
A collaboration workflow from sound-based composition to performance of

electroacoustic music using «Pure Data» as a framework.

Kyriakos Tsoukalas

Labyrinth

Volos, Greece, 37400

ktsoukalas@ktsoukalas.net

Abstract

This paper describes a workflow for composers,
engineers and performers to collaborate, using Pure
Data (PD) as a framework, towards the design of
electroacoustic musical instruments intended for live
performances of sound-based music. Furthermore, it
presents some considerations about live performance
and ideas of creating collaboration tools, possibly as
PD GUI plugins.

Keywords

collaboration, composition, embodiment, software
reuse

1 Introduction

By choosing PD as DSP engine and automation
software, users are able to program in a graphical
programming environment. A programming project
approach such as the «incremental-build model» [1],
may result in a more rapid development of a musical
instrument, based on early performance testing,
reuse of software and progressive refinement [1] of
modules. Τhe graphical programming environment of
PD could be used by different users as a collaboration
environment that combines a visual representation of
the automation and DSP programming within a
patch-file.

When the case is that the composer, the engineer
and the performer is the same person and assuming
that this person is sufficiently knowledgeable in each
domain of expertise, then the case seems to be ideal
from a transfer of ideas point of view but enervates
the energy that will be spent in each domain of
expertise, since it will be a portion of the total energy
of one person. In the case of an association of a
composer, an engineer and a performer, the labor is
divided to three people and the case becomes more
complicated from a transfer of ideas point of view,
but gain in knowledge diversity.

Composers could design data-flow diagrams for
the sound processing as planned by their composition
ideas. Then engineers could validate and, in
collaboration with composers, clarify the different
parts of the diagrams. In order to program a sound

synthesis engine as planned by a composer's diagram,
engineers could develop new and use any available
class of PD or external libraries and abstractions to
shorten development time.

The performer's interface could be based on a
separate device-focused (sensors-equipped, handheld,
tangible, etc) (sub-)system, that would communicate
with PD. Such an approach should transfer to new
projects the dexterity gained with certain devices and
custom systems by the performers to succeed in
embodiment of control parameters through effective
mapping of dexterous gestural abilities. Furthermore,
making available the mapping of control parameters
for calibration by the performer himself, should help
his practice gain in quality.

PD software is used by many electroacoustic
composers and engineers, who share resources and
publish their work and tools online. Exploring the
field of electroacoustic music becomes more fruitful
by succeeding in implementing new compositional
ideas. The workflow ideas described in this paper aim
at helping projects of collaboration in electroacoustic
musical instrument creation, run with consistency to
the initial idea.

2 A workflow

In figure 1, a workflow is visualized by phases
roles, milestones and goals. The goals of the
workflow are three: conceptual integrity, reuse of
software and embodiment of control parameters. The
circle implies a progressive refinement of milestones.
The triangle sides separate the workflow divisions
per domain of expertise (roles) and the triangle edges
point out the milestones that should be accomplished
by a collaboration of two different roles.

The use of PD as a framework for the workflow is
based on PD being a real-time synthesis engine,
having a graphical programming environment, being
supported by a wide community offering resources
and its Standard-Improved BSD license.

Ï�

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����

Figure 1 - A workflow

2.1 Composer's role

A composer as the initiator of a project under his
compositional concept, is held responsible for the
qualitative transfer of his synthesis methods to the
engineer, who will try to implement the synthesis
methods with a feasible synthesis engine. He is also
responsible to discuss matters of aesthetics with the
performer.

As proposed by [2], a semiotic network between
the composer and each listener will be established
upon listening or watching a performance. The
proposed model of intention-reception takes into
consideration: a) The composer's Syntax and
Processing of Materials and b) The listener's
Awareness of situational context and Phenomena of
Performance. During a performance, the composer's
syntax will be implemented by an engineer and the
processing of materials will be controlled by the
performer, while listeners will be stimulated by the
context of the performance's phenomena, partially
served by the engineer's implementations. Hence, the
task to protect the conceptual integrity of the project,
emerges.

2.1.1 Aesthetic criteria

A composer moulds his aesthetic criteria as a
listener and should be able to analyze listening
experiences in order to guide his quest for providing
communication signs to listeners.

In a staged performance, aesthetic criteria are not
limited to sound alone. There is also a great deal of
visual stimuli from performers controlling musical
instruments and in electroacoustic music they tend to
be partially invisible. The composer and the
performer should be able to resolve the variable
approaches to aesthetic criteria of the compositional
concept, so as to form abstract rules to help with

conceptual integrity. Especially, when an ensemble of
performers would try splitting compositional tasks.

2.1.2 Music cognition

Analyzing the listener's interpretation of a sound
flow as music is a research field of the music
cognition discipline. A composer's intentions are
carried on a sound flow to face interpretation and by
increasing the listeners' perception of his intentions, a
composer might gain audience. Therefore, knowledge
of cognitive music theory should help composers
with knowing their audience.

2.1.3 Composition ideas

Composition ideas refer to the organization of
sound in order to produce a sound flow that might
guide listeners to make connections between what
they listen/perceive and their aesthetic criteria. These
ideas regulate how much of the sound synthesis
method is planned to fulfill certain aesthetic criteria
and how much is planned for experimenting with
sound synthesis techniques and eventually form new
aesthetic criteria.

2.1.4 Synthesis methods

As the collaboration milestone for the composer
and the engineer, any synthesis methods to be used
should be outlined by the composer's composition
ideas but also evaluated by the engineer who would
implement them. The more the reuse of software, the
more the need for a collaborative evaluation of this
software.

2.2 Engineer/programmer's role

The engineer/programmer is responsible for the
quality of the synthesis engine sound quality but also
for a qualitative evaluation of the ability of the engine
to fulfill the concept's intentions. The role involves
straining to combine compositional theory with
performance reality, while having to persuade both
the composer and the performer for any evaluation
findings. He should lead problem-solving.

2.2.1 Hardware and software

Modularity of the system is a key factor for
understanding and refining it. The system could take
advantage of devices and software as parts of the
system. A communication way between PD and any
popular device is usually implemented by the PD
community.

Ïà

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����

2.2.2 Synthesis engine

PD is an open-source cross-platform real-time
synthesis engine ready to be patched and extended
with some new classes.

2.3 Performer's role

The performer is a person that has to deal in real-
time with musicology concepts, performance act and
controlling gestures. Acquiring dexterity with the
control interface is the key to succeed with different
tasks in order to fulfill the aesthetic criteria of a
compositional concept.

The performer's ability to effect changes to the
sound synthesis engine parameters, is regulated by
performance behavior (3.1) within the effectiveness
of a control interface. Therefore, it is essential for
him to be able to embody the different control
parameters of a synthesis engine.

2.3.1 Control interface

The development of a control interface might be
accelerated by incorporating to a new control system,
devices/ interfaces that are already mature and sturdy.
The performer may already be dexterous at using any
incorporated device/interface. Of course planning for
changes is crucial, since it is a goal to progressively
refine or even redesign parts of the total system.

Any extra complexity of the control interface is
going to cost in performance behavior efficiency and
if a performance's context is mostly improvisational,
it is more possible that performers will prefer to
create musical context, based on what they think they
could better accomplish using the current control
interface.

2.3.2 Sound

Sound is the product of a synthesis engine, yet it is
the principle unit of sound-based music.

2.4 Listener

A listener receives music performance phenomena
but he perceives them in his own unique way.
Inexperienced listeners may be driven with basic
musical context and the way a listener focuses to
specific parts of musical context regulates the way he
conceives of organized sound as music.

In a staged electroacoustic music performance,
even though the practice of reductive listening is
promoted by the means of electroacoustic sound
production, it is inevitable that there are expectations,
especially among inexperienced spectators, regarding
the visual stimuli transmitted from the stage (show).
Knowing their audience/spectators, should help
performers with designing ways to either feed or

block such expectations. There is a legacy from
acoustic musical instruments, to provide visible
evidence of sound synthesis parameter control. But
such evidence is of value mostly as being evidence
for the live character of a performance.

3 Performance of electroacoustic music

In [3] it is reported that: «by far the most responses
as to why people choose to compose sound-based
music were related to the notion of emancipation
(freedom).» - in two general levels: 1) Compositional
and, 2) Expressive.

Rules of sound organization are formed by
analyzing some prototype(s), so as composers could
apply them to compositions in order to give the music
some popular / widely recognizable characteristics. In
a same approach, a performer need to create rules to
effectively manage, in realtime, the wide possibilities
offered by sound-based music composition on
musical context.

While a composer relishes freedom from
formalism, aesthetics and freedom of content
organisation, a performer is bound to the limits of his
ability to control instruments and practice is what
would expand those limits.

When possible to split a composition concept in
different compositional tasks it could be the case to
assign those tasks to different performers of an
ensemble. By doing so, an ensemble of less dexterous
performers with less fine-tuned musical instruments,
might succeed in the implementation of complex
compositional concepts and also become aware of
musicology concepts.

3.1 Performance behavior

Performance behavior linked with performance
context are categorized by [4] in three domains
(behavior/context): 1) model/symbol, 2) rule/sign and
3) skill/signal.

Model-based behavior creates context by switching
between usage of rule-based or skill-based behavior.
Switching is based on the performer's reasoning
about currently perceived sound, awareness of his
control actions and consideration of compositional
concepts. Rule-based behavior creates context by
execution of predefined sound synthesis procedures,
matched to signs of communication. Signal-based
behavior requires the performer's continuous
parameter control over a signal.

In a “live” electroacoustic music performance there
can be a great deal of automation introduced to a
sound synthesis engine. Automation, may be used to
minimize the parameter control of a sound synthesis
engine only to those needed (planned) for effecting
changes to the synthesized sound, or in opposition,

Ï�

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����

automation may be used to precompose model-based
behaviors.

The synthesis engine's emergence as musical
instrument, occurs when the system combines
implementation effectiveness and embodiment of
parameter control. The performer's behavior regulates
the interruption tolerance [4] of parameter control,
affecting the quality of performance. The rate at
which a performer can effect change to the musical
instrument is a critical factor in organizing sound at
will.

4 PD graphical programming environment as
asynchronous collaboration platform

It has been proposed that the graphical
programming environment of PD could also be used
as the collaboration platform for people working on
the same project. Programming in PD using
abstractions, sub-patches into sub-patches and
scattered code might end-up to a code hardly
amenable to change, hence slow down refinement of
modules. Modules of better cohesion might be
produced, if programming is supported by some
simple collaboration tools that would be integrated
into PD's graphical programming environment. PD
version 0.43 offers the capability to implement tools
as GUI plugins, while dynamic patching and PD's
data structures could help with object creation and
graphs.

Those tools could make some patch changes more
transparent and aid collaborators in keeping track of
valuable information. Generation of some useful info
or diagrams could facilitate programming and
communication. Some specific thoughts about
possible functions of collaboration tools:

1. “Post-it”: Query-able text editor with history
and possibly image/video support.

2. “ToDo”: Reminder info and warning popup
per (sub-)patch.

3. “Structure chart”: Diagram of sub-patches
and abstractions included in a patch and its
abstractions with tracks of any “un-patched”
connections (like send-receive).

4. “Control log”: Data-mining viewer/log of
input data and user-selected variables (for
example to facilitate investigation and/or
experimentation with control parameter
input-data patterns, performer's reaction time
or data-mining efficiency).

5 Conclusion

Using PD is not only a way to lower costs but also
to learn and keep up with newer and even state of the
art audio processing.

The workflow proposed, may be of value mostly to
beginners in sound-design and composition of
electroacoustic music. It plans for a division of labor
within roles and promotes team collaboration. The
adopted incremental-build model [1], allows for
ephemeral harvesting, ensures a functional musical
instrument for yet another performance and provide
some proof against budget/scheduling changes or
problems.

PD's graphical programming environment could be
enhanced with asynchronous collaboration tools,
possibly as GUI-plugins, to aid collaboration within
PD's graphical programming environment.

Future work is to investigate a small number of
teams following the principles of the proposed
workflow and to implement collaboration tools after
a relevant research and more careful consideration.

6 Acknowledgements
My thanks to the online PD community members

for sharing work and knowledge.

References

[1] Frederick P. Brooks, JR.: “The Mythical Man
Month”, pp. 267-273, Adisson-Wesley 1995.

[2] Adam Basanta: “Potentialities of Meaning”,
Simon Fraser University essays 2008.

[3] Rob Weale: “Exploring our relationships with
sound-based music”, Music studies Network
International conference 2008.

[4] Joseph Malloch, David Birnbaum, Elliot
Sinyor, Marcelo M. Wanderley: “Towards a new
conceptual framework for digital musical
instruments”, Proceedings of the 9th int.
conference on digital audio effects, Montreal,
Canada 2006.

ÏÏ

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����

	anfang.pdf
	01_40.Krzysztof_Czaja-Self-replication_-_how_to_do_more_using_less
	1 Introduction
	2 Section
	2.1 Subsection
	2.2 Subsection
	2.3 Subsection

	3 Section
	3.1 Subsection
	3.2 Subsection
	3.3 Section

	4 Section
	5 Section

	02_11.Marco_Donnarumma-A_Pd_framework_for_the_Xth_Sense-enabling_computers_to_sense_human_kinetic_behaviour
	1	Computers that sense and act
	2	Tools of interaction
	2.1	The Xth Sense library
	3	The GUI
	3.1 	Software anatomy
	3.2	Usability concerns
	4	Interrelating kinetic behaviour with musical performance
	4.1	Performance and design principles

	4.2	MMG features extraction
	4.3	Dynamic data mapping
	4.3.1	Chordless, dynamic data mapping with [sssad] and [iem_s]
	4.4	Mapping kinetic energy to control data
	5	Conclusions

	03_03.Pedro_Lopes__Joaquim_Jorge-Dynamic_Time_Warping_for_Pure_Data
	04_39.Mathieu_Bouchard-Self-Modifying_Help_Patches
	05_23.Richard_Thomas-Electro-Acoustic_Tools_High-Level_Abstractions_for_Audio_Manipulation_and_Spatialisation
	1 Introduction
	1.1 Progress in Usability
	2 Novel Patching
	3 Dynamic Object Management
	3.1 Why use dynamic techniques?
	3.1.1 Hardcoding
	3.1.2 switch
	3.1.3 Dollar and Hash Variables
	3.2 Native Dynamic Patching
	3.2.1 Object Creation
	3.2.2 [namecanvas
	3.2.3 Connections
	3.3 dyn
	3.3.1 Arguments and Message Inputs
	3.3.2 Workarounds and Patching Strategies
	3.3.3 dyn Wrapper
	4 Multi-point Panning
	4.1 Routing
	4.2 Algorithm
	5 Acknowledgements

	06_25.Kent_Jolly-Using_Pure_Data_in_Spore_and_Darkspore_-_successes_and_failures
	1 Introduction
	2 The EApd audio object Interface
	2.1 The Group and GroupSize Objects
	2.2 The Play and Dplay Objects
	2.2.1 Play and Dplay - the basics
	2.2.2 Play and Dplay - the arguments
	2.2.3 Play and Dplay - the parameters
	2.3 The Mixer Object
	2.4 The Fparam and GFparam Objects
	2.5 The Function Object
	2.6 The Coll Object
	2.7 The Thisinstance Object
	3 Exporting patches
	4 Functionality overlaps with Spore audio system
	5 Conclusion
	6 Acknowledgements

	07_02.José_Rafael_Subía_Valdez-Custom_Spatialisation_PD_Patch_for_a_Large_Non-conventional_Area
	1
	2
	2.1 Space as a poetic component, how to use it?
	2.2 Equal power panning
	2.3 The Equal Power Panning modifications
	3 Pure Data implementation
	3.1 Equal Power Panning Program
	3.1.1 Panning Function, Creating, Storing Reading
	3.1.2 Amplitude Control
	3.2 Doppler effect
	3.3 Reverberation Depth
	4 Graphical User Interface (GUI)
	4.1 Position and Movement
	4.2 Oblique Movements
	5 Conclusion
	6 Acknowledgements

	08_33.Chun_Lee-Music_in_expression_-_A_DSP_based_compositional_methodology
	1 Introduction
	1.1 Motivation
	1.3 Musical context
	2 Operation examples
	2.1 Design principles
	2.2 Step counter
	2.3 Structure derivation
	2.4 Phase Shift
	2.5 Consitional test
	2.6 Pulse wave
	2.7 Compositional examples
	3 Conclusion

	09_30.Regis_Faria-AUDIENCE_for_Pd,_a_scene-oriented_library_for_spatial_audio
	1	Introduction
	2	System architecture
	2.1	Functional layers
	3	System design and implementation
	3.1	Design premisses
	3.2	Development history
	3.3	Library organization
	3.4	Features and library components
	3.4.1	Licenses
	3.4.2	Creating new objects
	3.5	How it works
	4	Usage
	4.1	Installation and licenses
	4.2	Building applications or how to use it
	4.3	 Application examples
	5	Next phases and conclusions

	10_35.Kyriakos_Tsoukalas-A_collaboration_workflow_from_sound-based_composition_to_performance_of_electroacoustic_music_using_«Pure_Data»_as_a_framework
	1 Introduction
	2 A workflow
	2.1 Composer's role
	2.1.1 Aesthetic criteria
	2.1.2 Music cognition
	2.1.3 Composition ideas
	2.1.4 Synthesis methods

	2.2 Engineer/programmer's role
	2.2.1 Hardware and software
	2.2.2 Synthesis engine

	2.3 Performer's role
	2.3.1 Control interface
	2.3.2 Sound

	2.4 Listener

	3 Performance of electroacoustic music
	3.1 Performance behavior

	4 PD graphical programming environment as asynchronous collaboration platform
	5 Conclusion
	6 Acknowledgements

	12_14.Miller_Puckette-Voice_as_joystick_and_oscillator
	1 Introduction
	2 Analysis
	3 Oscillators
	4 Delay network
	5 Conclusion
	6 References

	13_32.IOhannes_zmölnig-Plug_your_cam_-_extending_Gem_the_modular_way
	14_26.Peter_Brinkmann-Embedding_Pure_Data_with_libpd_Design_and_Workflow
	1 Introduction
	2 Overview
	3 Workflow
	4 Design decisions
	5 Language bindings
	6 Pd for Android
	7 Pd for iOS
	8 Pd for Processing
	9 Pd for OpenFrameworks
	10 Pd everywhere
	11 Outlook
	12 Acknowledgments
	Appendix: Sample code

	15_07.Alexandre_Porres-Dissonance_Model_Toolbox_in_Pure_Data
	16_19.Koray_Tahiroğlu-An_Exploration_on_Mobile_Interfaces_with_Adaptive_Mapping_Strategies_in_Pure_Data
	1 Introduction
	2 Section
	3 Section
	3.1 Subsection
	4 Section
	4.1 Subsection
	5 Conclusion
	6 Acknowledgements

	17_17.Adriano_Monteiro-A_Framework_for_Real-time_Instrumental_Sound_Segmentation_and_Labeling
	18_31.Frank_Barknecht-rj_-_abstractions_for_getting_things_done
	Introduction
	rj: Goals and restrictions
	Overview of the rj library
	Library Contents: Analysis
	Library Contents: Synths
	Library Contents: Effects
	Library Contents: GUIs
	Library Contents: Mappings
	Library Contents: Controllers
	Library Contents: Utilities

	Parameter Control and State Saving
	Sample Management
	Powerful Synthesizers
	Future work
	Acknowledgements

	19_20.Urban_Schlemmer-Reverb_Design
	1 Introduction
	2 Aesthetic Concepts
	2.1 Intelligibility
	2.2 Texture and Coloration
	3 Design Concepts
	3.1 Multistream Design
	3.2 Slope
	3.3 Modulation
	3.4 Nested vs. Parallel Structures
	3.5 Multichannel I/O
	4 The Reverberation Development Kit
	4.1 Key Features
	4.2 Example Design
	5 Conclusion
	6 Acknowledgements
	7 Appendix A
	8 Appendix B

	20_12.Aleš_Černý-VisualTracker_-_modular_pd_environment_for_sequencing_events_on_the_timeline
	 1 Introduction
	 2 VisualTracker environment (VTe)
	 2.1 Program location
	 2.2 User Interface
	 2.2.1 Control windows
	 2.2.2 Module_library window
	 2.2.3 Composition_timeline window
	 2.2.4 Loaded_Modules window

	 2.3 Sequencer
	 2.3.1 Sequence division
	 2.3.2 Tempo
	 2.3.3 Selection
	 2.3.4 Sequencer looping
	 2.3.5 Sequencer Controls

	 2.4 Timeline
	 2.4.1 Module canvas position and manipulation
	 2.4.2 Composition time (horizontal grid division)
	 2.4.3 Tracks (vertical grid division)

	 2.5 Composition storage
	 2.5.1 Saving main VisualTracker abstraction
	 2.5.2 Storage system
	 2.5.3 Global values storage
	 2.5.3.1 [storge] abstraction arguments

	 2.5.4 Module values storage
	 2.5.4.1 [mstorge] abstraction arguments

	 2.5.5 External storage file
	 2.5.6 Auto save
	 2.5.7 Reload composition

	 3 Modules
	 3.1 Visualtracker connector
	 3.1.1 Module canvas
	 3.1.2 Single execution points
	 3.1.3 Multiplication
	 3.1.4 Module duration
	 3.1.4.1 no fit
	 3.1.4.2 fit to bars
	 3.1.4.3 fit to bpm

	 3.1.5 Creation bang

	 3.2 Sends/receives
	 3.2.1 Module receives
	 3.2.2 Module sends
	 3.2.1 Global receives

	 3.3 Initial module values
	 3.4 Module template
	 3.5 Basic Modules
	 3.5.1 [vt_bang]
	 3.5.2 [vt_toggle]
	 3.5.3 [vt_line]

	 4 Future development
	 5 Documentation
	 5.1 VisualTracker program
	 5.2 Module development

	 6 Releases
	 6.1 Program pack
	 6.2 Module pack

	 7 Licence
	 8 Conclusion
	 9 VisualTracker is regularly developed and tested for more than a year with the idea of cooperation and open source evolution with hope to attract pd fans and enthusiastic and tempt them to use VisualTracker as a platform for their experiments, extend the library of modules and come up with new ideas. The basic functions featured are already seen in proprietary software such as Ableton Live or ACID, but only in open source and 100% readable environment of Pd they can be really explored and used the way they were never used before.
	 10 Acknowledgements
	 11 References

	22_08.Rudi_Giot-Image_Processing_Algorithm_Optimization_with_CUDA_for_Pure_Data
	1	Introduction
	2	CUDA
	2.1	Architecture
	2.2	Programming
	3	CUDA integration inside Pure Data
	3.1	GEM Library
	3.2	CUDA integration inside GEM
	4	Results and performances
	5	Conclusion
	6	Acknowledgements

	23_24.Richard_Graham-A_Live_Performance_System_in_Pure_Data_Pitch_Contour_as_Figurative_Gesture
	A Live Performance System in Pure Data: Pitch Contour as Figurative Gesture
	1 Introduction
	2 Beyond Instrumental Convention
	2.1 Beyond MIDI Technology
	2.1.1 Hardware – The “Septar” Board
	2.1.2 Hierarchies in Auditory Scene Analysis
	4 Discussion
	6 Acknowledgements

	24_13.Charles_Henry-Graphics_processing_unit_audio_signals_processing_in_Pure_Data,_and_PDCUDA,_an_implementation_with_the_CUDA_runtime_API
	1	Introduction
	1.1	GPU Computing
	1.2	Pure Data
	2	Design of GPU Extensions
	2.1	Design Goals
	2.2	Usage Cases
	3	Implementation
	3.1	Extending the DSP State
	3.2	Separation Between Memory Spaces
	The symbol “cuda_dsp” is introduced in order to keep CUDA based routines separate from their host counterparts. When canvas_dodsp runs for a given cucanvas, it finds all instances of objects from its gl_list with the symbol “cuda_dsp” and adds their ugens to the dspcontext.
	An existing class may then be extended to work with PdCUDA by adding an additional method, instead of adding an entirely new class for the same purpose. In this scheme, there is no risk of mixture between memory spaces.
	3.3	User Interface
	User control over the application of CUDA routines needs to be handled at the canvas level. This works within expected user interfaces presented by Pd and provides the user capability to control the coarseness of organizing CUDA based patches. The symbol “cucanvas” is introduced for creating root level canvases. The canvas (glist) data structure is extended by adding a gl_hascuda element. The user interface also adds a subcanvas creation symbol “cu”.
	It is possible to create subcanvases of any type within canvases of another type. This is important for creating abstractions that are handled in the same way that Pd abstractions are commonly used.
	3.4	Modifications to Pd Code
	3.5	The PdCUDA API
	4	Conclusion
	Refrences

	25_29.Katja_Vetter-Pure_Data_implementation_of_an_ESS-based_impulse_response_acoustic_measurement_tool
	26_22.Peter_Venus-Extended_View_Toolkit
	1 Introduction
	2 Input processing
	2.1 Image stitching
	2.1.1 Problems
	2.1.2 Parallax error
	2.1.2 Lens distortion
	2.2 Stitching images using the toolkit
	3 Output processing
	3.1 Problems
	3.2 Video projection with GEM
	3.2.1 Straight projection
	3.2.2 Angular projection
	3.2.3 Multiple screens
	3.2.5 Soft-edging & overlap
	3.2.6 Multiple Projectors
	3.2.7 Curved screens
	3.2.8 Realtime Systems
	3.3 Immersive Media Environments
	4 Conclusion
	6 Acknowledgements

	27_04.João_Pais-Click_Tracker_PerformanceORcomposition_tool_for_metrically_complex_scores
	28_38.Edward_Kelly-Gemnotes/_A_Realtime_music_notation_system_for_pure_data
	29_34.William_Brent-DILIB_Control_Data_Parsing_for_Digital_Musical_Instrument_Design
	1 Motivation
	1.1 Introduction

	2 General Design
	3 DILib Components
	3.1 Laptop
	3.1.1 Continuity

	3.2 TouchOSC
	3.3 Wii Remote
	3.4 IR Blob Tracking
	3.5 reacTIVision & TuioHub
	3.6 OSCeleton

	4 Conclusion

	ende

