 

QO-D trip table. Additionally, due to the potentially large number of alternative 

paths to be considered between the different O-D pairs, we develop an efficient 

column generation technique that utilizes shortest-path sub problems in order to 

determine an optimal solution to the linear programming model. The model is 

also designed to handle the situation in which a prior target trip table is 

specified, and it is required to find a solution that, in addition to the foregoing 

considerations, has a tendency toward reproducing this table as closely as 

possible. This modification guides the alternative solutions of the original model 

toward a prescribed distribution, and also permits additional positive path flows 

at optimality. 

Sivanandan[1991] reports tests conducted with this model. These tests indicate 

that the model performs better than the maximum entropy and LINKOD 

approaches both in terms of accuracy and computational efficiency. However 

one of the drawbacks with this model is that it requires the specification of all the 

link volumes in the network. This limits the application of the model to real 

networks because link volumes are usually not available for all the links in a 

network. The present research aims at overcoming this defect and the next 

chapter describes the formulation and solution procedure of the enhanced model 

to account for cases in which only a partial set of link counts are available. 
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3. MODEL FORMULATION & SOLUTION PROCEDURE 

3.1 Introduction 

A linear programming approach (LP(TT)) for synthesizing OD tables from link 

volumes has been developed at Virginia Tech by Sivanandan [1991] and Sherali 

et al. [1994]. This model aims to find a trip table that replicates the observed link 

volumes to the extent possible, while extracting a user equilibrium solution, if it 

exists, and being as close as desired to a specified prior trip table. This 

approach has been tested by Sivanandan [1991] and compared with other 

existing models, revealing that the linear programming model is superior in terms 

of accuracy as well as computational efficiency. 

Link volume information plays a very important role in the OD estimation process 

of LP(TT). They are used to define the solution space for the linear program. 

More importantly, link volume information for the entire network is required for 

the complete specification of the linear objective function, so that the cost vector 

is not a function of the decision variables. Such a requirement on the availability 

of link volume counts places severe limitations on the applicability of this model 

for most real networks, as explained in Chapter 1. This necessitates the 

enhancement of the linear programming model to account for cases where only 

a partial set of link volumes might be available. 

This chapter deals with the development of a model to accordingly enhance the 

foregoing approach. The concept of the approach rests on employing a 
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sequence of linear optimization problems to approximate a solution to a 

fundamentally nonlinear problem. 

This chapter is organized to first expose the reader to the notation used in the 

remaining sections. Then the background to the problem is presented. This is 

followed by a description of the proposed approach. Then the model formulation 

is presented and the solution procedure is described. 

3.2 Notation 

“Given an urban road network for a particular region, let G(V, 4) represent the 

underlying digraph. Here, N ts the set of nodes representing either traffic 

intersection points where flow is conserved, or zones where trips are generated 

and/or where trips terminate, and A denotes the set of corresponding directed 

links or arcs representing the roadways existing between designated pairs of 

nodes. Let A, represents the set of links in the traffic network under 

consideration for which traffic volume information is available, and let 4, 

represent the set of links for which volumes are missing; where A=4,U 4, Let 
mou 

OD denote the set of origin-destination (O-D) pairs that comprise the trip table to 

be estimated, where O is the set of possible source or origin nodes, and D is 

the set of potential sink or destination nodes. Note that a node representing a 

given zone is typically both an origin as well as a destination node. 
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Let 7, represent the trip interchange from origin i to destination 7 of OD. Let 

us consider the implicit enumeration of all possible (n, ) paths Di k=1,2, 0.06505» 

between each O-D pair (i,7) e OD, where Pi is a vector that has one 

} 
component for each link a e A, this component being unity if the corresponding 

link belongs to that particular path, and being zero otherwise. Denote Xi as the 

flow on the path Pi for each k = 1,2,...n*, (i,j) € OD), and let x denote the yj? 

vector of components x;. 

It is also well known that due to errors in measurement and due to 

approximations in network representation, there might arise errors or 

inconsistencies in the set of observed volumes. To account for these 

inconsistencies, two nonnegative artificial variables y* and y, with respective 

components y) and y. for each link a € A,, are introduced. Suppose that a 

prior trip table is specified, having associated O-D flows QO; > 0 for each 

(i, 7) ¢ OD c OD, where OD might represent some significant or key OD pairs. 

Let f, represent the set of observed volumes on links a « A,, and let (P5)a 

denote the component of (D;) that corresponds to link a € A,. For each 

(i, je OD, the deviation of the O-D trip interchange T, =yix! from the target 
k=] 

trip table value QO i 
_ Is measured by the difference of two nonnegative (“artificial”) 

variables Y/ and Y,. The effective absolute value (Y; + ¥,) of this deviation is 

penalized in the objective function via a penalty parameter M, 2 0. 

Based on the observed flows /,,aed, we can compute a corresponding time- 

based link impedance c.=c,(f,), where c,(f,) is a link travel time/cost 
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function, for example, of the following form as suggested by the Bureau of Public 

Roads (BPR) [1964]: 
pu 

. fo 
c(f,) = cf [1+ 015(f, /u,)*]Vae A (3.1) 

Here, f, is the flow on the link ae A, c’ is the free flow travel time/cost on this 

link, and zu, is its flow capacity. Since we only need to consider links ae 4 for 

which f,>0, and since multiplying c, for all ae A by a constant leaves the 

problem invariant, we will assume for the sake of our development that c, >1 

and is integral for each ae A. Let us denote ¢ as the vector of components 

¢,,aeA. (This would require the determination of a scale factor to integerize 

c,V ae A, and then using the scaled form of (3.1), we could round up any value 

computed via (3.1) for any estimated flows on the links aé4A,.) 

Now, if the observed flow pattern indeed represents a network user equilibrium 

solution corresponding to some interchange of traffic between the designated O- 

D pairs, then by Wardrop’s (first) principle [1952], all the routes between any O-D 

pair that have positive flows should have equal travel costs, and this cost must 

not exceed the travel cost on any other unused route between this O-D pair. 

Notationally, let Ci =¢. Di denote the time impedance or cost on route & between 

O-D pair (i,j) for each k=1,...,n,,(i,7)€ OD, and let c, =min{c;,k =1,...,n,}. 

Furthermore, let us define 

(3.2) 
y 

K, = {ke {l,..., 7; }:¢; =c,}, and let K, = {l,....2,}-K,,. 
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Then, according to Wardrop’s principle, if an equilibrium solution exists that 

reproduces the observed flows, we should be able to find a solution to (1) 

satisfying the condition that xi >0 only if ke K,, foreach (7, 7)eOD. y ! 

3.3 Background 

The linear programming model (LP(TT)) developed by Sivanandan [1991] and 

Sherali et al. [1994] for synthesizing OD trip tables from link counts has the 

following form. 

LP(TT): 

Minimize > ae + Me.(y’ +y)+M, YY + ¥;) (3.3.a) 
(i,f)eOD k=l (i,j)eOD 

subject to > dK ppxety’ -y =f (3.3.b) 
(i,jjeOD k=! 

yx +h -¥ =O0,W(i, je OD (3.3.0) 
k=1 

x20,y' 20,y 20,Y' >0,Y 20 (3.3.d) 

C. Di Vk eK,, 
where é; -| (3.3.e) 

Me. p, Vk eK,, 

and where, M, >1 

This model estimates the OD trip table by minimizing the objective function of 

Equation (3.3.a) subject to the observed volumes constraint of Equation (3.3.b), 

and the trip table constraints of Equation (3.3.c). Sherali et al. show that the 
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value of the penalty parameter M can be set to M21+<¢, + (|AINC, where total ) 

Cra = > 2, f, and & = maximum{é,:acd}, to ensure that y’ =0 in any optimal 
aeA, 

solution, given that such a solution exists. It is also shown that a value of 

M2>14+2.+C 
tola 

, ensures that e.y”’ <1. The value chosen for M_, must naturally 

tradeoff the penalty imposed for deviations from the targeted trip table values 

with the remainder of the objective function. Since, the parameter M penalizes 

similar deviations in the accounted link flows from the observed ones, the 

authors set M, =o M, where 0<o <1. This value of o is selected to reflect 

the relative degree of importance in minimizing the trip table deviations versus 

the link flow deviations, ranging from unimportant (co =0) to equally important 

(o =1). 

Sherali et al. report tests carried out with LP(TT) on an artificial test network that 

was developed by Gur et al. These tests revealed that the model is accurate as 

well as computationally efficient. The model was faster and more accurate than 

the maximum entropy and LINKOD models. These encouraging results gave an 

additional impetus to enhance this model further by extending it to account for 

missing link volume information. 
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3.4 Problem Statement 

The network equilibrium formulation of LP(TT) requires a very accurate estimate 

of the cost vector é which is a function of the link costs. Since link costs are a 

monotonically increasing function of link volumes, the model LP(TT) requires an 

accurate specification of the link volumes. In practice, link volume information is 

not available for all the links in a network. Thus the applicability of the model 

LP(TT) to such a network is then questionable. 

Link volume information plays a two-fold role in model LP(TT). The link volume 

J, for a link is used to determine the link cost c, for that link. Thus it is a factor 

that determines the route cost terms (é; ) in the objective function. Secondly, the 

values for f, are used to formulate the constraints for the model. Thus one may 

state that link volume information is used to determine the objective gradient and 

solution space for the linear program LP(TT). With this discussion in mind, then, 

it is easy to see that in the event of missing or information on a set of link 

volume, the performance of the model is seriously limited. 

The objective of the present research is to enhance the linear programming 

mode! (LP(TT)) to account for missing link volumes in a network. However, it is 

inevitable that the solution space for any variant of the model LP(TT) expands 

due to the loss of one constraint for every missing link volume. Thus the focus of 

this research is to effectively enhance the model to accommodate partial link 

volumes counts, while accounting for the functional dependence of the objective 

function on the missing link volumes. 
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3.5 Approach 

If one were able to obtain some knowledge of the link costs, say by actually 

measuring the travel time on all the links a@ € A,, then one may be able to 

estimate the link cost vector ¢ to a reasonable degree of accuracy. However, 

such an approach is often not viable, due to extensive manpower requirements 

and the cost of the operation that is involved. 

Another possible approach for estimating the cost vector ¢ is through 

determining the missing link volumes by assigning a prior trip table developed for 

the network. If such a table is available, and if it truly represents the prevailing 

trip pattern, then it is indeed possible to obtain a good measure of these missing 

link volumes by assigning this table to the network. It is to be noted that the 

assignment technique must correctly reflect driver route-choice behavior, and 

that information about network characteristics such as capacity, free flow travel 

time, etc., be known with good confidence. However, this approach may not 

always be appropriate because the prior trip table may not be representative of 

current trip patterns and may have been outdated due to changes in land-use 

over time. The assignment of such a table will then produce erroneous link 

volumes that are inconsistent with the actual volumes. Also, if some significant 

cell values of the trip table are missing, then this assignment technique cannot 

estimate the missing link volumes satisfactorily, and the subsequent calculations 

of the link costs on this network are bound to be incorrect. 
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A more fundamental approach to the problem of incomplete link volume data 

specification, is to let the link cost component be a function of the sum of 

unknown OD path flows x,'S that utilize the directed arc a, aeA,. This 

would, however, introduce nonlinear terms in the objective function of LP(TT), 

because the route cost coefficients in the objective function are now a function of 

the decision variables . This would transform the linear program into a nonlinear 

optimization problem. Such a nonlinear formulation may be represented by: 

Minimize » > oh x; + Me.(y* +y)+M, YY +¥7) (3.4.a) 
(i,)eOD k=1 (i,eOD 

Subject to: » > (DP; Xj + yr-y,> = f, Vaead (3.4.b) 
(i,j)e€ OD k=l 

Dixy th -Yy =O, He OD (3.4.c) 
k=] 

x20y 20y 20Y°20,Y 20, (3.4.d) 

where ¢,=f( >) >) (pj)axj)V@eA,,, @ is given by (3.3.e), (3.4 e) 
i,j €OD k=) 

and where x is optimal to the linear program (3.4.a) -(3.4.d). 

Note that the data in the objective function is itself dependent on the solution to 

this problem, hence introducing the stated nonlinearity in the problem. Hence, in 

essence, we are attempting to determine a set of flows x such that with the 
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objective function computed using this flow vector x, the linear program (3.4.a) - 

(3.4.d) reproduces x as an optimal solution. 

The present approach attempts to use a sequence of linear programs to 

approximate the nonlinear optimization problem given by Equations (3.4.a - 

3.4.e). Each linear program is a modified form of the model LP(TT), thus 

allowing us to take advantage of the solution procedure developed for this 

model. 

3.6 Model Formulation 

As stated in the previous section the nonlinear program described by Equations 

3.4.a-3.4.e is approximated by a sequence of linear programs. Consider the 

following optimization problem proposed for the r” variant of the linear program. 

LPMLV: 

Minimize >> Vette uy (yi+y,)+M, DG +¥) (3.5.a) 
(i,/)eOD k=1 acA, (i,j)eOD 

Subject to: 

>» S(ph),xt tyr-yo = fF, VaeAd, (3.5.b) 
(ij je OD k=1 

Yel Y-=0,V(@,j) € OD (3.5.c) 

22



x20,y° 2>0,y 20,Y' >0,Y 20 (3.5.d) 

(¢)’.p; Vk e(K,)’, 
—\r = vp (3.5.e) 

M,(¢) Pj Vk &(K; ) 
where (é,')’ -| 

and where (c)” is based on some assumed set of flows. 

Here, (é;)’ is the route cost vector for the r” linear program, defined by the r” 

choice (c)’ of the link impedance vector. As in Section 3.2 of this chapter, here 

again, we assume for the sake of development that (c,)’ is integral and =1 

VaeA. This vector is updated during the solution of the model, as described in 

the sections to follow. The value of /, can be set to 2 as suggested by Sherali 

et al. [1994]. Note that there are no constraints in this linear program for links 

whose volumes are not known. The proposed methodology solves the r” linear 

program for a certain number of iterations and then after updating the link costs 

for a <A, and the route cost vector, proceeds to formulate and solve the 7 +1” 

program. Since the constraints for the r” and r+1” program remain the same, 

a basic feasible solution for the r” program continues to be basic feasible for the 

r+1" program. Hence to proceed to the ,+1" linear program we only need to 

update the cost vector in the objective function along with the associated dual 

variables. 

In the formulation suggested above, two important issues need to be addressed. 

The first issue concerns the update rate of the objective function, and the 

second concerns the update procedure to be employed. 
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3.6.1 Update Criterion for the Route Cost Vector 

The motivation for the update criterion employed by the proposed methodology 

stems from an observation that there exists a bound on the decrease in the 

objective function value for any iteration of LPMLV. 

Lemma 3.1: The maximum value of the marginal rate of decrease in the 

objective function for any _ iteration of model LPMLV is given’ by 

(oir, + max(|pi | ). 

Proof: The entering column of LPMLV can be only one of the following: 

1. Aunit vector corresponding to an entering artificial variable. 

mp f 

2. ae , where e, is a unit vector, with zeros for all rows, and one for the 

row with the trip table constraint (if it exists) for the interchange ij «OD, and 

the superscript ¢ denotes the transpose operator. 

Hence, the marginal rate of decrease in the objective function when a variable 

enters by pivoting at row i is either +nz,-M, or ty, —-M, or 

(Dy 4-H by - (65). 

Since, |z,|< >t], (py )4-% <>, |, w, <max ley and M, M,, and (é;)’ 
aed, aéA, 

are non-negative, it follows that the maximum value of the marginal rate of 
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decrease in the objective function is given by (> [r,| + max(i,|). This 

completes the proof. 

Lemma 3.2 The maximum value of any variable in any basic feasible solution 

to LPMLV is bounded by R,,,.=( |4,|+|OD|-1)(|4,|)( v + v{OD|)where 

v =max{f ,,a EA,,Q, (i, 7) —eOD} , 

Proof: Note that due to linear dependency y* and y, cannot be simultanesouly 

basic in any BFS, and similarly, nor can ¥," and Y,, for any aeA,, or (, /) eOD. 

Furthermore if y, or Y, are basic, then they are determined via their respective 
a 

equations in (3.5.b) and (3.5.c), while the other basic variables are determined 

by the remaining active constraints. However, the latter active constraints have 

nonnegative coefficients of 0 or 1 on the LHS, and have f, and Q, values on 

the RHS. Hence each of Xi y,.¥; are bounded above by 

v=max{f ,,aeA,,Q, ,(i,7)€OD}.Consider an explicit enumeration of all the 

constraints of model LPMLV. Adding all the constraints, one may represent the 

sum of the artificial variables y, and¥, by Equation 3.6.a below. 

Yuet Days YD Veli Yate dors Ly -TF,- Yo, 
aeA, (i,j) €OD (i,j) €OD k=! (i,j)eOD aed, (i,j) €OD aed, (i,j) €OD 

(3.6.a) 

1VaeAv 
where W is a vector of components w,,a¢A, such that w, = . 

O0Va &€A,, 
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Since f,20,Vae4,, and Q,>0,V(i,j)e OD, we obtain the following 

relationship: 

My 
- - k k k 

Yuet DY Hs YL Vxflpj wie Vaxft+Voyr+ YY. (3.6.b) 
aed, (i,j) €OD (i,j) €OD k=l (ij)eOD aed, (i,j) €OD 

Noting first that the maximum value of [p; W]= , and that the variables on 
  A, 

  

the RHS of Equation (3.6.b) are bounded by vu, and further that the maximum 

number of basic variables among the Xi y,,¥,,, in order to have atleast one i 1 

  

  

  

  

basic variable from the variables y, andY,, is |A, +|OD|-1, it immedietely 

follows that 

Dy + YH <(A4)+OD-1(4, po + vfOd). (3.6.c) 
aed, (i,j)€OD 

From 3.6.c, and since each of Xi y,¥,; are bounded above by v , it follows that 

the maximum value of any variable in any BFS for LPMLV is bounded by 

Ra. =( |4,]+/OD)-1 M(\A,|Jo + VOD). This completes the proof. 

Lemma 3.3 The maximum decrease in the objective function for any iteration of 

LPMLV is bounded by (>'f,| + maxlii,| )* Rua 

  

Proof: By Lemma 3.1 we know that >°j,| + max|ii,| is the bound on the 

marginal decrease of the objective function. From Lemma 3.2 we know R,,,. to 

be the bound on the largest value of any variable in any BFS to LPMLV. The 

maximum decrease in the objective function, then has to be bounded by the 
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product of maximum rate of decrease in the objective function and the largest 

change in any non-basic variable that could occur when pivoting for any basis for 

LPMLV. This completes the proof. 

Remark 3.1 If we were to reset the objective function of the r” linear program 

of LPMLV, as soon as the objective function value decreased by an amount in 

excess of ()'[r,| + maxlj,| )*R,,., then we could ensure that at least two 

  

max? 

iterations would be performed before resetting the objective function. 

Remark 3.2 If one were to implement model LPMLV to initialize with an all 

artificial basis, the objective reset criteria of (> jz,| + max(Hi )* RIS likely to 

  

be very high during the initial stages of the program. This is because the dual 

variables assume very large values due to the high cost of the basic variables, 

that are mostly artificial variables. Having such a high value of the reset criteria 

would then require that several iterations be completed before we reset the 

objective function. (Tests, conducted with this criteria confirmed this.) This 

would then imply that we would be ignoring the cost variations for linksaeA, , 

(these are likely to fluctuate widely in the initial stages of LPMLV) during this 

process. This motivates us to have a reset criteria that permits us to update 

model LPMLV at a faster rate, during the initial stages of the problem, and at a 

less frequent rate when the link costs for aeA, no longer vary significantly from 

iteration to iteration. 

In order to address the concerns discussed in Remark 3.2 the proposed 

methodology aims to adopt an objective resetting criteria that is small enough to 
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capture the link volume fluctuations for ae A, that occur during the initial stages 

of the program, and once these link volumes have somewhat stabilized, it resets 

the objective function less frequently. To accomplish this, the methodology 

proposed scales the criteria of Lemma 3.3 by multiplying it with S.<1. This value 

is continually increased every time we reset the objective. While any 

monotonically increasing function S, of r, that has a limiting value of 1, would be 

appropriate, the following function was adopted 

s = 
l+se" 
  

where s is a factor >1, and r is the number of times the objective function has 

been reset. 

3.6.2 Link Cost Resetting Procedure 

The motivation to reset the objective function stems from a need to have the link 

costs for links a<4A,,, reflect the link volumes they carry. The objective function 

resetting procedure addresses this need. 

Consider, for the sake of illustration, a case where the objective function is reset 

based on the link flows (x;) of the basic feasible solution at the beginning of the 

r+1” linear program. Such an approach has to be adopted with a great deal of 

caution because it does not guarantee the convergence of the program as the 

new objective may have a lower value for the basis corresponding to the 

previous iteration. Hence, we could have a situation wherein we continuously 

oscillate between the basis of the r” and r+1” linear program. In fact, such an 
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approach was tested (with the number of iterations before updating being fixed 

at 1) and failed as expected. 

The above discussion serves to illustrate the impact of the objective resetting 

procedure on the convergence criterion. The proposed methodology for 

resetting the objective computes the link costs (for ae A,) based on the average 

of the link volumes associated with all the bases traversed by LPMLV between 

the r” and r+1" resets and the previous values of the costs. Such an 

approach avoids infinite oscillations because, the moving average tends to 

smooth out the cost vector. 

3.6.3 Updating Procedure for the Cost Vector (c,)’ 

Once the link cost vector has been determined at the beginning of the r +1" 

iteration, the path cost vector (Gay may be updated after recomputing the path 

costs ( Dj (c)’)for all the legitimate variables in the basis. It is important to note 

that even if the path cost of some legitimate variable remains the same, its cost 

in the objective function may change because the set of user equilibrium paths 

(K,)’ may change after resetting the link costs. Thus, after every reset of the 

objective function we need to check if xi €(K,)", and if so, then each (é,)'= 

(pi.(c)’), else, (€*) = 2*(p}.(c)’). Once the path costs are reset, then one may 

easily reset (c,)’. 
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3.6.4 Dual Variable Updating Procedure 

Once the cost vector is updated, the dual variables can be easily updated since 

B" remains the same after the reset. Thus we only need to multiply (c,)’ with 

B™ to obtain the updated set of dual variables. 

3.7 Solution Technique for LPMLV 

The solution technique for model LPMLV is designed along the lines of the 

solution technique adopted for its predecessor model LP(TT). The procedure is 

elaborated here with the aim of pointing out the differences between the two 

models’ solution techniques, as well as for the sake of completeness. 

An explicit statement of the linear programming model LPMLV requires the 

enumeration of all possible paths between each O-D pair (i, 7)-«OD. While this 

can be readily accomplished in theory, it is computationally prohibitive except for 

small sized networks. As an alternative, one can consider the explicit generation 

of only "efficient" paths in the sense of Dial [1971], that is, paths for which each 

link has its initial (FROM) node closer to the origin than its final (TO) node, and 

has its TO node closer to the destination than its FROM node. This approach, 

however, was found unsatisfactory based on tests conducted by Sivanandan 
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[1991], and so was not pursued. To overcome the foregoing difficulties, an 

algorithm is presented here in which the columns of LP are selectively generated 

only as and when needed within the framework of the revised simplex method, in 

order to optimally solve the problem. Such an algorithm is Known as a column 

generation procedure (see Lasdon, 1970), but as explained below, requires a 

non-standard modification for our problem. 

The procedure initializes with a basic feasible solution to LPMLV. One may use 

the artificial variables Y and Y* as the set of initial basic variables. 

Alternatively, an advanced start procedure as described by Sivanandan [1991] 

may be considered. To describe the main loop of this algorithm, suppose that at 

any iteration, we have a basic feasible solution (x,j~,Y ) to LPMLV represented 

by a revised simplex tableau, having z and zu, as the corresponding vectors of 

simplex multipliers or complementary dual basic solution values c,B" 

associated with the constraints [3.5c] and [8.5d], respectively, where B is the 

available basis matrix and c, is the vector of basic variable cost coefficients (for 

convenience in presentation, let Hy =O0V(i, Je OD-OD). In order to ascertain 

the optimality of (¥,¥,Y ), we need to price the nonbasic variables, that is, we 

need to compute their reduced costs. For the artificial variables y* and y, for 
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acA,, and Y;,¥, for (i,j)¢OD, this reduced cost is given by (M-7, ), 

(M+), (M,-U,), and (M,+,), respectively. If any of these is negative, 

then the corresponding artificial variable is pivoted into the basis, and the main 

step is repeated. Hence, suppose that none of these artificial variables are 

enterable into the basis. 

We now need to price the x-variables. However, the columns of the x-variables 

are not all available in explicit form, and so we need to implicitly determine if any 

Xi variable has a negative reduced cost. If we can conclude that no such 

variable exists, then we can declare optimality. 

Toward this end, consider the following two shortest (simple) path problems 

defined for each (i, 7)¢OD (see Bazaraa et al., 1990, for a discussion on 

shortest path problems and related solution algorithms). 

SP! : Minimize {(M,(@)' - L). ph :k =1,...n,}=(M,(C)" — L). pe (3.7.a) 
where M,= > |z,|+1, and La=n, Vacd,;=0VaecA,. 

acd, 

Let v =((@)" -L). pk’ -u, (3.7.b) 

SP" : Minimize {((M,(¢)’ — L). pk =1,...n,}=(M,(E)' - L). pe” (3.8.a) 
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and let v7 =(M,(¢)’ -L). pi" -p (3.8.b) 

Note that SP’ and SP," seek the shortest simple paths from j to / using respective 

link cost vectors(M,(c)’ —L) and (M,(z)" -L). Lemmas 3.4 and 3.5 below 

provide the motivation for these problems. 

Lemma 3.4. SP; defined by (3.7) is a shortest path problem with nonnegative 

cost coefficients and its solution yields a path k* <(K,)’, where, as described 

earlier, (K,,)’ refers to the set of equilibrium paths from i to 7 with link costs for 

missing link volumes set after the r” reset. Moreover, if V5 > 0 in (3.7.b), then no 

x, for k” €(K, )’ is enterable into the current basis for LPMLV. Otherwise, x;" is 

enterable with a reduced cost of Vj < 0. 

Proof. Since (¢,)’ >1VaeA, we have by the definition of M, in (3.7.b) that 

(M,(é)’ -%)>0. Furthermore, for any k ¢(K,)’ and anyk e(Ky)’, since (Z)’ 

is integral, we have from (3.2) that 7.(pj — pi) = 1. Hence, we get 

(M,(é)’ —L). pt -(M, (@)' —L).pi >M, -L(p! - ph)>M,- > 
aca 

Lalzl and so 
    

k* &€(K,,)’ in (3.7.a). 

Now, for any & €(K,,)’, the reduced cost for xX; is given from (3.5) by 
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(c)'. pk -L. pt -i, =(@)’ -L). pk -Z,. 3.9 

Hence, if Vj <0, then xy is enterable into the current basis for LPMLV. On the 

other hand, if v; > 0, then from (3.5), (3.9) and the fact that (¢)’.p; =(¢)".p, by 

the definition of (X,,)’ in (3.2), we obtain that the reduced cost for x* ke(K,)’, 
id 

is given by 

(t). pk -L.pk-w,= (€).pi-L.pi -— (cy pr -L.pe + vi 

= M,(c)’.pi-L.pt - M,(¢). py -L. py + vi = vi 20, 
y 

and hence no x‘ y *e(K,) is enterable into the basis. This completes the 

proof. 0 

The above Lemma provides an implicit way of pricing the variables x; 

forke(K,)’,(i,j)€ OD. The following result addresses the pricing of the 

remaining variables x‘ for ke(Ky)’,(i,j)e OD. 

Lemma 3.5. Suppose that v; > 0 in (3.7) and that we solve SP” and obtain k ** 

and v; as in (3.8.b) 

(i) If k**e(K,)’, and v? <0, then x!" is enterable into the current basis. 

(ii) If &k**e(K,)’, and v?>0, then no xi for ke(Ky)’ is enterable into the 

current basis. 

(iii) Ifk** eK, )’ then no x;,k=1,..n,, is enterable into the current basis. y? y? 
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Proof. Noting that the reduced cost for any x; for ke(K;)’, is given by 
  

MC)’. py -L. py - by = (M,(c; ’ -L).py uy (3.10) 

cases (i) and (ii) follow directly from (3.7.b). Hence, consider case (iil). 

Since v,20, we have by Lemma 3.4 and (3.9) _ that 

vi=(E) ~L). pk" —p 20. Hence, for any ke(K,) we obtain from (3.8) and 

(3.10) that the reduced cost for x; is given by 

(M(E) -L)p; ~ uy 2(M,(E) -L). py” - uy 2(E) -L).p,” - wy =v; 20. 

Moreover, since we also have by Lemma 3.4 that no Xs k &(K,,)’, is enterable 

into the basis, this completes the proof. O 

Remark (3.3). In order to use Lemma 3.5, we need to check whether the path 

k*™ belongs to (K,,)‘ or to (K,)’. From (3.2), we simply need to check if 

c, =(€)'.p, equals c, =min{(c)’.p),k=1,.....n,} or exceeds it. The 

quantities C, may be computed once at the start of each reset of the algorithm 

by solving |O| shortest path problems having nonnegative link coefficients 7,, 

aéA, one for determining the shortest paths from each ieD to all jeD. This 

can be accomplished in O(\0||N’) time. 

Remark (3.4). The shortest path problem SP." has mixed-sign cost coefficients, 

and so might contain negative cost circuits that are reachable from node i. In 
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such a case, the problem of finding a shortest simple (no loop) path is NP- 

complete. Hence, an enumerative branch-and -bound routine would need to be 

adopted to solve SP” whenever the shortest path routine encounters a negative 

cost circuit as in Bazaraa et al. [1990]. Alternatively, to avoid excessive effort for 

large sized networks, the following heuristic may be adopted. Consider the 

formulation of a minimum cost network flow programming problem, with the link 

cost vector given by (A7,(c)” ~L), and with a supply of |D| at node ij, a demand 

of one at each node je«D, and an upper bound of |D| on the flow on each 

linkaeéA. Assuming without loss of generality that all nodes in D are reachable 

from node /, since this a feasible and bounded network flow programming 

problem, an optimal solution can be obtained very efficiently (we used the 

routine RELAXTII developed by Bertsekas and Tseng [1988], for this purpose). 

In the case of negative cost circuits, the solution might include loop flows within 

such circuits in addition to path flows from / to each of the nodes j;¢«D, whence 

the corresponding paths might only be near optimal shortest simple paths. 

Nonetheless, these simple paths may be identified, along with any existing loop 

flows, using a backtracing routine as presented by Sherali et al. [1994]. 

Assuming these to be the shortest simple paths, we can now apply Lemma 3.5. 
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3.8 Summary of the Column Generation Algorithm (CGA) for Solving 

LPMLV 

Initialization (Starting Basic Feasible Solution): For each icO, find the shortest 

paths to all 7<¢D using the observed costs for links with known volumes and free 

flow costs for links with missing volumes to comprise the link cost vector. 

Hence, determine (c,)" = minimum{(c;)’ :k =1,...n,}} for each (i,7)¢OD. Let 

M,=2, select a value for M as discussed in Section 3.3 and let M, = Mo, 

where0<oa<1 is selected as in Section 3.3. Find an initial basic feasible 

solution (X,¥,Y) to LP(TT) as outlined above, or simply use an all artificial basis 

for this purpose. Let (z,4) be the corresponding set of simplex multipliers 

(complementary dual solution) c,B’, where B is the basis matrix corresponding 

to (x,¥,¥) and c, is the vector of objective coefficients for the basic variables. 

Construct the initial revised simplex tableau, initialize the counters K=1 (outer 

loop counter), 7 =1 (update counter), s=1 (termination counter), K(7)=K, and 

proceed to Step 1. 

Step 1. (Computing Objective Function resetting Criterion): Compute the bound 

on the maximum decrease in the objective function as 

  deen = § (> lz,| + max|fi,| )* Rua 

Set z’ =c,B"b. 
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Step 2. (Pricing Artificial Variables y* and Y~): Compute 

v™ = M-max{ta:acdA,}, vo =M+min{naacd,} V"=M, —max{,:(i, j) <OD} 

and V°-=M, +mintu,:(i,j) cOD}. If v° = minimum{v™ ,v™ ,V™,V~ }>0, then 

proceed to Step 2. Otherwise, if vo =v" =M-7 
a™ 

set the entering variable 

Zy = y;., its reduced cost v, = v’, and its column P, =e,. (which is a unit vector 

of length {Al + loD| with the element one corresponding to position a* ¢ A,), and 

go to Step 5. Similarly, if 

vi =v" =M+T., St Zy = Vie Vy =v’, P, =—€,., and go to Step 4. On the other 

hand, if v’ = V° =M,—-Z,,, then set z, = Y; ye Ye =v", and P, =e,,,. (which is 

again a unit vector of length |4,|+ [oD with the element one corresponding to 

position (i) < OD), and proceed to Step 4. Finally, if v =V° =M, + Mg, then 

position (ij)" « OD), and proceed to Step 4. Finally, if v’ = V° =M, + Hg, then 

set 2, = Vines Vp = V", Py = —€ je, aNd go to Step 5. 

Step 3. (Pricing xy Vanables for ke (K,,)’,(i,j)é OD): For each ie O, solve the 

shortest path problem SP; given by (3.7.a - 3.7.c) for all jeD. Compute 

(ij)* = arg min{v,:(, j)eOD }. If vin. = (@)’ — 7). Daye — Haye < 9, Put 

Ze = Xie Ve = Viger Pe = Digp + and go to Step 5. Otherwise, proceed to @ 
(gj)! 

Step 4. 

Step 4. (Pricing x; Variables for ke (K,)',(i,j)sOD and Termination Check): 

For each i<¢O, solve the shortest (simple) path problems SP} given by (3.7a) 

for all jeD as in Remark 3.4. Compute (ij)*=argmin{v;:(i,j)eO0D and 

k**eK, in (3.8)}. If vi.<0, put 2, =XipeVe = Vine» Pr = Pie, ANd proceed to 
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Step 5. Ohterwise, if (i/)* does not exist or if Vane >0, the current solution is 

optimal for the current cost vector ((c,)’ of LPMLV). Set termination counter 

s=s+1. If s > 3 terminate. Else go to step 8. 

Step 5. (Update Primal and Dual Solutions): Determine the updated column 

B’'P, of the (entering) nonbasic variable z, having a reduced cost v, <0, pivot 

Z, into the basis, and hence update the basic feasible solution, the basis 

inverse, and the dual vector (z, 2) of simplex multipliers. 

Step 6. (Compute Moving Average of Link Volumes for Links with Unknown 

Volumes): First compute the volumes for links with unknown volumes, 

corresponding to the present corner point as f= >) {x;(py.e,):%, is 

basic} VaeA_,. Compute the grand moving average for the link aeA, as 

SE =fE(K-K(r) + fF / K-K(r) +1. 

Step 7. (Checking whether objective has to be reset): Compute dz =z’ -2*, 

where z’ is the objective value at the last reset, and z* its current value. If 

dz < dz™”""" then go to step 2. 

Step 8. (Resetting Link cost vector): Set r=r+1 and let K(r)=K. Set (c,) to 

be a function of f*, VacA,. 

Step 9. (Computing (c,)’ and Resetting Dual Variable Values): For each i €O, 

find the shortest paths to all jeD using the observed costs for links with known 

volumes and (c,)’ for links with missing volumes to comprise the link cost vector. 

Hence, determine (c,)’ = min{(€)’.p;:k =1,...n,}} for each (i, j)€OD. 
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Scan the basis row by row. If the variable in row jis an artificial variable 

then(c, )"=M, or M,, as the case might be. Else we now have to compute the 

costs for the legitimate variables. For x; <B, if (€)’.p; =(c;)", then (c3)" =(c,)’ 

else (c,)"=M,(c)’.p,. Set (#, n)=(c,)'B". Set z”=z*. Reset S,=   
-r" 

1+ se 

Set K=K+1. Compute the objective function resetting criterion d&"’". Go to 

Step 2. 
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4. EVALUATION OF MODEL USING _ ARTIFICIAL 
NETWORK : 

4.1 Introduction 

The previous chapter dealt with the mathematical formulation and subsequent 

development of the solution technique for a linear programming based approach 

for determining traveler origin-destination trip tables using incomplete network 

link flow specification. This chapter deals with the validation of this model. The 

validation procedure includes a comprehensive testing of the model’s 

performance, sensitivity to the influencing input factors, and comparative 

evaluation with the maximum entropy approach. 

The model LPMLV can be used to determine an OD trip table that tends to 

conform to a user equilibrium solution (if it exists) which reproduces the partial 

set of link flows to as close an extent as possible while being as consistent as 

possible with target information on trip patterns provided through a target table. 

The target trip table is primarily used by the model to guide the solution and to 

discriminate among the alternate optimal solutions for the user equilibrium 

objective. 

The influence of missing link volume information is presented in detail in this 

section. As discussed earlier, the link volume counts are the most important 

input for the OD estimation models, because the solution trip table is designed 

primarily to be consistent with these measurements. As the number of link 

volume measurements increases, the output trip table is expected to be 

consistent with a greater number of measures of travel patterns, and if these 

measurements are correct and meaningful, one would expect the output trip 

table to get increasingly better. Since in practice, link volumes on all links are 

not always known, a knowledge of the model sensitivity to this aspect is very 

useful in modeling the travel characteristics of real networks. This chapter 

presents an extensive discussion for the sensitivity of the linear programming 

and maximum entropy approaches. Like most other approaches for OD 
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estimation these models are expected to have their respective output tables 

being influenced by the target trip table, thus making it necessary to study the 

influence of the target trip tables on them. Presented in this chapter are test 

results on the sensitivity of these models to the target trip table provided. 

4.2 Evaluation Procedure 

The evaluation procedure is designed to validate the LPMLV model, and to 

measure its performance in estimating OD tables vis-a-vis the maximum entropy 

model. In addition, the sensitivity of the linear programming and maximum 

entropy models to varying target tables and available link volumes are also 

studied. In order to do so, the evaluation procedure requires a “correct” trip 

table and a complete set of link volumes. The percentage of link volumes that 

are assumed to be known, are however varied for each case. Similarly, the 

target trip tables used are different for each case. A spectrum of target tables, 

ranging from those that are very close to the correct trip table to those that are 

far different were used. 

Detailed explanations of the evaluation procedure, measures of effectiveness 

and test results are presented in the sections that follow. 

4.2.1 Evaluation Factors 

4.2.1.1 Available Link Volumes 

Any basic feasible solution to the linear programming approach represents a trip 

table that satisfies the constraints defined by the link volumes. The program 

then identifies the trip table that most closely replicates the available link 

volumes and which comes closest to representing a user equilibrium solution, 

while being as close as possible to the target trip table. The maximum entropy 

approach first assigns the target trip table and continually modifies this table. 

Then it picks the table that is the closest to the observed link volumes. 
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Thus the extent of available link volumes serve to largely determine the solution 

space for the linear programming and maximum entropy approaches. This input 

serves to drive the solution in both these models. The networks used for 

purposes of evaluation had known volume data for all the links. However, a 

partial set of these link volume counts were used as input for each model, and 

the performance of the models were evaluated. 

4.2.1.2 Target Trip Tables 

While, both linear programming and maximum entropy approaches use a target 

trip table to guide the solution, they differ in the mechanism by which the target 

table is used. The maximum entropy approach modifies the target trip table cell 

values, and maximizes a non-linear entropy objective function so as to replicate 

observed link volumes. The output table thus obtained is one with the maximum 

number of microstates associated with it. The solution of the maximum entropy 

approach is known to be sensitive to the correctness of the ratio of each trip 

interchange to the sum of all trip interchanges specified in the target trip table. 

Also, the traveler route choice proportions as determined by the assignment of 

the target trip table, and hence the value of each trip interchange, influence the 

solution table of the maximum entropy approach. The linear programming 

approach, on the other hand, constrains the output trip table to be as close as 

possible to the target trip table. Thus the target trip table serves to reduce the 

underspecification problem by a different mechanism, for each of the two 

approaches discussed above. Also, it must be noted that the choice of penalty 

parameter for prior trip table deviations may cause some of the output trip table 

solutions to not conform to a set of user equilibrium path flows. 

The tests described in the following section employ a set of target trip tables, 

that vary from being very close to the “true” trip table, to being very different from 

it. Both approaches are tested with a given target trip table for a set of cases of 
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available link volumes, and their performances are evaluated using a set of 

measures of effectiveness. 

4.2.2 Comparison of Results 

In order to compare the test results from the two approaches, two measures of 

closeness are used in judging the results. The first is based on the replication of 

the link volumes by the solution trip table wnen assigned to the network. This is 

accomplished by comparing the output link volumes obtained from an 

equilibrium assignment with the observed volumes. For both the linear 

programming and maximum entropy approaches, the link volumes corresponding 

to the output trip tables are computed within the software programs developed 

for these approaches. The second measure is the closeness of the estimated 

trip table to the “correct” trip table. These two criteria are obvious choices since 

the objective of trip table estimation is to determine a trip table that replicates 

observed link volumes when assigned, and is as close as possible to the 

“correct” trip table. | 

4.2.2.1 Replication of Observed Link Volumes 

The most important measure of the quality of the trip table is its ability to 

replicate observed volumes on the links of the network. The link volumes 

corresponding to the output trip table can be obtained for both approaches a 

byproduct of the estimation process. The Percentage Root Mean Square Error 

(% RMSE) and Percentage Mean Absolute Error (% MAE) are chosen as 

measures of error rate to compare the observed volumes with the assigned 

volumes. These measures are defined as follows: 

  

2 Vossen ~ Moos)” * 

% RMSE 2 » 10"” 
n > Vets 

acd, 
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where 

V sign = €QUIlibrium assigned volume on link a, 

Vy? 

obs = observed volume on link a, and 

n= number of links with available volumes. 

4.2.2.2 Closeness of Estimated Table to True Trip Table 

There are various measures of closeness for comparing trip matrices. Smith and 

Hutchinson (1981) evaluate different goodness of fit statistics for trip distribution 

matrices and conclude that the phi-statistic (od) is one of the most appropriate to 

test the goodness of fit of alternate trip distribution models. The percentage 

mean absolute error statistics has also been reported as an useful indicator. 

Consequently the percentage RMSE, MAE and (9) are used in the following 

analysis for trip table comparisons. These measures of closeness are defined 

below: 

Dd (ty       100* nop 
  

  

  

% RMSE = ; 
Nop tj 

Dts - ; 00 * 

% MAE = » 100" Non 
Nop yh; 

. ax(1,t, ) 
= S max(1,t" lin -———_ 

b= Qymax(l.t, Jn vax(l ty) 

    

where ti is the “correct” number of trips for interchange (i,j), ¢, is the 

estimated number of trips for interchange (i,7), and no, is the number of 

feasible O-D interchanges. 

4.2.2.3 Computer Resources for Tests 
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The tests reported in the following section were obtained using an IBM-PC 486 

with a clock speed of 66 MHz. 

4.3 Test Networks 

This thesis presents results on tests carried out on two networks. The first 

network is one that was artificially created for the purposes of OD estimation 

tests, and the validation results are reported in this chapter. Chapter 5 deals 

with test results for a real network. The real network represents a one square 

mile area in the town of West Lafayette, Indiana, and is described in detail in the 

next chapter. 

Presented below are descriptions and results of the tests conducted on the 

sample network. 

4.3.1 Artificial Network 

The artificial network chosen for the tests is a hypothetical network called the 

“corridor network”, reflecting a travel corridor (Gur et al., 1980). This network 

has been used extensively for tests while developing the LINKOD system of 

models. The network consists of 6 zones, 6 intersection nodes and 18 links. 

Although it is a hypothetical network, it has multiple routes between O-D pairs 

and multiple equilibrium solutions. Due to its small size it is ideal for performing 

extensive tests, without having to expend too much computational effort. This 

network is shown in Figure 4-1. 
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Link Begining 

Number Node 

1 4 

2 5 

3 6 

4 6 

§ 6 

6 7 

7 7 

8 8 

9 9 

10 9 

11 9 

12 10 

13 10 

14 10 

15 11 

16 11 

17 12 

18 12 

  
O 

Ending 

11 

Zone Centroit 

Observed 

Volume 

2400 

2000 

100 

5000 

500 

500 

4500 

500 

2000 

1500 

4900 

1600 

1500 

900 

4800 

300 

1000 

200 

Fig 4-1. Test Network-1 Characteristics 
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4.3.1.1 Target Trip Tables 

The target trip tables used in the tests conducted on this network are primarily of 

four types. Using these four types of trip tables 15 trip tables for the tests were 

derived. These trip tables are described below, in reverse order of their 

closeness to the true trip table. 

The structural trip table represents one which has 0-1 values for its cells to 

indicate merely if that trip interchange is feasible or not. The no target 

information trip table has a uniform value of 983 for all feasible interchanges. 

The third type of trip table used as a target was a relatively close trip table. This 

trip table has cell values that are quite close to the actual trip table. The correct 

trip table for the network was another type used in the tests. 

The tests reported here, use target tables that extract different extents of 

information the four basic target tables described above. The extent to which 

information from a given type of target trip table is used varies from nearly 50%- 

100% of the cells of a particular table type being used as a target value. 

4.4 Test Results for Artificial Network 

4.4.1 Case 1: Structural Table as a Target 

The target table used for this case is shown in Table 4-1 below. 

Table 4-1: Target Trip Table for Case 1 

  

   

  

er: nen eee 
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—
 

O
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Table 4-2 below shows the measures of errors that describe the performance of 

model LPMLV with the structural trip table as target. The RMSE of the 

deviations from the correct trip table values vary from 31%-128%, which is to be 

expected when the target table contains almost no information. The mean 

absolute error percentages for trip table deviations also are high, as expected. 

While increasing the availability of link volume information, in general, seems to 

decrease the measures of error rates, the test results show that a statement on 

the monotonicity of the decrease cannot be made. While the decrease of the 

measures of error rates, with increasing knowledge of link volumes, is 

perceptible for the MAE and RMSE statistics, it is not as dramatically visible as 

theg statistic’s variation. The largest error rate as measured by this statistic, 

occurs when only 50% of the link volumes are available. Increasing the 

availability of link volumes rapidly decreases this error rate, as seen in Table 4- 

2. Another observation that is noteworthy, is that the available link volumes are 

perfectly replicated for all six cases of available volumes, as indicated by the 

zero values for the MAE% and RMSE %. | 

Table 4-2: Performance of the Linear Programming Approach 

(Structural Table as a Target) 
  

Measures of Error Rates 
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In contrast with the performance of the linear programming approach, the 
maximum entropy approach performs much better for the structural target table 
input, as seen in Table 4-3 below:. The RMSE, MAE and g for trip table 

deviations are significantly lower for most cases, now ranging only between 
43%-52%, 39%-46% and 3728-4536 respectively. However, unlike the linear 
programming approach, the replication of observed volumes is not perfect for 
any case of available link volume proportions . In fact, for the 50% and 60% 
available link volume cases, the RMSE and MAE for link volume deviations are 
Significantly high, and range between 28%-39% and 22%-37% respectively. 

Table 4-3: Performance of the Maximum Entropy Approach 
(Structural Table as a Target) 
  

   
   

  

    

Measures of error Rates | 

aE a lai WN: a _ RMSE % a ca 
PN fel Cees Gee. eke Ot o)p Well 

je) @) : . : 37.02 

60 , . . 22.43 

rae ; . . 3.66 

80 : ; ; 4.31 

een 51.2 1.73 
1.71 

     
          
  

  

  

  

              
The 50% link volume case is particularly noteworthy. For this case, the 
deviations of the output trip table from the correct trip table are one of the least, 
among the other cases of available link volumes. However, the replication of 
link volumes is the worst among the other cases, with the RMSE and MAE being 
as high as 39% and 37% respectively. Also note that there is no monotonic 
behavior of any of the error statistics with respect to available link volume 
percentages. 
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The above results lead to the following conclusions. The maximum entropy 

model yields superior results for the 70%, 80%, and 90% available link volume 

cases. This conclusion is based on the facts that the trip table error statistics 

are significantly lower for the maximum entropy approach and that its link volume 

replication is quite good. However, for the 50% and 60% available link volume 

cases, this model is unable to replicate observed link volumes satisfactorily. In 

contrast, the linear programming approach performs exceptionally well for all the 

cases of available link volumes, with respect to link volume replication. The 

model replicates link volumes exactly with zero error. However, the error 

statistics for the output trip tables show that its performance in general, is not as 

good as that for the maximum entropy model. It must be added here, that the 

applicability of either model for the 50% and 60% link volumes is questionable 

because of the high values for trip table errors for the linear programming 

approach and unsatisfactory replication of observed link volumes by the 

maximum entropy approach. Thus in the context of the two performance criteria, 

namely the closeness of the output trip table to the “correct” trip table, and 

replication of observed link volumes, neither model is consistently superior to the 

other. On the other hand, if the models are to be purely judged on the basis of 

the quality of output trip table, then the maximum entropy model results are 

superior for most cases. However, note that for the 100% link volume availability 

the linear programming approach is superior. 

4.4.2 Case 2 - No Information Based Trip Tables as Targets 

A no information based target trip table is one in which all feasible interchanges 

carry an equal number of trips. Four no information trip tables were used as 

target trip tables for the tests discussed in this section. Each feasible 

interchange in all the four trip tables carry the same number of trips. The tables 

only differ in the number of cells that contain such information. The number of 

cells with information varied from 5,7,9 and 11 (which corresponds to the total 
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number of feasible trip interchanges). The idea behind the tests is of course to 

test the sensitivity of these models to the extent of information provided in the 

trip table. The trip tables with 5 cells approximately represents a case where 

45% of the cells contain information. And the other tables correspond to 64%, 

82%, and 100% cells containing information. These target tables, and the tests 

conducted with them are described in greater detail in the sections to follow. 

4.4.2.1 Case 2a: Partial No Information Based Trip Table (45% Cells with Info.) 

The target trip table for case 2a is shown below: 

Table 4-4: No Information Based Trip Table (45% Cells with Info.) 
at 

    

  

  

  

  

            
  

Table 4-5, shows the performance of the linear programming approach with the 

no information target table shown in Table 4-4. The target trip table for case 2a 

is shown below. 

Similar to the case of the structural table, the performance of the model, is 

generally seen to improve with increasing information on link volumes. The 

RMSE error rate for the output trip table ranges from (64%-103.67%), which is 

lower than it was for Case 1, and seems to improve with an increase in link 

volume information. The MAE and ¢ deviations follow a similar trend while 

varying from 48%-84% and 4294-10920, respectively. 
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Table 4-5: Performance of the Linear Programming Approach 
(No Information Based Trip Table (45% Cells with Info.) as a Target) 
  

Measures of Error Rates 
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An anomaly in the performance of the model can be seen to occur with 80% 
available volumes. One would expect the error statistics with 80% volumes to be 
lesser than those obtained with 70% available link volumes. However, it is seen 
that they are much higher than those obtained with 70% available volumes. In 
fact, the g value with 80% link volumes is even higher than the corresponding 

value obtained with only 50% link volumes. Note however, that the replication of 
available link volumes is perfect for all the cases shown in Table 4-5. One 
possible explanation for the anomalous behavior could be the existence of 
multiple optimal solutions to the objective of model LPMLV. 

When the link volume specification is not complete, there are lesser restrictions 
on varying ¥,7 and Y, to obtain an output trip table while keeping e.y , the route 
cost component of LPMLV's objective, and “F +Y- y » constant. This may 

eOD 

increase the number of feasible bases that can be optimal. 

The performance of the maximum entropy approach for this case of target 
information, is shown in Table 4-6. 
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Table 4-6: Performance of the Maximum Entropy Approach 

(No Information Based Trip Table (45% Cells with Info.) as a Target)    

   

  

    

  

Measures of Error Rates 
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One would expect the maximum entropy approach to yield better results for this 

case of the target trip table than it did for the structural target trip table case. 

However, the results are to the contrary. For every case of available link 

volumes, the structural table input yielded lesser values for trip table errors. The 
RMSE, MAE and 9g statistics for trip table errors now range between 41%-85%, 

37%-70%, and 4673-16463, respectively. These error measurements are much 

higher than the corresponding values obtained for Case 1. Also, the link volume 

replication error statistics are higher for this case except when only 50% link 

volume information is available. 

Several interesting observations can be made, comparing the results of the 

linear programming and maximum entropy approaches. First, note that the 

replication of available volumes is much superior for the linear programming 

approach. In contrast, for the maximum entropy approach, the RMSE and MAE 

Statistics for link volume replication range from 6%-31% and 4%-26%, 

respectively. The trip table error statistics for this case do not clearly indicate 

the superior performance of one model over another. The RMSE (TT) and MAE 

(TT) are lower for the maximum entropy approaches for all but the cases of 60% 
and 70% volume availability. In contrast, the @ error statistic is lower for the 
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linear programming approach for all cases except when only 80% of the link 

volumes are known. 

If one were to consider the three cases of available volumes (50%,60%, 70%) 

then one may conclude that the linear programming approach performs better 

although the RMSE(TT) and MAE(TT) are higher than the corresponding values 

for the maximum entropy approach. Such a claim is justifiable because the error 

Statistics for link volume replication, and g, are much higher for the maximum 

entropy approach. The @g statistic, according to Smith and Hutchinson [1981], is 

a much better measure than RMSE(TT) and MAE(TT) for trip table replication. 

Hence the above conclusion is in order. On the other hand for the 80%,90% 

and 100% available link volumes, one may conclude that the maximum entropy 

approach performs better despite the g@, RMSE (Vol) and MAE (Vol) being 

slightly higher than the linear programming approach. Such a conclusion can be 

made, because the RMSE(TT) and MAE(TT) are much lower for the maximum 

entropy approach. 

However, the applicability of either model for such a target trip table still remains 

questionable in the light of the high error values obtained. 

4.4.2.2. Case 2b: Partial No Information Based Trip Table (64% Cells with Info.) 

The target trip table for Case 2b is shown in Table 4-7 below: 

Table 4-7: No Information Based Trip Table (64% Cells with Info.) 
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The addition of two more cells of uniform value 983 improves the performance of 
model LPMLV as reflected in the error rate values shown in Table 4-8 below. 

‘While there are some cases when a particular error rate is higher than the 

corresponding value in Case 2a, there is no instance when all the three 
measures for trip table errors are higher for Case 2b. On the other hand, the 
80% volume test with this target table is a representative case where all the 

measures of errors are lower for Case 2b. The RMSE variation for trip table 
deviations for this test vary from 58% to 107%. The MAE and 9g variations 

range from 36%-84% and 3262-7206, respectively. While the RMSE and MAE 
Statistics for the output trip table are not low, it is only to be expected since the 

target trip table really does not contain any significant information on travel 
patterns. Also, note again that there is no monotonic decrease in the error 
Statistics with increasing link volume information. As explained for Case 2a, the 
anomaly may be attributed to the existence of multiple optimal solutions. 

Table 4-8: Performance of the Linear Programming Approach 
(No Information Based Trip Table (64% Cells with Info.) as a Target) 
  

Measures of Error Rates 
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The performance of the maximum entropy approach for the target trip table in 
Table 4-7 is shown below: 
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Table 4-9: Performance of the Maximum Entropy Approach 

(No Information Based Trip Table (64% Cells with Info.) as a Target) 
  

Measures of Error 
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The measures of trip table errors for the maximum entropy approach, are lower 

for this case than for Case 2a. In fact, for every case of percentage available 

volumes these errors are lesser than the previous case. The RMSE, MAE and 
g Statistics for trip table errors now range between 33%-54%, 27%-45%, and 

3201-12739, respectively. These error measurements are lower than the 

corresponding values of 36%-70%, 31%-58%, and 4673-16463 obtained for 

Case 2a. The link volume replication error statistics are not always lower for 

Case 2b. However, except for the 50% and 80% link volume availability case, 

the link volume errors are lower for Case 2b. 

A comparison of the two approaches allows us to draw conclusions similar to 

that made for the previous case . For the 80%-100% volume availability range, 

one may conclude that the performance of the maximum entropy approach is 

superior. Although the available link volume replication for the maximum entropy 

approach for these three cases is not exact, the measures of errors RMSE(Vol) 

and MAE(Vol) are less than 9% and 6%, respectively. The error statistics for trip 

table closeness are lower for the maximum entropy approach for these three 

cases of available link volumes. 
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For the 60% and 70% link volume available cases, all the error statistics are 

much lower for the linear programming approach, than for the maximum entropy 

approach. For the 50% link volume availability case, the correct trip table 

replication error statistics for the linear programming approach are over 1.5 

times the corresponding values for the maximum entropy approach. However, 

the RMSE(Vol) and MAE(Vol) for the maximum entropy approach are over 33% 

and 29% respectively. 

4.4.2.3 Case 2c: Partial No Information Based Trip Table (82% Cells with Info.) 

The target trip table for this case is shown below: 

Table 4-10: No Information Based Trip Table (82% Cells with Info.) 
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Compared to case 2b, this target table, in general, seems to improve the 

performance of the model LPMLV, as seen in Table 4-11 below. The RMSE of 

the trip table deviations now lie between 48%-104% as compared to Case 2b 

where the variation was between 62%-106%. Similarly, the MAE and 9 of trip 

table deviations now lie between 36%-/78% and 3203-6409, respectively, which 

are lower than the corresponding ranges obtained with Case 2b. However, the 

improvement in performance cannot be claimed for every case of available link 

volumes. For the 90% and 100% volume cases, the performance for both cases 

(2b and 2c) are identical. In other words, the addition of two new constraints did 

not change the optimality of the solution for these three cases. In this case 

again, if we disregard the results with 80% available link volume, one may claim 

that the error rates decrease with increasing available link volumes. 
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Table 4-11: Performance of the Linear Programming Approach 
(No Information Based Trip Table (82% Cells with Info.) as a Target) 
  

Measures of Error 
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The performance of the maximum entropy approach for the same target table is 
shown in Table 4-12 below. 

Table 4-12: Performance of the Maximum Entropy Approach 
(No Information Based Trip Table (82% Cells with Info.) as a Target) 
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One may note that the measures of error for link volume replication are lesser 
than the corresponding values obtained for Case 2b. The trip table error 
Statistics show interesting trends. The range for the RMSE(TT), MAE(TT) and o 
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Statistics are lower varying from 47%-51%, 39-46%, and 3731-4536, 

respectively. Compared with Case 2b, one may note that while all three 

measures of error decrease considerably for the 50%, 60% and 70% available 

volume cases, they increase for the 80%, 90% and 100% cases. 

For Case 2c, all measures of error for trip table comparisons, in general, are 

lower for the maximum entropy approach, as compared to the _ linear 

programming model. While the link volume errors are O for the linear 

programming approaches, they are quite small for the maximum entropy 

approach, except for the 50% available link volume case. The RMSE (Vol) and 

MAE (Vol) for the maximum entropy approach range from 3%-13% and 2%-10% 

when the available link volumes are higher than 50%. These measures are as 

high as 24% and 21%, respectively, when the link volumes available equal 50%. 

The results, thus, suggest that the maximum entropy approach performs much 

better for this case of the target trip table except for the 50% link volume 

availability case. 

4.4.2.4 Case 2d: Partial No Information Based Trip Table (100% Cells with Info.) 

The target trip table for Case 2d is shown below: 

Table 4-13: No Information Based Trip Table (100% Cells with Info.) 
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The target table shown in Table 4-13 has a uniform cell value of 983 for all the 

feasible trip interchanges. In a sense the trip table is complete because now all 

feasible trip interchanges have a target value. Table 414 below shows the test 

results obtained. The values for the errors are the lowest as compared to cases 

(2a, 2b, 2c) for all cases of available link volumes (except 70%). The anomaly 

may again be attributed to the presence of multiple optimal solutions. The 

RMSE deviations range between 46%-66%, which correspond to the lowest 

upper bound values for the ranges among all the cases described so far. 
Similarly the MAE and g values have the smallest range and the least lower and 

upper limits of the range. In general, one may infer a gradual improvement in 

the quality of results for the linear programming approach, can be seen from 

Case 2a to Case 2d. This conclusion is logical, and is consistent with the belief 

that the output table must improve with increasing percentage of target trip 

information. 

Table 4-14; Performance of the Linear Programming Approach 

(No Information Based Trip Table (100% Cells with Info.) as a Target) 
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The performance of the maximum entropy approach for Case 2d is shown in 

Table 4-15 below: 
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Table 4-15: Performance of the Maximum Entropy Approach 
(No Information Based Trip Table (100% Cells with Info.) As Target) 
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The maximum entropy approach shows results that are close to that obtained for 
Case 2c. The error statistics for link volume replication remain more or less the 
same. Similarly the RMSE(TT) and MAE (TT) remain nearly the same. 
However, the 9 statistic shows an interesting trend. The values for this statistic 

are slightly higher for the 50% 60% and 70% available volume cases. On the 
other hand these error values have considerably decreased for the 80%, 90% 
and 100% link volume cases. 

The comparison of the maximum entropy and linear programming approaches 
for Case 2d, is similar to the relative performance of these models in Case 2c. 
Except for the MAE(TT) and @ for the 60% link volume availability case, all the 

measures of effectiveness for all link volume availability cases are lower for the 
maximum entropy approach. Thus one may conclude the superiority of the 
maximum entropy approach for Case 2d. 
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4.4.3 Relatively Small Error Target Trip Tables 

These trip tables have cell values that are relatively close to the correct trip 
table. Again we used varying extents of information in the target tables, ranging 
from 45% of cells carrying relatively small error information to 100% cells with 
such information. 

4.4.3.1 Case 3a: Partial Relatively Small Error Trip Table (45% Cells with Info.) 

The target trip table for this case is shown below: 

Table 4-16: Relatively Small Error Trip Table (45% Cells with Info.) 
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Case 3a. produces the least values for all the error Statistics, among all the test 
Cases described so far. The trip table cells are relatively closer to the true trip 
interchanges. The RMSE and MAE of trip table deviations are quite low, ranging 
from 26%-30% and 16%-21% respectively. However, there is no monotonically 
decreasing pattern with respect to available volumes, observed for any of the 
error statistics. The statistic, though, shows a pattern that comes close to 

monotonic behavior. The anomaly in the performance of these measures of 
effectiveness occurs for this test when the percentage of available link volumes 
is 70. The anomaly can be attributed to the existence of multiple optimal 
solutions. The replication of observed volumes by the output trip table continues 
to remain perfect as reflected by the zero values for the RMSE and MAE 
measures for these parameters. 
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Table 4-17: Performance of the Linear Programming Approach 
(Relatively Small Error Trip Table (45% Cells with Info.) as a Target 
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The performance of the maximum entropy approach for case 3a is shown in the 
table below. 

Table 4-18: Performance of the Maximum Entropy Approach 
Relatively Small Error Trip Table (45% Cells with Info.) as a Target) 

  

__Measures of Error 

% Avail RMSE% MAE%  — RMSE% MAE % 
Vere eGRe Ce GMS a aT 

ae 
60 
  

  

S a 
80 
ce 

  

  

            
  

  

One would expect the maximum entropy approach to yield better results for this 
case of the target trip table than it did for Case 2a. As expected, the results for 
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Case 3a are better for every case of available link volumes except the 50% link 

volume availability case. The RMSE, MAE and @ statistics for trip table errors 

now range between 29%-108%, 21%-83%, and 2347-16588 respectively. The 

link volume error statistics are reasonably low for all cases except when the link 

with known volume constitute 50% and 60% of the network. 

Comparing the results of the linear programming and maximum entropy 

approaches we first note that note that the replication of available volumes 

continues to be much superior for the linear programming approach. In contrast 

for the maximum entropy approach, the RMSE and MAE statistics for link volume 

replication range from 2%-32% and 4%-41%, respectively. The trip table error 

statistics for this case clearly indicate the superior performance of the linear 

programming approach. The RMSE (TT) and MAE (TT) are lower for the linear 

programming approach for all available link volume cases. The ¢ error statistic 

is also lower for the linear programming approach for all cases. 

If one were to consider the three cases of available volumes (50%,60%, 70%) 

then one may conclude that the linear programming approach performs far better 

than the maximum entropy approach for these cases. Such a claim is justifiable 

because its error statistics are much lower than the maximum entropy approach. 

On the other hand for the 80%, 90% and 100% available link volumes, error 

statistics are comparable for the two approaches. 

Thus one may conclude general superiority of the linear programming model 

over the maximum entropy model. 

4.4.3.2 Case 3b: Partial Relatively Small Error Trip Table (64% Cells with Info.) 

The target trip table for Case 3b is shown in Table 4-19 below: 
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Table 4-19: Relatively Small Error Target Trip Table (64% Cells with Info.) 
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The use of the target trip table shown in Table 4-19, results in a performance of 
the linear programming approach that is much better than the previous case. As 
seen in Table 4-20, all the error statistics for the linear programming approach 
are now very low. The RMSE for trip table deviations range between 0%-13% 
which is much lower than that obtained for Case 3a. The MAE and gy for trip 

table deviations are also very low, now ranging from 0%-8.2% and 802-0%, 
respectively. For the 100% volume case the exact replication of the correct trip 

table and observed link volumes is obtained. Also, note that for every case of 

link volume availability all the error statistics for trip table deviation are lower for 

Case 3b as compared to Case 3a. 

Table 4-20: Performance of the Linear Programming Approach 

(Relatively Small Error Trip Table (64% Cells with Info.) as a Target) 
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The performance of the maximum entropy approach is shown in 
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Table 4-21 below: 

Table 4-21: Performance of the Maximum Entropy Approach 
(Relatively Small Error Trip Table (64% Cells with Info.) as a Target) 
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For the 50 and 60% link volume availability, the measures of trip table errors for 
the maximum entropy approach, are much lower for this case than for Case 3a. 
However, for the 70% link volume availability case, the errors are lower for Case 
3a. For every other case percentage available volumes these errors are higher, 
but in the same range as in the previous case. The RMSE, MAE and 9 
Statistics for trip table errors now range between 30%-70%, 21%-58%, and 
2351-11611 respectively. The comparison of link volume replication error 
Statistics for Case 3a and 3b follows the same trend as the trip table error 
Statistics. The link volume error statistics now range between 3%-34.07% and 
2%-30% for the RMSE(Vol) and MAE(Vol), respectively. 

A comparison of the two approaches indicates the superior performance of the 
linear programming approach for all cases of link volume availability. In fact, all 
the five measures of errors are much lower for the linear programming approach 
for every case of known link volumes. 
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4.4.3.3 Case 3c: Partial Relatively Small Error Trip Table (82% Cells with Info.) 

The target trip table for this case is shown in Table 4-22 below: 

Table 4-22: Relatively Small Error Trip Table (82% Cells with Info.) 
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With the target table shown in Table 4-22, the linear programming approach 

continues to perform well. As seen in Table 4-23, all the error statistics for the 

linear programming approach are low. The RMSE for trip table deviations 

ranges between 0.6%-14%. The MAE and g for trip table deviations are also 

very low, now ranging from 0.36%-9% and 29-848, respectively. However, for 

every case of link volume availability all the error statistics for trip table deviation 

are higher than for the previous case. This may be attributed to two plausible 

reasons. The first is the existence of multiple optima to the LPMLV formulation. 

The second reason is that the additional information in the two trip interchanges 

that we have added is not correct but only relatively correct. Thus it would seem 

that there is a tradeoff between the reduction in underspecification with the 

addition of two cells in the target table, and constraining the output trip table 

values for these interchanges to be close to the incorrect cell values. 
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Table 4-23: Performance of the Linear Programming Approach 

(Relatively Small Error Trip Table (82% Cells with Info.) as a Target) 
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The performance of the maximum entropy approach is shown in Table 4-24 

below: 

Table 4-24: Performance of the Maximum Entropy Approach 

(Relatively Small Error Trip Table (82% Cells with Info.) as a Target) 
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The maximum entropy approach shows a significant improvement in its 

performance as compared to the previous case (Case 3b). All the error statistics 
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are now quite low. The RMSE, MAE and g statistics for trip table errors now 

range between 29%-31%, 21%-23%, and 2308-2503 respectively. These error 

measurements are lower than the corresponding values obtained for Case 3b. 

The link volume replication error statistics for Case 3c are also low. The 

RMSE(Vol) and MAE(Vol) now range between 4%-13% and 3%-11% 

respectively. 

Similar to the conclusion reached for Case 3a, the linear programming approach 

continues to remain superior over the maximum entropy approach, for all cases 

of link volume availability. 

4.4.3.4 Case 3d: Relatively Small Error Target Trip Table (100% Cells with Info.) 

The target trip table for Case 3d is shown in Table 4-25 below: 

Table 4-25: Relatively Small Error Target Trip Table(100% Cells with Info.) 
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The performance of the linear programming approach for the target table shown 

in Table-25 is similar to its performance in Case 3c, as seen in Table 4-26 

below. While the RMSE, MAE and @ variations are still low they are not much 

better than Case 3b. In fact, except for the 100% volume availability case the 

results of Case 3b are much better. As explained earlier this could be attributed 

to the trade off between the reduction in the degree of underspecification due to 

the addition of information and constraining the solution to be close to the wrong 

information specified. However, note here again that the replication of observed 

link volumes is exact. 
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Table 4-26: Performance of the Linear Programming Approach 
(Relatively Small Error Trip Table (100% Cells with Info.) as a Target) 
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For the 100% available link volume case the output trip table matches the 
correct trip table exactly. This is reflected in the O values for all the three 
measures for deviation of the output trip table from the correct trip table. 

The performance of the maximum entropy approach for this case is shown in the 
table below: 

Table 4-27: Performance of the Maximum Entropy Approach 
(Relatively Small Error Trip Table (100% Cells with Info.) as a Target) 
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The performance of the maximum entropy approach continues to remain good 

for Case 3d. The measures of errors, are low as that found for the previous 

case. The RMSE, MAE and g statistics for trip table errors now range between 

29%-31%, 21%-23%, and 2308-2496 respectively. The errors for link volume 

replication are also low, with the RMSE(Vol) and MAE(Vol) ranging from 3%- 

13% and 2%-11% respectively. 

However, comparison of the linear programming and maximum _ entropy 

approaches clearly indicates the superiority of model LPMLV. Every error 

statistics is much lower for the linear programming approach, for every case of 

available link volumes. Thus, here again we confirm the superiority of the linear 

programming approach over the maximum entropy approach. 

4.4.4 Correct Trip Table Based Target Tables 

Trip tables with “correct” trip interchange values are seldom available as target 

tables, in most practical applications. However, we employ such target tables 

from a perspective of theoretical interest to see how these models perform. 

Here, again we used varying extents of information in the target tables, ranging 

from 45% of cells carrying correct trip information to 100% cells with such 

information. 

4.4.4.1 Case 4a: Partial Correct Trip Table (45% Cells with Info.) 

The target trip table used for this case is shown in Table 4-28 below: 

Table 4-28: (Correct Trip Table Based (45% Cells with Info.) Target) 
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The performance of the linear programming approach with a target table having 
5 cells with correct information, is shown in Table 4-29 below. The RMSE and 
MAE of trip table deviations are quite low, ranging from 19%-28% and 8%-16% 
respectively. However, there is no monotonically decreasing pattern with 
respect to available volumes, observed for any of the error statistics. In fact 
some irregularities may be observed. 

Table 4-29: Performance of the Linear Programming Approach 
(Correct Trip Table (45% Cells with Info.) as a Target)    
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One might expect a comparison of these error statistics with those obtained for 
Case 3a to indicate that the values for Case 4a are lower. However, except for 
the 70% and 80% available cases, the error statistics are lower for Case 3a. 
This anomaly can be attributed to the existence of multiple optimal solutions. 
The replication of observed volumes by the output trip table continues to remain 
perfect as reflected by the zero values for the RMSE(Vol) and MAE(Vol) 
Statistics. 

The performance of the maximum entropy approach for this case is shown 
below: 
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Table 4-30: Performance of the Maximum Entropy Approach 

(Correct Trip Table (45% Cells with Info.) as a Target) 
  

Measures of Error 

Avail RMSE% MAE % RMSE % MAE % 
es (TTT) Avie t Ase) 

& ae 

  

  

  

  

            
  

  

The RMSE, MAE and g statistics for trip table errors now range between 29%- 

107%, 21%-83%, and 2352-18236, respectively. The link volume error statistics 

are reasonably low for all cases except when the links with known volume 

constitute 50% and 60% of the network. 

Comparing the results of the linear programming and maximum entropy 
approaches first note that the replication of available volumes continues to be 
much superior for the linear programming approach. In contrast for the 

maximum entropy approach, the RMSE and MAE sstatistics for link volume 
replication range from 3%-41% and 2%-32%, respectively. Trip table error 
Statistics for this case, clearly indicate the superior performance of the linear 
programming approach. The RMSE (TT) and MAE (TT)are lower for the linear 
programming approach for cases link volume availability. The g error statistic is 

also lower for the linear programming approach for all cases. 

Similar to the patterns observed for Case 3a, if one were to consider the three 
cases of available volumes (50%,60%,70%) then one may conclude that the 
linear programming approach performs far better than the maximum entropy 

approach for these cases. Such a claim is justifiable because the error statistics 
for link volume replication, and g are much lower for the maximum entropy 

74



approach. On the other hand, for the 80%,90% and 100% available link 

volumes, the g, RMSE (Vol) and MAE (Vol) statistics are comparable for the two 

approaches. 

Thus, similar to Case 3a, one may conclude that the linear programming model 

performs much superior than the maximum entropy model for the 50, 60 and 

70% link volume availability cases. For the 80, 90 and 100% link volume while 

the linear programming model continues to perform better, the maximum entropy 

model yields comparable results. 

4.4.4.2 Case 4b: Partial Correct Trip Table (64% Cells with Info.) 

Table 4-31: Partial Correct Trip Table (64% Cells with Info.)    one Paar ae 7 Bg 
      

  

  

i 

0 

0 

0             
  

The linear programming approach reproduces the link volumes and the correct 

trip table for the target trip table shown in Table 4-31 below. These results are 

an obvious improvement over Case 4a. and clearly indicate that with a good 

target information table, the linear programming model performs very well even 

when the link volume information is unavailable for 50% of the links. 
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Table 4-32: Performance of the Linear Programming Approach 

Correct Trip Table (64% Cells with Info.) as a Target 

  

Measures of Error 
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The performance of the maximum entropy approach for this case is shown in 
Table 4-33 below: 

Table 4-33: Performance of the Maximum Entropy Approach 
Correct Trip Table (64% Cells with Info.) as a Target 
  

Measures of Error a 
Ne Usisc | ia pias) Nee 
ie GER 2 eee ee) 

        

   

  

  

  

  

  

  

  

  

        

31.78 
21.26 

53.26 |38.10 [4069 |1261 | 9.47 
27.56 | 18.24 |3537 [5.3 3.6 

31.98 |2207 |2352 | 3.63 2.28 
33.10 |22.41 |2414 |278 1.76     

In contrast to the performance of the linear programming model, the performance 
of the maximum entropy approach is not as good as one would expect it to be 

76



when the trip table provided is quite good. In fact, some surprising results have 

been reported. When the percentage of available volumes is 50% and 60%, the 

performance of the maximum entropy model turns out to be much better with a 

structural table input as compared to Case 4b when 7 cells had the correct trip 

information. Also, one would expect better replication of the link volumes, but as 

the statistics indicate the performance is not so. In fact, for the 50% link volume 

availability case the RMSE and MAE are as high as 29.5%-41.19% respectively. 

Such a high value for the error, with 7 of 11 cells bearing correct information, is 

inexplicable. 

However, the measures of error for closeness to observed volume do show a 

clear monotonic improvement as the link volume information § availability 

increases. The measures of error for trip table deviations, on the other hand, do 

not monotonically improve with increasing link volumes. 

Comparing the linear programming and maximum entropy approaches for Case 

4b, again clearly indicates the superiority of the linear programming approach. 

As found for Case 3c, 3d, and 4a, every error statistic is much lower for the 

linear programming approach for all cases of available link volumes. 

4.4.4.3 Case 4c: Partial Correct Trip Table (82% Cells with Info.) 

The target trip table for this case is shown in Table 4-34 below: 

Table 4-34: Correct Trip Table (82% Cells with Info.) 

    a7ieli1 0 K- ces 
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The performance of the linear programming approach for the target trip table 
shown in Table 4-34 below, is identical to the performance in the previous case. 
The replication of the link volumes is perfect and the output trip table exactly 
matches the correct trip table for the network, as reflected in the O values for the 
RMSE, MAE and 9¢ values for the trip table deviation errors, and similar values 

for the RMSE and MAE of link volume replication errors. 

Table 4-35: Performance of the Linear Programming Approach 
(Correct Trip Table (82% Cells with Info.) as a Target) 
  

Measures of Error 
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The performance of the maximum entropy approach for this case is shown in 
Table 4-36 below: 
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Table 4-36: Performance of the Maximum Entropy Approach 

(Correct Trip Table (82% Cells with Info.) as a Target) 
  

Measures of Error 

% Avail. RMSE % MAE % RMSE % MAE % 

Vols. ae (TT) (Vol)... (Vol) 

1o18) 
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90 

  

  

  

  

          
  

The performance of the maximum entropy approach for Case 4c, is in general 

much superior than the other cases described so far. The upper bound of the 
range of the RMSE, MAE and g statistics for trip table deviation are much lower 

than the other cases. They now vary only between 24%-31%, 13%-21% and 
1388-2350, respectively. However, it may be noted that the measures of error 
for trip table deviation show an increasing trend with increasing link volume 

availability while the statistics for link volume replication errors are decreasing. 
This result is contrary to what one may expect. 

While the results obtained, for this case, with the maximum entropy approach 
are good, they are no where as good as those obtained with the linear 

programming approach. The comparison of the two approaches yields the same 
conclusion as that arrived for Cases 3b, 3c, 4a and 4b, with the linear 

programming approach performing much better than the maximum entropy 

approach. 
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4.4.4.4 Case 4d: Correct Trip Table (100% Cells with Info.) 

The target trip table for this case is the correct trip table for the network and is 
shown in Table 4-37 below: 

Table 4-37: Correct Trip Table (100% Cells with Info.) 

a . F 3 q       maRelee Une 
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0               

As seen in Table 4-38 below, the linear programming model continues to 
replicate the observed volumes and correct trip table exactly. 

Table 4-38: Performance of the Linear Programming Approach 
(Correct Trip Table as a Target) 
     Measures of Error —__ 

% Avail. RMSE% MAE% | RMSE % MAE % 
Wey te Een en ve 

eee 
60 

70 
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The performance of the maximum entropy approach for this case is shown in 
Table 4-39 below: 
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Table 4-39: Performance of the Maximum Entropy Approach 
(Correct Trip Table as a Target) 
  

Measures of Error 
= ¢ ¢ may 3 ; By v # * ¢ . . 4) 

  

  

  

  

  

) 
6 r£e 

88 25.12 15.49 1609 | 9.31 9.75 
stm 24.25 13.00 1390 | 8.25 7.33 

$8 25.37 14.63 1540 | 8.27 7.32 
238 28.98 17.66 1976 | 2.57 1.62 

tm 31.08 20.96 2298 | 2.8 1.72 
se 30.66 21.46 2350 | 4.03 2.69             

Since the correct trip table is used for the target trip table one would expect the 
maximum entropy approach to perform much better than it did for the previous 
cases. As expected, the results obtained with this trip table are indeed the best 
results, among the tests conducted so far. However the output trip table is still 
not very close to the actual table. As seen in Table 4-39 the Statistics for trip 
table error measurements are quite high, considering that the correct trip table 
has been used as the target trip table. This is in contrast with the performance 
of the linear programming approach, which had zero measures of error for the 
same target trip table. Thus for this Case too the linear programming method 
produces much higher quality of results than the maximum entropy approach. 

4.5 Number of Objective Function Resets and Iterations for LPMLV 

The linear programming model LPMLV triggers updating procedures for the 
impedances of links with unknown volumes, whenever the objective function falls 
below a implicitly defined threshold, as described in Chapter 3. For the case 
Studies presented in this Chapter, the number of such updates (r), and the total 
number of iterations completed before termination are shown in Table 4-40. 
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Table 4-40. Number of Objective Function Resets and Iterations for LPMLV 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                          

% Available Volumes 

Target Trip 50% 60% 70% 80% 90% 

Table 

r k r k r k r k r k 

Structural 8 56 8 61 8 35 9 39 9 49 

ns 7 25 8 34 8 30 9 29 9 51 

n7 8 31 8 34 8 30 9 29 9 51 

ng 8 34 {8 93 9g 76 9 45 9 50 

ni1 8 39 9 107 |9 46 8 39 9 52 

s5 8 33 {18 36 9 44 9 40 9 51 

s7 8 28 8 97 9 201 |9 169 |9 48 

s9 8 52 8 53 9 37 9 33 9 52 

si1 8 54.19 55 9 45 9 50 9 72 

cS 8 43 8 28 8 77 9 35 9 52 

C7 8 61 8 77 9 252 |9 174 |9 53 

c9 8 59 8 82 ) 35 |9 39 9 55 

c11 8 83 19 113 |9 56 9 58 9 72 

Legend: 

n5, n7, n9, n11: no information based trip table having 5, 7, 9 and 11 cells 

with information, respectively. 

s5, s7, s9, $11: small error based trip table having 5, 7, 9 and 11 cells 

with information, respectively. 

c5, c7, c9, c11: correct information based trip table having 5, 7, 9 and 11 

cells with information, respectively. 

r = number of updates 

k = number of iterations 

Note that for the all artificial start implementation of Model LPMLV, the initial 

value of the objective function increases with increasing knowledge of availabie 

link volumes. Also, note that the penalty for link volume deviation is the largest 

objective cost coefficient. Furthermore, the final output trip table for all the case 
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runs described so far replicates available link volumes perfectly. Hence the 

difference between the initial and termination values of the objective function is 

likely to be increase as knowledge of available link volumes increases. Thus, 

the objective function resetting mechanism adopted triggers a greater number of 

resets when the knowledge of link volumes increases, as seen in Table 4-40. 

4.6 Comparison of Updating Procedure with a No Impedance Updating 

Methodology 

To investigate the influence of the impedance updating procedures for links with 

unknown volumes, the results of model LPMLV are compared with a case in 

which no cost updating was performed. (Such a no impedance updating 

implementation of the model can easily be adopted by setting the scaling factor 

for the objective functions resetting criteria to be a very large number.) The tests 

used the smaller error trip tables based target tables. Table 4-41 shows the 

comparison. 
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Table 4-41: Comparison of 6 statistic: No Link Cost Update 

Implementation vs. LPMLV 
  

  Available Volumes 
    

Target 50% 60% 70% 80% 90% 
Table 
            

  

  

  

  

   
, No Cost U date 

The results, in general, show that the cost vector updating scheme for objective 
function indeed produces a better quality trip table. 

4.7 Conclusions 

The test results discussed in this chapter are graphically encapsulated in 
Figures 4.2-4.4. Each figure shows the variation of one of the error statistic 
(represented in the z axis) with respect to the different available link volume and 
prior information cases (represented in the xy plane) discussed so far, for each 
model. 

The variation of the ¢ statistic for the linear programming and maximum entropy 
approaches are depicted in Figures 4-2 and 4-3, respectively. In general an 
improving trend is observed for the g Statistic when better quality target table is 
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supplied ranging from no prior information (n5,n7,n9,n11) to correct target tables 

(c5,c7,c9,c11). For each of these 13 target trip tables, in general, both models 

are seen to improve their performance with increasing available link volume 

percentages. Thus the @ statistic is seen to generally decrease for both 

models with the improvement in target table information, and increase in 

percentage of available volumes. 

The variation of the link volume replication error for the maximum entropy 

approach as measured by the MAE(Vol) statistic is depicted in Figure 4-4. For 

the maximum entropy approach, this statistic is seen to improve with increase in 

percentage available link volumes and better target information. The linear 

programming approach perfectly replicates the available link volumes, and the 

MAE(Vol) is zero for all cases of percentage available link volumes and target 

trip tables. 

The figures also serve to illustrate the general superiority of the linear 

programming approach over the maximum entropy approach. Such an inference 

is drawn based on the lower values of the error statistics for the linear 

programming model, as compared to the corresponding values obtained for the 

maximum entropy approach. 
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5. Evaluation using Real Network 

5.1 Introduction 

The previous chapter presented the validation of the linear programming 

approach through tests on an artificial test network. The results indicated that 

the linear programming approach performed very well and was found to be much 

superior than the maximum entropy approach for most cases. This chapter 

presents tests to validate this approach using a real network. 

5.2 Purdue University Network 

The network chosen is the village network of Purdue University, West Lafayette, 

Indiana. it has 16 zones, 43 nodes and 130 links. The network covers an area 

of one square mile and the small size of the network lends itself well for the 

purpose evaluating OD estimation approaches. The network characteristics like 

capacity, free flow speed, etc., required to test the linear programming and 

maximum entropy approaches were available for every link of the network. A trip 

table that was obtained by synthesizing five different approaches, including a 

license plate survey, and believed to be reasonably good by researchers at 

Purdue University (Fricker & Barbour), was available. However, this table on 

user equilibrium assignment did not replicate the observed volumes, and implied 

that this trip table is inconsistent with the observed link volumes. 

One of the characteristics of this network was that the volume to capacity ratios 

were quite low for every link, thus making the updated travel cost on every link 

equal to its free flow cost. To obtain a partial set of link volumes, some of these 

link volumes were assumed to be unknown. While estimating the solution trip 

table using the linear programming approach, the additional information that the 

actual travel costs are the same as the free flow cost was exploited to increase 

the computational efficiency of the solution procedure. The link cost update 

procedures and the objective function cost vector resetting procedures for links 

89



with unknown volumes, as described in Chapter 3, are no more necessary and 

were thus skipped in the models solution procedure. This added to the linear 

programming model’s computational efficiency. 

5.2.1 Target Trip Tables 

The target trip tables used in the tests conducted on this network are primarily of 

four types. Each of these four types contain cell values for all possible trip 

interchanges. Using these four types of trip tables 10 trip tables for the tests 

were derived. These derived tables were partial trip tables that were obtained 

by removing some information from the four types of tables. The extents to 

which information was removed vary from 0%-50% of the total number of 

feasible interchanges. The four types of tables that form the basis for the 

derived tables are described below. 

The structural trip table represents one which has 0-1 values for its cells to 

indicate merely if that trip interchange is feasible or not. The no prior 

information trip table has a uniform value for all feasible interchanges. The 

value contained in the cells corresponding to the feasible interchanges, is equal 

to 27 which represents the average true trip interchange factored by a value of 

0.8. The factor of 0.8 was used in order for the prior trip table to resemble an 

outdated table, which is likely to have lesser total travel in the network. The third 

and fourth types of trip table used as a seed, were relatively close to the 

assumed “true” trip table. They were generated by introducing errors into the 

true trip table using the approach described below: 

P, = Cy (w+ By) (5.1) 

—B inex <B< Bix 

where F, is the target table's ij” cell, C, is the corresponding element in the 

“correct trip table”, yw is the mean cell ratio of target trip table cell to correct trip 

table cell, 6, is a normally distributed cell value error and £,,,, is the bound on 

this error. y was set to be the same for all cell values in a given table. For the 
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third type of target tables we used y =0.8 and B max =9-2. For the fourth type of 
target tables we used y =0.9 and £., =0.2. 

5.3 Test Results 

5.3.1 Case 1: Structural Table 

This case in which the target trip table cell values are either O or 1, the trip table 
constraints for the linear programming approach aim to keep the output trip table 
to be as close to either O or 1 (as the case may be). Since such a target table 
does not carry much information, the linear programming approach does not 
perform very well. The RMSE statistic for trip table replication, for all four cases 
of available link volumes are indeed very high with the minimum being as high 
as 140% (Table 5-1). The MAE statistic for trip table replication is also very 
high, ranging from 80%-89%. However, as explained earlier such a performance 
is only to be expected. 

Table 5-1: Performance of the Linear Programming Approach 

(Structural Table as a Target) 
      

  
    

Measures of Error Rates roe 

—%Avail. RMSE% MAE% == RMSE % _ 
Vo Ces eee 

aD 13713 | 4.96 2.88 
is 14663 |8.94 | 489 
90 14742 | 9.57 5.53 

| lee 12611 | 10.1 5.37 

     
    
  

  

              

The replication of observed volumes, however turns out to be very good. The % 
RMSE error for link volume replication varies from 10.1% (when all link volumes 
are specified) to 4.96% (when only 50% of link volumes are specified. The 
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relatively low values for these measures indicates that the output trip table 
replicates the observed volumes well. Since the link volume error Statistics are 
low, one may attribute the high values for trip table error statistics to the poor 
quality of the target trip table. 

The maximum entropy approach, on the other hand, performs marginally better 
than the linear programming approach. The performance of the maximum 
entropy approach for this case is shown in Table 5-2 below: 

Table 5-2: Performance of the Maximum Entropy Approach 
(Structural Table as a Target) 
     

   
   Measures of Error Rates 

% Avail. RMSE % MAE % ~. RMSE% MAE % 
Viet CMe emp ey 

50 23.1 

70 21.04 

sie 131.66 | 67.98 7250 ‘| 26.87 21.04 

124.41 65.81 7258 =| 21.69 13.64 

    

    

   

  

  

      

              

When compared to the linear programming approach the RMSE, MAE and g for 

trip table deviations are significantly lower for the maximum entropy approach, 
ranging between 124%-134%, 61%-68% and 5938-7258, respectively. 
However, the replication of observed volumes is not as low as those obtained 
with the linear programming approach. As compared to the linear programming 
approach, the RMSE and MAE for link volume deviations are higher for the 
maximum entropy approach, and range between 22%-27% and 14%-23%, 
respectively. 

It must be added here, that the applicability of either model for structural 
information target table case is questionable because of the high values for trip 
table errors for both approaches. 
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5.3.2 Case 2a: Partial No Prior Information Table (60% Cells with Info.) 

This table has 60% of the cells having the value equal to 80% of the sum of all 
true trip interchange values. 

Table 5-3: Performance of the Linear Programming Approach 

(No Prior Information Table (60% Cells with Info.) as a Target) 
  

Measures of Error Rates | 

% Avail. RMSE ee NEN eee ~ ~RMSE% MAE % 

WV feltss eet ere. AtelP e.  GYie))) 

ts 8 

70 

1 

  

  

              

  

The linear programming model shows a substantial improvement, with the 
increased information provided by the target trip table for Case 2a. The 
RMSE(TT) and MAE(TT) values decrease for all cases except the 50% available 
link volume case. However, the values for these statistics continue to remain 
high as seen in Table 5-2. This can be attributed to the poor quality of the target 
table and also to the inconsistency between the observed volumes and the trip 
patterns that are assumed to be correct. 

Note that a monotonically decreasing trend may be observed for the RMSE(TT) 
and MAE(TT) errors, as the available link volumes increase. However, the 
RMSE(Vol) and MAE (vol.) show the reverse trend, i.e., they increase as the 
percentage of available link volumes increase. This could be attributed to errors 
or due to the fact that the link volumes are not consistent with OD flows, and 
inconsistencies with observed link volume data. 
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The performance of the maximum entropy approach for this case is shown in 
Table 5-4 below: 

Table 5-4: Performance of the Maximum Entropy Approach 
(No Prior Information Table (60% Cells with Info.) as a Target) 
  

   
Measures of Error Rates 

% Avail. RMSE% MAE % RMSE % MAE % 
Vols. eb eee : WE aie) 

22.45 

21.74 

89.07 11642 | 24.96 17.53 

eed 177.75 88.81 11612 | 21.42 13.41 

  

     

  

  

      

  

              

The maximum entropy approach performs poorly for Case 2a, as reflected by the 
error statistics described in Table 5-4. In fact, the performance of this approach 
is much worse than it was for Case 1. The table by and large reflects a trend of 
decreasing values for error statistics with increasing link volume information. 

The RMSE(TT) and MAE(TT) values are very high ranging from 178%-209% 
and 89%-94% respectively. The link volume replication error statistics though 
lower than that obtained for Case |, are still quite high with the RMSE(Vol) and 
MAE (Vol) ranging from 21%-28% and 13%-22%, respectively. 

Comparing the results of the two approaches, the superiority of the linear 
programming approach is clear. This conclusion can be drawn based on trip 
table error statistics and link volume replication statistics, which are lower for the 
linear programming approach. 
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5.3.3 Case 2b: Partial No Prior Information Table (80% Cells with Info.) 

This table has 80% of the cells having the value equal to 80% of the sum of all 
true trip interchange values. 

The measures of errors continue to remain high for the linear programming 
approach, as is reflected in Table 5-5 below. As explained earlier this is only to 
be expected as the target trip table does not contain any information that is close 
to the actual trip table, and the “correct” trip table itself does not replicate the 
observed link volumes. As compared to case 2a, the g statistic shows a clear 
improvement for all four cases of available link volumes. The RMSE(TT) and 
MAE(TT) remain in the same range as for case 2a. The replication of observed 
volumes continues to remain good, with the RMSE(Vol) and MAE(Vol.) varying 
between 5%-10% and 3%-6%, respectively. 

Table 5-5: Performance of the Linear Programming Approach 
(No Prior Information Table (80% Cells with Info.) as a Target) 
  

pe ocsures of Error alain ce Sas Ny ay 
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The performance of the maximum entropy approach for Case 2b is shown in the 
Table 5-6 below: 
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Table 5-6: Performance of the Maximum Entropy Approach 
(No Prior Information Table (80% Cells with Info.) as a Target) 
  

   

   
Measures of Error Rates 

Melee RU ae TN ieee “- RMSE% MAE % 
Weret G85. Ge ae el 

50 : 25.02 23.03 

Ae} ; 27.71 21.82 

90 ; ; 26.12 17.78 

21.63 13.61 

    

    
        
  

  

            
  

The measures of trip table errors for the maximum entropy approach, are much 
lower for this case than for Case 2a. In fact, for every case of percentage 
available volumes these errors are lesser than the previous case. The RMSE, 
MAE and 9 statistics for trip table errors now range between 160%-230%, 81%- 
86%, and 9821-10005, respectively. These error measurements are lower than 
the corresponding values of 178%-209%, 81%-86%, and 11459-11848 obtained 
for Case 2a. However, the link volume replication errors are not always lower for 
Case 2b. In fact, except the 70% link volume availability case both RMSE(Vol) 
and MAE(Vol) are lower for Case 2a. 

Comparison of the two approaches allows us to make conclusions similar to that 
made for the previous case . For all cases of available link volumes, it is seen 
that the linear programming approach has lower values for all measures of error. 
However, while this observation permits us to conclude the superiority of the 
linear programming approach over the maximum entropy approach, questions 
about the applicability of either approach still remain because of the high values 
for trip table and link volume error statistics obtained with either approach. 
However, one cannot conclude that either approach is not applicable because 
the “correct trip table” which is the basis for error computations is itself 
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inconsistent with the observed link volumes, and the assumption that this table is 
“correct” or “true” must be treated with some reservation! 

5.3.4 Case 2c: Partial No Prior Information Table (100% Cells with Info.) 

This table has 100% of the cells having the value equal to 80% of the sum of all 
true trip interchange values. Thus the target table for Case 2c has an uniform 
Cell value of 27 for all the feasible trip interchanges. The trip table is complete 
because now all feasible trip interchanges have a target value. Table 5-7 below, 
shows the test results obtained with the linear programming approach. As 
compared to Case 2a and 2b, the values for the errors are the lower for all 
cases of available link volumes. The RMSE deviations range between 106%- 
119%, which correspond to the lowest upper and lower bound values for the 
ranges among all the cases described so far. Similarly, the MAE and g values 
have the smallest range and the least lower and upper limits of the range. The 
link volume replication errors continue to be low. In general, a gradual 
improvement in the quality of results for the linear programming approach can be 
seen from Case 2a to Case 2c. Though the trip table error statistics have 
definitely improved, they are still very high. 

Table 5-7: Performance of the Linear Programming Approach 
(No Prior Information Table (100% Cells with Info.) as a Target) 
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The performance of the maximum entropy approach for Case 2c is shown in the 
Table 5-8 below: 

Table 5-8: Performance of the Maximum Entropy Approach 
(No Prior Information Table (100% Cells with Info.) as a Target) 
  

     

  

Measures of Error Rates 

% Avail. RMSE % MAE % RMSE % . MAE % 

   
   

Vols. (14 eee eVielb A f01)) 
80 22.67 
70 21.13 
sé 133.85 | 69.82 7351 26.39 17.98 

125.00 | 66.23 7300 =| 21.73 13.68 

       

  

  

            

  

  

The maximum entropy approach shows results that are better than that obtained 
for Case 2b. The RMSE(TT) and MAE (TT) now vary between 125%-134% and 
61%-70% which is much lower than the values obtained for cases 2a and 3b. 
The g statistic too, continues to remain low. The values for this statistic are 
also lower than those obtained for cases 2a and 2b. The link volume replication 
errors, however, remain more or less the same as those obtained for previous 
cases. 

The comparison of the maximum entropy and linear programming approaches 
for Case 2c is similar to the relative performance of these models in Case 2a. 
Except for the MAE(TT) for the 50% and 60% link volume availability cases, all 
the other measures of effectiveness for all link volume availability cases are 
lower for the linear programming approach. Thus one may conclude the 
superiority of the linear programming approach for Case 2c. 

The limitations and questions regarding the applicability of either of these 
models, as described earlier, continue to apply. 
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5.3.5 Case 3a: Relatively Small Error Trip Table (60% Cells with Info., 
y =08) 

This trip table has 60% of its cells obtained using y=08 in equation 5-1, and 

the remaining cells are zero. 

This case produces the least values of all the error statistics for the linear 
programming approach, among all the test cases described so far, as seen in 
Table 5-9 below. The trip table cells, however, are still not very close to the 
“correct” trip interchanges, as is reflected in the high values of RMSE(TT), 
MAE(TT) and ¢. The RMSE and MAE of trip table deviations are still high, 

ranging from 103%-106% and 54%-61%, respectively. There is no monotonically 
decreasing pattern with respect to available volumes, observed for any of the 
error statistics. The replication of observed volumes by the output trip table 
continues to remain good as reflected by the low values for the RMSE and MAE 
measures for these parameters. The RMSE(Vol) and MAE(Vol) now range 
between 3%-11% and 3%-5%, respectively. 

Table 5-9: Performance of the Linear Programming Approach 
(Relatively Small Error Trip Table( 60% Cells with Info., y=08 )asa 

Target) 
  

Measures of Error Rates . 

NCE tsetse IN aa ape BV | ay 
We 9 Ghe cee We en 
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70 4.05 
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The performance of the maximum entropy approach for case 3a is shown in the 
table below. 

Table 5-10: Performance of the Maximum Entropy Approach 
(Relatively Small Error Trip Table (60% Cells with Info., y=08 )asa 

Target) 
  

Measures of Error Rates 
% Aveo were, ae rs A * Of a ¥ 

$8211.09 | 92.79 12522 | 23.87 21.35 

eB 228.21 84.23 10252 | 27.08 20.69 

sie 186.11 87.86 11953 | 25.37 17.06 

$e 184.48 | 87.48 11917 | 21.27 13.34 

  

  

            
  

One would expect the maximum entropy approach to yield better results for this 
case of the target trip table than it did for Case 2a. However, this is not found to 
be entirely true. In fact the RMSE(TT) is higher than Case 2a for every case of 
available link volume and the¢ statistic is lower for Case 3a only for the 70% 

link volume available case. On the other hand, the MAE(TT) values are lower in 
Case 3a for all cases of available link volumes. The RMSE, MAE and 9 

Statistics for trip table errors now range between 183%-211%, 84%-93%, and 
10251-12522, respectively. The link volume error statistics have not changed 
much from the previous cases. 

Comparing the results of the linear programming and maximum entropy 
approaches, we first note that the replication of available volumes continues to 
be much superior for the linear programming approach, ranging between 3%- 
11% and 1%-6% for RMSE(Vol) and MAE(Vol), respectively, and 27%-23% and 
22%-13%, respectively, for the maximum entropy approach. Trip table error 
Statistics for this case clearly indicate the superior performance of the linear 
programming approach. The RMSE (TT) and MAE (TT) are lower for the linear 
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programming approach for all cases of link volume availability. The g error 

statistic is also lower for the linear programming approach for all cases. 

Thus one may conclude that the linear programming model performs much 

superior than the maximum entropy model for Case 3a. 

5.3.6 Case 3b: Relatively Small Error Trip Table (80% Cells with Info., 

y=08) 

This trip table has 80% of its cells obtained using wy =08 in Equation 5-1, and 

the remaining cells are zero 

The use of the target trip table for Case 3b yields interesting results for the linear 

programming approach. The lowest measures of errors are obtained for the 

50% link volume availability case. This could be attributed to the inconsistency 

of the “correct” trip table with the observed volumes. The trip table error 

statistics are lower for Case 3b than for Case 3a, except for the 70% available 

link volume case. The RMSE for trip table deviations ranges between 87%- 

106% which is lower than in the corresponding range of 103%-108% obtained 

for Case 3a. The MAE and g for trip table deviations now vary between 46%- 

56% and 6279-7988, respectively. 
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Table 5-11: Performance of the Linear Programming Approach 
(Relatively Small Error Trip Table( 80% Cells with Info., y =08 ) asa 

Target) 

  

Measures of Error Rates 

% Avail’ RMSE % MAE % RMSE % MAE % 
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The performance of the maximum entropy approach for this case is shown in 

Table 5-12 below. 

Table 5-12: Performance of the Maximum Entropy Approach 
(Relatively Small Error Trip Table( 80% Cells with Info., y=08 )asa 

Target) 

  

Measures of Error Rates ek, : 

% Avail. RMSE % MAE % “- RMSE% MAE % 

ee Cie I 

  

  

  

  

          meee 162.83 
  

For 90% and 100% available link volumes, the measures of trip table errors for 

the maximum entropy approach are much lower for this case than for Case 3a. 
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For the other two available link volume cases, Case 3a and Case 3b yield nearly 

the same results. The RMSE(TT), MAE(TT) and ¢ statistics for Case 3b, range 

between 162%-225%, 79%-85% and 9890-10700, respectively. 

Comparison of the two approaches indicates the superior performance of the 

linear programming approach for all cases of link volume availability. In fact, all 

the five measures of errors are much lower for the linear programming approach 

for every case of available link volumes. As discussed for all the cases till now, 

the applicability of either model is questionable, given the high values of the 

error statistics. 

§.3.7 Case 3c: Relatively Small Error Trip Table (100% Cells with Info., 

y =08) 

This trip table has 100% of its cells obtained using y =08 in Equation 5-1, and 

the remaining cells are zero. 

For this target table, the linear programming approach performs much better 

than all the other cases reported thus far. As seen in Table 5-13 below, all the 

error statistics for the linear programming approach are lower than those 

obtained for the previous cases. The RMSE for trip table deviations ranges 

between 76%-103%. The MAE and 9 for trip table deviations are also relatively 

lower, now ranging from 38%-50% and 4667-6936 respectively. The link volume 

replication errors continue to remain low. 
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Table 5-13: Performance of the Linear Programming Approach 
(Relatively Small Error Trip Table( 100% Cells with Info., y =08 ) as a Target) 
  

| Measures of Error Rates 

% Avail. RMSE% MAE % RMSE % Pia Ser 

fe) ioe ere eee el bia) 

50 

rae) 

<6 

100 

  

  

    

  

        
  

Note the nearly monotonically increasing trend of the trip table error statistics 
with increasing knowledge of available link volumes. This trend further supports 
the belief that the available link volumes mey be inconsistent with the “correct” 
trip table. 

The results obtained for Case 3c with the maximum entropy approach are shown 
in Table 5-14 below: 

Table 5-14: Performance of the Maximum Entropy Approach 
(Relatively Small Error Trip Table ( 100% Cells with Info., y =08 ) as a Target) 
  

Measures of Error Rates     
% Avail. uss ae 

vols. TT) 
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The maximum entropy approach shows a significant improvement in its 

performance as compared to the previous case (Case 3b). All the error statistics 

are much lower than the corresponding values obtained for cases 3a and 3b. 

The RMSE, MAE and ¢ statistics for trip table errors now range between 123%- 

142%, 58%-65%, and 5965-7529, respectively. The link volume replication error 

Statistics for this case are in the same range as for the previous case. The 

RMSE(Vol) and MAE(Vol) now range between 21%-26% and 13%-23%, 

respectively 

Comparison of the two approaches once again leads to similar conclusions as 

reached for many of the previous cases. The linear programming approach is 

seen to perform much better than the maximum entropy approach with 

significantly lower values of all measures of errors for every available link 

volume case. However, again note that the error statistics have high values for 

both the models. 

5.3.8 Case 4a: Relatively Small Error Trip Table (60% Cells with Info., 

y=09) 

This trip table has 60% of its cells obtained using y=0.9 in Equation 5-1, and 

the remaining cells are zero. 

The performance of the linear programming approach, with a target table having 

its cells that may be considered to be relatively close to the “correct” cell values, 

is shown in Table 5-15 below. The RMSE and MAE of trip table deviations are 

the least for target tables in which only 60% of the cells have information, among 

the cases described so far. The RMSE, MAE and 9 statistics for trip table errors 

now range between 91%-109%, 47%-58%, and 6948-8557, respectively. The 

link volume replication error statistics, continue to remain low with the 

RMSE(Vol) and MAE(Vol) varying between 4%-11% and 2%-6%, respectively. 
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Table 5-15: Performance of the Linear Programming Approach 
(Relatively Small Error Trip Table( 60% Celis with Info., y =09 ) as a Target) 
  

Measures of Error Rates a 

% Avail. RMSE % MAE % “ . RMSE % MAE % 

felt Gye eee : ee ais) 
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Comparing these error statistics with those obtained for Case 3a indicate that 
the values for Case 4a are lower, except for the 90% available link volume case. 
The inconsistency of the “correct” trip table cell values with the observed link 
volumes is a possible reason for the above observation . 

The test results obtained with the maximum entropy approach for this case are 
shown in the following table. 

Table 5-16: Performance of the Maximum Entropy Approach 
(Relatively Small Error Trip Table( 60% Cells with Info., y=09 ) as a Target) 
  

   

    

Measures of Error Rates 

ee Soa NSE “RMSE % MAE % 
Viele CER epe a (Vol). (Vol) 

      

  

  

len 185.71 
Bemis 183.57 | 87.60 | 11907 | 21.27 | 13.34 
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The RMSE, MAE and g statistics for trip table errors now range between 183%- 

239%, 88%-96%, and 11907-13016, respectively. The link volume error 

statistics vary in the same range as observed for previous cases. An interesting 

observation can be made when we compare cases 3a and 4a. The error values 

turn out to be higher for 4a for all instances of available link volumes except the 

90% availability case. 

For this case again, the linear programming approach is seen to perform much 

better than the maximum entropy approach, with lower values for all measures of 

errors. 

5.3.9 Case 4b: Relatively Small Error Trip Table (80% Cells with Info., 

y=09) 

This trip table has 80% of its cells obtained using y =0.9 in Equation 5-1, and 

the remaining cells are zero. 

From the output of the linear programming approach, as depicted in Table 5-17 

below, several observations can be made. The RMSE(TT) and MAE(TT) now 

very between 78%-107% and 38%-56%, respectively. When comparing these 

ranges with the previous case, one may note that the upper and lower limits of 

the range are lower for case 4b as one would expect. However, one may see 

that Case 4b does not yield better results compared to every corresponding case 

of 4a. To illustrate this consider the 70% and 100% available link volume cases, 

for which the target table of the previous case yields lesser RMSE(TT) and 

MAE(TT) errors. As mentioned earlier, this may well be occurring because of 

the inconsistencies between the observed volumes and the assumed “correct” 

trip table that was used to generate the target trip tables. 
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Table 5-17: Performance of the Linear Programming Approach 
(Relatively Small Error Trip Table( 80% Cells with Info., y =0.9 )asa Target) 
  

Measures of Error Rates 

% Avail. RMSE% MAE % RMSE % MAE % 
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The test results obtained with the maximum entropy approach are described in 
Table 5-18 below: 

Table 5-18: Performance of the Maximum Entropy Approach 
(Relatively Small Error Trip Table( 80% Cells with Info., y=09 ) as a Target) 
  

__ Measures of Error Rates i 

NCIS Us may Neen 
felt GPE eer ee A tal 

50 22.54 

re 20.74 

16) 16.84 

13.29 

        

      
  

              

In contrast to the linear programming approach the maximum entropy approach 
records a significant improvement in its output for Case 4b, as compared to case 
4a. Except for the instance where 50% link volumes are available all the trip 
table error statistics are lower for case 4b. The RMSE, MAE and g Statistics for 

trip table errors now range between 163%-239%, 72%-85%, and 9891-11482, 
respectively. Also, note that a clear monotonically decreasing behavior of the 
error statistics is observed, as the knowledge of available volumes increases. 
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Once again, a comparison of the two approaches reveals that the linear 
programming approach performs much better than the maximum entropy 
approach, with all the error statistics recording a lower value for the LPMLV 
model. Again, note that the error statistics are very high for both approaches. 

5.3.10 Case 4c: Relatively Small Error Trip Table (100% Cells with Info., 
y=09) 

This trip table has 100% of its cells obtained using y=0.9 in Equation 5-1. The 
target table for this case is expected to be closest to the “correct” trip table. And 
hence one would expect the best results from both models. The linear 
programming model shows very interesting results. First, it must be noted that 
the lowest values of the error statistics for all cases of available link volumes are 
obtained with this target table. The RMSE, MAE and g Statistics for trip table 
errors now range between 63%-93%, 30%-49%, and 4041-6602, respectively, 
which represent the least values of the upper and lower bounds among all the 
cases tested. 

Table 5-19: Performance of the Linear Programming Approach 
(Relatively Small Error Trip Table( 100% Cells with Info., y=09 )asa Target) 
  

    

   

Measures of Error Rates 

CaCI TNS Paes | Va 
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4.62           
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Observe that as the percentage of observed link volumes increases all trip table 
errors increase. This again could be attributed to the fact that the “correct” trip 
table is inconsistent with the available link volumes. 

The maximum entropy approach performances also improves as seen in the 
Table 5-20 below: 

Table 5-20: Performance of the Maximum Entropy Approach 
(Relatively Small Error Trip Table( 80% Cells with Info., y=09 ) as a Target) 
  

     

  

Measures of Error Rates 

% Avail. RMSE% MAE % RMSE % MAE % 
Vols. (TT} ane eYsals) (Vol) 

oie} 23.92 21.7 

70 25.91 19.77 

90 25.62 16.94 

100 21.32 13.28 

  

     
  

  

              

The results of the maximum entropy approach show significant improvement 
when compared to case 4b. However, these results are not necessarily the best 
among all the cases tested so far. 

For this test, the RMSE, MAE and 9g statistics for trip table errors now range 

between 127%-135%, 55%-61%, and 5549-6897, respectively, which are much 
lesser than the previous case. Note again that, for this approach too, we do not 

_ get very good results with a target trip table that is close to the true trip table. 
This offers further ground to suspect the inconsistency of the observed link 
volumes with the reported “correct” trip table. 

The comparison of the linear programming and maximum entropy approaches, 
once again shows that the linear programming approach yields superior results. 
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5.4 Conclusions 

The test results discussed in this chapter are graphically encapsulated in 

Figures 5.1-5.4.. 

The variation of the ¢ statistic for the linear programming and maximum entropy 

approaches are depicted in Figures 5-1 and 5-2, respectively. The ¢ statistic is 

seen to have a maximum value occurring with the structural table (struct). A 

gradual improvement is seen with the no prior information based target tables 

(n60, n80, n100). Further improvement is seen when we employ the relatively 

small error tables (s8_60, s8_ 80, s8_100) and (s9_60, s9_80, s9_100) which 

correspond to 60%, 80% and 100% of total trip interchange cell values 

information obtained using y=08 and yw =0.9, respectively. For each of these 

10 target trip tables, the linear programming model is seen to improve its 

performance with decreasing available link volume percentages. This could be 

attributed to errors due to the fact that the link volumes may not be consistent 

with OD flows and inconsistencies with observed link volume data. For the 

maximum entropy approach mixed trends are seen for the variation of the ¢ 

statistic with percentage available link volumes. In general, the linear 

programming approach has lower values for the ¢ statistic, as compared to the 

maximum entropy approach. 

The variation of the link volume replication error for the linear programming and 

maximum entropy approaches as measured by the MAE(Vol) statistic are 

depicted in Figures 5-3 and 5-4, respectively. As seen in the figures, the linear 

programming approach has significantly lower values for this error statistic for 

every test case. 

The figures also serve to illustrate the general superiority of the linear 

programming approach over the maximum entropy approach. Such an inference 

is again based on the lower values of the error statistics for the linear 
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programming model, as compared to the corresponding values obtained for the 

maximum entropy approach. 

116



6. CONCLUSIONS AND RECOMMENDATIONS FOR 
FURTHER RESEARCH 

In this research, a linear programming model for estimating O-D trip tables 

developed at Virginia Tech has been enhanced to accommodate a partial set of 

available link volume data. Its development and solution algorithm have also 

been detailed. The procedure uses an efficient modified column generation 

technique to derive a solution. Extensive tests to validate the model, using both 

artificial and real networks, have also been conducted. Conclusions on the 

model and recommendations for enhancing it are presented below. 

6.1 Conclusions 

The approach developed uses a sequence of linear programs to approximate a 

fundamentally nonlinear optimization problem that is employed to estimate 

origin-destination flows, given incomplete network flow information. The 

procedure utilizes shortest path network flow programming subproblems in order 

to determine a path decomposition of flow that will reproduce the observed flows 

as closely as possible, and that is driven by user equilibrium principles. The 

approach is very efficient, provided that the suggested heuristic procedure is 

adopted to approximately solve the shortest simple path problems, whenever the 

underlying network has negative cost circuits. This method is designed to 

accommodate the case in which it is required to produce a solution that has a 

tendency to match a specified, prior trip table, perhaps from among several 

optimal solutions to the model. 

Extensive tests to validate the model using artificial and real networks are 

reported in Chapters 4 and 5, respectively. These results are also compared 

with the maximum entropy approach which is a popular approach for performing 

similar functions. Sensitivity tests of both the models to various extents of 
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available link volume information as well as to different sets of prior trip tables 

were also carried out to evaluate the performance of these models. 

The tests on the artificial network show that the linear programming approach 

produces good results for almost all cases of prior information (except the 

structural target table) and available link volume percentages. The errors for 

link volume replication and trip table errors turn out to be quite low. In 

comparison with the maximum entropy approach, the linear programming 

approach produces better quality results for most cases of prior information and 

available link volumes. In particular, the performance of the linear programming 

approach turns out to be much superior than the maximum entropy approach for 

the cases where the percentage available link volumes vary from 50%-70%. For 

the 80%-100% available link volume cases, although the performance of both 

models are comparable, the linear programming model continues to be 

marginally superior. 

For the real network of Purdue University, the performances of both the 

approaches are not as good as that obtained for the artificial network. The 

performance of both the models for this network must be viewed with some 

caution, since the reliability of the available “correct” trip table cannot be proved. 

In addition, the inconsistency of this table with the observed link volumes further 

raises the question of reliability of the data. However, these tests have given the 

opportunity to address several issues relevant to the application of synthetic O-D 

estimation models to real networks. Again, in general, the linear programming 

approach proves superior to the maximum entropy approach except when we 

use a structural target trip table. 

The tests indicate, in general, that the performance of both models improve as 

the quality of the target trip table improves. This suggests that these methods 

can be usefully applied in practical cases where an old trip table needs to be 

updated. While the tests do not rule out the possibility of applying these models 

to other scenarios, it serves to provide some understanding on some of the 

pitfalls that one might expect. In particular, the tests clearly highlight the 

118



limitation of applying these models when the lack of a good target table is 

coupled with the unavalibility of a significant amount of link volume information. 

6.2 Recommendations for Further Research 

Tests on a larger real network for which the “true” trip table has been 

established to a good degree of accuracy, need to be done in order to fully test 

the proposed model. This can lead to conlusions on the frue performances of 

the models, and is a litmus test for validating any synthetic O-D estimation 

model. Also, the implementation of an advanced start procedure is expected to 

benefit the performance of the linear programming model. Furthermore, 

additional tests on how well the linear programming approach approximates the 

underlying nonlinear model would establish the accuracy of the sequential linear 

programming approach. 

119



REFERENCES 

Barbour R. and D. J. Fricker [1990], “Balancing Link Counts at Nodes Using a 

Variety of Criteria: An application in Local Area Traffic Assignment’, 

Transportation Research Record, 1220: 33-39. 

R. Barbour, and J. D. Fricker [1993], "Estimating an Origin Destination Table 

Using A Method Based on Shortest Augmenting Paths," Accepted for publication 

in Transportation Research-A, forthcoming. 

Bazaraa, M. S., J. J. Jarvis, and H. D. Sherali [1990], Linear Programming and 

Network Flows, Second Edition, John Wiley & Sons, Inc., New York. 

Beagon, D. F. [1990], “Maximum Entropy Matrix Estimation (ME2),” 

Memorandum, Center Transportation Plannubg Staff, Boston, Massachusetts. 

Brenninger-Gothe, M., K. O. Jornsten, and J. T. Lundgren [1989], “Estimation of 

Origin-Destinition Matrix from Traffic Counts Using Multiobjective Programming 

Formulations,” Transportation Research, 23(B): 257-265. 

Bromage, E. J.[1988], The Highway Emulator - Release 3.0 , Traffic Analysis 

and Design Group, Central Transportation Planning Staff. 

Carey, M., C. Hendrickson and K. Siddharthan [1981], "A Method for Direct 

Estimation of Origin/Destination Trip Matrices," Transportation Science, 

15(1):32-49. ) 

Cascetta, E.[1984], "Estimation of Trip Matrices From Traffic Counts and Survey 

Data: A Generalized Least Squares Estimater," Transportation Research-B, 

18B(4/5): 289-299 

120



Chin, S., H. Hwang and _ T. Pei [1994], “Using Neural Networks to Synthesize 

Origin-Destination Flows in a Traffic Circle’, Paper No. 940353, Transportation 

Research Board, Washington, D.C. 

Dowling, R. G and A. D. May [1984], “Comparison of Small Area O-D Estimation 

Techniques,” unpublished. 

Erlander, S., S. Nguyen, and N. F. Stewart [1979], “ On the Calibration of the 

Combined Distribution--Assignment Model,” Transportation Research, 13(B): 

259-267. 

Fisk, C. S. [1988], “On Combining Maximum Entropy Trip Estimation with User 

Optimal Assignment,” Transportation Research, 22(B): 69-79. 

Fisk, C. S. [1989], “Trip Matrix Estimation from Link Traffic Counts: The 

Congested Network Case,” Transportation Research, 23(B): 331-336. 

Fisk, C. S. and D. E. Boyce [1983], “A note on Trip Matrix Estimation From Link 

Traffic Count Data,” Transportation Research, 17(B): 245-250. 

Gur, J., M. Turnquist, M. Schneider, L. Leblanc and D. Kurth [1980], Estimation 

of an Origin Destination Trip Table on Observed Link Volumes and Turning 

Movements.- Volume 1: Technical Report, FHWA, Rept. FHWA/RD-80/034 

Gaudry, M. and L, Lamarre, (1979), “Estimating Origin-Destination Matrices from 

Traffic Counts: A Simple Linear Intercity Model for Quebec,” The Logistics and 

Transportation Review, 15: 631-642. 

Han, A. F. and R. G. Dowling, E. C. Sullivan, and A. D. May [1981], “Deriving 

Origin-Destinition Information from Routinely Collected Traffic Counts,” Volume 

ll: Trip Table Synthesis for Multipath Networks, RR81-9, Institute for 

Transportation Studies, University of California, Berkeley. 

121



Han, A. F. and E. C.. Sullivan [1983], “Trip Table Synthesis for CBD Networks: 

Evalution of the LINKOD Model,” Transportation Research Record 944: 106- 

112. 

Hogberg, P. [1976], “Estimation of Parameters in Models for Traffic Prediction: A 

Non-Linear Regression Approach,” Transportation Research, 10: 263-265. 

Holm, T. Jensen, S. K. Nielsen, A. Christensen, B. Johnsen and G. Ronby 

[1976], “Calibrating traffic models on traffic census results only,” Traffic 

Engineering and Control, April: 137-140. 

Kennington, J. L., and R. V. Helgason [1980], Algorithms for Network Flow 

Programming, John Wiley and Sons, New York. 

Kurth, D. M. Schneider and Y. Gur [1979], “Small-Area Trip Distribution Model,” 

Transportation Research Record 728:35-40, Washington, D. C. 

Lasdon, L. S. [1970], Optimization Theory for Large Systems, MacMillan. 

Low, D. E. [1972], " A New Approach to Transportation Systems Modeling," 

Traffic Quarterly, 26:391-404 

Maher, M. J. [1983], "Inferences on Trip Matrices From Observations on Link 

Volumes: A_ Bayesian Statistical Approach," Transportation Research, 

17B(6):435-447. 

Murchland, J.. [1977], “The Multi-proportional Problem,” University College, 

London, Reseach Note JDM 263 (Unpublished). 

Nguyen, S. [1977], “Estimating an OD Matrix from Network Data: A Network 

Equilibrium Approach,” University of Montreal Publication No. 60. 

122



Nguyen, S. [1984], “Estimation Origin-Distinition Matrices from Observed 

Flows,” in Transportation Planning Models, Editor: M. Florian, Elsevier Science 

Publishers B.V., Netherlands, 363-380. 

O'Neill, W. A., [1987], “Origin-Destinition Trip Table Estimation Using Traffic 

Counts,” Ph.D dissertation, University of New York ar Buffalo, New York. 

Robillard, P., [1975], "Estimating the O-D Matrix from Observed Link Volumes," 

Transportation Research, 9: 123-128 

Sherali, D., R. Sivanandan and A.G. Hobeika [1994], " A Linear Programming 

Approach for Synthesizing Origin Destination (O-D) Trip Tables from Link Traffic 

Volumes," Transportation Research-B, 28B: 213-233. 

Sherali, D., R. Sivanandan, A.G. Hobeika and A. Narayanan[1994], " Estimating 

Missing Link Volumes in a Traffic Network-A Linear Programming Approach," 

Presentation at the TRB Annual Meeting, Washington, D.C. 

Shewey P. J. H.[1983], “An Improved Algorithm for Matching Partial Registration 

Numbers”, Transportation Research, 17B, 391-397. 

Sivanandan [1991], " A Linear Programming Approach for Synthesizing Origin - 

Destination Trip Tables From Link Traffic Volumes," Ph.D. Dissertation, Virginia 

Polytechnic Institute & State University, Blacksburg, Virginia. 

Turnquist, M., and Y. Gur, [1979], "Estimation of Trip Tables from Observed Link 

Volumes," Transportation Research Record 730: 1-6, Washington D. C. 

Van Vliet, D. and L. G. Willumsen [1981], “Validation of the ME2 Model for 

Estimmating Trip Matrices from Traffic Counts,” Proceeding of the Eighth 

International Symposium on Transportation and Traffic Theory, Editors: V. F. 

Hurdle, E. Hauer and G. M.. Stuart, University of Toronto Press, 640-655. 

123



Van Zuylen, H. J., [1978], "The Information Minimization Method: Validity and 

Applicability to Transport Planning,” in New Developments in Modeling Travel 

Demand and Urban Systems, G. R. H. Jansen et al., eds. Saxon, Farnboroug 

Van Zuylen, H. J., and L. G. Willumsen,[1980], "The Most Likely Trip Matrix 

Estimated from Traffic-Counts," Transportation Reseach-B,14B:291-293. 

Waiting, D. P., and M. J. Maher[1992], “A Statistical Procedure for Estimating a 

Mean Origin-Destination Matrix from a Partial Registration Plate Survey’, 

Transportation Research, B, 26B, 171-193. 

Walting, D. P., and D. R. Grey[1991], “Analysis of Partial Registration Plate Data 

Using a Model with Poisson Input and Output’, Proceedings of the International 

Conference on Mathematics in Transport Planning and Control (held by the 

Institute of Mathematics and Its Applications at the University of Wales College 

of Cardiff, September 1989), Oxford University Press. 

Wills, M. [1977], “Non Linear Estimation of Origin-Destination Flows and Gravity 

Mode! Parameters from Traffic Counts on Links,” Department of Geography, 

University of British Columbia, Mimeographed Notes. 

Willumsen, L. G., [1978], "Estimation of an O-D Matrix from Traffic Counts - A 

Review," Working Paper 99, Institute of Transportation Studies, University of 

Leeds, England. 

Xu, W. and Y. Chan [1993], “Estimating an Origin-Destination Matrix With Fussy 

Weights, Part Il: Case Studies’, Tansportation Planning and Technology, 17: 

145-163. 

Yang, H., T. Akiyama, and T. Sasaki [1992], A Neural Network Approach to the 

Identification of Real Time Origin-Distination from Traffic Counts,” Proceedings 

124



of the International Conference on Artificial Intelligence Application in 

Transportation Engineering, 253-269. 

125



VITA 

Arvind Narayanan was born on May 1, 1970, in Tirunelveli, India. He obtained a 

Bachelor's degree in Civil Engineering from the Indian Institute of Technology, 

Madras. He joined the Masters program in Civil Engineering, specializing in 

Transportation Engineering, at Virginia Tech in Fall 1992. He joined the Virginia 

Tech Center for Transportation Research as a Research Associate in May 1994. 

He intends to pursue a doctoral program in Operations Research. 

  

126


