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(ABSTRACT)

We consider the problems of simulation and control for Burgers’ equation with mixed

boundary conditions. We first conduct numerical experiments to test the convergence and

stability of two standard finite element schemes for various Robin boundary conditions

and a variety of Reynolds numbers. These schemes are used to compute LQR feedback

controllers for Burgers’ equation with boundary control. Numerical studies of these feed-

back control laws are used to evaluate the performance and practicality of this approach

to boundary control of non-linear systems.
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Chapter 1

Introduction

1.1 Introduction

Burgers’ equation is a useful model for physical phenomena involving non-linear wave

propagation subject to dissipation. Although formulated by Burgers to exhibit the essential

features of turbulence in hydrodynamic flows, it is often used in models of such physical

problems as shock flow, traffic flow, acoustic transmission in fogs, air flow over an airfoil,

heat flow through a material, etc. The associated dissipation may arise from viscosity, heat

conduction, chemical reaction, mass diffusion, thermal radiation, or other source. In short,

all problems modeled by Burgers’ equation can be related to an evolutionary process in

which convection and diffusion are in conflict, as was done in [11].
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Burgers’ equation

ut(t, x) + u(t, x)ux(t, x) = εuxx(t, x) + f(t, x) (1.1)

is a quasi-linear parabolic partial differential equation which describes the evolution of the

function u with respect to time. The convective term is the non-linear term, u(t, x)ux(t, x),

and the diffusive term is εuxx(t, x). The forcing function f(t, x) is set to zero to make the

equation homogeneous. Fletcher [11] illustrates the difficulty of computing fluid dynamic

problems which arises from the inability to efficiently balance the non-linear convective term

and the diffusive term. Without the non-linear convective term, equation (1.1) becomes

the linear, parabolic partial differential equation

ut(t, x) = εuxx(t, x) + f(t, x) (1.2)

known as the heat equation. Dropping the diffusive term, equation (1.1) becomes

ut(t, x) + u(t, x)ux(t, x) = f(t, x) (1.3)

which is a hyperbolic partial differential equation modeling the convection of disturbances

in inviscid flow. A typical convecting wave from this equation has points with larger u

convecting faster than points on the wave with smaller u causing the function to take

on more than one value at a future time which is illustrated in [11]. For this reason, it

is necessary to postulate a shock at which u is discontinuous in order to have a unique

solution.
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Fletcher also illustrates the evolution of the solution in which the processes of convection

and diffusion work together. Omitting ut from (1.1), the equation becomes

u(t, x)ux(t, x) = εuxx(t, x) + f(t, x) (1.4)

which is an elliptic partial differential equation. As time progresses, the maximum ampli-

tude of u becomes smaller and the profile steepens. The dissipative term, εuxx, becomes

larger as the steepening occurs. This compensates for the convective term and does not

allow a multivalued solution to develop. With these simplifications, Burgers’ equation fur-

nishes a simple non-linear model for convection/diffusion interactions. By the nature of

Burgers’ equation, many problems can be modeled, approximately or exactly, for different

combinations of initial and boundary conditions.

Pugh [14] uses the finite element method with the Galerkin and the Galerkin/Conservation

forms of Burgers’ equation to approximate solutions to the initial/boundary value problem

(IBVP)

ut(t, x) + u(t, x)ux(t, x) = εuxx(t, x) + f(t, x) (1.5)

u(0, x) = φ(x) (1.6)

ux(t, 0) = ux(t, 1) = 0 (1.7)

where ε = 1
Re

is the reciprocal of the Reynolds number. The Galerkin/Conservation form

of Burgers’ equation changes the non-linear term so that Burgers’ equation is represented
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as

ut(t, x) +
1

2
(u2(t, x))x = εuxx(t, x) + f(t, x). (1.8)

A solution to this IBVP describes the evolution of the function u(t, x) over time, starting

at u(0, x) = φ(x), constrained to the homogeneous Neumann boundary conditions (1.7)

on the closed x-interval [0,1]. The methods show accurate modeling of Burgers’ equation,

when compared to exact solutions, for specific examples of u(t, x) with N=16 elements.

Pugh compares computational results for the Galerkin and Galerkin/Conservation methods

for specific initial conditions and Reynolds numbers. Both methods produce virtually

identical results when both approximations converge to a steady state solution. In a few

examples, however, the Galerkin solution grows exponentially in time despite the convergent

behavior of the Galerkin/Conservation solution. Also, Pugh noted that in many cases

the Galerkin/Conservation method executed faster and was often more accurate than the

Galerkin method.

Pugh’s primary goal was to determine the form of the steady state solutions, i.e. the so-

lutions uss(x) such that u(t, x)→ uss(x) as t→∞, where u(t, x) solves the initial/boundary

value problem (1.5, 1.6, and 1.7). Byrnes, Gilliam, and Shubov [6] proved that for ε > 0

there is a constant k such that uss(x) ≡ C for some constant C as long as ‖φ(x)‖ ≤ kε.

Pugh showed that for the initial function φ(x) = x2(1 − x)2 and the Reynolds number

Re = 10, the finite elements method reproduced the results on page 44 of [6]. How-

ever, some of Pugh’s numerical results (see Examples 3.2.4, 3.3.1, 3.4.2, 3.4.7) illustrated
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phenomena where large initial conditions evolved to steady state solutions which are not

everywhere constant. Also, this same behavior was observed when ε ≈ 0.

Pugh hypothesizes that there may be several reasons for the solutions to converge to a

nonconstant steady state. First, he suggests that the steady state solutions reached may

not be in equilibrium. In other words, the steady state solutions, uss(x), may not satisfy

the steady state equation:

u(x)ux(x)− εuxx(x) = 0 (1.9)

ux(0) = ux(1) = 0. (1.10)

However, in [3], it is shown that all steady state solutions of Burgers’ equation with homo-

geneous Neumann boundary conditions are constant. Thus, the first conjecture is incorrect.

Second, the numerical solution uN(t, x) may not accurately reflect the steady state solution,

uss(x), as t→∞ due to discrepancies in the solutions between the Galerkin methods used.

A final possibility for the numerical solutions converging to a nonconstant steady state

is that there may exist L2 functions, uss(x), that satisfy a weak form of the steady state

equation, but are not in the solution space. All of these results were limited to Neumann

boundary conditions.

Smith [16] explored these same issues for Burgers’ equation with Robin boundary con-

ditions. He viewed Burgers’ equation as a perturbation of the heat equation to model the

flow of heat through a one dimensional rod with a conducting film at each end. Smith

produced similar results to that of Pugh [14]. He investigated two specific problems where
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the exact solution is known and found that the Galerkin and Galerkin/Conservation ap-

proximation methods both produce solutions that converged to the exact solution at a rate

better than ( 1
N

)
1
2 .

Smith also conducted experiments where the Robin boundary conditions are allowed to

approach Dirichlet and Neumann boundary conditions by varying the physical properties

of the rod and films. His results suggest that when the Robin boundary conditions are

allowed to approach the Dirichlet and the Neumann boundary conditions, the solutions

obtained approach the corresponding Dirichlet and Neumann solutions.

Burns and Kang considered a linear regulator problem ([4], [5]) for Burgers’ equation.

Using a linearization of the non-linear equation they compute feedback control laws which

enhance the stability of the solution by requiring a certain fixed exponential decay rate,

which is dependent upon the Reynolds number. The first paper, [4], involves a bounded

input/unbounded output problem (See p.66 of [4]). The second paper, [5], involves an

unbounded input/unbounded output problem. They use LQR theory to obtain linear

feedback control laws and apply them to the non-linear Burgers’ equation. They consider

the following boundary control problem:

ut(t, x) = εuxx(t, x) + αu(t, x), 0 < x < l, t > 0, (1.11)

u(0, x) = uo(x), (1.12)

u(t, 0) = 0, u(t, l) = v(t). (1.13)
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For this boundary control problem, Burns and Kang find a unique feedback functional gain

kα,ε(·) ∈ L2(0, l) such that the feedback control has the form

v(t) = −Kα,εu = −
∫ l

0
kα,ε(s)u(t, s)ds. (1.14)

If the feedback law Kα,ε in equation (1.14) is applied to the boundary control problem for

Burgers’ equation, then the closed-loop controlled Burgers’ equation becomes

ut(t, x) = εuxx(t, x)− u(t, x)ux(t, x), 0 < x < l, t > 0, (1.15)

u(0, x) = uo(x), (1.16)

and

u(t, 0) = 0, u(t, l) = −
∫ l

0
kα,ε(s)u(t, s)ds. (1.17)

In ([4],[5]), they find that for a Reynolds number greater than 60, the open-loop solu-

tion creates a ’steep’ gradient in finite time. This suggests that the convection term,

−u(t, x)ux(t, x), dominates the diffusion term, εuxx(t, x), in Burgers’ equation (1.1). Burns

and Kang show the closed-loop non-linear system is stabilizable by linear feedback laws.

The steep gradients in the finite element model of Burgers’ equation are smoothed out by

the feedback. To test the ’robustness’ of the feedback control law, one experiment is per-

formed. They obtain a specific functional gain from the control system for the Reynolds

number, Re = 60, and apply it to the closed loop system at higher Reynolds numbers.

Although the performance of the control is decreased, the system is still stabilizable and
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the gradients are smoothed. Their numerical results also suggest convergence of the ap-

proximation scheme and provide insight into the possibility of using linear feedback laws

for non-linear distributed parameter systems.

This paper will focus on numerical experiments with specific Robin boundary condi-

tions. We consider LQR boundary control through these mixed boundary conditions. The

linearized system is used to find an optimal LQR control. This control (dependent on

Reynolds number) is then applied to the non-linear Burgers’ equation subject to Robin

boundary conditions. Various initial and boundary conditions will be used to test the

effectiveness of the boundary control.

1.2 Boundary Conditions

There are several types of boundary conditions that may be considered for Burgers’ equa-

tion. In [16], Smith focuses on Robin boundary conditions since they describe the realistic

physics of a system modeled by Burgers’ equation. Smith models a one dimensional rod

of length L with thermal conductivity κ. It is bounded by a thin film at each end with

thicknesses L1, L2 and thermal conductivities κ1, κ2, respectively. The diffusivity of the

rod, ε, is related to the conductivity of the rod by ε = κ
ρc

where ρ is the uniform density of

the rod and c is the specific heat of the rod.
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The Robin boundary conditions for this problem (see [16]) are given by

κ1

L1
u(t, 0)− κux(t, 0) =

κ1

L1
qo(t),

κ2

L2
u(t, L) + κux(t, L) =

κ2

L2
q1(t) (1.18)

where κ1 > 0, κ2 > 0, L1 > 0, L2 > 0, and κ > 0 are real constants. Here, qo(t) and q1(t)

are control inputs. Robin boundary conditions describe the forced change in time of u at

the boundaries. In [16] Smith views these conditions as describing the heating or cooling

of a body through contact with a secondary body, which is in contact with a heat source.

If κ1 and κ2 are zero, then the resulting boundary conditions

κux(t, 0) = 0, κux(t, L) = 0 0 ≤ x ≤ L (1.19)

are known as Neumann boundary conditions. If κ1 and κ2 are zero, then there is no

conduction at the ends of the rod and, therefore, no heat flux out of the ends of the rod.

There is a third and final set of boundary conditions. These conditions result from

setting κ equal to zero in (1.18) so that the equations

u(t, 0) = qo(t), u(t, L) = q1(t) 0 ≤ x ≤ L (1.20)

become what are known as the Dirichlet boundary conditions.

The Neumann boundary conditions (1.19) and the Dirichlet boundary conditions (1.20)

are special cases of Robin boundary conditions (1.18). In the three types of boundary

conditions above, if either qo(t) or q1(t) is identically zero, then the boundary condition is

known as homogeneous.
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Chapter 2

Galerkin Approximations

2.1 Finite Dimensional Approximations

In this section we will start with an introduction to the finite dimensional approximation

schemes we will employ. Precise formulation will follow in later sections. The unit interval

[0, 1] is divided into (N + 1) subintervals [xi, xi+1], each of length h = 1
N+1

, where xi = i
N+1

for i = 0, 1, 2, ..., N + 1. For each i, let hi(x) denote the linear basis function defined as

follows:

ho(x) =


−(N + 1)(x− x1), x0 ≤ x ≤ x1

0, otherwise

(2.1)
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hi(x) =



(N + 1)(x− xi−1), xi−1 ≤ x ≤ xi

−(N + 1)(x− xi+1), xi ≤ x ≤ xi+1

0, otherwise

(2.2)

for 1 ≤ i ≤ N , and

hN+1(x) =


(N + 1)(x− xN), xN ≤ x ≤ xN+1

0, otherwise.

(2.3)

These basis functions will be multiplied by time dependent ‘weights’ in order to approximate

values of the exact solution to Burgers’ equation, u(t, x). The approximate solution can be

written as

uN(t, x) =
N+1∑
i=0

αi(t)hi(x) (2.4)

where each αi(t) is a nodal unknown and hi(x) is the ith linear basis function defined on

[0, 1]. These approximations may be used to develop an N + 2 dimensional time-dependent

system in the weak formulation of Galerkin approximations.

2.2 Weak Form of the Solution and Discretization

In this section, the weak formulation of the Galerkin approximation is developed for in-

homogeneous Robin boundary conditions. Consider the homogeneous Burgers’ equation

(f = 0) defined on the interval [0, 1], with initial condition and inhomogeneous Robin

boundary data given by

ut(t, x) + u(t, x)ux(t, x) = εuxx(t, x) (2.5)
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u(0, x) = φ(x) (2.6)

κ1

L1

u(t, 0)− κux(t, 0) =
κ1

L1

qo(t),
κ2

L2

u(t, 1) + κux(t, 1) =
κ2

L2

q1(t) (2.7)

where ε > 0 is a diffusivity coefficient. If u(t, x) solves the initial/boundary value problem

given by (2.5), then

ut(t, x) + u(t, x)ux(t, x)− εuxx(t, x) = 0 (2.8)

for all (t, x) ∈ R2. Therefore, for j = 0, 1, 2, . . . , N + 1, multiplying on the right by the

piecewise linear basis function hj(x) yields

[ut(t, x) + u(t, x)ux(t, x)− εuxx(t, x)]hj(x) = 0. (2.9)

Integrating equation (2.9) on [0, 1] yields the equation

∫ 1

0
[ut(t, x) + u(t, x)ux(t, x)]hj(x)dx−

∫ 1

0
εuxx(t, x)hj(x)dx = 0. (2.10)

Integrating the term
∫ 1

0 εuxx(t, x)hj(x)dx by parts yields:

∫ 1

0
[ut(t, x) + u(t, x)ux(t, x)]hj(x)dx+

∫ 1

0
εux(t, x)h′j(x)dx− ε(hj(x)ux(t, x))|10 = 0. (2.11)

The approximate solution, uN(t, x), is now substituted for u(t, x) to get the equation

∫ 1

0
[uNt (t, x) + uN(t, x)uNx (t, x)]hj(x)dx+

∫ 1

0
εuNx (t, x)h′j(x)dx− ε(hj(x)uNx (t, x))|10 = 0.

(2.12)

Note from the approximate solution (2.4) that uNt (t, x) =
∑N+1
i=0 α̇i(t)hi(x) and uNx (t, x) =

∑N+1
i=0 αi(t)h′i(x). Hence, substituting these terms into the approximating equation (2.12)
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results in the following:

∫ 1

0

[(
N+1∑
i=0

α̇i(t)hi(x)

)
+

(
N+1∑
i=0

αi(t)hi(x)

)(
N+1∑
k=0

αk(t)h
′
k(x))

)]
hj(x)dx

= −ε
∫ 1

0

(
N+1∑
i=0

αi(t)h
′
i(x)

)
h′j(x)dx+ ε

(
N+1∑
i=0

αi(t)h
′
i(x)

)
hj(x)|10. (2.13)

Rearranging terms so that the linear basis functions are integrated against each other yields

the equation

N+1∑
i=0

[∫ 1

0
hi(x)hj(x)dx

]
α̇i(t) +

N+1∑
i=0

N+1∑
k=0

[∫ 1

0
hi(x)h′k(x)hj(x)dx

]
αi(t)αk(t)

= −ε
N+1∑
i=0

[∫ 1

0
h′i(x)h′j(x)dx

]
αi(t) + ε

N+1∑
i=0

[h′i(1)hj(1)− h′i(0)hj(0)]αi(t). (2.14)

By the definition of the hat functions, hj(0) = 0 for j 6= 0, and hj(1) = 0 for j 6= N+1. Let

mij =
∫ 1
0 hi(x)hj(x)dx and kij = − ∫ 1

0 h
′
i(x)h′j(x)dx for i, j = 0, 1, 2, ...N + 1. With these

terms substituted into equation (2.14), the following equivalent equation results:

N+1∑
i=0

mijα̇i(t) +
N+1∑
i=0

N+1∑
k=0

[∫ 1

0
hi(x)h′k(x)hj(x)dx

]
αi(t)αk(t)

= ε
N+1∑
i=0

kijαi(t) + ε [(N + 1)α0(t)− (N + 1)α1(t)]hj(0)

+ε [−(N + 1)αN (t) + (N + 1)αN+1(t)]hj(1). (2.15)

The approximate solution evaluated at x = 0 and x = 1 yields the following boundary

conditions:

κ1

L1

q0(t) =
κ1

L1

uN (t, 0)− κuNx (t, 0) =

κ1

L1
αN0 (t)− κ[−(N + 1)αN0 (t) + (N + 1)αN1 (t)] (2.16)
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κ2

L2
q1(t) =

κ2

L2
uN (t, 1) + κuNx (t, 1) =

κ2

L2
αNN+1(t) + κ[−(N + 1)αNN (t) + (N + 1)αNN+1(t)]. (2.17)

These equations may be written as

κ1

κL1
[q0(t)− αN0 ] = [(N + 1)αN0 (t)− (N + 1)αN1 (t)]

κ2

κL2

[q1(t)− αNN+1] = [−(N + 1)αNN (t) + (N + 1)αNN+1(t)]. (2.18)

When substituted into the weak formulation, equation (2.15) becomes

N+1∑
i=0

mijα̇i(t) +
N+1∑
i=0

N+1∑
k=0

[∫ 1

0
hi(x)h′k(x)hj(x)dx

]
αi(t)αk(t)

= ε
N+1∑
i=0

kijαi(t) + ε{ κ1

κL1
[q0(t)− αN0 (t)]}hj(0) + ε{ κ2

κL2
[q1(t)− αNN+1(t)]}hj(1). (2.19)

Since (2.19) must be valid for all hj(x), j = 0, 1, 2, ..., N + 1, we obtain the system

[
MN

]



α̇0(t)

α̇1(t)

...

α̇N+1(t)


= ε

[
KN

]



α0(t)

α1(t)

...

αN+1(t)


+ ε[GN ]

 q0(t)

q1(t)

− FN
E (αN (t)). (2.20)

14



The matrix
[
MN

]
= [mij] is commonly known as the mass matrix and has the form

[MN ] =
1

6(N + 1)



2 1 0 0 . . . 0

1 4 1 0 . . . 0

0 1 4 1 . . . 0

...
. . . . . . . . .

...

0 1 4 1

0 . . . 0 1 2


(N+2)×(N+2)

. (2.21)

The matrix
[
KN

]
is known as the stiffness matrix and for this system has the form

[KN ] = (N+1)



−1− κ1

κL1(N+1)
1 0 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 . . . 0

...
. . . . . . . . .

...

0 1 −2 1

0 . . . 0 1 −1− κ2

κL2(N+1)


(N+2)×(N+2)

. (2.22)
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The matrix
[
GN

]
is multiplied on the right by the vector of boundary functions

 q0(t)

q1(t)

,

and has the form

[
GN

]
=



κ1

κL1
0

0
...

... 0

0 κ2
κL2


(N+2×2)

.

The term

N+1∑
i=0

N+1∑
k=0

[∫ 1

0
hi(x)h′k(x)hj(x)dx

]
αi(t)αk(t),

in (2.19) becomes the non-linear term

FN
E (α(t)) =

1

6



−2(α0(t))2 + α0(t)α1(t) + (α1(t))2

−(α0(t))
2 − α0(t)α1(t) + α1(t)α2(t) + (α2(t))2

...

−(αN−1(t))
2 − αN−1(t)αN (t) + αN (t)αN+1(t) + (αN+1(t))

2

−(αN(t))2 + αN (t)αN+1(t) + 2(αN+1(t))2


(N+2)×1

,

and approximates the non-linear term in Burgers’ equation, u(t, x)ux(t, x). This term

complicates the computational solution for large values of N, [14].

The mass matrix
[
MN

]
is known to be nonsingular. Therefore, the matrix equation

may be written as

α̇N (t) = [AN
ε ]αN(t) + [BN

ε ]q(t)−FNE (α(t)) (2.23)
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where

[AN
ε ] = ε[MN ]

−1
[KN ],

[BN
ε ] = ε[MN ]

−1
GN ,

FNE (α(t)) = [MN ]
−1
FN
E (α(t)),

and

q(t) =

 q0(t)

q1(t)

 .

2.3 Initial Condition and Forcing Function

Let

φN (x) =
N+1∑
i=0

φihi(x) ≈ φ(x)

denote the best approximation of the initial data φ(x). It is well known (see [10]) that

< φN(·)− φ(·), hj(·) >L∈(0,1)= 0

for each j = 0, 1, 2, . . . , N + 1. Hence, for all j = 0, 1, 2, . . . , N + 1

∫ 1

0
φN (x)hj(x)dx =

∫ 1

0
φ(x)hj(x)dx, (2.24)

or equivalently, ∫ 1

0

(
N+1∑
i=0

φihi(x)

)
hj(x)dx =

∫ 1

0
φ(x)hj(x)dx. (2.25)
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Therefore,

[MN ]



φ0

φ1

...

φN+1


=



< φ(·), h0(·) >

< φ(·), h1(·) >
...

< φ(·), hN+1(·) >


(2.26)

and 

φ0

φ1

...

φN+1


= [MN ]−1



< φ(·), h0(·) >

< φ(·), h1(·) >
...

< φ(·), hN+1(·) >


(2.27)

Since uN (0, x) =
∑N+1
i=0 αi(0)hi(x) = φN (x) =

∑N+1
i=0 φihi(x), we obtain the initial condition

α0(0)

α1(0)

...

αN+1(0)


=
[
MN

]−1



< φ(·), h0(·) >

< φ(·), h1(·)
...

< φ(·), hN+1(·) >


=



φ0

φ1

...

φN+1


= φNo . (2.28)

The system becomes the (N+2) dimensional initial value problem

α̇N (t) = [AN
ε ]αN(t) + [BN

ε ]q(t)−FNE (α(t)) (2.29)

αN (0) = φNo . (2.30)
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Note that if the Burgers’ equation is not homogeneous (f(t, x) 6= 0), then equation (2.29)

is modified by adding the term

fN (t) =
[
MN

]−1



< f(t, x), h0(x) >

< f(t, x), h1(x)

...

< f(t, x), hN+1(x) >


(2.31)

to the right hand side.

2.4 Galerkin/Conservation Form

The weak formulation for Galerkin/Conservation form of Burgers’ equation, ([10],[14]) will

be performed following the same format for the weak formulation of the Galerkin approxi-

mation. Consider the Galerkin/Conservation form of the homogeneous Burgers’ equation

given by

ut(t, x) +
1

2
(u2(t, x))x = εuxx(t, x). (2.32)

Following the method in [14], for j = 0, 1, 2, . . . , N+1, multiplying by hj(x) and integrating

we get ∫ 1

0
[ut(t, x) +

1

2
(u2(t, x))x]hj(x)dx =

∫ 1

0
εuxx(t, x)hj(x)dx. (2.33)

Integrating the term
∫ 1

0 εuxx(t, x)hj(x)dx by parts yields

∫ 1

0
[ut(t, x) +

1

2
(u2(t, x))x]hj(x)dx = −

∫ 1

0
εux(t, x)h′j(x)dx+ ε(ux(t, x))hj(x)|10. (2.34)
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In addition to the approximate solution

uN(t, x) =
N+1∑
i=0

αi(t)hi(x), (2.35)

for u(t, x), the following approximate solution for u2(t, x) is introduced:

[uN(t, x)]2 =
N+1∑
i=0

(αi(t))
2hi(x). (2.36)

Substituting (2.36) into equation (2.34) for (u2(t, x))x gives

∫ 1

0
{uNt (t, x)+

1

2
[(uN(t, x))2]x}hj(x)dx = −ε

∫ 1

0
uNx (t, x)h′j(x)dx+ε(uNx (t, x))hj(x)|10. (2.37)

Note that [(uN(t, x))2]x =
∑N+1
i=0 (αi(t))2h′i(x). Also, as before uNt (t, x) =

∑N+1
i=0 α̇i(t)hi(x)

and uNx (t, x) =
∑N+1
i=0 αi(t)h

′
i(x). Making the appropriate substitutions into equation (2.37)

results in the following discretized equation:

∫ 1

0
{
N+1∑
i=0

α̇i(t)hi(x) +
1

2

N+1∑
i=0

(αi(t))
2h′i(x)}hj(x)dx =

−ε
∫ 1

0

N+1∑
i=0

αi(t)h
′
i(x)h′j(x)dx+ ε

N+1∑
i=0

αi(t)h
′
i(x)hj(x)|10. (2.38)

Rearranging terms in (2.38) as in Section 2.2, yields

N+1∑
i=0

[∫ 1

0
hi(x)hj(x)dx

]
α̇i(t) +

1

2

N+1∑
i=0

[∫ 1

0
h′i(x)hj(x)dx

]
(αi(t))

2

= ε
N+1∑
i=0

[
−
∫ 1

0
h′i(x)h′j(x)dx

]
αi(t) + ε

N+1∑
i=0

[h′i(1)hj(1)− h′i(0)hj(0)]αi(t). (2.39)

Performing the same boundary condition substitution and integral substitutions used in

Section 2.2, equation (2.39) becomes
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N+1∑
i=0

mijα̇i(t) +
N+1∑
i=0

dij(α̇i(t))
2

= ε
N+1∑
i=0

kijαi(t) + ε [(N + 1)α0(t)− (N + 1)α1(t)]hj(0)

+ε [−(N + 1)αN (t) + (N + 1)αN+1(t)]hj(1) (2.40)

where dij = 1
2

∫ 1
0 h
′
i(x)hj(x)dx and mij, kij are the same as in Section 2.2. In matrix form,

equation (2.40) is equivalent to

[
MN

]



α̇0(t)

α̇1(t)

...

α̇N+1(t)


+
[
DN

]



(α0(t))2

(α1(t))2

...

(αN+1(t))2


= ε

[
KN

]



α0(t)

α1(t)

...

αN+1(t)


+ε[GN ]

 q0(t)

q1(t)

 . (2.41)

The matrix
[
DN

]
has the form

[
DN

]
= [dij] =

1

4



−1 1 0 0 . . . 0

1 0 1 0 . . . 0

0 −1 0 1 . . . 0

...
. . . . . . . . .

...

0 −1 0 1

0 . . . 0 −1 1


(N+2)×(N+2)

.
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The matrices
[
MN

]
,
[
KN

]
, and [GN ] are the same as in Section 2.2. Equation (2.41) may

be written as

[
MN

]



α̇0(t)

α̇1(t)

...

α̇N+1(t)


+ FN

D (α(t)) = ε
[
KN

]



α0(t)

α1(t)

...

αN+1(t)


+ ε[GN ]

 q0(t)

q1(t)

 (2.42)

where the term FN
D (α(t)) in equation (2.42) comes from the matrix product

[
DN

]



(α0(t))2

(α1(t))2

...

(αN+1(t))2


. (2.43)

Carrying out this multiplication yields

FN
D (α(t)) =

1

4



(α1(t))2 − (α0(t))2

(α2(t))2 − (α0(t))2

(α3(t))2 − (α1(t))2

...

(αN+1(t))2 − (αN−1(t))2

(αN+1(t))2 − (αN(t))2



(2.44)

which is related to the non-linear term FN
E (α(t)) in the Galerkin approximation. Again,[

MN
]

is invertible so that equation (2.42) may be multiplied on the left by
[
MN

]−1
to
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obtain the system

α̇N (t) = [AN
ε ]αN(t) + [BN

ε ]q(t)−FND (α(t)) (2.45)

where [AN
ε ] and [BN

ε ] are defined as before and FND (α(t)) =
[
MN

]−1
FN
D (α(t)). The initial

condition, αN (0) = φNo , for this problem is equivalent to the one generated in Section 2.2.

Also, if the forcing function f(t, x) is not identically zero, then fN (t) (defined in section

2.2) must be added to the right hand side of equation (2.45).

The initial value problems for the Galerkin and Galerkin/Conservation methods were

initially set up in MATLAB by Marrekchi [12] and duplicated by Pugh [14], both for

homogeneous Neumann boundary conditions, κ1

L1
= κ2

L2
= 0. The system was solved using

the MATLAB ordinary differential equation solver ODE45 for various conditions. Smith,

in his paper [16], repeated this process for Robin boundary conditions. The inhomogeneous

Robin boundary system is completely regenerated in this paper and coded in MATLAB

for the purpose of conducting control experiments.
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Chapter 3

Control Experiments

In this chapter, boundary control experiments are performed on Burgers’ equation with

Robin boundary conditions. First, Example (3.2.1) in [16] is repeated to test the conver-

gence of the numerical schemes to the exact solution for a specific initial boundary value

problem. Then, closed loop and open loop systems are simulated with several initial func-

tions for a specific rod and films. The gain from these experiments is saved and used in

other experiments. Next, Example (3.5.1) from [16] is used to run control experiments on

boundary conditions that approach Neumann and Dirichlet boundary conditions. Also,

experiments are performed by varying a weighting constant which affects the amount of

control imposed on a system. The final set of tests are analogous to those run by Burns and

Kang in [5]. For a copper rod with aluminum films, ε = 1.14, the optimal feedback gain

matrix, K1.14 is generated. It is then used to control closed loop systems whose ε is less
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than 1.14. Comparisons are made between the closed loop systems with optimal control

and those with the control, u1.14(t) = −K1.14α(t). Similarly, for various Reynolds numbers,

a comparison is made between closed loop systems with optimal control and closed loop

systems with the control u.939(t) = −K.939α(t).

3.1 Convergence of the Galerkin and

Galerkin/Conservation Methods

Before turning to the control problem, we tested the MATLAB code for both the Galerkin

and the Galerkin/Conservation methods. The purpose of this exercise is to compare our

numerical results to those produced by Marrekchi [12], Pugh [14], and Smith [16].

In order to measure the numerical error introduced by the approximation scheme, the

exact solution of the following initial/boundary value problem is computed by choosing

f(t, x) appropriately. We solve the system

ut(t, x) + u(t, x)ux(t, x)− εuxx(t, x) = f(t, x)

u(0, x) = Ax2 +Bx+ C − sin2( π
100
x)

u(t, 0)− κL1

κ1
ux(t, 0) = 0, u(t, 100) + κL2

κ2
ux(t, 100) = 0

(3.1)

by setting

u(t, x) = e−βt[Ax2 +Bx+ C − sin2(
π

100
x)] (3.2)

and substituting u(t, x) into the equation and boundary conditions to compute f(t, x) along
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with A, B, and C. This is done in Section 3.2 of [16]. Here, we find that

f(t, x) = −(β[Ax2 +Bx+ C + sin2(
π

100
x)] + ε[2A+ 2

π2

1002
(cos2(

π

100
x)− sin2(

π

100
x))])e−βt

+[Ax2 +Bx+ C + sin2(
π

100
x)][2Ax+B + 2

π

100
sin(

π

100
x) cos(

π

100
x)]e−2βt,

A =
100κ1κ2 + κκ2L1 + κκ1L2

250, 000
,

B = −1002κ1κ2 + 200κκ1L2

250, 000
,

and

C = −1002κκ2L1 + 200κ2L1L2

250, 000
.

Smith [16] shows that the numerical solution converges to the exact solution propor-

tionally to ( 1
N

)
1
2 . The rod is chosen to be one meter of copper and the films are each ten

centimeters of aluminum. The Reynolds number (Re = 1
ε
) for this experiment is .8805 and

β = .3. Figures 3.1.1, 3.1.2, and 3.1.3, show the convergence of the Galerkin numerical

solutions to the exact solution (3.2) for the initial/boundary value problem (3.1). Simi-

larly, Figures 3.1.4, 3.1.5, and 3.1.6, show the convergence of the Galerkin/Conservation

numerical solutions to the exact solution (3.2) for the initial/boundary value problem (3.1).

Clearly, both methods converge to the exact solution. The results for this example are

the same as those in [16]. The Galerkin/Conservation method is computationally faster

and is used throughout the rest of the experiments with boundary control.
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Figure 3.1.1: The Galerkin solution for N = 4 versus the exact solution.
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Figure 3.1.2: The Galerkin solution for N = 8 versus the exact solution.
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Figure 3.1.3: The Galerkin solution for N = 16 versus the exact solution.
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Figure 3.1.4: The Galerkin/Conservation solution for N = 4 versus the exact solution.
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Figure 3.1.5: The Galerkin/Conservation solution for N = 8 versus the exact solution.
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Figure 3.1.6: The Galerkin/Conservation solution for N = 16 versus the exact solution.
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3.2 LQR Control Problem

In this section, we use the Galerkin/Conservation method to compute LQR controllers.

These controllers are used as boundary control on the system (2.45). Open loop and closed

loop responses are generated for various initial conditions, Reynolds numbers, and mixed

boundary conditions. These experiments are used to analyze the decay of the solutions

toward the zero steady state.

Linear-Quadratic Regulator (LQR) design for finding a control is discussed in [13].

This design is used by Olds [13] to test the stability of the steady-state LQR solution for

a two-dimensional airfoil. Consider the system

ẋ(t) = ANx(t) +BNu(t), x(0) = xo (3.3)

where x(t) is the state vector and u(t) is the control vector. The goal of LQR theory is to

find a control u∗(t) that minimizes the weighted performance measure

min
u
J =

∫ ∞
0
{〈QNx(t), x(t)〉+ 〈Ru(t), u(t)〉}dt (3.4)

where x(t) is the solution of (3.3). Here QN = [QN ]T ≥ 0 and R = RT > 0 are weighting

matrices. It is well known that if an optimal control u∗(t) exists, it has the form

u∗(t) = −Kcx(t), (3.5)

where Kc is a constant gain matrix. Moreover, the closed loop system

ẋ(t) = ANx(t)−BNKcx(t) = (AN −BNKc)x(t) (3.6)

31



is stable.

A system is stabilizable if there exists a state feedback control, u = −Kcx, such that

the closed loop system (3.6) is exponentially stable. This means that there exists an M > 0

and a γ > 0 such that if x(t) is the solution to the closed loop system with x(0) = xo, then

‖ x(t) ‖≤Me−γt ‖ xo ‖ . (3.7)

If such a Kc exists, then (3.3) is said to be stabilizable. If the system is stabilizable, then

the LQR problem has a solution.

Existence and Stability of the Steady-State LQR Solution: Given the LQR problem

withRN > 0, and QN = CTC, where the pair (AN , C) is detectable and the pair (AN , BN) is

stabilizable, it follows that a solution to the steady-state LQR problem exists. In particular,

there exists a unique positive semidefinite solution, P , to the algebraic Riccati equation

0 = [AN ]TP + P [AN ] +Q− P [BN ][RN ]−1[BN ]TP, (3.8)

and if

Kc = [RN ]−1[BN]TP , (3.9)

then the closed loop system (3.6) is asymptotically stable.

3.3 Boundary Control of the Nonlinear System

As in ([4], [5]), LQR theory is used on the non-linear Burgers’ equation in order study the

effectiveness of the optimal control. The focus of this research is boundary control with
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Robin boundary conditions.

The IBVP which is considered for these experiments is the following:

ut(t, x) + u(t, x)ux(t, x) = εuxx(t, x)

u(0, x) = φ(x)

u(t, 0)− κL1

κ1
ux(t, 0) = qo(t), u(t, L) + κL2

κ2
ux(t, L) = q1(t)

(3.10)

where κ1 = κ2, L1 = L2, and ε = κ
ρc

. The functions qo(t) and q1(t) are the control

functions. In the following examples, the Galerkin/Conservation system is used for the

control experiments. We view the non-linear terms FND (α(t)) as unmodeled dynamics. The

following time dependent ODE system is considered:

α̇N (t) = [AN
ε ]αN(t) + [BN

ε ]q(t)−FND (α(t)) (3.11)

αN (0) = φNo (3.12)

where [AN
ε ] and [BN

ε ] depend upon ε. The linearization (about u = 0) of equation (3.11) is

α̇N (t) = [AN
ε ]αN(t) + [BN

ε ]q(t) (3.13)

and it is used to find the optimal feedback gain matrix Kε, such that the feedback law

q∗(t) = −Kεα
N(t) (3.14)

minimizes the weighted cost function

J(q) =
∫ ∞

0
{〈QNαN (t), αN (t)〉+ 〈Rq(t), q(t)〉}dt. (3.15)
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The matrix [QN] is chosen to be the mass matrix, [MN ], the matrix R is chosen to be

R =

 r 0

0 r

 ,

where r > 0 is a real constant. The vector

q(t) =

 qo(t)

q1(t)

 (3.16)

is the control vector. For an open loop system, there is no control imposed on the system,

thus qo(t) = q1(t) = 0. The LQR control toolbox in MATLAB is used to calculate the

optimal feedback gain matrix, Kε, for a selected, weighted (r > 0) cost function.

The form of the open loop systems is

α̇N (t) = [AN
ε ]αN (t)−FND (α(t)) (3.17)

and the form of the closed loop systems is

α̇(t)N (t) = ANα(t)−BNKεα(t)−FND (α(t))

= (AN −BNKε)α(t)−FND (α(t))

= ANε α(t)−FND (α(t)) (3.18)

The Galerkin/Conservation form of the numerical approximations for (3.17) and (3.18) is

programmed in MATLAB in order to run the open loop and closed loop simulations. The

parameters chosen are obtained from Smith’s Table 1.2.1, [16].
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3.3.1 Response to Various Initial Conditions

The purpose of the following experiment is to investigate performance for fixed boundary

conditions and various initial conditions. The weighting constant, r, for the LQR cost

function (3.4) is chosen to be .005. The gain matrix for a ten centimeter copper rod

with one centimeter aluminum films at each end is calculated by the LQR.M function in

MATLAB. It is denoted as K1.14, since ε ≡ κ
ρc

= .93
(8.9)(.092)

= 1.14 for a copper rod. This

gain is used to run closed loop simulations where the controls are at the boundaries of the

rod.

The optimal controllers have the form

qo(t) = −
∫ 1

0
koε (s)u(t, s)ds (3.19)

qo(t) = −
∫ 1

0
k1
ε (s)u(t, s)ds (3.20)

where koε (s) and k1
ε (s) are the functional gains. We consider the boundary control problem

given by the Robin boundary conditions

κ1

L1
u(t, 0)− κux(t, 0) =

κ1

L1
qo(t)

κ2

L2

u(t, L) + κux(t, L) =
κ2

L2

q1(t) (3.21)

with κ1 = κ2 = .55, L1 = L2 = 1cm, and κ = .93 (see Table 1.2.1 in [16]).

Figure 3.3.1 shows the functional gains for a ten centimeter copper rod with one cen-

timeter aluminum films at each end. The functional gain represents the amount of ’control’

each controller applies to a point along the rod. The controller on the left end of the rod is
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represented by qo(t) and the controller on the right end of the rod is represented by q1(t).

The functional gains converge to a continuous function as the number of elements in the

numerical approximation, N, approaches infinity.

Figures 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6, and 3.3.7 show open loop and closed loop simu-

lations for periodic initial functions Ao sin( π
10
x), Ao cos( π

10
x), and Ao sin(2π

10
x) with Ao = 1

4
.

The number of elements used for the numerical approximation is sixteen. Both the open

loop and closed loop solutions decay toward the steady state value of zero. However, the

closed loop solutions decay to the steady state solution at a faster rate. Similar results

occur when the amplitude is increased to Ao = 1
2

and Figures 3.3.8, 3.3.9, 3.3.10, 3.3.11,

3.3.12, and 3.3.13 show the response for this case.

When the amplitude is increased even more, the ’shock’ wave associated with Burgers’

equation becomes more visible in the open loop runs. Figures 3.3.14, 3.3.16, 3.3.18, 3.3.20,

3.3.22, and 3.3.24 contain the open loop responses for the cases Ao = 1 and Ao = 2.

The corresponding closed loop responses are given in Figures 3.3.15, 3.3.17, 3.3.19, 3.3.21,

3.3.23, and 3.3.25, respectively. The effects of the boundary controls are enhanced as a

result of the increase in the amplitude of the initial functions. Note, specifically in Figure

3.3.15, how far the function is driven below zero at the boundaries by the control.

Finally, the amplitude of the initial function is set to Ao = 10. In Figures 3.3.26 and

3.3.28, there is a clearly defined ’shock’ traveling toward the right end of the rod. In

Figures 3.3.30 and 3.3.32, there are two shock waves which travel to the center of the rod.
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Figure 3.3.27 is the closed loop response for uo(x) = 10 sin( π
10
x). The closed loop system is

changing rapidly in the first two seconds of the simlulation and sixteen elements does not

model the change accurately. Increasing the number of approximating elements to N = 64

and, then, closing the loop results in Figure 3.3.29. The effects of the control are more

visible with the increase in N. In Figures 3.3.31 and 3.3.33, N is still 64.

The response to an initial function of the form Ao cos( π
10
x) or Ao sin(2π

10
x) stabilizes

faster than the closed loop system with an initial function of the form Ao sin( π
10
x).
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Figure 3.3.1: Functional gains, r = .005, for a 10cm Cu rod with 1cm Al films
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Figure 3.3.2: 10cm Cu rod, 1cm Al films, uo(x) = 1
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sin( π
10
x), N = 16
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Figure 3.3.3: 10cm Cu rod, 1cm Al films, uo(x) = 1
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sin( π
10
x), N = 16
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Figure 3.3.4: 10cm Cu rod, 1cm Al films, uo(x) = 1
4

cos( π
10
x), N = 16
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Figure 3.3.5: 10cm Cu rod, 1cm Al films, uo(x) = 1
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cos( π
10
x), N = 16
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Figure 3.3.6: 10cm Cu rod, 1cm Al films, uo(x) = 1
4

sin(2π
10
x), N = 16
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Figure 3.3.7: 10cm Cu rod, 1cm Al films, uo(x) = 1
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sin(2π
10
x), N = 16
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Figure 3.3.8: 10cm Cu rod, 1cm Al films, uo(x) = 1
2

sin( π
10
x), N = 16
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Figure 3.3.9: 10cm Cu rod, 1cm Al films, uo(x) = 1
2

sin( π
10
x), N = 16
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Figure 3.3.10: 10cm Cu rod, 1cm Al films, uo(x) = 1
2

cos( π
10
x), N = 16
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Figure 3.3.11: 10cm Cu rod, 1cm Al films, uo(x) = 1
2

cos( π
10
x), N = 16
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Figure 3.3.12: 10cm Cu rod, 1cm Al films, uo(x) = 1
2

sin(2π
10
x), N = 16
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Figure 3.3.13: 10cm Cu rod, 1cm Al films, uo(x) = 1
2

sin(2π
10
x), N = 16
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Figure 3.3.14: 10cm Cu rod, 1cm Al films, uo(x) = sin( π
10
x)
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Figure 3.3.15: 10cm Cu rod, 1cm Al films, uo(x) = sin( π
10
x), N = 16

45



0

2

4

6

8

10 0
1

2
3

4
5

−1

−0.5

0

0.5

1

Position, x(cm) Time, t(sec)

u(
t,x

)

Open Loop

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Position, x(cm)

u(
t,x

)

Numerical Solution at T(sec) = 0(−), 0.5(−.), 1(−), 2(−.), 3(−), 4(−.), 5(−)

Figure 3.3.16: 10cm Cu rod, 1cm Al films, uo(x) = cos( π
10
x), N = 16
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Figure 3.3.17: 10cm Cu rod, 1cm Al films, uo(x) = cos( π
10
x), N = 16
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Figure 3.3.18: 10cm Cu rod, 1cm Al films, uo(x) = sin(2π
10
x), N = 16
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Figure 3.3.19: 10cm Cu rod, 1cm Al films, uo(x) = sin(2π
10
x), N = 16
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Figure 3.3.20: 10cm Cu rod, 1cm Al films, uo(x) = 2 sin( π
10
x), N = 16
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Figure 3.3.21: 10cm Cu rod, 1cm Al films, uo(x) = 2 sin( π
10
x), N = 16
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Figure 3.3.22: 10cm Cu rod, 1cm Al films, uo(x) = 2 cos( π
10
x), N = 16
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Figure 3.3.23: 10cm Cu rod, 1cm Al films, uo(x) = 2 cos( π
10
x), N = 16
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Figure 3.3.24: 10cm Cu rod, 1cm Al films, uo(x) = 2 sin(2π
10
x), N = 16
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Figure 3.3.25: 10cm Cu rod, 1cm Al films, uo(x) = 2 sin(2π
10
x), N = 16
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Figure 3.3.26: 10cm Cu rod, 1cm Al films, uo(x) = 10 sin( π
10
x), N = 16
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Figure 3.3.27: 10cm Cu rod, 1cm Al films, uo(x) = 10 sin( π
10
x), N = 16
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Figure 3.3.28: 10cm Cu rod, 1cm Al films, uo(x) = 10 sin( π
10
x), N = 64
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Figure 3.3.29: 10cm Cu rod, 1cm Al films, uo(x) = 10 sin( π
10
x), N = 64
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Figure 3.3.30: 10cm Cu rod, 1cm Al films, uo(x) = 10 cos( π
10
x), N = 64
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Figure 3.3.31: 10cm Cu rod, 1cm Al films, uo(x) = 10 cos( π
10
x), N = 64

53



0

2

4

6

8

10 0
1

2
3

4
5

−10

−5

0

5

10

Position, x(cm) Time, t(sec)

u(
t,x

)

Open Loop

0 1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Position, x(cm)

u(
t,x

)

Numerical Solution at T(sec) = 0(−), 0.5(−.), 1(−), 2(−.), 3(−), 4(−.), 5(−)

Figure 3.3.32: 10cm Cu rod, 1cm Al films, uo(x) = 10 sin(2π
10
x), N = 64
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Figure 3.3.33: 10cm Cu rod, 1cm Al films, uo(x) = 10 sin(2π
10
x), N = 64
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3.3.2 Varying the Weighting Constant, r > 0

In order to study its effects on the control imposed on a system, the weighting constant,

r > 0, is varied for two specific systems. The first system considered is from Example 3.5.3

in [16]. The rod is one meter of aluminum with a ten meter iron film at each end. From

Table 1.2.1 in [16] κ1 = κ2 = .124, L1 = L2 = 1000cm, κ = .55, and ε = .55
(2.7)(.217)

= .939.

The initial function is uo(x) = .4 cos( π
100
x). Figure 3.3.34 shows the open loop solution.

Note that the boundary conditions approximate Neumann boundary conditions. This

means ux is approximately zero at the boundaries for the open loop system. This keeps

the solutions nearly horizontal at the boundaries.

Figures 3.3.36, 3.3.38, 3.3.40, 3.3.42, 3.3.44, 3.3.46, and 3.3.48 show the closed loop

responses with the weighting constants decreasing from 5 to 5 × 10−6 in powers of ten.

Figures 3.3.35, 3.3.37, 3.3.39, 3.3.41, 3.3.43, 3.3.45, and 3.3.47 show the corresponding

functional gains. The gain matrix for this system is denoted K.939, since ε = .939 for an

aluminum rod. As r is divided by ten, the maximum of the functional gain is four to five

times greater than its previous value. Accordingly, the amount of control imposed on the

system is increased. While the effects of the control are present for all the closed loop

simulations, there is not a large change in the numerical solutions toward zero until r is

.005. When r = 5× 10−5, the numerical solutions have an amplitude no greater than .0267

after five hundred seconds. When r = 5×10−6 the amplitude is no greater than .0178 after

five hundred seconds. As r decreases, the numerical solutions approach zero at a faster
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rate, as expected.

The next system tested is a one meter aluminum rod with a twenty-five centimeter iron

film at each end (L1 = L2 = 25cm). All other constants remain the same. These conditions

are used to approximate Dirichlet boundary conditions. These conditions try to drive u to

zero in the open loop case. Figure 3.3.49 illustrates the open loop system. Note that the

solutions are approaching zero with no control applied.

Again, when the loop is closed, the solutions asymptotically approach the zero steady

state condition. Figures 3.3.51, 3.3.53, 3.3.55, 3.3.57, 3.3.59, 3.3.61, and 3.3.63 show the

closed loop systems with the weighting constants decreasing from 5 to 5×10−6 in the same

manner as before. The functional gains exhibit the same property of increasing four to five

times at the boundaries (Figures: 3.3.50, 3.3.52, 3.3.54, 3.3.56, 3.3.58, 3.3.60, 3.3.62) when

r is divided by ten. The effects of the control become more apparent as r decreases below

.005. When r is .0005 the amplitude of the numerical solution at three hundred seconds is

.055. When r is 5× 10−5 and 5 × 10−6, the amplitude at three hundred seconds is .0527.

The decrease in amplitude expected is not apparent, when r reaches 5×10−6. This suggests

there may be limit to the effectiveness of the control as r→ 0.
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Figure 3.3.34: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x)
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Figure 3.3.35: Functional gains, r = 5 for a 1m Al rod with 10m Fe films
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Figure 3.3.36: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), r = 5, K.939, N = 64
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Figure 3.3.37: Functional gains, r = .5 for a 1m Al rod with 10m Fe films

0

20

40

60

80

100 0
100

200
300

400
500

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Position, x(cm) Time, t (sec)

u(
t,x

)

Closed Loop

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Position, x(cm)

u(
t,x

)

Numerical Solution at T(sec) = 0(−), 50(−.), 100(−), 200(−.), 300(−), 400(−.), 500(−)

Figure 3.3.38: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), r = .5, K.939, N = 64
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Figure 3.3.39: Functional gains, r = .05 for a 1m Al rod with 10m Fe films
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Figure 3.3.40: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), r = .05, K.939, N = 64
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Figure 3.3.41: Functional gains, r = .005 for a 1m Al rod with 10m Fe films
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Figure 3.3.42: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), r = .005, K.939, N = 64
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Figure 3.3.43: Functional gains, r = .0005 for a 1m Al rod with 10m Fe films
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Figure 3.3.44: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), r = .0005, K.939, N = 64
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Figure 3.3.45: Functional gains, r = .00005 for a 1m Al rod with 10m Fe films
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Figure 3.3.46: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), r = .00005, K.939, N = 64
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Figure 3.3.47: Functional gains, r = .000005 for a 1m Al rod with 10m Fe films
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Figure 3.3.48: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), r = .000005, K.939, N = 64
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Figure 3.3.49: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), N = 64
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Figure 3.3.50: Functional gains, r = 5 for a 1m Al rod with 25cm Fe films
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Figure 3.3.51: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), r = 5, K.939, N = 64
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Figure 3.3.52: Functional gains, r = .5 for a 1m Al rod with 25cm Fe films
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Figure 3.3.53: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), r = .5, K.939, N = 64

67



N = 8  

N = 16 

N = 32 

N = 64 

N = 128

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

Position, x

fu
nc

tio
na

l g
ai

n

Left End Functional Gain, r = 0.05

N = 8  

N = 16 

N = 32 

N = 64 

N = 128

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

Position, x
fu

nc
tio

na
l g

ai
n

Right End Functional Gain, r = 0.05

Figure 3.3.54: Functional gains, r = .05 for a 1m Al rod with 25cm Fe films
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Figure 3.3.55: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), r = .05, K.939, N = 64
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Figure 3.3.56: Functional gains, r = .005 for a 1m Al rod with 25cm Fe films
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Figure 3.3.57: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), r = .005, K.939, N = 64
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Figure 3.3.58: Functional gains, r = .0005 for a 1m Al rod with 25cm Fe films
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Figure 3.3.59: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), r = .0005, K.939, N = 64
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Figure 3.3.60: Functional gains, r = .00005 for a 1m Al rod with 25cm Fe films
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Figure 3.3.61: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), r = .00005, K.939, N = 64
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Figure 3.3.62: Functional gains, r = .000005 for a 1m Al rod with 25cm Fe films
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Figure 3.3.63: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), r = .000005, K.939, N = 64
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3.3.3 Neumann to Dirichlet Conditions

The following simulations are conducted to investigate the response and performance for

the same aluminum rod with various iron films and initial function, uo(x) = .4 cos( π
100
x).

The weighting constant, r, is fixed at .0005, since it appears to be the largest value which

shows significant control for the approximate Neumann and Dirichlet boundary conditions.

In order to approximate Neumann boundary conditions, κ1

L1
and κ2

L2
are driven toward zero

in (3.21) so that ux(t, 0) and ux(t, L) become large in comparison to u(t, 0) and u(t, L).

Conversely, to approximate Dirichlet boundary conditions, κ1

L1
and κ2

L2
are driven toward

infinity in (3.21) so that u(t, 0) and u(t, L) become large in comparison to ux(t, 0) and

ux(t, L). In both cases, only L1 and L2 are varied, leaving κ1 and κ2 unchanged.

The functional gains corresponding to the gain matrix, K.939, are plotted for films of

length 10m (Fig. 3.3.64), 1m (Fig. 3.3.68), 50cm (Fig. 3.3.72), 25cm (Fig. 3.3.76), 10cm

(Fig. 3.3.80), and 5cm (Fig. 3.3.84). The functional gain values at the boundaries increase

from 8.37 to 45.75 as the film lengths are decreased from ten meters to five centimeters.

Figures 3.3.65, 3.3.69, 3.3.73, 3.3.77, 3.3.81, and 3.3.85 are the open loop simulations

for film lengths of 10m, 1m, 50cm, 25cm, 10cm, and 5cm, respectively. The boundary

conditions move from approximate Neumann conditions (L1 = L2 = 10m) to approximate

Dirichlet conditions (L1 = L2 = 5cm). As predicted by the previous experiments, the open

loop numerical solutions show an increase in the rate of decay toward the steady state

solution of zero as the film lengths decrease.

73



Figures 3.3.66, 3.3.70, 3.3.74, 3.3.78, 3.3.82, and 3.3.86 are the corresponding closed

loop simulations. The optimal gain used is K.939. As the film lengths decrease, the closed

loop simulations show an increase in the initial values at the boundaries after the start of

the simulation. This is predicted by the functional gain values. However, these ‘spikes’

rapidly smooth out and the rate at which the numerical solutions decay toward zero is

increased, as the film lengths are decreased.

Next, the gain calculated for the copper rod with aluminum films, K1.14, is used to

close the loop on these systems. Figures 3.3.67, 3.3.71, 3.3.75, 3.3.79, 3.3.83, and 3.3.87

are the closed loop simulations for film lengths of 10m, 1m, 50cm, 25cm, 10cm, and 5cm,

respectively. The closed loop systems with K1.14 are compared to their respective closed

loop systems with the optimal gain K.939. As the boundary conditions move toward the

Dirichlet condition, the numerical solutions for the closed loop system with K1.14 and

numerical solutions for the closed loop system with K.939 start to decay at nearly the same

rate. For example, at five hundred seconds, when the film length is one meter (Figures:

3.3.70 and 3.3.71), the amplitude of the numerical solution with the optimal gain is .0178,

while the amplitude of the numerical solution with K1.14 is .0546. When the film length is

50cm (Figures: 3.3.74 and 3.3.75), at five hundred seconds, the amplitude of the numerical

solution with K.939 is .0165, while with K1.14 it is .0361. For film lengths of 25cm, the

corresponding amplitudes are .0157 and .0261. For film lengths of 10cm the corresponding

amplitudes are .0153 and .0191. Finally, for film lengths of 5cm, they are .0153 and .0166.
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Thus, the numerical solutions for both systems get closer as the film lengths decrease.

The sharp ‘spikes’ at the ends of the rod present in the closed loop solutions with

the optimal gain are not present when K1.14 is used to close the loop. However, as the

boundary conditions approach Dirichlet conditions, the gain K1.14 drives the numerical

solutions toward zero at almost the same rate as the optimal gain, K.939. This indicates

that it can be used to form an effective control even though it is not the optimal control.

A similar set of experiments with various gains is performed in the next section.

75



N = 8  

N = 16 

N = 32 

N = 64 

N = 128

0 50 100
0

1

2

3

4

5

6

7

8

Position, x

fu
nc

tio
na

l g
ai

n

Left End Functional Gain, r = 0.0005

N = 8  

N = 16 

N = 32 

N = 64 

N = 128

0 50 100
0

1

2

3

4

5

6

7

8

Position, x
fu

nc
tio

na
l g

ai
n

Right End Functional Gain, r = 0.0005

Figure 3.3.64: Functional gains, r = .0005 for a 1m Al rod with 10m Fe films

0

20

40

60

80

100 0
100

200
300

400
500

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Position, x(cm) Time, t(sec)

u(
t,x

)

Open Loop

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Position, x(cm)

u(
t,x

)

Numerical Solution at T(sec) = 0(−), 50(−.), 100(−), 200(−.), 300(−), 400(−.), 500(−)

Figure 3.3.65: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), N = 64
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Figure 3.3.66: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), K.939, N = 64
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Figure 3.3.67: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), K1.14, N = 64
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Figure 3.3.68: Functional gains, r = .0005 for a 1m Al rod with 1m Fe films
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Figure 3.3.69: 1m Al rod, 1m Fe films, uo(x) = .4 cos( π
100
x), N = 64
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Figure 3.3.70: 1m Al rod, 1m Fe films, uo(x) = .4 cos( π
100
x), K.939, N = 64

0

20

40

60

80

100 0
100

200
300

400
500

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Position, x(cm) Time, t (sec)

u(
t,x

)

Closed Loop

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Position, x(cm)

u(
t,x

)

Numerical Solution at T(sec) = 0(−), 50(−.), 100(−), 200(−.), 300(−), 400(−.), 500(−)

Figure 3.3.71: 1m Al rod, 1m Fe films, uo(x) = .4 cos( π
100
x), K1.14, N = 64
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Figure 3.3.72: Functional gains, r = .0005 for a 1m Al rod with 50cm Fe films
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Figure 3.3.73: 1m Al rod, 50cm Fe films, uo(x) = .4 cos( π
100
x), N = 64
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Figure 3.3.74: 1m Al rod, 50cm Fe films, uo(x) = .4 cos( π
100
x), K.939, N = 64
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Figure 3.3.75: 1m Al rod, 50cm Fe films, uo(x) = .4 cos( π
100
x), K1.14, N = 64

81



N = 8  

N = 16 

N = 32 

N = 64 

N = 128

0 50 100
0

5

10

15

20

25

Position, x

fu
nc

tio
na

l g
ai

n

Left End Functional Gain, r = 0.0005

N = 8  

N = 16 

N = 32 

N = 64 

N = 128

0 50 100
0

5

10

15

20

25

Position, x
fu

nc
tio

na
l g

ai
n

Right End Functional Gain, r = 0.0005

Figure 3.3.76: Functional gains, r = .0005 for a 1m Al rod with 25cm Fe films
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Figure 3.3.77: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), N = 64

82



0

20

40

60

80

100 0
100

200
300

400
500

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Position, x(cm) Time, t (sec)

u(
t,x

)

Closed Loop

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Position, x(cm)

u(
t,x

)

Numerical Solution at T(sec) = 0(−), 50(−.), 100(−), 200(−.), 300(−), 400(−.), 500(−)

Figure 3.3.78: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), K.939, N = 64
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Figure 3.3.79: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), K1.14, N = 64
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Figure 3.3.80: Functional gains, r = .0005 for a 1m Al rod with 10cm Fe films
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Figure 3.3.81: 1m Al rod, 10cm Fe films, uo(x) = .4 cos( π
100
x), N = 128
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Figure 3.3.82: 1m Al rod, 10cm Fe films, uo(x) = .4 cos( π
100
x), K.939, N = 128
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Figure 3.3.83: 1m Al rod, 10cm Fe films, uo(x) = .4 cos( π
100
x), K1.14, N = 128
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Figure 3.3.84: Functional gains, r = .0005 for a 1m Al rod with 5cm Fe films
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Figure 3.3.85: 1m Al rod, 5cm Fe films, uo(x) = .4 cos( π
100
x), N = 128
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Figure 3.3.86: 1m Al rod, 5cm Fe films, uo(x) = .4 cos( π
100
x), K.939, N = 128
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Figure 3.3.87: 1m Al rod, 5cm Fe films, uo(x) = .4 cos( π
100
x), K1.14, N = 128
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3.3.4 Reynolds Number Experiments

This section compares the numerical solutions for the same rod (κ = .55) and films (κ1 =

κ2 = .124) for various Reynolds numbers. In the previous examples, ρ and c are the true

values of density and specific heat, respectively, for the material of the rod. However,

in the following examples, the factor (ρc) is adjusted in order to obtain specific values

of ε. The weighting constant, r, is still fixed at .0005. The Reynolds number, denoted

by Re, is related to ε by Re = 1
ε
. In order to test the ability of the control function,

u1.14(t) = −K1.14α(t), to control systems with ε < 1.14, the following closed loop systems

are compared:

α̇(t)N(t) = (AN
1
Re
−BN

1
Re
K 1

Re
)α(t)−FND (α(t))

= AN1
Re
α(t)−FND (α(t)) (3.22)

α̇(t)N (t) = (AN
1
Re
−BN

1
Re
K1.14)α(t)−FND (α(t))

= AN1.14α(t)−FND (α(t)) (3.23)

First, numerical solutions are generated for the one meter aluminum rod with ten me-

ter iron films (L1 = L2 = 1000cm), which approximates Neumann boundary conditions.

Figures 3.3.88, 3.3.91, 3.3.94, 3.3.97, 3.3.100, and 3.3.103 are the numerical solutions for

the open loop systems with Reynolds numbers of 10, 20, 40, 80, 160, and 320, respectively.

After Re = 40, there is a significant increase in the rate at which the open loop solution

decays toward zero. At 3000 seconds, the amplitude of the open loop numerical solution
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for Re = 40 is .2309. The amplitude of the open loop numerical solution at 3000 seconds

drops to .0447 at Re = 80. This rate increases slightly more as the Reynolds numbers

increase up to 320.

The numerical solutions to the closed loop systems with the optimal gain, K 1
Re

, applied

are shown in Figures 3.3.89, 3.3.92, 3.3.95, 3.3.98, 3.3.101, and 3.3.104. As the Reynolds

numbers increase, the performance of the optimal control is degraded. The numerical

solutions approach a step function rather than the zero steady state function.

Figures 3.3.90, 3.3.93, 3.3.96, 3.3.99, 3.3.102, and 3.3.105 are the corresponding closed

loop systems with the control, u1.14(t) = −K1.14α(t). The performance of the control

function, u1.14(t), in (3.23) approaches the performance of the optimal control, u 1
Re

(t), in

(3.22) as the Reynolds numbers increase.

The next experiment follows the same procedure as before, except, L1 = L2 = 25cm

in order to approximate Dirichlet boundary conditions. Figures 3.3.106, 3.3.109, 3.3.112,

3.3.115, 3.3.118, and 3.3.121 are the numerical solutions for the open loop systems with

Reynolds numbers of 10, 20, 40, 80, 160, and 320, respectively. As the Reynolds numbers

increase, the numerical solutions steepen with time and converge toward a step function.

Small perturbations in the numerical solutions, near the center of the rod, are present.

Figures 3.3.107, 3.3.110, 3.3.113, 3.3.116, 3.3.119, and 3.3.122 show the closed loop

systems with optimal control. The solutions are approaching the steady state solution as

time increases. However, the numerical solutions steepen with an increase in Reynolds
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number.

Similarly, the closed loop solutions for the systems with control u1.14(t) = −K1.14α(t)

steepen with an increasing Reynolds numbers. Figures 3.3.108, 3.3.111, 3.3.114, 3.3.117,

3.3.120, and 3.3.123 show that the performance of this control is very similar to the per-

formance of the optimal control.

Comparing the performance of each controller at the boundaries, we see the numerical

solutions for (3.23) move to zero and remain there after the initial time, while the numerical

solutions with the optimal control (3.22) move through zero then relax back toward zero at

a later time. This characteristic of the control can be seen by comparing Figures 3.3.107,

3.3.110, and 3.3.113 to Figures 3.3.108, 3.3.111, and 3.3.114, respectively.

In all, it appears that as the Reynolds number for a system increases there is less of a

difference in the performance of the control u1.14(t) and performance of the optimal control,

u∗1
Re

(t). Also, the numerical solutions steepen toward a step function with an increasing

Reynolds number.
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Figure 3.3.88: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 10, N = 64
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Figure 3.3.89: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 10, K 1

10
, N = 64
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Figure 3.3.90: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 10, K1.14, N = 64
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Figure 3.3.91: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 20, N = 64
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Figure 3.3.92: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 20, K 1
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, N = 64
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Figure 3.3.93: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 20, K1.14, N = 64
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Figure 3.3.94: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 40, N = 64
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Figure 3.3.95: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 40, K 1
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Figure 3.3.96: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 40, K1.14, N = 64
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Figure 3.3.97: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 80, N = 64
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Figure 3.3.98: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 80, K 1
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Figure 3.3.99: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 80, K1.14, N = 64
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Figure 3.3.100: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 160, N = 64
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Figure 3.3.101: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 160, K 1
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, N = 64
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Figure 3.3.102: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 160, K1.14, N = 64
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Figure 3.3.103: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 320, N = 64

101



0

20

40

60

80

100 0
500

1000
1500

2000
2500

3000

−0.5

0

0.5

Position, x(cm) Time, t (sec)

u(
t,x

)

Closed Loop

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Position, x(cm)

u(
t,x

)

Numerical Solution at T(sec) = 0(−), 300(−.), 600(−), 1200(−.), 1800(−), 2400(−.), 3000(−)

Figure 3.3.104: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 320, K 1
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, N = 64
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Figure 3.3.105: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 320, K1.14, N = 64
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Figure 3.3.106: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 10, N = 128
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Figure 3.3.107: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 10, K 1
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Figure 3.3.108: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 10, K1.14, N = 128
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Figure 3.3.109: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 20, N = 128
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Figure 3.3.110: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 20, K 1
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Figure 3.3.111: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 20, K1.14, N = 128
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Figure 3.3.112: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 40, N = 128
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Figure 3.3.113: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 40, K 1
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Figure 3.3.114: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 40, K1.14, N = 128
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Figure 3.3.115: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 80, N = 128
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Figure 3.3.116: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 80, K 1
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Figure 3.3.117: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 80, K1.14, N = 128
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Figure 3.3.118: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 160, N = 256
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Figure 3.3.119: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 160, K 1
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Figure 3.3.120: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 160, K1.14, N = 256
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Figure 3.3.121: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 320, N = 256
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Figure 3.3.122: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 320, K 1
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Figure 3.3.123: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 320, K1.14, N = 256
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3.3.5 Gains as a Factor of Reynolds Number

In the previous section, for a sufficiently small Reynolds number, there is a significant

difference in the closed loop systems (3.22) and (3.23). This is due to the large difference

in the two gain matrices for the systems, Kε and K1.14. Using the infinity norm to look at

the difference between the two gain matrices when ε is varied from .939 to 1
320

results in

the following:

‖ Kε −K1.14 ‖∞ ∼ 35

for the aluminum rod with ten meter iron films, and

‖ Kε −K1.14 ‖∞ ∼ 44

for twenty-five centimeter iron films.

For the two film lengths, the previous infinity norm for each ε is approximately the

same. This indicates that for each film length, the gain matrix, Kε, changes very little for

a change in ε. Using the Reynolds numbers 10, 20, 40, 80, 160, and 320 to vary ε, Kε is

compared to K.939. Again, using the infinity norms,

‖ K.939 −K 1
Re
‖
∞
∼ 10−8

for ten meter iron films, and

‖ K.939 −K 1
Re
‖
∞
∼ 10−11

for twenty-five centimeter iron films.
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The similarities of these particular gains is illustrated by Figures 3.3.124 and 3.3.125

which are the functional gains for ε = .939 and ε = 1
320

with ten meter films. The functional

gains for ε = .939 and ε = 1
320

with twenty-five centimeter films can be seen in Figures

3.3.126 and 3.3.127, respectively. In both cases the functional gains are almost identical

for the different Reynolds numbers.

Since the gain matrices, K 1
Re

, are almost identical for each film length, then the numer-

ical solutions to the closed loop systems

α̇(t)N (t) = (AN
1
Re
−BN

1
Re
K 1

Re
)α(t)−FND (α(t)) (3.24)

and

α̇(t)N(t) = (AN
1
Re
−BN

1
Re
K.939)α(t)−FND (α(t)) (3.25)

are very similar, as well.

Figures 3.3.128, 3.3.129, 3.3.130, 3.3.131, 3.3.132, and 3.3.133 are the numerical so-

lutions to (3.25) with ten meter iron films for Reynolds numbers of 10, 20, 40, 80, 160,

and 320, respectively. Comparing them to the respective numerical solutions with optimal

control (3.24) in Figures 3.3.89, 3.3.92, 3.3.95, 3.3.98, 3.3.101, and 3.3.104, shows that the

numerical solutions to both systems are nearly identical. For example, Figures 3.3.128

and 3.3.89 have amplitudes of .0136 and .0120, respectively. As another example, Figures

3.3.132 and 3.3.101 both have amplitudes of .0183.

For film lengths of twenty-five centimeters, the numerical solutions to (3.24) and (3.25)

are even closer. Figures 3.3.134, 3.3.135, 3.3.136, 3.3.137, 3.3.138, and 3.3.139 illustrate
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the numerical solutions to (3.25). Their respective numerical solutions to (3.24) are Fig-

ures 3.3.107, 3.3.110, 3.3.113, 3.3.116, 3.3.119, and 3.3.122. For each Reynolds number,

{10, 20, 40, 80, 160, and 320}, the amplitudes for the numerical solutions to (3.25) and

(3.24) are the same to at least four significant digits.
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Figure 3.3.124: Functional gains, r = .0005 for a 1m Al rod with 10m Fe films, ε = .939
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Figure 3.3.125: Functional gains, r = .0005 for a 1m Al rod with 10m Fe films, ε = 1
320
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Figure 3.3.126: Functional gains, r = .0005 for a 1m Al rod with 25cm Fe films, ε = .939
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Figure 3.3.127: Functional gains, r = .0005 for a 1m Al rod with 25cm Fe films, ε = 1
320
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Figure 3.3.128: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 10, K.939, N = 64
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Figure 3.3.129: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 20, K.939, N = 64
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Figure 3.3.130: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 40, K.939, N = 64
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Figure 3.3.131: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 80, K.939, N = 64
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Figure 3.3.132: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 160, K.939, N = 128
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Figure 3.3.133: 1m Al rod, 10m Fe films, uo(x) = .4 cos( π
100
x), Re = 320, K.939, N = 256
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Figure 3.3.134: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 10, K.939, N = 128
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Figure 3.3.135: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 20, K.939, N = 128
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Figure 3.3.136: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 40, K.939, N = 128
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Figure 3.3.137: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 80, K.939, N = 128
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Figure 3.3.138: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 160, K.939, N = 256
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Figure 3.3.139: 1m Al rod, 25cm Fe films, uo(x) = .4 cos( π
100
x), Re = 320, K.939, N = 256
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Chapter 4

Conclusions

4.1 Overview

In this thesis, the Galerkin/Conservation method is used to approximate solutions to the

initial/boundary value problem (2.5). LQR control is used to find control laws which are

applied to the homogeneous, non-linear Burgers’ equation with Robin boundary conditions.

Numerical solutions for open loop and closed loop systems are generated with various

parameters and boundary conditions.

First, to test the MATLAB code, Example (3.2.1), from [16], is repeated. This example

is used to confirm the convergence of the numerical solutions to the exact solution as the

number of finite elements, N, is increased.
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Next, open loop and closed loop systems for a fixed control function,

u1.14(t) = −K1.14α(t),

and various initial conditions are simulated. The initial conditions consist of the functions

Ao sin( π
10
x), Ao cos( π

10
x), and Ao sin(2π

10
x) with various amplitudes, Ao. The closed loop

numerical solutions decay toward the zero steady state function at a faster rate than the

open loop numerical solutions, as predicted.

Then, for an aluminum rod with iron films, equivalent to Example (3.5.1) in [16], several

control experiments are conducted. The weighting constant, r, from the cost function is

varied from 5 to 5×10−6 in order to test its effects on the optimal control. As r decreased,

the amplitudes of the functional gains increased at the boundaries. This procedure is

conducted for iron films of lengths ten meters and twenty-five centimeters. In both cases,

the decrease in the weighting constant results in an increase in the rate of decay of the

numerical solutions. The largest change in this rate of decay occurs after r = .0005.

The rest of the simulations are run with r fixed at .0005. To simulate going from ap-

proximate Neumann boundary conditions to approximate Dirichlet conditions, the lengths

of the films are varied from ten meters to five centimeters. For each film length, an open

loop system, a closed loop system with optimal control, and a closed loop system with the

control u1.14(t) are generated. The amplitude of the functional gains for the optimal control

at the boundaries increases as the film length decreases. The closed loop systems with the

optimal control decay faster than the closed loop systems with u1.14(t), as expected. How-
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ever, as the boundaries move toward Dirichlet conditions, the performance of the control

u1.14(t) gets closer to the performance of the optimal control.

Further control experiments are conducted on open loop and closed loop systems with

several Reynolds numbers. The quantities κ1
L1

= κ2
L2

are fixed for two specific film lengths.

First, the length of the iron films is set to ten meters. An open loop simulation, a closed

loop simulation with optimal control, and a closed loop simulation with the control u1.14(t)

are generated for Reynolds numbers of 10, 20, 40, 80, 160, and 320. At Re = 80, the

open loop solutions begin to decay at a rate closer to that of the closed loop system. The

performance of the control from the copper rod, u1.14(t), is significantly worse compared

to the performance of optimal control until Re = 80. Then they perform very similarly at

Re = 160 and Re = 320.

With the length of the iron films set to twenty-five centimeters, the same experiment

is conducted. The open loop systems steepen toward a step function while the amplitudes

at the boundaries remain unchanged. The closed loop solutions with the optimal control

decay slightly faster than those with the control u1.14(t), until Re = 160. After which, the

performance of each control function is nearly identical.

Finally, for both film lengths of ten meters and twenty-five centimeters, the gain matrix

K.939 is calculated. It is shown that K.939 is nearly equal to the optimal gain matrix for

all the various Reynolds numbers listed above. As a result, when the same closed loop

experiments are repeated for the gain, K.939, and compared with the numerical solutions
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to the closed loop systems with optimal control, K 1
Re

, they are nearly identical.

4.2 Conclusions

The numerical results of these control experiments are consistent with some of the results

of Burns and Kang ([4], [5]). LQR control theory seems to control Burgers’ equation with

Robin boundary conditions for certain parameters.

The numerical solutions appear to be stable when the initial conditions are sufficiently

small and the Reynolds number is sufficiently small. The rate of decay of the numerical

solutions for closed loop systems decreases as the Reynolds number increases (ε decreases).

This is also consistent with Burns and Kang, [5]. The rate of decay of the the numerical

solutions for open loop systems is dependent upon ε as well.

The numerical solutions appear stable when the boundary conditions approximate Neu-

mann and Dirichlet conditions. The performances of the optimal control function and an-

other control function are nearly identical for approximate Dirichlet boundary conditions.

For the approximate Neumann boundary conditions, the optimal control function per-

formed significantly better than a non-optimal control function. However, as Re increased

their performances became increasingly similar.
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4.3 Further Research

The numerical results of this thesis leave several areas of discussion left open. The following

topics may be interesting to analyze and provide more insight into the stabilizing properties

of Burgers’ equation:

• Will the closed loop system for Burgers’ equation with Robin boundary

conditions reach a constant steady state in finite time?

• Are there limiting parameters, such as a Reynolds number or boundary conditions,

for which the numerical solutions to the closed loop system become unstable?

• Why, for the same rod and films, are the gain matrices for various Reynolds

numbers almost identical?
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Appendix A

Symbols

AN
ε open loop state matrix

ANε closed loop state matrix

BN
ε control matrix

DN matrix of integral calculations

GN matrix of rod and film parameters

FNE Galerkin non-linear term

FND Galerkin/Conservation non-linear term

KN stiffness matrix

Kε ε - dependent gain matrix

MN mass matrix

c specific heat
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αi(t) time-dependent weight

ε diffusivity constant

f(t, x) forcing function

Kε gain matrix

hi(x) piecewise linear element

φ(x) initial function

κ conductivity of the rod

κ1 conductivity of left end film

κ2 conductivity of right end film

koε left end functional gain

k1
ε right end functional gain

L1 length of left end film

L2 length of right end film

N number of linear element functions

Q LQR weighting matrix

q(t) control vector

R LQR weighting matrix

Re Reynolds number

r weighting constant

ρ uniform density of the rod
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u(t, x) solution to Burgers’ equation

uN(t, x) numerical approximation to the solution to Burgers’ equation

uo(x) initial condition
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Appendix B

MATLAB Code

RUNLQR.M

Set up and run the LQR problem for an aluminum rod.
This is the main body of the Finite Element Method
for solving Burgers’ Equation. The parameters of the
problem are defined. The gain matrix is calculated.

clear all

EN = 256 % The number of elements for the problem

Lrod = 100; % length of the rod in cm

[unifh,Index,Node,XQSpt,Xpt,h,nlocal] = geometry(EN,Lrod);

% Setting up the Constants for the problem

L1=25; % length of film 1 in cm

L2=25; % length of film 2 in cm

kap1=.124; % conductivity of film 1 in cal/(s*cm*C)

kap2=.124; % conductivity of film 2 in cal/(s*cm*C)

kappa=.55; % conductivity of the rod in cal/(s*cm*C)

epsilon=kappa/(2.7*.217); % epsilon=kappa/(rho*c)

%epsilon=1/320

unifh
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% Set up the matrices.

[MM,KK,A,B,F,G,M,v0] =

matrices(EN,Index,Node,XQSpt,Xpt,h,nlocal,L1,L2,kap1,kap2,kappa,epsilon,Lrod);

Q = MM;

R = .0005*eye(2);

[burgk,burgs,burge] = lqr(A,B,Q,R); % calculate the gain

save gaincl burgk;

Acl = A - B*burgk; % calculate the closed loop matrix

load gainKal256.mat % load the necessary gain

load gaincu256.mat

Kal = Kal256;

Arey = A - B*Kal;

% Arey = A - B*Kcu;

tf = 3000;

save sysmat EN Lrod A B Acl Arey M MM Q R v0 Xpt

save gain Kal

clear

--------------------------------------------------------

--------------------------------------------------------

GEOMETRY.M

This script sets up the necessary arrays that allow
the main program compute results for a specific problem.
Contained herein is the correspondence between the actual
layout of the problem and the layout of the functions used
in the main program.

function[unifh,Index,Node,XQSpt,Xpt,h,nlocal] = geometry(EN,Lrod)

% endpoints

a=0;
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b=Lrod;

% step-size if uniform

unifh=(1/(EN+1))*(b-a);

numint=(b-a)/unifh;

h=0;

for i=1:numint, h(i)=unifh;, end

% Total number of nodes

numnode=max(size(h))+1;

% Set up the x-coordinate of each node

Xpt=zeros(numnode,1);

Xpt(1) = a;

for i=2:numnode, Xpt(i)=Xpt(i-1)+h(i-1);, end

% Set up Index, which describes the number of unknowns

% at each global unknown.

Index=zeros(numnode,1);

% Describe inhomogeneous boundary conditions

%Index(numnode)= -1;

%Index(1)= -1;

blue = 0;

for i=1:numnode

if Index(i)==0, Index(i)=i-blue;,end

end

% Set up the quadrature points in each element.

% We’re using one-point Guass quadrature, so we want

% the midpoint of each interval.

XQpt=0;

for i=1:max(size(h)), XQpt(i,1)=Xpt(i)+h(i)/2;, end

% nquad=1;

% XQpt

% Set up the 2-pt. quadrature points.

XQSpt=0;

for i=1:max(size(XQpt)),
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XQSpt(i,1)=XQpt(i) - .5773502692*h(i)/2;

XQSpt(i,2)=XQpt(i) + .5773502692*h(i)/2;

end

% Set up the 3-pt. quadrature points.

XQ3pt=0;

for i=1:max(size(XQpt)),

XQ3pt(i,1)=XQpt(i) - .7745966692*h(i)/2;

XQ3pt(i,2)=XQpt(i);

XQ3pt(i,3)=XQpt(i) + .7745966692*h(i)/2;

end

% Set up the relation between the local node for the

% basis functions and the global nodes.

Node=zeros(max(size(h)),2);

for i=1:max(size(h)), Node(i,1)=i;,end

for i=1:max(size(h)), Node(i,2)=i+1;, end

nlocal=2;

%-------------------------------------------

--------------------------------------------

MATRICES.M

This is the subroutine where the mass and stiffness
matrices are assembled. It also sets up the initial condition
and right hand side matrices.

% Set up the MM and KK matrices.

% Build F(v), the inhomogeneous term matrix.

function[MM, KK, A, B, F, G, M, v0] =

matrices(EN, Index, Node, XQSpt, Xpt, h, nlocal, L1, L2,...

kap1, kap2, kappa, epsilon, Lrod)

numunk=0;

for i=1:max(size(Index))

if Index(i)>0,numunk=numunk+1;,end

end

MM=zeros(numunk,numunk);
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KK=zeros(numunk,numunk);

FF=zeros(numunk,2);

V=zeros(numunk,1);

for nel=1:max(size(h))

for quad=1:2

quad=1;

for j=1:nlocal

if Index(Node(nel,j))>0

% integrate basis functions

x=XQSpt(nel,quad);

nnn=Index(Node(nel,j));

KK(nnn,nnn)=KK(nnn,nnn)-(basisd(nnn-1,x,Xpt,h)^2)*h(nel)/2;

MM(nnn,nnn)=MM(nnn,nnn)+(basis(nnn-1,x,Xpt,h)^2)*h(nel)/2;

if nnn<max(size(MM))

KK(nnn,nnn+1)= ...

KK(nnn,nnn+1)-basisd(nnn-1,x,Xpt,h)*basisd(nnn,x,Xpt,h)*h(nel)/2;

KK(nnn+1,nnn)=KK(nnn,nnn+1);

MM(nnn,nnn+1)= ...

MM(nnn,nnn+1)+basis(nnn-1,x,Xpt,h)*basis(nnn,x,Xpt,h)*h(nel)/2;

MM(nnn+1,nnn)=MM(nnn,nnn+1);

end

% Integrate basis functions against f(x)

FF(nnn,1)=FF(nnn,1)+(beta*(quadA*x*x+quadB*x+quadC-(sin(pi*x))^2)- ...

% epsilon*(2*quadA-2*pi*pi*((cos(pi*x))^2 -(sin(pi*x))^2)))...

*basis(nnn-1,x,Xpt,h)*h(nel)/2;

% FF(nnn,2)=FF(nnn,2)+(quadA*x*x+quadB*x+quadC-(sin(pi*x))^2)...

%*(2*quadA*x+quadB-2*pi*sin(pi*x)*cos(pi*x))*basis(nnn-1,x,Xpt,h)*h(nel)/2;

% Homogeneous Burgers’

FF(nnn,1)=FF(nnn,1)+(0)*basis(nnn-1,x,Xpt,h)*h(nel)/2;

FF(nnn,2)=FF(nnn,2)+(0)*basis(nnn-1,x,Xpt,h)*h(nel)/2;

% integrate basis functions against the initial function

b = Lrod;
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% V(nnn,1)=V(nnn,1)+(quadA*x*x+quadB*x+quadC-(sin((pi/b)*x))^2)*

basis(nnn-1,x,Xpt,h)*h(nel)/2;

% V(nnn,1)=V(nnn,1)+10*sin((pi/b)*x)*basis(nnn-1,x,Xpt,h)*h(nel)/2;

% V(nnn,1)=V(nnn,1)+.4*cos((pi/b)*x)*basis(nnn-1,x,Xpt,h)*h(nel)/2;

% V(nnn,1)=V(nnn,1)+10*sin(2*(pi/b)*x)*basis(nnn-1,x,Xpt,h)*h(nel)/2;

% V(nnn,1)=V(nnn,1)+.5*(100*x*x*(1-x)*(1-x))*basis(nnn-1,x,Xpt,h)*h(nel)/2;

end

end

end

end

% Correct Stiffness Matrix

KK(1,1)=-1/h(1) - kap1/(kappa*L1);

KK(numunk,numunk) = -1/h(numunk-1) - kap2/(kappa*L2);

G=zeros(numunk,2);

G(1,1)=kap1/(kappa*L1);

G(numunk,2)=kap2/(kappa*L2);

M=inv(MM);

% Set Up open loop matrices

A=epsilon*(inv(MM))*KK;

B=epsilon*(inv(MM))*G;

% Forcing function for inhomogeneous Burgers’ equation

F=(inv(MM))*FF;

% Set up the initial condition

v0 = zeros(numunk,1);

v0=M*V;

---------------------------------------------

---------------------------------------------

RUNODE.M, OPRUNODE.M, REYRUN.M

This function sends the time interval, initial condition,
the number of time steps, and the number of unknowns to the differential
equation solver. The time step and solution arrays for the closed loop
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problem are returned. oprunode.m and reyrun.m are analogous except the
appropriate open loop and closed loop matrice must be sent to the
differential equation solver.

load sysmat.mat

tf = 1000;

time3 = cputime;

[Tcl,vcl] = simult(0,tf,Acl,v0,M);

save solutncl Lrod Xpt Tcl vcl tf EN

time4=cputime;

odetime = time4 - time3

clear

---------------------------------------------

---------------------------------------------

SIMULT.M, OPSIMULT.M

This function forms the right hand side for the
ODE solver by calling the appropriate right hand side
function. (opsimult.m calls oprhs.m)

function [Ttemp,vtemp] = simult(tini, tfinal, Am, vini, Mtemp)

Aclrhs = Am;

save clrhsmat Aclrhs Mtemp

[Ttemp,vtemp] = ode45(’clrhs’, tini, tfinal, vini);

---------------------------------------------

---------------------------------------------

CLRHS.M, OPRHS.M

Solves the closed-loop (controlled) right hand side,
y = Acl*x + F.
oprhs.m solves the open loop right hand side, y = Ax + F.

function vdot = clrhs(t,y)

load clrhsmat.mat
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y = y(:);

ll = length(y);

% Construct the Galerkin Conservation nonlinear term (vector form)

p = y.*y;

J = [p(2:ll); p(ll)] - [p(1); p(1:ll-1)];

% Calculating vdot with the given right hand side

vdot = Aclrhs*y - .25*(Mtemp*J);

---------------------------------------------

---------------------------------------------

PLOTCL.M, PLOTOP.M

This function plots the solution to the Closed Loop system in 3D
and plots the solution against the x-coordinates at various times.
plotop.m plots the appropriate open loop solutions.

load solutncl.mat % Load the solution file

T = Tcl;

v = vcl;

b = Lrod;

h = .4;

%tf = 10;

step = ceil(max(size(T))/100); % Set up time steps

count=0;

xxx=zeros(5*EN+6,1);

vplot=zeros(ceil(max(size(T))/step),EN+2);

Tplot=zeros(ceil(max(size(T))/step),1);

for i = 1:step:max(size(T))

count=count+1;

count2=0;

vplot(count,:)=v(i,:); % Pick plotting points

Tplot(count,1)=T(i);

end

subplot(2,1,1) % Plot the 3-D solution

mesh(Xpt, Tplot, (vplot))

view(65,25)
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axis([0,b,0,tf,-h,h])

xlabel(’Position, x(cm)’)

ylabel(’Time, t (sec)’)

zlabel(’u(t,x)’)

title(’Closed Loop’)

subplot(2,1,2)

plot(Xpt,vplot(1,:),’-’,Xpt,vplot(d/10,:),’-.’ ,Xpt,vplot(d/5,:),’-’, ...

Xpt,vplot(2*d/5,:), ’-.’ ,Xpt,vplot(3*d/5,:),’-’ , ...

Xpt,vplot(4*d/5,:),’-.’, Xpt,vplot(d,:),’-’)

axis([0,b,-h,h])

xlabel(’Position, x(cm)’)

ylabel(’u(t,x)’)

zlabel(’u(t,x)’)

title([’Numerical Solution at T(sec) = ’,num2str(0),’(-), ’ ...

,num2str(g*d/10), ’(-.), ’ num2str(g*d/5),’(-), ’, ...

num2str(g*2*d/5),’(-.), ’, num2str(g*3*d/5),’(-), ’, ...

num2str(g*4*d/5),’(-.), ’, num2str(g*d),’(-)’])

norm(vplot(d,:)’,inf) % Find the amplitude at tf

---------------------------------------------

---------------------------------------------

FGAIN.M

This script file calculates the functional gains for both
controllers, given the parameters of the problem.

clear all

Lrod = 100;

ts=cputime;

Xfpt=zeros(130,6);

count=0;

fgain1 = zeros(130,6);

fgain2 = zeros(130,6);

fgain3 = zeros(130,6);

for l = 2:7

EN = 2^l;
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[unifh,Index,Node,XQSpt,Xfpt,Xpt,h,nlocal,count] = ...

geom(EN,count,Xfpt,Lrod);

L1=1000; % length of film 1 in cm

L2=1000; % length of film 2 in cm

kap1=.124; % conductivity of film 1 in cal/(s*cm*C)

kap2=.124; % conductivity of film 2 in cal/(s*cm*C)

kappa=.55; % conductivity of the rod in cal/(s*cm*C)

%epsilon = kappa/(2.7*.217); % epsilon=kappa/(rho*c)

epsilon = 1/320;

[MM,KK,A,B,F,G,M,v0] = ...

matrices(EN,Index,Node,XQSpt,Xpt,h,nlocal,L1,L2,kap1,kap2,kappa,epsilon,Lrod);

Q = MM;

R = .0005*eye(2);

[burgk,burgs,burge] = lqr(A,B,Q,R);

for j = 1 : EN+2

fgain1(j,l-1) = M(j,:)*((burgk(1,:))’);

fgain2(j,l-1) = M(j,:)*((burgk(2,:))’);

end

end

te=cputime;

fgtime = te - ts

---------------------------------------------

---------------------------------------------

PLTGAIN.M

This file plots the functional gains for the left end and
right end controllers.

height = 10;

subplot(2,1,1)

plot(Xfpt(1:10,2),fgain1(1:10,2),’o’,Xfpt(1:18,3),fgain1(1:18,3),’.’, ...

Xfpt(1:34,4),fgain1(1:34,4),’-.’,Xfpt(1:66,5),fgain1(1:66,5), ’--’, ...

Xfpt(1:130,6),fgain1(1:130,6))

xlabel(’Position, x’)
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ylabel(’functional gain’)

title(’qo functional gain for N = 8(o), 16(.), 32(-.), 64(--), 128(-)’)

axis([0,Lrod,0,height])

subplot(2,1,2)

plot(Xfpt(1:10,2),fgain2(1:10,2),’o’,Xfpt(1:18,3),fgain2(1:18,3),’.’, ...

Xfpt(1:34,4),fgain2(1:34,4),’-.’,Xfpt(1:66,5),fgain2(1:66,5), ’--’, ...

Xfpt(1:130,6),fgain2(1:130,6))

xlabel(’Position, x’)

ylabel(’functional gain’)

title(’q1 functional gain for N = 8(o), 16(.), 32(-.), 64(--), 128(-)’)

axis([0,Lrod,0,height])

---------------------------------------------

---------------------------------------------
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