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Abstract

Data assimilation obtains improved estimates of the state of a physical system

by combining imperfect model results with sparse and noisy observations of reality.

Not all observations used in data assimilation are equally valuable. The ability to

characterize the usefulness of different data points is important for analyzing the

effectiveness of the assimilation system, for data pruning, and for the design of future

sensor systems.

In the companion paper [Sandu et al.(2011)] we derived an ensemble-based com-

putational procedure to estimate the information content of various observations in

the context of 4D-Var. Here we apply this methodology to quantify two informa-

tion metrics (the signal and degrees of freedom for signal) for satellite observations

used in a global chemical data assimilation problem with the GEOS-Chem chemical

transport model. The assimilation of a subset of data points characterized by the

highest information content, gives analyses that are comparable in quality with the

one obtained using the entire data set.
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1 Introduction

The information content of observations in the context of data assimilation is defined

by their contribution to decreasing the uncertainty in the state estimate [Fisher(1922)].

This work employs several of the information theoretic metrics to quantify the observa-

tion impact on improving state estimates: the trace of the Fisher information matrix, the

Shannon information, and the degrees of freedom for signal, which measure of the de-

crease in error variance, and the signal information. which measures the effects of data

assimilation in terms of adjusting the mean.

In the companion paper [Sandu et al.(2011)] we have shown that the posterior statis-

tics of the variational cost function and its gradient can be used to quantify the informa-

tion content of observations in the context of four dimensional variational (4D-Var) data

assimilation. An efficient computational approach was developed to estimate the infor-

mation metrics using ensemble averages. Here we discuss how averages with respect

to posterior probability density can be calculated effectively. One approach is based

on weighted background ensemble averages, while other approaches construct samples

drawn approximately from the analysis probability density.

While the information theoretic approach discussed in this work is general, our

main application of interest is chemical data assimilation [Carmichael et al.(2008)] involv-

ing gas phase [Daescu et al.(2000), Carmichael et al.(2003), Constantinescu et al.(2007d),

Liao et al.(2006)] and particulate phase [Sandu et al.(2005), Hakami et al.(2005), Henze et al.(2004)]

atmospheric tracers. Examples of large scale applications are discussed in [Chai et al.(2006),

Chai et al.(2007)]. Ensemble Kalman filters are an alternative based on estimation theory,

and have been used in chemical data assimilation [Constantinescu et al.(2007a, Constantinescu et al.(2007b

Constantinescu et al.(2007c, Sandu et al.(2005)]. We consider the problem of global ozone

estimation using the GEOS-Chem model, and assimilate satellite data from the tropo-

spheric emission spectrometer. The information theoretic techniques are applied to this

problem. The assimilation of a subset of data points characterized by the highest in-

formation content, gives analyses that are comparable in quality with the one obtained

using the entire data set.

The paper is organized as follows. Section 2 reviews several metrics for information

content and the computationally feasible estimation techniques developed in the com-

panion paper [Sandu et al.(2011)]. All estimates require the ability to compute expected

values with respect to the analysis probability distribution; obtaining such expected val-

ues is discussed in Section 3. Section 4 presents in detail the results of applying the

proposed techniques to the data assimilation of global ozone. Section 5 summarizes the

findings of this work and points to future research directions.
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2 Information Metrics and Their Estimation

The 4D-Var analysis xA
0 is the initial condition which minimizes the cost function

J (x0) =
1

2

(
x0 − xB

0

)T
B−1

0

(
x0 − xB

0

)

︸ ︷︷ ︸
J B(x0)

+
1

2

N

∑
i=1

(H(xi)− yi)
T R−1

i (H(xi)− yi)

︸ ︷︷ ︸
J obs(x0)

, (1)

subject to the model equation constraints. Here xB
0 ∈ Rn is the background value of the

initial state, B0 is the covariance of the initial background errors B0, yi ∈ Rm are the

observations at time ti, i = 1, · · · , N, and Ri are the corresponding observation error

covariances.

The information content of the observations y quantifies the decrease in uncertainty

from before data assimilation (PB) to after data assimilation (PA). The information con-

tent depends not only on the data (yi), but also on the data accuracy (R−1
i ), on all other

observations yj, j 6= i, on the background uncertainty (B−1
0 ), and on the model dynamics

M.

We are interested to rigorously quantify the information content of observations in

4D-Var. In the companion paper In the companion paper [Sandu et al.(2011)] we have

discussed the following information theoretic metrics.

We seek to derive a computationally-easy way to estimate the information content

of various observations in the context of 4D-Var. The proposed approach is based on

an approximate sampling from the posterior error distribution in 4D-Var. We assume

that we have the ability to compute expected values with respect to the posterior density

E
A [ f (x0)].

2.1 Fisher information matrix

The Fisher information matrix (FIM) [Fisher(1922)] associated with the background prob-

ability density function PB(x) is

F
(
PB
)

=
∫Rn

[
∇x0J

B(x0)
] [

∇x0J
B(x0)

]T
PB(x0) dx0 = B−1

0 (2)

trace F
(
PB
)

= E
B

[∥∥∥∇x0J
B(x0)

∥∥∥
2
]

where the last equality in the first relation holds when the background errors are nor-

mally distributed, with covariance B0). Similarly, the FIM associated with the analysis
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probability density PB(x) is

F
(
PA
)

=
∫Rn

[∇x0J (x0)] [∇x0J (x0)]
T PA(x0) dx0 = A−1

0 (3)

traceF
(
PA
)

= E
A
[
‖∇x0J (x0)‖

2
]

where the last equality in the first relation holds when the analysis errors are normally

distributed, with covariance A0).

The information content of the observations used in data assimilation can be mea-

sured as the trace of the background FIM (total uncertainty in the background) mi-

nus the trace of the analysis FIM (total uncertainty in the analysis) [Rodgers(2000),

Rodgers(1998)]. We obtain the following estimate for the FIM information content of

all observations:

IFIM = traceF
(
PA
)
− traceF

(
PB
)
= E

A
[
‖∇x0J (x0)‖

2
]
− trace

(
B−1

0

)
. (4)

After the data assimilation has been performed, one runs the forward and the adjoint

models Nens times. The ensemble average of the norm of the adjoint gradients estimates

the trace of the analysis FIM.

2.2 Degrees of freedom for signal

The Degrees of freedom for signal (DFS) metric for the information content has been

previously employed in meteorological data assimilation [Rodgers(1996), Fisher(2003),

Cardinali et al.(2004), Stewart et al.(2008), Zupanski(2009)].

The degrees of freedom for signal measures the total reduction in variance after as-

similation. For Gaussian background and analysis distributions

IDFS = n − trace
(

B−1
0 A0

)
. (5)

The contribution of each observation yℓ to the DFS information metric is estimated via

[Sandu et al.(2011)]

IDFS
yℓ

= 2 E
A
[
J obs
ℓ

(x0)
]
− 2J obs

ℓ

(
xA

0

)
. (6)

After the data assimilation has been performed, one runs the forward model Nens times.

The ensemble average of the cost function, minus the cost function at the analysis, esti-

mates the DFS information.
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2.3 Signal information

The signal part of the relative entropy [Xu(2006)]

ISignal =
1

2

(
xA

0 − xB
0

)T
B−1

0

(
xA

0 − xB
0

)
(7)

measures the reduction of uncertainty due to the change in the best estimate from the

background state to the analysis state. The contribution of the data point yℓ to the signal

information can be (coarsely) approximated as:

I
Signal
yℓ

≈
(

yℓ −Hℓ

(
xB
ℓ

))T
R−1
ℓ

(
Hℓ

(
xA
ℓ

)
−Hℓ

(
xB
ℓ

))
. (8)

The model is run from the analysis and the “synthetic observations” Hℓ

(
xA
ℓ

)
are recorded.

The model is run again starting from the background state, and (8) is evaluated for each

data point yℓ.

3 Expected Values With Respect to the Analysis Probabil-

ity Density

The information metric estimates discussed here require expected values with respect to

the analysis probability distribution. Since 4D-Var does not provide immediately and

approximation of the posterior density, a discussion of how to obtain these expected

values is necessary.

The first approach, discussed in Section 3.1, is based on an ensembles drawn from

background distribution, and expected values calculated as weighted sums. The second

approach is to approximately sample initial conditions from the posterior distribution:

xr
0 ∈ PA(x0) , r = 1, · · · , Nens . (9)

Based on it we can approximate expected values with respect to the posterior density by

posterior ensemble averages as follows:

E
A [ f (x0)] ≈ 〈 f (x0)〉

A =
1

Nens

Nens

∑
r=1

f (xr
0) . (10)

Various strategies to approximately sample the posterior distribution are discussed in

Sections 3.2, 3.3, and 3.4
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3.1 Expected values as weighted background ensemble averages

Consider the following sample from the background distribution:

x
q
0 ∈ PA(x0) , q = 1, · · · , Nens . (11)

The drawing is such that each sample has an equal weight 1/Nens. Based on it we can

approximate expected values with respect to the posterior density by weighted ensemble

averages as follows [Wikle and Berliner(2007)]:

E
A [ f (x0)] ≈

Nens

∑
q=1

PA(x
q
0) f

(
x

q
0

)
=

Nens

∑
q=1

PA(x
q
0)

PB(x
q
0)

PB(x
q
0) f

(
x

q
0

)
(12)

=
Nens

∑
q=1

wq f
(
x

q
0

)
.

The posterior average can be calculated as a weighted average of samples taken from the

background distribution. Using the Bayes theorem, the new weights are:

wq =
PA(x

q
0)

PB(x
q
0)

1

Nens
=

P(y|x
q
0)

P(y)

1

Nens
.

With the relationship that the observation part of the cost function is the logarithm of the

observation likelihood, we can compute the weights as:

vi = exp
(
J obs(xi

0)
)

, wq =
vq

∑
Nens
i=1 vi

.

The computational procedure is as follows. Start with an equally weighted sample

x
q
0 of the background probability density. For each sample run the model, and compute

the observations part of the 4D-Var cost function J (x
q
0), as well as the metric of interest

J (x
q
0). The analysis mean is a weighted average of the obtained values:

E
A [ f (x0)] =

Nens

∑
q=1

(
exp(J obs(x

q
0))

∑
Nens
i=1 exp(J obs(xi

0))

)
f
(
x

q
0

)
.

3.2 Approximate posterior sampling by estimated posterior covariance

In this simple approach one assumes that the correlation structures of B0 and A0 are

similar, and that the difference comes from changes in variances. The background and

analysis variances can be estimated roughly by comparing the two solutions against data,

and by measuring the model-data discrepancies. It is then assumed that the decrease in
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the model-data discrepancy for each variable, vertical level, area, etc. is representative of

the corresponding decrease in variance. The analysis variances are estimated by rescaling

the background variances (for each variable, vertical level, area, etc.) The new variances,

together with the specified correlation structure of B0, define the analysis covariance A0.

Random draws are taken from the normal distribution with mean equal to the analysis,

N (xA
0 , A0).

3.3 Approximate posterior sampling by estimated inverse Hessians

This approach uses the fact that the analysis covariance matrix is approximated by the in-

verse Hessian of the cost function, evaluated at the optimum [Thacker(1989), Gejadze et al.(2008)]

A0 ≈
(
∇2

x0,x0J
)−1

.

Several eigenvectors corresponding to the smallest eigenvalues of the Hessian are com-

puted. The inverses of these eigenvalues, together with their eigenvectors, approximate

the principal components of the posterior error and can be used for approximate sam-

pling from the posterior distribution. The computation of the smallest eigenpairs of the

Hessian can be done using only Hessian vector products, for example obtained via a sec-

ond order adjoint. Alternatively, if a quasi-Newton method is used in optimization (e.g.,

L-BFGS) the low rank quasi-Newton approximation of the inverse Hessian is constructed

by the method and available for use in approximate sampling.

3.4 Approximate posterior sampling by subspace analysis

We use the hybrid of 4D-Var and ensemble approach discussed in [Cheng et al.(2010)] to

generate our posteriori distribution. Suppose we are given the background state xB
0 ∈ Rn

and the background error covariance matrix B0 ∈ Rnxn, the Nens normally distributed

perturbation vectors with zero mean and covariance B can be generated as:

∆xB
0 (r) ∈ N (0, B0) , r = 1, 2, . . ., Nens . (13)

Starting from xB
0 , we save the first k iterates x

(j)
0 , j = 1, . . . , k, generated by the numer-

ical optimization routine used in the 4D-Var assimilation. The value of k is chosen

based on the rate of convergence of the optimization routine. Since the reduction in

cost function is fastest during the initial iterations [Li et. al(1993), Navon et. al(1992),

Sandu and Zhang(2008), Zou et. al(1993)], k is much smaller than the dimension of the

state vector. Let S be the matrix with columns as normalized 4D-Var increments

S =

{
x
(j)
0 − x

(j−1)
0

‖x
(j)
0 − x

(j−1)
0 ‖

}
, j = 1, 2, . . ., k ,
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where x
(0)
0 = xB

0 . Using the singular value decomposition S = U Σ VT we derive the

orthogonal projector onto the orthogonal complement of range(U) as

P = In×n − U UT , Px ⊥ range(U) , ∀x .

Using P, the ensemble perturbations ∆xB
0 are projected from forecast space onto the

analysis space

∆xA
0 (r) = P · ∆xB

0 (r) , r = 1, 2, . . ., Nens . (14)

4 Application to Data Assimilation of Global Ozone

We apply the estimation methodology to a 4D-Var data assimilation study with a global

chemical transport model. The data assimilation experiment focuses on ozone. Ozone is

an important constituent of stratosphere which absorbs the high energy UV-B and UV-C

rays, thus preventing the disintegration of DNA molecules and supporting the existence

of life. However, ozone present in mid to low troposphere is a pollutant, a powerful

oxidizing agent leading to destruction of tissues, damaging fibers and creating breathing

problems.

The data are satellite ozone column retrievals. We estimate the information content

of satellite observations taken at different times using different information theoretic

metrics.

4.1 The model: GEOS-Chem

The model used for the numerical experiments in this paper is GEOS-Chem (http://

acmg.seas.harvard.edu/geos), a global three-dimensional chemical transport model

(CTM) driven by assimilated meteorological observations from Goddard Earth Observ-

ing System. A detailed description of the model is presented in [Bey et al.(2001)]. GEOS-

Chem accounts in detail for emissions from both natural and anthropogenic sources, for

gas phase chemistry, aerosol processes, long range transport of pollutants,troposphere-

stratosphere exchanges, etc. GEOS-Chem is being widely used world-wide for global

atmospheric chemistry studies.

The GEOS-Chem-Adjoint system (http://wiki.seas.harvard.edu/geos-chem/

index.php/GEOS-Chem_Adjoint) has been developed through a joint effort of groups

at Caltech, University of Colorado, Virginia Tech, Harvard, and Jet Propulsion Lab-

oratory [Henze et al.(2007), Singh(2009a), Singh(2009b), Eller et al.(2009)]. The system

can perform adjoint sensitivity analyses and 4D-Var chemical data assimilation. In-

verse modelling studies with GEOS-Chem-Adjoint are exemplified in [Henze et al.(2009),

Kopacz et al.(2007), Zhang et al.(2009)].
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4.2 The data: Tropospheric Emission Spectrometer ozone column re-

trievals

We assimilate ozone profile retrievals from the Tropospheric Emission Spectrometer (TES),

in order to obtain improved estimates of the ozone initial conditions. TES [Beer et al.(2001)],

one of four science instruments aboard NASA’s Aura satellite, measures the infrared-light

energy (radiance) emitted by Earth’s surface, and by the chemical tracers in the atmo-

sphere (http://tes.jpl.nasa.gov). Vertical profiles of chemical concentrations are

retrieved from the radiance measurements using an off-line inversion process.

A-priori information about the vertical concentration profile of the species of interest

is needed to solve the retrieval inverse problem (the prior information does not come

from the measurement). Let xprior be the prior vertical ozone concentration profile (in

volume mixing ratio units), and let zprior = ln xprior. Let xradiance be the atmospheric

profile as resulting directly from the radiances and zradiance = ln xradiance.

The vertical ozone profile is retrieved according to the formula [Parrington et al.(2009)]

ẑ = zprior + Av

(
zradiance − zprior

)
+ G η, x̂ = exp (ẑ) . (15)

Here Av is the averaging kernel matrix, G is the gain matrix, and η is the spectral mea-

surement error (assumed to have mean zero and covariance Sη). More details can be

found in [Worden et al.(2004), Jones et al.(2003), Bowman et al.(2002)].

The corresponding TES observation operator is linear with respect to the logarithm

of the concentrations, but nonlinear with respect to the concentration profile:

H (x) = zprior + Av

(
ln
(

L(x)
)
− zprior

)

The ozone column x represented on the Nlev GEOS-Chem grid vertical levels is inter-

polated by the operator L to an ozone column L(x) represented on the p TES profile

retrieval levels.

For this reason several chemical data assimilation studies based on TES retrieved pro-

files [Jones et al.(2003), Bowman et al.(2006), Parrington et al.(2009)] have opted to per-

form the suboptimal Kalman filtering step in the logarithm of the concentrations:

ln xA = ln x f + K
(

ẑ −H
(

x f
))

.

In case of 4D-Var data assimilation, the forcing calculation is carried out in the model

state space. For this reason an adjoint of the observation operator needs to be derived
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explicitly to update the gradients as described in equation (??).

(H′(x))T · v =

(
∂

∂x

(
Av ln

(
L(x)

)) )T

· v

=

(
∂L

∂x

)T

·




1
[L(x)]0

0 · · · 0

0 1
[L(x)]1

· · · 0
...

...
. . .

...

0 0 · · · 1
[L(x)]p




· AT
v · v .

Here (H′(x))T is a matrix and v = R−1 (H(x)− y). The product Av · v is scaled by the

diagonal matrix with the i-th diagonal entry 1/[L(x)]i . The result is fed to (∂L/∂x)T, the

adjoint of the interpolation operator, which entities from TES profile retrieval domain

back to the GEOS-Chem model domain.

4.3 The validation data: INTEX ozonesonde profiles

In order to assess the quality of the data assimilation results, we compare the respective

analyses against an independent data set. The independent data are the ozonesonde pro-

files measured during the INTEX Ozonesonde Network Study 2006 (IONS-6) (http://

croc.gsfc.nasa.gov/intexb/ions06.html, [Thompson et al. (2007a, 2007b)]) for

the month of August. There were 418 ozonesondes launched from 22 stations across

North America. A detailed description of the number of ozonesondes launched per

station with longitude and latitude information can be found in [Parrington et al.(2008)].

We use ozonesonde parameters such as launch time, longitude, latitude and pressure

level to interpolate the concentration fields generated by the model. Differences between

the ozone concentrations from ozonesonde observations, model forecasts, and model

analyses are averaged individually over longitude, latitude and time to create vertical

profiles of model errors. We report the vertical distribution of the mean and the standard

deviation of model errors.

4.4 Experimental Setting

The GEOS-Chem simulations are carried out at a resolution of 4◦ × 5◦. At this resolution,

each latitude-longitude grid box on the ground level covers an area of about 400 Km ×

500 Km. The chemical system accounts for 43 different chemical species. The dimension

of the state space in our simulations is n ≈ 8 million (72 longitude grid points, times 46

latitude grid points, times 55 vertical levels, times 43 chemical tracers).
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The control variables are the initial concentrations of ozone throughout the simulation

domain. While GEOS-Chem is capable of performing simulations up to 75 Km (55 ver-

tical levels), the model error increases with height and the model bias is non-negligible

in the upper troposphere and into the stratosphere. For this reason we perform data as-

similation only up to 21 Km (the bottom 23 vertical levels). The dimension of the control

vector for data assimilation is nc ≈ 80, 000 (72 longitude grid points, times 46 latitude

grid points, times 23 vertical levels, times 1 chemical tracer – ozone).

The assimilation time window has a length of 5 days, starting on August 1st, 2006

(00 GMT) and ending on August 6th, 2006 (00 GMT). The observation time window is

4 hours, i.e., the observation operator treats all retrievals available in a 4 hour window

as a single data point. Specifically, the observation yi at time ti consists of all the data

available for the time interval [ ti − 2 hours , ti + 2 hours ].

We estimate the information content of ozone profile retrievals from TES when used

to improve the ozone initial conditions in GEOS-Chem through 4D-Var data assimila-

tion. The main computational costs come from: (1) the 4D-Var run, which requires 11

iterations of the optimization routine, with each iteration performing a forward and ad-

joint model run; and (2) an ensemble of 20 additional model runs, including adjoints,

to gather the data needed for the estimation of different information content metrics.

Concentrations and other time dependent variables are checkpointed during the forward

runs, and are read during the adjoint runs. The adjoint forcing calculations are per-

formed every observation window (4 hours). The numerical optimization method is the

limited memory bound-constrained BFGS method [Zhu et al.(1997)], which has become

the "gold standard" in solving large scale 4D-Var chemical data assimilation problems

[Sandu et al.(2005)]. The total computational time is 14 minutes and 46 seconds per for-

ward plus adjoint model runs. All the simulations are parallel and use eight cores; they

were performed on a Dell Precision T5400 workstation with 2 quadcore Intel(R) Xeon(R)

processors with clock speed 2.33GHz and a RAM of 16GB shared between the eight cores.

We consider a diagonal background error covariance matrix (B0) in all our experi-

ments for simplicity. The setting can be easily extended to use a non-diagonal B0 that

captures spatial error correlations[Singh et al.(2010)]. The initial variances (the diagonal

entries of the B0 matrix) are constructed from the average background concentrations xB
0

on each of the Nlev vertical layers

B0 =




B
(0)
0 0 . . . 0

0 B
(1)
0 . . . 0

...
. . .

...

0 0 . . . B
(Nlev)
0




(16)
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where

B
(ℓ)
0 =




σ2
ℓ

0 . . . 0

0 σ2
ℓ

. . . 0
...

. . .
...

0 0 . . . σ2
ℓ




dim×dim

, dim = Nlon · Nlat , (17)

with

σℓ =
rel

dim

Nlon

∑
i=1

Nlat

∑
j=1

xB
0 (i, j, ℓ, sO3) , ℓ = 1, · · · , Nlev , sO3 = index of ozone . (18)

The relative uncertainty level in the background initial conditions is taken to be 50%, i.e.,

rel = 0.5.

The following simple technique is employed to approximately sample the analysis

distribution. We perform data assimilation and compare the background and the anal-

ysis fields against the INTEX ozonesonde validation data set. This provides a vertical

distribution of mean errors and of their variance. We make the following assumptions:

the analysis covariance matrix is diagonal (the correlation length is smaller than one

grid size); the relative error reduction realized through data assimilation is similar in all

gridpoints at the same vertical level; and the relative error reduction is similar through-

out the assimilation window. Under these assumptions the error reduction measured

against the INTEX ozonesonde data is representative of the reduction in error at the

initial time throughout the entire computational grid. Consequently, the analysis error

standard deviation at a given grid point is obtained by scaling the background stan-

dard deviation. The scaling factor is the ratio of the standard deviation of the analysis

against INTEX data over the standard deviation of the background against INTEX data;

the same scaling factor is applied to all grids at the same vertical level. In summary, the

analysis mean is provided by the result of the data assimilation. The analysis covariance

matrix is diagonal, with the diagonal entries obtained by scaling the corresponding back-

ground variances. The scaling factors are obtained by comparing the background and

the analysis against the validation data set. A more sophisticated method for sampling

the posterior distribution is described in Appendix ??.

4.5 Information content of TES ozone column retrievals

We exhibit four different sets of results that provide estimates of information content of

aggregated and individual observation data sets in the context of 4D-Var data assimila-

tion.
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4.5.1 Aggregated information content of all available data

We first compute the aggregated information content of all the available data, i.e., of all

the TES ozone profile retrievals available within the 5 days assimilation window. Since

4D-Var adjusts the initial conditions of ozone, the information content metrics describe

the data impact on reducing the uncertainty at time t0.

The estimate of the FIM information content (4) requires an ensemble of Nens gradi-

ent values. Each gradient λr
0, r = 1 . . . Nens, is calculated by running the forward and

the adjoint models starting from one of the initial conditions xr
0 drawn from the poste-

rior ensemble (12) . The ensemble average of the squared gradient entries is computed

following (12)
〈

λ0(i, j, ℓ, sO3)
2
〉A

=
1

Nens

Nens

∑
r=1

(λr
0(i, j, ℓ, sO3))

2 .

Using the average squared gradient values and the background error covariance matrix

(16)–(17), the numerical approximation to Fisher information is calculated as

IFIM =
〈
‖λ0‖

2
〉A

− trace
(

B−1
0

)

=
Nlon

∑
i=1

Nlat

∑
j=1

Nlev

∑
ℓ=1

(〈
λ0(i, j, ℓ, sO3)

2
〉A

−
1

σ2
ℓ

)

=
Nlev

∑
ℓ=1

IFIM
ℓ

IFIM
ℓ

=
Nlon

∑
i=1

Nlat

∑
j=1

(〈
λ0(i, j, ℓ, sO3)

2
〉A

−
1

σ2
ℓ

)
, ℓ = 1, 2, · · · , Nlev .

The first relation provides the scalar value for the FIM information content of all available

observations. The last relation provides the Fisher information content relative to the

vertical level ℓ of the model; this is a metric of how level ℓ benefits from the assimilation

of the data. It is important to note that the breakdown of the information by vertical

levels is possible only under the assumption that there is no correlation among errors

at different levels. While this is not the case in general, the breakdown provides insight

into how the uncertainty is reduced in models with varying pressure levels. The results

are shown in Figure 1(a). The FIM information content is large between 400 hPa and 200

hPa, and is small for all other pressure levels. The uncertainty in the initial ozone field

is reduced the most in the higher tropospheric area, according to the FIM metric; the

levels between 400 hPa and 200 hPa benefit the most from the assimilation of TES ozone

retrievals.
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The signal information content of all the observations (7) is the background cost func-

tion evaluated at the optimal initial condition. Using the formula for background error

covariance matrix (17), the level-wise signal contribution could be defined as

ISignal =
1

2

(
xA

0 − xB
0

)T
B−1

0

(
xA

0 − xB
0

)

=
1

2

Nlon

∑
i=1

Nlat

∑
j=1

Nlev

∑
ℓ=1

(
xA

0 (i, j, ℓ, sO3)− xB
0 (i, j, ℓ, sO3)

σℓ

)2

=
Nlev

∑
ℓ=1

I
Signal
ℓ

I
Signal
ℓ

=
1

2

Nlon

∑
i=1

Nlat

∑
j=1

(
xA

0 (i, j, ℓ, sO3)− xB
0 (i, j, ℓ, sO3)

σℓ

)2

, ℓ = 1, 2, · · · , Nlev .

The results for the Signal information content of all observations are shown in Figure

1(b). The Signal information content is the largest between 400 hPa and 200 hPa, which

correlates well with the distribution of the FIM information. The Signal information

content decreases (almost) linearly for higher pressure levels, and approaches zero near

the ground level. This indicates that the assimilation of TES ozone does little to reduce

the uncertainty in ozone concentrations near ground level.

The DFS information (??) and the Shannon information content (??) are estimated

from ensemble covariance eigenvalues using the formulas (??) and (??), respectively. The

results for DFS are shown in Figure 1(c), and the results for Shannon information in

Figure 1(d). The two information metrics have highest values between 400 hPa and 200

hPa indicating that a larger uncertainty reduction is obtained in the upper troposphere,

and smaller reductions are obtained in the mid and lower troposphere.

4.5.2 The Signal information content

The signal information content of individual data points yℓ is estimated using the for-

mula (??). No gradient calculations are necessary. The estimate depends only on the

innovation vectors associated with the background trajectory dB
ℓ
= yℓ −H(xB

ℓ
), and with

the analysis trajectory dA
ℓ
= yℓ −H(xA

ℓ
). Equation (??) can be written as

I
Signal
yℓ

≈
(

dB
ℓ

)T
R−1
ℓ

(
dB
ℓ
− dA

ℓ

)
. (19)

We first perform a forward model run starting with the optimal initial condition xA
0

and save the innovation vectors dA
ℓ

for each observation location and for all observation

windows. We then perform a second run starting with the background initial condition
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Figure 1: The aggregated information content of all observations, as measured by different

information theoretic metrics. The breakdown of information content by vertical layers

is possible only if the vertical error correlations are negligible.

xB
0 . During this run we compute the innovation vectors dB

ℓ
, and, using the saved dA

ℓ

values, we also compute the Signal information content (19).

The time series of the Signal information content per each observation window is

shown in Figure 2. The difference between the contribution of observations taken earlier

and taken later during the assimilation window is small. This difference is relatively

large for the DFS information metric, as will be seen in Figure 5.

We next relate the signal information content of each observation with its location.

This approach reveals the spatial distribution of observations that contribute more infor-

mation to the data assimilation process.

Figure 3(a) presents the locations of observations with the highest Signal informa-

tion content, specifically the observations within the top 20% I
Signal
yi

averaged over all
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Figure 2: The Signal information content of observations taken at different times within

the assimilation window.

vertical layers. Figure 3(b) shows the locations of observations within the bottom 20%

I
Signal
yi

averaged over all vertical layers. We see that the two plots are similar; many ob-

servations have a similar mean signal information content. Figures 3(c) and 3(d) add

vertical information for the location of the top 20% and bottom 20% observations, re-

spectively. The colorbar indicates the model vertical layer number corresponding to the

height of the data point. It is evident from panels (c) and (d) that data points with higher

Signal information are located in the low to mid troposphere (within 20 GEOS-Chem

levels) while points with lower Signal information extend to upper tropospheric levels

(45 GEOS-Chem levels).

Assimilation of subsets of observations. We now investigate the relationship between

the estimated Signal information content, and the benefit that the respective observations

bring to the 4D-Var data assimilation process. Specifically, we perform a 4D-Var data

assimilation using only the subset of observations within the top twentieth percentile,

and another 4D-Var data assimilation using only the subset of observations within the

bottom twentieth percentile when ranked by their Signal information content. All data

assimilation experiments use the same covariance matrices and the same background

field xB
0 .

Figure 4 presents the results of the different data assimilation experiments. The er-

rors are measured against the independent data set of INTEX Ozonesonde Network

Study 2006 (IONS-6). The leftmost panel presents the mean ozone concentration vertical
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(a) Location of observations within the top 20%

I
Signal
yi

, averaged over all vertical levels

(b) Location of observations within the bottom 20%

I
Signal
yi

, averaged over all vertical levels

(c) Location of observations within the top 20%

I
Signal
yi

(d) Location of observations within the bottom 20%

I
Signal
yi

Figure 3: The location of observations with the highest, and with the lowest signal infor-

mation content. The colors represent vertical layer numbers of the model.

profiles. The central panel shows the mean errors, i.e., the relative difference between the

mean model profiles and ozonesondes. The rightmost panel presents the corresponding

error standard deviations. A detailed discussion of the 4D-Var data assimilation results

using all the observations is provided in [Singh et al.(2010)].

The results in Figure 4 reveal that the observations with a higher signal information

content contribute more to the 4D-Var analysis. The quality of the analysis using only

the top 20% of observations is similar to the quality of the analysis using all observations.

In contrast, the analysis based on the bottom 20% of the observations has considerably

larger errors, albeit it still shows improvement compared to the background case.
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Figure 4: Plot of ozonesonde data, free model run, and 4D-Var analysis trajectories ob-

tained using subsets of observation points. The subsets are selected according to their

signal information content.

4.5.3 The DFS information content

Loosely speaking, the DFS metric (discussed in Section ??) indicates the number of states

that benefit from the assimilation of observations. The closer the IDFS is to the total

number of model states n, the more information the observations have brought into the

system through data assimilation. While the signal information content measures the

change in the mean field obtained through assimilation, the DFS measures the relative

decrease in the error (co-)variance through assimilation. Thus the two metrics measure

different aspects of the data assimilation benefits.

The DFS information content for individual data points yi is estimated using equation

(6). Recall that in our simulations one data point yi consists of all the ozone retrievals

available in the 4 hours interval [ ti − 2 hours , ti − 2 hours ]. As the Aura satellite orbits

the Earth the observations are taken over different locations and at different times of

day. It is therefore expected that some data points will contain more information than

other, i.e., are more useful in reducing uncertainty when assimilated. We utilize the data

from the ensemble of Nens + 1 model runs initialized with states drawn from the analysis

distribution (this is the same set of runs used for the aggregated information content

calculations). During each of the runs the cost function contribution of each data point
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Figure 5: The DFS information content of observations taken at different times within

the assimilation window.

is saved. These results are used to estimate IDFS via (6).

Figure 5 presents the DFS information content of the data in each observation win-

dow. The data in the observation window 16:00 GMT - 20:00 GMT, August 3rd, 2006 has

the highest DFS information content. The DFS information content decreases with time,

and the impact of the observations taken later in the assimilation window is smaller. The

decreasing trend is more pronounced than the case of the signal information content.

We next study the DFS contribution of each observation point to the assimilation re-

sults. Specifically, the data points are classified into subsets according to their estimated

DFS information values. Figure 6 shows the location of different observation subsets

plotted over the global ozone distribution (averaged over the first 23 levels on August

1st, 2006, 00 GMT). First, all columns of observations are ranked according to their IDFS
yi

averaged over all vertical layers. Figures 6(a) and 6(b) represent the locations of the

columns within the top and and within the bottom 20-th percentile. The distribution is

rather uniform. Next, we rank individual observation points according to their IDFS
yi

. Fig-

ures 6(c) and 6(d) show the locations of the top and of the bottom twentieth percentiles,

with the color coordinate representing the height of the data point, in model level units.

Similar to Signal information case, data points with higher DFS information content are

located in the low to mid troposphere while points with lower DFS information content

are extended to upper tropospheric levels. However, there is a clear difference between

Figures 3(d) and 6(d) in that points with lower DFS information content are distributed

evenly over the globe.
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(a) Observation lon-lat coordinates with top 20%

IDFS
yi

(b) Observation lon-lat coordinates with bottom

20% IDFS
yi

(c) Observation lon-lat-lev coordinates with top 20%

IDFS
yi

(d) Observation lon-lat-lev coordinates with bottom

20% IDFS
yi

Figure 6: The location of the most important observations, filtered by their DFS informa-

tion content.
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Figure 7: Plot of ozonesonde data, free model run, and 4D-Var analysis trajectories ob-

tained using subsets of observation points. The subsets are selected according to their

DFS information content.

Assimilation of subsets of observations. We perform several data assimilation exper-

iments using only subsets of observations, filtered by their estimated DFS information

content. The results are presented in Figure 7. The assimilation results using only the top

20% of observation data points (according to the DFS) are almost as accurate as the re-

sults using all observation points. The quality of analysis obtained using only the bottom

20% observation points (according to the DFS) is similar to that of free model run. The

fact that almost all information is captured by the top 20%, and almost no information is

captured by the bottom 20%, suggests that the DFS provides a sharp diagnostic criterion

to distinguish between the most and the least important observation data points.

4.5.4 Common to DFS and Signal information content

As described in the previous section, DFS and signal provide complementary measures

of the information content. Therefore, It would be of interest to consider observation

points that have high DFS as well as high signal information content. We choose the top

20% of all observation points that rank high on both DFS and signal metrics. In order to

come up with such a selection, we arranged the complete set of observation data points

in two different three-dimensional arrays, first array with descending DFS information

20



(a) Observation lon-lat coordinates with top 20%

ICommon
yi

(b) Observation lon-lat-lev coordinates with top

20% ICommon
yi

Figure 8: The location of the most important observations, filtered by their information

content common to DFS and Signal.

content and second with ascending coordinate points (longitude, then latitude) with

their signal information content in the third column. We also calculated a threshold

I
Signal
yi,50% that determines whether an observation point belongs to the top or the bottom

50% of the signal information content of all observation points. Since DFS provides a

clear distinction between points with higher and lower information content, we start

with index [0][0][0] and go up to the first half of the first array to collect observation

data points that have signal information greater than I
Signal
yi,50% using the second array. In

our case, we were able to find 20% of all observation points that meet this criteria. If

not, the next step would have been to compare first half of the first array and collect

observation points that have signal information less than I
Signal
yi,50%. Proceeding until we

find the required number of points, next would have been to compare second half of the

first array and second array of points with higher signal content, and lastly second half

of the first array and second array of points with lower signal content.

Figure 8 represents their longitude-latitude coordinate locations in panel (a), while

panel (b) provides the number of levels associated with each location. The color bar in

panel (b) indicates that top 20% of observation points which rank high on both DFS and

signal fall within 20 vertical model levels.

Assimilation of subsets of observations. We perform data assimilation using only the

top 20% of all observations chosen according to the combined DFS and signal criteria.

Figure 9 compares the quality of the vertical ozone profiles generated by the free model

run, and by the 4D-Var analysis using all observations, the top 20% signal, the top 20%
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Figure 9: Plot of ozonesonde data, free model run, and 4D-Var analysis trajectories ob-

tained using subsets of observation points. The subsets are selected according to their

information content common to DFS and Signal.

DFS, and the top 20% data points common to both DFS and signal. Results indicate that

the data points satisfying combined signal and DFS criterion provide the most accurate

analysis overall. The analysis generated using these points follows closely the analysis

generated by using full observation data set from ground level up to 300 hPa and is better

than other observation data sets in the 100–300 hPa vertical region. This indicates that

pruning the least informative data points may actually improve the quality of the overall

analysis.

A direct comparison of different assimilation results is provided in Figure 10. Specif-

ically, we plot the differences in global ozone concentrations at the beginning of the

assimilation window (00:00 GMT on August 6, 2006) averaged over the first 10 GEOS-

Chem vertical levels. Panels (a)-(c) show differences between the 4D-Var analysis fields

and the model forecast (solution without data assimilation); the analyses use observation

data points with top 20% IDFS
yi

, top 20% I
Signal
yi

, and top 20% signal and DFS, respectively.

Panels (d)-(f) show absolute differences between 4D-Var analyses using all observation

data and using only the data within the top 20% IDFS
yi

, top 20% I
Signal
yi

and top 20%

ICommon
yi

.

Since Figure 10 does not provide any comparison of 4D-Var analysis with real ozone
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observations, we use Figure 9 as a baseline to assess the results. There is a limitation

to this assessment however which is the fact that the IONS-06 ozonesondes data used in

Figure 9 are available only for North America (mainly United States). Comparing Figures

9 and 10 reflect that in lower to mid troposphere (up to 10 GEOS-Chem levels, 400 hPa),

4D-Var analysis using all observations is slightly different from analysis using observa-

tions with highest DFS information while it is closer to analysis using observations with

highest signal information and observations which rank high on both DFS and signal

metrics.

4.5.5 Virtual ground-level observations

So far we have analyzed the information content of real data: the ozone profile retrievals

from TES. We next illustrate the use of the proposed methodology to asses the potential

impact of virtual observations. This is useful for planning new field campaigns, and for

guiding the design of new observing networks.

Here we focus on virtual observations taken at ground level. The concentrations of

the analysis field xA provide the virtual observations. We perform a forward model run

starting from xB
0 and compute the following approximation of the signal information

content at hourly intervals

I
Signal
ground

(
xB
)
=

1

2

(
xB

ground − xA
ground

)T
G−1

(
xB

ground − xA
ground

)
. (20)

Note that equation (20) is derived from (19) with the observation data replaced by the

analysis field, and with an observation operator that selects the ground level ozone con-

centrations. The error covariance matrix G of the virtual observations is diagonal; the

standard deviation of each virtual observation is chosen to be 10% of the analysis field.

Figure 11 presents the time series of the signal information content of the virtual ground

observations. The total signal information initially increases, reaches a peak on August

2nd, 2006, 18:00 GMT, and then decreases. Note that the peak information time for vir-

tual ground level observations is the same as the peak DFS information time for TES

ozone column retrievals. This indicates that the ground level observations (possibly)

taken on August 2nd at 18:00 GMT are most useful for the assimilation scenario under

consideration.

Figure 12 plots the locations of the most important virtual ground level observations,

ranked based on their signal information content. These locations are overlaid on top

of the global ozone distribution on August 1st, 2006, 00:00 GMT. Figures 12(a) and 12(b)

indicate that larger signal information is associated with the region between 60◦ N and

30◦ S. The reason for this scattering in ground observation case could be attributed to

the northern and southern hemisphere subtropical jet streams. The virtual observations
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with the highest signal information are located around the Equator and at about 45◦ N,

as seen in Figures 12(c) and 12(d).

5 Conclusions and Future Work

This paper discusses a characterization of the information content of observations in

the context of four dimensional variational (4D-Var) data assimilation framework. The

ability to characterize the usefulness of different data points is important for analyzing

the effectiveness of the assimilation system, for data pruning, and for the design of future

sensor systems.

Several metrics from information theory are used to quantify the information content

of data, including the trace of the Fisher information matrix, the signal information, and

the degrees of freedom for signal. The companion paper [Sandu et al.(2011)] shows how

these metrics can be computed from expected values of the 4D-Var cost function and its

gradient. The expected values

The estimates require a sampling from the posterior distribution, which is not readily

available in 4D-Var data assimilation. Different approximate methods are possible to

obtain analysis samples. Here we use a normal distribution with the mean given by

the assimilation result, a diagonal covariance matrix, and the analysis variances obtain

by properly scaling the background variances. The error ratios obtained by comparing

the model results against an independent data set are used to determine the scaling

factors. More sophisticated methods for sampling the posterior distribution are possible,

as discussed in Section 3.

The information content estimation approach is applied to a global ozone data assim-

ilation problem using TES satellite observations and the GEOS-Chem chemical transport

model. The quality of the assimilation is assessed by comparing the results against an

independent data set (INTEX ozonesonde measurements). The assimilation of a subset

of 20% of the data points characterized by the highest signal, DFS, and combined in-

formation content, gives analyses that are comparable in quality with the one obtained

using the entire data set. This results are very encouraging since they indicate the effec-

tiveness of the proposed approach as a diagnosis tool for the value of observations used

during the assimilation. Moreover, pruning the least informative observations seems to

improve the quality of the analysis in the upper atmosphere. This point deserves future

investigation.
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(a) Absolute difference between the 4D-Var anal-

ysis using data points with top 20% DFS and the

free model run

(b) Absolute difference between the 4D-Var analy-

sis using data points with top 20% signal and the

free model run

(c) Absolute difference between the 4D-Var analy-

sis using data points with top 20% common signal

and DFS and the free model run

(d) Absolute difference between the 4D-Var analy-

sis using all observations and data points with top

20% DFS

(e) Absolute difference between the 4D-Var analy-

sis using all observations and data points with top

20% signal

(f) Absolute difference between the 4D-Var analy-

sis using all observations and data points with top

20% common signal and DFS

Figure 10: Direct comparison of different assimilation results using various subsets of

the data. Differences in global ozone concentrations are shown at 00:00 GMT on August

6, 2006 and averaged over the first 10 GEOS-Chem vertical levels.
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Figure 11: Time evolution of the total signal information content of virtual ground level

observations during the assimilation window.
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(a) Virtual ground observations with I
Signal
ground ≥ 3 (b) Virtual ground observations with I

Signal
ground ≥ 5

(c) Virtual ground observations with I
Signal
ground ≥ 10 (d) Virtual ground observations with I

Signal
ground ≥ 15

Figure 12: The location of virtual ground level observations with the largest signal infor-

mation content.
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