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ABSTRACT

This thesis focuses on the least-squares formulation of the non-collaborative and collabo-

rative position location problems. For the non-collaborative problem, characterization

encompassing the number of minima and the causes thereof is provided. Based on

these efforts, we propose an improvement to the existing modified parallel projection

method (MPPM), the reflected parallel projection method (RPPM). We show that the

global minimum to the non-collaborative objective function can nearly always be found

using the non-optimal reflected parallel projection method (RPPM).

For the collaborative position location problem, we provide a characterization that shows

a heavy tail of root-mean-square (RMS) error due to a small percentage of simulated

node/anchor layouts when solved by the iterative parallel projection method (IPPM).

We provide an identification technique that successfully identifies most layouts that

show large RMS error followed by a proposed solution to improve the accuracy in those

problematic layouts.

Finally, we report the findings of a measurement campaign that validates our Gaussian

model for line-of-sight (LOS) noise and shows that, for these particular measurements,

non-line-of-sight (NLOS) noise is difficult to accurately model and can be very large.

This research was supported by a Bradley Fellowship from Virginia Tech’s Bradley

Department of Electrical and Computer Engineering, made possible by an endowment

from the Harry Lynde Bradley Foundation.
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Chapter 1

Introduction

Position location information has and will continue to be used in many different ways.

Recently, the proliferation of wireless devices (namely cellular phones) has led to an

explosion of location based services (LBS). Applications such as targeted and improved

marketing strategies [1], urban vehicular traffic monitoring [2], cooperation among

first responders/military personnel [3], and many more take advantage of location

information. Some companies have used recorded location information to assist in future

GPS fixing times [4], earning worldwide attention for saving this information without

notifying customers. The importance of location information leads to the need to research

fast, efficient methods of obtaining it.

The term localization refers to the act of geo-locating objects. A familiar problem is the

localization of one node or object, such as when an emergency 911 phone call triggers

the localization of the calling cell phone to assist first responders. In this scenario, only

one node is being used; all other information comes from anchors, objects with known

locations such as cell base stations. This one-node scenario is labeled in this thesis as

non-collaborative position location.

Collaborative position location, sometimes referred to by other names such as cooperative

1
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position location, wireless sensor location, or position localization, is the localization

of nodes in space when the nodes rely on information from other unlocalized nodes.

Thus, the estimate of each node’s location can be improved by leveraging information

from neighboring nodes, even though those neighbors are not guaranteed to be correctly

localized.

Collaborative position location has recently become very popular for addressing the

issue of localizing wireless devices in environments with limited infrastructure support

from GPS or a cellular system. An indoor environment is one such scenario. The basic

concept is to use the additional measurements among unlocalized nodes to increase

location coverage and improve localization accuracy. In fact, many algorithms and

experimental systems have already been developed, both those that use centralized

compuations [5, 6, 7] and those using distributed algorithms [8, 9, 10, 11, 12]. A more

detailed survey of collaborative position location approaches can be found in [13, 14, 15].

In this thesis, we focus on improving the recently-developed modified parallel projection

method (MPPM) [16] for non-collaborative localization and its collaborative extension,

the iterative parallel projection method (IPPM), which has been demonstrated to achieve

comparable and often better localization accuracy than existing methods such as SDP

(semi-definite programming) and MDS (multi-dimensional scaling) with substantially

less computational complexity [17]. We show that our proposed improvement to MPPM

identifies and mitigates the heavy tail of error resulting from non-global minima (shown

in Figure 2.10) of the objective function Φ and nearly matches the performance of the

interval analysis method, an optimal but slow and computationally expensive solver.

Turning to the collaborative problem, we show that a small percentage of simulated

layouts contribute a disproportionately large amount to the average RMS error. We

develop an identification mechanism, based on the colinearity of anchors, to accurately

predict which layouts are likely to be solved incorrectly by the iterative parallel projection

method (IPPM). Finally, we develop a solution technique that specifically targets those
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layouts that contribute most to average RMS error. Our improved solution technique

shows significant performance gains as compared to IPPM.

Methods of Localization Measurements

Different types of information can be leveraged towards the ultimate goal of localization.

Time, frequency, power, and angle of incoming wireless signals can all be used. Time is

probably the most widely-used method of obtaining information for localization because

of the relative reliability compared to other measurements. Multipath scenarios can

corrupt information obtained by timing, so care must be taken to account for line-of-sight

(LOS) signals as opposed to non-line-of-sight (NLOS) signals. Doppler shifts provide

information on the velocity of objects which can assist with localization. Received signal

strength (RSS) is likely the easiest measure available for localization because of the nearly

ubiquitous availability of signal power information in wireless devices, but the variability

in signal power due to environmental effects renders RSS measurements less reliable than

time measurements. Finally, the angle of arrival of signals can be measured, providing

lines-of-bearing. However, it cannot generally be guaranteed that the angle at which the

incoming signal arrives is the angle towards the signal’s emitter.

Assumptions about Distance Estimates

The work in this thesis is based upon distance (range) estimates obtained between

wireless devices. The manner in which these estimates are obtained is not the focus

of this work, although round trip time of flight measurements performed during the

Spring 2011 semester (described in Chapter 4) confirm the reasonability of our Gaussian

noise assumption for LOS environments. Throughout this work, the presence of range

estimates is assumed, and the focus of this work is how to best leverage the range

estimates rather than how they were obtained.
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1.1 Thesis Summary

Chapter 2: The Non-Collaborative Problem

The non-collaborative localization problem is introduced in Chapter 2 along with the

associated least squares formulation. Using the optimal interval analysis solver, we are

able to confirm that performance degrades when the node’s estimated location is outside

the anchors’ convex hull because the number of minima of our objective function Φncl(θ̂)

usually increases when the node’s estimated location is outside the convex hull of the

anchors.

Starting with the previously-developed modified parallel projection method (MPPM) [16],

we show that it is, in fact, a steepest descent algorithm and therefore is only guaranteed to

converge to a stationary point. Using the information gained from characterization, we

develop the reflected parallel projection method (RPPM) that uses intelligent initializa-

tions of MPPM to achieve nearly optimal performance (as measured against the optimal

interval analysis solver). Finally, we demonstrate that minimizing the objective function

Φncl(θ̂) will not necessarily minimize the root mean square (RMS) error of the layout.

Chapter 3: The Collaborative Problem

Chapter 3 focuses on the collaborative problem and the associated objective function

Φcol(Θ̂). We provide an analysis of the number of minima of the objective function.

Based on our simulations, multiple minima are more likely in layouts with nearly colinear

anchors (which, in turn, causes most node location estimates to be outside the anchors’

convex hull) and in layouts with a large number of nodes. Again, the well known

performance degradation when nodes are outside the convex hull of the anchors is

confirmed, and we submit that the reason is that multiple minima exist more often in

these situations.



5

The iterative parallel projection method (IPPM) [16] was developed to minimize Φcol(Θ̂),

and we use the aforementioned characterization to propose improved initialization

techniques and show incremental performance increases for each more complicated

initialization technique. Additionally, we propose techniques that accurately identify

which node/anchor layouts are likely to have multiple minima, allowing the user to

be selective in which layouts need additional initializations. Also, we confirm that

minimizing Φcol(Θ̂) will not necessarily minimize the RMS error of the network, a result

matched in the non-collaborative scenario.

Chapter 4: The Measurement Campaign

Chapter 4 describes a measurement campaign with the purpose of assisting in noise

modeling for both LOS and NLOS situations. ENSCO, Inc. R©, provided two radios

designed specifically for ranging. The radios use 22MHz of the Wi-Fi band to measure

the time-of-flight between themselves, returning range estimates at a rate of 217Hz.

By keeping the radios stationary and recording the measurements taken at one known

distance, we obtained distributions of range estimates. Using these distributions, we

conclude that LOS ranging noise can accurately be modeled as Gaussian. We also

conclude that NLOS ranging noise is highly variable depending on the environment

but nearly always shows a considerable positive bias. Expectedly, the radios performed

poorly when people or substantial walls separated them, and they performed well in

open, clean, LOS environments. We appreciate ENSCO’s allowing us to use the radios

for our research purposes.

1.2 Problem Formulation

Consider a 2D square network consisting of K ≥ 3 anchors at known locations and N

unlocalized nodes whose locations are to be estimated. In the applications of interest,
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N >> K, but this is not necessary for the developed algorithms to be effective. The true

locations of the unlocalized nodes are denoted by Θ = [θ1, θ2, . . . , θN ], and the known

locations of the anchors are denoted by A = [θN+1, θN+2, . . . , θN+K ], where θi = [xi yi]
T

is the 2D coordinate of the ith node, for i = 1, 2, 3, . . . , N + K, and (·)T is the matrix

transpose operation. If the distance between the ith and jth nodes, denoted by dij , is less

than the physical communication rangeR, we say the two nodes neighbor each other and

thus can communicate and obtain a (noisy) range estimate rij of their true distance dij .

(In practice, due to non-line-of-sight (NLOS) obstruction, there is a possibility that two

nodes may not communicate even if their physical distance is within the communication

range.) Furthermore, we assume range estimates are symmetric, i.e., rij = rji, ∀i, j. The

task is to obtain an estimate Θ̂ of the true locations Θ.

We assume that range estimates are corrupted by independent zero-mean Gaussian

noise. In particular, the range estimate between the ith and jth nodes is modeled as

rij = dij + nij + bij , where dij =
√

(xi − xj)2 + (yi − yj)2 is the true inter-node distance.

nij ∼ N (0, σ2
ij) is a zero-mean Gaussian random variable with a variance of σ2

ij = KEd
βij
ij ,

where KE is a proportionality constant capturing combined physical layer and receiver

effects. bij is a positive uniform random variable representing an added bias for NLOS

noise. βij is the path loss exponent. For this thesis, we assume βij = 2 ∀i, j.

To compare different localization methods, the RMS localization error (for one noise

realization) is defined as

Ω =

√√√√ 1

N

N∑
i=1

∥∥∥θ̂i − θi∥∥∥2 , (1.1)

where ‖·‖ denotes the Euclidean norm (distance).



Chapter 2

The Non-Collaborative Problem

The non-collaborative localization problem is defined with K anchors and N = 1

unlocalized nodes. The knowledge of all K anchor locations A = {A1, A2, A3, ..., Ak} and

range estimates rk from each kth anchor to the node provides ranging circles that help

determine the location of the node.

2.1 The Least Squares Formulation

If the range estimates are noiseless such that rk is the true distance between the node

and anchor k, then all ranging circles will intersect at the true node location as shown

in Figure 2.1. In general, to remove ambiguity between intersection points of ranging

circles (with noiseless range estimates), at least three unique ranging circles are required

to define the true node location. This can be seen in Figure 2.1 where each of the three

circles intersects each of the other circles at exactly two points, and the third ranging circle

is required to identify the true node location.

With three anchors and noiseless range estimates, the solution of the true node location

can be found by simultaneously solving the system of Equations 2.1-2.3. These equations

7
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Figure 2.1: Noiseless range estimates

define the range estimates, where [x, y]T is the node’s location and [xk, yk]
T is the kth

anchor’s location.

r1 =

√
(x− x1)2 + (y − y1)2 (2.1)

r2 =

√
(x− x2)2 + (y − y2)2 (2.2)

r3 =

√
(x− x3)2 + (y − y3)2 (2.3)

If the range estimates are noisy such that rk = dk + nk, the true distance plus noise, the

ranging circles defined by rk are not guaranteed to intersect, and thus Equations 2.1-

2.3 may be an inconsistent system. Figure 2.2 shows a scenario with noisy range

estimates that lead to an inconsistent system of range estimate equations. Because of this

inconsistent system, we rely upon the minimization of a cost function to determine the

best estimate of the node’s location. Combettes proposes the least squares metric in [18]
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(modified in [16]) as

Φncl(θ̂) =
1

K

K∑
k=1

(
rk −

∥∥∥θ̂ − Ak∥∥∥)2 (2.4)

=
1

K

K∑
k=1

(
rk −

√
(x− xk)2 + (y − yk)2

)2

,

where ncl represents the non-collaborative location estimation, θ̂ is the unlocalized node’s

current estimated location, Ak represents its kth connecting anchor, and rk denotes the

range estimate between the unlocalized node and Ak.
∥∥∥θ̂ − Ak∥∥∥ represents the Euclidean

distance between θ̂ and Ak. K is the number of anchors, and the term 1/K normalizes

the objective function.

Thus, Φncl(θ̂) represents the normalized sum of the squared errors between the range

estimates rk and the actual distances between θ̂ and Ak. It can be seen that if θ̂ = θ, the

true node location, and rk are all noiseless range estimates, Φncl(θ̂) = 0. Essentially, the
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objective of Equation 2.4 is the sum of the weighted squared difference between range

estimates and the distances calculated using the estimated location, which is, in fact, the

same as the objective of the maximum likelihood estimator [19].

With noisy range estimates, then, we turn from solving the simultaneous system of

equations for rk to solving the minimization of the least squares formulation

min

{
Φncl(θ̂) =

1

K

K∑
k=1

(
rk −

∥∥∥θ̂ − Ak∥∥∥)2} . (2.5)

The difficulty in solving this minimization has been the unknown error surface and,

consequently, the number of minima for a given layout. Without prior knowledge of

the error surface, designing a solution method specifically for this objective function has

been only moderately successful. By characterizing the the non-collaborative problem

(focusing on the number of minima) for many different layouts and improving upon the

modified parallel projection method (discussed in Section 2.4), we propose a solution

method that nearly always discovers and returns the global minimum of Φncl(θ̂).

2.2 Finding the Global Minimum of Φncl(θ̂)

The global minimization of the non-collaborative objective function Φncl(θ̂) does not

guarantee the minimization of RMS error Ω for a given layout. Figure 2.14 shows that

in some cases, solutions (minima) with lower Ω values than the solution with the lowest

objective value exist. However, equipped only with the anchors’ locations A and the

range estimates ri between the ith anchor and the node, minimizing Φncl(θ̂) is our best

effort at minimizing Ω. Therefore, knowing where the global minimum of Φncl(θ̂) lies and

how many non-global minima exist for a given layout will help us determine the best

approach for finding the global minimum. Two solution methods, specifically tailored to

solving min{Φncl(θ̂)}, are described in Sections 2.2.1 and 2.2.2.
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2.2.1 Branch and Bound / Reformulation and Linearization Technique

In [20], Jia and Buehrer develop a branch and bound (BB) technique, using the reformu-

lation and linearization technique (RLT) described in [21]. Jia and Buehrer show, using

their BB/RLT, that the optimal solution to the collaborative position location problem

is solvable. The non-collaborative case is a subset of the collaborative problems, so the

BB/RLT could be used to find the global solution to the non-collaborative problem, also.

However, BB/RLT does not easily return the non-global minima of Φncl(θ̂), so we employ

interval analysis, another solution technique.

2.2.2 Interval Analysis

Another method of finding the global minimum of Φncl(θ̂) is interval analysis. Rump’s

INTLAB [22], a MATLAB1 library developed specifically for interval analysis, is leveraged

by Hargreaves in [23] to guarantee the identification of all solutions of a nonlinear system

of equations that lie within a given bounding box.

Interval analysis is simply the use of intervals rather than specific values in mathematical

systems. For instance, the equation 10 − 3 = 7 can be generalized using intervals to 10

less the interval [2, 4], where 10 − 2 = 8 and 10 − 4 = 6, so 10 − [2, 4] = [6, 8]. Therefore,

the equation 10− 3 = 7 is fully contained within the interval equation 10− [2, 4] = [6, 8].

Hargreaves, in [23], describes the use of the Krawczyk operator in solving nonlinear

systems of equations.

A benefit of using interval analysis to solve nonlinear equations is that the

Krawczyk and Hansen-Sengupta operators can be used to test the existence

and uniqueness of a zero in an interval x.

In our case, the interval of interest is two dimensional (a rectangular box); we are
1MATLAB R©, c©2009 by TheMathWorksTM
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searching over the x and y directions to determine the optimal value of the node’s location

θ̂. The Krawczyk operator allows us to find all the roots of a continuous nonlinear

function (in our case the derivative of Φncl(θ̂)), and in doing so, we find all the stationary

points of Φncl(θ̂), including all the minima.

As given by Hargreaves in [23] (with the nomenclature K substituted out in this thesis

with Z), the Krawczyk operator Z(v,V) operates on the interval V = [l, u] and on v, the

midpoint of V, as described in Equation 2.6. Z is returned as an interval.

Z(v,V) = v − Cf(v)± (I − CJ(V))(v −V) (2.6)

In Equation 2.6, C is “an arbitrary non-singular real matrix” [24]. Hargreaves advises

using the inverse of the midpoint matrix of J(V) as C, where J(V) is the interval Jacobian

matrix of f(V). The midpoint is defined as the average of u and l, the upper and lower

bounds of an interval. Thus, mid (J(V)) is simply the midpoint of each of the intervals

of J(V), and C = [mid (J(V))]−1. f is the function of interest, and, for our application,

f = Φ
′ncl(θ̂). I is the identity matrix. The± is also arbitrary because the last term (v−V) =

−(v −V) = (V − v). Note that v is the midpoint of V, such that v = l+u
2

, so

(v −V) =
u+ l

2
− [l, u] =

[
−u+ l

2
,
u− l

2

]
= [l, u]− u+ l

2
= (V − v). (2.7)

Note that u+l
2
− [l, u] =

[−u+l
2
, u−l

2

]
, not

[
u−l
2
, −u+l

2

]
, because u ≥ l, so a− u ≤ a− l ∀ a.

Also, for interval V = [l, u], the radius of V is defined as rad (V) = u−l
2

.

Theorem 7.1 in Hargreaves’ thesis [23] (proven by Neumaier in [25]) states

Let f : Rn → Rn be a (set of) nonlinear continuous function(s), and let v ∈ V.

• If f has a root r ∈ V, then r ∈ Z(v,V) ∩V.

• If Z(v,V) ∩V = ∅, then f contains no zero in V.

• If ∅ 6= Z(v,V) ⊆ interior of V, then f contains a unique zero in V.
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In this thesis, we use the first derivative of Φncl(θ̂) as f because interval analysis will

return the roots of f , and this allows us to find all the stationary points (the roots of the

derivative) of Φncl(θ̂). The number of inputs to and outputs of f is n = 2. The inputs are

θ̂ = [x, y]T, and the outputs are the partial derivatives of Φncl(θ̂), one each with respect to

x and y.

Hargreaves lists in [23] an algorithm for finding all the roots of a given function f

using the above theorem, and his MATLAB function “allroots.m” serves as the basis

for our optimal solver for min
{

Φncl(θ̂)
}

. Modifications were necessary, notably where

f = Φ′ncl(θ̂) is not continuous.

Appendix A.1 shows the derivatives of Φncl(θ̂), and

f = Φ′ncl(θ̂) =
−2

K

K∑
k=1

 θ̂ − Ak∥∥∥θ̂ − Ak∥∥∥ rk + Ak − θ̂

 . (2.8)

Φ
′ncl(θ̂) is discontinuous when

∥∥∥θ̂ − Ak∥∥∥ = 0, that is, when the guessed node location θ̂ is

at an anchor locationAk. Avoiding this problem requires that the cases where
∥∥∥θ̂ − Ak∥∥∥ =

0 be explicitly checked, and, when found, the result θ̂−Ak

‖θ̂−Ak‖ is not returned as ∞ but as

some sufficiently large number M . For our work, M = 1 × 106.

Using interval analysis (Algorithm 1), all the roots of Φ′ncl(θ̂) can be found inside a chosen

bounding box V, giving us the stationary points S = {S1, S2, S3, ...} of Φncl(θ̂). If the

Hessian matrix (the second derivative matrix) of Φncl(Si) is positive semidefinite, then

Si is a minimum of Φncl(θ̂). (The first and second derivatives of Φncl(θ̂) can be found in

Section A.1). In this manner, we not only are able to find the global minimum of Φncl(θ̂)

but also all the local minima in V. This allows the characterization of the number of

minima of Φncl(θ̂) based upon different parameters, an important piece of information for

developing effective algorithms for position location.
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Algorithm 1 : Optimal Solver for min
{

Φncl(θ̂)
}

Using Interval Analysis

1: Choose V =

[lx, ux]

[ly, uy]

 . 2× 1 interval vector over which to search (in the x and y directions)

2: Choose ε as a small number denoting how small an interval bounding box must be in
its largest dimension to “sufficently” bound a root of Φ′ncl(θ̂).

3: Initialize list of discovered stationary points.
4: Explicitly check each anchor location Ak to see whether they are stationary points.
5: v ← mid(V) . v is a 2× 1 vector of scalars.
6: f ←

[
Φ′ncl(v),Φ′ncl(v)

]
. Equations 2.12-2.13; f is a 2× 1 interval vector with identical bounds.

7: f ′ ← Φ′′ncl(V) . Equations A.25-A.28; f ′ is a 2× 2 interval matrix.
8: C ← [mid(f ′)]−1; Set values of C that ==∞ to 0. . C is a 2× 2 matrix of scalars.
9: Z(v,V) ← v − Cf + (I − Cf ′)(v −V) . Equation 2.6; Z is a 2× 1 interval vector.

10: X← Z ∩V .X is a 2× 1 interval vector.
11: if X == ∅ then
12: Return nothing. . No root of Φ′ncl exists in V.

13: else if max {rad(V)− rad(X)} ≤ max{rad(X)}
2

then . if X is sufficiently smaller than V
14: if max {rad(X)} < ε then . if X is sufficently small
15: Return mid(X) as a stationary point. . A root of Φ′ncl has been found.
16: else
17: † Bisect X along a chosen dimension into two new 2× 1 intervals, X1 and X2.
18: Goto Step 7, using X1 as V.
19: Goto Step 7, using X2 as V.
20: end if
21: else
22: Goto Step 7, using X as V.
23: end if

† Tj = rad (Vj)
2∑

i=1

∣∣f ′ij∣∣; Bisect along rth dimension for Tr ≥ Tj , j = 1, 2.

Note: This algorithm was adapted from Hargreaves’ “allroots.m” in his thesis [23].

2.3 Characterization of Number of Minima of Φncl(θ̂)

Using the global interval analysis solver for min
{

Φncl(θ̂)
}

described in Section 2.2.2, we

are able to describe all the local minima given a particular anchor/node layout and a

noisy range estimate realization. To analyze the likelihood of multiple minima being

present and the factors which cause multiple minima, simulations in MATLAB were run.
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2.3.1 Simulation Parameters

A layout is defined as a set of anchors and, in the non-collaborative case, one true node

location. Based upon this information, noisy range estimates are generated, creating the

last piece of information necessary for simulation. For the characterization of multiple

minima in differing layouts, the following parameters were used.

• 30m× 30m area in which all anchors and the node are constrained to lie

• Number of anchors uniformly distributed on [3, 10].

• Different realizations of the random variable L, where L is uniform on [−15, 15],

were used for all anchors’ and the node’s x and y coordinates.

• True distances between the node and anchor were taken as the Euclidean distances

dk =
√

(x− xk)2 + (y − yk)2, where x and y are the coordinates of the node, and xk

and yk are the coordinates of the kth anchor.

• Range estimates between the kth anchor and the node were corrupted with noise

nk, a zero-mean Gaussian random variable described as nk ∼ N (0, σ2
k), where

σ2
k = KE d

βk
k .

• KE is the “noise constant,” and layouts were simulated at

KE = {0, 0.0025, 0.0144, 0.0361, 0.0676, 0.1089, 0.1600} =

MATLAB’s [0, (linspace(0.05, 0.40, 6)).ˆ2].

– For reference, Figure 2.3 shows the relationship between σ, the standard

deviation of nk, given a distance and a KE value.

• βk is the path loss exponent and is held constantly at βk = 2 for all LOS simulations.

• 100,000 different layouts perKE value were created, giving a total of 700,000 layouts

and simulations.
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Figure 2.3: Standard deviation σ of nk, given distance and KE

2.3.2 Results

Counting the number of minima for each layout was the first task in determining how to

improve performance. Layouts that only have one minima in the first place are already

solvable by minimum-finding algorithms (e.g. steepest descent). Figure 2.4 shows the

percentage of layouts that have multiple minima (and how many), plotted against the

number of anchors in the layout. Notably, for the layouts with only three anchors, there

is more than a 50% chance that multiple minima will exist. This underscores the necessity

of finding the correct minimum, not just the first available minimum. However, the

possibility of having more than two anchors is rare.

Investigating many of the layouts that created multiple minima of Φncl(θ̂), we discovered

the trend that most minima tended to be approximately spatially divided by the bulk of
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Figure 2.4: Number of minima against number of anchors (KE = 0.0144)

the anchors. Also, we identified most of the layouts with multiple minima as having one

characteristic in common: the estimated node location was outside of the anchors’ convex

hull. Figure 2.5 shows an example layout with KE = 0.0144 and multiple minima. The

three minima are all outside the convex hull of the anchors, as is the true node location.

Also, note that the minima are approximately separated by the bulk of the anchors.

Leveraging the information about multiple minima occurring more often when the node

is outside the convex hull of the anchors, and ruling out other possibilities for the

main cause of multiple minima, we draw this conclusion: The most important factor

determining whether or not multiple minima of Φncl(θ̂) exist is whether or not the node is

inside or outside the convex hull of the anchors. Other criteria tested were the colinearity

of the anchors, noise amount, and number of anchors. Figure 2.6 shows the dramatic

increase in probability of multiple minima when the node is inside the convex hull as
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opposed to when it is not. Figure 2.6 also shows that with an increasing number of

anchors, the probability of multiple minima understandably decreases. In this case, more

information is available to assist in localizing the node. Therefore, performance increases

as the number of minima decreases. Figure 2.7 shows the same trends for other values of

KE .

Our simulations show that the two factors most affecting the number of minima of Φncl(θ̂)

are whether or not the node’s estimated location is inside the convex hull of the anchors

and the number of anchors. Overall, the probability of multiple minima occurring when

the true node location is inside the convex hull of the anchors is low, and the probability

of the node being randomly placed inside the convex hull of the anchors increases directly

with the number of anchors. The degradation of localization performance when nodes

and/or their location estimates are outside the anchors’ convex hull is a well known

problem [6, 26, 27, 28, 29, 30, 31]. Our contribution is to note that performance for our

objective function degrades when the node is outside of the convex hull because multiple
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minima of Φncl(θ̂) are much more likely to exist than when the node is inside the convex

hull.

3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Number of anchors

P
er

ce
nt

ag
e 

of
 la

yo
ut

s

KE = 0.0144; True node inside convex hull

 

 

 0.00%
 4.76%
95.24%

 0.00%
 2.13%
97.87%

 0.00%
 1.87%
98.13%

 0.00%
 1.39%
98.61%

 0.00%
 1.00%
99.00%

 0.00%
 0.73%
99.27%

 0.00%
 0.71%
99.29%

 0.00%
 0.46%
99.54%

3+ minima
2 minima
1 minimum

(a) Node inside convex hull

3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Number of anchors

P
er

ce
nt

ag
e 

of
 la

yo
ut

s

KE = 0.0144; True node outside convex hull

 

 

 0.32%
55.57%
44.11%

 0.49%
42.33%
57.19%

 0.52%
34.09%
65.39%

 0.62%
28.20%
71.18%

 0.68%
23.65%
75.67%

 0.57%
20.18%
79.25%

 0.35%
17.20%
82.45%

 0.60%
15.16%
84.24%

3+ minima
2 minima
1 minimum

(b) Node outside convex hull

Figure 2.6: Number of minima; KE = 0.0144
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Figure 2.8 shows error plotted against anchor linearity (eccentricity, explained in Sec-
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tion 3.6). Here, it can be seen that the layouts with nearly colinear anchors are also likely

the layouts that produce high error. This is intuitive as the probability of the node being

outside the convex hull grows as the anchors become more aligned. However, a large

enough percentage of layouts with low anchor eccentricity and high error exist, making

eccentricity insufficient for identifying those layouts with high error. This reaffirms our

conclusion that whether the node is inside or outside the convex hull is the largest

identifying factor with regard to error.

(a) (b)

Figure 2.8: Number of minima; KE = 0.0144

The simulation results clearly show three facts:

• The true node location being inside or outside of the convex hull has the greatest

effect on the number of minima for a given layout.

• An increasing number of anchors decreases the possibility of multiple minima.

• The amount of noise on the ranging estimates has some, but not an overwhelming,

effect on the probability of multiple minima.

• When multiple minima of Φncl(θ̂) exist, there are nearly always exactly two.
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With these facts in mind, we describe and analyze the modified parallel projection method

in Section 2.4 and develop an improvement specifically designed to address the layouts

identified above that have multiple minima in Section 2.5.

2.3.3 Infeasiblility of Optimal (Global) Solvers

Having an optimal solver available, e.g. BB/RLT or interval analysis, is helpful, but the

computational complexity and computation time involved in using these solvers renders

them infeasible for our applications of interest. The modified parallel projection method

(MPPM) and the reflected PPM (RPPM) are described in detail in Sections 2.4 and 2.5.

These solvers are non-optimal, but it will be shown that the RPPM achieves nearly

equal performance to the optimal interval analysis solver. To compare the complexity

of using the interval analysis solver against that of using MPPM and RPPM, runtimes

were recorded for each solver as they operated on the same layouts. Simulations were

performed on a computer running Mac OS2 10.6.8 and MATLAB R2010a (7.10.0.499), 64-

bit, with 4 GB of RAM. Table 2.1 shows the seconds elapsed for each of the solvers when

processing 100 layouts. The three orders of magnitude increase in time required for the

interval analysis solver to complete explains why sub-optimal solvers are desired. For a

more thorough comparison of the MPPM and RPPM solvers, the times elapsed for each

of them to process 10,000 layouts are also listed.

100 layouts 10,000 layouts

MPPM RPPM Interval analysis MPPM RPPM

0.5210 1.6685 8.6507 × 103 (nearly 2.5 hours) 45.2084 166.3948

Table 2.1: Seconds to process layouts, KE = 0.0144

2Mac OSTM, c© 2011 by Apple Inc.
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2.4 Modified Parallel Projection Method

In [16], the authors modify the the parallel projection method (originally developed for

signal recovery [18]) to obtain an iterative approach for position location, here labeled the

modified parallel projection method (MPPM). A starting location θ̂ is chosen, and the MPPM

iteratively updates θ̂ until convergence is achieved. The authors define a projection

function in Equation 2.9.

P ncl
k (θ̂) = Ak + rk

θ̂ − Ak∥∥∥θ̂ − Ak∥∥∥ (2.9)

P ncl
k (θ̂) simply represents the intersection point on the kth anchor’s ranging circle that is

closest to the current guessed location θ̂. θ̂−Ak

‖θ̂−Ak‖ is the vector of unit length pointing from

the kth anchor to θ̂. Multiplying this by rk gives the vector the desired length (the radius

of the kth ranging circle), and adding the vector to Ak translates it from the origin to the

anchor’s location. Therefore, Step 3 of Algorithm 2 simply updates the node’s guessed

location to be the average of the points on each of the K ranging circles that are closest

to θ̂. Figure 2.9 shows, for an example layout, the intersection points as circles and the

average of these points, the next guess of θ̂, as a star.

The authors of [16] use Equations 2.4 and 2.9 to estimate location as described in

Algorithm 2.

Algorithm 2 : Modified PPM

1: Initialize the unlocalized node at θ̂; l← 0;
Φncl
l ← Φncl(θ̂); δ ← a small positive number

2: repeat
3: θ̂ ← (1/K)

∑K
k=1 P

ncl
k (θ̂) . Update estimated location.

4: Φncl
l+1 ← Φncl(θ̂) ; l← l + 1 . Calculate objective value.

5: until |Φncl
l+1 − Φncl

l | ≤ δ . Compare difference in objective values over subsequent iterations.

6: return θ̂
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Figure 2.9: MPPM: Moving from one iteration to the next

2.4.1 Identification of MPPM as Steepest Descent

Convergence of steepest descent algorithms with constant stepsize only guarantees that

the algorithm will converge to a stationary point [32]. The modified parallel projection

method is shown in this section to be a steepest descent (gradient) solution method.

Therefore, convergence to a local minimum of the objective function Φncl(θ̂) is probable

but not guaranteed.

Recall that the objective function

Φncl(θ̂) =
1

K

K∑
k=1

(
rk −

∥∥∥θ̂ − Ak∥∥∥)2 (2.10)

=
1

K

K∑
k=1

(
rk −

√
(x− xk)2 + (y − yk)2

)2

. (2.11)

Then, from Appendix A.1, the negated (for descent) first derivative of Φncl(θ̂) is
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− Φ′ncl(θ̂) =


2
K

K∑
k=1

(
rk
[
(x− xk)2 + (y − yk)2

]− 1
2 − 1

)
(x− xk)

2
K

K∑
k=1

(
rk
[
(x− xk)2 + (y − yk)2

]− 1
2 − 1

)
(y − yk)

 (2.12)

=
2

K

K∑
k=1

 θ̂ − Ak∥∥∥θ̂ − Ak∥∥∥ rk + Ak − θ̂

 . (2.13)

Note that in Algorithm 2, Step 3, the next guessed node location θ̂i+1 is the average of all

the projection points (on each of the ranging circles)

θ̂i+1 =
1

K

K∑
k=1

P ncl
k (θ̂i) =

1

K

K∑
k=1

θ̂i − Ak∥∥∥θ̂i − Ak∥∥∥rk + Ak, (2.14)

and subtracting θ̂i from Equation 2.14 yields the vector from θ̂i to the next guessed

location θ̂i+1.

θ̂i+1 − θ̂i =
1

K

K∑
k=1

 θ̂i − Ak∥∥∥θ̂i − Ak∥∥∥rk + Ak − θ̂i
 = −Φ

′ncl(θ̂)/2 (2.15)

Thus, the modified parallel projection method iteratively updates the guessed node

location, always updating in the direction of steepest descent and with a distance equal

to half the magnitude of the derivative vector.

2.4.2 Guaranteed Convergence to a Stationary Point

Because the MPPM is a gradient descent (and a steepest descent) solution method, the

question of convergence arises. Bertsekas provides a proof of convergence to a stationary

point of a gradient descent method with a constant stepsize in Proposition 1.2.3 in [33].



25

The proposition states:

Let xk be a sequence generated by a gradient method xk+1 = xk + αkdk, where

dk is gradient related. Assume that for some constant L > 0, we have

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀ x, y ∈ Rn , (2.16)

and that for all k, we have dk 6= 0 and

ε ≤ αk ≤
(2− ε)

∣∣∣∇f (xk)T
dk
∣∣∣

L ‖dk‖2
, (2.17)

and ε is a fixed positive scalar. Then, every limit point of xk is a stationary

point of f .

It is generally difficult, according to Bertsekas in [33], to prove satisfaction of Equa-

tion 2.16. However, for our objective function Φncl(θ̂) (labeled f in the proposition),

Equation 2.16 is satisfied by simply dividing f by a sufficiently large number. The

purpose of the objective function is to compare one minimum against another. Dividing

both objective values by the same number will not affect this comparison.

Equation 2.17 can be transformed by recognizing that dk = −∇f
(
xk
)

is the steepest

descent vector. Thus,

∣∣∣∇f (xk)T
dk
∣∣∣ =

∣∣∣− (dk)T
dk
∣∣∣ =

(
dk
)T
dk =

∥∥dk∥∥2 , (2.18)

and Equation 2.17 becomes ε ≤ αk ≤ (2 − ε)/L. We know that the step size αk = 1/2 ∀ k

(as shown in Equation 2.15), and we arrive at ε ≤ 1/2 ≤ (2 − ε)/L. The right hand

inequality yields L ≤ 2(2 − ε), and maximizing ε to 1/2 forces L ≤ 3. However, as

explained above, Equation 2.16 can be satisfied for an arbitrarily small L by dividing f

by a sufficiently large number. Thus, Equations 2.16 and 2.17 can both be satisfied by

using 0 < ε ≤ 1/2 and L ≤ 3. Therefore, Proposition 1.2.3 from [33] proves that the

modified parallel projection method’s limit point is a stationary point of the objective
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function Φncl(θ̂).

The likelihood of MPPM converging to a non-minimum stationary point was not explored

because of the excellent performance achieved in the first place. In certain test cases, it

can be shown that MPPM does settle to a saddle point rather than a minimum given

a specifically chosen initialization point. MPPM will not converge to a maximum, but

the remote possibility exists that MPPM’s iterations will force it to iterate exactly to a

maximum of Φncl(θ̂). While MPPM always follows the descent direction, it is conceivable

that the magnitude of the gradient vector will pass over the non-maximum stationary

point and will point MPPM exactly to a maximum. In this scenario, the gradient vector

would have zero length, and MPPM would stop. The possibility of initializing MPPM to

a maximum of Φncl(θ̂) is also conceivable. In all these scenarios, though, where MPPM

might converge to a non-minimum stationary point, the reflected parallel projection

method (RPPM) (explained in Section 2.5) mitigates the possibility of never finding any

minimum of Φncl(θ̂) by using multiple initialization points.

An analysis of how often the MPPM settles in a non-global minimum appears in

Section 2.5 along with our proposed solution method for remedying those cases.

2.5 The Reflected Parallel Projection Method

This section details the development and performance of the reflected parallel projection

method (RPPM), a method which nearly matches the performance of the optimal interval

analysis solver while using much fewer computer resources and much less time.

2.5.1 Motivation for the Reflected Parallel Projection Method

From the characterization of the non-collaborative location problem, we built a library

of layouts, noise realizations, and the minima of Φncl(θ̂) associated with these layouts.
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While the optimal interval analysis solver works well, it is slow and computationally

expensive. One of the main applications of collaborative position location is in the low-

power wireless sensor arena, so a computationally expensive algorithm is prohibitive

and unwieldy. Here, we develop a sub-optimal solver for min
{

Φncl(θ̂)
}

that shows

nearly optimal performance at a much lower cost, the reflected parallel projection method

(RPPM).

Because the parallel projection method is an iterative algorithm, its performance is, like

most other iterative algorithms, dependent upon initialization. In particular, performance

improves as more initialization points are used, but cost and time grow accordingly. The

objective of the RPPM is to limit the number of initialization points required to achieve

nearly optimal performance by intelligently choosing one initialization point based upon

the solution of the MPPM from a different initialization point.

Figure 2.10 shows the performance of the MPPM in situations with only one minimum

(as found by the interval analysis method) compared to those situations with multiple

minima. Performance in multiple-minima situations is noticeably worse than the single-

minima situations at least 40% of the time, and performance in multiple-minima situa-

tions is severely worse about 30% of the time. In some cases where multiple minima

exist, MPPM will converge to min{Φncl(θ̂)}. When it does not, RMS error Ω can increase

dramatically, as shown in Figure 2.10. This heavy tail of error in multiple-minima

situations is what the RPPM is designed to address and correct.

Figure 2.11 shows that, even in the absence of noise, multiple minima of Φncl(θ̂) can exist,

and, depending upon the choice of starting location, MPPM may settle in a non-global

minimum.
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Figure 2.10: Heavy tail of error when multiple minima exist (KE = 0.0025, three anchors)

2.5.2 RPPM Algorithm

The characterization of the number of minima likely for a given layout in Section 2.3

leads us to the conclusion that, under typical circumstances, ideally we need only three

initialization points to find the possible three minima of Φncl(θ̂). Figure 2.6 shows that

the probability of finding more than three minima is negligible. If all the minima of

Φncl(θ̂) are found, then a simple comparison of the minima’s objective value will yield

the solution to min
{

Φncl(θ̂)
}

. The interval analysis method described in Section 2.2.2

yields all the minima, and we show that the RPPM, a sub-optimal solver, nearly matches

the performance of the interval analysis method.

Using the results of the characterization of the minima of Φncl(θ̂), we discovered that

the multiple minima were nearly always spatially divided by the bulk of the anchors.

This phenomenon is similar to the well known flip ambiguity. Taking advantage of this,
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Figure 2.11: MPPM can settle to non-global minimum even in the absence of noise.

we choose as the next initialization point the reflection of the prior solution about the

centroid of the anchors. Thus, the next initialization point is likely to be nearer a different

minimum than the prior solution, and this process is repeated until one minimum is

found twice. Then, all the discovered minima’s objective values are compared, and the

minimum with the lowest objective value is returned.

In addition to discovering that minima are usually spatially divided by the anchors, we

show in Figure 2.12 that, given a set of anchors, minima pairs occur with some amount

of symmetry. Figure 2.12 shows two example noiseless layouts where the true node

is plotted in different locations (in the lower left corner for Figure 2.12(a) and in the

lower right corner for Figure 2.12(b)). For each true node location, a second (non-global)

minimum occurs and is plotted as another circle, linked to the true node location with

a dashed line. As the true node moves upward in the y direction, the second minimum

moves in a matching fashion. This phenomenon appears in many layouts; Figure 2.12

contains two examples.
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(b) Example layout 2

Figure 2.12: Minimum pairs show symmetry for two example layouts.

Using the RPPM on the randomly generated layouts used for the characterization of

Φncl(θ̂), we found that the RPPM ran the MPPM algorithm an average of 2.3 times for

each layout (as opposed to the 1 time it would have been run without reflecting). This is

reasonable because the RPPM has to run MPPM at least twice. If it is only run twice, the

RPPM finds the same minimum two times in a row and returns it as the only minimum

of Φncl(θ̂). When multiple minima exist, the RPPM must run at least three times to find

two minima. In general, the RPPM runs the MPPM algorithm n+ 1 times, where n is the

number of discovered minima. The last MPPM run finds a minimum that has already

been discovered, telling the RPPM algorithm when to terminate.

In the RPPM algorithm (Algorithm 3),M = [m1,m2, . . . ,mi], wheremi = [xi, yi]
T is the 2D

coordinate of the ith minimum of Φncl. θ̄i is the initialization point for the ith iteration. A is

the set of 2D coordinates of the anchors neighboring the unlocalized node, and ∂(H(A))

is the boundary of the convex hull of A. f is the 2D reflection point, the average of A ⊂

∂(H(A)). | · | denotes cardinality, so θ̄i+1 is the reflection of mi about f , weighted by the
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number of neighboring anchors. The algorithm stops when a minimum that has already

been found is found again and then returns the minimum with the lowest objective value.

Algorithm 3 : Reflected PPM

1: i← 0; M ← ∅; θ̄1 ← closest anchor
2: f ← A ⊂ ∂(H(A)) . Find reflection point f .
3: repeat
4: i← i+ 1
5: mi ← PPM (initialized to θ̄i) solution . Run MPPM and store solution.
6: θ̄i+1 ← mi + |A|(f −mi) . Reflect about f .
7: until mi = mj, for any j = {1, 2, 3, ..., i− 1} . Stop when a minimum is discovered twice.
8: return mk : mk ∈M, Φ(mk) ≤ Φ(mj) ∀j 6= k . Return min with lowest objective value.

Figure 2.13 shows the an example of the RPPM algorithm.

2.5.3 Comparison of RPPM to Optimal Solver

Figures 2.14 and 2.15 show the gains in performance that RPPM provides compared to

MPPM and the nearly identical performance of RPPM to interval analysis. Figure 2.14

shows the cumulative distribution function of error for all layouts with KE = 0.0144.

The reduction of the heavy tail of RMS error gained by using RPPM as opposed to

only MPPM is significant, and the optimal performance of interval analysis is nearly

indistinguishable from RPPM. Thus, RPPM, a non-optimal solver, almost always returns

the same minimum as the global interval analysis solver.

It can also be seen in Figure 2.14 that sometimes, the lowest objective value does not

correspond to the minimum with the lowest RMS error Ω. This is shown by the upper

“Best from interval analysis” and “Best from RPPM” plotlines. If it were possible to

distinguish the best (lowest RMS error) minimum from all those returned by interval

analysis or RPPM, the upper plotlines’ performance would be achievable.

Figure 2.15 shows the RMS error for MPPM, RPPM, and interval analysis on layouts with

exactly three anchors and variable amounts of noise (variable KE). Again, performance
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(c) First reflection
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(d) Second discovered minimum and reflection

(Figure continued on next page.)

is noticeably improved by using RPPM, and the optimal performance of interval analysis

is nearly matched. More dramatic, though, is the difference between the minimum

displaying the least error out of all minima found and the minimum with the lowest
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(e) Third discovered minimum and reflection
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(f) Minimum found twice; return.

Figure 2.13: RPPM example

objective value. Figure 2.15 shows, in dashed lines, the minimum error out of all minima,

as discovered by RPPM and by interval analysis. This reaffirms that the minimum of

Φncl(θ̂) with the lowest objective value is not guaranteed to minimize Ω. While Figure 2.15

only displays results for layouts with exactly three anchors, it shows the potential for

improvement beyond minimizing Φncl(θ̂).

Ideally, RPPM would always find all the minima of Φncl(θ̂), allowing us to identify the

global minimum in all cases. While such a guarantee is not possible, the interval analysis

method does guarantee the identification of all minima of Φncl(θ̂). Interval analysis is a

computationally expensive and slow method for finding minima, but it does provide a

lower bound on the error performance of RPPM in the sense that it allows us to know

whether RPPM found the global minimum of Φncl(θ̂).

Figure 2.16 is an example of one layout and noise realization that yields multiple minima

and where the minimum with the lowest objective value does not have the lowest RMS

error. It can easily be seen that the minimum with lowest RMS error is nearly at the true
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Figure 2.14: RPPM performs almost identically to interval analysis. (KE = 0.0144)

node location, but the flip ambiguity of the anchor layouts along with this specific noise

realization force the minimum on the opposite side to have a lower objective value.
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Figure 2.15: RPPM performs almost identically to interval analysis. (3 anchors)
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2.5.4 The Weighted Least Squares Formulation

The MPPM as described uses non-weighted projections. Incorporating weights would

simply change the update step to be

θ̂ ←

K∑
k=1

wkP
ncl
k (θ̂)

K∑
k=1

wk

(2.19)

instead of

θ̂ ← (1/K)
K∑
k=1

P ncl
k (θ̂) , (2.20)

where wk would be the reciprocal of the variance of range estimate noise for each range

estimate. If the variance of each range estimate noise value was known, incorporating

the weights into the MPPM formulation would improve average performance. Some

layouts returned a lower RMS error with MPPM than with the weighted least squares

(WLS) formulation, but the gain in performance shown by Figure 2.17 when using WLS

is significant. The RMS error returned by WLS is actually smaller, on average, than the

minimum RMS error of all minima found by interval analysis/RPPM. This indicates that

the WLS formulation returns a node location estimate that is not necessarily a minimum of

Φncl(θ̂). However, knowledge of wk is difficult without multiple range estimates between

the same node/anchor pair. This operation would consume valuable battery power in

the applications of interest. Thus, the weighted least squares formulation was not tested

as thoroughly as the non-weighted version.

The performance gain possible through weighted least squares, though, motivates the

researching of how to weight each term in the update step. For this particular formulation

of noise, where σ2 = KE d
βk
k , knowledge that the variance is directly related to the distance

is helpful. However, this particular model of noise may not be accurate for real-life

scenarios.
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Chapter 3

The Collaborative Problem

In the non-collaborative case, only one node and multiple anchors exist. In the collab-

orative problem, multiple nodes communicate with each other, assisting each other in

localization, particularly by providing range measurements and node location estimates.

3.1 The Collaborative Objective Function

Recall that the non-collaborative objective function is

Φncl(θ̂) =
1

K

K∑
k=1

(
rk −

∥∥∥θ̂ − Ak∥∥∥)2 (3.1)

=
1

K

K∑
k=1

(
rk −

√
(x− xk)2 + (y − yk)2

)2

, (3.2)

where K is the number of anchors, rk is the range estimate between the node and the kth

anchor, θ̂ is the supposed node location, and Ak is the location of the kth anchor.

38
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Θ̂ =
{
θ̂1, θ̂2, . . . , θ̂N , θA1 , θA2 , . . . , θAK

}
=
{
θ̂1, θ̂2, . . . , θ̂N , θN+1, θN+2, . . . , θN+K

}
is a list, for

the collaborative case, of the unlocalized nodes’ locations followed by a list of the anchors’

known locations. The range estimates vector in the non-collaborative case becomes an

N × N + K matrix in the collaborative case, where N is the number of nodes and K is

the number of anchors. Multiple nodes exist, and, depending on the radio range, some

nodes may not be connected to other nodes. Then, the collaborative objective function

becomes

Φcol(Θ̂) =
1

C

N∑
i=1

N+K∑
j= i+1; j ∈Ni

(
rij −

∥∥∥θ̂i − θ̂j∥∥∥)2 (3.3)

=
1

C

N∑
i=1

N+K∑
j= i+1; j ∈Ni

(
rij −

√
(xi − xj)2 + (yi − yj)2

)2

,

where rij is the range estimate between the ith and jth nodes and Ni is the set of

neighboring nodes/anchors to the ith node. C is the total number of connections

(node/node and node/anchor) in the network, which is equal to the number of terms in

the entire summation. The j = i+1 beginning index of the second summation is included

to ensure that the connection from node i to node j is only contributing to the objective

value once rather than twice. The first summation of Equation 3.3 sums only over the

unlocalized nodes while the second summation sums over nodes and anchors. Note that

the non-collaborative objective function Φncl(θ̂) can be obtained from the collaborative

objective function Φcol(Θ̂) by setting neglecting N and i (as there is only one node), and

setting N = A, the set of anchors.

3.2 Finding the Global Minimum of Φcol(Θ̂)

As is the case with the non-collaborative problem, described in Section 2.2, our approach

is to find the global minimum of Φcol(Θ̂), compare the existing iterative parallel projection
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method’s performance to that of the global solver, and target the layouts which cause

large RMS error. Sections 3.2.1 and 3.2.2 explain our techniques for finding the global

minimum of Φcol(Θ̂).

As the global minimization of the non-collaborative objective function Φncl(θ̂) does

not guarantee the minimization of RMS error Ω for a given layout, neither does the

minimization of Φcol(Θ̂) guarantee minimal RMS error. Figure 3.11 shows that in some

cases, minima with lower RMS values than the minimum with the lowest objective value

exist.

3.2.1 BB/RLT and Interval Analysis

Similarly to Sections 2.2.1 and 2.2.2, the global minimum of Φcol(Θ̂) can theoretically

be found by using either the branch and bound/reformulation-linearization technique

(BB/RLT) or interval analysis. Implementation of both of these methods, however,

proved considerably more difficult than for the non-collaborative case. Specifically, the

time required to run a sufficient number of layouts to provide useful results is prohibitive

to actual execution. For testing cases with only two nodes, the interval analysis solver

would return the correct minima but would not terminate in a reasonable amount of

time.

To circumvent these restrictions, we sacrifice a small amount of certainty regarding the

optimality of our solution. This technique is described in Section 3.2.2.

3.2.2 True Initialization Solution

Because the optimal BB/RLT and interval analysis solvers proved unwieldy for finding

the global minimum of our collaborative problem, we turn to a non-realizable initializa-

tion of an existing solver. Jia and Buehrer in [17] describe the iterative parallel projection
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method (IPPM), a method of iteratively using the modified parallel projection method,

as shown in Section 2.4, to modify each node’s location until a minimum of Φcol(Θ̂) is

achieved. Just like the MPPM, the IPPM requires an initialization of Θ̂, and the minimum

of Φcol(Θ̂) returned by the IPPM is dependent upon the initialization. The IPPM is

described in detail in Section 3.3.

To find our best guess as to the optimal minimum of Φcol(Θ̂), we simply initialize Θ̂ to the

true locations of the nodes. While this is impossible in practice, it provides a high level

of confidence that the minimum returned by IPPM will be the minimum with lowest

RMS error Ω. While this minimum may not be the global minimum of Φcol(Θ̂) (because

minimizing Φcol(Θ̂) does not guarantee minimized Ω), it provides a reliable lower bound

on achievable RMS error for the least squares formulation. For zero noise, the minimum

returned by true node initialization will be both the global minimum of Φcol(Θ̂) and the

minimum with the least amount of error (zero).

3.3 Iterative Parallel Projection Method

The iterative parallel projection method (IPPM) uses the modified PPM as a basic element

and extends it to an iterative and distributed numerical framework. IPPM involves an

initialization step and an iterative update step, where local communications between

nodes are necessary in both steps.

In the initialization step, each unlocalized node obtains an initial solution for its location.

The specific method is described in detail in [16]. A more complete summary is found

in Section 3.4.1. Each node is initialized to its closest anchor or a combination of

its neighbors’ initializations. In the iterative update step, each unlocalized node uses

MPPM (from Section 2.4) to update its location estimate, based on its range estimates to

neighboring nodes/anchors. In particular, if the ith and the jth nodes are neighbors, the
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projection of θ̂i onto the feasibility set (ranging circle) given by the range estimate rij is

P col
ij (θ̂i) = θ̂j + rij

θ̂i − θ̂j∥∥∥θ̂i − θ̂j∥∥∥ . (3.4)

Just as in Equation 2.9, P col
ij (θ̂i) is simply a point on the ranging circle given by neighbor

θ̂j that is closest to current guess θ̂i. Note that if the jth node is an anchor, θ̂j simply is

the known anchor location. Each unlocalized node examines whether or not its objective

value changes over the previous iteration. The ith unlocalized node’s objective value is

defined as

Φncl(θ̂i) =
1

|N (i)|
∑
j∈N (i)

(
rij −

∥∥∥θ̂i − θ̂j∥∥∥)2 , (3.5)

whereN (i) is the set of the ith node’s neighboring nodes and | · | denotes cardinality. Note

that Equation 3.5 is the same as Equation 2.4 with the anchors replaced by the neighbors

of the ith node. If its objective value has not changed more than the precision parameter δ

for κ consecutive iterations, the ith node will quit the iterative update step and mark itself

as localized. The overall update process terminates after all the nodes are marked as

localized. Iterative PPM (IPPM) for collaborative position location is described in detail

in Algorithm 4.

In Algorithm 4, Li indicates whether the ith node has been localized, and Wi records the

number of consecutive iterations that the ith node’s objective value has not changed more

than δ. Once Wi ≥ κ, we set Li = 1 and consider the ith unlocalized node as localized.

Anchor locations θ̂j , for j = n+1, n+2, . . . , n+m, will remain unchanged during the whole

process. Again, as in the case of modified PPM for non-collaborative position location,

the final solution of iterative PPM depends on the initial guess.
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Algorithm 4 : Iterative PPM

1: Obtain initial guess [θ̂1, θ̂2, . . . , θ̂n] ; θ̂j ← θj ∀j > n . Use anchors’ actual (known) positions.
2: l← 0; δ ←a small positive number; κ←a positive integer
3: Li ← 0 and Wi ← 0 for i = 1, 2, . . . , n . Mark all nodes unlocalized; set counters to zero.
4: Φi, l ← Φncl(θ̂i), for i = 1, 2, . . . , n . Calculate original objective values for all nodes. (Eqn. 3.5)
5: while Li == 0 for any i do . while any nodes are unlocalized
6: for i = 1, 2, . . . , n; if Li == 0 then do . for the unlocalized nodes
7: θ̂new

i ← (1/|N (i)|)
∑

j∈N (i) P
col
ij (θ̂i) . MPPM

8: Φi, l+1 ← Φncl(θ̂new
i ) . Calculate objective value for node’s new position. (Eqn. 3.5)

9: if |Φi, l − Φi, l+1| < δ then . if the node has not moved by amount δ
10: Wi ← Wi + 1 . Increase the node’s counter by 1.
11: if Wi ≥ κ then Li ← 1 . Mark node as localized if applicable.
12: else . if the node moved more than amount δ
13: Wi ← 0 . Reset node’s counter to zero.
14: end if
15: end for
16: Θ̂← Θ̂new ; l← l + 1 . After all nodes are moved, update shared location information.
17: end while

3.4 Initialization Techniques

For the purpose of characterizing the collaborative problem, we use two initialization

techniques, true initialization and closest anchor initialization. We develop the reflected

and flipped initialization techniques in response to the difference in performance between

true initialization and closest anchor initialization. The same iterative parallel projection

method (IPPM) is used regardless of initialization.

3.4.1 Original Initialization Techniques

• True node location initialization:

– The initialization points Θ̂ are set as the true node locations. This method pro-

vides our baseline of performance and likely provides the solution with mini-

mum RMS error. This may not be the same solution that minimizes Φcol(Θ̂).
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– This initialization is, of course, impossible without knowledge of the nodes’

true locations.

• Closest anchor initialization (from [16]):

– If a node is connected to an anchor, the closest anchor’s location is used as

the initialization point for that node. If not, the average of all the neighboring

nodes’ initialization points is used as that node’s initialization point. In the

absence of any connections, that node is placed at the center of the network. In

this case, by the nature of the IPPM, this node’s location will remain stationary.

– Closest anchor initialization provides an easy way to initialize nodes to

locations that will provide good results. The ease of computing the closest

anchor initialization points is also attractive compared to other initialization

techniques [10].

3.4.2 Improved Initialization Techniques

The reflected and flipped initialization techniques were developed after analysis of

closest anchor initialization performance showed problems that these new initialization

techniques could address. The motivation for the reflected and flipped methods is found

in Section 3.5.

• Reflected initialization:

– Analogous to RPPM for the non-collaborative problem. In fully connected net-

works, an initialization technique such as closest anchor is used, and the mini-

mum found by IPPM with that initialization is stored as Θ̂1 =
{
θ̂11, θ̂

1
2, θ̂

1
3, ..., θ̂

1
N

}
.

Next, new initialization points Θ̂2 are chosen as the reflections of each node in

Θ̂1 about the centroid of the anchors. IPPM is run from the new initialization
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points Θ̂2, the solution is stored as Θ̂2, and this reflecting process is repeated

until Θ̂i = Θ̂j, i 6= j, or until an iteration limit is reached.

• Flipped initialization:

– Developed specifically to address the flip ambiguity (as shown in Figure 3.5)

and the associated large RMS error found in the collaborative problem. Given

a previously-found minimum (from closest anchor or reflected initializations),

all nodes are flipped about a linear fit line through the anchors’ locations. Then,

IPPM is run from this flipped initialization point. This method need only be

used when certain criteria are met such as linearity (eccentricity) of anchors

being greater than 0.9 or the percentage of nodes in the anchors’ convex hull

being less than 21%. These criteria are discussed in Section 3.6.

3.5 Motivation for the Reflected and Flipped Initialization

Techniques

The iterative parallel projection method suffers the same problems as any non-optimal

solution method, namely the possibility of failing to find the global minimum. Just as

Figure 2.4 shows the possibility of encountering multiple minima in the non-collaborative

case, Figure 3.7 shows that multiple minima of Φcol(Θ̂) exist. Therefore, we target the

instances when IPPM settles in a non-global minimum. We observed that the IPPM

returns a large RMS error value for a small subset of layouts. Our objective is to

characterize the performance of the IPPM, to identify the layouts that cause IPPM to

return a large RMS error value, and to provide a preliminary solution method.
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3.5.1 Methodology for Characterization

Knowing that there are some layouts which cause IPPM to fail (as in Figure 3.4), we

developed a methodology to characterize the collaborative localization problem and the

performance of IPPM. We created 9000 different layouts. Each individual layout has a

set of K anchors where K is uniformly distributed between 3 and 12. Each layout also

has N nodes where N is uniformly distributed between 5 and 30. All node and anchor

coordinates (x and y) are uniformly distributed between -15 and 15, creating a layout

where all nodes and anchors lie inside a 30×30 meter square area. Every layout is used

seven times, each time with a different noise variance based on KE .

Thus, our methodology is to use true initialization and closest anchor initialization for

the iterative parallel projection method and compare the results against each other. The

layouts which cause high RMS error in closest anchor initialization as compared to true

initialization are then the layouts we identify as problematic. Next, we develop a method

to identify those problematic layouts using only information available to the localization

problem, i.e. not the nodes’ actual positions. Finally, we propose a method for improving

the performance of IPPM, specifically targeting the aforementioned problematic layouts.

3.5.2 Comparison of Closest Anchor and True Initializations

Using Jia’s closest anchor initialization technique (described in Section 3.4.1), a network

with full connectivity (infinite radio range) will sometimes produce large RMS errors.

Using the same simulated layouts, the true initialization method provides a baseline for

performance. By comparing the two initialization methods’ results, we understand how

often it is that the closest anchor initialization method finds a non-global minimum and

the impact that these wrong minima have on (average) performance.

Figure 3.1 shows the cumulative distribution function of RMS error for all 9000 layouts for

both true initialization and closest anchor initialization. For this value of KE , the RMS
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error of the closest anchor method clearly is more than the true initialization method

for nearly 3% of the layouts. Furthermore, when the RMS error is worse than the true-

initialized RMS error, the difference is severe. This heavy tail of poor performance is what

we want to target and correct.
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Figure 3.1: CDF of RMS error (KE = 0.0144)

Figure 3.2 is a scatter plot of RMS error against objective value for both true and closest

anchor initialization techniques for KE = 0.0144. This representation clearly shows the

instances where closest anchor initialization fails. Specifically, there is a collection of

layouts with an objective value similar to the majority of other layouts but with an RMS

error an order of magnitude larger.

Figure 3.3 shows the average RMS error gap between true initialization and closest anchor

initialization. Figure 3.1 shows that, for KE = 0.0144, about 2% or 3% of the layouts

are causing the vast majority of the increase in average RMS error. Thus, we want to

target those 2% or 3% of layouts that have considerably larger RMS error from closest

anchor initialization than from true initialization. For comparison, Figure 3.15 contrasts
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Figure 3.3, showing the performance of all initialization techniques.
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Figure 3.2: RMS error against objective value
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Figure 3.3: Mean RMS error against KE for closest anchor and true initializations
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Figure 3.4 shows the poor performance of IPPM with closest anchor initialization for a

specific layout. The node in the bottom right hand corner is obviously far away from its

actual location and is contributing heavily to the RMS error.

Similarly, in Figure 3.5, the closest anchor initialization finds a minimum of Φcol(Θ̂) with

a large RMS error Ω = 17.00m while the true initialization method finds a much better

minimum. Note here that the two objective values (3.64 for closest anchor and 3.57 for

true) are extremely close while the RMS errors are vastly different. The type of whole-

network flip ambiguity shown in Figure 3.5 is what the flipped initialization technique is

designed to address.
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Figure 3.4: Example layout where closest anchor initialization fails (KE = 0.0144)

Figure 3.6 shows the likelihood of the closest anchor initialization method settling on

the same minimum as the true initialization method. The measure of when a minimum

is equal to another is whether all the distances between the guessed node locations are
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Figure 3.5: Example layout with small objective value and large RMS error (KE = 0.0144)

less than 5cm or 10cm. In general, as KE increases, the likelihood of the closest anchor

initialization method finding the global (true-initialized) minimum becomes slightly less.

Depending upon the tolerance level chosen, the likelihood is about 75% or 85% for lower

values of KE . Focusing on the 5cm tolerance case, we see from Figure 3.1 that only about

3% of the time, the RMS error returned by the closest anchor method is much worse

than the true initialization method. However, Figure 3.6 shows that 25% of the time, all

nodes are not within 5cm of the true-initialized nodes. Therefore, we conclude that there

are instances (about 22% of layouts) when the closest anchor method finds a minimum

different than that of the true initialized method but when the RMS error is only slightly

increased.
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Figure 3.6: Percentage of layouts where closest anchor found same minimum as true

3.5.3 Experimental Evaluation of Number of Minima of Φcol(Θ̂)

As shown in Figures 2.6 and 2.7, the propensity of layouts to produce multiple minima

in the non-collaborative problem causes most of the problems when solving Φncl(θ̂) with

iterative methods. Similarly, multiple minima (solutions) are possible for Φcol(Θ̂). In

Figure 3.7 we plot the number of minima experimentally found for all layouts and KE

values for 0% NLOS situations. We counted the number of minima by running IPPM with

all initialization techniques described in Section 3.4 and then using random initializations

until a total of 12 was reached. The solutions found by all initialization techniques were

compared against one another. If any particular node (over all solutions) was found to

have multiple solution locations, the maximum number of different node locations was

returned as the number of minima. Figure 3.7 is indicative of the number of minima likely

for collaborative layouts. However, IPPM is not guaranteed to converge to the exact same

solution for different initializations, and it is difficult to delineate which solutions are the
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same as one another and which are the same. Our method was to count a solution as

different from another if any node is more than 10cm away from its counterpart in another

solution.
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Figure 3.7: Number of minima found experimentally using IPPM

Figure 3.8 shows the same data for KE = 0.0144 separated by the number of anchors or

nodes that appear in each layout. The two left hand bars plot the number of minima

found when the number of anchors is ≤ or > 5 while the two right hand bars divide on

the number of nodes (≤ and > 9). Understandably, the probability of a layout having

only one minimum increases with more anchors. However, it is interesting to note that

layouts with more nodes have a lower probability of having only one minimum than

those layouts with fewer nodes. This characteristic is most likely due to the increased

possibility of neighbors of nodes moving with the increased number of nodes. This

increased variability in the layout probably leads to more minima.
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Figure 3.8: Number of minima found experimentally using IPPM, separated by number
of anchors/nodes ( KE = 0.0144 )

3.5.4 Summary of Motivations

In summary, the motivation for developing new initialization techniques is found in

Figures 3.1 - 3.3. These figures show a distinct gap in the RMS error Ω returned by

the closest anchor initialization and the true initialization. Figures 3.4 and 3.5 show the

types of layouts which are causing problems. In Section 3.6, we address the issue of

identifying those layouts which are likely to cause large RMS error with only knowledge

of the anchors’ locations and the node location estimates.
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3.6 Identification of Problematic Layouts

Figure 3.2 provides the data necessary to target those layouts which are most problematic,

the layouts with small objective values but large RMS errors. This figure shows that

objective value is not linearly related to RMS error. In other words, it is possible to have

a reasonable objective value (about 1m2-10m2) like the majority of layouts but an RMS

error value of nearly 40m, far away from the normal range (0m-3m). To get a better idea

of what layouts caused these errors, we plotted each layout with an objective value less

than 10m2 and an RMS error greater than 10m. An example of these layouts is shown

in Figure 3.5. All of those layouts had the same characteristics: high colinearity of the

anchors and all or most of the nodes flipped about the anchors. From this observation

and from the knowledge gained from characterizing the non-collaborative problem, it

proved helpful to plot RMS error against the colinearity of the anchors and against the

percentage of nodes inside the convex hull of the anchors.

Figure 3.9 shows the relationship between RMS error, linearity of the anchors, and

percentage of nodes inside the convex hull of the anchors. Clearly, layouts with high

anchor colinearity and/or low percentage of nodes P inside the anchors’ convex hull are

generally the same layouts that cause high RMS error. We use eccentricity, a measure

of linearity of a set of points, to measure the colinearity of the anchors. Eccentricity is

defined by Stojmenovic in [32] as

eccentricity = β =

√
(µ20 − µ02)

2 + 4µ2
11

µ20 + µ02

, (3.6)

where µpq =
K∑
i=1

(xi − xc)p (yi − yc)q are the second order moments of the set of anchors A.

Here, K is the number of anchors, and {xc, yc} are the coordinates of the center of mass

of A. The center of mass is the average of the coordinates of A. Eccentricity ranges on the

interval [0, 1], where an eccentricity measure of zero indicates a circle, and an eccentricity
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measure of one indicates a line. The author of [32] describes the eccentricity measure

(equivalent to rotational correlation) as follows:

If we consider the x and y values of points in a space separately and apply

correlation, we can directly measure linearity. We first find the center of mass

of the set of points along with its orientation. In this algorithm, the curve in

question is rotated so that its new orientation is at an angle of 45◦ from the x

axis. Correlation is then done on the rotated curve. The linearity measure is

the absolute value of the measured correlation of points (xi, yi) on the rotated

curve.

Using Figure 3.9 as a guide, we can accurately identify the problematic layouts by

eccentricity or the percentage of nodes inside the anchors’ convex hull. The advantage

to using only the eccentricity measure is that it requires minimal effort to obtain.

Equation 3.6 shows that, to obtain the eccentricity value, only a few simple averages,

sums, and squared terms are required. Conversely, calculating the convex hull of the

set of anchors and discovering whether or not a node estimate is inside that convex hull

is more complicated. However, using the percentage of nodes inside the convex hull

is more tailored to the specific minimum found, while using only the eccentricity of the

anchors uses no information about the minimum found. The connection between the two

measures is that anchors with high eccentricity are going to cause nodes to fall outside

their convex hull with a higher probability than anchors with low eccentricity.

From Figure 3.9, we filtered those layouts that had an eccentricity greater than 0.9 (β >

0.9) or less than 21% of nodes inside the convex hull of the anchors (P < 21). Figure 3.10

shows, in circles, those layouts which meet either of the above criteria. While a large

portion of false-positives are also included in this group, nearly all the layouts with high

RMS error are identified using this method.

In Section 3.7, we discuss the solution techniques for remedying the layouts’ performance
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Figure 3.9: RMS error
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Figure 3.10: RMS error against objective value

with high RMS error Ω. Section 3.7.2 discusses performance when using identification

techniques described in this section.
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3.7 Solution Proposition for Problematic Layouts

As with any iterative solution method, the initialization point affects performance.

While an increasing number of initialization points usually decreases error, intelligently

choosing initialization points saves computation time and power. By observing the

layouts causing large RMS errors, we found that flip ambiguities (like those shown in

Figure 3.5) cause most of the large RMS errors. Thus, we developed two new initialization

techniques, explained in Section 3.4.2. The reflected initialization method creates new

initialization points by reflecting nodes about the centroid of the anchors, and the flipped

initialization method creates a new initialization point by flipping nodes about a line fit

through the anchors’ locations. While reflection and flipping are the same operation, we

distinguish the two initialization methods by using reflect for translating all nodes across

the centroid of the anchors and by using flip for translating all nodes across a linear fit

through the anchors.

3.7.1 Improvement from Additional Initialization Techniques

This section compares the performance of all our available initialization techniques.

The initialization techniques are described in Section 3.4. The same 9000 layouts were

used here, but three different realizations of NLOS noise were tested. Respectively, in

the three different cases, there is a 0%, 10%, and 80% chance that a given connection

will be non-line of sight (NLOS). For NLOS connections, the added NLOS bias is

uniformly distributed between 1m and 10m. Using this data, we show that our improved

initialization techniques provide lower RMS error values consistently for 0% and 10%

NLOS simulations and nearly always for 80% NLOS.

The nomenclature includes β for eccentricity and P for the percentage of nodes inside the

convex hull of the anchors.
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Figures 3.11 - 3.13 show that the additional initialization techniques significantly reduce

Ω compared to the closest anchor initialization. The dotted line represents the error

from true initialization. Solid lines represent reflected initializations while dashed lines

represent closest anchor initializations.

The flipped initialization technique is also used. To compare the effect of using the

flipped initialization, two different original solutions of min
{

Φcol(Θ̂)
}

were used as the

starting point for flipping, the closest anchor solution and the solution with the lowest

objective value from the the reflected initialization technique. In both cases, using the

flipped initialization technique provided performance improvement, and using flipped

initialization starting with the solution from the reflected method gave the best results.

To highlight the fact that the solution with the lowest objective value does not guarantee

the lowest RMS error, plotlines labeled “Best from” denote that the solution with the

minimum RMS error Ω have been plotted. With our given information, it is impossible

to identify which of the two solutions (flipped or non-flipped) gives the minimum Ω.

However, these “Best from” plotlines show that we have narrowed the solution space to

exactly two solutions, one of which is shown on the “Best from” plot. Therefore, if a third

party could distinguish the lowest RMS error from only these two solutions, these “Best

from” plotlines’ performance could be achieved.

The following two plotlines (square and diamond) display Ω when, given the same two

minima described above, the one with the lowest objective value is chosen. Clearly,

performance degrades when only using the objective value to distinguish between

solutions. This underscores our observation that objective value does not fully determine

Ω. The final two plotlines (asterisk and star) show the RMS error when only reflections

or just the closest anchor initializations are used.

Figure 3.13 (with 80% NLOS connections) shows that performance of all initialization

techniques degrades as the probability of links being NLOS increases. Not only is Ω

larger overall, but some initialization techniques which provided better performance than
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Figure 3.11: CDF of RMS error for additional initialization techniques, 0% NLOS
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Figure 3.13: CDF of RMS error for additional initialization techniques, 80% NLOS

others in Figures 3.11 and 3.12 no longer are always better. For instance, the closest anchor

initialization technique in the 80% NLOS case exceeded performance of the reflected

method when Ω > 15m. This is due to the fact that the reflected method finds a solution

with a lower objective value than the closest anchor method, but, because of noise, the

solution with the minimum objective value does not have the lowest RMS error. Here

again, minimum objective value, especially in the presence of high noise, does not always

lead to minimum RMS error.

Figure 3.14 shows the same RMS error data as in Figure 3.11. In Figure 3.14, the data is

plotted against objective value to give a graphical representation of the improvement

gained by each initialization technique for all simulated layouts. The plots are in

order (a-f) of decreasing performance (increasing RMS error), with the closest anchor

initialization technique at the bottom. Figure 3.14 shows, again, that the reflected

method (along with the flipping initialization) performs better than the closest anchor

initialization method.
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Figures 3.15-3.17 show that the performance of all initialization techniques is consistent

across varying values of noise variance (from KE) and different probabilities of NLOS

noise.

Figure 3.18 highlights the fact that, across all initialization techniques, the differences

between the objective values returned are much less pronounced than the difference

between RMS errors (Figure 3.15), again underlining what is shown in Figure 3.14:

Solutions with similar objective values may have vastly different RMS errors.

3.7.2 Performance Using Identification

To reduce computation requirements, the identification technique described in Section 3.6

is used here, and results of performance when the flipped initialization is used only on

identified layouts are shown in Figures 3.19 - 3.22.

Figures 3.19-3.22 show the performance gained by using the flipped initialization tech-

nique. In the first two plots, the comparison of flipping all layouts as opposed to flipping

only those identified by β > 0.9 is shown. The advantage of only flipping the identified

layouts is that only 7% of layouts are identified (as shown in Figure 3.24), and the

remaining 93% do not require additional computation. Figures 3.21 and 3.22 show the

same trends for identification defined by β > 0.9 ∪ P < 21. Here, even though all

layouts are not identified, performance of flipping all layouts is nearly indistinguishable

from flipping only identified layouts. These plots confirm that the identified layouts are

the layouts with the largest RMS errors and that all layouts do not require flipping.
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Figure 3.14: RMS error against objective value ( 0% NLOS )
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Figure 3.15: Mean RMS error against KE for all initialization techniques ( 0% NLOS )
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Figure 3.16: Mean RMS error against KE for all initialization techniques ( 10% NLOS )
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Figure 3.17: Mean RMS error against KE for all initialization techniques ( 80% NLOS )
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Figure 3.18: Mean Φcol(Θ̂) against KE for all initialization techniques ( 0% NLOS )
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Figure 3.19: Identification improvement ( β > 0.9, 0% NLOS )
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Figure 3.20: Identification improvement ( β > 0.9, 0% NLOS )
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Figure 3.21: Identification improvement ( β > 0.9 ∪ P < 21, 0% NLOS )
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Figure 3.22: Identification improvement ( β > 0.9 ∪ P < 21, 0% NLOS )
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Figure 3.23 shows the CDF of the eccentricity of all layouts. It shows that if the

identification criterion is only that eccentricity β > 0.9, only about 7% of the layouts

meet this criterion. If we use P , the percentage of node estimations inside the convex

hull, as an additional identification criterion, Figure 3.24 shows the percentage of layouts

identified by either criteria.
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Figure 3.23: CDF of eccentricity of layouts
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Chapter 4

Measurement Campaign

Throughout our simulations, we have assumed a Gaussian model for LOS noise on

range estimates and uniformly distributed NLOS noise. This measurement campaign

confirms that, for the particular radios used in measurements, LOS range estimate noise

can accurately be modeled as Gaussian. It also shows that NLOS noise, for our test cases,

varies inconsistently, and, while being difficult to model, adds importance to techniques

robust against NLOS noise. Thus, the results in Figures 3.12 (10% NLOS) and 3.13

(80% NLOS) are notable in that our new initialization methods still provide noticeable

reductions in Ω above and beyond closest anchor initialization in the presence of our

simulated NLOS noise.

4.1 Introduction

This chapter describes a measurement campaign executed in the Spring 2011 semester.

ENSCO, Inc., provided two prototype radios for range finding. The radios are designed

to use 22 MHz of bandwidth at a center frequency of 915 MHz [34] to measure the time-

of-flight between the two radios and return a distance. The exact manner in which this

69
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is accomplished is described in articles from ENSCO [35, 34]. In short, coarse timing

is accomplished by synchronizing on a special word in the transmission payload. This

method achieves an nominal accuracy of 6.8m [34]. Fine timing is achieved by correlating

oversampled received and transmitted pseudorandom sequences. This oversampling

allows for an estimation of the exact peak of correlation, and this peak gives the radios

their fine timing resolution.

4.1.1 Format of the Chapter

This chapter explains the purpose and design of the measurement campaign in Sec-

tion 4.1. Section 4.2 describes the manner in which calibration was calculated, followed

by Sections 4.3 and 4.4, which detail the indoor measurements performed in Durham

Hall. Section 4.5 describes the negative effect that multipath components can have on

measurements, and overall conclusions are found in Section 4.6. Appendix B shows the

raw data collected and the associated empirical probability density functions for each

data set.

4.1.2 Purpose

The purpose of our measurement campaign was two-fold:

• to characterize ranging performance so as to better simulate noise (error) in range

estimates

• to provide ENSCO with feedback regarding the performance of their radios

4.1.3 Data Reported by the Radios

At a rate of 217 Hz, as long as the radios are able to communicate, the originator records

an uncalibrated distance value along with other pieces of data associated with each
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distance value. “Coarse count” is a value that records the approximate time-of-flight

using number of clock cycles. In keeping with ENSCO’s practices, coarse count values

that are less than zero or above 1000 are labeled as erroneous, and the associated distance

values are discarded.

4.1.4 Terminology

originator The ENSCO radio that connects to the computer

transponder The remote ENSCO radio

location pair One static location each for the originator and the transponder

scenario A collection of location pairs in the same vicinity,

data set A collection of measurements from one location pair

group A collection of data sets consecutively gathered in one scenario

calibration distance The positive bias amount on uncalibrated measurements

around the corner dist. The distance between the radios along a right triangle

4.1.5 Consistent Measurement Practices

Throughout this report, multiple measurement scenarios are described. In all scenarios,

the following hold true.

• The longer omni-directional antenna was connected directly to the originator, and

the shorter omni-directional antenna was connected directly to the transponder.

• Estimated distance values from one location pair were obtained by

– filtering measurements from one data set by only keeping data where

0 ≤ coarse count ≤ 1000, consistent with ENSCO’s practices.
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– taking the mean or median of the filtered data set, with the difference being

noted where applicable.

– subtracting the calibration distance

• All measurements were calibrated using the calibration distance described in

Section 4.2.

• Care was taken to minimize obstructions (other than permanent obstructions)

between the radios as the radios are particularly sensitive to them.

• True distance was measured using a laser range finder and (when needed) a laser

T-square (right angle tool). The laser range finder was compared to a tape measure

and found to be consistent with the tape measure within 5mm at distances of 3,

6, 9, and 30m. The T-square was not measured for accuracy. The literature about

the T-square advertises an accuracy within 1/16in at 20ft (within 0.014921 degrees).

To calculate the angle, we find the inverse tangent of 1/16in
20×12in , giving us 260 × 10−6

radians = 14.921× 10−3 degrees.

4.2 Calibration

4.2.1 Purpose

The ENSCO radios provide a distance value based upon time-of-flight. The measured

propagation delay between antennas is what yields the distance estimate; the propagation

delay through the radio hardware provides a large positive bias. The purpose of

calibration is to account for the time of propagation through both the originator and the

transponder’s hardware as well as other system delays. Thus, the calibration distance

is the amount subtracted from the uncalibrated measurements to yield the calibrated

distance.
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4.2.2 Scenario Setup

To accomplish calibration, the radios were taken to the Drillfield on Virginia Tech’s

campus, an open, outdoor area. The originator was mounted on top of a stand measuring

0.889m (35in), and the transponder was mounted on top of a stand measuring 0.864m

(34in). The originator and transponder both remained stationary for each measurement.

For each measurement, the originator was “stopped” and “restarted” using the “stop”

and “go” buttons on the originator. Each measurement was taken using a Bosch laser

range finder from the front of the originator’s casing to the front of the transponder’s

casing. All measurements were line-of-sight (LOS). Twelve originator/transponder

location pairs were used for this calibration. Figure 4.1 shows the approximate locations

of the originator and transponder for the calibration scenario.

At least three data sets were taken for each location pair, and for each location pair, each

of the three data sets was consistent with the others. Each measurement was obtained

from approximately two minutes worth of gathered data. The results of the calibration

measurement campaign can be seen in Figures 4.2 and 4.3.

Because the measurements at each location pair are so similar, the plotted circles for

each location pair in Figures 4.2 and 4.3 overlap each other. The calibration distance

was chosen as the value that minimized the total deviation from true distance of the

nine location pairs that are aligned linearly. Measurements taken from location pairs

T7, T8, and T9, near 19m and near 38m, noticeably deviate from the majority of other

measurements, so data from those location pairs was ignored for calibration purposes.

The y-axis of Figures 4.2 and 4.3 shows the distance recorded from the radios after

adjusting using the calculated calibration distance, 1635.453m.

Figure 4.4 shows the error of all calibration measurements after having been calibrated.

This shows an error less than 0.5m for the majority of measurements. Recall that the

measurements with nearly 3m of error were ignored when calculating the calibration
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distance. The measurements with high error are from location pairs T7, T8, and T9. A

possible explanation for these discrepancies is discussed in Section 4.2.3.

Because the radios were used with the same antennas throughout this measurement cam-

paign, it was assumed that this calibration distance was accurate for all measurements.

The small error in the line-of-sight calibration measurements highlights the radios’ good

performance in an open, LOS environment. Table 4.1 summarizes the results of the

calibration scenario and shows that the radios achieved an accuracy of 7cm at a range

of 28m and an accuracy of 50cm at a range of 62m. The kurtosis values found in Table 4.1

are explained in Section 4.2.4.

Figure 4.1: Calibration scenario (on the Drillfield)
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77Table 4.1: Calibration Statistics

Label Kurtosis Distance Error

Pair/Grp. Unfiltered Filtered Std. Dev. Mean Median Actual Mean Median

T1/1 0.5720 ——– 0.2750 28.3946 28.4081 28.48 -0.09 -0.07
T1/2 0.3239 ——– 0.2958 28.3659 28.3724 28.48 -0.11 -0.11
T1/3 1.2922 ——– 0.2869 28.4125 28.4106 28.48 -0.07 -0.07
T2/1 0.3935 ——– 0.3501 35.9106 35.9399 35.83 0.08 0.11
T2/2 0.3422 ——– 0.2931 35.9245 35.9631 35.83 0.09 0.13
T2/3 0.2078 ——– 0.3423 35.9409 35.9488 35.83 0.11 0.12
T3/1 -0.1181 ——– 0.2638 40.4755 40.4865 40.62 -0.14 -0.13
T3/2 0.0111 ——– 0.2668 40.4890 40.4913 40.62 -0.13 -0.13
T3/3 0.2060 ——– 0.2847 40.5311 40.5414 40.62 -0.09 -0.08
T4/1 4.6409 -0.0824 0.2130 66.9202 66.9262 67.07 -0.15 -0.14
T4/2 -0.1215 ——– 0.1931 66.9510 66.9511 67.07 -0.12 -0.12
T4/3 1.5529 ——– 0.2167 67.0029 67.0136 67.07 -0.07 -0.06
T4/4 11.7690 0.5682 0.1373 66.9962 66.9971 67.07 -0.07 -0.07
T4/5 410.3820 0.2557 0.1942 67.0042 67.0053 67.07 -0.07 -0.06
T4/6 6.9970 0.3862 0.2202 66.9731 66.9844 67.07 -0.10 -0.09
T5/1 5.9516 0.6934 0.2587 53.7942 53.8000 53.93 -0.14 -0.13
T5/2 0.1734 ——– 0.2532 53.8166 53.8250 53.93 -0.11 -0.10
T5/3 19.7971 1.5133 0.2523 53.7826 53.7707 53.93 -0.15 -0.16
T6/1 0.0744 ——– 0.2760 47.8056 47.8050 47.99 -0.18 -0.19
T6/2 0.1566 ——– 0.2158 47.8681 47.8629 47.99 -0.12 -0.13
T6/3 0.0333 ——– 0.2981 47.8527 47.8474 47.99 -0.14 -0.14
T7/1 0.1895 ——– 0.2650 41.6685 41.6806 38.55 3.12 3.13
T7/2 0.1729 ——– 0.2704 41.5759 41.5866 38.55 3.03 3.04
T7/3 0.9184 ——– 0.2377 41.5948 41.6021 38.55 3.04 3.05
T8/1 0.4277 ——– 0.2344 23.0632 23.0810 19.84 3.22 3.24
T8/2 0.1140 ——– 0.2167 23.0412 23.0497 19.84 3.20 3.21
T8/3 0.7007 ——– 0.2254 23.0640 23.0726 19.84 3.22 3.23
T9/1 -0.1328 ——– 0.1932 22.6143 22.6153 19.46 3.15 3.16
T9/2 0.1817 ——– 0.1949 22.6633 22.6682 19.46 3.20 3.21
T9/3 0.6168 ——– 0.2167 22.6027 22.6145 19.46 3.14 3.15

T10/1 0.7918 ——– 0.2283 37.3847 37.4005 37.01 0.37 0.39
T10/2 0.3647 ——– 0.2565 37.3235 37.3314 37.01 0.31 0.32
T10/3 0.4849 ——– 0.2273 37.3152 37.3218 37.01 0.31 0.31
T11/1 1.1751 ——– 0.3893 62.9671 62.9574 62.47 0.50 0.49
T11/2 9.6962 0.1296 0.3189 62.8795 62.8822 62.47 0.41 0.41
T11/3 0.6117 ——– 0.3109 62.8984 62.9025 62.47 0.43 0.43
T12/1 0.4337 ——– 0.3344 29.9068 29.9131 29.91 -0.00 0.00
T12/2 0.2584 ——– 0.3095 30.0068 30.0159 29.91 0.10 0.11
T12/3 0.6608 ——– 0.3128 29.9100 29.9184 29.91 -0.00 0.01

Average 12.37 0.42 0.26 0.74 0.75

Range 410.51 1.69 0.25 3.41 3.43
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4.2.3 Possible Cause of Calibration Error: Destructive Interference

The discrepancy between the calibration distances yielded by locations pairs T7, T8, and

T9 might have been caused by destructive interference. Because T8 and T9 are almost

exactly half the distance of T7 from the originator, we investigate the possibility that T7,

T8, and T9 happened to be distances that caused destructive interference due to ground

bounce according to the two-ray model.

Here, h1 = 0.889m and h2 = 0.864m are the heights of the stands on which the radios

were placed. Because it is not obvious which values of h to use for the two-ray model,

we use the stand heights h1 and h2 plus a variable height δ. The added height δ can also

account for the variable elevation of the Drillfield as well as inconsistencies in the ground

as a reflecting surface.

M is the LOS distance between the radios as measured with the laser range finder.

M = {38.55, 19.84, 19.46}m for T7, T8, and T9, respectively. The multipath distance

D = d1 + d2, as shown in Figure 4.6. The angle of incidence θ equals the angle of

reflection, and from this, we develop the ratio (D − M)/λ, the ratio between the extra

distance traveled by the multipath component (compared to the LOS component) and

the wavelength.

Assuming frequency f = 2.4GHz and c as the speed of light, wavelength λ = c/f =

0.1249135m.

Angle of reflection equals angle of incidence.

cos (θ) =
l1
d1

=
l1√
h21 + l21

cos (θ) =
l2
d2

=
L− l1
d2

=
L− l1√

h22 + (L− l1)2
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Figure 4.6: Ground bounce diagram

Solving for l1 and l2.

cos(θ) =
l1√
h21 + l21

=
L− l1√

h22 + (L− l1)2
(4.1)

l21
(
h22 + (L− l1)2

)
= (L− l1)2

(
h21 + l21

)
(4.2)

l21

(
h22

(L− l1)2
+ 1

)
= h21 + l21 (4.3)

h22 l
2
1

(L− l1)2
= h21 (4.4)

l1 h2 = h1 L− h1 l1 (4.5)

l1 (h2 + h1) = Lh1 (4.6)

l1 =
Lh1

h1 + h2
(4.7)

l2 = L− l1 = L− Lh1
h1 + h2

= L

(
1− h1

h1 + h2

)
= L

(
h2

h1 + h2

)
=

Lh2
h1 + h2

(4.8)
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Solving for d1 and d2 in terms of L, h1, and h2.

d1 =
√
h21 + l21 =

√
h21 +

(
Lh1

h1 + h2

)2

=

√
h21 (h1 + h2)

2 + h21 L
2

(h1 + h2)
2 ...

... =

√
h21

(h1 + h2)
2

(
(h1 + h2)

2 + L2
)

=

√
L2 + (h1 + h2)

2

(
h1

h1 + h2

)
(4.9)

d2 =
√
h22 + l22 =

√
h22 +

(
Lh2

h1 + h2

)2

=

√
h22 (h1 + h2)

2 + h22 L
2

(h1 + h2)
2 ...

... =

√
h22

(h1 + h2)
2

(
(h1 + h2)

2 + L2
)

=

√
L2 + (h1 + h2)

2

(
h2

h1 + h2

)
(4.10)

Solving for D, the distance traveled by the multipath wave.

D = d1 + d2 =

√
L2 + (h1 + h2)

2

(
h1

h1 + h2

)
+

√
L2 + (h1 + h2)

2

(
h2

h1 + h2

)
...

=

√
L2 + (h1 + h2)

2

(
h1 + h2
h1 + h2

)
=

√
L2 + (h1 + h2)

2 (4.11)

Substituting for L2 in terms of M , the actual distance between the originator and

transponder.

L2 = M2 − (h1 − h2)2 (4.12)

=⇒ D =

√
M2 − (h1 − h2)2 + (h1 + h2)

2 =
√
M2 + 4h1 h2 (4.13)
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Adding variable extra height δ to h1 and h2.

D
∣∣∣
h1 =h1+δ; h2 =h2+δ

=
√
M2 + 4 (h1 + δ) (h2 + δ) (4.14)

The expression for D in Equation 4.11 is verified in Rappaport’s Wireless Communications:

Principles and Practice [36] in his Section 4.6, but a derivation is not found there.
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Figure 4.7: Destructive interference

Figure 4.7 plots (D − M)/λ, the number of extra wavelengths that the reflected wave

travels with respect to the LOS wave, against δ and shows that, with the same additional

height δ added to both h1 and h2, the ground-bounce wave from location pairs T7, T8, and

T9 will arrive a multiple of half a wavelength out of phase with respect to the LOS wave

when δ = 0.228m. The wave in T7 arrives at the transponder after having traveled one

half wavelength extra while the waves in T8 and T9 both travel one wavelength further

than the LOS wave.
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Incorporating the assumed perfect reflectivity of the ground into the model, the reflected

wave should be 180◦ out of phase with the incident wave, meaning that a reflected wave

traveling an integer number of extra wavelengths would then be exactly out of phase.

Accordingly, the wave in T7 traveling one half wavelength extra would have its phase

corrected by the reflection and thus arrive in phase with respect to the LOS wave. The

obvious discrepancy of the measurements from T7, T8, and T9 with respect to the other

calibration location pairs might be explained by destructive interference, but the fact that,

according to the simplified ground-bounce model, either T7 waves or T8 and T9 waves

would arrive at the transponder out of phase, but not both, makes explaining the outlier

calibration measurements difficult.

Other factors besides simple reflection could play a part in explaining the calibration

measurements. The method for determining the time instant that the wave arrives, the

possibility of reflected waves from the War Memorial Chapel, and the variations in the

Drillfield’s surface all could affect the accuracy of the calibration measurements from

location paris T7, T8, and T9.

The reason for the discrepancy between T7, T8, and T9 measurements from the rest of the

calibration group is not fully known, but destructive interference from ground bounce as

explained by the two-ray model is likely. Because of this, those data sets (from location

pairs T7, T8, and T9) were ignored when determining the correct calibration distance.

4.2.4 Gaussian Approximation for LOS Noise

The probability distributions of data sets can help characterize the error expected from

a given, one-shot distance measurement with the radios. The cleanest distributions are

produced in open, LOS environments such as the Drillfield scenario. The data sets used

for calibration of the radios were taken in that type of an environment, and their empirical

probability density functions (PDFs) can be accurately modeled as Gaussian distributions.
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Each of the measurements in Figure 4.2 was taken as the mean of one data set. The PDF of

each of the data sets used in the calibration is plotted in Figure 4.8. The x-axis represents

the error (after calibration), such that the hope would be to have each curve centered at

zero (i.e., we hope that the estimator is unbiased). The y-axis represents the empirical

PDF as estimated from a histogram.

Figure 4.8 shows the Gaussian-like curves displayed by the empirical PDFs for the

calibration data sets.

Figures B.1 - B.39 show the individual calibration data sets and the associated empirical

PDFs along with the kurtosis value for each. The kurtosis is defined as

E {x− µ}4

σ4
− 3 , (4.15)

where E {x} is the expected value of x, and µ and σ are the mean and standard deviation

of x, respectively. The Gaussian distribution has a kurtosis value of zero. More outlier-

prone distributions have higher kurtosis values, and less outlier-prone distributions

have kurtosis values below zero. Thus, the kurtosis is often used as a measure of the

“Gaussianity” of a particular distribution. Figure 4.9 shows the kurtosis values for all

calibration data sets. Using unfiltered data, some kurtosis values are extraordinarily

high due to obviously incorrect distance measurements. Also plotted are the kurtosis

values for the calibration data sets when obviously incorrect outlier measurements are

discarded. (In particular, the measurements from location pairs T4-Groups 1, 4, 5, and 6;

T5-Groups 1 and 3; T11-Group 2 were filtered. Figures B.10, B.13, B.14, B.15, B.16, B.18,

and B.35 show the unfiltered data sets along with the limits used for filtering.) The drastic

difference in some kurtosis values shows that, when outliers are discarded, the kurtosis

values for open, LOS data sets are quite low. Figure 4.9 shows that kurtosis values for

the filtered calibration data sets are very near zero with a range less than 1.8, suggesting

the suitability of the Gaussian approximation for LOS noise. Thus, we conclude that the
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ranging error of the ENSCO radios in open, LOS scenarios can accurately be modeled as

zero-mean Gaussian.
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Figure 4.8: PDFs of calibration data sets

4.2.5 Standard Deviations of Data Sets

For modeling LOS noise, we use a variance of noise set by the formula KE d
βij
ij , where

KE is a noise constant, dij is the actual distance between point i and point j, and βij

is the path loss exponent (held at 2 for LOS noise). This makes the variance (and the

standard deviation) of the noise dependent upon the distance of the measurement, and

here, we demonstrate that this model may be inaccurate based on these specific radios’

measurements. Figure 4.10 plots the standard deviations of all calibration data sets

(filtered to remove outliers as for the filtered kurtosis analysis) against the actual distance

at which the measurements were taken. No clear trend exists relating standard deviation

to actual distance. In fact, the minimum standard deviation from all these data sets is

from the largest actual distance, indicating that these particular radios are fairly equally
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accurate at any distance between 20m and 70m.

Thus, our model for LOS noise, which forces noise variance to be directly proportional

to actual distance, may be inaccurate. This establishes reason for researching a more

accurate noise variance model.

4.3 LOS Indoor Scenarios

The calibration measurements serve not only to provide a reasonable calibration distance

but to show the radios’ good performance in an open, LOS environment. Measurements

were also taken indoors, down a long hallway in Durham Hall, to test the radios’

performance in an indoor, LOS environment. Two scenarios are described here, one

that shows good performance and the other moderate performance. The originator was

mounted on a stand measuring 0.889m (35in), and the transponder was mounted on a

stand measuring 0.559m (22in). The distance between radios was measured using the
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Figure 4.10: Standard deviations of data sets against actual distance

laser range finder from the front of the originator’s case to the front of the transponder’s

case.

4.3.1 Durham Hallway, Good LOS Performance Scenario

Figure 4.11 shows the location pairs used to produce the results in Figures 4.12 and 4.13.

The results from this indoor, LOS environment are promising, showing an extremely

small error. The originator was moved for each different location pair while the

transponder remained stationary. Only one data set was collected for each location pair.

While the median of the data provided good results (error under 1m at distances of 20-

60m), the standard deviation indoors was much higher than the standard deviation for

outdoor LOS measurements. In particular, Tables 4.1 and 4.2 show that all data sets

outdoors have a standard deviation below 0.4m while all indoor LOS data sets have a
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standard deviation above 0.4m. Comparing the kurtosis values in the two tables also

shows that the outdoor data sets displayed much “more” Gaussian statistics than the

indoor LOS data sets.

Figures B.40 - B.42 show the measured values from these data sets.

T1-3O1O2O3

Figure 4.11: Durham hallway, good LOS performance scenario
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Table 4.2: Durham Hallway, Good LOS Performance Statistics

Distance Error

Location Pair Kurtosis Std. Dev. Mean Median Actual Mean Median

T1 -0.2810 1.0808 20.6161 20.5803 19.60 1.02 0.98

T2 38.0238 8.1506 37.0161 35.6323 36.34 0.68 -0.71

T3 33.6032 0.5862 61.4471 61.4340 60.56 0.89 0.87

Average 23.78 3.27 0.86 0.38

Range 38.30 7.56 0.34 1.69
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Figure 4.12: Durham hallway, good LOS performance group, mean measurements
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Figure 4.13: Durham hallway, good LOS performance group, median measurements
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Figure 4.14: Durham hallway, good LOS performance groups, error from mean
measurements
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Figure 4.15: Durham hallway, good LOS performance groups, error from median
measurements
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4.3.2 Durham Hallway, Moderate LOS Performance Scenario

The scenario detailed in Figure 4.16 produced results (summarized in Table 4.3 and

Figures 4.17 and 4.18) that are only moderately clean despite this scenario being very

nearly the same as the prior scenario. Returned distances vary widely between groups,

and error ranges between 1m and 50m for distances of 9m to 46m.

During data collection, it was noted that at some points down Durham Hall’s main

hallway, the radios read notably higher distances before returning to a normal level when

the radios were moved. This phenomenon can most likely be attributed to the presence of

strong multipath components, dependent upon the radios’ locations in the hallway. This

underscores the importance of differentiating between direct path and multipath received

signals. Section 4.5 discusses the effect of multipath on measurements.

The measured data can be seen in Figures B.43 - B.57.

Figure 4.16: Durham hallway, moderate LOS performance scenario
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Table 4.3: Durham Hallway, Moderate LOS Performance Statistics

Label Distance Error

Pair/Group Kurtosis Std. Dev. Mean Median Actual Mean Median

T1/1 2.4507 0.6425 8.3402 8.4506 9.13 -0.79 -0.68

T1/2 -0.8275 1.1232 7.9247 7.9994 9.13 -1.21 -1.13

T1/3 -0.1475 1.5277 6.2414 6.1954 9.11 -2.87 -2.91

T2/1 0.5605 1.3578 18.9275 19.0926 18.27 0.66 0.82

T2/2 0.4423 2.6007 25.0980 25.3482 18.31 6.79 7.04

T2/3 3.1044 1.6551 25.9048 26.2232 18.30 7.60 7.92

T3/1 3.9286 0.6348 26.2890 26.2209 27.41 -1.12 -1.19

T3/2 1.0727 0.9349 28.1537 28.0374 27.39 0.76 0.65

T3/3 4.6812 0.5229 27.0788 27.1317 27.41 -0.33 -0.28

T4/1 -1.9168 26.5438 69.7185 93.0790 36.56 33.16 56.52

T4/2 1.2914 20.0626 85.3922 94.2441 36.55 48.84 57.69

T4/3 684.9964 2.1282 37.5763 37.4936 36.56 1.02 0.93

T5/1 21.4474 7.4075 82.0747 83.7089 45.71 36.36 38.00

T5/2 -1.0350 16.2047 57.0995 47.6368 45.72 11.38 1.92

T5/3 -1.8736 19.9323 68.4160 84.4949 45.69 22.73 38.80

Average 47.88 6.89 10.87 13.61

Range 686.91 26.02 51.71 60.61

Explanation for T4 and T5 Errors: Far Wall Reflection

Figures B.52 - B.57 show that the measurements for T4 and T5 were affected by multipath.

In most of those data sets, the majority of measurements centered around a much larger

distance than the true distance while some measurements were very nearly accurate. The
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geometry of this scenario suggests that the gross errors were caused by reflections from

the back wall of the hallway.

The distance from T4 to the wall and back is 29.4 × 2 = 58.8m, and the distance from T5

to the wall and back is 21.8 × 2 = 43.6m. Figure 4.20 shows that T4 and T5 have median

errors very near the distances suggested by the far wall reflection.
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Figure 4.17: Durham hallway, moderate LOS performance groups, mean measurements
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Figure 4.18: Durham hallway, moderate LOS performance groups, median
measurements
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Figure 4.20: Durham hallway, moderate LOS performance groups, error from median
measurements

4.4 NLOS Indoor Scenarios

Non-line-of-sight (NLOS) measurements were taken inside Durham Hall. True distance

was measured using the laser range finder from the front of each radio’s casing to the

vertex of the right angle as measured with the laser right angle tool. The Pythagorean

Theorem was used to calculate the hypotenuse of the right triangle, the true distance

between the originator and transponder.

The “around the corner” distance is the summed length of both legs of the triangle,

the distance between the radios as walkable down the hallways. Note that the around

the corner distance is not the presumed propagation path. Refractions around corners

and transmissions through barriers certainly allow a propagation path shorter than that

suggested by the around the corner distance. The around the corner distance is simply an
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estimate of how far the wave might have traveled down the hallways before reaching its

destination. For instance, Figures 4.24 and 4.25 show errors below zero. The reason for

this is that the error is measured as the mean/median distance measurement less the x-

axis. In the case of the around the corner distance, this calculation could very well yield

a negative result if the wave propagated a shorter distance than the around the corner

distance.

NLOS performance of the radios was expectedly poor although the amount of error was

somewhat larger than expected. For example, errors of 13-22m were seen at distances

under 10m. Without a direct LOS connection between the originator and the transponder,

an accurate distance reading is nearly impossible.

4.4.1 MPRG Offices Scenario

For this scenario, care was taken to keep the environment as static as possible. Data sets

were discarded and then repeated if disrupted by people moving through the area. Three

different groups of measurements were collected from this scenario. Both the originator

and the transponder were mounted on top of plastic stands measuring 0.229m (9in). In

Figure 4.21, it is shown that all location pairs are NLOS except T9. Walls are constructed

with metal studs and drywall; the wall bordering T6-T9 is cinder block. Offices are

furnished in the usual manner with desks, computers, and both metal and wood shelving.

Of note is the LOS connection, location pair T9, which is fairly accurate for all three

groups. This again reiterates the good performance of the radios in a LOS environment.

Figures B.58 - B.84 show the data sets and distributions. The inconsistency between

groups in this scenario can most likely be attributed to the difficult RF environment

including walls, metal furniture, and moving people.
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Figure 4.21: MPRG offices scenario
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Table 4.4: MPRG Offices Statistics

Label Distance Error

Pair/Group Kurtosis Std. Dev. Mean Median Actual Mean Median

T1/1 7.6947 0.6070 7.3204 7.2488 5.05 2.27 2.20
T1/2 2.2069 2.5054 8.3098 8.3054 5.05 3.26 3.26
T1/3 5.4545 1.7501 9.7833 9.9787 5.05 4.73 4.93
T2/1 6.9022 0.6871 16.5082 16.2775 10.85 5.66 5.43
T2/2 3.2887 1.2049 20.1241 19.7797 10.85 9.27 8.93
T2/3 4.9756 3.0122 16.8508 16.6370 10.85 6.00 5.79
T3/1 28.7751 1.5306 21.7987 21.7906 16.98 4.82 4.81
T3/2 6.3514 3.3881 24.9485 25.3083 16.98 7.97 8.33
T3/3 7936.5555 2.6010 24.0583 24.1231 16.98 7.08 7.14
T4/1 8.1917 2.3281 36.3800 36.4015 24.02 12.36 12.38
T4/2 0.6944 4.6227 32.0872 32.9000 24.02 8.07 8.88
T4/3 4.9431 2.6690 30.4098 30.3147 24.02 6.39 6.29
T5/1 28.5606 1.7399 40.9747 41.1622 24.01 16.96 17.15
T5/2 28.3827 2.0665 33.8616 33.8635 24.01 9.85 9.85
T5/3 14.8967 3.4757 30.3487 29.4889 24.01 6.34 5.48
T6/1 14.6355 6.6326 39.6747 38.4090 24.68 14.99 13.73
T6/2 2348.5748 18.9786 38.9086 39.5975 24.68 14.23 14.92
T6/3 2.6668 4.4538 40.6765 40.5199 24.68 16.00 15.84
T7/1 2.8395 7.1527 45.9477 48.3617 17.26 28.69 31.10
T7/2 11.0815 2.0843 19.7581 19.7886 17.26 2.50 2.53
T7/3 0.6386 5.7857 31.0514 30.1991 17.26 13.79 12.94
T8/1 7.2354 3.3899 21.1046 20.8909 7.80 13.30 13.09
T8/2 4.4488 4.7895 23.7701 24.4315 7.80 15.97 16.63
T8/3 5.2540 4.6234 29.4445 30.7702 7.80 21.64 22.97
T9/1 4.7538 0.3232 5.9894 5.9774 5.83 0.16 0.15
T9/2 73.9942 0.5003 6.6621 6.6314 5.83 0.83 0.80
T9/3 17.5693 0.9540 7.5969 7.2360 5.83 1.77 1.41

Average 391.91 3.48 9.44 9.52

Range 7935.92 18.66 28.53 30.95
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Figure 4.22: MPRG offices groups, mean measurements
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Figure 4.23: MPRG offices groups, median measurements
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Figure 4.24: MPRG offices, error from mean measurements
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Figure 4.25: MPRG offices, error from median measurements
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4.4.2 MPRG Lab Scenario: A Dynamic Environment

Another set of indoor NLOS measurements was taken in the MPRG lab, a large 15.75×9m

room with metal-framed, carpet walled cubicles. Data sets were taken during regular

working hours, and people moved freely throughout the lab during measurements. Some

location pairs (T1, T2, and T6) were LOS connections while the remaining location pairs

were NLOS. In a similar manner to the previous NLOS measurements, true distances

were measured with right angles and laser range finders, and both the originator and

transponder were mounted on top of plastic stands measuring 0.229m (9in). Two sets

of data were collected for these location pairs, and the results again show that NLOS

connections are far less reliable than LOS connections. Errors as large as 14m appeared

for distances of 8m.

Figures B.85 - B.100 show the measurements from these data sets.

In this scenario, the wide variability between the two data sets’ NLOS measurements

can be attributed to the dynamic environment. As opposed to keeping the environment

static as in the previous scenarios, here, measurements were not discarded when people

moved through the area. Even in a dynamic environment, though, the radios performed

well given LOS connections.
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Figure 4.26: MPRG lab scenario
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Table 4.5: MPRG Lab Statistics

Label Distance Error

Pair/Group Kurtosis Std. Dev. Mean Median Actual Mean Median

T1/1 9.6966 1.5928 7.2292 7.1934 4.57 2.66 2.62

T1/2 6.7594 0.4896 6.0439 6.1803 4.57 1.47 1.61

T2/1 1.3483 1.5867 6.3384 6.3374 3.48 2.86 2.86

T2/2 355.0846 3.1104 4.1506 4.4989 3.48 0.67 1.02

T3/1 24.5586 3.2191 10.5231 9.9488 4.58 5.94 5.37

T3/2 91.8545 1.2969 6.1923 6.0384 4.58 1.61 1.46

T4/1 17.4605 1.4652 21.4531 21.5682 11.08 10.37 10.49

T4/2 13.8717 2.3151 25.3571 25.2630 11.08 14.28 14.18

T5/1 6.9358 4.6148 33.2601 34.3239 8.30 24.96 26.02

T5/2 2.9732 1.6263 22.8214 23.0511 8.30 14.52 14.75

T6/1 55.3925 0.2498 9.3161 9.3178 9.40 -0.08 -0.08

T6/2 51.9284 1.5200 10.7162 10.4264 9.40 1.32 1.03

T7/1 1.5012 4.5460 24.9059 24.3740 9.59 15.32 14.78

T7/2 39.7103 2.4879 18.1463 17.3211 9.59 8.56 7.73

T8/1 3.6995 2.6740 17.6825 17.6396 11.13 6.55 6.51

T8/2 11.0628 4.0642 34.4178 34.8378 11.13 23.29 23.71

Average 43.36 2.30 8.39 8.38

Range 353.74 4.37 25.04 26.11
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Figure 4.27: MPRG lab groups, mean measurements
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Figure 4.29: MPRG lab, error from mean measurements
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Figure 4.30: MPRG lab, error from median measurements
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4.5 Apparent Multipath Effects

Figure 4.31 shows measured and calibrated distance data from Figure 4.11, location pair

T2. The true distance was 36.34m, and that is reflected in the mean of the data. However,

it is easy to see the apparent effect of multipath in the distinct jumps in measured distance

up to 91m. Furthermore, the other two location pairs noted in Figure 4.11 do not show

the same jumps in measured distance, making the case that the erroneous measurements

were due to location and, subsequently, location-dependent multipath.
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Figure 4.31: Multipath effect corrupts Gaussian approximation

Figure 4.31 shows that the Gaussian approximation to multipath-affected data is poor.

This is due to the relatively heavy tail associated with the multipath distance measure-

ments. If the data were filtered to reject the erroneous multipath measurements (in

this case, rejecting all measurements above 45m), Figure 4.32 shows that the Gaussian

approximation to this data set is much better. The respective kurtosis values for the

unfiltered and filtered data sets are 38.02 and 7.73, reiterating the negative effect that
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multipath can have on the Gaussian model for LOS noise.
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Figure 4.32: Multipath effect nullified

4.6 Measurement Campaign Conclusions

Statistics for the conclusions are found in Tables B.1 - B.5.

• The ENSCO radios perform well in open, LOS environments, and noise in open LOS

environments can be modeled as zero-mean Gaussian.

– Distances ranged from 19m to 67m.

– The average unfiltered and filtered kurtosis values for the calibration data sets

are 12.37 and 0.42 respectively, indicating that the open, LOS noise can be

modeled as Gaussian.

– The average standard deviation of the error for these data sets is 0.26m.
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– The average error for the calibration data sets is 0.74m, dropping to 0.02m when

the outlier data sets from T7, T8, and T9 are excluded.

• The ENSCO radios perform reasonably well in indoor LOS environments. How-

ever, multipath effects can add a large positive bias to range estimates. As we refer

to “good” and “moderate” performance scenarios, the only difference between the

two was the effect of multipath based on specific location in the hallway.

– Distances ranged from 20m to 60m for the good performance scenario and from

9m to 46m for the moderate performance scenario.

– The average kurtosis values for indoor LOS (good performance/moderate

performance) data sets are 23.78 and 47.88 respectively, indicating that the

indoor, LOS noise is less Gaussian than outdoor LOS noise.

– The average standard deviations of the indoor LOS (good performance/moderate

performance) data sets are 3.27m and 6.89m respectively, more than an order

of magnitude higher than for the outdoor LOS data sets.

– The average errors for the indoor LOS (good performance/moderate perfor-

mance) data sets are 0.86m and 10.87m respectively.

• The ENSCO radios perform poorly in indoor NLOS environments, and this data

does not support NLOS data being modeled as zero-mean Gaussian.

– Distances ranged from 5m to 25m for the MPRG offices scenario and from 5m

to 11m for the MPRG lab scenario.

– The average kurtosis values for indoor NLOS (MPRG offices/MPRG lab) data

sets are 391.91 and 43.36 respectively, indicating poor Gaussian statistics for

modeling NLOS noise.

– The average standard deviations of the indoor NLOS (MPRG offices/MPRG

lab) data sets are 3.48m and 2.30m respectively, an order of magnitude higher

than for the outdoor LOS data sets.
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– The average errors for the indoor NLOS (MPRG offices/MPRG lab) data sets

are 9.44m and 8.39m respectively.



Chapter 5

Conclusions

In this thesis, we present the non-collaborative and collaborative localization problems.

We characterize the minima present for a given objective function in each case and

propose improved solution algorithms. Also, we describe a measurement campaign

that confirms some assumptions about noise modeling in line of sight (LOS) situations

while solidifying our assumption that non line of sight (NLOS) noise remains difficult to

accurately model.

Chapter 2: The Non-Collaborative Problem

Chapter 2 introduces the non-collaborative localization problem and the associated least

squares formulation. The least squares formulation is used as a way to associate a

cost function when range estimates form an inconsistent system of equations. This cost

(objective) function Φncl(θ̂) has an unknown surface, and we characterize the minima of

Φncl(θ̂) to better understand how our steepest descent MPPM algorithm will perform.

To accomplish this characterization, we leverage the optimal (global) interval analysis

solver, which yields all the minima of Φncl(θ̂) in a given area. Thus, we are able to analyze

under what conditions multiple minima occur. We confirm that when nodes are outside
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the convex hull of the anchors, multiple minima are much more likely.

Using the information gained from characterizing the minima of Φncl(θ̂), we turn our

attention to the modified parallel projection method (MPPM), a sub-optimal solver. We

prove that MPPM is a steepest descent algorithm, and, as such, is only guaranteed to

converge to a stationary point of Φncl(θ̂). Knowledge of where the minima are for each

specific layout allowed us to develop an improved initialization technique for MPPM title

the reflected parallel projection method (RPPM).

RPPM uses a reflection of a stationary point of Φncl(θ̂) about the anchors as its next

starting point and leverages the fact that, most of the time, minima of Φncl(θ̂) are separated

spatially by the anchors. Thus, initializing across the anchors usually allows RPPM

to converge to multiple minima of Φncl(θ̂) (if they exist) and therefore increases the

probability of finding the global minimum of Φncl(θ̂). We show through comparison that

RPPM nearly matches the performance of the optimal interval analysis solver. It is also

important to note that, because we can compare all the minima of a given layout found

through interval analysis or RPPM, We show that minimizing Φncl(θ̂) does not necessarily

minimize the RMS error of the network.

Chapter 3: The Collaborative Problem

Expanding analysis into the collaborative problem, Chapter 3 focuses on the collaborative

objective function Φcol(Θ̂). Hypothesizing that the small number of layouts that show

large RMS error in the collaborative case is due to Φcol(Θ̂) having multiple minima (just

as in the non-collaborative case), we develop a methodology to estimate the number

of minima of Φcol(Θ̂) by initializing the iterative parallel projection method (IPPM)

solver multiple times and comparing the solutions returned from all initializations. This

revealed a similar phenomenon to what was observed in the non-collaborative problem:

multiple minima of Φcol(Θ̂) are more likely to occur when nodes are outside the convex

hull of the anchors. Just as in the non-collaborative case, we also show that minimizing
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Φcol(Θ̂) will not necessarily minimize the RMS error of the network.

Through this characterization, we observed that many large RMS errors were due to

entire networks being subject to the “flip ambiguity” where all the nodes were estimated

to be opposite (across the anchors from) their actual locations. This particular flip

ambiguity problem led us to develop the flipped initialization technique where layouts

identified to be likely subject to the flip ambiguity are solved at least twice, once initialized

normally and once initialized to the opposite side of the anchors. Results show that this

flipped initialization significantly reduced the error due to this problem.

Other errors in the collaborative case can be attributed to a small subset of nodes’

locations being estimated far away from their true locations. We address this issue by

employing another initialization technique, the reflected initialization. Results show that

using either the reflected or flipped initialization techniques reduces RMS error and using

both in tandem further reduces error.

Noting that running IPPM multiple times with additional initializations, we propose

techniques that accurately identify which node/anchor layouts are likely to have multiple

minima, allowing the user to be selective in which layouts need additional initializations

to achieve accurate localization. One identification technique is based solely on the

configuration of the anchors and measures the colinarity between them, a simple

calculation. Another identification technique analyzes the percentage of node location

estimates that are inside the convex hull of the anchors. Either identification technique

significantly reduces the set of layouts that should be solved with multiple initializations,

and this translates into a time and power saving mechanism.

Chapter 4: The Measurement Campaign

While Chapters 2 and 3 focus on simulations, Chapter 4 describes a measurement

campaign with the purpose of assisting in noise modeling for both LOS and NLOS
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situations. Two radios from ENSCO, Inc. R©, recorded the distance between each other

using the unlicensed Wi-Fi band. For each location, multiple distance estimates were

obtained. By analyzing the measurement distributions, we conclude that, according to

these measurements, LOS ranging noise can accurately be modeled as Gaussian. We

also conclude that NLOS ranging noise is highly variable depending on the environment

but nearly always shows a considerable positive bias. Expectedly, the radios performed

poorly when people or substantial walls separated them, and they performed well in

open, clean, LOS environments. Additionally, we show that, for these particular radios,

the standard deviation of the distributions did not noticeably increase with increased

distance (between 20m and 70m).

These measurements confirmed our modeling of LOS noise as Gaussian but did not

confirm our noise model based directly on distance. Our model of noise variance

σ2 = KE d
βij
ij may be useful, but the direct dependence upon dij was not observed.

This could be due to the nature of how ENSCO’s radios obtain distance estimates or

the relatively short range of distances over which we tested the radios. Additional

measurement campaigns with different radios and different bandwidths would be

necessary to make conclusive statements about the suitability of our noise mode.

We appreciate ENSCO’s allowing us to use the radios for our research purposes.



Appendix A

Derivation of Derivatives

This appendix lists the derivations of the first and second derivatives of Φncl(θ̂) and

Φcol(Θ̂). In particular, these derivatives are necessary for the execution of interval analysis

and also assist in identifying which stationary points are minima.

For the non-collaborative derivations: Recall that K is the number of anchors, x and y are

the coordinates of the node location estimate θ̂, and rk is the range estimate between the

kth anchor and the node.

For the collaborative derivations: Recall that N is the number of nodes, Np is the set of

neighbors (nodes and anchors) of the pth node, C is the number of total connections in the

network, rpq is the range estimate between the pth node and the qth node/anchor, and xp

and yp are the coordinates of estimate of the pth node/anchor.
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A.1 Derivatives of Φncl(θ̂)

Φncl(θ̂) =
1

K

K∑
k=1

(
rk −

√
(x− xk)2 + (y − yk)2

)2

(A.1)

A.1.1 First Derivatives

∂Φncl(θ̂)

∂x
=

2

K

K∑
k=1

rk −√(x− xk)2 + (y − yk)2︸ ︷︷ ︸
A

 ∂A

∂x
(A.2)

∂A

∂x
=
−1

2

(x− xk)2 + (y − yk)2︸ ︷︷ ︸
B

−1/2 ∂B
∂x

(A.3)

∂B

∂x
=2 (x− xk) (A.4)

=⇒ ∂Φncl(θ̂)

∂x
=
−2

K

K∑
k=1

rk −
√

(x− xk)2 + (y − yk)2√
(x− xk)2 + (y − yk)2

 (x− xk) (A.5)

=
−2

K

K∑
k=1

(
rk
[
(x− xk)2 + (y − yk)2

]−1/2 − 1
)

(x− xk) (A.6)

∂Φncl(θ̂)

∂y
=
−2

K

K∑
k=1

(
rk
[
(x− xk)2 + (y − yk)2

]−1/2 − 1
)

(y − yk) (A.7)
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A.1.2 Second Derivatives

∂Φncl(θ̂)

∂x
=
−2

K

K∑
k=1

(
rk
[
(x− xk)2 + (y − yk)2

]−1/2 − 1
)

︸ ︷︷ ︸
A

(x− xk)︸ ︷︷ ︸
B

(A.8)

∂2Φncl(θ̂)

∂x2
=
−2

K

K∑
k=1

∂A

∂x
B +

∂B

∂x
A (A.9)

∂A

∂x
=
−1

2
rk
[
(x− xk)2 + (y − yk)2

]−3/2
(2) (x− xk) (A.10)

=− rk
[
(x− xk)2 + (y − yk)2

]−3/2
(x− xk) (A.11)

∂2Φncl(θ̂)

∂x2
=
−2

K

K∑
k=1


(

−rk[
(x− xk)2 + (y − yk)2

]3/2
)

(x− xk)︸ ︷︷ ︸
∂A
∂x

(x− xk)︸ ︷︷ ︸
B

...

+

(
rk[

(x− xk)2 + (y − yk)2
]1/2 − 1

)
︸ ︷︷ ︸

A

(1)︸︷︷︸
∂B
∂x

 (A.12)

=
−2

K

K∑
k=1

[
−rk (x− xk)2[

(x− xk)2 + (y − yk)2
]3/2 +

rk[
(x− xk)2 + (y − yk)2

]1/2 − 1

]
(A.13)

=
−2

K

K∑
k=1

[
−rk[

(x− xk)2 + (y − yk)2
]1/2

(
(x− xk)2

(x− xk)2 + (y − yk)2
− 1

)
− 1

]
(A.14)
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=
−2

K

K∑
k=1

[
−rk[

(x− xk)2 + (y − yk)2
]1/2

(
− (y − yk)2

(x− xk)2 + (y − yk)2

)
− 1

]
(A.15)

=
−2

K

K∑
k=1

[
rk (y − yk)2[

(x− xk)2 + (y − yk)2
]3/2 − 1

]
(A.16)

∂2Φncl(θ̂)

∂y2
=
−2

K

K∑
k=1

[
rk (x− xk)2[

(x− xk)2 + (y − yk)2
]3/2 − 1

]
(A.17)

∂Φncl(θ̂)

∂x
=
−2

K

K∑
k=1

(
rk
[
(x− xk)2 + (y − yk)2

]−1/2 − 1
)

︸ ︷︷ ︸
A

(x− xk)︸ ︷︷ ︸
B

(A.18)

∂2Φncl(θ̂)

∂x∂y
=
−2

K

K∑
k=1

∂A

∂y
B +

�
�
��7

0
∂B

∂y
A (A.19)

∂A

∂y
=
−1

2
rk
[
(x− xk)2 + (y − yk)2

]−3/2
(2) (y − yk) (A.20)

=− rk
[
(x− xk)2 + (y − yk)2

]−3/2
(y − yk) (A.21)

∂2Φncl(θ̂)

∂x∂y
=
∂2Φncl(θ̂)

∂y∂x
=
−2

K

K∑
k=1

−rk (x− xk) (y − yk)[
(x− xk)2 + (y − yk)2

]3/2 (A.22)
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A.1.3 Summary of Derivatives of Φncl(θ̂)

Φncl(θ̂) =
1

K

K∑
k=1

(
rk −

√
(x− xk)2 + (y − yk)2

)2

(A.23)

Φ′ncl(θ̂) =



−2

K

K∑
k=1

(
rk[

(x− xk)2 + (y − yk)2
]1/2 − 1

)
(x− xk)

−2

K

K∑
k=1

(
rk[

(x− xk)2 + (y − yk)2
]1/2 − 1

)
(y − yk)


(A.24)

Φ′′ncl(θ̂) =


∂2Φncl(θ̂)

∂x2
∂2Φncl(θ̂)

∂x∂y

∂2Φncl(θ̂)

∂y∂x

∂2Φncl(θ̂)

∂y2

 (A.25)

∂2Φncl(θ̂)

∂x2
=
−2

K

K∑
k=1

[
rk (y − yk)2[

(x− xk)2 + (y − yk)2
]3/2 − 1

]
(A.26)

∂2Φncl(θ̂)

∂y2
=
−2

K

K∑
k=1

[
rk (x− xk)2[

(x− xk)2 + (y − yk)2
]3/2 − 1

]
(A.27)

∂2Φncl(θ̂)

∂x∂y
=
∂2Φncl(θ̂)

∂y∂x
=
−2

K

K∑
k=1

−rk (x− xk) (y − yk)[
(x− xk)2 + (y − yk)2

]3/2 (A.28)
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A.2 Derivatives of Φcol(Θ̂)

A.2.1 First Derivatives

Φcol(Θ̂) =
1

C

N∑
i=1

N+K∑
j= i+1; j ∈Ni

(
rij −

√
(xi − xj)2 + (yi − yj)2

)2

(A.29)

Finding the derivative of Φcol(Θ̂) with respect to one node’s x or y coordinate is easier

when thinking of what Φcol(Θ̂) actually does. Φcol(Θ̂) simply sums over each connection

(node/node and node/anchor) in the network and ensures that each connection con-

tributes to Φcol(Θ̂) exactly once. Thus, when taking the derivative of Φcol(Θ̂) with respect

to one node (the pth node), we know that the pth node and all its connections appear

only once in Φcol(Θ̂). We can think of the pth node as the only unlocalized node and

all its neighbors as anchors (for the purposes of finding the derivative of Φcol(Θ̂) with

respect to just the pth node). In this sense, we are in the non-collaborative scenario, and

the derivative of Φcol(Θ̂) with respect to the pth node is equivalent to the derivative of

Φncl(θ̂) (Equations A.6-A.7). Recall that Np is the set of neighbors to the pth node and that

C is the total number of connections in the network, equal to the number of summed

terms in Φcol(Θ̂).

∂Φcol(Θ̂)

xp
=
−2

C

∑
q ∈Np

(
rpq[

(xp − xq)2 + (yp − yq)2
]1/2 − 1

)
(xp − xq) (A.30)

∂Φcol(Θ̂)

yp
=
−2

C

∑
q ∈Np

(
rpq[

(xp − xq)2 + (yp − yq)2
]1/2 − 1

)
(yp − yq) (A.31)
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A.2.2 Second Derivatives

∂Φcol(Θ̂)

∂xp
=
−2

C

∑
q ∈Np

(
rpq
[
(xp − xq)2 + (yp − yq)2

]−1/2 − 1
)

︸ ︷︷ ︸
A

(xp − xq)︸ ︷︷ ︸
B

(A.32)

∂2Φcol(Θ̂)

∂x2p
=
−2

C

∑
q ∈Np

∂A

∂xp
B +

∂B

∂xp
A (A.33)

∂A

∂xp
= −1

2
rpq
[
(xp − xq)2 + (yp − yq)2

]−3/2
(2) (xp − xq)

= −rpq
[
(xp − xq)2 + (yp − yq)2

]−3/2
(xp − xq) (A.34)

∂2Φcol(Θ̂)

∂x2p
=
−2

C

∑
q ∈Np

−rpq [(xp − xq)2 + (yp − yq)2
]−3/2

(xp − xq)︸ ︷︷ ︸
∂A
∂xp

(xp − xq)︸ ︷︷ ︸
B

...

+ (1)︸︷︷︸
∂B
∂xk

(
rpq
[
(xp − xq)2 + (yp − yq)2

]−1/2 − 1
)

︸ ︷︷ ︸
A

 (A.35)

=
−2

C

∑
q ∈Np

[
−rpq (xp − xq)2[

(xp − xq)2 + (yp − yq)2
]3/2 +

rpq[
(xp − xq)2 + (yp − yq)2

]1/2 − 1

]
(A.36)

=
−2

C

∑
q ∈Np

[
−rpq[

(xp − xq)2 + (yp − yq)2
]1/2

(
(xp − xq)2

(xp − xq)2 + (yp − yq)2
− 1

)
− 1

]
(A.37)

=
−2

C

∑
q ∈Np

[
−rpq[

(xp − xq)2 + (yp − yq)2
]1/2

(
− (yp − yq)2

(xp − xq)2 + (yp − yq)2

)
− 1

]
(A.38)

∂2Φcol(Θ̂)

∂x2p
=
−2

C

∑
q ∈Np

[
rpq (yp − yq)2[

(xp − xq)2 + (yp − yq)2
]3/2 − 1

]
(A.39)
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∂2Φcol(Θ̂)

∂x2p
=
−2

C

∑
q ∈Np

[
rpq (yp − yq)2[

(xp − xq)2 + (yp − yq)2
]3/2 − 1

]
(A.40)

∂2Φcol(Θ̂)

∂y2p
=
−2

C

∑
q ∈Np

[
rpq (xp − xq)2[

(xp − xq)2 + (yp − yq)2
]3/2 − 1

]
(A.41)
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∂Φcol(Θ̂)

∂xp
=
−2

C

∑
q ∈Np

(
rpq
[
(xp − xq)2 + (yp − yq)2

]−1/2 − 1
)

︸ ︷︷ ︸
A

(xp − xq)︸ ︷︷ ︸
B

(A.42)

∂2Φcol(Θ̂)

∂xp∂xq
=
−2

C

(
∂A

∂xq
B +

∂B

∂xq
A

)
(A.43)

∂A

∂xq
= −1

2
rpq
[
(xp − xq)2 + (yp − yq)2

]−3/2
(2) (xp − xq) (−1)

= rpq
[
(xp − xq)2 + (yp − yq)2

]−3/2
(xp − xq) (A.44)

∂2Φcol(Θ̂)

∂xp∂xq
=
−2

C

rpq [(xp − xq)2 + (yp − yq)2
]−3/2

(xp − xq)︸ ︷︷ ︸
∂A
∂xq

(xp − xq)︸ ︷︷ ︸
B

...

+ (−1)︸︷︷︸
∂B
∂xq

(
rpq
[
(xp − xq)2 + (yp − yq)2

]−1/2 − 1
)

︸ ︷︷ ︸
A

 (A.45)

Notice the similarity to Equation A.35. (Negation of the argument of the summation.)

∂2Φcol(Θ̂)

∂xp∂xq
=
−2

C

(
−rpq (yp − yq)2[

(xp − xq)2 + (yp − yq)2
]3/2 + 1

)
(A.46)
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∂Φcol(Θ̂)

∂xp
=
−2

C

∑
q ∈Np

(
rpq
[
(xp − xq)2 + (yp − yq)2

]−1/2 − 1
)

︸ ︷︷ ︸
A

(xp − xq)︸ ︷︷ ︸
B

(A.47)

∂2Φcol(Θ̂)

∂xp∂yq
=
−2

C

 ∂A

∂yq
B +

�
�
��7

0
∂B

∂yq
A

 (A.48)

∂A

∂yi
= −1

2
rpq
[
(xp − xq)2 + (yp − yq)2

]−3/2
(2) (yp − yq) (−1)

= rpq
[
(xp − xq)2 + (yp − yq)2

]−3/2
(yp − yq) (A.49)

∂2Φcol(Θ̂)

∂xp∂yq
=
−2

C


rpq (yp − yq)[

(xp − xq)2 + (yp − yq)2
]3/2︸ ︷︷ ︸

∂A
∂yq

(xp − xq)︸ ︷︷ ︸
B

 (A.50)
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∂Φcol(Θ̂)

∂xp
=
−2

C

∑
q ∈Np

(
rpq
[
(xp − xq)2 + (yp − yq)2

]−1/2 − 1
)

︸ ︷︷ ︸
A

(xp − xq)︸ ︷︷ ︸
B

(A.51)

∂2Φcol(Θ̂)

∂xp∂yp
=
−2

C

∑
q ∈Np

∂A

∂yp
B +

�
�
��7

0
∂B

∂yp
A (A.52)

∂A

∂yp
= −1

2
rpq
[
(xp − xq)2 + (yp − yq)2

]−3/2
(2) (yp − yq)

= −rpq
[
(xp − xq)2 + (yp − yq)2

]−3/2
(yp − yq) (A.53)

∂2Φcol(Θ̂)

∂xp∂yp
=
−2

C

∑
q ∈Np

−rpq (yp − yq)[
(xp − xq)2 + (yp − yq)2

]3/2︸ ︷︷ ︸
∂A
∂yp

(xp − xq)︸ ︷︷ ︸
B

(A.54)
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A.2.3 Summary of Derivatives of Φcol(Θ̂)

Φcol(Θ̂) =
1

C

N∑
i=1

N+K∑
j= i+1; j ∈Ni

(
rij −

√
(xi − xj)2 + (yi − yj)2

)2

(A.55)

∂Φcol(Θ̂)

∂xp
=
−2

C

∑
q ∈Np

(
rpq[

(xp − xq)2 + (yp − yq)2
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Appendix B

Measurement Campaign Data

Each data set is plotted in an appendix. Each individual distance measurement is

plotted against the measurement index on the left, and the right hand plots are empirical

probability density functions of the error. Dashed lines on the left mark the actual

distances that were being measured, and if the measurement is NLOS, a smaller dashed

line represents the “around the corner” distance. For plots of calibration data sets, solid

horizontal lines denote the limits where the data was filtered to achieve the low kurtosis

values shown in Table B.1 by rejecting obviously erroneous measurements.

Tables 4.1 - 4.5 that are already printed in the body of the report appear in the appendices,

also, for convenience in Tables B.1 - B.5.

B.1 Calibration Scenario

Table B.1 and Figures B.1 - B.39 (below) summarize the results from data sets in the

calibration scenario.
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127Table B.1: Calibration Statistics

Label Kurtosis Distance Error

Pair/Grp. Unfiltered Filtered Std. Dev. Mean Median Actual Mean Median

T1/1 0.5720 ——– 0.2750 28.3946 28.4081 28.48 -0.09 -0.07
T1/2 0.3239 ——– 0.2958 28.3659 28.3724 28.48 -0.11 -0.11
T1/3 1.2922 ——– 0.2869 28.4125 28.4106 28.48 -0.07 -0.07
T2/1 0.3935 ——– 0.3501 35.9106 35.9399 35.83 0.08 0.11
T2/2 0.3422 ——– 0.2931 35.9245 35.9631 35.83 0.09 0.13
T2/3 0.2078 ——– 0.3423 35.9409 35.9488 35.83 0.11 0.12
T3/1 -0.1181 ——– 0.2638 40.4755 40.4865 40.62 -0.14 -0.13
T3/2 0.0111 ——– 0.2668 40.4890 40.4913 40.62 -0.13 -0.13
T3/3 0.2060 ——– 0.2847 40.5311 40.5414 40.62 -0.09 -0.08
T4/1 4.6409 -0.0824 0.2130 66.9202 66.9262 67.07 -0.15 -0.14
T4/2 -0.1215 ——– 0.1931 66.9510 66.9511 67.07 -0.12 -0.12
T4/3 1.5529 ——– 0.2167 67.0029 67.0136 67.07 -0.07 -0.06
T4/4 11.7690 0.5682 0.1373 66.9962 66.9971 67.07 -0.07 -0.07
T4/5 410.3820 0.2557 0.1942 67.0042 67.0053 67.07 -0.07 -0.06
T4/6 6.9970 0.3862 0.2202 66.9731 66.9844 67.07 -0.10 -0.09
T5/1 5.9516 0.6934 0.2587 53.7942 53.8000 53.93 -0.14 -0.13
T5/2 0.1734 ——– 0.2532 53.8166 53.8250 53.93 -0.11 -0.10
T5/3 19.7971 1.5133 0.2523 53.7826 53.7707 53.93 -0.15 -0.16
T6/1 0.0744 ——– 0.2760 47.8056 47.8050 47.99 -0.18 -0.19
T6/2 0.1566 ——– 0.2158 47.8681 47.8629 47.99 -0.12 -0.13
T6/3 0.0333 ——– 0.2981 47.8527 47.8474 47.99 -0.14 -0.14
T7/1 0.1895 ——– 0.2650 41.6685 41.6806 38.55 3.12 3.13
T7/2 0.1729 ——– 0.2704 41.5759 41.5866 38.55 3.03 3.04
T7/3 0.9184 ——– 0.2377 41.5948 41.6021 38.55 3.04 3.05
T8/1 0.4277 ——– 0.2344 23.0632 23.0810 19.84 3.22 3.24
T8/2 0.1140 ——– 0.2167 23.0412 23.0497 19.84 3.20 3.21
T8/3 0.7007 ——– 0.2254 23.0640 23.0726 19.84 3.22 3.23
T9/1 -0.1328 ——– 0.1932 22.6143 22.6153 19.46 3.15 3.16
T9/2 0.1817 ——– 0.1949 22.6633 22.6682 19.46 3.20 3.21
T9/3 0.6168 ——– 0.2167 22.6027 22.6145 19.46 3.14 3.15

T10/1 0.7918 ——– 0.2283 37.3847 37.4005 37.01 0.37 0.39
T10/2 0.3647 ——– 0.2565 37.3235 37.3314 37.01 0.31 0.32
T10/3 0.4849 ——– 0.2273 37.3152 37.3218 37.01 0.31 0.31
T11/1 1.1751 ——– 0.3893 62.9671 62.9574 62.47 0.50 0.49
T11/2 9.6962 0.1296 0.3189 62.8795 62.8822 62.47 0.41 0.41
T11/3 0.6117 ——– 0.3109 62.8984 62.9025 62.47 0.43 0.43
T12/1 0.4337 ——– 0.3344 29.9068 29.9131 29.91 -0.00 0.00
T12/2 0.2584 ——– 0.3095 30.0068 30.0159 29.91 0.10 0.11
T12/3 0.6608 ——– 0.3128 29.9100 29.9184 29.91 -0.00 0.01

Average 12.37 0.42 0.26 0.74 0.75

Range 410.51 1.69 0.25 3.41 3.43
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Figure B.1: Calibration, location pair T1, set # 1
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Figure B.2: Calibration, location pair T1, set # 2
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Figure B.3: Calibration, location pair T1, set # 3
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Figure B.4: Calibration, location pair T2, set # 1
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Figure B.5: Calibration, location pair T2, set # 2
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Figure B.6: Calibration, location pair T2, set # 3
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Figure B.7: Calibration, location pair T3, set # 1
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Figure B.8: Calibration, location pair T3, set # 2
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Figure B.9: Calibration, location pair T3, set # 3
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Figure B.10: Calibration, location pair T4, set # 1
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Figure B.11: Calibration, location pair T4, set # 2
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Figure B.12: Calibration, location pair T4, set # 3
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Figure B.13: Calibration, location pair T4, set # 4
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Figure B.14: Calibration, location pair T4, set # 5
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Figure B.15: Calibration, location pair T4, set # 6
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Figure B.16: Calibration, location pair T5, set # 1
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Figure B.17: Calibration, location pair T5, set # 2
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Figure B.18: Calibration, location pair T5, set # 3
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Figure B.19: Calibration, location pair T6, set # 1
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Figure B.20: Calibration, location pair T6, set # 2
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Figure B.21: Calibration, location pair T6, set # 3
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Figure B.22: Calibration, location pair T7, set # 1
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Figure B.23: Calibration, location pair T7, set # 2
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Figure B.24: Calibration, location pair T7, set # 3
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Figure B.25: Calibration, location pair T8, set # 1
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Figure B.26: Calibration, location pair T8, set # 2
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Figure B.27: Calibration, location pair T8, set # 3
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Figure B.28: Calibration, location pair T9, set # 1
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Figure B.29: Calibration, location pair T9, set # 2
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Figure B.30: Calibration, location pair T9, set # 3
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Figure B.31: Calibration, location pair T10, set # 1
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Figure B.32: Calibration, location pair T10, set # 2
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Figure B.33: Calibration, location pair T10, set # 3
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Figure B.34: Calibration, location pair T11, set # 1
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Figure B.35: Calibration, location pair T11, set # 2

0 1 2 3 4

x 10
4

61

61.5

62

62.5

63

63.5

64

64.5

65

Measurement index

D
is

ta
nc

e 
(m

et
er

s)

LOS: Actual distance: 62.47 meters

 

 

Measurements
Actual Distance

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Error (meters)

E
m

pi
ric

al
 P

D
F

LOS: Kurtosis = 0.61; mean = 62.90; std = 0.31

Figure B.36: Calibration, location pair T11, set # 3
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Figure B.37: Calibration, location pair T12, set # 1
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Figure B.38: Calibration, location pair T12, set # 2
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Figure B.39: Calibration, location pair T12, set # 3
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B.2 Durham Hallway, Good LOS Performance Scenario

Table B.2 and Figures B.40 - B.42 (below) summarize the results from data sets in the the

Durham hallway, good LOS performance scenario.

Table B.2: Durham Hallway, Good LOS Performance Statistics

Distance Error

Location Pair Kurtosis Std. Dev. Mean Median Actual Mean Median

T1 -0.2810 1.0808 20.6161 20.5803 19.60 1.02 0.98

T2 38.0238 8.1506 37.0161 35.6323 36.34 0.68 -0.71

T3 33.6032 0.5862 61.4471 61.4340 60.56 0.89 0.87

Average 23.78 3.27 0.86 0.38

Range 38.30 7.56 0.34 1.69
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Figure B.40: Durham hallway, good LOS performance, location pair T1
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Figure B.41: Durham hallway, good LOS performance, location pair T2
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Figure B.42: Durham hallway, good LOS performance, location pair T3
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B.3 Durham Hallway, Moderate LOS Performance Sce-

nario

Table B.3 and Figures B.43 - B.57 (below) summarize the results from data sets in the the

Durham hallway, moderate LOS performance scenario.

Table B.3: Durham Hallway, Moderate LOS Performance Statistics

Label Distance Error

Pair/Group Kurtosis Std. Dev. Mean Median Actual Mean Median

T1/1 2.4507 0.6425 8.3402 8.4506 9.13 -0.79 -0.68

T1/2 -0.8275 1.1232 7.9247 7.9994 9.13 -1.21 -1.13

T1/3 -0.1475 1.5277 6.2414 6.1954 9.11 -2.87 -2.91

T2/1 0.5605 1.3578 18.9275 19.0926 18.27 0.66 0.82

T2/2 0.4423 2.6007 25.0980 25.3482 18.31 6.79 7.04

T2/3 3.1044 1.6551 25.9048 26.2232 18.30 7.60 7.92

T3/1 3.9286 0.6348 26.2890 26.2209 27.41 -1.12 -1.19

T3/2 1.0727 0.9349 28.1537 28.0374 27.39 0.76 0.65

T3/3 4.6812 0.5229 27.0788 27.1317 27.41 -0.33 -0.28

T4/1 -1.9168 26.5438 69.7185 93.0790 36.56 33.16 56.52

T4/2 1.2914 20.0626 85.3922 94.2441 36.55 48.84 57.69

T4/3 684.9964 2.1282 37.5763 37.4936 36.56 1.02 0.93

T5/1 21.4474 7.4075 82.0747 83.7089 45.71 36.36 38.00

T5/2 -1.0350 16.2047 57.0995 47.6368 45.72 11.38 1.92

T5/3 -1.8736 19.9323 68.4160 84.4949 45.69 22.73 38.80

Average 47.88 6.89 10.87 13.61

Range 686.91 26.02 51.71 60.61
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Figure B.43: Durham hallway, moderate LOS performance, location pair T1, group # 1

0 5000 10000 15000
2

3

4

5

6

7

8

9

10

11

12

Measurement index

D
is

ta
nc

e 
(m

et
er

s)

LOS: Actual distance: 9.13 meters

 

 

Measurements
Actual Distance

−8 −6 −4 −2 0 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
LOS: Kurtosis = −0.83; mean = 7.92; std = 1.12

Error (meters)

E
m

pi
ric

al
 p

ro
ba

bi
lit

y 
de

ns
ity

Figure B.44: Durham hallway, moderate LOS performance, location pair T1, group # 2
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Figure B.45: Durham hallway, moderate LOS performance, location pair T1, group # 3
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Figure B.46: Durham hallway, moderate LOS performance, location pair T2, group # 1
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Figure B.47: Durham hallway, moderate LOS performance, location pair T2, group # 2
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Figure B.48: Durham hallway, moderate LOS performance, location pair T2, group # 3
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Figure B.49: Durham hallway, moderate LOS performance, location pair T3, group # 1
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Figure B.50: Durham hallway, moderate LOS performance, location pair T3, group # 2
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Figure B.51: Durham hallway, moderate LOS performance, location pair T3, group # 3
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Figure B.52: Durham hallway, moderate LOS performance, location pair T4, group # 1
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Figure B.53: Durham hallway, moderate LOS performance, location pair T4, group # 2
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Figure B.54: Durham hallway, moderate LOS performance, location pair T4, group # 3
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Figure B.55: Durham hallway, moderate LOS performance, location pair T5, group # 1
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Figure B.56: Durham hallway, moderate LOS performance, location pair T5, group # 2
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Figure B.57: Durham hallway, moderate LOS performance, location pair T5, group # 3
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B.4 MPRG Offices Scenario

Table B.4 and Figures B.58 - B.84 (below) summarize the results from data sets in the the

MPRG offices scenario.
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Table B.4: MPRG Offices Statistics

Label Distance Error

Pair/Group Kurtosis Std. Dev. Mean Median Actual Mean Median

T1/1 7.6947 0.6070 7.3204 7.2488 5.05 2.27 2.20
T1/2 2.2069 2.5054 8.3098 8.3054 5.05 3.26 3.26
T1/3 5.4545 1.7501 9.7833 9.9787 5.05 4.73 4.93
T2/1 6.9022 0.6871 16.5082 16.2775 10.85 5.66 5.43
T2/2 3.2887 1.2049 20.1241 19.7797 10.85 9.27 8.93
T2/3 4.9756 3.0122 16.8508 16.6370 10.85 6.00 5.79
T3/1 28.7751 1.5306 21.7987 21.7906 16.98 4.82 4.81
T3/2 6.3514 3.3881 24.9485 25.3083 16.98 7.97 8.33
T3/3 7936.5555 2.6010 24.0583 24.1231 16.98 7.08 7.14
T4/1 8.1917 2.3281 36.3800 36.4015 24.02 12.36 12.38
T4/2 0.6944 4.6227 32.0872 32.9000 24.02 8.07 8.88
T4/3 4.9431 2.6690 30.4098 30.3147 24.02 6.39 6.29
T5/1 28.5606 1.7399 40.9747 41.1622 24.01 16.96 17.15
T5/2 28.3827 2.0665 33.8616 33.8635 24.01 9.85 9.85
T5/3 14.8967 3.4757 30.3487 29.4889 24.01 6.34 5.48
T6/1 14.6355 6.6326 39.6747 38.4090 24.68 14.99 13.73
T6/2 2348.5748 18.9786 38.9086 39.5975 24.68 14.23 14.92
T6/3 2.6668 4.4538 40.6765 40.5199 24.68 16.00 15.84
T7/1 2.8395 7.1527 45.9477 48.3617 17.26 28.69 31.10
T7/2 11.0815 2.0843 19.7581 19.7886 17.26 2.50 2.53
T7/3 0.6386 5.7857 31.0514 30.1991 17.26 13.79 12.94
T8/1 7.2354 3.3899 21.1046 20.8909 7.80 13.30 13.09
T8/2 4.4488 4.7895 23.7701 24.4315 7.80 15.97 16.63
T8/3 5.2540 4.6234 29.4445 30.7702 7.80 21.64 22.97
T9/1 4.7538 0.3232 5.9894 5.9774 5.83 0.16 0.15
T9/2 73.9942 0.5003 6.6621 6.6314 5.83 0.83 0.80
T9/3 17.5693 0.9540 7.5969 7.2360 5.83 1.77 1.41

Average 391.91 3.48 9.44 9.52

Range 7935.92 18.66 28.53 30.95
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Figure B.58: MPRG offices, location pair T1, group # 1

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

Measurement index

D
is

ta
nc

e 
(m

et
er

s)

NLOS: Actual distance: 5.05 meters

 

 

Measurements
Actual Distance
Around−the−corner Distance

−5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25
NLOS: Kurtosis = 2.21; mean = 8.31; std = 2.51

Error (meters)

E
m

pi
ric

al
 p

ro
ba

bi
lit

y 
de

ns
ity

Figure B.59: MPRG offices, location pair T1, group # 2
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Figure B.60: MPRG offices, location pair T1, group # 3
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Figure B.61: MPRG offices, location pair T2, group # 1
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Figure B.62: MPRG offices, location pair T2, group # 2
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Figure B.63: MPRG offices, location pair T2, group # 3
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Figure B.64: MPRG offices, location pair T3, group # 1
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Figure B.65: MPRG offices, location pair T3, group # 2
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Figure B.66: MPRG offices, location pair T3, group # 3
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Figure B.67: MPRG offices, location pair T4, group # 1
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Figure B.68: MPRG offices, location pair T4, group # 2
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Figure B.69: MPRG offices, location pair T4, group # 3
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Figure B.70: MPRG offices, location pair T5, group # 1
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Figure B.71: MPRG offices, location pair T5, group # 2
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Figure B.72: MPRG offices, location pair T5, group # 3
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Figure B.73: MPRG offices, location pair T6, group # 1
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Figure B.74: MPRG offices, location pair T6, group # 2
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Figure B.75: MPRG offices, location pair T6, group # 3
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Figure B.76: MPRG offices, location pair T7, group # 1
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Figure B.77: MPRG offices, location pair T7, group # 2
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Figure B.78: MPRG offices, location pair T7, group # 3
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Figure B.79: MPRG offices, location pair T8, group # 1
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Figure B.80: MPRG offices, location pair T8, group # 2
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Figure B.81: MPRG offices, location pair T8, group # 3
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Figure B.82: MPRG offices, location pair T9, group # 1
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Figure B.83: MPRG offices, location pair T9, group # 2
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Figure B.84: MPRG offices, location pair T9, group # 3
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B.5 MPRG Lab Scenario

Table B.5 and Figures B.85 - B.100 (below) summarize the results from data sets in the the

MPRG lab scenario.
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Figure B.85: MPRG lab, location pair T1, group # 1
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Table B.5: MPRG Lab Statistics

Label Distance Error

Pair/Group Kurtosis Std. Dev. Mean Median Actual Mean Median

T1/1 9.6966 1.5928 7.2292 7.1934 4.57 2.66 2.62

T1/2 6.7594 0.4896 6.0439 6.1803 4.57 1.47 1.61

T2/1 1.3483 1.5867 6.3384 6.3374 3.48 2.86 2.86

T2/2 355.0846 3.1104 4.1506 4.4989 3.48 0.67 1.02

T3/1 24.5586 3.2191 10.5231 9.9488 4.58 5.94 5.37

T3/2 91.8545 1.2969 6.1923 6.0384 4.58 1.61 1.46

T4/1 17.4605 1.4652 21.4531 21.5682 11.08 10.37 10.49

T4/2 13.8717 2.3151 25.3571 25.2630 11.08 14.28 14.18

T5/1 6.9358 4.6148 33.2601 34.3239 8.30 24.96 26.02

T5/2 2.9732 1.6263 22.8214 23.0511 8.30 14.52 14.75

T6/1 55.3925 0.2498 9.3161 9.3178 9.40 -0.08 -0.08

T6/2 51.9284 1.5200 10.7162 10.4264 9.40 1.32 1.03

T7/1 1.5012 4.5460 24.9059 24.3740 9.59 15.32 14.78

T7/2 39.7103 2.4879 18.1463 17.3211 9.59 8.56 7.73

T8/1 3.6995 2.6740 17.6825 17.6396 11.13 6.55 6.51

T8/2 11.0628 4.0642 34.4178 34.8378 11.13 23.29 23.71

Average 43.36 2.30 8.39 8.38

Range 353.74 4.37 25.04 26.11
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Figure B.86: MPRG lab, location pair T1, group # 2
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Figure B.87: MPRG lab, location pair T2, group # 1
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Figure B.88: MPRG lab, location pair T2, group # 2
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Figure B.89: MPRG lab, location pair T3, group # 1
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Figure B.90: MPRG lab, location pair T3, group # 2
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Figure B.91: MPRG lab, location pair T4, group # 1
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Figure B.92: MPRG lab, location pair T4, group # 2
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Figure B.93: MPRG lab, location pair T5, group # 1
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Figure B.94: MPRG lab, location pair T5, group # 2
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Figure B.95: MPRG lab, location pair T6, group # 1
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Figure B.96: MPRG lab, location pair T6, group # 2
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Figure B.97: MPRG lab, location pair T7, group # 1

0 1000 2000 3000 4000 5000 6000
5

10

15

20

25

30

35

40

45

50

Measurement index

D
is

ta
nc

e 
(m

et
er

s)

NLOS: Actual distance: 9.59 meters

 

 

Measurements
Actual Distance
Around−the−corner Distance

−10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
NLOS: Kurtosis = 39.71; mean = 18.15; std = 2.49

Error (meters)

E
m

pi
ric

al
 p

ro
ba

bi
lit

y 
de

ns
ity

Figure B.98: MPRG lab, location pair T7, group # 2
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Figure B.99: MPRG lab, location pair T8, group # 1
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Figure B.100: MPRG lab, location pair T8, group # 2
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