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ABSTRACT

This thesis focuses on the least-squares formulation of the non-collaborative and collabo-
rative position location problems. For the non-collaborative problem, characterization
encompassing the number of minima and the causes thereof is provided. Based on
these efforts, we propose an improvement to the existing modified parallel projection
method (MPPM), the reflected parallel projection method (RPPM). We show that the
global minimum to the non-collaborative objective function can nearly always be found

using the non-optimal reflected parallel projection method (RPPM).

For the collaborative position location problem, we provide a characterization that shows
a heavy tail of root-mean-square (RMS) error due to a small percentage of simulated
node/anchor layouts when solved by the iterative parallel projection method (IPPM).
We provide an identification technique that successfully identifies most layouts that
show large RMS error followed by a proposed solution to improve the accuracy in those

problematic layouts.

Finally, we report the findings of a measurement campaign that validates our Gaussian
model for line-of-sight (LOS) noise and shows that, for these particular measurements,

non-line-of-sight (NLOS) noise is difficult to accurately model and can be very large.

This research was supported by a Bradley Fellowship from Virginia Tech’s Bradley
Department of Electrical and Computer Engineering, made possible by an endowment

from the Harry Lynde Bradley Foundation.
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Chapter 1

Introduction

Position location information has and will continue to be used in many different ways.
Recently, the proliferation of wireless devices (namely cellular phones) has led to an
explosion of location based services (LBS). Applications such as targeted and improved
marketing strategies [1], urban vehicular traffic monitoring [2], cooperation among
tirst responders/military personnel [3], and many more take advantage of location
information. Some companies have used recorded location information to assist in future
GPS fixing times [4], earning worldwide attention for saving this information without
notifying customers. The importance of location information leads to the need to research

fast, efficient methods of obtaining it.

The term localization refers to the act of geo-locating objects. A familiar problem is the
localization of one node or object, such as when an emergency 911 phone call triggers
the localization of the calling cell phone to assist first responders. In this scenario, only
one node is being used; all other information comes from anchors, objects with known
locations such as cell base stations. This one-node scenario is labeled in this thesis as

non-collaborative position location.

Collaborative position location, sometimes referred to by other names such as cooperative



position location, wireless sensor location, or position localization, is the localization
of nodes in space when the nodes rely on information from other unlocalized nodes.
Thus, the estimate of each node’s location can be improved by leveraging information
from neighboring nodes, even though those neighbors are not guaranteed to be correctly

localized.

Collaborative position location has recently become very popular for addressing the
issue of localizing wireless devices in environments with limited infrastructure support
from GPS or a cellular system. An indoor environment is one such scenario. The basic
concept is to use the additional measurements among unlocalized nodes to increase
location coverage and improve localization accuracy. In fact, many algorithms and
experimental systems have already been developed, both those that use centralized
compuations [5, 6, 7] and those using distributed algorithms [8, 9, 10, 11, 12]. A more

detailed survey of collaborative position location approaches can be found in [13, 14, 15].

In this thesis, we focus on improving the recently-developed modified parallel projection
method (MPPM) [16] for non-collaborative localization and its collaborative extension,
the iterative parallel projection method (IPPM), which has been demonstrated to achieve
comparable and often better localization accuracy than existing methods such as SDP
(semi-definite programming) and MDS (multi-dimensional scaling) with substantially
less computational complexity [17]. We show that our proposed improvement to MPPM
identifies and mitigates the heavy tail of error resulting from non-global minima (shown
in Figure 2.10) of the objective function ® and nearly matches the performance of the

interval analysis method, an optimal but slow and computationally expensive solver.

Turning to the collaborative problem, we show that a small percentage of simulated
layouts contribute a disproportionately large amount to the average RMS error. We
develop an identification mechanism, based on the colinearity of anchors, to accurately
predict which layouts are likely to be solved incorrectly by the iterative parallel projection

method (IPPM). Finally, we develop a solution technique that specifically targets those



layouts that contribute most to average RMS error. Our improved solution technique

shows significant performance gains as compared to IPPM.

Methods of Localization Measurements

Different types of information can be leveraged towards the ultimate goal of localization.
Time, frequency, power, and angle of incoming wireless signals can all be used. Time is
probably the most widely-used method of obtaining information for localization because
of the relative reliability compared to other measurements. Multipath scenarios can
corrupt information obtained by timing, so care must be taken to account for line-of-sight
(LOS) signals as opposed to non-line-of-sight (NLOS) signals. Doppler shifts provide
information on the velocity of objects which can assist with localization. Received signal
strength (RSS) is likely the easiest measure available for localization because of the nearly
ubiquitous availability of signal power information in wireless devices, but the variability
in signal power due to environmental effects renders RSS measurements less reliable than
time measurements. Finally, the angle of arrival of signals can be measured, providing
lines-of-bearing. However, it cannot generally be guaranteed that the angle at which the

incoming signal arrives is the angle towards the signal’s emitter.

Assumptions about Distance Estimates

The work in this thesis is based upon distance (range) estimates obtained between
wireless devices. The manner in which these estimates are obtained is not the focus
of this work, although round trip time of flight measurements performed during the
Spring 2011 semester (described in Chapter 4) confirm the reasonability of our Gaussian
noise assumption for LOS environments. Throughout this work, the presence of range
estimates is assumed, and the focus of this work is how to best leverage the range

estimates rather than how they were obtained.



1.1 Thesis Summary

Chapter 2: The Non-Collaborative Problem

The non-collaborative localization problem is introduced in Chapter 2 along with the
associated least squares formulation. Using the optimal interval analysis solver, we are
able to confirm that performance degrades when the node’s estimated location is outside
the anchors’ convex hull because the number of minima of our objective function ®"(4)
usually increases when the node’s estimated location is outside the convex hull of the

anchors.

Starting with the previously-developed modified parallel projection method (MPPM) [16],
we show that itis, in fact, a steepest descent algorithm and therefore is only guaranteed to
converge to a stationary point. Using the information gained from characterization, we
develop the reflected parallel projection method (RPPM) that uses intelligent initializa-
tions of MPPM to achieve nearly optimal performance (as measured against the optimal
interval analysis solver). Finally, we demonstrate that minimizing the objective function

@ (9) will not necessarily minimize the root mean square (RMS) error of the layout.

Chapter 3: The Collaborative Problem

Chapter 3 focuses on the collaborative problem and the associated objective function
®°l(0). We provide an analysis of the number of minima of the objective function.
Based on our simulations, multiple minima are more likely in layouts with nearly colinear
anchors (which, in turn, causes most node location estimates to be outside the anchors’
convex hull) and in layouts with a large number of nodes. Again, the well known
performance degradation when nodes are outside the convex hull of the anchors is
confirmed, and we submit that the reason is that multiple minima exist more often in

these situations.



The iterative parallel projection method (IPPM) [16] was developed to minimize ®<!(9),
and we use the aforementioned characterization to propose improved initialization
techniques and show incremental performance increases for each more complicated
initialization technique. Additionally, we propose techniques that accurately identify
which node/anchor layouts are likely to have multiple minima, allowing the user to
be selective in which layouts need additional initializations. Also, we confirm that
minimizing ®°(6) will not necessarily minimize the RMS error of the network, a result

matched in the non-collaborative scenario.

Chapter 4: The Measurement Campaign

Chapter 4 describes a measurement campaign with the purpose of assisting in noise
modeling for both LOS and NLOS situations. ENSCO, Inc. ®, provided two radios
designed specifically for ranging. The radios use 22MHz of the Wi-Fi band to measure
the time-of-flight between themselves, returning range estimates at a rate of 217Hz.
By keeping the radios stationary and recording the measurements taken at one known
distance, we obtained distributions of range estimates. Using these distributions, we
conclude that LOS ranging noise can accurately be modeled as Gaussian. We also
conclude that NLOS ranging noise is highly variable depending on the environment
but nearly always shows a considerable positive bias. Expectedly, the radios performed
poorly when people or substantial walls separated them, and they performed well in
open, clean, LOS environments. We appreciate ENSCO’s allowing us to use the radios

for our research purposes.

1.2 Problem Formulation

Consider a 2D square network consisting of K > 3 anchors at known locations and N

unlocalized nodes whose locations are to be estimated. In the applications of interest,



N >> K, but this is not necessary for the developed algorithms to be effective. The true
locations of the unlocalized nodes are denoted by © = [0;,0,,...,60y], and the known
locations of the anchors are denoted by A = [On11,0n+12,...,0n+k], Where §; = [z; it
is the 2D coordinate of the ith node, for i = 1,2,3,..., N + K, and (-)T is the matrix
transpose operation. If the distance between the i and j™ nodes, denoted by d;;, is less
than the physical communication range Iz, we say the two nodes neighbor each other and
thus can communicate and obtain a (noisy) range estimate r;; of their true distance d;;.
(In practice, due to non-line-of-sight (NLOS) obstruction, there is a possibility that two
nodes may not communicate even if their physical distance is within the communication
range.) Furthermore, we assume range estimates are symmetric, i.e., r;; = rj;, Vi, j. The

task is to obtain an estimate © of the true locations ©.

We assume that range estimates are corrupted by independent zero-mean Gaussian

noise. In particular, the range estimate between the i and j™ nodes is modeled as

rij = dij + ngj + bij, where d;; = +/(x; — x;)? + (yi — y;)? is the true inter-node distance.
ng; ~ N(0,07,) is a zero-mean Gaussian random variable with a variance of ¢}, = K Edfj“,
where K is a proportionality constant capturing combined physical layer and receiver
effects. b;; is a positive uniform random variable representing an added bias for NLOS

noise. [3;; is the path loss exponent. For this thesis, we assume 3;; = 2 Vi, j.

To compare different localization methods, the RMS localization error (for one noise

realization) is defined as

2
, (1.1)

~

0;, — 0,

1N
Q= \v2

where ||-|| denotes the Euclidean norm (distance).



Chapter 2

The Non-Collaborative Problem

The non-collaborative localization problem is defined with K anchors and N = 1
unlocalized nodes. The knowledge of all K anchor locations A = {4, A, A3, ..., Ay} and
range estimates r;, from each £ anchor to the node provides ranging circles that help

determine the location of the node.

2.1 The Least Squares Formulation

If the range estimates are noiseless such that r;, is the true distance between the node
and anchor k, then all ranging circles will intersect at the true node location as shown
in Figure 2.1. In general, to remove ambiguity between intersection points of ranging
circles (with noiseless range estimates), at least three unique ranging circles are required
to define the true node location. This can be seen in Figure 2.1 where each of the three
circles intersects each of the other circles at exactly two points, and the third ranging circle

is required to identify the true node location.

With three anchors and noiseless range estimates, the solution of the true node location

can be found by simultaneously solving the system of Equations 2.1-2.3. These equations
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Figure 2.1: Noiseless range estimates

define the range estimates, where [z,y]T is the node’s location and [z, y,]T is the k™

anchor’s location.

ry = \/($ —931)2+ (y—?/l)2
ro= (@ —22)* + (y — 1)’
ry = /(2 — 25+ (y — o)’

2.1)
(2.2)

(2.3)

If the range estimates are noisy such that r, = dj + ny, the true distance plus noise, the

ranging circles defined by r; are not guaranteed to intersect, and thus Equations 2.1-

2.3 may be an inconsistent system. Figure 2.2 shows a scenario with noisy range

estimates that lead to an inconsistent system of range estimate equations. Because of this

inconsistent system, we rely upon the minimization of a cost function to determine the

best estimate of the node’s location. Combettes proposes the least squares metric in [18]
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where " represents the non-collaborative location estimation, ¢ is the unlocalized node’s

current estimated location, A; represents its kth connecting anchor, and r; denotes the

range estimate between the unlocalized node and A;. Hé — A H represents the Euclidean

distance between 6 and A,. K is the number of anchors, and the term 1 /K normalizes

the objective function.

Thus, () represents the normalized sum of the squared errors between the range

estimates 7, and the actual distances between 6 and A,. It can be seen that if § = 6, the

true node location, and 7, are all noiseless range estimates, @“Cl(é) = 0. Essentially, the
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objective of Equation 2.4 is the sum of the weighted squared difference between range
estimates and the distances calculated using the estimated location, which is, in fact, the

same as the objective of the maximum likelihood estimator [19].

With noisy range estimates, then, we turn from solving the simultaneous system of

equations for 7y, to solving the minimization of the least squares formulation

)2} . (2.5)

The difficulty in solving this minimization has been the unknown error surface and,

win {0740) - 15 (= - 4

1

consequently, the number of minima for a given layout. Without prior knowledge of
the error surface, designing a solution method specifically for this objective function has
been only moderately successful. By characterizing the the non-collaborative problem
(focusing on the number of minima) for many different layouts and improving upon the
modified parallel projection method (discussed in Section 2.4), we propose a solution

method that nearly always discovers and returns the global minimum of ®"<().

2.2 Finding the Global Minimum of ¢"(§)

The global minimization of the non-collaborative objective function () does not
guarantee the minimization of RMS error (2 for a given layout. Figure 2.14 shows that
in some cases, solutions (minima) with lower €2 values than the solution with the lowest
objective value exist. However, equipped only with the anchors’ locations A and the
range estimates r; between the i" anchor and the node, minimizing ®™(h) is our best
effort at minimizing ). Therefore, knowing where the global minimum of @ (f) lies and
how many non-global minima exist for a given layout will help us determine the best
approach for finding the global minimum. Two solution methods, specifically tailored to

solving min{®"(4)}, are described in Sections 2.2.1 and 2.2.2.
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2.2.1 Branch and Bound / Reformulation and Linearization Technique

In [20], Jia and Buehrer develop a branch and bound (BB) technique, using the reformu-
lation and linearization technique (RLT) described in [21]. Jia and Buehrer show, using
their BB/RLT, that the optimal solution to the collaborative position location problem
is solvable. The non-collaborative case is a subset of the collaborative problems, so the
BB/RLT could be used to find the global solution to the non-collaborative problem, also.
However, BB/RLT does not easily return the non-global minima of ®"(4), so we employ

interval analysis, another solution technique.

2.2.2 Interval Analysis

Another method of finding the global minimum of ®"l(0) is interval analysis. Rump’s
INTLAB [22], a MATLAB! library developed specifically for interval analysis, is leveraged
by Hargreaves in [23] to guarantee the identification of all solutions of a nonlinear system

of equations that lie within a given bounding box.

Interval analysis is simply the use of intervals rather than specific values in mathematical
systems. For instance, the equation 10 — 3 = 7 can be generalized using intervals to 10
less the interval [2, 4], where 10 — 2 = 8 and 10 — 4 = 6, so 10 — [2,4] = [6, 8]. Therefore,
the equation 10 — 3 = 7 is fully contained within the interval equation 10 — [2, 4] = [6, 8].

Hargreaves, in [23], describes the use of the Krawczyk operator in solving nonlinear

systems of equations.

A benefit of using interval analysis to solve nonlinear equations is that the
Krawczyk and Hansen-Sengupta operators can be used to test the existence

and uniqueness of a zero in an interval .

In our case, the interval of interest is two dimensional (a rectangular box); we are

IMATLAB®), ©2009 by TheMathWorks™
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searching over the x and y directions to determine the optimal value of the node’s location
0. The Krawczyk operator allows us to find all the roots of a continuous nonlinear
function (in our case the derivative of @“Cl(é)), and in doing so, we find all the stationary

points of ®"9(f), including all the minima.

As given by Hargreaves in [23] (with the nomenclature K substituted out in this thesis
with Z), the Krawczyk operator Z(v, V) operates on the interval V. = [/, u] and on v, the

midpoint of V, as described in Equation 2.6. Z is returned as an interval.
Z(v,V)=v—-Cf(v) £ (I —-CJ(V))(v—-V) (2.6)

In Equation 2.6, C' is “an arbitrary non-singular real matrix” [24]. Hargreaves advises
using the inverse of the midpoint matrix of J(V) as C, where J(V) is the interval Jacobian
matrix of f(V). The midpoint is defined as the average of v and [, the upper and lower
bounds of an interval. Thus, mid (J(V)) is simply the midpoint of each of the intervals
of J(V), and C' = [mid (J(V))]”". f is the function of interest, and, for our application,
f = ®™(9). Iisthe identity matrix. The = is also arbitrary because the last term (v—V) =
—(v—V) = (V —v). Note that v is the midpoint of V, such that v = &%, so

(U_V):ujtl_[l’u}:[—u%—lu—l u+l:

5 5 g ]:[l,u]— 5 (V —v). (2.7)

Note that “H — [[,u] = [=4H L] not [, =4t] becauseu >, so a—u<a—1 Va.

Also, for interval V = [/, u], the radius of V is defined as rad (V) = “.

Theorem 7.1 in Hargreaves’ thesis [23] (proven by Neumaier in [25]) states

Let f : R™ — R” be a (set of) nonlinear continuous function(s), and let v € V.

e If fhasarootr € V,thenr € Z(v,V)N'V.
e If Z(v, V)NV =), then f contains no zero in V.

e If ) # Z(v, V) C interior of V, then f contains a unique zero in V.
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In this thesis, we use the first derivative of () as f because interval analysis will
return the roots of f, and this allows us to find all the stationary points (the roots of the
derivative) of "(4). The number of inputs to and outputs of f is n = 2. The inputs are
0 = [x,y]", and the outputs are the partial derivatives of ®"(f), one each with respect to

x and .

Hargreaves lists in [23] an algorithm for finding all the roots of a given function f
using the above theorem, and his MATLAB function “allroots.m” serves as the basis
for our optimal solver for min {@“d(é)}. Modifications were necessary, notably where

f = ®™(f) is not continuous.

Appendix A.1 shows the derivatives of ®"(f), and

K ~
N 6 A .
f=om0) ==Y |t A—0|. (2.8)
0 — Ay

@’“Cl(é) is discontinuous when Hé — A H = 0, that is, when the guessed node location 0 is

at an anchor location A;. Avoiding this problem requires that the cases where Hé — Ay H =

-4,
16|

some sufficiently large number M. For our work, M =1 x 10°.

0 be explicitly checked, and, when found, the result is not returned as oo but as

Using interval analysis (Algorithm 1), all the roots of (#) can be found inside a chosen
bounding box V, giving us the stationary points S = {S;, S, Ss,...} of ®(§). If the
Hessian matrix (the second derivative matrix) of ®"(S;) is positive semidefinite, then
S; is a minimum of ®"9(f). (The first and second derivatives of "?(f) can be found in
Section A.1). In this manner, we not only are able to find the global minimum of ol (h)
but also all the local minima in V. This allows the characterization of the number of
minima of ®"(¢) based upon different parameters, an important piece of information for

developing effective algorithms for position location.
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Algorithm 1 : Optimal Solver for min { ® () } Using Interval Analysis
g P g y

[l U]
1: Choose V = > 2 x 1 interval vector over which to search (in the x and y directions)

[Ly, uy]
2: Choose € as a small number denoting how small an interval bounding box must be in
its largest dimension to “sufficently” bound a root of ®(4).

3: Initialize list of discovered stationary points.
4: Explicitly check each anchor location A, to see whether they are stationary points.
5: v < mid(V) >vis a2 x 1 vector of scalars.
6 f < [®™(v), ®™(v)] > Equations2.12-2.13; f isa 2 x 1 interval vector with identical bounds.
7: [+ (V) > Equations A.25-A.28; f’is a 2 x 2 interval matrix.
8 C <+ [mid(f’)]_l; Set values of C that == oo to 0. > Cis a 2 x 2 matrix of scalars.
9: Z(v,V) <~ v—=Cf+{I—-Cf")(v—V) > Equation 2.6; Z is a 2 x 1 interval vector.
10 X<+ 7ZNV > X is a2 x 1 interval vector.
11: if X == () then
12: Return nothing. > No root of ®'™! exists in V.
13: else if max {rad(V) —rad(X)} < w then > if X is sufficiently smaller than V
14: if max {rad(X)} < € then > if X is sufficently small
15: Return mid(X) as a stationary point. > A root of ™! has been found.
16: else
17: T Bisect X along a chosen dimension into two new 2 x 1 intervals, X; and X,.
18: Goto Step 7, using X; as V.
19: Goto Step 7, using X, as V.
20: end if
21: else
22: Goto Step 7, using X as V.
23: end if

2
"7 = rad (V) -21 |72,; Bisect along rh dimension for T, > T}, j = 1,2,

Note: This algorithm was ;dapted from Hargreaves

7

allroots.m” in his thesis [23].

2.3 Characterization of Number of Minima of ®"(0)

Using the global interval analysis solver for min {(I)“d(é)} described in Section 2.2.2, we
are able to describe all the local minima given a particular anchor/node layout and a
noisy range estimate realization. To analyze the likelihood of multiple minima being

present and the factors which cause multiple minima, simulations in MATLAB were run.
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2.3.1 Simulation Parameters

A layout is defined as a set of anchors and, in the non-collaborative case, one true node
location. Based upon this information, noisy range estimates are generated, creating the
last piece of information necessary for simulation. For the characterization of multiple

minima in differing layouts, the following parameters were used.

e 30m x 30m area in which all anchors and the node are constrained to lie
e Number of anchors uniformly distributed on [3, 10].

e Different realizations of the random variable L, where L is uniform on [—15,15],

were used for all anchors” and the node’s = and y coordinates.

e True distances between the node and anchor were taken as the Euclidean distances

dy = \/ (z — x3)* + (y — yx)?, where = and y are the coordinates of the node, and z;,

and y;, are the coordinates of the k™ anchor.

e Range estimates between the k" anchor and the node were corrupted with noise
ni, a zero-mean Gaussian random variable described as n; ~ N(0,0%), where

o} = Kpd*.

e Ky is the “noise constant,” and layouts were simulated at
Kp = {0,0.0025,0.0144, 0.0361, 0.0676, 0.1089, 0.1600} =
MATLAB’s [0, (linspace(0.05, 0.40, 6))."2].

— For reference, Figure 2.3 shows the relationship between o, the standard

deviation of ny, given a distance and a K value.

e [ is the path loss exponent and is held constantly at 5, = 2 for all LOS simulations.

¢ 100,000 different layouts per Ky value were created, giving a total of 700,000 layouts

and simulations.
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2.3.2 Results

Counting the number of minima for each layout was the first task in determining how to
improve performance. Layouts that only have one minima in the first place are already
solvable by minimum-finding algorithms (e.g. steepest descent). Figure 2.4 shows the
percentage of layouts that have multiple minima (and how many), plotted against the
number of anchors in the layout. Notably, for the layouts with only three anchors, there
is more than a 50% chance that multiple minima will exist. This underscores the necessity
of finding the correct minimum, not just the first available minimum. However, the

possibility of having more than two anchors is rare.

Investigating many of the layouts that created multiple minima of ®"(4), we discovered

the trend that most minima tended to be approximately spatially divided by the bulk of
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Figure 2.4: Number of minima against number of anchors (K = 0.0144)

the anchors. Also, we identified most of the layouts with multiple minima as having one
characteristic in common: the estimated node location was outside of the anchors” convex
hull. Figure 2.5 shows an example layout with Ky = 0.0144 and multiple minima. The
three minima are all outside the convex hull of the anchors, as is the true node location.

Also, note that the minima are approximately separated by the bulk of the anchors.

Leveraging the information about multiple minima occurring more often when the node
is outside the convex hull of the anchors, and ruling out other possibilities for the
main cause of multiple minima, we draw this conclusion: The most important factor
determining whether or not multiple minima of ®"l(0) exist is whether or not the node is
inside or outside the convex hull of the anchors. Other criteria tested were the colinearity
of the anchors, noise amount, and number of anchors. Figure 2.6 shows the dramatic

increase in probability of multiple minima when the node is inside the convex hull as
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Figure 2.5: Example layout with multiple minima (Kp = 0.0144)

opposed to when it is not. Figure 2.6 also shows that with an increasing number of
anchors, the probability of multiple minima understandably decreases. In this case, more
information is available to assist in localizing the node. Therefore, performance increases

as the number of minima decreases. Figure 2.7 shows the same trends for other values of

Kg.

Our simulations show that the two factors most affecting the number of minima of ®"°(4)
are whether or not the node’s estimated location is inside the convex hull of the anchors
and the number of anchors. Overall, the probability of multiple minima occurring when
the true node location is inside the convex hull of the anchors is low, and the probability
of the node being randomly placed inside the convex hull of the anchors increases directly
with the number of anchors. The degradation of localization performance when nodes
and/or their location estimates are outside the anchors’ convex hull is a well known
problem [6, 26, 27, 28, 29, 30, 31]. Our contribution is to note that performance for our

objective function degrades when the node is outside of the convex hull because multiple



19

minima of ®"(f) are much more likely to exist than when the node is inside the convex

hull.
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Figure 2.8 shows error plotted against anchor linearity (eccentricity, explained in Sec-
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tion 3.6). Here, it can be seen that the layouts with nearly colinear anchors are also likely
the layouts that produce high error. This is intuitive as the probability of the node being
outside the convex hull grows as the anchors become more aligned. However, a large
enough percentage of layouts with low anchor eccentricity and high error exist, making
eccentricity insufficient for identifying those layouts with high error. This reaffirms our
conclusion that whether the node is inside or outside the convex hull is the largest

identifying factor with regard to error.

(a) (b)

Figure 2.8: Number of minima; Kz = 0.0144

The simulation results clearly show three facts:

The true node location being inside or outside of the convex hull has the greatest

effect on the number of minima for a given layout.

e An increasing number of anchors decreases the possibility of multiple minima.

The amount of noise on the ranging estimates has some, but not an overwhelming,

effect on the probability of multiple minima.

When multiple minima of ®'¢(6) exist, there are nearly always exactly two.
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With these facts in mind, we describe and analyze the modified parallel projection method
in Section 2.4 and develop an improvement specifically designed to address the layouts

identified above that have multiple minima in Section 2.5.

2.3.3 Infeasiblility of Optimal (Global) Solvers

Having an optimal solver available, e.g. BB/RLT or interval analysis, is helpful, but the
computational complexity and computation time involved in using these solvers renders
them infeasible for our applications of interest. The modified parallel projection method
(MPPM) and the reflected PPM (RPPM) are described in detail in Sections 2.4 and 2.5.
These solvers are non-optimal, but it will be shown that the RPPM achieves nearly
equal performance to the optimal interval analysis solver. To compare the complexity
of using the interval analysis solver against that of using MPPM and RPPM, runtimes
were recorded for each solver as they operated on the same layouts. Simulations were
performed on a computer running Mac OS? 10.6.8 and MATLAB R2010a (7.10.0.499), 64-
bit, with 4 GB of RAM. Table 2.1 shows the seconds elapsed for each of the solvers when
processing 100 layouts. The three orders of magnitude increase in time required for the
interval analysis solver to complete explains why sub-optimal solvers are desired. For a
more thorough comparison of the MPPM and RPPM solvers, the times elapsed for each

of them to process 10,000 layouts are also listed.

100 layouts 10,000 layouts
MPPM | RPPM Interval analysis MPPM | RPPM
0.5210 | 1.6685 | 8.6507 x 10° (nearly 2.5 hours) 45.2084 | 166.3948

Table 2.1: Seconds to process layouts, Kz = 0.0144

ZMac OS™, © 2011 by Apple Inc.
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2.4 Modified Parallel Projection Method

In [16], the authors modify the the parallel projection method (originally developed for
signal recovery [18]) to obtain an iterative approach for position location, here labeled the
modified parallel projection method (MPPM). A starting location 6 is chosen, and the MPPM
iteratively updates # until convergence is achieved. The authors define a projection

function in Equation 2.9.
0 — Ay

-y
- 4k

(2.9)

Pre(f) simply represents the intersection point on the £ anchor’s ranging circle that is
closest to the current guessed location 6. Hg:—i“:” is the vector of unit length pointing from
the k™ anchor to §. Multiplying this by r, gives the vector the desired length (the radius
of the k' ranging circle), and adding the vector to A, translates it from the origin to the
anchor’s location. Therefore, Step 3 of Algorithm 2 simply updates the node’s guessed
location to be the average of the points on each of the K ranging circles that are closest
to . Figure 2.9 shows, for an example layout, the intersection points as circles and the

average of these points, the next guess of 0, as a star.

The authors of [16] use Equations 2.4 and 2.9 to estimate location as described in

Algorithm 2.

Algorithm 2 : Modified PPM

1: Initialize the unlocalized node at 6; | + 0;
Pl pl(h); § + a small positive number
: repeat
0« (1/K) Zi{zl P,?Cl(é) > Update estimated location.

A

I+1

2
3
4: orel < @) ; 11 +1 > Calculate objective value.
5: until |<I)?fl — o] < § > Compare difference in objective values over subsequent iterations.
6

: return 0
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Figure 2.9: MPPM: Moving from one iteration to the next
2.4.1 Identification of MPPM as Steepest Descent

Convergence of steepest descent algorithms with constant stepsize only guarantees that
the algorithm will converge to a stationary point [32]. The modified parallel projection
method is shown in this section to be a steepest descent (gradient) solution method.
Therefore, convergence to a local minimum of the objective function ®'(6) is probable

but not guaranteed.

Recall that the objective function

() — i(rk— He Ay ) (2.10)
P

1

=)=

i (Tk \/ (& —2)" + (y — yk)Q)2 : (2.11)

k=1

Then, from Appendix A.1, the negated (for descent) first derivative of nl(h) is
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Iy ki (Tk (2 — o)+ (y— )] —1) (& — )
—o(h) = ) 2.12)
25 (ne e —a + - -1) -
2 K| h— A, X
= —= — 1+ A — 0] . 2.13
K;[éAk ot Ay ] 213)

Note that in Algorithm 2, Step 3, the next guessed node location §7*! is the average of all

the projection points (on each of the ranging circles)

g+t = 9 4 Ay, (2.14)
bi — AkH

K
ncl 61 Z

||MN

and subtracting § from Equation 2.14 yields the vector from #’ to the next guessed

location 61,

!/

e+ Ay — 0| = —0™(h)/2 (2.15)

K
G+l _ i — Z

Ak

Thus, the modified parallel projection method iteratively updates the guessed node
location, always updating in the direction of steepest descent and with a distance equal

to half the magnitude of the derivative vector.

2.4.2 Guaranteed Convergence to a Stationary Point

Because the MPPM is a gradient descent (and a steepest descent) solution method, the
question of convergence arises. Bertsekas provides a proof of convergence to a stationary

point of a gradient descent method with a constant stepsize in Proposition 1.2.3 in [33].
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The proposition states:

Let z* be a sequence generated by a gradient method z*! = 2% + a*d*, where

d* is gradient related. Assume that for some constant L > 0, we have
IVf(x) = Vil < Lz —yl, YayeR", (2.16)

and that for all k, we have d* # 0 and
2-¢|vf(*) e
<adf < >
L||d|

) (2.17)

and € is a fixed positive scalar. Then, every limit point of z* is a stationary

point of f.

It is generally difficult, according to Bertsekas in [33], to prove satisfaction of Equa-
tion 2.16. However, for our objective function ®*(4) (labeled f in the proposition),
Equation 2.16 is satisfied by simply dividing f by a sufficiently large number. The
purpose of the objective function is to compare one minimum against another. Dividing

both objective values by the same number will not affect this comparison.

Equation 2.17 can be transformed by recognizing that d* = —Vf (2*) is the steepest

descent vector. Thus,
S R e 0 N S U R [ (2.18)

and Equation 2.17 becomes ¢ < o < (2 —€)/L. We know that the step size o* = 1/2V k
(as shown in Equation 2.15), and we arrive at ¢ < 1/2 < (2 — ¢)/L. The right hand
inequality yields L < 2(2 — ¢), and maximizing ¢ to 1/2 forces L < 3. However, as
explained above, Equation 2.16 can be satisfied for an arbitrarily small L by dividing f
by a sufficiently large number. Thus, Equations 2.16 and 2.17 can both be satisfied by
using 0 < € < 1/2 and L < 3. Therefore, Proposition 1.2.3 from [33] proves that the

modified parallel projection method’s limit point is a stationary point of the objective
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function ().

The likelihood of MPPM converging to a non-minimum stationary point was not explored
because of the excellent performance achieved in the first place. In certain test cases, it
can be shown that MPPM does settle to a saddle point rather than a minimum given
a specifically chosen initialization point. MPPM will not converge to a maximum, but
the remote possibility exists that MPPM'’s iterations will force it to iterate exactly to a
maximum of ®"?(#). While MPPM always follows the descent direction, it is conceivable
that the magnitude of the gradient vector will pass over the non-maximum stationary
point and will point MPPM exactly to a maximum. In this scenario, the gradient vector
would have zero length, and MPPM would stop. The possibility of initializing MPPM to
a maximum of ®"(9) is also conceivable. In all these scenarios, though, where MPPM
might converge to a non-minimum stationary point, the reflected parallel projection
method (RPPM) (explained in Section 2.5) mitigates the possibility of never finding any

minimum of ®"¢(f) by using multiple initialization points.

An analysis of how often the MPPM settles in a non-global minimum appears in

Section 2.5 along with our proposed solution method for remedying those cases.

2.5 The Reflected Parallel Projection Method

This section details the development and performance of the reflected parallel projection
method (RPPM), a method which nearly matches the performance of the optimal interval

analysis solver while using much fewer computer resources and much less time.

2.5.1 Motivation for the Reflected Parallel Projection Method

From the characterization of the non-collaborative location problem, we built a library

of layouts, noise realizations, and the minima of @ (0) associated with these layouts.
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While the optimal interval analysis solver works well, it is slow and computationally
expensive. One of the main applications of collaborative position location is in the low-
power wireless sensor arena, so a computationally expensive algorithm is prohibitive
and unwieldy. Here, we develop a sub-optimal solver for min {@“Cl(é)} that shows
nearly optimal performance at a much lower cost, the reflected parallel projection method

(RPPM).

Because the parallel projection method is an iterative algorithm, its performance is, like
most other iterative algorithms, dependent upon initialization. In particular, performance
improves as more initialization points are used, but cost and time grow accordingly. The
objective of the RPPM is to limit the number of initialization points required to achieve
nearly optimal performance by intelligently choosing one initialization point based upon

the solution of the MPPM from a different initialization point.

Figure 2.10 shows the performance of the MPPM in situations with only one minimum
(as found by the interval analysis method) compared to those situations with multiple
minima. Performance in multiple-minima situations is noticeably worse than the single-
minima situations at least 40% of the time, and performance in multiple-minima situa-
tions is severely worse about 30% of the time. In some cases where multiple minima
exist, MPPM will converge to min{®"(4)}. When it does not, RMS error { can increase
dramatically, as shown in Figure 2.10. This heavy tail of error in multiple-minima

situations is what the RPPM is designed to address and correct.

Figure 2.11 shows that, even in the absence of noise, multiple minima of () can exist,
and, depending upon the choice of starting location, MPPM may settle in a non-global

minimum.
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Figure 2.10: Heavy tail of error when multiple minima exist (Kz = 0.0025, three anchors)

2.5.2 RPPM Algorithm

The characterization of the number of minima likely for a given layout in Section 2.3
leads us to the conclusion that, under typical circumstances, ideally we need only three
initialization points to find the possible three minima of ®"(§). Figure 2.6 shows that
the probability of finding more than three minima is negligible. If all the minima of
d(f) are found, then a simple comparison of the minima’s objective value will yield
the solution to min {@“Cl(é)}. The interval analysis method described in Section 2.2.2

yields all the minima, and we show that the RPPM, a sub-optimal solver, nearly matches
the performance of the interval analysis method.
Using the results of the characterization of the minima of dl(f), we discovered that

the multiple minima were nearly always spatially divided by the bulk of the anchors.

This phenomenon is similar to the well known flip ambiguity. Taking advantage of this,
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Figure 2.11: MPPM can settle to non-global minimum even in the absence of noise.

we choose as the next initialization point the reflection of the prior solution about the
centroid of the anchors. Thus, the next initialization point is likely to be nearer a different
minimum than the prior solution, and this process is repeated until one minimum is
found twice. Then, all the discovered minima’s objective values are compared, and the

minimum with the lowest objective value is returned.

In addition to discovering that minima are usually spatially divided by the anchors, we
show in Figure 2.12 that, given a set of anchors, minima pairs occur with some amount
of symmetry. Figure 2.12 shows two example noiseless layouts where the true node
is plotted in different locations (in the lower left corner for Figure 2.12(a) and in the
lower right corner for Figure 2.12(b)). For each true node location, a second (non-global)
minimum occurs and is plotted as another circle, linked to the true node location with
a dashed line. As the true node moves upward in the y direction, the second minimum

moves in a matching fashion. This phenomenon appears in many layouts; Figure 2.12

contains two examples.
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Figure 2.12: Minimum pairs show symmetry for two example layouts.

Using the RPPM on the randomly generated layouts used for the characterization of
o (§), we found that the RPPM ran the MPPM algorithm an average of 2.3 times for
each layout (as opposed to the 1 time it would have been run without reflecting). This is
reasonable because the RPPM has to run MPPM at least twice. If it is only run twice, the
RPPM finds the same minimum two times in a row and returns it as the only minimum
of (). When multiple minima exist, the RPPM must run at least three times to find
two minima. In general, the RPPM runs the MPPM algorithm n + 1 times, where n is the
number of discovered minima. The last MPPM run finds a minimum that has already

been discovered, telling the RPPM algorithm when to terminate.

In the RPPM algorithm (Algorithm 3), M = [my, ma, ..., m;), where m; = [x;, y;]” is the 2D
coordinate of the i" minimum of ®"!. §, is the initialization point for the i iteration. A is
the set of 2D coordinates of the anchors neighboring the unlocalized node, and 0(H (A))
is the boundary of the convex hull of A. f is the 2D reflection point, the average of A C

O(H(A)). |- | denotes cardinality, so 0, is the reflection of m; about f, weighted by the
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number of neighboring anchors. The algorithm stops when a minimum that has already

been found is found again and then returns the minimum with the lowest objective value.

Algorithm 3 : Reflected PPM

i<+ 0; M« (; 6, «< closestanchor

2: [+ ACO(H(A)) > Find reflection point f.
3: repeat

4 L1+ 1

5: m; < PPM (initialized to 6;) solution > Run MPPM and store solution.
6 Oi 1 my + |A|(f — my) > Reflect about f.
7. until m; = m;, forany j = {1,2,3,...,: — 1} > Stop when a minimum is discovered twice.
8: return my : my, € M, ®(my) < ®(m;) Vj #k > Return min with lowest objective value.

Figure 2.13 shows the an example of the RPPM algorithm.

2.5.3 Comparison of RPPM to Optimal Solver

Figures 2.14 and 2.15 show the gains in performance that RPPM provides compared to
MPPM and the nearly identical performance of RPPM to interval analysis. Figure 2.14
shows the cumulative distribution function of error for all layouts with Kz = 0.0144.
The reduction of the heavy tail of RMS error gained by using RPPM as opposed to
only MPPM is significant, and the optimal performance of interval analysis is nearly
indistinguishable from RPPM. Thus, RPPM, a non-optimal solver, almost always returns

the same minimum as the global interval analysis solver.

It can also be seen in Figure 2.14 that sometimes, the lowest objective value does not
correspond to the minimum with the lowest RMS error 2. This is shown by the upper
“Best from interval analysis” and “Best from RPPM” plotlines. If it were possible to
distinguish the best (lowest RMS error) minimum from all those returned by interval

analysis or RPPM, the upper plotlines’ performance would be achievable.

Figure 2.15 shows the RMS error for MPPM, RPPM, and interval analysis on layouts with

exactly three anchors and variable amounts of noise (variable Kp). Again, performance
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(Figure continued on next page.)

is noticeably improved by using RPPM, and the optimal performance of interval analysis
is nearly matched. More dramatic, though, is the difference between the minimum

displaying the least error out of all minima found and the minimum with the lowest



M Anchors \
10+ \ 107 | Ranging circles oo, .
t X A Reflection point \ e
' L7 - = = Trajectory W yd
a‘- e @ Discovered minima "““"‘ TN //
\ s’s -7 \ s’\
5 \ ’/ 5H Final found minimum| W
v e VeV
oo S )
Ve . " _fA/, R P
0 A e S
[} S i) L
g o PSRN 2 o A
= s \ = 7 \
3 \ B \
///’~':’-,- ‘. ,/,/\._3-’- _.
// , S R
‘. Y4 ~ L - K4 IR IO
-5 ',,/,', B Anchors -5 '/”1,,'
D RAAE Ranging circles Y
J/ A Reflection point )
4 — — — Trajectory 4
4 ) L X4
~10t+ ’ @ Discovered minima _1of ’
X New initialization point
-10 -5 0 5 10 -10 -5 0 5 10
Meters Meters

(e) Third discovered minimum and reflection

(f) Minimum found twice; return.

33

Figure 2.13: RPPM example

objective value. Figure 2.15 shows, in dashed lines, the minimum error out of all minima,
as discovered by RPPM and by interval analysis. This reaffirms that the minimum of
& (0) with the lowest objective value is not guaranteed to minimize 2. While Figure 2.15
only displays results for layouts with exactly three anchors, it shows the potential for

improvement beyond minimizing ®"(#).

Ideally, RPPM would always find all the minima of Prel(g), allowing us to identify the
global minimum in all cases. While such a guarantee is not possible, the interval analysis
method does guarantee the identification of all minima of ®*(d). Interval analysis is a
computationally expensive and slow method for finding minima, but it does provide a
lower bound on the error performance of RPPM in the sense that it allows us to know

whether RPPM found the global minimum of ®"(§).

Figure 2.16 is an example of one layout and noise realization that yields multiple minima
and where the minimum with the lowest objective value does not have the lowest RMS

error. It can easily be seen that the minimum with lowest RMS error is nearly at the true
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node location, but the flip ambiguity of the anchor layouts along with this specific noise

realization force the minimum on the opposite side to have a lower objective value.
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2.54 The Weighted Least Squares Formulation

The MPPM as described uses non-weighted projections. Incorporating weights would

simply change the update step to be

K

wp Pr(0)
A k=1
o= (2.19)
> wy
k=1
instead of
~ K ~
0« (1/K)>_ Pr(0), (2.20)
k=1

where w;, would be the reciprocal of the variance of range estimate noise for each range
estimate. If the variance of each range estimate noise value was known, incorporating
the weights into the MPPM formulation would improve average performance. Some
layouts returned a lower RMS error with MPPM than with the weighted least squares
(WLS) formulation, but the gain in performance shown by Figure 2.17 when using WLS
is significant. The RMS error returned by WLS is actually smaller, on average, than the
minimum RMS error of all minima found by interval analysis/RPPM. This indicates that
the WLS formulation returns a node location estimate that is not necessarily a minimum of
@"(f). However, knowledge of wy, is difficult without multiple range estimates between
the same node/anchor pair. This operation would consume valuable battery power in
the applications of interest. Thus, the weighted least squares formulation was not tested

as thoroughly as the non-weighted version.

The performance gain possible through weighted least squares, though, motivates the
researching of how to weight each term in the update step. For this particular formulation
of noise, where 02 = K d'*, knowledge that the variance is directly related to the distance
is helpful. However, this particular model of noise may not be accurate for real-life

scenarios.
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Chapter 3

The Collaborative Problem

In the non-collaborative case, only one node and multiple anchors exist. In the collab-
orative problem, multiple nodes communicate with each other, assisting each other in

localization, particularly by providing range measurements and node location estimates.

3.1 The Collaborative Objective Function

Recall that the non-collaborative objective function is

G > (R (RRY)) o1
k=1
= % i (Tk - \/(96 — )+ (y — yk)2)2 : (3.2)

e
Il

1

where K is the number of anchors, 7, is the range estimate between the node and the Eth

anchor, 4 is the supposed node location, and Ay, is the location of the k™ anchor.

38



39

6 — {él,é%...,éN,eAl,eAQ, o ,eAK} - {él,éQ,...,éN,9N+1,0N+2,...,9N+K} is a list, for
the collaborative case, of the unlocalized nodes’ locations followed by a list of the anchors’
known locations. The range estimates vector in the non-collaborative case becomes an
N x N + K matrix in the collaborative case, where N is the number of nodes and K is
the number of anchors. Multiple nodes exist, and, depending on the radio range, some
nodes may not be connected to other nodes. Then, the collaborative objective function

becomes

N+K

d°(O) = éi Z (7”1‘]'—

i=1 j=i+1;jEN;

b, — 0 )2 (3.3)

N+K 2

= éi >, <Tij—\/(fﬂi—$j)2+(yi—yj)2) ,

i=1 j=i+l;jEN;

where 7;; is the range estimate between the i and j™ nodes and W is the set of
neighboring nodes/anchors to the i node. C is the total number of connections
(node/node and node/anchor) in the network, which is equal to the number of terms in
the entire summation. The j = 741 beginning index of the second summation is included
to ensure that the connection from node i to node j is only contributing to the objective
value once rather than twice. The first summation of Equation 3.3 sums only over the
unlocalized nodes while the second summation sums over nodes and anchors. Note that
the non-collaborative objective function ®™!(f) can be obtained from the collaborative
objective function ®<!(0) by setting neglecting N and i (as there is only one node), and

setting A/ = A, the set of anchors.

3.2 Finding the Global Minimum of ®<°!(©)

As is the case with the non-collaborative problem, described in Section 2.2, our approach

is to find the global minimum of ®°(©), compare the existing iterative parallel projection
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method’s performance to that of the global solver, and target the layouts which cause
large RMS error. Sections 3.2.1 and 3.2.2 explain our techniques for finding the global

minimum of $<!(O).

As the global minimization of the non-collaborative objective function ®"(4) does
not guarantee the minimization of RMS error (2 for a given layout, neither does the
minimization of 