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Data Reduction for Diverse Optical Observers Through Fundamental
Dynamic and Geometric Analysis

Bradley J. Sease

(ABSTRACT)

Typical algorithms for processing unresolved space imagery from optical systems make broad
assumptions about the expected behavior of the sensors during collection. While these tech-
niques are often successful at data reduction for a particular mission, they rarely extend
to sensors in different operating modes. Such specialized techniques therefore reduce the
number of sensors able to contribute imagery. By approaching this problem with analysis
of the fundamental dynamic equations and geometry at play, we can gain a deeper under-
standing into the behavior of both stars and space objects viewed through optical sensors.
This type of analysis has the potential to enable data collection from a wider variety of
sensors, increasing both the quantity and quality of data available for space object catalog
maintenance. This dissertation will explore the implications of this approach to unresolved
data processing. Sensor-level motion descriptions will be derived and applied to the problem
of space object discrimination and tracking. Results of this processing pipeline as applied to
both simulated and real optical data will be presented.
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Chapter 1

Introduction

The space situational awareness (SSA) problem is an ongoing concern of spacecraft operators.
SSA refers to the process of understanding Earth’s orbital environment and all of the objects
that reside there. Currently, the Space Surveillance Network catalogs over 22,000 Earth-
bound objects over 10 cm in size [10], though estimates suggest that there may be hundreds of
thousands of objects in the 1 cm to 10 cm size range [11]. Though these objects are small, the
high energies involved in the orbital environment cause them to still pose a significant threat
to active spacecraft. The current Space Surveillance Network is limited to approximately
30 sensors world-wide [10]. To expand our understanding of Earth’s increasingly crowded
orbital environment, it is necessary to expand this system and maintain a larger, more precise
catalog of space objects.

The focus of this dissertation is the problem of making use of electro-optical image data from
diverse sources in support of SSA. The DARPA OrbitOutlook program is one example of a
current effort to incorporate more diverse data sources into the SSA pipeline. The aim of the
OrbitOutlook program is to reach out to non-traditional sensor operators such as those in
commercial, academic, and even hobbyist settings [12]. Though these sensors may not be as
precise as the current sensors making up the Space Surveillance Network [10], they are still
able to provide valuable data. The inclusion of a larger number of sensors can potentially
free up the higher-quality sensors to track higher-priority and hard-to-track objects. Of
course, by including low-cost sensors managed by a diverse group of operators, a number of
additional challenges arise. Sensors operated at the hobbyist level may often not be tasked
in a predictable way, leading to tracking errors and images which are complicated to reduce
with current techniques.

To enable analysis of data from of a diverse set of optical sensors, it is necessary to gain
a fundamental understanding of the underlying physics and geometry of optical sensor sys-
tems. Such an understanding will enable a centralized pipeline that is capable of extracting
observations of space objects from data sets including both pristine, well-tracked objects
and imperfect, serendipitous detections. Current approaches fall short of providing a cen-
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Bradley J. Sease Chapter 1. Introduction 2

tralized pipeline because they typically rely on broad assumptions about the tasking of a
sensor. This dissertation focuses on relaxing many of the typical assumptions to create a
number of general techniques for reducing optical imagery. Analysis of fundamental projec-
tion models in addition to the underlying physics of space objects yields a set of equations
describing the motion of a space object across the image plane. These basic equations make
minimal assumptions about the sensor motion and enable a number of novel data reduction
techniques.

This dissertation is structured as follows.

Chapter 2 will lay out the overall motivation for this dissertation in detail. There are a
number of techniques that are currently applied in the field that make broad assumptions
about the motion of sensor. While each of these techniques are successful at processing
data currently, they each only consider a fraction of the possible operating range of real-
world sensors. Further, Chapter 2 will present the necessary mathematical fundamentals
required for the following chapters. Specifically, we will consider approaches to modeling the
projection equation of an optical observer, image processing for space object extraction, and
the principals of orbit determination and estimation.

Chapter 3 derives a series of fundamental equations for objects viewed through an optical
sensor. Typical processing procedures rely on only one or two frames for extracting space
objects and assume that the sensor follows a specific motion profile. By deriving a set of
fundamental equations of motion for objects viewed through a rotating sensor, it is possible
to broaden the range of possible sensor motion profiles. Chapter 3 examines this problem
in four different ways – two dynamics-based analyses and two geometric analyses. The first
approach assumes that a particular optical sensor adheres to the simple pinhole camera
model. This model is a common approach and currently used for theoretical analysis of
optical navigation in the Earth-Moon system [13, 14]. Since sensors often deviate from the
pinhole camera model, we will also consider the case where an image has been corrected in
post-processing to follow an “undistorted” projection model. The results of the dynamic
approach to image analysis are examined further with a focus on application in Chapter 4.

The geometric analyses focus on leveraging an understanding of the internal and external
geometries of an optical sensor to gain additional insight into the resulting image data. The
first geometric approach again considers the pinhole camera model and attempts to derive
an explicit equation for the path of a star across the image plane. The second geometric
method considers the multi-observer case, where multiple observers are viewing a common
object. The equations resulting from the geometric approach to image analysis are examined
further with a focus on application in Chapter 5.

Chapter 4 looks further into the dynamic approach to image analysis. The dynamic equations
of motion from Chapter 2 enable a number of algorithms for detection and tracking of
space objects in optical imagery. First, a Kalman filter bank built on the image-plane
dynamics allows for robust object tracking and association across frames with a relatively
light computational cost. Further, it is possible to use the equations of motion for a star in
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the image plane to discriminate between stars and non-star objects of interest. Since any
space object will have some apparent motion relative to the celestial sphere, a prediction
from one frame to the next by equations of motion describing a star will reveal a residual
which grows over time. Through careful consideration of the statistics of this residual, we
can build a probabilistic argument on whether the object in question is a star or a non-star
space object. Further, Chapter 4 shows that it is possible to leverage these motion models
for an advanced shift-and-add process, where successive images are shifted to counteract
undesired motion in the image plane and subsequently summed together. Prior research has
shown that this method can provide a signal gain for dim space objects [15].

Chapter 5 examines the implications of the geometric approach to image analysis. The
geometric star path descriptions derived in Chapter 2 offer an alternative way to view image
data. A potential problem for space-based optical observers is the fact that precise pointing
is not necessarily guaranteed over the course of an observation. In some cases, the spacecraft
may drift in such a way as to introduce rotation about the boresight, which further can lead
to curvature in observed star signals. These star signals are often critical to measurements
of non-star objects of interest as they provide intertially-fixed reference points against which
we can determine the sensor’s attitude [16, 17, 18]. The geometric path descriptions from
Chapter 2 offer a technique for reducing the impact of rotation about the boresight by
resampling the image in a polar coordinate frame centered on the point the image about
which all the stars rotate.

The multi-observer geometric analyses from Chapter 2 are also revisited in Chapter 5. It
is well-known that simultaneous observations from multiple viewpoints offer an immediate
solution for the relative position of an object from the sensors [19]. Chapter 5 will prove
that observation from multiple, widely-spaced observers not only allows for instantaneous
triangulation of an object of interest, but also augments the detection of space objects and
allows for probabilistic object associations across sensors.

Finally, Chapter 6 concludes this dissertation with a summary of the work completed and an
examination of the practical applications of the work proposed here. Chapters 4 and 5 explore
numerous approaches to data reduction for optical observers. These various techniques can
be implemented in a variety of combinations, some of which are more applicable to certain
end goals. Thus we will conclude by examining some of the combinations of algorithms
which are possible and the scenarios in which they are advantageous.



Chapter 2

Background

2.1 Background

The Joint Space Operations Center (JSpOC) processes data from the Space Surveillance Net-
work (SSN), a system of 30 sensors worldwide collecting approximately 400,000 observations
per day [10]. The JSpOC currently manages a catalog of over 22,000 Earth-bound objects,
including active and inactive spacecraft and debris. Part of the JSPoC’s mission, outlined in
the United States’ National Space Policy, is to make this tracking data available to the public
to enable safe operation in an environment which is continually becoming more crowded [20].
Current publicly available catalogs provide data on over 17,000 Earth-bound objects [21].
Estimates of the total debris population in 2001, prior to several notable breakup events,
included 330 million pieces between 1 mm and 1 cm in size, 560,000 between 1 cm and 10
cm in size, and 18,000 objects over 10 cm [11].

Catalog data is primarily used for coordinating follow-up observations and conjunction anal-
ysis. A continuous understanding of Earth’s orbital environment enables prediction of close
passes between orbiting objects (“conjunctions”) to avoid collisions among the population
of active spacecraft and uncontrolled debris. As the orbital environment becomes more
crowded, the danger of collisions increases. In the last decade, there are several cases where
the debris population has increased dramatically. In 2007, for example, a Chinese anti-
satellite test destroyed the decommissioned FengYun 1C spacecraft at a distance of approx-
imately 1,000 km from the Xichang Space Center. This test produced approximately 2,087
pieces of debris which large enough for detection and tracking, and the NASA Orbital Debris
Program office estimates there were up to 35,000 pieces of debris as small as 1 cm [1]. The
cataloged debris is visualized in Figure 2.1 shortly after impact and 1 year later. Due to
variations in perturbations due to size and velocity imparted by the impact, the individual
pieces of debris tend to drift apart. After a full year much of the debris is no longer contained
in its original orbital plane.
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Figure 2.1: FengYun 1C debris after impact (left) and 1 year later (right) [1].

In 2009, the debris population suddenly increased again, this time do to an accidental collision
between two spacecraft. Prior to the collision, the active Iridium 33 spacecraft was predicted
to pass within 534 meters of the decommissioned Cosmos 2251 spacecraft. The 534 meter pass
was not the closest approach predicted that day for an Iridium satellite and the operators took
no corrective action. At the time of the expected close approach the Iridium 33 spacecraft
ceased communication with the ground and the SSN reported tracking a debris field in its
place shortly thereafter. In the aftermath, the SSN cataloged approximately 1,366 pieces of
debris belonging to the two spacecraft [2]. The known debris from this collision is visualized
in Figure 2.2 at two points in time: 3 hours after impact and 2 years later.

Figure 2.2: Iridium-Cosmos debris 3 hours (left) and 2 years after impact (right) [2].

With the increasing availability of observation data from diverse sensors, the JSPoC has a
need for new hardware and software which can handle the increasing demand and enable
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the network to make upwards of 40,000 uncorrelated track (UCT) associations per day [22].
In the coming years, the JSPoC expects to handle a volume of greater than 1.5 million
observations per day [23]. To handle the sheer volume of data, new techniques are required
which can scale up more effectively for future operations.

Though radar systems generate a significant number of the observations that the JSpOC
processes each day, the objectives of this proposal are primarily targeted at increasing the
quantity and quality of data produced by electro-optical observers. Electro-optical systems
typically provide observations of space objects beyond LEO, where the accuracy of radar
begins to degrade [11]. Currently, the JSPoC employs the Ground-Based Electro-Optical
Deep Space Surveillance (GEODSS) system for tracking objects further than 22,500 km,
most notably those inhabiting the Geostationary belt. The JSPoC estimates the this range
includes between 4,200 and 4,400 objects [10].

When using electro-optical systems to generate observations of space objects, all signals in
an image tend to be unresolved. Stars and space objects have similar appearance, either as
points of light or “streaks,” where the point-like signal is spread over many pixels. Thus,
differentiation between stars and space objects in imagery is non-trivial. There are many
different methods of extracting these detections in the literature, which can be separated
into two categories: single-frame and multi-frame techniques.

Single-frame techniques extract detections from a single image and typically do not provide
any association between frames. Often, sensors are tasked to point at known objects. If
the orbital knowledge is precise, then the corresponding space object should appear in a
predictable location in the image. In this scenario, the signal closest to the expected location
of the space object would be the detection. This type of operating mode is typical for
maintenance of existing space object catalogs [24, 25, 26]. Of course, when precise orbital
knowledge of an object is not available, a more general detection method is necessary.

Alternatively, single-frame techniques sometimes examine the geometric properties of signals
to extract detections. When a space object is imaged against a star field, its motion is often
apparent relative to the surrounding stars. With specifically-defined operating procedures
it is possible to leverage this fact to discriminate between stars and non-stars from a single
image frame. Many existing techniques operate in “sidereal stare” mode, where the sensor
slews to track the background star field. In this case, all of the stars are points of light. Any
other space object passing through the image, then, will produce a streaked signal that is
geometrically unique from the stars. A number of systems have employed these techniques,
most notably GEODSS, which provides deep-space observations for the JSpOC [25]. Several
space-based observers have leveraged geometric detections as well, including the Space-Based
Visible experiment (SBV) [27], the Near Earth Orbit Surveillance Satellite (NEOSSAT) [26],
and the Microvariability Oscillations of Stars (MOST) microsatellite[28].

Multi-frame techniques involve analysis of sets of sequential frames to make detections. By
considering a longer time frame than a single image, these methods can detect objects which
have much lower apparent motion than the single frame techniques. For slow-moving objects,
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a single frame may not be sufficient to capture its apparent motion. Images taken minutes
or hours apart, however, reveal smaller velocities against the stellar background.

The most simple multi-frame methods focus on the data in only two successive images. For
example, reference [27] outlines a multi-frame processing scheme in the sidereal star operating
mode. When the sensor tracks the stellar background, all stars are static point sources.
Subtracting subsequent frames, then, works to remove the star signals. The remaining
signals correspond to objects with some apparent motion relative to the background. Frame-
to-frame subtraction often leaves some residual of the star signals however, so an alternative
approach is to correlate signals between frames. By considering all possible associations
exhibiting linear or slightly curved paths, the author in [29] extracts only the objects of
interest and ignores star signals. In another application, the Wide Area Space Surveillance
System (WASS) considers the variation in individual pixels across frames. Rather than
operating in sidereal star mode, the sensor fixes on constant RA/DEC “slices” of the sky to
track Geostationary objects. Any pixels which retain signal frame-to-frame correspond to a
detection [30].

Several multi-frame applications involve a technique known as “shift-and-add.” In shift-
and-add operations, several frames are added together in a way that emphasizes certain
characteristics of an image. Most commonly, the goal is to move the images with a particular
object in such a way as to effectively track the object without moving the sensor. Each
sequential image is shifted to counteract the expected motion of a given object. The resulting
summation of images should remove the displacement of the target object, while adding
additional displacement to all objects which behaved differently. This technique is typically
referred to as “synthetic tracking,” and has commonly been applied to the detection of near-
Earth asteroids [31]. An earlier example of the shift-and-add procedure flew as part of the
Space-Based Visible sensor experiment in 1996 to collect spacecraft observations on orbit
[32]. Shift-and-add techniques have the additional benefit of increasing the signal-to-noise
ratio (SNR) of subsequent detections.

Typically, algorithms like the ones discussed above are developed with specific operational
procedures in mind. A single-frame technique based on prior orbital knowledge assumes
that the telescope will be operating in either a rate-track mode, where the sensor follows
the object, or a step-stare mode, where the sensor points at the location where the object
is expected to be. Most other methods expect that the sensor will be fixed in one operating
mode throughout collection. The work proposed here aims to derive general techniques that
function regardless of the operating mode of the sensor. This research is particularly rele-
vant to the OrbitOutlook program, which aims to take a “data-centric” approach to space
situational awareness [12]. Rather than focusing on a limited set of exquisite sensors, the
OrbitOutlook program aims to synthesize data from all available sensors from professional
assets to hobbyist-level systems. The research outlined in this dissertation provides funda-
mentally new capabilities for processing data from a diverse set of systems regardless of the
operating techniques and with little knowledge of the sensor systems.
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A strong motivation for this type of work is the danger posed to active spacecraft by high
area-to-mass ratio (HAMR) objects. A European Space Agency survey discovered 28 HAMR
objects larger than 10 cm which are suspected to have originated in geosynchronous orbits.
This population of objects is estimated to have area-to-mass ratios between 1 m2/kg and
28 m2/kg, while a typical spacecraft is around 0.01 - 0.01 m2/kg. They have concluded
that solar pressure has caused these objects to move into highly eccentric orbits [33]. Since
this population of HAMR objects crosses through the geosynchronous belt, it follows that
they pose a threat to existing spacecraft in that range. Due to the physical properties of
these objects – typically pieces of debris – they are highly susceptible to the effects of solar
pressure on orbit and tend do deviate widely from the typical orbital models. The difficult
to predict nature of the orbits of HAMR objects makes it necessary to take observations
frequently [34].

2.2 Mathematical Preliminaries

2.2.1 Modeling the Optical Observer

This section will introduce some of the basic principles of for simulating optical sensor
systems. The models described in this section will comprise the foundation for the dynamic
analysis in Chapter 2 and the geometric analysis in Chapter 4. Specifically, we will consider
two types of models: the pinhole camera model and the distortion-corrected camera model.
The pinhole model is a simple representation of an optical sensor and is built on the geometry
of the problem and does not consider any other sources of distortion. The second model
accounts for distortion in that it is the ideal model that would arise after a sensor’s data is
perfectly correct for distortion. We will see that these two models are closely related – a fact
that will be useful for the derivations in Chapters 2 and 4.

First, we will derive the pinhole camera model. In this model, we assume that an optical
sensor allows light in through an idealized aperture with zero extent in any direction. In
other words, the aperture is a single point in R3, referred to as the focal point. The focal
plane containing a charge-coupled device (CCD) for digitizing the incoming signal is located
at a distance, f , from the focal point. The term f is referred to as the focal length. We
assume that light from an object enters the sensor through the focal point and travels in a
straight line until it strikes the focal plane. The diagram in Figure 2.3 shows a 2-dimensional
representation of this geometry. In this figure, ∆x refers to the displacement of the point of
intersection from the center of the CCD. The diagram for the displacement along the second
dimension of the CCD would be identical, replacing ∆x with ∆y.

With the pinhole camera in mind, we wish to derive a mathematical representation of the
geometry. This set of equations will be the foundation for the analysis in Chapter 2. Consider
the diagram in Figure 2.4. This is the same setup as in Figure 2.3, with the addition of two
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∆x

f

Focal Plane

Focal
Point

Figure 2.3: Two dimensional diagram of the pinhole camera model.

more terms: ρ1 and ρ3. Define ρ = [ρ1, ρ2, ρ3]T to be the location of a particle in R3 that is in
view of the sensor. In this diagram, the lower triangle defines the geometry of the projected
particle internal to the sensor, while the upper triangle defines the positioning of the particle
relative to the focal point of the sensor.

∆x

f
ρ1

ρ3

Figure 2.4: Vector geometry of the pinhole camera model.

Since these two triangles are similar (i.e. all angles are the same) the proportions between
corresponding sides are the same. Thus, we can say that

∆x

f
=
ρ1

ρ3

(2.1)

The equation above relates a particle’s location in R3 to its displacement in one direction
from the center of the CCD. Multiplying both sides by the focal length yields

∆x =
f

ρ3

ρ1 (2.2)

An identical derivation follows for ∆y and ρ2 to get

∆y =
f

ρ3

ρ2 (2.3)

To proceed further, we must define a coordinate system in which we will represent the
position of a particle in the image plane. Consider the coordinate system denoted by o in



Bradley J. Sease Chapter 2. Background 10

Figure 2.5. Using this coordinate system, we can write[
x
y

]
= − f

ρ3

[
ρ1

ρ2

]
(2.4)

The relation above is called the Collinearity equation [35]. The underlying assumption
behind this model is that, as seen in Figure 2.3, a particle in R3 and its R2 image plane
projection are connected by a line passing through the focal point of the sensor. Note that
this is a purely physical model at this point, so x and y are quantified with units of distance.
This means that there is an additional step required to convert from the physical units to
the pixel grid that is typical of digital image data. For the purposes of this dissertation, the
origin for the pixel grid is denoted by ō in Figure 2.5. The relationship between o and ō is[

x̄
ȳ

]
=

1

s

[
x
y

]
+

1

2

[
rx
ry

]
(2.5)

where r = [rx, ry]
T is the number of physical pixels on the CCD in the x and y directions

and s is the physical width of a single pixel. In the new scaled coordinates, (x̄, ȳ) gives the
location of of a particle projected onto a CCD, measured in pixels. So, a particle located
directly along the boresight of the sensor (i.e. the sensor is pointing at the particle) is located
at (x̄, ȳ) = (rx/2, ry/2). Note that this equation and the diagram in Figure 2.5 assumes that
pixels are square.

o

ō

ry

rx

s

s

Figure 2.5: Focal plane coordinate systems and dimensions.

Equally important to the forward projection model for the pinhole camera is the inverse
projection from R2 to R3. Consider again Figure 2.3. Note that the line of site vector (the
gray, dashed line) is the same for any object along that line, regardless of distance from the
observer. In fact, the range to a particular object is unobservable from a single image-plane
point in a single sensor. In resolved imagery, where the observer is close enough to an object
to make out details on its surface, it is sometimes possible to calculate range from a single
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observer. For example, a currently-studied approach for optical navigation uses imagery of
the moon to ascertain a spacecraft’s absolute position in the Earth-Moon system [14]. This
dissertation will focus on the case of “unresolved” imagery, where it is not possible to discern
any of the detail of an object in image and the object’s range is unobservable. It is possible,
however, to determine the line of sight vector of the particle in Figure 2.3

The internal geometry of the line of sight vector (from the focal plane to the focal point) is
given by [x, y, f ]T . Since the magnitude of this vector does not correspond to the distance
of the object from the sensor, we are only interested in the direction. Therefore we write the
line of sight vector as

u =
ρ

‖ρ‖
=

1√
x2 + y2 + f 2

 x
y
f

 (2.6)

Finding the physical focal plane coordinates (x, y) from the pixel coordinates (x̄, ȳ) requires
a coordinate system shift from ō to o. This shift is given by[

x
y

]
= s

[
x̄− rx/2
ȳ − ry/2

]
(2.7)

Thus an image-plane measurement of a signal provides a unit vector describing the relative
position of the corresponding object relative to the observer. The object’s range is unavail-
able, but it is located at some distance along the line of sight vector u. It is sometimes
beneficial to express the line of sight vector as a pair of angles. In the sensor body frame,
we can use the azimuth and elevation, which are related to u through [36]

AZ = tan−1

(
u2

u1

)
EL = tan−1

(
u3√
u2

1 + u2
2

) (2.8)

If the line of sight vector is expressed in the Earth-Centered Inertial coordinate system, then
the azimuth and elevation correspond directly to right-ascension and declination [36].

The pinhole camera model described above accounts for the idealized geometry of an optical
sensor. This model does not, however, account for any other sources of distortion. Often,
distortion represents a significant deviation from the ideal sensor. A number of standards
exist for approaching the problem of correcting an image to account for distortion [37, 38].
The Simple Image Polynomial (SIP) distortion representation, for example, uses two distor-
tion polynomials to convert between pixel coordinates and “world coordinates” [37]. This
representation is an alternative to the inverse projection from Equation 2.6 that accounts
for imperfections in the sensor geometry. The SIP correction from pixel coordinates to
intermediate world coordinates is given by [37][

x̂
ŷ

]
=

[
x̄+ f (x̄, ȳ)
ȳ + g (x̄, ȳ)

]
(2.9)
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where f (x̄, ȳ) and g (x̄, ȳ) are distortion polynomials. These polynomials are standardized
in the form

f (x, y) =
∑
p,q

Ap,qx
pyq, p+ q ≤ n

g (x, y) =
∑
p,q

Bp,qx
pyq, p+ q ≤ m

(2.10)

where n is the order of f and m is the order of g. Note that it is up to the user to choose
the precise model for the correction process. The standards do not specify any target model
that the corrected coordinate system must approximate. Instead, the standards remain
general enough to accommodate any set of world coordinates [37]. The conversion from the
intermediate world coordinates (x̂, ŷ), to the desired world coordinates is [37][

α
δ

]
=

[
c1,1 c1,2

c2,1 c2,2

]
︸ ︷︷ ︸

Cd

[
x̂
ŷ

]
(2.11)

where (α, δ) are the desired world coordinates. Derivation of the distortion polynomials
is possible from a background star field. The Astrometry.net star identification software
package returns a set of second order SIP polynomials that convert from pixel space to right
ascension and declination [18].

In addition to the projection equations it is sometimes also necessary to model the expected
intensity of a signal in the final image. The brightness of a space object is typically measured
on a log scale. In [7], the author provides a relationship describing the intensity of a signal
when viewed for a particular sensor. The electronics of the sensor effectively count the
number of incoming photons with some efficiency. Photons that have been successfully
counted by the sensor are referred to as photoelectrons [7]. The estimated signal intensity
for a particular source is

I =
m0a∆t

2.5(mv)
(2.12)

where m0 is the number of photoelectrons per second per square meter of aperture received
by the sensor for a zero magnitude object, a is the aperture area, ∆t is the exposure time,
and mv is the visible magnitude of the object in question. Based on the equation above,
we see that as the visible magnitude, mv, becomes smaller, the signal intensity increases.
This is due to the fact that the visible magnitude is represented in the exponent of the
denominator of the equation above. A negative visible magnitude moves the denominator
into the numerator and acts as a multiplier. The Sun, for example, has a visible magnitude
of −26.7, far brighter than any other object in the sky [7]. Experimentally-derived results in
[7] give a value of m0 = 19, 100 photoelectrons per second per square millimeter of aperture
area for a magnitude zero star, however this value will vary with each sensor. Further, the
signal captured by a sensor will also vary due to various noise inputs.
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Optical sensors contain three different categories of noise: shot noise, read noise, and dark
current [39]. The first, shot noise, is due to variation in the number of incoming photons from
the source. This variation may be due to atmospheric effects or changes in the object itself.
Shot noise typically follows a Poisson distribution and increases in variance with the signal
strength [39]. Read noise is introduced by the internal electronics of the sensor. This noise
input is independent of the exposure time and signal strength and is simply due to noise
in the circuitry during read-out. Typical levels of read noise are on the order of about 10
photoelectrons [39]. The third noise input is due to current leakage in the internal circuitry.
Dark current is proportional to the exposure time and may vary in intensity over the chip.
Typical levels of dark current noise at room temperature are about 2.5× 104 photoelectrons
per pixel per second but can be as low as 0.04 photoelectrons per second for cooled sensors
[39]. Figure 2.6 illustrates these different types of noise. The read noise and dark current
are dominant in dark areas of the image while the shot noise dominates brighter areas.

Read Noise +
Dark Current

Shot Noise

Figure 2.6: Illustration of the effect of types of image noise on a point-source signal.

2.2.2 Image Processing for Unresolved Space Imagery

Now we will examine the problem of extracting objects from unresolved images of space
objects. There are a number of approaches for extracting space objects from optical imagery.
The most popular method is a software package called Source Extractor, which aims to
extract space objects from general imagery with no knowledge of sensor characteristics [40].
Most approaches described in the literature rely on simple tools such as

Before beginning, let us define some of the conventions we will follow for the remainder of
this dissertation. Images are captured and stored as discrete pixel data, however to simplify
notation we will consider images as a continuum. Unless otherwise noted, the term I (x, y)
will represent an image intensity map. This corresponds to a grayscale image where I (x, y) is
the intensity of a theoretical pixel centered on the coordinate (x, y). To convert to the discrete
representation, we simply only evaluate I at the discrete (x, y) locations corresponding to
physical pixels on the CCD.

The most basic method for separating signal from background noise is a thresholding process.
With a thresholding process, the goal is to build a binary mask which indicates which pixels
contain signal and which contain only noise. We achieve this by choosing a signal level at



Bradley J. Sease Chapter 2. Background 14

which a pixel is considered to contain a signal and then examining each pixel individually.
The image mask is then

M (x, y) =

{
1 if I (x, y) > T
0 if I (x, y) ≤ T

(2.13)

where M (x, y) denotes a binary image mask and T is some threshold level. There are
many ways to choose the correct threshold level, but the most common is through analysis
of a histogram of the image intensity data [41]. Figure 2.7 contains a simulated image
to demonstrate the thresholding concept. The noisy image on the left-hand side of the
figure contains a number of stars and a single space object passing through the image.
Homogeneous, normally-distributed noise corrupts each pixel individually. The right-hand
side is the ideal mask where all of the pixels containing signal are white and all other pixels
are black.

Figure 2.7: Simulated noisy star image (left) and its ideal image mask (right).

Figure 2.8 shows the noisy image from Figure 2.7 thresholded at various levels. The first
image is limited to only signals at 2σ above the mean. This result removes a significant
portion of the noise, but there are a large number of single pixels that were above the
threshold and now clutter the mask. The center image in the figure corresponds to a threshold
of 3σ above the mean. This result is much cleaner, but still contains some clutter from noise.
Finally, the third image in Figure 2.8 is the result of a threshold at 4σ above the mean. This
result does not contain any clutter from noise, but comparing it to the ideal mask in Figure
2.7 shows that a number of stars fell entirely below the threshold level. So in this case a
threshold process requires an object to have a signal to noise ratio (SNR) of 3 - 4 for a
successful detection. Dimmer objects will be lost.

A number of image processing techniques rely on gradient-based approaches to understanding
the image data. These methods compute the spatial image intensity gradients across a pixel
in order to characterize the behavior inside that pixel [42]. This approach allows one to infer
the contents of a particular pixel (i.e. noise or a signal) to move onto higher-level processing.
The gradient-based techniques that we will consider here search for large gradients in one or
two directions to indicate the presence of a key feature at that location. These methods can
also be used to detect features in unresolved imagery.
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Figure 2.8: Simulated thresholding at 2 sigma (left), 3 sigma (center), and 4 sigma (right).

Before we formulate the object detection routine, we must first define the image gradients.
These gradients are derivatives of the signal intensity taken spatially across the image. Since
image data is discrete, we must approximate the derivatives in an approach similar to a finite
difference. Most commonly the spatial derivatives are taken with a derivative kernel that is
convolved with the original image data [42]. For example, 3 × 3 derivative kernels in the x
and y directions are

Kx =

 −1 0 1
−1 0 1
−1 0 1

 , Ky =

 −1 −1 −1
0 0 0
1 1 1

 (2.14)

Subtraction of neighboring pixels computes the change in intensity over that pixel which
directly corresponds to the finite difference of the intensity at that pixel. Formally, the
derivatives of the image intensity data, I (x, y), are

δI (x, y)

δx
≈Kx ∗ I (x, y) ,

δI (x, y)

δy
≈Ky ∗ I (x, y) (2.15)

Like a standard finite difference, these derivative kernels tend to be highly susceptible to
the presence of noise in the individual pixels. It is beneficial, then, to smooth the image to
reduce the effect of noise. We can achieve this smoothing by convolving the image with a
Gaussian kernel. The Gaussian kernel is [42]

G (x, y, σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(2.16)

So, the smoothing process is written as

Is (x, y) = G (x, y, σ) ∗ I (x, y) (2.17)

where Is (x, y) is the smoothed intensity map. The most common gradient-based methods
use these derivatives to determine the principal gradients at each pixel. It is possible to
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infer the presence of a particular feature at that pixel based on the principal gradients. To
compute the principal gradients, we use a matrix called the structure tensor, Z (x, y) [43].

Z (x, y) =

 ( δ2Iδx2

)2
δI
δx

δI
δy

δI
δx

δI
δy

(
δ2I
δy2

)2

 (2.18)

Note that in the equation above the image intensity is shown without the function inputs
for compactness, but it remains a function of x and y. This matrix, evaluated at a partic-
ular pixel, provides information on the nature of the data in that pixel. The first method
for determining the nature of each pixel relies on analysis of the eigenvalues of Z. Two
large eigenvalues implies that two strong gradients cross over that pixel and therefore it is
considered to contain a corner. One large eigenvalue indicates a large gradient in a single
direction which further suggests that the pixel contains an edge. If both eigenvalues are
small, then the region is considered flat [43]. So, to create a response that emphasizes edges
in the original image, one should take the maximum eigenvalue of the structure tensor for
each pixel. Formally,

redge (x, y) = max {λ1 (x, y) , λ2 (x, y)} (2.19)

If instead we wish to create a response that highlights corners in the original image data,
the minimum eigenvalue at each pixel provides this result.

rcorner (x, y) = min {λ1 (x, y) , λ2 (x, y)} (2.20)

An alternative method aims to achieve the same performance as the eigenvalue-based ap-
proach with a lower computational cost. The combined corner and edge detector proposed by
[44] uses the structure tensor but does not compute the eigenvalues. Instead, the algorithm
computes a combined corner and edge response, rh, which is [44]

rh (x, y) =

(
δ2I

δx2

δ2I

δy2

)2

−
(
δI

δx

δI

δy

)2

− k
(
δ2I

δx2
+
δ2I

δy2

)2

(2.21)

or, in terms of Z,
rh (x, y) = det (Z)− k tr (Z)2 (2.22)

In this equation, k is a user-defined tuning parameter [44]. When rh is positive, the pixel
contains a corner. If rh is negative, then the pixel contains an edge. Whenever the response,
rh, is small, the region is considered to be flat.

Another edge and corner detector analyzes an image in frequency space rather than the
raw intensity data. Phase congruency, a measure of the amount of agreement in the fourier
components of a signal, provides an indicator for the type of features that a pixel contains.
The phase congruency for a one-dimensional signal is [45]

PC (x) =
|E (x)|∑n
i=1Ai (x)

(2.23)
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where E (x) is the sum of the components of the Fourier transform and Ai (x) is the amplitude
of the ith Fourier component at a particular location, x. The numerator of the equation above
is the resultant of the sum of all of the Fourier components at that location, referred to as
the “local energy.” Regions where the Fourier components are mostly in phase will have
a high phase congruency while regions where the Fourier components are not aligned will
return a low result. Figure 2.9 illustrates this sum of Fourier components. The maximum
value of this ratio is 1, when all of the component vectors perfectly aligned.

Re

Im

E (x)

Figure 2.9: Example phase congruency local energy plot.

Equation 2.23 only considers a case in one dimension. The work in [45] computes a value
for phase congruency along a number of lines crossing a pixel at a specified angle in order to
examine the principal moments of the phase congruency at that point. We write the phase
congruency along a line crossing a pixel at an angle θ to the horizontal as PC (x, y, θ). If we
also define:

ν1 (x, y) =
∑
θ

[PC (x, y, θ) cos θ]2

ν2 (x, y) = 2
∑
θ

[PC (x, y, θ) cos θ] [PC (x, y, θ) sin θ]

ν3 (x, y) =
∑
θ

[PC (x, y, θ) sin θ]2

(2.24)

Then the phase congruency edge response is

rpc =
1

2

(
ν3 (x, y) + ν1 (x, y) +

√
ν2 (x, y)2 + [ν1 (x, y)− ν3 (x, y)]2

)
(2.25)

and the phase congruency corner response is

rpc =
1

2

(
ν3 (x, y) + ν1 (x, y)−

√
ν2 (x, y)2 + [ν1 (x, y)− ν3 (x, y)]2

)
(2.26)

The edge and corner responses correspond to the maximum and minimum phase congruency
values for any angle θ. These results are analogous to the minimum and maximum gradients
in the eigenvalue-based approach. Figure 2.10 shows a real-world example of the benefits of
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edge detection methods for processing unresolved imagery. The image on the left-hand side
of the figure is an image of the comet Pan-Starrs taken by a hobbyist astronomer [3]. The
comet’s coma in the original image introduces a gradient across a portion of the image that
would complicate analysis with a simple threshold process. The image on the right-hand side
is the result of the phase congruency edge detector run on the original image. We see that
in the result the star streaks are emphasized and the effect of the noise has been reduced.
Further, the edge detection routine completely ignored the comet’s coma, leaving only a
small point source indicating the location of the comet in the image.

Figure 2.10: Result of an edge detection process on an image of the comet Pan-Starrs [3].

Past work has also shown that the corner detector is an approximate method for extracting
the endpoints of streaked point sources. Since streaks typically have a consistent gradient
along the direction of travel, the only points at which they exhibit a strong bi-directional
gradient is at the ends. See [46] for a complete discussion of this approach to star streak
analysis.

A drawback of threshold and gradient based approaches is their interaction with image noise.
In order to detect objects near to or below the noise floor, it is often necessary to employ
some prior knowledge to extract the signals. Matched filter analysis is a technique that is
commonly used for detection of dim near-Earth asteroids [47] and spacecraft [24]. The basic
concept behind matched filter analysis is that, if we know what an object is expected to look
like in optical imagery, then we can leverage that knowledge to aid in extracting its location
even when it is too dim for traditional methods. We achieve a signal gain by building a
template that describes the object’s expected appearance in the image based on some prior
knowledge or initial guess. In the next chapter we will derive motion models for objects
across the image plane of an optical sensor and these models will provide a way of predicting
the geometry of signals of interest.

However we create this template, whether by assuming a velocity for the object [47] or
through prior knowledge of a particular space object [24], we can leverage it to extract
objects that match the template through convolution. Formally, the convolution process is

R (x, y) = T (x, y) ∗ I (x, y) (2.27)
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where T (x, y) is the template image and R (x, y) is the matched filter result. A peak in the
resulting image suggests that there may be a matching signal at that location. Figure 2.11
contains a simulated example of this matched filter process. The image on the left-hand side
of the figure is a simulated noisy star image. The right-hand side of the image contains the
result of convolution of the original image with a matched filter template. In this case we
assume that all of the stars have an identical appearance. In the result we see that even the
dim star streaks show a significant gain relative to the background noise.

Figure 2.11: Simulated star image (left) and the result of a matched filter convolution (right).

The matched filter analysis described above has the benefit of simultaneously providing a
location for the detection as well. Methods based on thresholding or edge detection require
a secondary process for localization of objects in an image. The most common method for
localizing objects in unresolved imagery is centroiding. Similar to the centroid of a physical
object, the centroid in an image computes a “center of intensity” that consists of a weighted
sum of all of the pixels that make up a particular object. This process is capable of providing
precise estimates of the location of an unresolved signal in an image and the result actually
improves for unfocused optics [48, 7]. The centroid calculation can be written as

c =

∑n
i=1 xi I (xi)∑n
i=1 I (xi)

(2.28)

where n is the number of pixels contained in the signal of interest, xi is the location of the
ith pixel, and I (xi) is the intensity value of that pixel. Accuracies as low as a hundredth of
a pixel are possible for bright, static objects [7]. The centroid process suffers when objects
begin to streak across the image. As the speed of an object across the image plane increases,
its signal is spread across more pixels. This spread reduces the signal brightness and increases
the effect of noise, thereby reducing the accuracy of the centroid process [49].

A slightly different approach for computing an object’s centroid can sometimes provide im-
proved accuracy. The mean shift process iteratively searches for a local maximum through
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a sequential centroiding routine [50]. Rather than including all of the pixels that are con-
sidered to be a part of the object, some of which might be noise, the mean shift process
chooses a small window of the image and iteratively computes the centroid of that window.
For each iteration, the algorithm computes the center point, then shifts the window to that
center point for the next iteration. Formally, the centroid of a window with radius r is

cw =
1

w

r∑
i=−r

r∑
j=−r

{(
xp +

[
i
j

])
I (xp + i, yp + j)

}
(2.29)

where xp = (xp, yp) is the center point of the window and

w =
r∑

i=−r

r∑
j=−r

I (xp + i, yp + j) (2.30)

This equation is equivalent to Equation 2.28 when considering only the pixels within a
prescribed window. At each iteration, one can either round xp so that it falls only in the
center of a pixel or interpolate values at subpixel locations in I (xp + i, yp + j). The mean
shift, or the shift from one iteration to the next, gives an indication of the convergence of
the algorithm. The shift is defined by [50]

mi = c[i]
w − c[i−1]

w (2.31)

where c
[i]
w indicates the centroid computed from the ith iteration. So, one choice of conver-

gence criteria is the euclidean norm of the mean shift. When this error metric drops below
a defined threshold, τ , then the algorithm will stop iterating.

εi = ‖mi‖2 ≤ τ (2.32)

Figure 2.12 contains a simulated example of this process in a noise-free scenario. The algo-
rithm begins with only a pixel-accurate estimate of the centroid of a point source which is
approximately 0.34 pixels from the true, subpixel center point. By the third iteration, the
error has dropped below a tenth of a pixel. Beyond the 6th iteration, the error is below a
hundredth of a pixel.

Many of the algorithms described thus far suffer from the presence of image noise. There
are, however, a number of approaches for reducing and removing the effects from predictable
noise patterns [39, 51, 52]. These techniques work by characterizing the sensor either offline
or from a single image to predict the effect of various noise sources in a single pixel. This
prediction then allows for subtraction of some or all of that noise source.

As mentioned previously, dark current is a source of noise that is proportional to the exposure
time of an image. Since it is proportional to the exposure time, we may attempt to estimate
the effect of this noise source and counteract it. A common method called dark frame
subtraction works to create an image with only dark current noise to be subtracted from
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Figure 2.12: Mean shift convergence from pixel-accurate initial estimate.

later image data. To create a dark frame, we capture an image with the lens cap of the
sensor on. This way there is no source of light, so the only signal should be due to noise. If
we expose for a sufficient duration the dark current noise will dominate the read noise and it
should be possible to build an accurate dark frame. Once the dark frame is built, it is then
possible to subtract it from subsequent imagery in attempt to remove some of the effect of
this noise source [39, 51]. In general, dark frame subtraction is able to reduce the effect of
dark current noise, however it does not reliably benefit detection of dim space objects [51].

Another source of error in imagery is due to variation in the efficiency with which physical
pixels on the CCD convert from photons to photoelectrons. Ideally, two pixels illuminated
with the same photon flux would produce identical values. In practice, however, the CCD will
contain small variations of efficiency between individual pixels [39]. To correct these spatial
sensitivity variations, we can extract a flat field map and reverse the effect. To create a flat
field map one would ideally uniformly illuminate the CCD so that every pixel is receiving
an identical photon flux. The resulting image would, in a perfect sensor, contain uniform
values over the entire space. Since the sensor is not perfectly homogeneous, however, there
will be regions which are brighter or dimmer than average. Manipulating the original image
such that each pixel has a uniform signal in the flat field map will work to counteract this
effect [39].

Some image corruption is due to actual, undesired signals. For example, stray light entering
the aperture or overly-bright objects can cause glare that obscures large portions of the
image. An algorithm for reducing this effect involves analysis of the actual image data. If we
are able to determine which pixels are background and which pixels contain signal, then it is
possible to perform a background fit to subtract whatever gradients exist over the relevant
image data [52]. Specifically, we can fit a polynomial to each column (or row) to describe the
contribution of “background noise” to each pixel. For each column, define the background
polynomial b (y),

b (y) = αny
n + αn−1y

n−1 . . .+ α1y + α0 (2.33)

where n is the order of the polynomial and αi for i = 0, . . . , n are unknown constants. If
we are able to find ` pixels which are part of the background and do not contain any signal,
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then we can build up the system of equations
b1

b2
...

b`−1

b`

 =


yn1 yn−1

1 . . . y1 1
yn2 yn−1

2 . . . y2 1
...

yn`−1 yn−1
`−1 . . . y`−1 1

yn` yn−1
` . . . y` 1




αn
αn−1

...
α1

α0

 (2.34)

A least squares solution for (α0, . . . , αn) will characterize the background noise in that par-
ticular column. By building a complete background image from this process, we can then
attempt to subtract its effect and flatten the image. Figure 2.13 contains a real image on
which we will demonstrate this effect. The image contains the star Alpha Centauri which is
bright enough to cast a glare over a large portion of the image, obscuring a number of dimmer
stars [53]. We wish to perform a background subtraction to flatten the image out and remove
as much of the glare as possible. For this particular image, separating the background from
the signals is difficult, so instead we will simply fit a polynomial to each column. After the
initial fitting process, we will remove any pixel which is brighter than the background and
perform a secondary fit.

Figure 2.13: An image of Alpha Centauri with a glare obscuring neighboring stars.

Figure 2.14 contains the result of this two-step background subtraction process. We see that
the bulk of the glare from Alpha Centauri has been removed, though some artifacts remain
in the region around the star. For many of the neighboring stars, though, this glare reduction
offers a considerable improvement.
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Figure 2.14: Result of a background subtraction process on the Alpha Centauri image.

The image processing approaches detailed in this section make up the foundation of the
analysis in Chapters 4 and 5. Specifically, these techniques work to extract space objects
from unresolved imagery. The derivations in Chapters 4 and 5, for the most part, operate on
the assumption that precise locations are available for all of the space objects in an image.
So, with the methods described here we are able to extract measurements in the form of
(x, y) locations to drive higher-level analysis in the coming chapters.

2.2.3 Orbit Determination and Estimation

The bulk of this dissertation will focus on approaches for taking optical measurements of
space objects. The ultimate goal of these observations, however, is to determine the orbit of
an observed object. Achieving this goal requires that we determine a position vector, r, and
a velocity, ṙ, that describe the object at a given time. There are a number of ways to do
this, only a subset of which will be discussed here. Before discussing the orbit determination
and estimation processes it is necessary to consider the equations that govern the motion
of orbiting bodies. There are many approaches to model orbital motion, each considering
different sets of forces. In general, we can express orbital motion by the following second
order differential equation [36].

r̈ = − µ
r3
r + aNonSpherical + aAirDrag +

n∑
i=1

a
[i]
ThirdBody + aSolarPressure (2.35)

Here, r describes the position of a spacecraft relative to the center of the body that it is or-
biting. The term µ is the gravitational parameter. For Earth, µ ≈ 398600 km3/s2. The first
term of this equation describes the orbit of a spacecraft when the central body is expressed
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as a point mass and all other forces are neglected. The second term, aNonSpherical, accounts
for variations in the gravity field of Earth due to deviations from a homogeneous, spherical
shape. The third term, aAirDrag, describes the effect of drag from the upper atmosphere on
the spacecraft.

aAirDrag = −1

2
CDρ

A

m

ṙrel

‖ṙrel‖
ṙ2

rel (2.36)

where CD is the coefficient of drag, ρ is the local atmospheric density, A is the cross-sectional
area of the spacecraft, m is the mass of the spacecraft, and ṙrel is the velocity of the spacecraft
relative to the atmosphere (which is rotating). The relative velocity is [36]

ṙrel =
dr

dt
(−ω⊕ × r) (2.37)

It is important to note that precisely determining the local atmospheric pressure, ρ, is non-
trivial. The local density is affected by a number of time-varying parameters such as weather
patterns, Diurnal variations due to perturbation from the Sun’s gravity, and Solar weather
cycles [36]. Further, if the geometry of the space object we wish to propagate is unknown,
then the coefficient of drag, cross-sectional area, and mass are also unavailable.

The fourth acceleration term factors in the presence of other bodies exerting a force on the
spacecraft, such as the Sun, Moon, and other planets in the solar system. The summation
of accelerations allows for inclusion of any number of perturbing bodies. The acceleration
due to the ith perturbing body is

a
[i]
ThirdBody = µi

ri
r3
i

− r
[i]
⊕(

r
[i]
⊕

)3

 (2.38)

where ri is the position of the spacecraft relative to the ith body and r
[i]
⊕ is the position

of the ith body relative to Earth. This acceleration term can factor in any number of
additional gravitational bodies, though for small, distant objects computational accuracy
suffers [36]. The final term of Equation 2.35 describes the effect of solar radiation pressure
on the spacecraft. Since the light from the sun exerts a small amount of force on any object
it encounters, the aggregate effect of the sunlight over an entire orbit can lead to a significant
acceleration. The equation for the acceleration caused by the solar radiation pressure is [36]

aSolarPressure = −psrpcRA�
m

r�
‖r�‖

(2.39)

where psrp is the force of the solar pressure, cR ∈ [0, 2] is the reflectivity of the spacecraft
surface, A� is the surface area exposed to the sun, and m is the mass of the spacecraft.
This effect becomes more significant as the area-to-mass ratio, A�

m
, grows. High area-to-

mass objects may deviate significantly from the basic equations of orbital motion due to this
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effect. Typical spacecraft, however, have an area-to-mass ratio between 0.01 and 0.02 and
thus the effect is usually neglected [33].

Of course, the acceleration terms in Equation 2.35 are not a complete list. There are poten-
tially infinite sources of perturbations acting on a spacecraft in orbit, however small. One
such example of a perturbation not considered here is the Pioneer anomaly. The Pioneer
anomaly is a small, sunward acceleration affecting the Pioneer 10 and 11 spacecraft. The
anomaly was first discovered in 1998 through analysis of precise orbit determination results
[54]. Later research attributed the mysterious acceleration to asymmetric thermal radiation
from the external surface of the spacecraft [55]. For simplicity, we can determine two of the
most dominant terms of Equation 2.35: the two-body acceleration and the J2 non-spherical
Earth pertubation. This formulation is easy to implement because it does not require knowl-
edge of the physical properties of the spacecraft. The orbit of a spacecraft affected by only
these perturbations is

r̈ = − µ
r3
r + aJ2 (2.40)

where aJ2 is the acceleration to Earth’s equatorial bulge. The J2 perturbation is [36]

(aJ2)1 = −3

2
J2
µR⊕r1

2r5

(
1− 5r2

3

r2

)
(aJ2)2 = −3

2
J2
µR⊕r2

2r5

(
1− 5r2

3

r2

)
(aJ2)3 = −3

2
J2
µR⊕r3

2r5

(
3− 5r2

3

r2

) (2.41)

where (·)i indicates the ith component of the vector inside the parenthesis, R⊕ is the radius
of Earth, and

J2 ≈ 0.00108263 (2.42)

This model is typically sufficient to characterize the motion of large spacecraft and pieces
of debris. Now, to use optical observations to estimate the orbit of a spacecraft, we face
two challenges: deriving an initial orbit determination (IOD) and continuously updating
our knowledge with new measurements. The initial orbit determination problem is well-
understood and there are numerous approaches to solving it. For optical systems, we are
considering what is called the angles-only orbit determination problem. Since the range from
the observer to the object is not available from a single image, the sensor only provides a
position on the celestial sphere. Figure 2.15 illustrates this scenario. This figure shows three
separate observations over time of a single spacecraft. Since the range is not available, ui
is a unit vector describing the line of sight vector from the sensor to the spacecraft. The
spacecraft can theoretically be at any point along this line which extends out to infinity.

The classical angles-only IOD methods attempt to constrain the position and velocity of
the object based on the three measured line of sight vectors. We will consider one of the
classical techniques: Laplace’s Method. Assume that we have three separate observations
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u1

u2u3

Figure 2.15: Angles-only spacecraft observations.

from a single observer given by the pairs (t1,u1), (t2,u2), and (t3,u3) where ti is the time
corresponding to the ith measurement. Laplace’s Method works by interpolating between
the observation vectors to create a function û (t). The interpolated observation vector is [36]

û (t) =
(t− t2) (t− t3)

(t1 − t2) (t1 − t3)
u1 +

(t− t1) (t− t3)

(t2 − t1) (t2 − t3)
u2 +

(t− t1) (t− t2)

(t3 − t1) (t3 − t2)
u3 (2.43)

In order to infer the position and velocity from the expression above, we will also require
the derivatives of û (t). The position and velocity vectors of the spacecraft are inferred from
these functions. The first derivative of û (t) is

˙̂u (t) =
2t− t2 − t3

(t1 − t2) (t1 − t3)
u1 +

2t− t1 − t3
(t2 − t1) (t2 − t3)

u2 +
2t− t1 − t2

(t3 − t1) (t3 − t2)
u3 (2.44)

The second derivative of û (t) is

¨̂u (t) =
2

(t1 − t2) (t1 − t3)
u1 +

2

(t2 − t1) (t2 − t3)
u2 +

2

(t3 − t1) (t3 − t2)
u3 (2.45)

Now, consider the position vector of a spacecraft, described as the position of the spacecraft
relative to the sensor plus the vector describing the location of the observer relative to the
center of the planet.

r = ρû+ rsite (2.46)

Here, ρ = ‖ρ‖ is the magnitude of the position of the spacecraft relative to the sensor.
We will use this equation to derive a relationship between the observation vector and the
true position and velocity of the spacecraft. Taking the first and second derivatives of the
equation above yields

ṙ = ρ̇û+ ρ ˙̂u+ ṙsite

r̈ = ρ̈û+ 2ρ̇ ˙̂u+ ρ¨̂u+ r̈site

(2.47)

where the first and second derivatives of the site vector are given by

ṙsite = ω⊕ × rsite, r̈site = ω⊕ × ṙsite (2.48)
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and ω⊕ designates the angular rate of Earth. So, Equation 2.47 gives a relationship between
an observation vector and the true position and velocity of the spacecraft. Considering only
the two-body motion of Equation 2.35, we can write

− µ
r3

(ρû+ rsite) = ρ̈û+ 2ρ̇ ˙̂u+ ρ¨̂u+ r̈site (2.49)

In matrix form, the equation above is

[
û 2 ˙̂u ¨̂u+ µ

r3
û
]  ρ̈

ρ̇
ρ

 = −
(
r̈site +

µ

r3
rsite

)
(2.50)

where the first term is a 3 × 3 matrix. This relation, in combination with Equations 2.43
- 2.45, provides a solution for the range, ρ, and the range-rate, ρ̇, if the magnitude of r is
available. We do not know the magnitude of the spacecraft’s position vector, r, but we get
around this issue by making an initial guess for the magnitude of the radius and iterating
until the solution converges [36]. This process provides a position vector, r, and a velocity,
ṙ for the observed spacecraft. There are a number of other approaches to this problem
including Gauss’s technique, double-r iteration, and Gooding’s Method, which are discussed
in full in [36]. Any one of these methods is capable of providing an initial estimate from a
limited set of observations. With that initial estimate, we can then proceed to an algorithm
which will continuously update our estimate as new measurements come in.

Any technique for performing IOD gives the position and velocity of an observed object
at only a single point in time from a small set of measurements. Maintaining the orbital
knowledge of an object requires a process that continually updates the existing estimate to
account for new observations. As always, there are a number of different methods capable
of achieving this goal. This section will consider two algorithms: the Extended Kalman
Filter and the Unscented Kalman Filter. These will be sufficient for verifying the accuracy
of measurements collected in the later chapters.

A basic approach to combining noisy measurements with our current understanding of the
state of a system is the Kalman Filter. For a linear system with Gaussian-distributed uncer-
tainties, the Kalman filter provides the minimum-variance (minimum uncertainty) estimate
of the state incorporating each measurement and the prior state knowledge. Table 2.2.3
summarizes the process for the discrete Kalman Filter. For each measurement, the filter
predicts the state forward from the prior estimate and computes a corrected estimate based
on the deviation of the estimate from the measurement and the Kalman Gain.

A key drawback of the Kalman Filter is that it requires linear dynamics and Gaussian
uncertainty. Equation 2.40 clearly does not meet the linear requirement, therefore we require
another approach. Both methods that we will consider here are approximate versions of the
linear Kalman Filter which attempt to pose a nonlinear system in such a way that the original
Kalman Filter formulation applies. The first method, the Extended Kalman Filter (EKF),
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Table 2.1: Summary of the discrete-time linear Kalman filter [8].

Model
xk+1 = Φkxk + Γkuk + Υwk

zk = Hkxk + vk

Prediction
x̂−k+1 = Φx̂+

k + Γuk
P−k+1 = ΦkP

+
k ΦT

k + ΓkQkΓ
T
k

Kalman Gain Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1

Correction
x̂+
k = x̂−k +Kk

(
zk −Hkx̂

−
k

)
P+
k = (I −KkHk)P

−
k

attempts to linearize the nonlinear system [8]. Before explaining the procedure, let us first
define some variables which will be necessary later on. Define the state vector, x as

x =

[
r
ṙ

]
(2.51)

As in Equation 2.40, r refers to the position vector of a particular object of interest relative
to the center of Earth. So the vector x contains both the position and velocity of an object.
Now, define the function F (·), describing the dynamics of the system, as

F (x (t) , t) =

[
ṙ
r̈

]
=

[
ṙ

− µ
r3
r + aJ2

]
(2.52)

In words, F (x (t) , t) simply contains the differential equations describing the evolution of r.
Note that here we use the J2-perturbed model for r̈ from Equation 2.40. Similarly, define a
measurement function as

zk = h (xk) (2.53)

The measurement function, like the function F , can be nonlinear. Since this dissertation
focuses on optical measurements, we will use the measurement model from Equation 2.6. The
EKF approach linearizes the dynamics and the measurement model by taking the derivatives
of F and h with respect to the state vector. The Jacobian of F at a point x̂ is

J (x̂ (t) , t) =
∂F

∂x

∣∣∣∣
x̂(t)

(2.54)

and the Jacobian of h is

H (x̂k) =
∂h

∂x

∣∣∣∣
x̂k

(2.55)

Table 2.2.3 summarizes the Extended Kalman Filter process. Here we consider the continuous-
discrete formulation of the EKF. This choice is due to the fact that, while the dynamics are
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described by continuous differential equations, our sensors return measurements at only
discrete points in time. The continuous-discrete formulation allows us to propagate the dy-
namics in continuous way while the update step is only performed at discrete time intervals.
For each measurement, we use the equations in the prediction row to numerically propagate
our previous estimate to the current time. That estimate, in combination with the Kalman
Gain, provides a corrected estimate that accounts for the measurement uncertainty, vk, and
process noise, wk.

Table 2.2: Summary of the continuous-discrete Extended Kalman filter [8].

Model
ẋ (t) = F (x (t) , t) +G (t)w (t)
zk = h (xk) + vk

Prediction
˙̂x = F (x̂ (t) , t)

Ṗ (t) = J (x̂ (t) , t)P (t) + P (t) J (x̂ (t) , t)T +G (t)Q (t)G (t)T

Kalman Gain Kk = P−k H
(
x̂−k
)T [

H
(
x̂−k
)
P−k H

(
x̂−k
)

+Rk

]−1

Correction
x̂+
k = x̂−k +Kk

[
zk − h

(
x̂−k
)]

P+
k =

[
I −KkH

(
x̂−k
)]
P−k

An alternative formulation, called the Unscented Kalman Filter, relies on the unscented
transform to approximate the covariance, rather than attempting to approximate the equa-
tions of motion. The original paper proposing this technique argues that “It is easier to
approximate a probability distribution than [...] an arbitrary nonlinear function[56].”

At the heart of the Unscented Kalman Filter is the Unscented Transform, which works to ap-
proximate a probability distribution undergoing a nonlinear transformation. The Unscented
Transform relies on a choice of a specific set of points in the initial distibution, commonly
referred to as sigma points. Figure 2.16 contains an illustration of the unscented transform
process. In this simulated scenario, an initial distribution of particles is colored in blue.
This distribution is Gaussian, with some mean and covariance. The resulting distribution
after propagating the blue particles through a nonlinear function, F (·) is shown in gray.
The sigma points are indicated on the figure with the black “+” marks. The sigma points
correspond to the mean of the initial distribution as well as a step along each dimension
from the mean. The unscented transform propagates these sigma points through F (·) and
estimates the covariance of the resulting distribution from only this subset of points [56].

This approach is potentially beneficial for the process of orbit determination, because the
nonlinear effects can cause significant deviation from the ideal Gaussian of an initial proba-
bility distribution. Figure 2.17 contains a simulated example of the effect of the two-body
orbital equations of motion on a starting distribution. In this case, the initial position of
the spacecraft is a Gaussian random variable with some mean and covariance and the initial
velocity is the same for all particles.
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F

Figure 2.16: Illustration of the unscented transform.

The initial distribution in Figure 2.17 is shown on the left-hand. After propagating the orbit
for 2 hours, the resulting distribution is on the right. The particles of the initial distribution
have a tendency to “stretch” along the orbital path, curving around the orbit. This effect
is due to the fact that the particles closer to or further from Earth are on slightly more
eccentric orbits. Relative motion analysis confirms that nearby objects, in the absence of
other perturbations, tend to drift primarily in the along-track direction [36].

Figure 2.17: Monte Carlo orbital simulation with a Gaussian-distributed initial position.

The Unscented Kalman Filter is often built around an augmented state variable which con-
tains the state, process noise, and measurement noise in a single vector. Though this method
is not required, it simplifies the overall formulation. Define the augmented state vector at
time step k as xak where

xak =

 xk
wk

vk

 (2.56)
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where wk ∼ N (0, Q (t)) is the process noise and vk ∼ N (0, R (t)) is the measurement noise.
The covariance corresponding to xak at time step k is

P a
k =

 P+
k P xw

k P xv
k

(P xw
k )T Qk Pwv

k

(P xv
k )T (Pwv

k )T Rk

 (2.57)

where P xw
k is the correlation between the state error and process noise, P xv

k is the correlation
between the state error and the measurement noise, and Pwv

k is the correlation between the
process noise and measurement noise. Conveniently, P xw

k , P xv
k , and Pwv

k are zero for most
systems and need not be considered [8]. Augmenting the state variable yields a simple for-
mulation for the choice of sigma points. Define χi for i = 0, . . . , 2L as the set of sigma points
from the initial probability distribution which will approximate the resulting distribution.
The standard definition of χi is [56]

χ0 = x̂ak

χi = x̂ak +

(√
(L+ λ)P a

k

)
i

, i = 1, . . . , L

χi = x̂ak −
(√

(L+ λ)P a
k

)
i

, i = L+ 1, . . . , 2L

(2.58)

where (·)i denotes the ith column of the expression inside the parenthesis. The term L is the
length of the vector xak. The parameter λ is called the composite scaling parameter, which
is typically defined by [8]

λ = α2 (L+ κ)− L (2.59)

where α gives the spread of the sigma points and is typically small, and κ, for non-scalar
systems, is set to [8]

κ = 3− L (2.60)

A set of weightings provide the mean and covariance estimates from the complete set of
sigma points. It is typical to use two sets of weightings: one for estimation of the mean and
one for the covariance matrices. The standard choice of weightings is shown below [8].

Wm
0 =

λ

L+ λ

W c
0 = Wm

0 +
(
1− α2 + β

)
Wm
i = W c

i =
1

2 (L+ λ)
, i = 1, . . . , 2L

(2.61)

Here β is another tuning parameter; typically β = 2 is sufficient [8]. The term Wm
i denotes

the weightings required to compute the mean from the set of sigma points and W c
i contains

the weightings used to compute the covariance terms. Table 2.2.3 summarizes the process
for the Unscented Kalman Filter.
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In words, the UKF begins by defining the sigma points based on the current covariance Pk.
Then, the UKF propagates those points and estimates the mean of the resulting distribution
as well as the necessary covariances. The Kalman gain uses these results to update the state
in the same way as the standard Kalman Filter.

Table 2.3: Summary of the Unscented Kalman filter [8].

Model
χi,k+1 = F (χi,k)
γk = h (χk)

Prediction

x̂−k =
∑2L

i=0 W
m
i χi,k

P−k =
∑2L

i=0W
c
i

[
χxi,k − x̂

−
k

] [
χxi,k − x̂

−
k

]T
P xz
k =

∑2L
i=0W

c
i

[
χxi,k − x̂

−
k

] [
γk − ẑ−k

]T
P zz
k =

∑2L
i=0W

c
i

[
γk − ẑ−k

] [
γk − ẑ−k

]T
Kalman Gain Kk = P xz

k (P vv
k )−1

Correction
x̂+
k = x̂−k +Kk [zk − h (xk,uk,vk)]

P+
k = P−k −KkP

vv
k KT

k

The algorithms for orbit estimation described in this section are the end goal of all of the
work in this dissertation. The methods for image analysis derived in the coming sections are
intended to augment our ability to extract space objects from unresolved imagery. The goal
of that type of data analysis is, ultimately, to report the angles-only measurement data to
an orbit determination routine that is capable of maintaining a complete catalog of space
objects in orbit around Earth. So, even though the remaining Chapters focus on the sensor-
level data processing pipeline, these orbit estimation algorithms would play a key role in an
operational system.



Chapter 3

Dynamic and Geometric Analysis of
the Optical Observer

This chapter will focus on deriving dynamic equations of motion for space objects viewed
through an optical sensor. Chapter 2 touched on the fact that typical data reduction tech-
niques for SSA rely on broad assumptions about the motion of a particular sensor. Though
these approaches are capable of generating valuable data, they limit the set of useful sensors
to only those which are tasked in a certain manner. In an effort to expand the number of
contributing sensors, we may instead work to consider as general a motion model as possi-
ble. This approach will allow for a greater quantity and quality of data from ground- and
space-based observers. Here we will work to derive equations of motion for an object viewed
through an optical sensor. These equations of motion will rely on as few assumptions about
the motion of the sensor as possible to remain applicable to a general population of optical
observers.

This chapter is separated into four sections. The first explores motion of space objects across
the image plane of a sensor adhering to the pinhole camera model. Each sub-section considers
the equations of motion arising from a certain set of assumptions constraining the sensor
and space object’s motion. The second section considers the motion in a distortion-corrected
image plane. In this case, a correct polynomial like the one discussed in the previous chapter
modifies an image to produce an “un-distorted” result. Here, we will define the un-distorted
model and derive a set of equations of motion arising from that definition. The remaining two
sections of this chapter focus on geometric approaches to understanding image data. Section
3.3 considers a geometric representation of the motion of intertially-fixed objects across the
image plane. Section 3.4 extends our analysis to include the possibility of multiple sensors
operating in concert.

33
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3.1 Motion in the Pinhole Image Plane

Figure 3.1 illustrates a cross-section of the geometry between an optical sensor and a space-
craft. The relative position between the sensor and the spacecraft is noted by the term ρ,
which is expressed in a body-fixed frame of the sensor where the sensor’s pointing direction
is always aligned with the ê3 unit vector.

ρ ê3

ê1

Figure 3.1: A spacecraft’s relative position in the sensor’s body-fixed coordinate system.

There are a number of different ways to frame this problem. First, it is necessary to derive
a relationship between the dynamics of a signal in the image plane and the dynamics of the
corresponding object’s relative position vector, ρ. Recall the projection from R3 to R2 for
an optical sensor according to the pinhole camera model. The collinearity equation is[

x
y

]
= − f

ρ3

[
ρ1

ρ2

]
(3.1)

This equation provides a relation between the image-plane coordinates, (x, y), and the rela-
tive position of an object of interest to the sensor, ρ, so it will serve as a starting point for
deriving dynamic relationships between the two. Of course, this is a simple model which does
not capture all of the nuance of a real-world sensor. Theoretical results from this model can
provide valuable insight into the fundamental behavior of optical sensors, however. Current
research in the area of optical navigation in the Earth-Moon system leverages this model for
theoretical analysis of the shape of the Moon in an image [13, 57, 14].

In general, a direct solution for ρ as a function of time may not be available, so Equation
3.1 alone is insufficient. The derivative of the Collinearity equation, however, will provide
some insight into the connection between the image-plane dynamics and the evolution of ρ.
We will begin by taking the time derivatives of the x and y components of the Collinearity
equation. The derivative of the x coordinate is

ẋ = −f ρ̇1

ρ3

+ f
ρ1ρ̇3

ρ2
3

(3.2)

Equation 3.1 shows that x = −f ρ1
ρ3

, so the equation above is equivalent to

ẋ = −f ρ̇1

ρ3

− xρ̇3

ρ3

(3.3)
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The first derivative of the y coordinate with respect to time is

ẏ = −f ρ̇2

ρ3

+ f
ρ2ρ̇3

ρ2
3

(3.4)

Again, Equation 3.1 shows that y = −f ρ2
ρ3

, so this equation becomes

ẏ = −f ρ̇2

ρ3

− y ρ̇3

ρ3

(3.5)

In some situations even the first derivative with respect to time may not be available. This
will be the case for nearly all orbiting space objects because of the dynamics in Equation
2.40 so a higher-order relation is necessary. The second derivative of the x coordinate with
respect to time is

ẍ = 2f
ρ̇1ρ̇3

ρ2
3

− 2f
ρ1ρ̇

2
3

ρ3
3

− f ρ̈1

ρ3

+ f
ρ1ρ̈3

ρ2
3

(3.6)

Equation 3.1 again allows for some simplification

ẍ = 2f
ρ̇1ρ̇3

ρ2
3

+ 2x
ρ̇2

3

ρ2
3

− f ρ̈1

ρ3

− xρ̈3

ρ3

(3.7)

Further, by writing the equation above as

ẍ = 2
ρ̇3

ρ3

(
f
ρ̇1

ρ3

+ x
ρ̇3

ρ3

)
− f ρ̈1

ρ3

− xρ̈3

ρ3

(3.8)

we see that the term in parentheses is equivalent to −ẋ according to Equation 3.3.

ẍ = −2ẋ
ρ̇3

ρ3

− xρ̈3

ρ3

− f ρ̈1

ρ3

(3.9)

Similarly, the second derivative of the y coordinate with respect to time is

ÿ = 2f
ρ̇2ρ̇3

ρ2
3

− 2f
ρ2ρ̇

2
3

ρ3
3

− f ρ̈2

ρ3

+ f
ρ2ρ̈3

ρ2
3

(3.10)

The Collinearity equation shows that

ÿ = 2f
ρ̇2ρ̇3

ρ2
3

+ 2y
ρ̇2

3

ρ2
3

− f ρ̈2

ρ3

− y ρ̈3

ρ3

(3.11)

Similar to the equation for ẍ, we can write

ÿ = 2
ρ̇3

ρ3

(
f
ρ̇2

ρ3

+ 2y
ρ̇3

ρ3

)
− f ρ̈2

ρ3

− y ρ̈3

ρ3

(3.12)
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Finally, substitution of Equation 3.5 for the term in the parentheses gives

ÿ = −2ẏ
ρ̇3

ρ3

− y ρ̈3

ρ3

− f ρ̈2

ρ3

(3.13)

So, in summary, the first derivatives of the Collinearity Equation are

ẋ = −f ρ̇1

ρ3

− xρ̇3

ρ3

ẏ = −f ρ̇2

ρ3

− y ρ̇3

ρ3

(3.14)

and the second derivatives are

ẍ = −2ẋ
ρ̇3

ρ3

− xρ̈3

ρ3

− f ρ̈1

ρ3

ÿ = −2ẏ
ρ̇3

ρ3

− y ρ̈3

ρ3

− f ρ̈2

ρ3

(3.15)

These dynamic equations relate x and y to the relative dynamics of an observed object. By
assuming some dynamics for an object and inserting them into the ρ term of Equations 3.14
and Equations 3.15 we can derive a relation for that object’s motion across the image plane.

3.1.1 Constant Rotation Observer, Inertially-Fixed Object

First, consider the motion of stars in the body-fixed coordinate frame of the sensor. The
motion of a star in angle space across the celestial sphere is typically measured on the order of
mili-arcseconds per year [6]. One mili-arcsecond per year is approximately 30 pico-arcesconds
per second. So, based on this knowledge, we can safely assume stars to be inertially fixed
over the integration time on the order of seconds for an optical sensor. Thus, a star’s motion
across the image plane is determined entirely by the angular rate of the sensor. In order to
proceed further we must make some assumptions about the motion of the sensor. Consider
an optical sensor which maintains a constant angular rate over its integration time. If the
relative position of a star is given by ρ, then the relative position vector evolves according
to [58]

ρ̇ = −ω × ρ (3.16)

which is equivalently,
ρ̇ = −ω̃ρ (3.17)

where ω̃ is the skew-symmetric matrix

ω̃ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3.18)
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So, expanding Equation 3.17, we have

ρ̇1 = ω3ρ2 − ω2ρ3

ρ̇2 = −ω3ρ1 + ω1ρ3

ρ̇3 = ω2ρ1 − ω1ρ2

(3.19)

These dynamic equations for the three components of the relative position vector will al-
low for a connection between the assumed dynamics in Equation 3.17 and the image-plane
dynamics in Equation 3.14. Insertion of the relations for ρ̇1 and ρ̇3 into the ẋ equation yields

ẋ = −f ω3ρ2 − ω2ρ3

ρ3

− xω2ρ1 − ω1ρ2

ρ3

(3.20)

Expanding each term, this equation becomes

ẋ = −f ω3ρ2

ρ3

+ f
ω2ρ3

ρ3

− xω2ρ1

ρ3

+ x
ω1ρ2

ρ3

(3.21)

Finally, substituting components of the Collinearity equation provides an equation expressed
entirely in terms of the image plane coordinates, x and y.

ẋ = ω3y + fω2 +
1

f
ω2x

2 − 1

f
ω1xy (3.22)

The result above is important because it rigorously shows that the full position in R3 of
an inertially-fixed object is not relevant to the resulting image. Rather, an object’s motion
across the image plane of a rotating observer is fully defined by its initial (x, y) projection
into the focal plane and the angular rate of the sensor. A similar derivation follows for the
y equation. Inserting the relations for ρ̇2 and ρ̇3 into the relation for ẏ in Equation 3.14, we
find that

ẏ = −f−ω3ρ1 + ω1ρ3

ρ3

− yω2ρ1 − ω1ρ2

ρ3

(3.23)

As before, we expand each of the terms to write

ẏ = f
ω3ρ1

ρ3

− f ω1ρ3

ρ3

− yω2ρ1

ρ3

+ y
ω1ρ2

ρ3

(3.24)

Finally, consideration of the Collinearity Equation produces an expression which contains
no terms of the relative position vector.

ẏ = −ω3x− fω1 +
1

f
ω2xy −

1

f
ω1y

2 (3.25)

These two differential equations allow for propagation of an inertially-fixed object across the
image plane of a rotating sensor without need for knowledge of the true location of that
object in R3. Direct solution of these equations, however, is complicated.
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3.1.2 Single-Axis Constant Rotation Observer, Inertially-Fixed
Object

Some additional assumptions will allow for a closed-form solution to Equation 3.22 and 3.25.
Consider an observer rotating about a single axis. If the axis of rotation is aligned with the
body-fixed y axis, then ω3 = ω2 = 0. Equations 3.22 and 3.25 are

ẋ = − 1

f
ω1xy

ẏ = −fω1 −
1

f
ω1y

2
(3.26)

First, consider the equation for ẏ, since it has no coupling between the x and y terms. We
have

ẏ = −fω1 −
1

f
ω1y

2 (3.27)

which is a separable ODE. The equation above is equivalent to

dy

dt
= −ω1

f

(
f 2 + y2

)
(3.28)

which may be rearranged to find

dy

f 2 + y2
= −ω1

f
dt (3.29)

Note that since f is real and positive, then f 2 +y2 6= 0 for any y ∈ R so dividing by (f 2 + y2)
does not introduce any singularities. Now, integrate both sides of this equation.∫

dy

f 2 + y2
= −

∫
ω1

f
dt (3.30)

Factoring 1
f2

from the left-hand side gives

1

f 2

∫
dy

1 + y2/f2
= −

∫
ω1

f
dt (3.31)

and evaluation of the integral yields

1

f
tan−1

(
y

f

)
= −ω1

f
t+ c1 (3.32)

where c1 is an unknown constant. When solved for y, the equation above becomes

y (t) = −f tan (ω1t− c1f) (3.33)
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From the initial condition, y (t0), we can find the constant c1.

y (t0) = −f tan (ω1t0 − c1f) =⇒ c1 =
1

f

(
ω1t0 − tan−1

(
−y (t0)

f

))
(3.34)

Insertion of c1 back into the original equation yields

y (t) = −f tan

(
ω1 (t− t0)− tan−1

(
y (t0)

f

))
(3.35)

To simplify the equation above, we can write

y (t) = −f tan (ω1 (t− t0) + φ (t0)) (3.36)

where the angle φ is

φ (t) = tan−1

(
−y (t)

f

)
(3.37)

For now, we will simply use this definition for convenience. Later on its relation to the
geometry of the problem will become apparent. Now, the ẋ equation is

ẋ = − 1

f
ω1x (−f tan (ω1 (t− t0) + φ (t0))) (3.38)

We can write
dx

dt
= ω1x tan (ω1 (t− t0) + φ (t0)) (3.39)

and integrate both sides to solve for an explicit equation for x (t).∫
dx

x
=

∫
ω1 tan (ω1 (t− t0) + φ (t0)) dt (3.40)

The integral evaluates to

log (x (t)) = ω1

(
− log (cos (ω1 (t− t0) + φ (t0)))

ω1

)
+c2 = − log (cos (ω1 (t− t0) + φ (t0)))+c2

(3.41)
where c2 is an unknown constant. Now, take the exponential of both sides of this equation

exp (log x (t)) = exp (− log (cos (ω1 (t− t0) + φ (t0))) + c2) (3.42)

Evaluation of the left- and right-hand sides of this equation produces

x (t) = exp (c2) sec (ω1 (t− t0) + φ (t0)) (3.43)

To simplify notation, define a third constant, c3 = exp (c2). Now, the initial condition x (t0)
provides a solution for the constant c3.

x (t0) = c3 sec (φ (t0)) =⇒ c3 =
x (t0)

sec (φ (t0))
= x (t0) cos (φ (t0)) (3.44)
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Finally, inserting c3 into the solution for x (t) yields

x (t) =
x (t0) cos (φ (t0))

cos (ω1 (t− t0) + φ (t0))
(3.45)

Thus we have found an analytical solution for the motion of an inertially-fixed object across
the image plane of a sensor rotating about a single axis. So, in summary, for the case where
ω2 = ω3 = 0,

x (t) =
x (t0) cos (φ (t0))

cos (ω1 (t− t0) + φ (t0))

y (t) = −f tan (ω1 (t− t0) + φ (t0))

(3.46)

where the angle φ is

φ (t) = tan−1

(
−y (t)

f

)
(3.47)

A similar derivation exists for the case where ω1 = ω3 = 0 and ω2 6= 0. Under this set of
assumptions, Equations 3.22 and 3.25 become

ẋ = fω2 +
1

f
ω2x

2

ẏ =
1

f
ω2xy

(3.48)

The solutions for the differential equations above are

x (t) = f tan (ω2 (t− t0) + θ (t0))

y (t) =
y (t0) cos (θ (t0))

cos (ω2 (t− t0) + θ (t0))

(3.49)

where the angle θ is

θ (t) = tan−1

(
−x (t)

f

)
(3.50)

3.1.3 Constant Rotation Observer Approximate Solutions

To derive a closed-form solution for an arbitrary ω we require a different set of assumptions
that will sufficiently simplify the differential equations for ẋ and ẏ. Specifically, we will look
at the higher-order terms of Equations 3.22 and 3.25. If these terms could be approximated
as zero, then the two differential equations will be linear in x and y.

Consider the geometry illustrated in Figure 3.3. In this figure, the pointing direction of the
sensor is indicated by the gray line orthogonal to the focal plane. The variable θ is a measure
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Figure 3.2: Illustrations of star paths across the focal plane from the point of view of a sensor
rotating about the body-fixed y axis (left) and the body-fixed x axis (right).

of the angle between the pointing vector and the line of sight vector for a particular object
in view of the sensor. The relationship between θ, ∆x, and the focal length, f is

tan (θ) =
x

f
(3.51)

From this equation and Figure 3.3 it is apparent that, as θ approaches zero, ∆x also ap-
proaches zero. Since f is constant for a particular sensor, this implies that as θ approaches
zero, the ratio between ∆x and f approaches zero as well.

Focal Plane

Focal
Point

θ

∆x

f

Figure 3.3: Angle between the sensor pointing vector and a star signal’s line of sight vector.

Consider one of the higher-order terms from Equation 3.22. We can write

x2

f
= f

(
x

f

)2

= f tan2 (θ) (3.52)

So, for a particular field of view and focal length, the equation above defines the maximum
magnitude of the higher-order term x2

f
. If we assume ∆x in Figure 3.3 to correspond to an

object exactly on the edge of the field of view of the sensor, then θ is equal to the field of
view. Figure 3.4 visualizes the maximum possible values of x2

f
for three focal lengths and a
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Figure 3.4: Sample values for x2

f
versus field of view size.

range of fields of view. Of course, some of these paramters lead to unrealistically small or
large CCD sensors but the data illustrates the theoretical behavior.

With the small field of view assumption that x� f and y � f , we find that the higher-order
terms are typically small. Thus, we may write Equations 3.22 and 3.25 as

ẋ ≈ fω3y + fω2 (3.53)

and
ẏ ≈ −ω3x− fω1 (3.54)

which are linear, first-order ODEs. Combining these two equations in matrix form yields[
ẋ
ẏ

]
=

[
0 ω3

−ω3 0

] [
x
y

]
+ f

[
ω2

−ω1

]
(3.55)

Since this system of equations is linear, we can solve it directly for a closed-form solution of
x (t) and y (t). For a linear ODE, the homogeneous solution is[

xh (t)
yh (t)

]
= exp

([
0 ω3

−ω3 0

]
t

)
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

]
(3.56)

Note that the result here is equivalent to a planar rotation about the origin with a magnitude
equal to ω3t. Now, the Variation of Constants formula gives[

x (t)
y (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
+

∫ t

0

exp

([
0 ω3

−ω3 0

]
(t− s)

)
f

[
ω2

−ω1

]
ds

(3.57)

where x (t0) and y (t0) denote the initial conditions. Under the assumption that the angular
rate, ω, and the focal length, f , are constants, we pull these terms outside of the integral on
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the right-hand side.[
x (t)
y (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
+ f

{∫ t

0

exp

([
0 ω3 (t− s)

−ω3 (t− s) 0

])
ds

}[
ω2

−ω1

] (3.58)

Finally, the solution of the integral gives[
x (t)
y (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
+

f

ω3

[
sin (ω3t) − cos (ω3t) + 1

cos (ω3t)− 1 sin (ω3t)

] [
ω2

−ω1

] (3.59)

Rearranging the second term creates a slightly more convenient form, which is[
x (t)
y (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
+

f

ω3

[
cos (ω3t)− 1 sin (ω3t)
− sin (ω3t) cos (ω3t)− 1

] [
ω1

ω2

]
(3.60)

Note that the above relation is undefined for ω3 = 0, or when the rotation rate about the
boresight of the sensor is zero. Looking back at Equation 3.55, we see that, if ω3 = 0, then[

ẋ
ẏ

]
= f

[
ω2

−ω1

]
(3.61)

for which the solution is simply[
x (t)
y (t)

]
=

[
x (t0)
y (t0)

]
+ f

[
ω2

−ω1

]
t (3.62)

Now let us consider the behavior of the system in Equation 3.60 as ω3 approaches zero. The
limit of the first term is simply a zero-magnitude rotation of the initial conditions about the
origin

lim
ω3→0

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
=

[
1 0
0 1

] [
x (0)
y (0)

]
(3.63)

The second term in Equation 3.60 contains the undefined portion of interest. L’Hopital’s
rule shows that

lim
ω3→0

f

ω3

[
cos (ω3t)− 1 sin (ω3t)
− sin (ω3t) cos (ω3t)− 1

] [
ω1

ω2

]
= lim

ω3→0
f

[
− sin (ω3t) cos (ω3t)
− cos (ω3t) − sin (ω3t)

]
t

= f

[
0 1
−1 0

] [
ω1

ω2

]
t

(3.64)
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Inserting the two results above into Equation 3.60 yields[
x (t)
y (t)

]
=

[
1 0
0 1

] [
x (t0)
y (t0)

]
+ f

[
0 1
−1 0

]
t

[
ω1

ω2

]
=

[
x (t0)
y (t0)

]
+ f

[
ω2

−ω1

]
t

(3.65)

which is equivalent to Equation 3.62. Thus we have shown that as ω3 approaches zero, the
system in Equation 3.60 approaches that in Equation 3.62. Though the general solution
is undefined at ω3 = 0, we can correct this problem by defining the solution piecewise. If
ω3 is ever identically zero, then the model in Equation 3.62 is necessary. Otherwise 3.60
completely captures the behavior of the original ODE.

Now, there is another way of examining Equation 3.60 that provides additional insight into
the behavior of the overall system. We have already seen that the Equation describes a
planar rotation, but about which point is this rotation centered? To determine this point,
which we will refer to as the “center of rotation” in the image, we will look at the second
term in Equation 3.60.

f

ω3

[
cos (ω3t)− 1 sin (ω3t)
− sin (ω3t) cos (ω3t)− 1

] [
ω1

ω2

]
(3.66)

Note that there is a similar structure to that of the Collinearity Equation. Define the center
of rotation, (xc, yc), as the projection of the angular rate vector into the image plane[

xc
yc

]
= −f 1

ω3

[
ω1

ω2

]
(3.67)

If we write the angular rate vector as the magnitude of the angular rate multiplied by an
axis of rotation,

ω = ‖ω‖a (3.68)

then Equation 3.67 becomes[
xc
yc

]
= −f 1

‖ω‖ a3

[
‖ω‖ a1

‖ω‖ a2

]
= −f 1

a3

[
a1

a2

]
(3.69)

which describes the projection of the axis of rotation into the image plane. Now insert this
definition for the center of rotation into Equation 3.60.[

x (t)
y (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
−
[

cos (ω3t)− 1 sin (ω3t)
− sin (ω3t) cos (ω3t)− 1

] [
xc
yc

]
(3.70)

The coefficient on the center of rotation vector is a rotation matrix minus the identity matrix.[
x (t)
y (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
−
([

cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

]
−
[

1 0
0 1

])[
xc
yc

] (3.71)
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Expansion of the second term yields[
x (t)
y (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
−
[

cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
xc
yc

]
+

[
xc
yc

]
(3.72)

Then, combining like terms, we have[
x (t)
y (t)

]
−
[
xc
yc

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

]([
x (t0)
y (t0)

]
−
[
xc
yc

])
(3.73)

Consider a new coordinate system with its origin located at the center of rotation. Define
(x̂, ŷ) as a point in this new coordinate system. The new coordinates are related to the old
coordinates by [

x̂
ŷ

]
=

[
x
y

]
−
[
xc
yc

]
(3.74)

Inserting this change of variables leads to[
x̂ (t)
ŷ (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x̂ (t0)
ŷ (t0)

]
(3.75)

which describes a pure rotation about the origin of the (x̂, ŷ) coordinate system. Thus we
have shown that, according to the linearized model of star motion, all stars in an image
rotate with a constant rate about the point where the axis of rotation intersects the image
plane. The fact that stars trace circles around the center of rotation, as defined in Equation
3.67, is a key result that will be leveraged in the later chapters.

3.1.4 Constant Rotation Observer, Constant Velocity Object

Up until now we have only considered objects which appear to be inertially-fixed. This
assumption only works for very distant space objects and thus may not be appropriate for
describing the motion of an object orbiting Earth. Now we will examine the case where a
sensor is viewing an object of interest that has some motion relative to the sensor. For now,
we will approximate this motion as constant. In general, the accelerations in Equation 2.40
are small on the time scale of the exposure time of a single image, so this description should
capture the expected behavior of an orbiting object. Considering a space object’s motion
relative to the sensor, its relative position vector evolves according to [58]

ρ̇ = ρ̇nr − ω × ρ (3.76)

where ρ̇nr is the velocity in the inertial frame of a particle relative to the sensor. This velocity
term is assumed to be constant. The individual components of ρ̇nr are

ρ̇1 = (ρ̇nr)1 + ω3ρ2 − ω2ρ3

ρ̇2 = (ρ̇nr)2 − ω3ρ1 + ω1ρ3

ρ̇3 = (ρ̇nr)3 + ω2ρ1 − ω1ρ2

(3.77)
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Here, (ρ̇nr)1 for i = 1, 2, 3 is the ith element of ρ̇nr. We will proceed in the same way that we
have in the previous sections. Equation 3.14 connects the pinhole camera projection model
to the dynamic motion of an object in the rotating coordinate frame of the sensor. So,
inserting the equations above into the relations in Equation 3.14 will provide a differential
equation that describes the motion of the object as it moves across the image plane. The ẋ
term in Equation 3.14 becomes

ẋ = −f−ρ3ω2 + ρ2ω3 + (ρ̇nr)1

ρ3

− x−ρ2ω1 + ρ1ω2 + (ρ̇nr)3

ρ3

(3.78)

Expansion of the equation above yields

ẋ = fω2 − f
ρ2ω3

ρ3

+ x
ρ2ω1

ρ3

− xρ1ω2

ρ3

− f (ρ̇nr)1

ρ3

− x(ρ̇nr)3

ρ3

(3.79)

Once again we will consider the relationship between the image plane coordinates and the
relative position vector from Equation 2.4 to find

ẋ = f

(
ω2 −

(ρ̇nr)1

ρ3

)
− x(ρ̇nr)3

ρ3

+ ω3y +
1

f
ω2x

2 − 1

f
ω1xy (3.80)

This relation is similar in structure to the rotation-only solution in Equation 3.22. In this
case, however, we have not been able to fully remove references to the position vector, ρ.
This follows logically from the fact that we built this solution on the assumption that the
object’s velocity was available. Now, consider the equation for ẏ. Inserting the relations
from Equation 3.77, we find

ẏ = −f ρ3ω1 − ρ1ω3 + (ρ̇nr)2

ρ3

− y−ρ2ω1 + ρ1ω2 + (ρ̇nr)3

ρ3

(3.81)

The equation above expands to

ẏ = −fω1 + f
ρ1ω3

ρ3

+ y
ρ2ω1

ρ3

− yρ1ω2

ρ3

− f (ρ̇nr)2

ρ3

− y (ρ̇nr)3

ρ3

(3.82)

and finally we arrive at

ẏ = −f
(
ω1 +

(ρ̇nr)2

ρ3

)
− ω3x− y

(ρ̇nr)3

ρ3

+
1

f
ω2xy −

1

f
ω2y

2 (3.83)

through consideration of Equation 2.4. This Equation also contains explicit references to
ρ. Solving Equations 3.80 and 3.83 is non-trivial and will most likely require a numerical
approach. We can proceed, however, by making the small field of view assumption that
we used previously. Here we will also need the additional assumption that the range from
the observer to the object changes slowly (i.e. ρ3 is approximately constant). For distant
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objects this constraint is easily satisfied, however objects in low-Earth orbit may challenge
this assumption. Define the terms

v1 =
(ρ̇nr)1

ρ3

, v2 =
(ρ̇nr)2

ρ3

, v3 =
(ρ̇nr)3

ρ3

(3.84)

By our previous assumptions, these variables are approximately constant. Now, by substi-
tuting the terms above into Equations 3.80 and 3.83 and neglecting the higher-order terms,
we have the system of Equations shown below.[

ẋ
ẏ

]
≈
[
−v3 ω3

−ω3 −v3

] [
x
y

]
+ f

[
ω2 − v1

−ω1 − v2

]
(3.85)

As in the rotation-only case, this system is linear in x and y and therefore is simple to solve.
Further, we can take advantage of the structure of the first matrix to make this system easier
to solve. The exponential of a sum of matrices satisfies the identity

exp (A+B) = exp (A) + exp (B) (3.86)

if the matrix multiplication of A and B is commutative (i.e. AB = BA) [59]. So, the matrix
exponential of the first matrix multiplied by t is

exp

([
−v3 ω3

−ω3 −v3

]
t

)
= exp

([
0 ω3

−ω3 0

]
t+

[
−v3 0

0 −v3

]
t

)
(3.87)

The sum on the right-hand side is commutative, so the identity in Equation 3.86 holds and

exp

([
−v3 ω3

−ω3 −v3

]
t

)
= exp

([
0 ω3

−ω3 0

]
t

)
exp

([
−v3 0

0 −v3

]
t

)
(3.88)

We already know the first exponential term from Equation 3.56. The second term is simply

exp

([
−v3 0

0 −v3

]
t

)
=

[
e−v3t 0

0 e−v3t

]
= e−v3t

[
1 0
0 1

]
(3.89)

So, the homogenous solution for Equation 3.85 is[
xh (t)
yh (t)

]
= e−v3t

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
(3.90)

Now, we may find the full solution through the Variation of Constants formula.[
x (t)
y (t)

]
=

[
xh (t)
yh (t)

]
+

∫ t

0

exp

([
−v3 ω3

−ω3 −v3

]
(t− s)

)
f

[
ω2 − v1

−ω1 − v2

]
ds (3.91)
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The latter two terms of the integral are constant, so we pull them outside. The solution of
the integral term is∫ t

0

exp

([
−v3 ω3

−ω3 −v3

]
(t− s)

)
ds =

fe−v3t

v2
3 + ω2

3

[
ev3tv3 − v3 cos (ω3t) + ω3 sin (ω3t) ev3tω3 − ω3 cos (ω3t)− v3 sin (ω3t)
−ev3tω3 + ω3 cos (ω3t) + v3 sin (ω3t) ev3tv3 − v3 cos (ω3t) + ω3 sin (ω3t)

]
(3.92)

Thus, the solution for 3.85 is[
x (t)
y (t)

]
= e−v3t

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
+
fv3e

−v3t

v2
3 + ω2

3

[
ev3t − cos (ω3t) − sin (ω3t)

sin (ω3t) ev3t − cos (ω3t)

] [
ω2 − v1

−ω1 − v2

]
+
fω3e

−v3t

v2
3 + ω2

3

[
sin (ω3t) ev3t − cos (ω3t)

cos (ω3t)− ev3t sin (ω3t)

] [
ω2 − v1

−ω1 − v2

] (3.93)

This Equation is significantly more complicated than the solution for the rotation-only ob-
server, but when v1 = v2 = v3 = 0, the two solutions are equivalent. Further, in the case
that v3 is negligible, the equation above becomes[
ẋ
ẏ

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
+
f

ω3

[
cos (ω3t)− 1 sin (ω3t)
− sin (ω3t) cos (ω3t)− 1

] [
ω1 + v2

ω2 − v1

]
(3.94)

If the observer is not rotating, Equation 3.93 is equivalent to[
x (t)
y (t)

]
= e−v3t

[
x (t0)
y (t0)

]
− fe−v3t

v3

[
ev3t − 1 0

0 ev3t − 1

] [
v1

v2

]
(3.95)

Though the Equation above is undefined for v3 = 0, the limit of the second term as v3

approaches zero is

lim
v3→0

(
ev3t − 1

v3

)
= t (3.96)

So, with v3 = 0, we have [
x (t)
y (t)

]
=

[
x (t0)
y (t0)

]
− f

[
v1

v2

]
t (3.97)

The result above describes the motion of an object across the image plane of a non-rotating
sensor with an image-plane velocity vector of (v1, v2)T .
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3.1.5 Non-Rotating Observer, Constant Acceleration Object

Another possible observation scenario involves a non-rotating sensor with an object passing
through the view. This situation might occur when the sensor is tasked on some prior
knowledge in a “step, stare” mode, where the sensor points at the location on the celestial
sphere where the target object will be at some point in the future. In the frame of a
non-rotating sensor, the differential equation describing the motion of an object undergoing
constant acceleration is

ρ̈ = a (3.98)

From the individual components of ρ̈, we see that the following relations hold true.

ρ̈1 = a1 =⇒ ρ̇1 = a1t+ ρ̇1 (t0)

ρ̈2 = a2 =⇒ ρ̇2 = a2t+ ρ̇2 (t0)

ρ̈3 = a3 =⇒ ρ̇3 = a3t+ ρ̇3 (t0)

(3.99)

At this point we will deviate slightly from the previous derivations and, instead of using the
first derivatives of the pinhole model in Equation 3.14, we will use the second derivatives
from Equation 3.15. Though the equations above provide the first derivatives of ρ̇ and allow
the use of Equation 3.14, the second derivative formulation will provide a more intuitive
structure. Recall that the second derivatives of the pinhole projection model are

ẍ = −2ẋ
ρ̇3

ρ3

− xρ̈3

ρ3

− f ρ̈1

ρ3

ÿ = −2ẏ
ρ̇3

ρ3

− y ρ̈3

ρ3

− f ρ̈2

ρ3

(3.100)

Beginning with the ẍ equation, we may insert the relations for ρ̈1, ρ̈2, and ρ̇3 to find

ẍ = −2ẋ
a3t+ ρ̇3 (t0)

ρ3

− xa3

ρ3

− f a1

ρ3

(3.101)

Similarly, the ÿ equation becomes

ÿ = −2ẏ
a3t+ ρ̇3 (t0)

ρ3

− ya3

ρ3

− f a2

ρ3

(3.102)

Now, consider the previous two equations in matrix form.
ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1

0 0 −2a3t+ρ̇3(t0)
ρ3

0

0 0 0 −2a3t+ρ̇3(t0)
ρ3



x
y
ẋ
ẏ

− f

ρ3


0
0
a1

a2

 (3.103)

The terms in the lower right-hand corner of the matrix coefficient includes the ratio between
the range rate and the range. We encountered this relationship in the previous section as
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well. If we make the additional assumption that the range rate is small compared to the
overall range, then the equation above becomes

ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



x
y
ẋ
ẏ

− f

ρ3


0
0
a1

a2

 (3.104)

If we take this assumption one step further and assume that ρ3 changes slowly, then the
latter term in the equation above is approximately constant. So, planar translational motion
provides an approximation of the motion of the image-plane projection of an object moving
with constant acceleration. Indeed, motion models which assume smooth motion with small
accelerations are commonly employed in point tracking literature [60, 61]. For very distant
objects (ρ3 � a1 and ρ3 � a2), the system above approximately describes translational
motion with constant velocity.

ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



x
y
ẋ
ẏ

 (3.105)

The solution of the differential equation above is
x (t)
y (t)
ẋ (t)
ẏ (t)

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



x (t0)
y (t0)
ẋ (t0)
ẏ (t0)

 (3.106)

3.2 Motion in the Distortion-Corrected Image Plane

Though the pinhole model is a convenient theoretical starting point for for analysis of optical
sensors, it is only an approximate model and often falls short of capturing the behavior of
real-world sensors. It is for this reason that distortion correction techniques, like those
discussed in Chapter One, have been standardized. The SIP technique provides a standard
way to transform image-plane coordinates into some other coordinates system of interest.
Which coordinate system results is dependent on the way that the user formulates the
correction polynomial. The Astrometry.net software package, for example, transforms the
pixel coordinates to the right ascension and declination frame [18]. Here we will consider
a more simple model which provides clean analytic results and relates more easily to the
derivations in the previous section.

Assume that the a distortion polynomial is available that transforms pixel locations into a
coordinate system wherein each pixel is separated by equal angular steps along the x and y



Bradley J. Sease Chapter 3. Dynamic and Geometric Analysis of the Optical Observer 51

axes. Choose

x = cθ

y = cφ
(3.107)

where c is a scaling parameter and θ and φ describe the orientation of the object’s position
vector relative to the boresight of the sensor. These are the same θ and φ values defined in
the previous section. Figure 3.3 in the previous section illustrates the geometry for φ, which
is the same as for θ only with ∆y instead of ∆x.

Let us determine a choice for the scaling parameter, c. Though we can use an arbitrary
scaling parameter, it will be beneficial to choose one which relates more closely with the
previous derivations. Recall that the pinhole model is[

x
y

]
= − f

ρ3

[
ρ1

ρ2

]
(3.108)

Also recall that the angles θ and φ are defined as

tan θ =
ρ1

ρ3

= −x
f

tanφ =
ρ2

ρ3

= −y
f

(3.109)

These angles describe the orientation of the position vector in the x − z and y − z planes,
respectively. Rearranging the equations above, we find

x = −f tan θ

y = −f tanφ
(3.110)

Under a small angle assumption, the following are true.

tan θ ≈ θ, tanφ ≈ φ (3.111)

So, as θ and φ approach zero,

x ≈ −fθ
y ≈ −fφ

(3.112)

Thus, if we choose c = −f , then the model

x = −fθ
y = −fφ

(3.113)

aligns better with the pinhole camera model for objects closer to alignment with the boresight
of the sensor. For objects exactly along the boresight, the two models agree perfectly.
Further, this result implies that small field of view sensors that adhere to the pinhole model
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will also approximately adhere to this formulation of the distortion-corrected model. So
we will proceed with the distortion corrected model above. Any image analyzed with this
approach must be corrected with a distortion polynomial that results in the model above.
Though the distortion correction will likely not be perfect, we assume that the resulting
errors are small.

Before moving on it is worth considering how one would correct an image from a sensor
adhering to the pinhole model so that it instead satisfies Equation 3.113. A correction
polynomial is easily available from consideration of Equation 3.110. Define the distortion-
corrected coordinates as xd and yd. Distortion corrections are usually performed by modifying
the focal plane coordinate system with some distortion polynomial [37, 38]. Define the
distortion-corrected x coordinateas

x = xd + η (xd) (3.114)

where η (xd) is the distortion polynomial that converts from coordinates in a sensor adhering
to the pinhole model to those of the distortion-corrected model in Equation 3.113. Consider
the choice of η (xd) below.

η (xd) = −xd − f tan−1

(
−xd
f

)
(3.115)

This correction effectively cancels out the existing distorted xd coordinate and replaces it
with the focal length multiplied by the angle φ. Inserting η (xd) into the first equation, we
have

x = xd − xd − f tan−1

(
−xd
f

)
(3.116)

From Equation 3.110, xd = −f tan θ, so the equation above reduces to

x = −f tan−1

(
f tan θ

f

)
= −fθ (3.117)

Thus, the choice of distortion correction in Equation 3.115 corrects an image from a pin-
hole sensor to satisfy Equation 3.113. The same can be shown for the y coordinate of the
distortion-corrected model. Define

y = yd + ξ (yd) (3.118)

where ξ (yd) is the distortion correction for the yd coordinate. Now consider a choice for
ξ (yd) similar to that of η (yd).

ξ (yd) = −yd − f tan−1

(
−yd
f

)
(3.119)

Again, this correction cancels out the existing coordinate and replaces it with −fφ.

y = yd − yd − f tan−1

(
−yd
f

)
= −f tan−1

(
f tanφ

f

)
= −fφ (3.120)
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It is clear that neither the choice of η (xd) nor the choice of ξ (yd) are polynomials. Both
correction functions can, however, be approximated as polynomials. The Taylor series of
tan−1 g for some arbitrary g is [62]

tan−1 g =
∞∑
n=0

(−1)n

2n+ 1
g2n+1 (3.121)

So, applying the Taylor series expansion, η (xd) is

η (xd) = −xd − f
∞∑
n=0

(−1)n

2n+ 1

(
−xd
f

)2n+1

(3.122)

or, since the −xd term cancels with the first term of the series,

η (xd) = −f
∞∑
n=1

(−1)n

2n+ 1

(
−xd
f

)2n+1

(3.123)

The first five terms of η (xd) are

η (xd) = − 1

3f 2
x3
d +

1

5f 4
x5
d −

1

7f 6
x7
d +

1

9f 8
x9
d −

1

11f 10
x11
d + · · · (3.124)

and the first five terms of ξ (yd) are

ξ (yd) = − 1

3f 2
y3
d +

1

5f 4
y5
d −

1

7f 6
y7
d +

1

9f 8
y9
d −

1

11f 10
y11
d + · · · (3.125)

The relations above give us a way to correct an image created by a sensor adhering to the
pinhole camera model to fit the desired model in Equation 3.113. Since we have formulated
the correction as a polynomial, it meshes well with the industry-standard way of describing
the distortion in a sensor discussed in Chapter 2, Section 2.1. In general, a sensor will
have additional distortions not modeled here. In those cases, it is possible to estimate
the distortion polynomial through a star identification process [18]. Regardless of how the
distortion polynomial is computed, we are able to correct an image and now we will the
derive the new motion models that result. Considering the relations between θ, φ, and ρ in
Equation 3.110, we can write the distortion-corrected projection equations as

x = −f tan−1

(
ρ1

ρ3

)
y = −f tan−1

(
ρ2

ρ3

) (3.126)

We will follow a similar procedure to the one in the previous section. Since we will not
necessarily have an explicit solution for ρ (t), it is necessary to find a connection between the
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projection equation and higher-order equations of motion. Taking the derivative of x and y
results in

ẋ = −f
(
ρ̇1

ρ3

− ρ1v̇3

ρ2
3

)(
1 +

ρ2
1

ρ2
3

)−1

ẏ = −f
(
ρ̇2

ρ3

− ρ2v̇3

ρ2
3

)(
1 +

ρ2
2

ρ2
3

)−1
(3.127)

Since the derivative of the inverse tangent function is

d

dt
tan−1 (g (t)) =

ġ (t)

1 + [g (t)]2
(3.128)

where g (t) is an arbitrary function of t. We know that ρ1
ρ3

= tan θ so(
1 +

ρ2
1

ρ2
3

)−1

=
(
1 + tan2 θ

)−1
(3.129)

Likewise, since ρ2
ρ3

= tanφ (
1 +

ρ2
2

ρ2
3

)−1

=
(
1 + tan2 φ

)−1
(3.130)

So the first derivatives of the distortion corrected model are

ẋ = − f

1 + tan2 θ

(
ρ̇1

ρ3

− ρ1ρ̇3

ρ2
3

)
(3.131)

and

ẏ = − f

1 + tan2 φ

(
ρ̇2

ρ3

− ρ2ρ̇3

ρ2
3

)
(3.132)

Through trigonometric identities, we may also write the equations above as

ẋ = −f cos2 θ

(
ρ̇1

ρ3

− ρ1ρ̇3

ρ2
3

)
ẏ = −f cos2 φ

(
ρ̇2

ρ3

− ρ2ρ̇3

ρ2
3

) (3.133)

Further, inserting Equation 3.113 produces

ẋ = −f cos2

(
x

f

)(
ρ̇1

ρ3

− ρ1ρ̇3

ρ2
3

)
ẏ = −f cos2

(
y

f

)(
ρ̇2

ρ3

− ρ2ρ̇3

ρ2
3

) (3.134)

As was the case in the analysis for the pinhole model, an explicit first derivative may not be
available for ρ. In these cases the second derivative of the projection model may provide a
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better connection between the projection equation and the relative dynamics. The derivative
of the ẋ equation with respect to time is

ẍ = f
2 cos

(
x
f

)
sin
(
x
f

)
ẋ

f

(
ρ̇1

ρ3

− ρ1ρ̇3

ρ2
3

)
+ f cos2

(
x

f

)(
2
ρ̇1ρ̇3

ρ2
3

− 2
ρ1ρ̇

2
3

ρ3
3

− ρ̈1

ρ3

+
ρ1ρ̈3

ρ2
3

)
(3.135)

Expanded, the equation above is

ẍ =2ẋ cos

(
x

f

)
sin

(
x

f

)(
ρ̇1

ρ3

− ρ1ρ̇3

ρ2
3

)
+ f cos2

(
x

f

)(
2
ρ̇1ρ̇3

ρ2
3

− 2
ρ1ρ̇

2
3

ρ3
3

)
+ f cos2

(
x

f

)(
− ρ̈1

ρ3

+
ρ1ρ̈3

ρ2
3

) (3.136)

Further, we can insert the relations that we know for ẋ to find

ẍ = − 2

f
tan

(
x

f

)
ẋ2 − 2f

ρ̇3

ρ3

ẋ− f cos2

(
x

f

)(
ρ̈1

ρ3

− ρ1ρ̈3

ρ2
3

)
(3.137)

An identical derivation follows for the y term. The derivative of the ẏ equation with respect
to time is

ÿ = f
2 cos

(
y
f

)
sin
(
y
f

)
ẏ

f

(
ρ̇2

ρ3

− ρ2ρ̇3

ρ2
3

)
+ f cos2

(
y

f

)(
2
ρ̇2ρ̇3

ρ2
3

− 2
ρ2ρ̇

2
3

ρ3
3

− ρ̈2

ρ3

+
ρ2ρ̈3

ρ2
3

)
(3.138)

Again, we expand the equation above to find

ÿ =2ẏ cos

(
y

f

)
sin

(
y

f

)(
ρ̇2

ρ3

− ρ2ρ̇3

ρ2
3

)
+ f cos2

(
y

f

)(
2
ρ̇2ρ̇3

ρ2
3

− 2
ρ2ρ̇

2
3

ρ3
3

)
+ f cos2

(
y

f

)(
− ρ̈2

ρ3

+
ρ2ρ̈3

ρ2
3

) (3.139)

Finally, inserting the equation for ẏ produces

ÿ = − 2

f
tan

(
y

f

)
ẏ2 − 2f

ρ̇3

ρ3

ẏ − f cos2

(
y

f

)(
ρ̈2

ρ3

− ρ2ρ̈3

ρ2
3

)
(3.140)

So, in summary, the first derivatives of the distortion-correct model are

ẋ = −f cos2

(
x

f

)(
ρ̇1

ρ3

− ρ1ρ̇3

ρ2
3

)
ẏ = −f cos2

(
y

f

)(
ρ̇2

ρ3

− ρ2ρ̇3

ρ2
3

) (3.141)
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and the second derivatives are

ẍ = − 2

f
tan
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ẋ2 − 2f
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ẋ− f cos2

(
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(
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ρ̇3

ρ3

ẏ − f cos2

(
y
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)(
ρ̈2

ρ3

− ρ2ρ̈3

ρ2
3

) (3.142)

These differential equations relate the image plane coordinates in a distortion-corrected image
to the relative dynamics of an observed object. When the distortion in an optical system
causes it to deviate significantly from the pinhole model it may be beneficial to correct the
image with a distortion polynomial and use these equations instead.

3.2.1 Constant Rotation Observer, Inertially-Fixed Object

Consider again the case of an observer rotating with a constant angular rate. Recall that
the components of the relative position vector ρ evolve according to

ρ̇1 = ω3ρ2 − ω2ρ3

ρ̇2 = −ω3ρ1 + ω1ρ3

ρ̇3 = ω2ρ1 − ω1ρ2

(3.143)

The first derivative equations for x and y provide a connection between the distortion-
corrected projection model and the relative position dynamics above. This analysis will
follow an identical procedure to the one in the previous section for the pinhole model. In
fact, since the distortion-corrected projection model in Equation 3.113 was designed to relate
closely to the pinhole model at small angles, the resulting equations will have very similar
structure. Beginning with the equation for ẋ, the equations above show that

ẋ = −f cos2

(
x

f

)(
ω3ρ2 − ω2ρ3

ρ3

− ρ1 (ω2ρ1 − ω1ρ2)

ρ2
3

)
(3.144)

which expands to

ẋ = −f cos2

(
x

f

)(
ω3ρ2

ρ3

− ω2ρ3

ρ3

− ω2ρ
2
1

ρ2
3

+
ω1ρ1ρ2

ρ2
3

)
(3.145)

Recalling the relations between x, y, and ρ from Equation 3.126,

ẋ = −f cos2

(
x

f

)(
−ω3 tan

(
y

f

)
− ω2 − ω2 tan2

(
x

f

)
+ ω1 tan

(
x

f

)
tan

(
y

f

))
(3.146)

This equation has a very similar structure to that in Equation 3.22 with tangent terms in
place of the regular variables. For ẏ we have

ẏ = −f cos2

(
y

f

)(
−ω3ρ1 + ω1ρ3

ρ3

− ρ2 (ω2ρ1 − ω1ρ2)

ρ2
3

)
(3.147)
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which rearranges to

ẏ = −f cos2
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−ω3ρ1
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(3.148)

and finally becomes

ẏ = −f cos2
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(3.149)

Notice that if we make a small-angle assumption such that cos
(
x
f

)
= cos

(
y
f

)
≈ 1, tan

(
−x
f

)
≈

−x
f
, and tan

(
− y
f

)
≈ − y

f
, then we see that the equations for ẋ and ẏ become
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and

ẏ = −f
[
ω3
x

f
+ ω1 − ω2

xy

f 2
+ ω1

y2

f 2

]
= −ω3x− fω1 + ω2

xy

f
− ω1

y2

f
(3.151)

which are identical to the results for the pinhole model. Thus, if x � f and y � f , then
the two models are approximately equal. This result agrees with the initial choice to define
our distortion-corrected model as one which aligns with the pinhole model for small angles.
If the small angle assumption holds, then all of the same solutions from the previous section
apply for the distortion-corrected model as well. See Equations 3.46, 3.49, and 3.60 for these
solutions.

3.2.2 Constant Rotation Observer, Constant Velocity Object

This section derives the equations of motion for an object with constant velocity mov-
ing across the image plane of an observer with a constant rotation rate according to the
distortion-corrected projection model. Recall that the relative position vector, ρ evolves
according to [58]

ρ̇ = ρ̇nr − ω × ρ (3.152)

where ρ̇nr is the velocity in the inertial frame of a particle relative to the sensor. The
individual components of ρ̇nr are

ρ̇1 = (ρ̇nr)1 + ω3ρ2 − ω2ρ3

ρ̇2 = (ρ̇nr)2 − ω3ρ1 + ω1ρ3

ρ̇3 = (ρ̇nr)3 + ω2ρ1 − ω1ρ2

(3.153)

From Equation 3.141, the relationship between ẋ and ρ is

ẋ = −f cos2

(
x

f

)(
ρ̇1

ρ3

− ρ1ρ̇3

ρ2
3

)
(3.154)
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Combining the equation above with Equation 3.153, we find

ẋ = −f cos2
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x

f

)(
(ρ̇nr)1 + ω3ρ2 − ω2ρ3
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)
(3.155)

which expands to

ẋ = −f cos2
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(3.156)

Finally, recall the relationship between ρ and the image plane variables x and y from Equa-
tion 3.126. Combining these relations with the equation above produces

ẋ = −f cos2
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) (3.157)

As in the previous section, under the small angle assumption (x� f and y � f) the equation
above is approximately equal to the pinhole model solution from Equation 3.80. Therefore
the solutions from that section also apply if the small angle assumptions are satisfied. An
identical derivation exists for the ẏ term of Equation 3.141. Recall that ẏ is

ẏ = −f cos2
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)(
(ρ̇nr)2 − ω3ρ1 + ω1ρ3
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− ρ2
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3

)
(3.158)

Inserting Equation 3.153 leads to

ẏ = −f cos2
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and finally, from the relationship between ρ and the image plane coordinates, we have

ẏ = −f cos2
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) (3.160)

Under the small angle assumption, this equation is approximately equal to the pinhole model
result from Equation 3.83.

3.2.3 Non-Rotating Observer, Constant Acceleration Object

Now consider the case of the non-rotating observer viewing an object moving with constant
acceleration in the reference frame of the sensor. The differential equation describing the
evolution of the relative position vector is

ρ̈ = a (3.161)
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where a denotes the acceleration vector. Recall that the individual components of ρ̈ show
that

ρ̈1 = a1 =⇒ ρ̇1 = a1t+ ρ̇1 (t0)

ρ̈2 = a2 =⇒ ρ̇2 = a2t+ ρ̇2 (t0)

ρ̈3 = a3 =⇒ ρ̇3 = a3t+ ρ̇3 (t0)

(3.162)

Recall from Equation 3.142 that the second derivative with respect to time of the x coordinate
in the distortion-corrected model is

ẍ = − 2

f
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f

)
ẋ2 − 2f

ρ̇3
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ẋ− f cos2
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)
(3.163)

Inserting the relations for ρ̈ from Equation 3.162 yields
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From the relationship between ρ and the image plane coordinates in Equation 3.126, the
equation above is equivalent to
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Similarly, recall that the second derivative with respect to time of the y coordinate of the
distortion corrected model is

ÿ = − 2
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After combining the equation above with Equation 3.162, it becomes
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Then, from the relationship between ρ and y, we have
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(3.168)

Due to the corrected projection model, these solutions are more complicated than those for
the pinhole model. We can, however, still make some approximations. Consider again the
assumption that the range, ρ3, is large. The last three terms of the ẍ and ÿ contain the
range in the denominator and therefore may be neglected in some cases. The second term
has been neglected in previous sections, under the assumption that the rate of change of
the range is much smaller than the range itself. The same applies to the third term: if the
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accelerations are much smaller than the range, then they may be neglected as well. So, if
we neglect these two terms, we arrive at

ẍ = − 2

f
tan

(
x

f

)
ẋ2

ÿ = − 2

f
tan

(
y

f

)
ẏ2

(3.169)

The remaining term is the key difference between this result and the results for the pinhole
model. The velocity terms, ẋ and ẏ are often small for detectable objects (i.e. objects that
stay in view for multiple frames), so the square of the velocity may be safely approximated
as zero in some cases. In those situations, the motion model is simply constant-velocity
translational motion. If we neglect the first term and keep the remaining terms of Equations
3.165 and 3.168, we have the differential equations
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a3t+ ρ̇3 (t0)

ρ3
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which are structurally similar to the results for the pinhole model from Equations 3.101 and
3.102. Indeed, the small angle assumption that x � f and y � f leads to an equivalent
result.

3.3 Geometric Image-Plane Star Path Description

Here we will derive explicit equations describing the path of an inertially-fixed object along
the focal plane of a rotating camera. This approach will rely on the assumption that the
sensor rotates with a constant axis of rotation. Note that this assumption is somewhat
different from those in the previous sections in that it is acceptable for the magnitude of
the angular rate to vary as long as the rotation axis remains fixed. The derivation here will
rely on the pin-hole camera model, described by the Collinearity equation [35]. In this case,
however, we will think about the projection geometrically rather than algebraically.

With a fixed axis of rotation, inertially-fixed objects trace circles in the rotating frame of
the sensor around that axis. With this knowledge, we will follow a similar derivation to that
in [63], where the authors derive a relation for the shape of an arbitrary circle projected
into an image plane. Here, we will consider a restricted case where the plane of the circle
is always orthogonal with the axis of rotation. Recent developments for optical navigation
in the Earth-Moon system have employed a similar approach, finding that spheres, and by
extension circles, project to ellipses in the image plane [14, 57, 13]. The derivations in this
section will reveal that the motion of stars follows a similar geometric model.
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To begin, recall the pinhole camera model illustrated in Figure 2.3. This projection assumes
that a point in R3 is connected by a line through the focal point of the camera to its
projected location on the focal plane. We will begin our derivation by considering a rotation
axis aligned with the boresight of the camera. In this case, inertially-fixed objects trace
circles parallel to the focal plane of the sensor. The path of the line of sight vectors describes
a right cone. Figure 3.5 illustrates a two-dimensional cross-section of this geometry. The
figure defines a number of parameters that will be useful later on. The opening angle of the
cone is denoted by γ. This angle is equivalent to the angle between the line of sight vector
of a particular object and the axis of rotation. The angle γ is always constant for a constant
rotation axis. The cone extends out to infinity, but for simplicity Figure 3.5 only considers
its extent out to a side length of 1 from the vertex. The side length of the cone corresponds
to the length of the line of sight unit vector. So, the height of the cone is cos γ and the
radius at the top is sin γ. Define r and d as this radius and height, respectively.

r = sin γ, d = cos γ (3.171)

These terms will be useful in the remainder of the derivation. Though these two variables
explicitly depend on the angle, γ, we will find later that knowledge of the opening angle of
the cone is not necessary for our purposes.

γ
cos γ

sin γ

Figure 3.5: Conic geometry of a line of sight vector from the focal plane to a star.

So, the line of sight vector, u, at any point in time satisfies the general form of a right cone

u2
1 + u2

2 − c2u2
3 = 0 (3.172)

where c is some constant. From Figure 3.5 we can determine a relation for c. According to
the diagram, at a distance d from the vertex of the cone the circle has radius r, which is
related to the opening angle, γ. So, at u3 = d the relationship between u1 and u2 is

u2
1 + u2

2 = r2 (3.173)

Inserting these values into the cone equation, we find that

r2 − C2d2 = 0 =⇒ C =
r

d
(3.174)
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Thus, the cone described by a line of sight vector rotating about a fixed axis of rotation is

u2
1 + u2

2 −
r2

d2
u2

3 = 0 (3.175)

This equation is useful because it describes the set of all possible line of sight vectors for
a particular object. Determining the corresponding path of that object across the image
plane simply requires that we evaluate the equation above at u3 = −f (the focal plane).
The current geometry only considers a single case, however, so we must express the cone in
a more general form to proceed. Typically the axis of rotation and the boresight will not be
aligned, so the equation above does not fully describe the range of possible geometries. To
fully capture the geometry of the problem, this cone must be able to account for an arbitrary
orientation of the axis of rotation in the sensor’s reference frame. Figure 3.6 illustrates the
general case. In this figure, the axis of rotation, signified by the gray dotted line, is not
orthogonal to the focal plane. Rather, it is free to exist in any orientation. Regardless of
the orientation of the cone, the focal plane cuts it at a distance of f below the vertex, which
corresponds to the focal point.

ê3

Focal Plane

Figure 3.6: Rotated conic geometry intersecting with the focal plane.

Now let us determine a rotation matrix that will rotate the cone described by Equation 3.175
to align with an arbitrary axis of rotation. Let the axis of rotation be the vector a. The
vector perpendicular to both the axis of rotation and the normal to the focal plane, ê3, is

a⊥ = ê3 × a (3.176)

The angle between the axis of rotation and the focal plane normal is

θ⊥ = cos−1 (ê3 · a) = cos−1 (a3) (3.177)

So, we can build a rotation matrix by choosing a⊥ as its rotation axis and θ⊥ as the magnitude
of the rotation. From the axis-angle representation of a rotation, we can build the direction-
cosine matrix. The rotation matrix, R, is [8]

R = I − ã⊥ sin θ⊥ + ã2
⊥ (1− cos θ⊥) (3.178)
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We will follow a similar convention to the authors of [63], by partitioning the rotation matrix
as follows:

R ≡
[
n o a

]
=

 n1 o1 a1

n2 o2 a2

n3 o3 a3

 (3.179)

By this convention, the transformed line of sight vectors are

u′1 = u1n1 + u2o1 + u3a1

u′2 = u1n2 + u2o2 + u3a2

u′3 = u1n3 + u2o3 + u3a3

(3.180)

So, now we can write the rotated cone in the following form.

(u′1)
2

+ (u′2)
2 − r2

d2
(u′3)

2
= 0 (3.181)

Now it is possible to determine the corresponding path across the focal plane. Evaluating the
Equation above at u3 = −f produces a conic section describing an object’s path. Further,
at u3 = −f , u1 and u2 correspond to the focal plane coordinates x and y, respectively. So,
in the general form of a conic section, we have [14]

p1x
2 + p2xy + p3y

2 + p4x+ p5y + p6 = 0 (3.182)

Where pi for i = 1, . . . , 6 are constant coefficients.
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3
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p5 = 2f
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p3 = o2

1 + o2
2 − o2

3
r2

d2
p6 = f 2

(
a2

1 + a2
2 − a2

3
r2

d2

) (3.183)

Figure 3.7 illustrates the geometry described by the equations above. The left-hand side of
the figure contains a simulated, extremely wide field of view star image with a fixed axis of
rotation and a long exposure. The image on the right-hand side of the figure contains a set
of star paths for a fixed rotation axis, predicted by the equations above. These figures show
that all of the stars rotate about a central location, with stars further from that central point
follow more eccentric paths. Stars on the right-hand side of the images eventually “escape”
into parabolic and hyperbolic trajectories across the image plane. These trajectories occur
when the star is predicted to pass behind the sensor, where this geometric model no longer
applies.

Another feature of note in the right-hand side of Figure 3.7 is that no two paths intersect.
This follows intuitively from the fact that rotation should not change the positioning of stars
relative to each other. So, we can infer that each (x, y) location in the image lies on a unique
conic section. Indeed this is the case and it is possible to derive a unique path based on a
defined starting location.
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Figure 3.7: Simulated star trails (left) and geometrically-derived star paths (right).

From knowledge of the rotation axis, the only unknown term is r2/d2. For a particular (x, y)
point in the image plane it is possible to solve directly for this relationship, thus providing a
unique path description for that starting location. Rearranging Equation 3.182 to solve for
r2/d2 gives

r2

d2
=
k1x

2 + k2xy + k3y
2 + k4x+ k5y + k6

(n3x+ o3y + a3f)2 (3.184)

where ki for i = 1, . . . , 6 is

k1 = n2
1 + n2

y k4 = 2f (a1n1 + a2n2)
k2 = 2 (n1o1 + n2o2) k5 = 2f (a1o1 + a2o2)
k3 = o2

1 + o2
2 k6 = f 2 (a2

1 + a2
2)

(3.185)

And thus we are able to solve for a value of r2

d2
for any initial (x, y) coordinate from Equation

3.184. Inserting the result back into Equation 3.182 yields a unique path across the image
plane. With no variation in the axis of rotation, each object stays on a single path for all
time, completing one cycle each time the sensor completes a full rotation.

There are three possible types of conic sections which may arise from Equation 3.182. From
the parameters, pi, these conic sections are

p2
2 − 4p1p3 < 0 =⇒ Ellipse

p2
2 − 4p1p3 = 0 =⇒ Parabola

p2
2 − 4p1p3 > 0 =⇒ Hyperbola

(3.186)

Conveniently, there are some degenerate cases for general conic sections that need not be
considered here. Namely, the case where the solution to Equation 3.182 is a point, a single
line, or two intersecting lines. Since the cutting plane does not pass through the focal point
(because the focal length is strictly greater than zero), these cases will never occur [64].
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Note that this result – that stars travel along conic in the image plane – coincides with the
constant rotation observer results derived earlier. Equation 3.75 and the derivation leading
up to it showed that stars revolve around the center of rotation in paths that approximate
circles for a small field of view. We now see that the true path is described by a conic
section, which may be approximated as circular for small segments. Interestingly, Figure 3.7
shows the location of the center of rotation from Equation 3.67. Approaching the center of
rotation, stars follow smaller, more circular paths.

There are a number of ways to leverage this knowledge to produce robust, generalized space
object detection routines. Chapter 5 will revisit this work and explore some of its applica-
tions.

3.4 Multi-Observer Epipolar Geometry

Thus far we have only considered single-sensor systems. Though this is the most common
type of system in use, there are some benefits to analyzing groups of sensors simultaneously.
This section explores the geometry arising from multi-sensor systems. Optical space situa-
tional awareness systems typically rely on several disparate sensors operating independently
but tasked according to current tracking needs [65]. There have been some recent efforts
to leverage multi-sensor systems for the SSA problem. In [66] and [67], the authors demon-
strate the use of two synchronized sensors to make fast space object detections and with
simultaneous range measurements. Chapter 5 will approach the same problem from a more
general standpoint – developing a technique of detection and ranging space objects with any
number of sensors.

The methods derived in this dissertation rely on a concept called epipolar geometry. The
term epipolar geometry describes the relative vantage points of two optical sensors. The basic
principle behind stereo vision (a dual-sensor system) leverages the inter-sensor geometry to
immediately determine the position of an object of interest. The range of an object is not
typically available to a single sensor, but a second vantage point can reveal the object’s range
[19]. The key challenge of this sensor setup involves associating objects across sensors. This
challenge is amplified in the SSA problem because objects are typically unresolved and have
no identifying features. Epipolar geometry offers a solution to this problem.

Figure 3.8 illustrates the way that this section will use epipolar geometry. In this figure, a line
of sight vector measured by a secondary sensor passes above the primary sensor. This line of
sight vector indicates the relative position of an object to the secondary sensor. Though the
secondary sensor is not able to measure the range to the object, we do know that the object
of interest lies at some distance along that line. Further, since the object lies along that line
we infer that the line of sight, when projected into the primary sensor, will intersect with
the object’s projected location in that sensor. Based on the geometry it is apparent that a
line in R3 projects to a line in R2 in the pinhole camera model.
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Focal Plane

Focal Point

Figure 3.8: A line of sight vector projecting to a line in a secondary sensor.

So, we are interested in expressing a line of sight vector from a secondary observer in the
primary sensor. Begin by defining the line of sight vector according to

ru = ro + `u (3.187)

where ro is the position of the secondary observer in the primary sensor’s body-fixed reference
frame and u is the unit vector describing the optical measurement of an object of interest
from that sensor. The line of sight vector, u, is also expressed in the reference frame of
the primary sensor. From the pinhole projection model (Equation 2.4), the image plane x
coordinate corresponding to any point on the line of sight vector is

x = −f (ro)1 + `u1

(ro)3 + `u3

(3.188)

where (·)i indicates the ith element of the vector in the parentheses. Similarly, projecting
the line of sight vector through the Collinearity equation yields a y coordinate of

y = −f `u2 + (ro)2

`u3 + (ro)3

(3.189)

We desire a relationship for this line expressed entirely in the image plane. Now, solving the
x equation for ` yields

` =
−f (ro)1 − x (ro)3

fu1 + xu3

(3.190)

and solving the y equation in the same way shows that

` =
−f (ro)2 − y (ro)3

fu2 + yu3

(3.191)
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So, from these two relations it is possible to derive an equation fully in terms of x and y.
Setting both equations for ` equal to each other gives

−f (ro)1 − x (ro)3

fu1 + xu3

=
−f (ro)2 − y (ro)3

fu2 + yu3

(3.192)

which, when solved for y in terms of x, is of the form

y = mx+ b (3.193)

where m describes the slope of the line and b is the y-intercept. The slope of this line is

m =
u3 (ro)2 − u2 (ro)3

u3 (ro)1 − u1 (ro)3

(3.194)

and the y-intercept is

b = f
u2 (ro)1 − u1 (ro)2

u1 (ro)3 − u3 (ro)1

(3.195)

Thus we have proved that a line in R3 projects to a line in R2 under the assumptions of
the pinhole camera model. Further, the resulting line in the image plane is fully defined by
knowledge of the focal length, f , the line of sight unit vector, u, and the secondary sensor’s
position in the primary sensor’s reference frame, ro.

An alternative representation of this line is possible through the normal form parameteri-
zation of a line. The normal form defines a line by its orthogonal distance form the origin
and the angle its bisector makes with the x axis. Figure 3.9 illustrates the normal form
parameters for a line [4]

ν

d

Figure 3.9: Normal form line parameterization [4].

The standard equation for a line represented in the normal form is

d = x cos ν + y sin ν (3.196)

This formulation has the benefit of removing the singularity for vertical lines. Though the
case where the geometry aligns in such a way that it causes a perfectly vertical line is
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unlikely, this form can reduce numerical issues arising from an excessively large slope. The
relationships between the slope, m, and the y-intercept, b, and the parameters of the normal
form follow from examination of Equation 3.196. The angle, ν, is

ν = tan−1

(
− 1

m

)
= − cot−1 (m) (3.197)

and the distance from the origin, d, is

d = b sin ν (3.198)

3.5 Summary

The work outlined in this chapter makes up the theoretical basis of the proposed work in
the remaining chapters. These fundamental motion models are novel representations of the
motion of objects viewed through an optical sensor. The models attempt to capture the
expected motion of a space object across the image plane of a sensor to better prepare data
processing algorithms for input from a diverse set of optical observers.

It is important to remember that the derivations here are based on a number of different
assumptions. Each section works through the assumptions for the approximate solutions,
but the key assumption shared by all of these solutions is that the optical sensor follows a
known model (either the pinhole or distortion-corrected model) and that the sensor has a
constant angular rotation rate. So all of these models are vulnerable to improper modeling
of the sensor and angular accelerations. If the sensor does not follow the assumed model,
then this analysis will break down and provide erroneous predictions. In particular, the
distortion-corrected motion models are particularly sensitive to the accuracy with which the
distortion correction is applied to the original image data. It is possible that regions of the
image deviate locally from the assumed model, causing variable performance over the focal
plane.

We will explore the Equations of motion contained in Sections 3.1 and 3.2 in the following
chapter. These representations of the dynamics of space objects in the reference frame of an
optical sensor enable a number of sensor-level detection and estimation routines to reduce
optical data in a more general way. As we saw in Section 2.1, typical data reduction ap-
proaches are designed for a particular sensor in a particular operating mode. The work in
the coming chapters will address this fact in an effort to enable a centralized data processing
pipeline. Chapter 5 will examine more closely the implications of the geometric represen-
tation from Sections 3.3. We will show that this description of the motion allows for an
alternative set of analysis that are capable of correcting for non-ideal sensor tasking.



Chapter 4

Implications of the Dynamic Analysis

This chapter will leverage the results from the previous chapter to derive general detection,
tracking, and classification algorithms for unresolved space imagery.

4.1 Space Object Analysis

This section will consider the use of the dynamic equations of motion from Chapter 3 for
unresolved space object tracking and classification. Specifically, the linear dynamics from
Equations 3.60 and 3.106 enable a Kalman filter based approach to tracking unresolved space
objects in real time. Further, we can leverage these same motion models to stochastically
determine which signals in an image frame are stars and which are objects of interest. We
will also find that knowledge of the motion of objects in the image frame can aid in object
extraction and star removal. Some of the algorithms described in this section have enabled
a MATLAB-based toolbox for processing general space imagery from diverse sources. For
more on this software package, see [68].

4.1.1 Frame-to-Frame Tracking

Frame-to-frame point tracking in sequential imagery may be achieved in a number of ways.
The most commonly cited approaches focus on resolved imagery. The Scale-Invariant Feature
Transform, for example, reduces an image to a set of unique feature points. The algorithm
describes each of these feature points in a precise way that can then be compared to features
in other images [69]. A number of extensions to this algorithm exist that enhance its speed
[70] and robustness [71]. Since these techniques rely on the ability to uniquely identify
an object based on its appearance in an image, however, they are not applicable to the
unresolved imagery that is typical to observations of space objects. An alternative method,

69
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the Kanade-Lucas-Tomasi (KLT) tracking routine, relies somewhat on the appearance of an
object in the image, but uses optical flow to derive frame-to-frame associations. The KLT
tracker extracts a small window of the data and compares that window frame-to-frame. A
minimization problem then calculates the shift between frames by comparing the window to
a neighboring area [72].

The literature in point tracking without identifiable features commonly focuses on computing
the optimal frame-to-frame associations between points in consecutive frames. Many of these
methods make an assumption of small, smooth movements of points between frames. Early
work considered a multiple hypothesis approach to the association problem. For each image,
the algorithm in [73] matches measurements with all of its possible matches, creating a new
hypothesis where necessary. This algorithm continues to branch out as new measurements
come in and prunes outdated tracks that are no longer likely to be correct. The work in [60]
achieves measurement assocations through a “proximal uniformity” constraint which assumes
that most objects move slowly along smooth paths. A proximal uniformity cost function
provides a direct method of choosing the frame-to-frame object association that creates the
most smooth trajectory across the image. In [61], the authors again assume slow movement
along a smooth path but expands the algorithm to account for the possibility of missed
measurements. Their technique allows for a maximum number of missed measurements
(“maximal absence”) and a minimum number of detections (“minimal presence”). Finally,
the algorithm discussed in [74] uses an a-contrario approach to estimate the likelihood of
a particular trajectory appearing in random data and associates objects in a manner that
reduces the number of false alarms. This algorithm constrains the acceleration of an object
but not the velocity of the object, preferring only associations that describe a smooth path.

Though these tracking routines offer precise solutions for the frame-to-frame association
process that are robust to missed detections, they tend to have a high computational cost
and restrictive constraints. The multiple hypothesis method requires a large number of
tracks which can be costly to operate on [73]. Similarly, the a-contrario approach in [74] has
a high computational cost that grows rapidly as it accounts for a larger number of missed
detections. Further, the methods in [60] and [61] require that the objects move slowly –
a requirement that is often violated by imaged space objects. For tracking space objects
this dissertation relies on a dynamically-inspired estimation approach. Understanding the
dynamics of the objects in view informs the process of their expected behavior and opens up
the data reduction algorithm to a wide variety of sensor motion profiles. This work will be
more in line with the work in [75], where the authors examine different multiple-hypothesis
filtering approaches to track objects in an image. In particular, we will consider a Kalman
filter bank built on the motion models from Chapter 3. It is important to note, however, that
other point tracking routines may provide benefits in different areas. The work here aims to
reduce the computational cost for on-line data processing but if computational cost is not a
concern than an optimal data association process may provide better tracking performance.

There are many different possible approaches to tracking space objects across the image
plane based on the motion models derived in Chapter 3. For brevity we will only fully



Bradley J. Sease Chapter 4. Implications of the Dynamic Analysis 71

consider a single approach based on the approximate, linear pinhole motion models. This
implementation relies on a bank of multiple-hypothesis Kalman filters (MHKFs) to track
each object in view across the image plane. Each MHKF is built on the analysis from
Chapter 3 and accommodates multiple potential motion profiles and ultimately converge on
the model with the best fit. Specifically, the MHKF uses the model for the rotating observer
with inertially-fixed objects to track stars and the model for a nonrotating sensor with a
constant velocity object to track non-star space objects. Though the translational motion
model is an approximation of the true motion of a non-star object across the image plane
we will find that, in practice, this model typically provides accurate tracking performance.

Recall that the approximate equation of motion describing the path of an inertially-fixed
object across the focal plane of a sensor rotating with constant angular rate is[
x (t)
y (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x (t0)
y (t0)

]
+

f

ω3

[
cos (ω3t)− 1 sin (ω3t)
− sin (ω3t) cos (ω3t)− 1

] [
ω1

ω2

]
(4.1)

Note that this equation requires knowledge of the angular rate vector, ω. The inertially-
fixed object motion hypothesis must be initiated with an estimate of the angular rate of
the sensor. If this is not immediately available, it is possible to estimate the angular rate
vector from the image data. There are two primary methods for solving for the angular
rate vector: through star identification or from a frame-to-frame rotation estimate. Both
approaches require at least 3 stars in view, though additional stars increase the robustness
of either method. An angular rate estimate from either method is limited by the fact that
we only sample the attitude at discrete points in time which are sometimes separated by
several seconds. Any acceleration occurring over that time period will be ignored. In general,
however, these estimates provide a reasonable initial guess.

Star identification techniques like the small-scale Pyramid method or the large-scale Astrom-
etry.net tools provide precise sensor attitude estimates based on analysis of the background
star field [16, 18]. These methods compare geometric relationships describing the relative
locations of stars in an image to a known catalog of stars. Though this process can be com-
putationally expensive for a large star catalog, it typically provides highly accurate catalog
matches [17]. Then, once a set of has been matched to the corresponding catalog entries, it
is possible to infer the rotation of the observed stars from the reference stars. This rotation
describes the attitude of the sensor. The problem of estimating the rotation between two sets
of vectors is known as Wahba’s problem. Wahba’s problem is formulated as an optimization
problem with the cost function [76]

L
(
R̂
)

=
1

2

n∑
i=1

∥∥∥bi − R̂ri∥∥∥2

2
(4.2)

where bi represents the line of sight vector corresponding to the ith observed star and
ri represents the line of sight vector corresponding to the ith reference star. Figure 4.1
illustrates this problem graphically. There are numerous computationally efficient, optimal
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solutions to this problem [77]. In order to solve this problem, we require vectors in R3 rather
than just the image-plane coordinates. Recall the inverse projection described in Equation
2.6. This equations gives a unit norm line of sight vector corresponding to an (x, y) location
in the image plane. From that set of vectors and the line of sight vectors describing the
reference stars in the catalog it is then possible to solve for an attitude estimate.

R∆

ri bi

Figure 4.1: Illustration of Wahba’s problem (R∆ is unknown).

Now assume that the star identification procedure succeeds for two successive images. For
each frame we have a corresponding sensor attitude derived from the background star field.
Denote the direction cosine matrix (DCM) describing the initial attitude estimate by R̂i and
the DCM describing the attitude corresponding to the second image as R̂f . We can then
infer that the direct rotation from the initial attitude to the final attitude is

R̂∆ = R̂iR̂
T
f (4.3)

It is from this rotation matrix that we will derive the angular rate vector of the spacecraft.
Assuming that the angular rate was constant (or at least approximately constant) between
the two frames, we can estimate the angular rate by considering the axis-angle representation
of R̂∆. If the sensor rotated with a constant rate, then the angular rate follows from the
magnitude of the rotation and the time over which that rotation occurred. The axis about
which the rotation described by R̂∆ revolves is [8]

ã =
1

2 sin Φ

(
R̂∆ − R̂T

∆

)
(4.4)

where ã describes the skew-symmetric form of the axis of rotation vector, a. The angular
magnitude of displacement around a is [8]

Φ = cos−1

{
1

2

(
tr
(
R̂∆

)
− 1
)}

(4.5)

So then the skew-symmetric form of the angular rate vector is

ω̃ =
Φ

∆t
ã (4.6)
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where ∆t is the time between frames. Similar approaches have been developed for estimation
of the angular rate of the sensor from a single image frame [49, 46]. These methods rely on
the stars to be imaged in such a way as to cause significant movement over the course of the
exposure time. This assumption removes some of the generality of the overall approach and
thus will not be considered here.

Now, recall that the approximate equation of motion describing the path of a non-star object
across the image plane of a nonrotating sensor was shown in Equation 3.106 to be

x (t)
y (t)
ẋ (t)
ẏ (t)

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



x (t0)
y (t0)
ẋ (t0)
ẏ (t0)

 (4.7)

Though this model does not account for the rotation of the sensor, it is still typically able to
provide accurate tracking performance in practice. Ideally, this solution would be swapped
out for the solution in Equation 3.93 or 3.94. Even though these equations do not consider the
angular rate of the sensor, it is still possible to derive a velocity estimate in order to initialize
the Kalman filter. If an object of interest is moving quickly enough that it has some extent
in the image (i.e. it is streaked) and we are able to extract precise endpoint measurements
from that signal, then it is possible to estimate its image-plane velocity. The extraction
of endpoints of streaks is non-trivial, though there are some solutions currently. In [78],
the authors develop an iterative fit to approximate the signal near the endpoints, achieving
accuracies of approximately a tenth of a pixel. One may also leverage a gradient-based image
analysis method to extract the endpoints. Specifically, the geometry of a streaked object is
such that a corner detector produces its peak response at the endpoints of the signal. See
[46] for more information on this technique.

Assume that we are able to measure the endpoints of a streaked point source with some
mean, ē, and uncertainty, Σe.

ei ∼ N (ēi,Σe) (4.8)

Computation of a measurement covariance for the endpoints is also non-trivial. There is some
discussion of this in the literature for feature tracking, but no conclusive results [79, 80, 81].
A rudimentary option is computation of the second derivative (the Hessian) of the intensity
at that point. This approach operates under the assumption that signals which are smaller
in the image are going to be more precisely localized [82]. In practice, this method tends to
be a conservative solution and often overshoots the true uncertainty.

If the object moves with a constant velocity, as is assumed in Equation 4.7, then the velocity
estimate arising from measurements of the two endpoints, e1 and e2, is

˙̂x =
e2 − e1

∆t
(4.9)

where ∆t is the integration time of the sensor and x = (x, y). So, based on the uncertainty
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of the two endpoint measurements, the resulting distribution of the velocity estimate is

˙̂x ∼ N

(
ē2 − ē1

∆t
,

2

∆t2
Σe

)
(4.10)

In this case, we assume that e2 is the endpoint corresponding to the end of the exposure
time. In general, we do not know which endpoint occurred first or second. To resolve this
ambiguity, we will consider a hypothesis for both the positive and negative velocity cases:
± ˙̂x. Following a second measurement, this ambiguity should be removed and only one
hypothesis will remain valid.

Now, based on the two motion models above, we can construct the MHKF filter bank.
Assume that the systems in Equations 4.1 and 4.7 are of the form [83]

xk+1 = Φkxk + Γkuk + Υwk (4.11)

where wk is normally-distributed process noise. The measurement model is of the form

zk = Hkxk + vk (4.12)

where vk is normally-distributed measurement noise. For both motion models, the measure-
ment is the position of the object in the focal plane. We saw previously that it is possible
to estimate the velocity of an object, so it is possible to formulate the Kalman filters for the
motion model in Equation 4.7 to also accept a velocity measurement, but that is not the case
in this particular implementation. Recall from Table 2.2.3 that the prediction equations for
the mean state, x̂−k+1, and the covariance, P+

k+1, are

x̂−k+1 = Φx̂+
k + Γuk

P−k+1 = ΦkP
+
k ΦT

k + ΥQkΥ
T
k

(4.13)

The − superscript indicates that these values have been predicted forward without a correc-
tion step in the presence of a new measurement. The Kalman gain is [83]

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1
(4.14)

Finally, from a measurement, zk, and the Kalman Gain Kk, the corrected state mean and
covariance is

x̂+
k = x̂−k +Kk

(
zk −Hkx̂

−
k

)
P+
k = (I −KkHk)P

−
k

(4.15)

The Kalman filter process is well-known and simple the implement. Perhaps the most
significant challenge of this MHKF filter bank is the frame-to-frame association process.
There are a number of ways to approach the object association problem and the performance
of any method will be closely coupled to the density of objects in the image.
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For this particular implementation the Global Nearest Neighbor (GNN) technique provides
the proper associations between predicted tracks and measurements. This method works
by associating tracks with the nearest measurement with the additional constraint that no
measurement may be associated to multiple tracks [84]. If mj ∈ R2 is a measurement and

x
[i]−
k+1 is the prediction for the ith tracked object based on prior knowledge, the correct match

is the one that satisfies
min
i

{∥∥∥x[i]−
k+1 −mj

∥∥∥} (4.16)

Further, this measurement satisfying the equation above must also pass through a gating
procedure. Here, we constrain associations to only those that are within σlimit of track
prediction where σlimit is an upper limit based on the current uncertainty of the track in
questions. The distance between a predicted track and a point, p ∈ R2, is given by the
Mahalanobis distance [85]:

d (p) =

√(
p− x−k+1

)T
P−1

(
p− x−k+1

)
(4.17)

So, a positive match between a predicted track and a measurement, mi, satisfies Equation
4.16 and

d (mi) < σlimit (4.18)

If a measurement satisfies Equation 4.16 for multiple tracks, then a second step is necessary
to ensure that the measurement is only matched with one track. In that case, the measure-
ment matches with the nearest track prediction and all other tracks remain unassociated.
Alternatively, it is possible to incorporate multiple measurements into the prediction step
for each track through the Joint Probabilistic Data Association (JPDA) method. JPDA
updates each track with every measurement falling within σlimit, weighted according to its
distance from the predicted location [86]. This process avoids making hard decisions when
there is a possible ambiguity. A caveat of this approach, though, is that closely-space objects
have a tendency to coalesce [87].

It is worth noting that a star identification process, if successful, can provide some insight
into the correct frame-to-frame object associations [16, 18]. For example, the Astrometry.net
software package is capable of matching stars in an image to those in its catalog through
analysis of the inter-star geometry in an image. The result provides a unique identifier
for each star [18]. If the star was identified in a previous frame as well, then the correct
association is immediately available. It is important to note that no star identification
package guarantees a solution. In fact, while Astrometry.net has a high success rate in
general, it will fail for a low number of visible stars (< 4). Further, the computational
cost of searching a large star catalog can be prohibitive for real-time applications. For
these reasons, we approach this problem as if the correct frame-to-frame associations are
not available. If a star identification process is available, then it can augment the solution
proposed here.

There are several ways to prune outdated tracks from the track database. All of the tech-
niques considered here rely on analysis of the position and position covariance of each track.
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The first method is the most basic and relies on the predicted location of the object in the
next image. If the object is predicted to pass outside of the bounds of the image, then it
should be removed from the database. This constraint prevents a large number of tracks
from accumulating as stars and space objects move through the frame.

Another consideration for removing unnecessary tracks is the current position uncertainty.
A useful parameter for determining the appropriate choice for the uncertainty bound is a
measure of the density of objects in the image. Define the “field sparsity” parameter as

ρf =
1

2

(
1

n

n∑
i=1

n∑
j=i+1

‖mi −mj‖

)
(4.19)

where mi is the location of the ith object measured in a single frame. In words, this is half
of the average distance between objects in the image. We refer to this parameter as the field
sparsity, rather than the density, because the average distance between objects grows as the
number of objects in the field decreases. So a more sparse image will return a larger field
sparsity parameter and a more densely packed image will return a lower value for ρf . This
number is useful because it provides a measure of the likelihood of a conflict between track
predictions. If the image is sparse, then we can allow a larger position uncertainty for any
tracked object. If the image is more dense, then a large position uncertainty may lead to
incorrect measurement associations.

This tracking routine has been implemented in a MATLAB toolbox targeted at reducing
sets of sequential imagery from diverse observers with limited sensor knowledge. For more
information on this software package, see [68]. Though this particular implementation uses
the linear approximate models from Chapter 3, any of the models in that Chapter may be
implemented in a similar fashion. In practice there are cases that violate the small field of
view and pinhole optics assumptions. When this happens, the tracks for both valid stars and
non-stars tend to drop due to the unmodeled motion. In those situations, a higher fidelity
motion model may provide improved tracking performance.

4.1.2 Object Classification

Now, the tracking results alone do not necessarily reveal the correct classification of objects
as stars or non-star objects of interest. Though the fact that a track might prune the star
motion model (Equation 4.1) from its filter process suggests that the corresponding object
may not be a star, it is still uncertain. In fact, when the observer rotates about a single
axis, we can see from the paths in Figure 3.2 that the simple translation model captures the
motion of a star very closely for a small field of view. Thus we require a secondary process
to determine if a track does in fact correspond to a non-star space object.

One possible technique for discriminating between stars and non-star objects of interest is
to consider the rotation of the sensor frame-to-frame. We have seen that Wahba’s problem
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allows us to estimate the rotation between two sets of vector observations. It is possible
to formulate Wahba’s problem in such a way as to determine only the rotation between
sequential image frames. As long as there are at least three stars in an image and they make
up the majority of the visible signals (i.e. stars largely outnumber the space objects in view)
then we can derive an estimate for the rotation. Consider a formulation of Wahba’s problem
slightly different from that in Equation 4.2.

L
(
R̂∆

)
=

1

2

n∑
i=1

∥∥∥u−i − R̂∆u
+
i

∥∥∥2

2
(4.20)

Here, u−i is the set of line of sight vectors for objects observed in the first frame, and u+
i is

the set of vectors extracted from the second frame. The inverse projection from Equation 2.6
provide the vectors u−i and u+

i from the set of the observed object’s image plane coordinates
in the corresponding image. The key result from this process is not the rotation estimate,
but rather the residual of the optimal solution. The residual for Equation 4.20 is

ε =
∥∥∥u−i − R̂∆u

+
i

∥∥∥
2

(4.21)

If an object is not moving in the same fashion as the background stars, then we would expect
it to have a larger residual in this process. Therefore it is possible to leverage this estimate
of the frame-to-frame rotation to indicate which objects exhibit some apparent motion and
are likely not stars. Figure 4.2 contains an example of a simulated case. The image on the
left contains a single non-star object against the celestial sphere. That object exhibits some
of its own motion, which is apparent in the slope of the resulting streak. On the right of the
figure is a plot of the residuals of this process. It is clear that there is a single outlier in the
data set, and that outlier corresponds to the slanted streak on the left.
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Figure 4.2: Simulated RSO image (left) and the corresponding rotation residuals [5].

An important aspect of this technique to note is that it can be unreliable for images which
do not contain many stars. In addition, noise in the sensor has the potential to cause false-
positive returns. A more robust algorithm to handle the tagging of non-star objects includes
a voting routine, which increases an object’s “RSO score” for each time that it returns an
outlier. After a sufficient number of votes it should gradually become more apparent if an
object is actually an RSO.
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Another approach to classifying objects based on tracking data is to once again leverage the
motion models from Chapter 3. As discussed earlier, just because an object is not tracked
in the filter bank by the star motion model from Equation 4.1 does not necessarily mean
that it is not a star. Measurement noise may lead to a case where the model in Equation
4.7 better describes the motion of a star initially, causing all other hypotheses to be pruned.
We can return to the motion model for stars to determine how much a particular object
deviates from that model. If it follows that model closely, then we can conclude it is a star,
otherwise it is a non-star object of interest. Consider the measurement model

zk = xk + vk (4.22)

This model provides a direct measurement of the (x, y) position of an object with some
normally-distributed measurement noise, vk. Now, write Equation 4.1 in the form

xk+1 = fd (xk,ωk, fk,∆tk) (4.23)

where ω = (ω1, ω2, ω3)T , fk is the focal length at the kth time step, and ∆tk is the duration
of the kth time step. For generality, we include the k subscript to indicate the value of
the subscripted variable at that time step. Though we assumed that the angular rate was
constant for the solution in Equation 4.1 we allow for the possibility of an instantaneous
change in the angular rate between frames. In addition, the focal length is generally constant,
but we will consider the possibility of small temporal variations in the optics. Also define a
residual vector according to

wk+1 = zk+1 − fd (zk,ωk, fk,∆tk) (4.24)

The quantity wk+1 of an object’s motion from Equation 4.1 during the kth time step. We
can also write this more compactly by defining the augmented measurement vector, χk,

χk =
[
zTk ωTk fk ∆tk

]T
(4.25)

which is treated as a Gaussian random variable with covariance

Σχ = diag (Σz,Σω,Σf ,Σt) (4.26)

where Σz is the measurement uncertainty, Σω is the angular rate uncertainty, Σf is uncer-
tainty in the focal length, and Σt is the uncertainty in the time step. Then, the measurement
residual becomes

wk+1 = zk+1 − fd (χk) (4.27)

This residual provides an indicator for the correct classification of an object of interest. If
the object is a star, then this residual should remain small. If the object is a non-star, then
its residual will gradually increase in magnitude with time as it deviates from Equation 4.1.
To build a hypothesis test based on this residual, we must first determine the distribution
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of wk+1. In general, this distribution is not precisely Gaussian, but we can approximate it
through a linearization process. The Jacobian of fd (·) with respect to χk is [83]

Jk =
∂fd
∂χ

∣∣∣∣
χk

(4.28)

So, the covariance of wk+1 is approximately

Σwk+1
= Σz + JkΣχJ

T
k (4.29)

A single residual will likely not contain enough information to confidently classify a space
object. So rather than looking at a single residual, we will consider an accumulation of the
residuals over time. Define w̄k as the sum of the residuals from the first time step to the
current one. Then, w̄k is

w̄k =
k∑
i=1

wi, Σw̄k
=

k∑
i=1

Σwi
(4.30)

where
w̄k ∼ N (0,Σw̄k

) (4.31)

Thus we can build a hypothesis test based on the distribution of the residual to determine
if a particular object is a star or a nonstar object of interest. It is worth noting that there
are some cases in which the distribution of w̄k is exactly Gaussian. For example, if there is
only uncertainty in the measurement (Σω = Σf = Σt = 0), then that uncertainty propagates
linearly through Equation 4.1 and preserves the Gaussian distribution. Alternatively, if ω3

is zero and either Σω or Σt is zero, then the resulting distribution is Gaussian. So, we can
formulate the hypothesis test as

H0 : ε2 < γ

H1 : ε2 ≥ γ
(4.32)

where ε2 is a metric based on the residual that we will define next and γ is the detection
threshold. The term H0 denotes the null hypothesis that the object under consideration is a
star whileH1 is the hypothesis that the object is not a star. We will build our detection metric
in a way that reduces the probability of a falsely classified star below a desired threshold.
Consider the Mahalanobis distance of the residual from zero as the distance metric, ε2 [85].

ε2 = w̄T
kΣ−1

w̄k
w̄k (4.33)

The Mahalanobis distance squared has a chi-square distribution. The probability of false
alarm, then, is the probability that the ε2 metric will be greater than a particular value of
γ. The probability that ε2 exceeds γ is [88]

PFA = Pr
[
ε2k ≥ γ

]
= e−γ/2 (4.34)
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So, we can rearrange the result above to solve for γ based on a desired probability of false
alarm. The proper choice of γ is

γ = −2 ln (PFA) (4.35)

Figure 4.3 plots the proper choice of γ versus the desired probability of false alarm. Any
object which was some apparent motion relative to the stellar background should return a
gradually-increasing measurement residual. The precise rate of increase is dependent on the
magnitude of the apparent motion. Slower objects such as near-Earth asteroids will require
many more frames for a confident classification than a low-Earth orbiting object.

False Alarm Rate
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Figure 4.3: Choice of γ versus desired false alarm probability.

As with the formulation of the tracking problem, it is also possible to perform the classifi-
cation process based on the full nonlinear differential equations of motion. The small field
of view assumption introduces error which can lead to additional false positives depending
on the magnitude of the neglected terms. Figure 4.4 shows a simulated scenario that vio-
lates the small field of view assumption. This scenario contains a single nonstar object in
the center of the image. The classification process successfully detects the nonstar object,
indicated by the red box. A number of objects around the edges of the image, however, are
also falsely flagged as nonstars. This result is due to the neglected terms of Equation 3.55
that led to the linear solution in Equation 3.60. Objects further from the boresight move
more quickly than expected and have higher measurement residuals as a result.

To solve the problem of false positive results due to the neglected wide field of view terms,
we will also formulate a detector based on the full nonlinear equations of motion. The
formulation will remain general enough to apply for any of the motion models in Chapter 3,
but we will consider in particular the differential equation of motion describing an inertially-
fixed object in view of a rotating sensor. See Equation 3.55 for the full model. There are two
approaches we can take to build a continuous-discrete detector based on this model. The
first uses the same linearization process as the Extended Kalman Filter (see Table 2.2.3).
We are able to numerically propagate the state mean and propagate the covariance through
linearized dynamics. Alternatively, we may use the Unscented Transform (see Table 2.2.3)
to propagate the state mean and covariance. The remainder of the process of building the
residual and detection metric is identical to that of the linear process above.
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Figure 4.4: False positives in a simulated scenario due to the small FOV assumption.

First, let us derive the linearization-based continuous-discrete detector. Define the measure-
ment residual in the following form:

wk+1 = zk+1 −

(
zk +

∫ tk+1

tk−1

fc (χk) dt

)
(4.36)

where fc (χk) is the right-hand side of Equation 3.55 (or another nonlinear solution from
Chapter 3) and tk is the time corresponding to the measurement zk. In words, we compute
the predicted state from the previous measurement numerically and calculate its residual
with the next measurement. This is effectively identical to our original definition, so the
final steps of summing the residuals and computing the decision metric will be identical.
The continuous-time relation for the covariance of a normally-distributed random variable,
Σc, propagating through fc is

Σ̇c (t) = F (χ (t) , t) Σc (t) + Σc (t)F T (χ (t) , t) (4.37)

with the initial covariance defined by the measurement and system uncertainties

Σ̇c (t0) = diag (Σz,Σω,Σf ,Σt) (4.38)

The term F (χ (t) , t) in Equation 4.37 describes the Jacobian of fc with respect to the state
variable χ.

F (χ (t) , t) =
∂fc
∂χ

∣∣∣∣
χ(t)

(4.39)

The Jacobian here is a 2 × 7 matrix in the way that we have formulated it. To input the
Jacobian into Equation 4.37 it must be padded with zeros to convert it to a full 7× 7. The
equation for fc must also contain equations describing the evolution of the other terms of
the state variable χ. Since we assume that these terms are constant, then those terms in fc
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are all zero and thus the corresponding elements of the Jacobian are zero as well. So, after
accumulating the measurement residuals according to Equation 4.36, the covariance of the
resulting summation, wk+1, is

Σwk+1
= Σz + Σc (tk + ∆tk) (4.40)

The rest of the classification process is identical to the previous section. Though the lin-
earization is only approximate, we will find that in simulated scenarios the additional fidelity
from the higher-order motion models provides a benefit for wide fields of view.

The second method that we will derive relies on the Unscented Transform. As we discussed
in Chapter 2, the Unscented Transform provides a method of approximating the covariance
of a normally-distributed random variable when passed through a nonlinear function. In this
case, the nonlinear function is Equation 3.55. The Unscented Transform works by choosing
a specific set of sigma points to propagate forward numerically through the equation of
motion. The resulting points allow for an estimate of the state mean and covariance. The
usual choice of sigma points is [83]

χ
[k]
0 = χ (tk)

χ
[k]
i = χ (tk) +

(√
(n+ k) Σχ

)
i

χ
[k]
i+n = χ (tk)−

(√
(n+ k) Σχ

)
i

(4.41)

for i = 1, . . . , n where n is the dimension of the state variable. Note that ()i signifies the ith
column of the matrix contained in the parentheses. The term k is a tuning parameter that
is typically set to k = 3−n [83]. For each time step, we propagate each sigma point forward

to find a corresponding measurement prediction, Z [k]
i , which is

Z [k]
i = fc

(
χ

[k]
i

)
(4.42)

The same set of weightings that we saw in the Unscented Kalman Filter formulation in Table
2.2.3 allow for estimation of the state mean and covariance from these sigma points. The
mean and covariance weightings, W

(m)
i and W

(c)
i , are

W
(m)
i =

{
λ/ (n+ λ) i = 0
1/ {2 (n+ λ)} i = 1, . . . , 2n

(4.43)

and

W
(c)
i =

{
λ/ (n+ λ) + (1− α2 + β) i = 0
1/ {2 (n+ λ)} i = 1, . . . , 2n

(4.44)

where λ = α2 (n+ k)−n, α ∈ [0, 1], and β is a tuning parameter typically set to 2 [83]. The
prediction mean resulting from the propagated set of sigma points and the weightings is

z̄−k+1 =
2n∑
i=0

W
(m)
i Y [k]

i (4.45)
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and the predicted covariance is

Σ[k]
c =

2n∑
i=0

W
(c)
i

{
Z [k]
i − z̄−k+1

}{
Z [k]
i − z̄−k+1

}T
(4.46)

So, the measurement residual for this procedure is

wk+1 = zk+1 − z̄−k+1 (4.47)

and the residual’s covariance is
Σwk+1

= Σz + Σc (4.48)

The remainder of the classification process proceeds in the same way as in the natively linear
process. This approach has the benefit over the linearized approach of not requiring compu-
tation of the Jacobian, which can be difficult to calculate analytically and computationally
expensive to compute numerically [83].

Through simulation results we can illustrate the benefits of using the full nonlinear equations
of motion over the approximate equations. The first test case that we consider here is a 1◦

field of view that satisfies the small field of view constraint. In the simulation, the field of
view contains a single object. The angular rate of the sensor and time step have been chosen
to cause a large displacement in the object – from the upper left corner to the bottom right
– to incur as large an error as possible in the approximate linear solution from Equation 4.1
and highlight the differences between methods.

Table 4.1 contains the results for this simulation. Each of the three methods provided
an estimate of the mean and covariance of the resulting distribution based on prescribed
uncertainties in each of the system parameters. In addition, a 50, 000 point Monte Carlo
analysis provides the true distribution against which each of the methods are compared. To
compare the predicted distributions and the true distributions, we use a Euclidean distance to
compare the location of the mean and a Bhattacharyya distance to compare the uncertainties.
The Bhattacharyya distance between two Gaussian distributions with mean µi and Σi for
i = 1, 2 is [89]

D (Σ1,Σ2) =
(µ1 − µ2)T Σ−1 (µ1 − µ2)

8
+

1

2
ln

(
det Σ√

det Σ1 det Σ2

)
(4.49)

where

Σ =
Σ1 + Σ2

2
(4.50)

In this first simulated case, all three methods exhibit comparable performance. The scenario
preserves the small field of view assumption, therefore the approximate linear equation of
motion provides a precise approximation of the true motion. The linearized method and the
Unscented Transform do show slightly improved performance.
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Table 4.1: Performance comparison for 1◦ FOV (normalized).
Euclidean Distance Bhattacharyya Distance

Linear 1.166 1.077
Linearized 1.001 1.038
Unscented 1 1

The second test case is set up in the same way, with an object moving from the top left
corner of the image to the bottom right. In this scenario, however, the sensor has a 10◦

field of view which does not preserve the small field of view assumption. Table 4.2 contains
the results from this simulation. Due to the increase in the field of view, the approximate
linear equation of motion produces an estimate with a much higher error in both the mean
and covariance of the distribution. The linearized method and the Unscented Transform,
however, provide comparable performance to the 1◦ field of view scenario. Thus, as the
field of view grows, so does the benefit from using the full equations of motion for object
classification.

Table 4.2: Performance comparison for 10◦ FOV (normalized).
Euclidean Distance Bhattacharyya Distance

Linear 44.92 547.2
Linearized 1 1.036
Unscented 1.011 1

4.1.3 Simulated and Real-World Examples

Now we will look both a simulated and a real-world case for optical data analysis with
the techniques discussed in the previous sections. This work has been implemented in a
MATLAB tool intended to provide a general data reduction toolset. The code, for each
input image, extracts all objects in view and passes that data into a multiple hypothesis
Kalman filter bank following the theory described in the previous two sections. For more
detail on the MATLAB implementation, see [68].

Figure 4.5 contains an annotated image from the simulated verification scenario. In this
scenario, a sensor located in Blacksburg, Virginia observes an object in a geostationary
orbit. The sensor is tasked to point at a location where the spacecraft is expected to be at
some time in the future. The image in Figure 4.5 corresponds to the time when the spacecraft
is at that point. The motion of Earth causes a slight precession in the background star field.
The image is annotated to visualize the paths of each object contained in the image. Green
dots indicate objects that have been classified as stars based the post-processing of the image
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data. The red box indicates the single space object, which has been successfully classified as
a non-star object of interest by the algorithm. All of the yellow lines show the path of the
corresponding object over the sequence of frames.

Figure 4.5: Annotated image of a simulated scenario.

Table 4.3 provides an overview of the optical parameters of the simulated sensor. The camera
has a 1 degree field of view, satisfying the small field of view constraint of the motion models
discussed earlier. The five second exposure time causes the object of interest to have some
extent, but the background star field moves slowly enough that the stars remain point sources.
The simulation covers a duration of 120 seconds.

Table 4.3: Simulated scenario camera parameters.
Image Resolution 512× 512

Field of View 1◦

Focal Length 500 mm

Integration Time 5 s

Figure 4.6 contains the Kalman filter residuals for the (x, y) position state of the non-star
object of interest. Gray, dashed lines indicate the three sigma uncertainty bounds. The first
detection of the spacecraft occurs 30 seconds into the simulation. In post-processing all tracks
for the translation model in the filter bank initialize with an assumption of zero velocity and
a large uncertainty. This leads to the transient phase seen in the first plot of Figure 4.6. The
assumption of zero velocity leads to a large residual in the first step of 10 pixels. The next
iteration reduces the residual to approximately 0.2 pixels and it remains within 0.6 pixels of
zero for the remainder of the simulation. Note that, since the object’s velocity is effectively
all along the x-axis, the y coordinate residual does not contain a significant transient phase.
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Figure 4.6: Kalman filter image plane position residuals for the simulated spacecraft.

At each time step, the algorithm reports a right ascension and declination corresponding
to any object it detects in the frame. Since this is a simulated scenario, we can compare
the reported values with the truth. Figure 4.7 contains the right ascension and declination
residuals for the reported spacecraft observations. All of the measurements are within 2
arcseconds of the truth. The declination value is within about half of an arcsecond, while
the right ascension exhibits a larger variance. The higher variance in the right ascension
measurement is due to the fact that all of the objects motion in the image is along the
x-axis. This axis is aligned with the direction of increasing right ascension, so the increased
uncertainty from the motion of the object translates directly into increased uncertainty in
that angle measurement.
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Figure 4.7: Measured RA/DEC versus truth residuals for the simulated scenario.

Figure 4.8 shows the x and y position residuals reported by the Kalman filter for a single
star in the simulated case. Gray, dashed lines indicate the three sigma uncertainty bounds.
The star motion model, as described in the previous sections, is initialized based on the
current knowledge of the angular rate. This particular implementation begins with an initial
guess for the angular rate and then updates its knowledge with a frame-to-frame rotation
estimate and a median filter with a window size of 10 [90]. Due to error in the initial
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guess, the residuals for the star’s Kalman filter also exhibits an initial transient phase. As
the knowledge of the angular rate of the sensor approaches the true value, the Kalman filter
residuals approach zero. The error in the Kalman filter prediction is proportional to the error
in the angular rate estimate, so a bad estimate can lead to the loss of any track following
the rotation-only motion model.
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Figure 4.8: Kalman filter image plane position residuals for a simulated star.

In Figure 4.9, we see the result of the median filter on the magntidue of the angular rate
at each point in time. The initial guess has a magnitude of approximately 5 arcseconds per
second, while the truth is near 2 arcseconds per second. We see that the initial angular rate
measurements cause a large jump in the overall estimate. This is due to the fact that the
window of the median filter has not yet been populated. As more measurements come in
the angular rate estimate converges toward the truth. With this particular implementation,
error in the angular rate estimate sometimes causes the filter bank to lose track of stars. In
extreme cases, the angular rate estimate will diverge, since the . A better approach is to
perform a star identification whenever possible to infer the angular rate from the absolute
attitude corresponding to each image.
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Figure 4.9: Online angular rate estimate for the simulated scenario.

Now let us consider this same process on a real-world data set. An annotated image from this
data set is shown in Figure 4.10. This data is from a company called ExoAnalytic Solutions,
made available in an online video format [9]. In the sequence of images, a sensor tracks the
Mexsat-3 and Satmex-6 spacecraft [91]. During imaging, a piece of debris (a rocket body)
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passes through the field of view, crossing between the two objects in the image. So, the
images contain two non-star objects which remain fixed in the image over the sequence as
well as a third which enters the frame from the upper left-hand side.

This video contains a number of challenges beyond the simulated case. The images contain
the noise from the original sensor in addition to compression artifacts, since the original raw
data is not available. The sensor motion also includes some transient effects that violate the
constant angular rate assumption. In fact, the latter portion of the original video has been
removed due to a sudden delay jump in time. The background star field is relatively dense,
so stars often corrupt the signal of the non-star objects.

Figure 4.10: Annotated image from a real-world scenario.

Table 4.4 contains the camera parameters for the sensor as they are presented in the overlay
of the original video. The field of view for this case is larger than in the simulated case,
but we find that it still largely satisfies the small field of view assumption. Note that these
camera parameters were not originally made available to the algorithm processing the data.
In fact, precise knowledge of the camera parameters is not necessary; any arbitrary input
is sufficient for tracking and classifying objects, however the output data (right ascension
and declination) is only correct with the true values. Many of the required values may be
estimated through a successful star identification [18].

As in the simulated case, we will examine the Kalman filter residuals for a number of objects.
The first object we will consider is one of the static objects in the image frame. Figure 4.11
contains the x and y position prediction residuals for this object. With the initial guess
of zero velocity for the translation model, there is no transient phase in either the x or y
position residuals. There are some large jumps of the residual at a time about 1 minute
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Table 4.4: Real-world scenario camera parameters [9].

Image Resolution 509× 732

Field of View 2.32◦ × 1.75◦

Focal Length 450 mm

Integration Time 10 s

after the start of the data set. These correspond to signal corruption due to overlapping
star signals. In some cases, the overlapping star signals merge with that of the spacecraft.
The detection is still made as if it were only the spacecraft, but the resulting centroid may
be significantly off. The algorithm described here currently does not have a solution for
differentiating overlapping signals.
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Figure 4.11: Image plane position residuals for a static RSO in real optical data.

The second set of residual plots, in Figure 4.12, corresponds to the object which enters
the frame in the upper left-hand side of the image and moves between the two stationary
spacecraft. This set of plots does show a transient phase in the first couple of detections
where the algorithm is working to estimate the image-plane velocity of the object. After the
second detection the prediction residual rapidly approaches zero. As in the case of the static
non-star object, there are a number of points where this signal overlaps with a star signal,
causing degradation in the resulting measurement. Overall, this signal has a much higher
variance in the prediction residuals due to the additional localization uncertainty arising
from its motion.

Finally, the third residual plot corresponds to a single star tracked throughout the entire
sequence of frames. The initial guess for the angular rate is close to the true value, so there
is no transient phase in the beginning of the scenario. The residual remains within 1 to 2
pixels of zero except for some poorly localized detections. The second spike in particular
corresponds to an artifact in the motion of the sensor that causes a number of the Kalman
filters tracking stars to momentarily lose track of the corresponding objects. For stars that
were completely lost, the algorithm quickly initializes new filters and resumes tracking.

In summary, we see that the algorithm detailed in the previous two sections is capable of
tracking stars and non-star space objects undergoing a variety of motion profiles simulta-
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Figure 4.12: Image plane position residuals for a moving RSO in real optical data.
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Figure 4.13: Image plane position residuals for a moving star in real optical data.

neously. This approach has been verified in both simulated and real data, however some
challenges still exist. Specifically, methods for separating overlapping signals would help
improve the overall operation of the filter bank.

4.2 Advanced Shift-and-Add

Another application for dynamic analysis of the image-plane motion of space objects is
for shift-and-add procedures. The concept behind shift-and-add (also known as shift-and-
stack or synthetic tracking) is that sequentially-captured frames are shifted and summed
together in a way that simulates the effect of the sensor tracking an object of interest. This
process is commonly used for detection of near-Earth asteroids (NEAs) [92, 31, 93], though
it is applicable to detection of Earth-orbiting space objects as well [15]. These approaches
commonly assume a constant velocity for objects of interest and shift subsequent images
based on that known velocity. If the velocity is unknown, then it is possible to discretize a
range of allowable velocity values and create image stacks based on all of those possible cases
[15, 92, 31, 93]. This approach effectively searches a set of sequentially-captured images for
all objects with constant velocity satisfying a range of possible parameters.

A key requirement of this technique is that the observing sensor has low read noise [39,
92, 31]. For example, the authors of [92] consider a sensor with a read noise of 1.2e−
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(1.2 photoelectrons). In [7], the author estimates that a star with a visible magnitude of
zero produces 19, 100 photoelectrons per second per square millimeter of aperture area for
a particular set of sensor parameters. Since the read noise is introduced to each image
individually with a variance independent of the exposure time and signal brightness, the
read noise effectively decreases the SNR of the signal for short exposures. If the read noise
is high enough then the short exposures may actually reduce the SNR of the signal overall,
effectively negating the benefit of the shift-and-add procedure.

To see why the shift-and-add process leads to a signal gain, consider a simplified model of
an individual pixel in an optical sensor. Assume that this pixel is represented by normal
distribution with some mean, q̄, and standard deviation, σq.

qk ∼ N
(
q̄, σ2

q

)
(4.51)

Assume also that the pixel contains a static signal that is not moving across the sensor.
Though this is not always the case, the shift-and-add process works to force an object to
remain static even when it has some apparent motion. Adding successive image frames leads
to a pixel value of

n∑
k=1

qk ∼ N
(
nq̄, nσ2

q

)
(4.52)

where n is the number of frames. Note that this is also normally-distributed. The signal to
noise ratio (SNR) of this pixel is [42]

SNR =
nq̄√
nσ2

q

=
√
n
q̄

σq
(4.53)

Thus the signal-to-noise ratio of the object of interest grows proportionally to the square
root of the number of stacked images. Figure 4.14 shows the signal gain versus the number
of stacked frames. Though this analysis is based on an idealized sensor model which is
not completely representative of real sensors, it expresses the basic theory behind the shift-
and-add process. The vertical dashed lines indicate the number of frames required for each
whole-numbered SNR gain value from 1 to 7.

Now, we wish to develop an algorithm that leverages the dynamic analysis from Chapter
3 to perform a shift-and-add process in non-traditional cases where the shift cannot be
represented by a constant velocity. We have seen from the solutions for a rotating sensor in
Equation 3.22 and 3.25 that even a static object’s velocity is not necessarily constant and
is often dependent on its location in the image plane. Sensor drift around the boresight can
cause a wide variation in the velocity of objects based on their location in the image plane.
In general, we may write the shift in coordinates from one frame to the next as the R2 → R2

transformation [
x
y

]
→

[
x′

y′

]
(4.54)
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Figure 4.14: SNR gain versus number of stacked frames for a Gaussian distributed pixel.

where i = 1, . . . , n and n is the total number of pixels in the image. In words, this means
that an object located at the coordinate (x, y) in the initial image moves to (x′, y′) in the
subsequent image. So, if we represent the signal on the focal plane as a continuous function
of x, y, and time, we can say that

I (x, y, t) = I (x′, y′, t+ ∆t) (4.55)

where ∆t is the time step between frames. Note that I is a continuous representation of the
image and not the true image. The image data is actually a discrete sampling of I. This
equation gives the relationship between one image and the next and allows us to manipulate
subsequent frames in a way that removes the effect of any undesired motion. The equation
representing the desired stack of images is

Istack (x, y) = I (x, y, t0) +
∑̀
k=1

I (x′, y′, t0 + k∆t) (4.56)

where ` is the number of shifted images. If x = x′ and y = y′ (i.e. there is no undesired
motion), then the equation above simplifies to a direct summation of images. Now, let
us proceed with an example to demonstrate this advanced shift-and-add process. We will
consider a simulated scenario with a sensor defined by the parameters in Table 4.5.

Table 4.5: Simulated camera parameters for the advanced shift-and-add scenario.
Image Resolution 512× 512

Field of View 1◦ × 1◦

Focal Length 500 mm

Integration Time 2 s
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Figure 4.15 contains two images of the star field from this simulation. The first image
contains no noise to highlight the stars that are in view. The stars for this simulation are
taken from the Tycho-2 catalog [6]. The second image in Figure 4.15 is the same star field
with Gaussian random noise added to each pixel. In this image most of the stars have fallen
below the noise floor and only a few bright stars remain.

Figure 4.15: Simulated star field (left) and the same field with Gaussian noise (right).

For this verification scenario we will assume that the goal of the shift-and-add process is
to extract the dim star signals. Star signals are commonly required for precise pointing
estimates of an optical sensor [17]. During imaging the sensor is rotating about a constant
rotation axis with an angular rate of

ω = [0, 0, 1]T deg/s (4.57)

In words, the rotation is entirely around the boresight at a rate of 1 degree per second.
This motion profile might occur on a spin-stabilized spacecraft or on an on-orbit optical
sensor which has lost some control authority. A well-known example of such a spacecraft is
the Kepler telescope, which lost authority over two reaction wheels and 2012 and 2013 [94].
Figure 4.16 contains a direct summation of the images produced by the simulated sensor.
The sensor captures images with a 3 second interval and a two second exposure time. In
all, the sensor captures 11 images and rotates approximately 30 degrees over the simulation
time. Notice that, since there is no overlap in the stars in Figure 4.16 from one frame to the
next, there is no signal gain from the direct summation of frames.

Recall the Equations of motion describing the motion of an intertially-fixed object across
the image plane of a sensor rotating with a constant angular velocity. From Equation 3.22
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Figure 4.16: Direct sum of the simulated 11-image sequence.

and 3.25 we have

ẋ = ω3y + fω2 +
1

f
ω2x

2 − 1

f
ω1xy

ẏ = −ω3x− fω1 +
1

f
ω2xy −

1

f
ω1y

2
(4.58)

In an effort to include a full representation of the motion of the sensor, we will use these
equations in full rather than the approximate solutions from Equation 3.60. The equations
above are predicted numerically for the purposes of this simulation. So, x′ and y′ are

x′ (t) =

∫ t

t0

ẋdt+ x (t0)

y′ (t) =

∫ t

t0

ẏdt+ y (t0)

(4.59)

where t0 = 0 is the start time of the simulation. For each image, we predict the focal plane
coordinate of each pixel forward from t0 = 0 to the current simulation time. Equation 4.56
describes how the each image is stacked based on the predicted coordinates (x′, y′). Since
Equation 4.56 treats the data as a continuum, when in fact the image data is discrete, a
linear interpolation provides intensity values for coordinates between data points. Figure
4.17 contains the resulting image stack. In the figure, the first image is the true, noise-
free star field. The second image is the result of the advanced shift-and-add process. It
is immediately apparent that a number of stars that were not visible in the noisy image
in Figure 4.15 have moved above the noise floor while the stars that were already visible
became brighter. The brightest star – toward the upper left of the image – saw a peak signal
gain of approximately 5.6 times its original intensity.

It is important to note that this technique is extremely computationally intensive. In the
most basic formulation, each pixel must be propagated from the reference time step (t0 = 0
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Figure 4.17: Result of 11 stacked frames (right) beside the true star field (left).

in this case) to the current time. For the simulated example there are 262, 144 individual
pixels. Conveniently, this process is easily parallelizable. Propagation of a single focal plane
coordinate is only dependent on the initial position, the angular rate, and the focal length
of the sensor, so all of them can theoretically be propagated simultaneously. Some approxi-
mations may also be beneficial to this process. First, the approximate solution in Equation
3.60 removes the need for a costly numerical integration. Further, propagation of every pixel
location in the image is not necessarily required. One might choose instead to predict every
other pixel forward and approximate the intermediate values with an interpolation.

Another characteristic of this process that might be leveraged is the fact that, for a constant
angular rate and time between frames, the frame-to-frame mapping is constant. Since the
algorithm predicts forward the locations of the pixels on the image plane at each time step,
the starting location is the same for each frame. It follows then that the prediction will
also be the same for an identical angular rate and step time. In that case, we only need to
compute the mapping between frames once. Subsequent iterations can then use the stored
mapping with a greatly reduced computational cost.

Also of note is the fact that interpolation of the raw image data introduces additional error
due to the presence of noise in the image and the innate inaccuracy of the interpolation
process. In the raw image data, each pixel contains a certain amount of noise from various
sources. After interpolation, the noise in a single pixel incorporates the noise of at least 4
neighboring pixels, possibly many more depending on the interpolation method. This effect
likely reduces the signal gain from the shift-and-add process, but in the simulated cases here
the stack of frames does still show an appreciable gain.

The concept of removing the rotation of the sensor from frame to frame leads to another
interesting effect when there is a non-star object in the frame. Figure 4.18 contains the same
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simulated scenario as before, except with a non-star object exhibiting some apparent motion
of its own. The first image of the figure shows a direct summation of the sequence of images
while the image on the right contains the result of the advanced shift-and-add procedure.
The shift-and-add process uses the same equations of motion as before (Equation 4.58), so
the motion of the non-star object is not negated. The shift-and-add process in this case
serves only to remove the rotation of the sensor. In the resulting image stack, the stars
receive the same signal gain as in the previous case. The non-star object, due to its own
apparent motion, is not stacked perfectly. So, the non-star object retains only its apparent
motion while the rotation of the sensor has been negated.

This correction, then, effectively removes the motion of the sensor. Further, this implies that
the objects position in the image plane is fully defined by their own motion in the inertial
reference frame. Recall the equation of motion for such objects from Chapter 3: Equation
3.106. Thus, the advanced shift-and-add procedure also provides a way to augment the
filtering techniques discussed in the previous section. If we transform each frame in a way
that removes the rotation of the sensor, then we are able to use the motion models for a
non-rotating sensor as the basis of a Kalman filter bank.

Figure 4.18: Result of 11 stacked frames (right) beside directly summed frames (left).

4.3 Template-Based Star Subtraction

The previous section detailed an advanced shift-and-add process based on the focal plane
motion models derived in Chapter 3. A drawback of this approach to image analysis is the
presence of star clutter. When an object of interest is not a star and exhibits some apparent
motion of its own it becomes possible to observe overlapping signals. Though the shift-and-
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add process will increase the SNR of the object of interest, conflicting signals may still make
it impossible to extract.

Figure 4.19 contains a simulated scenario that illustrates this problem. This simulated
sequence of images contains a single non-star object that is fixed in the center of the image.
In order to keep this space object in the center of the image, the sensor is slewing with
a prescribed angular rate, causing the stellar background to move across the image. In
addition, the space object is below the detection threshold in a single image, so the observer
must capture several images sequentially. In the final summation of the images the object is
above the noise floor. The star streaks clutter the resulting image stack, however, including
two streaks which are directly occluding the object of interest. The work in this section
addresses the problem of removing the undesired signals to leave only the object of interest.
This work will leverage the dynamic motion models from Chapter 3 to predict the appearance
of the star signals. Chapter 5 will take this analysis a step further and leverage geometric
image analysis to enable this method even when the star signals have significant curvature.

Figure 4.19: Space object (center) with star clutter from 20 sequentially-stacked images.

There are a number of methods in the literature that can allow for the removal of star
signals. The first, and most basic, approach involves direct comparison of successive frames
and can operate in one of two ways. The first assumes that the stars are static and any
object of interest is moving across the frame. If this assumption holds true, then subtraction
of sequential frames should decrease the SNR of the star signals while preserving any object
which did not remain fixed [27]. Alternatively, analysis of temporal variations in individual
pixels can give some insight into whether that pixel contains a star. The Wide Area Space
Space Surveillance System (WASSS) analyses the variance of an individual pixel’s intensity
over time. In the WASSS implementation, stars move with the sidereal rotation rate of
Earth and the objects of interest – geosynchronous spacecraft – are fixed. Any pixel which
contains a transient signal, then, corresponds to a star [30]

Another technique for handling overlapping signals is a process known as deblending. De-
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blending routines aim to separate overlapping signals through analysis of the combined data.
There are a number of different methods for deblending which [95] discusses in detail. The
most commonly applied deblending method is included in the popular source extractor
software package, which is a general software tool for reducing unresolved space imagery
[40]. The Source Extractor software package analyzes combined signals through an itera-
tive thresholding process. At each threshold level, the algorithm determine the number of
possible objects that are present. Analysis of the resulting tree structure determines which
components of the combined signal belong to a particular object. This process is often ef-
fective at separating objects, however [96] describes deblending as “dangerous” because the
threshold process has a tendency to break elongated objects into multiple pieces even when
there are no overlapping signals.

Perhaps the most promising technique for star removal is a point-spread function (PSF)
fitting process [96]. The PSF fitting approach aims to approximate the a single signal
in an image as a linearly-extended point source. A nonlinear fitting process varies the
characteristics of the signal fit to best match the data at a particular location. This process
is commonly used as a precise way to localized objects in an image, with a typical error less
than a third of a pixel and sometimes as low as 0.01 pixels [96]. This approach is closely
related to the method we will derive in this section.

4.3.1 Star Subtraction as an Optimization Problem

The PSF fitting method in [96] formulates the process of iteratively fitting an unknown signal
through a nonlinear process. Though this process is not typically used for star removal, if the
result is truely representative of the underlying data then it should be sufficient to remove
the signal by simply subtracting the result. So, we will consider this technique as a star
removal process. The algorithm assumes that objects in the image have a Gaussian point
spread function with a signal amplitude and width that are variable. Assume that the point
spread function, which describes the appearance of a static object point source in an image
for a particular sensor, is fpoint (·) where

fpoint (r, A, w) = A exp

(
−4

r2

w2
ln 2

)
(4.60)

In the equation above, A represents the amplitude (brightness) of the signal, w is the full
width at half maximum (FWHM), and r is the radius from the center of a point of interest.
The Full width at half maximum is the distance from the peak signal intensity at which the
signal drops to half of the peak value [96]. Now, fpoint (·) only describes the appearance of
a signal in the image plane at a particular instant in time. Since optical sensors work by
collecting photons over time, any apparent motion in that signal will cause it to deviate from
fpoint (·). If we assume that a signal is moving with constant velocity in the image plane,
then the resulting signal from a long exposure will be fpoint (·), but extended linearly along
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the direction of motion. We may write this as

ftrail = fpoint

(√
[s (|x| − l/2)]2 + y2, A, w

)
(4.61)

where l is the length of the signal and s (x) is

s (x) =

{
0, if x ≤ 0
x, if x > 0

(4.62)

This relation effectively stretches the PSF along the x direction. For generality, we may also
consider the same PSF rotated by some angle θ. The rotated PSF is given by [96]

f (x, y, A, w, l, θ, x0, y0) = ftrail (x′, y′, A, w, l) (4.63)

where

x′ = (x− x0) cos θ + (y − y0) sin θ

y′ = (y − y0) cos θ + (x− x0) sin θ
(4.64)

With this definition of the PSF, the optimal signal fitting problem is

minimize
∑

x

∑
y [I (x, y)− f (x, y, A, w, l, θ, x0, y0)] (4.65)

In words, we wish to minimize the difference between the image data, I (x, y), and the
assumed PSF, f (x, y, A, w, l, θ, x0, y0). The placement of the PSF, (x0, y0), the angle, θ, the
length, l, the amplitude, A, and the FWHM, w, are all parameters which we are able to vary
to improve the fit. In [96], the author uses a Levenburg-Marquardt algorithm to solve this
problem for a single signal at a time. Due to the inherent nonlinearity of the problem and
the iteration required to solve it, solution can be expensive, especially for a large number of
signals. Further, this PSF fitting approach may fail for overlapping signals [96].

The method detailed in the following sections provides a more efficient, global approach
at the expense of some of the fidelity of the technique above. We have already seen from
Equation 3.62 that in the absence of drift around the boresight of the sensor, all star signals
in the image have approximately the same length. Incorporating the assumption from above
that the point source is consistent across the image, the solution implies that all signals in
the image are identical. Thus, it is possible to build a single representative template that
describes the appearance of a star signal anywhere in the image. The method described in
the following sections will leverage this fact to produce a global, convex formulation for the
star subtraction problem.

4.3.2 A Class of Convex Optimization Problems

In this section we will consider a class of general formulations for a global star removal
process. In particular, we will consider formulations which lead to a convex optimization
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problem. A convex formulation is beneficial because it guarantees a global minimum and
convergence in a finite number of iterations [97]. Such a formulation will greatly reduce the
computational cost of the star subtraction routine from the local, nonlinear method in [96].

Before we begin let us define some of the variables and conventions that we will use to
formulate this problem. First, consider the image data. Up until now we have typically
treated images as continuous data defined as a function of the x and y image plane positions.
In this section, we will handle the image data in its true discrete format. Figure 4.20
illustrates the convention for representing images in the problem formulations that follow.
In this representation, images are treated as vectors, rather than matrices. This differs from
the way that we have considered images in some of the past sections; here we handle them
in the true discrete form that they are collected. Expressing the image as a vector rather
than a matrix is beneficial mathematically, as we will see. The images are “unrolled” in a
way that stacks each column of the raw data on the column next to it.
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1

Figure 4.20: “Unrolling” an image to create a vector representation.

Here we will use three different types of image vectors. The first is the raw image data,
denoted by I ∈ Rmn for an m × n image. The second is a background fit, denoted by
H ∈ Rmn. The background fit term is not always necessary, but adds some generality to the
problem. There are a number of background fitting procedures which aim to characterize
structure in the background signal [51, 52]. These techniques aim to subtract the effect
of non-homogeneous backgrounds to simplify processing. Since a background subtraction
process directly modifies the image data, it will be closely coupled to the star removal
problem. A star template image, T ∈ Rmn, will be the third type of image vector that we
will consider. Though a single star signal will likely only cover a small portion of the total
image, templates for each potential star in the image will be constructed according to the
dimensions of the overall image. We will see later why this approach is beneficial.

Finally, the term ν ∈ [`× 1] will define a template amplitude scaling for the fitting process.
Here, ` is the total number of star templates. Figure 4.21 contains an illustration of the
function of the term ν in the fitting process. In this Figure the shaded gray portion indicates
a cross section of the intensity data for a single streaked star signal. The dotted line indicates
an idealized template. The term ν scales the idealized template to best fit the underlying
data. This is the basic principle behind the star fitting approach described in this section.

With these definitions in mind, let us consider the most basic formulation based only on
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ν

Figure 4.21: A sample cross-section of a noisy star signal (gray) with an idealized signal fit.

the physics of optical sensors. We wish to approximate the underlying star signals in an
image, which means we would like to minimize the difference between the image data and
a set of scaled template images. Since optical sensor provide a measure of the photons that
contacted the focal plane during a given exposure time, the signal in any pixel cannot be
negative [39]. So a basic formulation is

minimize 1T (I −H − Aν)
subject to I −H − Aν � 0

ν � 0
(4.66)

where A = [T1, . . . , T`] is a matrix where each column contains a single template image and
1T is an m×n vector of ones. This formulation attempts to minimize the summed difference
between each pixel in the image data and the template data. Since I and H are constant,
an equivalent problem is

minimize −1T (Aν)
subject to I −H − Aν � 0

ν � 0
(4.67)

In words, we can equivalently attempt to maximize the the sum of the pixels in the scaled
template images subject to the constraint that the difference between the image, background
fit, and template images cannot become negative. Note that this problem is only feasible
for I � H otherwise the first constraint is violated for any choice of ν. This optimization
is linear and convex so it is guaranteed to have a global minimum and converge in a finite
number of iterations [97]. Another approach to formulating the star removal problem is
to include a normed objective function. The following optimization problem attempts to
minimize the normed difference between the image, background fit, and template images.

minimize ‖I −H − Aν‖p
subject to ν � 0

(4.68)

We still include the constraint that the scaling vector must be positive to produce a result
that is guaranteed to make physical sense. For generality, we have used the p-norm. We will
consider two norms in particular, the 1-norm and the 2-norm. First, let us slightly modify
the problem above to put it in a simpler form. If we relax the constraint that ν � 0, then
the problem becomes

minimize ‖I −H − Aν‖p (4.69)

We still desire a scaling vector, ν, that is positive, but relaxation of the constraint will lead
to an optimization problem that is much easier to solve. In practice, we will find that careful
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placement of the templates will avoid any problems that arise from the relaxed constraint.
If a template is misplaced, however, the subtraction may introduce additional artifacts into
the result. Figure 4.22 contains a simulated exampled of one such case. In this simulation, a
template for a streaked star was placed on a non-star point source signal. The template does
not match the underlying signal, but instead of leaving the scaling at zero, the optimization
process chose a negative scaling term and removed a portion of the noise. This case used
the 2-norm object function. The 1-norm objective function reduces the effect of misplaced
templates because minimization of the 1-norm tends to produce sparse solutions [97].

Figure 4.22: Artifacts incurred from misplaced template and relaxed constraint.

Now, let us look at some alternative constructions for specific norms in the objective function.
First, the 1-norm optimization problem is

minimize ‖I −H − Aν‖1 (4.70)

We may also construct this as a linear problem. If we define the slack variable, t, we can
write [97]

minimize 1T t
subject to I −H − Aν � −t

I −H − Aν � t
(4.71)

This problem attempts to minimize the sum of the elements of the slack variable t subject
to constraints on each element of t. The constraints force the slack variable to be greater
than or equal to the absolute value of each element of the interior portion of the 1-norm in
Equation 4.70. So, the minimum of the problem above will enforce that each element of t
is equivalent to the absolute value of each element of (I −H − Aν). Further, the sum of
the elements of t will be equivalent to the 1-norm of (I −H − Aν). So, this formulation is
equivalent to that in Equation 4.70, but is more efficient to solve [97].

The 2-norm template-fitting problem ends up being the most straight-forward to solve, but
it also has the most potential for artifacts like the one in Figure 4.22. The 2-norm problem
formulation is

minimize ‖I −H − Aν‖2 (4.72)

which is a least-squares optimization problem. Conveniently, a closed-form solution to this
problem is well-known. The optimal choice of ν is [97]

ν∗ =
(
ATA

)−1
AT (I −H) (4.73)
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4.3.3 Building Star Templates

Equally important to the formulation of the optimization problem is the construction of the
templates used for the star removal process. Recall the approximate equation describing the
motion of an inertially-fixed object across the image plane of a rotating sensor. Equation
3.62 shows that, when there is no rotation about the boresight (and therefore no curvature
in the star signals) a star’s motion evolves according to[

x (t)
y (t)

]
=

[
x (t0)
y (t0)

]
+ f

[
ω2

−ω1

]
t (4.74)

In Chapter 5, we will see that this process is also possible when ω3 6= 0. The equation
above is represented in the focal plane coordinate system as a physical distance from the
origin in the center of the CCD (See Figure 2.5). To build the templates, we will convert
these equations of motion to the pixel coordinate system through Equation 2.5. The new
equations describing the motion of a star are[

x̄ (t)
ȳ (t)

]
=

[
x̄ (t0)
ȳ (t0)

]
+
f

s

[
ω2

−ω1

]
t (4.75)

Notice that the equation above implies that all star signals have an identical appearance
in the image, regardless of their location on the focal plane. We will leverage this fact to
simplify analysis; only a single template is necessary to fit all of the stars in an image. Now,
with a description of the motion of a star in mind, we must represent the appearance of a star
in the resulting image. Consider a general point spread function, fpsf (η, ξ). This function
describes how the appearance of a point source signal varies further from the center of the
true location of the signal at (0, 0). The rate of change of intensity of the pixel located at
(x̄, ȳ) due to a star with position (x̄0 (t) , ȳ0 (t)) at time t is

Ṫ (x̄, ȳ, x̄0 (t) , ȳ0 (t)) =

∫ ȳ+0.5

ȳ−0.5

∫ x̄+0.5

x̄−0.5

fpsf (x̄− x̄0 (t) , ȳ − ȳ0 (t)) dx̄dȳ (4.76)

Note that, for now, we return to the convention that images are treated as a continuum, but
only evaluated at discrete pixel locations. So the construction of the template will be derived
as if it were a continuum and then handled discretely in practice. Now, let us consider an
example PSF. If we assume that a point source follows a symmetric Gaussian distribution,
the PSF function is

fpsf (x̄, ȳ, x̄0 (t) , ȳ0 (t)) =
1

2πσ2
exp

{
− [x̄− x̄0 (t)]2 + [ȳ − ȳ0 (t)]2

2σ2

}
(4.77)

Notice that there is no term to include an amplitude of the signal in fpsf . The amplitude is
unnecessary because the template will be scaled during the optimization process to approx-
imate the true intensity of the data. Later on we will normalize the template to ensure a
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maximum value of 1. With this choice of fpsf , the template’s rate of change, Ṫ , is

Ṫ (x̄, ȳ, x̄0 (t) , ȳ0 (t)) =
1

2πσ2

∫ ȳ+0.5

ȳ−0.5

∫ x̄+0.5

x̄−0.5

exp

{
− [x̄− x̄0 (t)]2 + [ȳ − ȳ0 (t)]2

2σ2

}
dx̄dȳ

(4.78)
Though there is not a closed-form solution to the integral of a Gaussian distribution, we can
write the equation above in the form

Ṫ (x̄, ȳ, x̄0 (t) , ȳ0 (t)) =
1

4

[
erf

(
x̄− x̄0 − 0.5√

2σ

)
+ erf

(
x̄0 − x̄− 0.5√

2σ

)]
·
[
erf

(
ȳ − ȳ0 − 0.5√

2σ

)
+ erf

(
ȳ0 − ȳ − 0.5√

2σ

)] (4.79)

where erf (·) denotes the error function. The error function cannot be represented by ele-
mentary functions, but lookup tables for erf (·) are widely available and allow for efficient
computation. Thus we are able to quickly determine the instantaneous contribution of a
star signal to a particular pixel. Now, since optical sensors collect photons over time, we
must integrate the rate of change of each pixel to obtain the final signal intensity. So, the
template intensity as a function of only the pixel locations (x̄, ȳ) is

T (x̄, ȳ) =

∫ ∆t

0

Ṫ (x̄, ȳ, x̄0 (τ) , ȳ0 (τ)) dτ (4.80)

This continuous function describes the intensity of a theoretical pixel centered on the coordi-
nate (x̄, ȳ) due to an object moving over the sensor with position (x̄0 (t) , ȳ0 (t)). To convert
to a discrete representation we simply evaluate T (x̄, ȳ) at only discrete pixel locations within
the bounds of the image plane. Finally, we normalize the resulting template to a maximum
value of one.

T̄ (x̄, ȳ) =
T (x̄, ȳ)

maxx̄,ȳ {T (x̄, ȳ)}
∈ [0, 1] (4.81)

With all of the templates normalized to one, the scaling parameter, ν will directly correspond
to the amplitude of the underlying signal.

4.3.4 Simulated Results

Now let us consider a simulated scenario to observer the results of this process on realistic
data. Table 4.6 describes the optical sensor in the simulated scenario. In this simulated
case, the sensor captures images with a 3 second exposure time and a 0.05 second day to
emulate processing time within the sensor. Throughout the scenario, the sensor tracks a
space object based on prior knowledge. The space object is too dim to be detected in a
single frame, however, so the frames are stacked to bring the signal above the noise floor.
The result of this process was seen in Figure 4.19, at the beginning of this section. After
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stacking 20 images, the object of interest does show a signal gain, but there are two star
signals obscuring it. So, we now wish to use the algorithm derived in this section to subtract
the stars from each individual image prior to stacking.

Table 4.6: Simulated scenario camera parameters.
Image Resolution 512× 512

Field of View 1◦

Focal Length 500 mm

Integration Time 3 s

Thus far we have discussed the process of building and fitting template stars to raw, un-
resolved imagery. What we have not looked at yet, however, is a method for placing the
templates in the proper locations for the fitting process. The way that we perform template
placement for the simulated case is through the use of a matched filter. We saw in Chapter
2 that a matched filter process is able to leverage prior knowledge of the appearance of a
signal to detect that signal in an image even when it is below the noise floor [47]. Since we
have a single template that should match all of the stars in the image, we may convolve it
with the image to find locations that are likely to contain that signal. Figure 4.23 contains
the matched filter convolution result for a single image in this sequence. The left-most image
in the figure is the raw frame and the right-most image is the result of convolution with a
single template star. The resulting image contains a peak for even dim star streaks.

One thing to note about the matched filter result in Figure 4.23 is that the edges contain
additional artifacts. This is due to the fact that, as the template extends off the edge of
the image, there is less data to compare to. This effect is an ongoing challenge for this star
subtraction algorithm because it makes detection of edge-crossing streaks unreliable. For the
simulation results discussed here, edge-crossing streaks are ignored and no attempt is made
to subtract them. If, however, there was a way to precisely estimate the center point of an
edge-cross streak, then it would be possible to subtract them with this algorithm.

Figure 4.23: Result of a matched filter convolution process with a template star.
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Another issue that arises from the matched filter process occurs when the signals of closely-
spaced stars conflict. The left-most image in Figure 4.24 shows an example from the simu-
lated scenario of this behavior. We see in the right-hand side of the figure that the result
of matched filter process is corrupted due to the overlapping signals. The peak response
corresponding to the left-most streak is correct, but the peak response for the right-most
streak is shifted far to the right. In cases where multiple streaks overlap it is common to
find unreliable location estimates for those signals.

Figure 4.24: Matched filter convolution result with conflicting star signals.

Figure 4.19 shows the result of the star subtraction algorithm for this simulated scenario.
The left-most image is the raw image stack that we saw before. The image on the right-hand
side of the figure is the star-subtracted result. Except for the edge-crossing cases, all star
streaks have been removed and the object of interest is clearly visible in the center of the
image stack. Though there are some subtraction artifacts that arise in individual images,
they end up buried in the noise and do not have a significant effect on the final result.

Figure 4.25: Simulated image stack (left) and the sum of the star-subtracted frames.

A key aspect of this algorithm to be aware of is that, due to the way that the optimization
problem is structured, no signal of interest can be representable as a linear combination
of the star templates. If this is the case, then there is a risk of subtracting the object of
interest along with the star signals. For example, if all of the signals in the image (both
stars and non-star objects) are point sources, then this approach will work to remove all
of them equally. So, this method of star removal works best when the objects of interest
look significantly different from the background star field. Of course, if one can discriminate
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between the stars and objects of interest beforehand, then it is possible to place the templates
only on the star signals and preserve the target signals in some cases.

This star subtraction routine provides a global subtraction method that does not require an
expensive nonlinear fit like the approach in [96] and does not risk corrupting the data further
like the deblending technique in [40]. The optimization problems formulated for this problem
are high dimensional problems, though. The dimension of the image vectors is mn and the
template vector is mn × ` so even small images require the handling of a large amount of
data. Since each template contains only a single star, however, the A matrix is very sparse.
By leveraging the sparsity of the problem and only operating on non-zero rows of A we can
avoid memory shortages and some of the concerns about the computational cost of handling
large matrices.

4.4 Summary

The work in this Chapter aims to make use of the dynamic motion models derived in Sections
3.1 and 3.2 to develop a more general set of data reduction approaches than those that
currently exist. Though we have only focused on two motion models here (Equations 4.1
and 4.7), a similar process may be built around any of the equations of motion in Chapter 3.
In fact, we may even develop more complicated models to account for specific behaviors of
the sensor and space objects. In this way we can enable a wider variety of use cases for our
data processing algorithms. This work is a fundamental step in the direction of a generalized
data reduction pipeline for a diverse set of optical observers.

Section 4.1 detailed a fundamental approach to space object tracking and classification based
on two image plane motion models. These algorithms enable a rigorous approach to analyzing
space objects in optical imagery that can be completely driven by the data in the incoming
imagery. Section 4.2 demonstrated an extension to traditional shift-and-add processes made
possible by the motion models in Chapter 3. With this new approach it is possible to
account for a wider range of motion profiles to extract a signal gain. Finally, section 4.3
demonstrated the use of this dynamic analysis to develop a template-based star subtraction
algorithm. By predicting the motion of stars across the image plane we are able to build a
template signal that can be used to subtract star clutter from images. This result allows us
to remove undesired signals leaving only the space objects of interest.

In the context of the algorithms proposed in this chapter it is important to recall the limita-
tions of the underlying dynamic models. The basic assumptions are that the optical sensor
matches a particular model (the pinhole model in the implementation here) and the sensor
undergoes a constant angular rotation rate. In addition, due to the choice of Equations 4.1
and 4.7 to describe the motion of objects in the image plane, we also must enforce a small
field of view constraint. The particular choice of field of view depends on the acceptable
error levels for the resulting data output. Since the algorithms here may be implemented
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with any of the dynamic motion models from Chapter 3, a number of other constraints may
also apply. See the section in Chapter 3 corresponding to a particular motion model for
more details on the necessary assumptions.



Chapter 5

Implications of the Geometric
Analysis

This chapter will examine the possible applications of the geometric approach to image
analysis. Chapter 3 considered two methods for geometrically analyzing optical sensors.
The first method considered the relative geometry between single sensor rotating about a
fixed axis and a space object. The resulting derivations showed that inertially-fixed objects
move along paths described by conic sections. It is possible to leverage this knowledge for
a number of applications. The first section in this Chapter will use this knowledge of star
paths in an image to attempt to remove star streak curvature caused by imperfect sensor
tasking. Further, we will see that it is possible to leverage this algorithm to augment the
star subtraction approach derived in Chapter 4, so that it allows for global star removal even
with curved star streaks. The second method of geometric analysis from Chapter 3 looked
at the relationship among sensors in multi-sensor systems. That section showed that the it
is possible to analytically project the line of sight vector describing a space object relative to
a secondary sensor into a primary sensor of interest. The third section in this Chapter will
leverage this geometry in order to enhance the non-star object discrimination capabilities of
optical sensors. In addition, this approach has the benefit of immediately providing a range
estimate to augment to the angle data that is already available.

5.1 Sensor Drift Corrections

The first application of the geometric approach to image analysis aims to improve the re-
sults of image processing techniques in cases where the sensor exhibits some undesired drift
around the boresight during imaging. Measurements of unresolved signals in optical imagery
are typically quantified by their centroids. See Chapter 2 for an in-depth discussion on the
centroiding process. The accuracy of centroids typically decreases as point source signals
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move across the image plane during the exposure time [48]. The introduction of additional
pixels – and by extension, additional noise – to the centroid process, the localization mea-
surement becomes more variable. Further, drift around the boresight adds to this effect,
corrupting streaks by causing them to deviate from an ideal straight-line path [78]. The
resulting curvature induces a bias in the centroid result.

Figure 5.1 illustrates the effect of drift around the boresight on a streaked star signal. In
this example, a star streak exhibits significant curvature. Though this level of curvature is
not typical of real-world scenarios, it serves to visualize the centroid bias more easily. The
centroid is marked by the ‘×’ symbol. We see that the, because the centroid is essentially
the average position of all of the pixels making up the signal, the centroid in this case ends
up fall outside of the signal entirely. As the curvature increases, the average position moves
further outward, until the signal makes a complete circle and the centroid corresponds to
the center of that circle.

×

Figure 5.1: Illustration of a biased centroid (marked by the ‘×’) of a curved streak.

Precise centroids are required for a number of different space situational awareness goals.
Star centroids in particular provide attitude feedback [17], angular rate information [49],
and sensor calibration parameters [18]. The work in this section will focus primarily on
a geometric approach to removing the centroid bias from star signals. In Chapter 3, we
saw that stars viewed by an observer rotating about a constant angular rate follow paths
described by conic sections across the image plane. In addition, dynamic analysis showed
that these paths are approximately described by circles centered on the center of rotation
(Equation 3.67) for a small field of view sensor. This section will leverage both of these
results and manipulate star images in a way which removes the curvature of the stars. These
corrected images enable one to perform more traditional image reduction techniques even
when the curvature of star streaks is severe.

5.1.1 Estimating the Axis of Rotation

In order to reduce the effect of a rotation during the exposure time, we first must determine
some of the characteristics of that rotation. We will continue with the assumption that the
sensor rotates about a fixed axis of rotation. Past derivations showed that, for a sensor
rotating about a fixed axis, stars approximately move along circular paths centered around
the center of rotation, (xc, yc) 3.75. Conveniently, it is often possible to estimate the center
of rotation point completely from the data available in the image.
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As few as two streaked stars are enough to derive the center of rotation. The fact that
the stars must be streaked is an important one, because this derivation will rely on the
assumption that it is possible to extract two distinct endpoints from a single streak. With
two sets of endpoints, we can derive equations for the bisecting lines of each endpoint pair.
The complete set of bisecting lines, in the ideal case, will intersect at the center of rotation.
Figure 5.2 illustrates this geometry. Gray, dashed lines indicate the bisecting line for each
star streak. The illustrated case assumes that the sensor is rotating entirely around the
boresight, implying that the center of rotation is coincident with the origin of the focal plane
coordinate system.

Figure 5.2: Bisecting lines of several star streaks intersecting at the center of rotation.

In the case of pure rotation around the boresight, the solution from Equation 3.60 is inde-
pendent of the small field of view assumption. So, in this case, the stars do move in circles
around the center of rotation. As the center of rotation deviates from the origin (ω1 and
ω2 become larger), the neglected terms of 3.22 and 3.25 become more significant. The accu-
racy of this approach to estimating the center of rotation depends on the magnitudes of the
angular rates ω1 and ω2.

Now, in order to formulate this problem numerically, consider again the normal form rep-
resentation of a line. The normal form will be beneficial here because it will avoid the
numerical issues arising for vertical or nearly vertical lines. The normal form equation is
parameterized in terms of the minimum distance between the line and the origin, d, and the
angle of the minimum distance line segment relative to the x axis, ν. See Figure 3.9 for an
illustration of the normal form line parameterization. Recall that the standard normal form
line is

d = x cos ν + y sin ν (5.1)

To determine the bisecting line of a streak, assume that we have two unique endpoints given
by the focal plane coordinates (x1, y1) and (x2, y2). Past work has shown that it is possible to
extract endpoints of star streaks in some cases [78, 46]. We know that the bisecting line will
be orthogonal to the line connecting the two endpoints and will pass through the midpoint.
So, from Equation 5.1, we have two equivalent equations – one for each endpoint.

x1 cos ν‖ + y1 sin ν‖ = x2 cos ν‖ + y2 sin ν‖ (5.2)
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Here, ν‖ denotes the angle parameter of the line passing through the two endpoints. Solving
the equation above for ν‖ yields

ν‖ = tan−1

(
x2 − x1

y1 − y2

)
(5.3)

This angle describes the line passing through the two endpoints, but we are interested in
the line bisecting the two endpoints. The value of ν describing a line orthogonal to the one
described by ν‖ is simply

ν =
π

2
+ ν‖ =

π

2
+ tan−1

(
x2 − x1

y1 − y2

)
(5.4)

The midpoint of the endpoint pair, denoted by (xm, ym), is

xm =
x1 + x2

2
, ym =

y1 + y2

2
(5.5)

So, Equation 5.4 gives the angle of the bisecting line. Knowing that the bisecting line passes
through the midpoint, Equation 5.1 provides a solution for the parameter d.

d = xm cos ν + ym sin ν (5.6)

Thus we have derived an equation describing the bisecting line of a single endpoint pair.
Now, define νi and di for i = 1, . . . , n, where n is the total number of endpoint pairs. These
two terms represent the angle parameter and distance parameter for the ith endpoint pair,
respectively. If our previous assumption is correct and the center of rotation (xc, yc) lies on
each one of these lines, then the following system of equations describes describes each line
evaluated at that point.  cos ν1 sin ν1

...
...

cos νn sin νn

[ xc
yc

]
=

 d1
...
dn

 (5.7)

This system is over determined, but it is still possible to find the minimum least-squared
error solution. The least-squares solution for (xc, yc) is

[
xc
yc

]
=


 cos ν1 sin ν1

...
...

cos νn sin νn


T  cos ν1 sin ν1

...
...

cos νn sin νn



−1  cos ν1 sin ν1

...
...

cos νn sin νn


T  d1

...
dn

 (5.8)

The image-plane coordinates of the center of rotation will be sufficient for the derivations
in the next section. Since the center of rotation is closely related to the axis of rotation,
however, we can take this analysis a step further. Recall that the center of rotation is defined
as the projection of the axis of rotation through the pinhole model (see Equation 3.67). The
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inverse projection equation (Equation 2.6) gives the rotation axis in terms of the center of
rotation.

a ≈ 1√
x2
c + y2

c + f 2

 xc
yc
f

 (5.9)

Note that this is only an approximate solution, and as the axis of rotation deviates from
perfect alignment with the boresight, the quality of this solution suffers.

Other techniques for deriving the axis of rotation in a data-driven approach work by estimat-
ing the axis directly. In [49], the authors worked to develop a “stellar gyroscope” algorithm
that is capable of estimating the angular rate from a single streaked star image. They showed
that it is possible to estimate the angular rate from only a single streak. The algorithm works
by projecting the pixels that make up a streak onto the unit sphere. They then fit a spherical
circle (a circle defined in R3) to those data points. The normal vector to the resulting fit
provides a measurement of the axis of rotation. This method is capable of estimate the axis
of rotation to an accuracy as low as 1 degree, but it has a high computational cost [49].

A possible solution that avoids some of the high computational cost of the algorithm detailed
in [49] involves extraction of streak endpoints. Past work has shown that it is possible to
extract the endpoints of streaks to a tenth of a pixel or better [78, 46]. From the endpoints
of at least three star streaks, it is possible to extract two attitude solutions, one for each
endpoint set [18]. Further, from these attitude solutions, the rotation over the duration
of the exposure time is available by solving Wahba’s problem (see Equation 4.2) [76], for
which there are several optimal solutions [77]. It is important to note, however, that these
approaches do suffer from the small angular displacement of observations captured by a
small field of view sensor. As noted in [49], the angular rate of the sensor and field of view
may prove prohibitive in the number of stars visible at any given time. In the case that less
than three stars are visible in an image, solving for the axis of rotation becomes impossible
with this approach [77]. Further, if the visible stars did not move sufficiently to enable the
extraction of endpoints, this solution is also not viable.

Of course, it is always possible to measure the rotation axis directly through the use of an
on-board gyroscope. From an angular rate measurement, the axis of rotation is simply

a =
ω

‖ω‖2

(5.10)

Alternatively, a star identification routine operating on successive frames is capable provide
attitude estimates from which an angular rate estimate can be derived [17].

5.1.2 Polar Image Resampling

Now we will leverage the geometric analysis from Chapter 4 to remove the curvature from
a streaked star image. Specifically, we will use the fact that stars move along conic section
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paths according to Equation 3.182. Equation 3.75 showed that the these conic sections may
be approximated as circular for small field of view sensors. Let us begin with that assumption
to develop a basic algorithm. First, consider the center of rotation definition from Equation
3.67 [

xc
yc

]
= −f 1

ω3

[
ω1

ω2

]
(5.11)

The center of rotation is defined as the projection of the axis of rotation, a, into the image
plane. According to Equation 3.75, all stars approximately move along circular paths around
this point. Recall that this equation is[

x̂ (t)
ŷ (t)

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
x̂ (t0)
ŷ (t0)

]
(5.12)

Now, if we define a polar coordinate system centered on (xc, yc) by

x̂ = d cos ν

ŷ = d sin ν
(5.13)

then Equation 5.12 becomes[
d cos ν
d sin ν

]
=

[
cos (ω3t) sin (ω3t)
− sin (ω3t) cos (ω3t)

] [
d0 cos ν0

d0 sin ν0

]
(5.14)

Consider the first equation of the system above.

d cos ν = d0 cos (ω3t) cos ν0 + d0 sin (ω3t) sin ν0 (5.15)

By trigonometric identities, the right-hand side is equivalent to

d cos ν = d0 cos (ω3t− ν0) (5.16)

The second equation is

d sin ν = −d0 sin (ω3t) cos ν0 + d0 cos (ω3t) sin ν0 (5.17)

which similarly simplifies to
d sin ν = d0 sin (ν0 − ω3t) (5.18)

Solving the first equation for d yields

d = d0
cos (ω3t− ν0)

cos ν
(5.19)

and inserting this solution into Equation 5.18 shows that

d0 cos (ω3t− ν0)
sin ν

cos ν
= d0 sin (ν0 − ω3t) (5.20)
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Notice that the d0 term on both sides cancels out. Further, separating like terms leads to

sin ν

cos ν
=

sin (ν0 − ω3t)

cos (ω3t− ν0)
(5.21)

Since cos (β) = cos (−β) for any β, the relation above is equivalent to

sin ν

cos ν
=

sin (ν0 − ω3t)

cos (ν0 − ω3t)
(5.22)

So, we see that ν is simply
ν = ν0 − ω3t (5.23)

Inserting this back into the original solution for d shows that

d = d0
cos (ω3t− ν0)

cos (ν0 − ω3t)
= d0 (5.24)

So, in a polar coordinate system centered on the center of rotation, according to the approx-
imate motion model from Equation 3.60, inertially fixed objects remain at a fixed distance
from the origin and the angle evolves proportionally to the angular rate around the boresight.
This result corroborates the fact that stars in the simplified motion model are expected to
move in circles around the center of rotation. Figure 5.3 illustrates this exact scenario. In
the figure, a number of stars (indicated in black) rotate around the center of rotation over a
relatively long exposure. The gray, dotted lines indicate the polar coordinate system.

ν

d

Figure 5.3: A polar coordinate system placed at the center of rotation.

An alternative to sampling in a polar coordinate system uses the full solution from Equation
3.182. Since the solution above relies on the approximate equations of motion, the neglected
terms may lead to some residual curvature. To fully negate this curvature, it is possible to
instead resample along a conic section path parameterized by that curve’s minimum distance
from the center of rotation. The angle parameter from Equation 5.25 may be defined in the
same way, as the angle of the current point with respect to the x-axis, but the relationship
between the angular rate of the sensor and the rate of change of ν is complicated. An
analytic solution for this relationship is still unknown. For now, we will only consider the
polar coordinate approach.
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Let us consider some simulated scenarios to examine the effects of processing an image in a
polar coordinate system. Define the R2 → R2 transformation from focal plane coordinates
to polar coordinates as

x = d cos ν + xc

y = d sin ν + yc
(5.25)

Figure 5.4 contains the first example case that we will consider. In this case, the sensor is
viewing a only stars. During imaging, the sensor rotates by approximately 10 degrees about
the boresight direction, causing the stars to streak. From Equations 5.11 5.12, we know that
the stars are moving in circular paths centered on the center of rotation. Further, the center
of rotation is coincident with the origin of the focal plane coordinate system (See Figure 2.5
for the definition of the coordinate system). A small amount of noise corrupts each pixel’s
intensity value.

Figure 5.4: Simulated star image with pure rotation around the boresight.

The image above is seen again in Figure 5.5, expressed in the polar coordinate system.
The polar coordinate system from Equation 5.25 with sampling bounds d = 1, 2, . . . , ddiag,
where ddiag is the distance from the center of the image to an of the four corners, and
ν = 0◦, 2◦, . . . , 360◦. For each point in a (d, ν) grid, Equation 5.25 provides the corresponding
(x, y) coordinate. This set of focal plane coordinates then allows us to compute a value for
that location in the resampled image. The results in Figure 5.25 used a linear interpolation
amongst nearby pixels for each coordinate in the grid.

There are a few key caveats of this algorithm which are visible as artifacts in Figure 5.5.
The first issue affects pixels which are close to the center of rotation. As the distance
of a particular pixel from the center of rotation becomes smaller, that pixel is sampled
more densely. This oversampling effectively stretches the signal across multiple pixels in the
resampled image. The artifacts due to this are visible near the top of the image in Figure 5.5.
Though there are no star signals in this region of the Figure, oversampling of the background
noise causes correlations between pixels that did not exist before. This effect can lead to
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spurious detections, so special care should be taken in the region near the center of rotation.
Ideally, a minimum bound for d should be chosen such that no single pixel is sampled more
than once.

Another effect seen in Figure 5.5 is toward the bottom of the image, corresponding to larger
distances from the center of rotation. Each of these periodically-occurring artifacts corre-
sponds to the corner of the original image. In order to fully sample a square image with a
circular coordinate system, the grid must sometimes extend beyond the bounds of the image
frame. Since there is no data for what exists outside of the image borders, these data points
should simply be marked as invalid and not considered in later processing. Special care must
be taken around these regions as they may also lead to spurious object detections.

Figure 5.5: Curved star streak image resampled in a polar coordinate system.

Another concern when resampling the image data is the choice of sampling bounds. For this
case, the choice of bounds was simple, since the center of rotation was in the center of the
focal plane. In the general case, however, where the center of rotation can be anywhere in
the plane of the CCD (including well beyond the borders of the image data), the choice of
sampling bounds can be much more complicated. A simple method for solving this problem
is to consider the location of each of the pixels on the border of the image as projected
into the polar coordinate system. From 5.25, it follows that the distance parameter in polar
coordinates for any (x, y) location in the focal plane is

d =

√
(x− xc)2 + (y − yc)2 (5.26)

So, if we project n pixel locations along the edge of the focal plane into the polar coordinate
system, the choice of bounds is simply

dmin = min {d1, d2, . . . , dn}
dmax = max {d1, d2, . . . , dn}

(5.27)

Note that this is not an exact solution and may lead to up to half a pixel of error. Increasing
the maximum distance and decreasing the minimum distance by half of the size of a pixel
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may cause some additional out-of-bounds sampling, but it will avoid the loss of any image
data. The angle, ν, in terms of an arbitrary (x, y) coordinate and the center of rotation,
(xc, yc) is

ν = tan−1

(
y − yc
x− xc

)
(5.28)

A quadrant check is required to determine the appropriate value of ν. The proper choice of
bounds for ν is

νmin = min {ν1, ν2, . . . , νn}
νmax = max {ν1, ν2, . . . , νn}

(5.29)

except in the case where the center of rotation is within the bounds of the original image.
When the center of rotation is within the original image data, then the sampling bounds
should always span a full rotation.

It is worth noting that this technique for image analysis is not limited to directly manip-
ulating the image intensity data. In fact, it is possible to perform analysis based on the
polar coordinate system without ever manipulating the image data. For example, Figure
5.1 highlights a key problem of analyzing data with curved streaks. If, instead we convert
the coordinates of each pixel to their polar-coordinate counterparts, then the centroid of an
object may be written as [

cd
cν

]
=

n∑
i=1

wi

[
di
νi

]
(5.30)

where wi is the intensity-based weighting of the ith pixel and (di, νi) describes the location
of that pixel in the polar coordinate system. So, the image intensity data remains the
same, but rather the coordinates for each pixel are modified prior to the traditional centroid
calculation. The resulting centroid does not contain the same bias seen in Figure 5.1. As
seen in Figure 5.5 and from the results in Equations 5.23 and 5.24, in the new coordinate
system the streaks have no curvature. Thus the bias due to curvature does note affect results
computed in the polar coordinates.

Issues can arise here due to the fact that the angle, νi, is discontinuous at one full rotation.
In cases where a streak extends over the boundary between 2π and 0 radians, it is necessary
to shift the coordinates so that it does not fall on this boundary prior to computing the
centroid with Equation 5.30. So, from Equation 5.25, the corresponding centroid in the
original cartesian coordinate space is[

cx
cy

]
=

[
cd cos cν + xc
cd sin cν + yc

]
(5.31)

Thus, it is possible to derive an unbiased centroid from a curved streak without modifying
the original image intensity values directly.
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5.1.3 Spherical Image Resampling

The process from the previous section has the limitation that it relies on the approximate
motion models derived in Chapter 3. A more general approach relies on unit vectors de-
scribing points on the image plane of the sensor projected back onto the unit sphere. A
resampling procedure in a spherical coordinate system, then, should provide a similar result
as we saw in the previous section. Consider a spherical coordinate system chosen in the
following way:

u =

 sinα cos β
sinα sin β

cosα

 (5.32)

Note that here we neglect the distance from the origin. The following algorithm relies entirely
on unit vector descriptions of space objects, for which the distance from the origin is always 1.
The change of coordinate systems in the equation above is not ideal, because it is completely
independent of the axis of rotation. Instead, it is desirable to relate the orientation of the
spherical coordinate system to the axis of rotation. Consider an alternate definition of the
coordinate system

u′ = RT
au =

 sinα cos β
sinα sin β

cosα

 (5.33)

where Ra describes a rotation that aligns the pointing vector of the sensor with the axis of
rotation and u′ is a particular unit vector expressed in this new reference frame. So, in this
new formulation of the spherical coordinate system, the line defined by α = 0 corresponds
to the axis of rotation. In a moment we will see the benefits of this particular choice of
coordinate system. First, let us derive the rotation matrix, Ra. Define a vector, a⊥, by

a⊥ = ê3 × a (5.34)

This vector is orthogonal to both the pointing vector of the sensor, ê3 in the sensor’s reference
frame, and the axis of rotation, a. The angle between these two vectors is

θ⊥ = cos−1 (ê3 · a) (5.35)

So, a rotation matrix that aligns ê3 with a is

Ra = I − ã⊥ sin θ⊥ + ã2
⊥ (1− cos θ⊥) (5.36)

Though this definition of rotation matrix is not unique, different choices of Ra will not effect
the final result. Now, the evolution of the u′ unit vector in the with respect to time in the
axis-aligned coordinate system is simply [8]

u′ (t) =

 cos (‖ω‖ t) − sin (‖ω‖ t) 0
sin (‖ω‖ t) cos (‖ω‖ t) 0

0 0 1

u′ (t0) (5.37)



Bradley J. Sease Chapter 5. Implications of the Geometric Analysis 120

where the norm is the 2-norm. In the axis-aligned reference frame, any unit vector u revolves
around the vertical axis with a rate equivalent to the magnitude of the angular rate vector
in the non-aligned reference frame. The individual components of the relationship above are

u′1 (t) = u′1 (t0) cos (‖ω‖ t)− u′2 (t0) sin (‖ω‖ t)
u′2 (t) = u′1 (t0) sin (‖ω‖ t) + u′2 (t0) cos (‖ω‖ t)
u′3 (t) = u′3 (t0)

(5.38)

Define α0 as the value of α corresponding to u′ (t0). Similarly, choose β0 to represent the
value of β for u′ (t0). From Equation 5.33, we find

cosα = cosα0 (5.39)

which implies that
α = α0 (5.40)

In a spherical coordinate system aligned with the axis of rotation of a sensor, any unit vector
rotating about that axis maintains a constant value for α. From the u′ term of Equation
5.38 and the spherical coordinate system definition in Equation 5.33, we have

sinα cos β = sinα0 cos β0 cos (‖ω‖ t)− sinα0 sin β0 sin (‖ω‖ t) (5.41)

Since α = α0,
cos β = cos β0 cos (‖ω‖ t)− sin β0 sin (‖ω‖ t) (5.42)

By trigonometric identities, the right hand side reduces such that

cos β = cos (β0 + ‖ω‖ t) (5.43)

Finally, the equation above implies that

β = β0 + ‖ω‖ t (5.44)

So, in a polar coordinate system where the axis of rotation is aligned with the line described
by α = 0, the angle α of an object rotating about that axis is constant and the corresponding
β value evolves according to the magnitude of the angular rate. This result is similar to that
of the polar coordinate system case and in fact we are able to leverage it in the same way to
remove the curvature of imaged star streaks.

Once again we will consider a simulated case to determine the efficacy of a spherical resam-
pling process. Figure 5.6 contains a simulated star image form a rotating platform. The
exposure time and rotation rate are cause significant length in the imaged stars. Note that
the stars in this image are much more straight than those in Figure 5.4. In fact, since the
spherical process described here does not depend on the center of rotation, it continues to
work even when the center of rotation is undefined. This scenario occurs when there is no
rotation around the boresight over the exposure time (i.e. ω3 = 0). The spherical technique
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Figure 5.6: Simulated star streak image with limited rotation around the boresight.

is only concerned with the description of the axis of rotation in R3, so it function for any
arbitrary angular rate vector.

The image resulting from a spherical resampling of Figure 5.6 is seen in Figure 5.7. This case
sampled the full celestial sphere (α ∈ [0, 2π] and β ∈ [0, π]) and removed extraneous data
while preserving a rectangular image shape. This grid in (α, β) leads to a grid of unit vectors
from Equation 5.33 and further a grid of image plane points through the R3 → R2 projection.
In this case, we consider the pinhole model (Equation 2.4), but any other projection model
is valid as well. A linear interpolation provided intensity values for each grid point based on
the neighboring pixel intensities.

As in the case of the polar resampling, we again see that it is often necessary to sample points
that are outside the boundary of the original image. The dark regions around the corners
of the image in Figure 5.7 are points that were sampled from out of bounds. These points
contribute no data, but are required to produce a rectangular image. In practice, these pixels
should be marked as invalid and ignored in subsequent processing. The spherical approach
is also limited in cases where the axis of rotation intersects the image plane, though that
is not the case in Figure 5.6. In the region around α = 0 pixels tend to become heavily
oversampled, stretching their signal out over many pixels in the resampled space. Limits for
α should be chosen carefully to avoid oversampling noise and creating spurious detections.

Now, we would like to determine the minimal sampling bounds for an arbitrary axis of
rotation. From Equation 5.33, we may find that α in terms of the unit vector it describes is

α = cos−1 (u3) (5.45)

and β is

β = tan−1

(
u2

u1

)
(5.46)

So, we can proceed in the same way as for the polar resampling bounds. The projection of
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Figure 5.7: Star streak image resampled in a spherical coordinate system.

all of the edge points in the original image with knowledge of the axis of rotation provides a
data set from which we can extract the minimal sampling bounds. First, project each (x, y)
coordinate through any desired R2 → R3 transformation to find a corresponding u. Then,
use the two equations above to compute the corresponding (α, β) coordinate. The minimum
and maximum values for α are

αmin = min {α1, α2, . . . , αn}
αmax = max {α1, α2, . . . , αn}

(5.47)

and the minimum and maximum values for β are

βmin = min {β1, β2, . . . , βn}
βmax = max {β1, β2, . . . , βn}

(5.48)

Though this way of determining the bounds requires the projection of a potentially larger
number of points, it greatly reduces the computational cost of interpolating a large number
of unnecessary values. In the case where the axis of rotation passes through the image, this
analysis is made somewhat more simple. In that case, the β term must complete one full
rotation to completely capture the image data.

Similar to the polar case, the spherical approach is not limited to analysis which directly
manipulates the image data. For example, it is also possible to compute centroids for objects
in the spherical coordinate system without resampling the original image. Instead, we are
able to modify the pixel coordinates while retaining the original intensity data. The centroid
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of an object in spherical coordinates is[
cα
cβ

]
=

n∑
i=1

wi

[
αi
βi

]
(5.49)

where wi is the intensity-based weighting of the ith pixel and (αi, βi) describes the location
of that pixel in the spherical coordinate system. Issues can arise here due to the fact that
both angles are discontinuous. In cases where a streak extends over the boundary for either
α or β, it is necessary to shift the coordinates so that it does not fall on this boundary prior
to computing the centroid with Equation 5.49. So, from Equation 5.33, the corresponding
unit vector describing the centroid in the axis-aligned cartesian coordinate space is c′1

c′2
c′3

 =

 sin cα cos cβ
sin cα sin cβ

cos cα

 (5.50)

Recall the relationship between the axis-aligned coordinate system and the sensor’s original
body-fixed reference frame. The centroid vector in the sensor’s reference frame is related to
the vector above by

c′ = RT
a c (5.51)

where c′ = (c′1, c
′
2, c
′
3) and c = (c1, c2, c3). Typically, the unit vector c is the desired result. If

necessary, the centroid coordinate in the image plane is given through whichever projection
equation most accurately describes the sensor. For a model adhering to the pinhole model,
the centroid coordinate (cx, cy) is [

cx
cy

]
= − f

c3

[
c1

c2

]
(5.52)

Thus, the spherical analysis provides bias-free centroid measurements without requiring di-
rect manipulation of the image data.

5.2 Star Subtraction with Field Curvature

Analyzing imagery in a polar coordinate system that originates at the center of rotation
also benefits the star removal algorithm derived in Chapter 4. Recall that the star removal
algorithm relied on the motion model in Equation 3.62, which assumed no rotation around
the boresight of the sensor (i.e. ω3 = 0). Under this assumption, all of the star signals in
an image are approximately equal and therefore the star removal process only requires a
single template. If we first resample the image in a polar coordinate system originating at
the center of rotation defined in Equation 3.67, then the equations of motion describing the
motion of a star across the focal plane are

ν (t) = ν (t0)− ω3t

d (t) = d (t0)
(5.53)
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See Figure 5.3 for a diagram of the (d, ν) polar coordinate system. So from the equations
above we can infer that, in the polar coordinate system, all of the star signals will have
approximately identical appearance. Thus, by resampling about the center of rotation, we
are able to use a common template for all of the stars in an image, thereby enabling the star
removal process for Chapter 4 even when ω3 6= 0.

Figure 5.8 contains the simulated example case that will serve as a proof of concept for star
subtraction of curved signals. In this scenario, the sensor is rotating entirely around the
boresight of the sensor. According to Equation 3.60, the stars are tracing circles around the
center of the image. The left-most image in Figure 5.8 contains the resulting raw image data.
After resampling the image a in polar coordinate system about the center of rotation, we
arrive at the image on the right-hand side of the figure. The vertical axis corresponds to the
d parameter, increasing from zero at the top of the image. The horizontal axis corresponds
to the ν parameter, beginning from zero and increasing from left to right.

Figure 5.8: Simulated image with boresight rotation (left) and its polar resampling (right).

We follow the same process for star removal as we did in Chapter 4 for this case, with
the difference that the fitting and subtraction process is performed in the resampled space.
After fitting the stars in the resampled image, we transform the template image back into
the original coordinate space and subtract the result. This algorithm run on the set of
images above produced the results in Figure 5.9. The left-hand image in the figure is the
polar resampled image from Figure 5.8 with the stars removed. Rather than mapping this
image back into the original coordinates, we map the template image back and perform the
subtraction on the raw image data. The result of this process is seen in the right-most image
of Figure 5.9. We see that the algorithm was successful at removing the bulk of the star
signals.

Something to note in the final image of Figure 5.9 is that there are a number of artifacts near
the center and outer portions of the image. The artifacts near the center correspond to the
upper portion of the resampled image, where pixels become “stretched” due to oversampling.
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Figure 5.9: Star-subtracted result in polar coordinates (left) and original coordinates (right).

This causes correlation in the noise among pixels and can lead to problems in post-processing.
In this case, the matched filter star extraction process finds a large number of spurious signals
in that region. The artifacts near the corners of the image correspond to error introduced
by the undefined regions near the bottom of the resampled image. Though these regions are
ignored in processing, pixels on the border can be difficult to handle. Special care must be
taken in this region as well to avoid spurious detections in the matched filter process.

Also of note is the error introduced by the interpolation. The results here use a linear
interpolation among pixels to transform from the raw image data to the resampled space.
Of course, some information is lost and distorted in this process. The result is that the
templates, though theoretically correct, may not fit exactly to the underlying data. Due to
this effect, it is best to avoid manipulating the raw image at all. Rather, using an algorithm
that maps the template, defined in polar coordinates, into the original image space and
performs the star subtraction without interpolation will produce a more accurate result.

5.3 Multi-Observer Space Object Discrimination

This section will leverage the epipolar analysis from Chapter 3 to enhance the detection
capabilities of multi-sensor systems. We know that two observers with a sufficient baseline
separation can also provide an immediate range estimate to a particular object if operated
simultaneously [19]. This range estimate is only available if both sensor systems are confident
that they are observing the same object. Since unresolved objects have nearly identical
appearances in optical imagery, it is often non-trivial to associate objects between frames.

Prior work has examined the use of epipolar geometry for automatic detection and ranging
of non-star objects. The work in [66] and [67] describes an algorithm that leverages the
epipolar geometry of a wide baseline stereo system to detect space objects. This technique
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works by transforming the image from one sensor so that the stellar background matches
that of the secondary sensor. Then, any signal which has moved is likely to be a non-star
object of interest [66]. This algorithm has been demonstrated on a real-world stereo sensor
system with a 37 km baseline and was able to detect six satellites in a three hour period in
MEO and Molniya orbits [66].

The work here aims to extend and generalize the multi-sensor approach to space object
detection and ranging. From a single stereo pair there is the possibility for an ambiguity in
the matching process. We know that an object detected in a primary sensor will lie along the
corresponding epipolar line in the secondary sensor, but star clutter and other space objects
may also cross this line. In this case, there is an additional difficulty in determining the
correct sensor-to-sensor object association. The work in [66] solves this by transforming the
stellar background from one sensor to match that of the secondary sensor, but this process is
not always possible. If there is no overlap in the two image frames, then this transformation
will not provide any new information and will likely corrupt the existing data.

Figure 5.10 illustrates the stereo pair geometry. In this figure we see that a secondary sensor
in the background observes a spacecraft and reports a corresponding line of sight vector.
The primary sensor in the foreground images the spacecraft as well and artificially enhances
the image by drawing the line of sight vector. The line crosses the spacecraft and there are
no other objects in the image, so the association is simple. If, on the other hand, a star or
other space object fell along this line, then the association would be ambiguous.

Figure 5.10: Diagram of the epipolar geometry between two optical observers.

Recall that the equation describing the line of sight vector from a secondary sensor projected
into the primary sensor is

y =
u3 (ro)2 − u2 (ro)3

u3 (ro)1 − u1 (ro)3

x+ f
u2 (ro)1 − u1 (ro)2

u1 (ro)3 − u3 (ro)1

(5.54)
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where ro is the position of the secondary observer in the primary sensor’s body-fixed reference
frame and u is the unit vector describing the optical measurement of an object of interest
from that sensor. The line of sight vector, u, is also expressed in the reference frame of the
primary sensor. Here, (ro)i denotes the ith element of the ro vector. This relationship allows
us to analyze imagery from multi-sensor systems in terms of the epipolar geometry between
them.

Let us consider some simulated example cases to see the benefit of using more than two
sensors simultaneously. The first simulated case, in Figure 5.11, contains only two objects
and no stellar background. The image on the left-hand side of the figure contains only one
of the two objects while the image on the right-hand side contains both. The blue lines
across each image indicate the line of sight vectors from the other sensor, drawn according
to Equation 5.54. The line of sight vector from the sensor on the left crosses one object in
the image on the right, indicating that those two signals correspond to the same object.

Figure 5.11: Simulated images from a stereo pair with epipolar line overlay.

Figure 5.12 shows a higher fidelity simulation that includes a star field from the Tycho-2 star
catalog [6]. In this simulated case all three sensors are oriented in the same direction and
each image contains a single space object. The epipolar lines overlaid on each image indicate
the line of sight vectors from the other two sensors corresponding to that space object. We
see that in each image, the line of sight vectors from the other two sensors cross at the image
plane location of the object of interest. This follows intuitively from the geometry of the
problem. We know that any observed object lies at some unknown distance along the line of
sight vector. If we have two line of sight vectors from different locations for the same object,
then the object must be at the intersection of these two lines.

Thus far we have considered only perfect line of sight measurements. In real-world scenarios
there will be some error associated with each measurement and the line of sight vectors may
not intersect exactly at the location of an object of interest. To account for this uncertainty,
we represent the measurement error as a bounded rotation, E, from nominal epipolar line,
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Camera 1 Camera 2 Camera 3Figure 5.12: Epipolar lines for a three camera system architecture.

un. The error bounds are
ue = Eun (5.55)

where E is any rotation matrix with a principal angle that describes the maximum uncer-
tainty in the line of sight vector. So, the correct line of sight vector may be any vector in
a cone around the nominal line. We are in particular interested in the maximally-separated
error bounds from the point of view of a secondary sensor. In other words, we desire the error
bounds that, when projected into another sensor, are as widely separated as possible. These
error bounds are of interest because they will provide the most conservative error bounds for
subsequent analysis. Denote ri,j as the relative position of the ith sensor (the sensor that
measured the line of sight vector) to the jth sensor (the sensor in which we wish to project
the line of sight vector). To produce the maximally separated error bounds we must only
consider error bounds external to the un−−ri,j plane. Any rotation in this plane will move
the line of sight closer to or further from the receiving sensor, causing no visible change from
the nominal vector. The cross product ri,j × un produces the normal to this plane. Any
rotation around the nominal line, un will not produce any change in the resulting vector so
the axis of rotation must also be orthogonal to this vector. So, the relation

amax = u× (ri,j × un) (5.56)

gives the axis of rotation that produces the maximally-separated error bounds. Note that
amax must be normalized to produce a valid rotation axis. We have assumed that the rotation
from the nominal value is bounded by some angle, denoted here by θmax, so E is [8]

E = I − ãmax sin θmax + ã2
max (1− cos θmax) (5.57)

where I is the identity matrix and ãmax is the skew-symmetric form of amax. So, the epipolar
error bounds are

u+ = Eun

u− = ETun
(5.58)

Figure 5.13 contains a simulated image of a space object with nominal epipolar lines and
error bounds from two external sensors. The teal, dashed lines are the nominal line of sight
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vectors and the blue, solid lines are the epipolar error bounds. We see that the intersection
of these two regions is a small, approximately 4 square pixel area that contains the object
of interest. The fact that this intersection contains an objects suggests a strong likelihood
that it should be associated with the corresponding signal in the other sensors.

Figure 5.13: Epipolar lines from two external sensors with error bounds.

Figure 5.14 shows another simulated scenario, this images from all three sensors and the
corresponding epipolar lines. Again, the intersection of the epipolar error bounds contains
only a small region of the image which also contains an object in each image. It is this
behavior that we can leverage to make sensor-to-sensor object associations. This effect
scales up easily with additional sensors – each sensor simply adds another epipolar line to
the overlay. The region contain in the intersection of all of the error bounds should contain
an object, if it was in view of all of the sensors. Something to note is that more sensors
beyond three do not necessarily reduce the search space further. In fact, if the error is not
properly quantified, additional sensors may over constrain the problem and make the correct
association impossible.

Camera 1 Camera 2 Camera 3Figure 5.14: Epipolar overlay for three cameras with error bounds.

Even when an object falls in the intersection of epipolar lines in an ideal case like that in
Figure 5.14, there is still a possibility that the there are actually multiple objects that aligned
in this way by chance. We can work to estimate the probability of this happening based on
the density of the stellar background. If we know the number of stars that are expected to
appear in the image frame and these stars are equally likely to be anywhere in the image,
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then the probability that a star occurs in a single pixel is

Ps =
ηs
rxry

(5.59)

where rx and ry denote the resolution of the image along the x and y axes, respectively and
ηs is the number of stars expected in the image. We can write the probability of a false
association in terms of Ps and the area between the epipolar error bounds, Ai, as

P
[i]
f = P [i]

s Ai (5.60)

This is the probability that an object detected in one sensor is not the same as the object
that appeared in the intersection epipolar lines. We assume that the likelihood of another
non-star object appearing in the image and serendipitously aligning in a way that produces
a false positive is negligible and therefore the only way for a false association to occur is
from star clutter. So, to precisely characterize the probability of a false association we must
estimate the number of stars that we would expect to fall in an image. We can achieve
this goal through consideration of star catalog data [98, 6, 99]. First, let us consider the
density of stars on the celestial sphere. This derivation will follow a similar analysis to that
of the false positive rate for star identification with the pyramid algorithm [16]. Treating the
celestial sphere as if were of unit radius, the stellar density, ρs, is

ρs (mv) =
N (mv)

4π
(5.61)

where mv denotes the limiting magnitude for detection of a star in a particular sensor and
N (mv) is the number of stars brighter than that magnitude. So, the stellar density requires
an estimate of the number of stars expected for a particular limiting magnitude. In [7], the
author estimates N (mv) to be

N (mv) ≈ 6.57e1.08mv (5.62)

This result is an estimate from the PPM star catalog of 378,910 stars [99]. In Figure 5.15
we see that this estimate agrees well with the Tycho-2 star catalog as well. In this figure,
the dotted line indicates the number of expected stars for each visible magnitude from the
equation above and the solid line is the true count from the 2.5 million star catalog [6]. The
two plots deviate at the beginning and end, where the Tycho-2 catalog has limited coverage.

The area of the celestial sphere covered by a circular field of view with extent θFOV is [7, 16]

As = 2π (1− cos (θFOV)) (5.63)

So, the number of expected stars is equal to the area of the celestial sphere that a particular
sensor covers multiplied by the stellar density.

ηs = Asρs (5.64)
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Figure 5.15: Number of visible stars vs. limiting magnitude [6, 7].

From Equations 5.62 and 5.63, the equation above becomes

ηs ≈ 3.29 (1− cos (θFOV)) e1.08mv (5.65)

The number of stars expected an image is a function of the angular field of view of the sensor,
θFOV, and the detection threshold, mv, of the sensor. Figure 5.16 visualizes the number of
expected stars for various field of view sizes and limiting magnitudes in the Tycho-2 star
catalog [6]. For low limiting magnitudes (< 5), even wider field of view sensors are unlikely
to see any stars. As the field of view and limiting magnitude increases, the number of stars
that are likely to be viewed by the sensor increases rapidly.
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Figure 5.16: Expected number of stars vs. limiting magnitude in the Tycho-2 catalog.

Assuming that there is an equal probability for a star to be anywhere on the focal plane, the
probability of a star falling in any square pixel area is approximately

Ps ≈
3.29

rxry
(1− cos (θFOV)) e1.08mv (5.66)
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Of course, this is only an estimate since it assumes a homogeneous distribution of stars
across the celestial sphere. In practice, it would be better to consider a worst-case scenario
where the sensor is staring directly into the galactic disk. That way we would find a conser-
vative estimate for the probability of a star appearing in any pixel. In other regions of the
sky Ps would overestimate the probability of a star landing in a pixel, but it would never
underestimate it.

Once we have a confident object association between sensors it is then possible to immediately
compute the range of the object from any of the sensors involved. Define the angles between
the measured line of sight vectors from two sensors, u1 and u2, and the relative position
between the sensors, r1,2, to be

θ1 = cos−1 (u1 · r1,2)

θ2 = cos−1 (u2 · r2,1)
(5.67)

It is from these angles that we are able to calculate the range of the object. The distance to
the object along the line of sight vector u1 to from the first sensor is

D =
‖r1,2‖ sin θ1

sin (π − θ1 − θ2)
=
‖r1,2‖ sin θ1

sin (θ1 + θ2)
(5.68)

So, the position of the object of interest defined relative to the first observer is

rrso = Du1 + ro (5.69)

where ro is the vector describing the position of the reference sensor. This range estimate
has the additional benefit of allowing for discrimination between stars and non-stars in an
image. Stars can be treated as existing at an infinite distance from the observer, so a range
gating process will remove stars and only leave objects which are within a desired distance
of Earth. An important consideration when computing the range of an object is that the
baseline must be sufficiently large to allow for precise estimates of the range [19]. From the
equation for distance above we see that as the baseline shrinks and the range grows, the
angles θ1 and θ2 approach π

2
and the distance equation becomes singular. For baselines that

are small relative to the range of the object small measurement errors are amplified and the
resulting distance measure may not be accurate.

Another interesting consequence of a multi-sensor approach is that simultaneous tasking of
multiple, widely separated observers allows us to effectively monitor regions of space. In
some scenarios, the intersection of the field of view of multiple sensors encapsulates a closed
volume. Figure 5.17 contains one such scenario. Through careful choice of the placement
and pointing of individual sensors, then, it is possible to continuously observe regions of
space. Any object that is measured with the multi-view algorithm discussed in this section
is guaranteed to be in that volume of space. So, for example, if we wish to observe objects
in a specific medium-Earth orbit (MEO), we might point the sensor system at a region that
these objects are expected to pass through. Constructing one of these sensor systems to
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observe a region above Earth’s pole could also provide continuous monitoring of a populated
region of space.

In the simulated scenario in Figure 5.17, three sensors indicated by red markers are oriented
according to the black arrows originating from each marker. Two sensors lie along the x axis
separated by 2 units at (−1, 0, 0) and (1, 0, 0) and a third is located at (0, 1, 0). All three of
the sensors point at (0, 0.5, 1). Starting from a grid of points in the three dimensional space,
this simulation removed any points that were not in the field of view of all three sensors.
The convex hull in the figure contains the remaining points and visualizes the intersection
volume of the fields of view of the three sensors.
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Figure 5.17: Numerically generated intersection of the field of view of multiple sensors.

5.4 Summary

This chapter has explored a geometric approach to data reduction for optical observers.
Based on the derivations in Sections 3.3 and 3.4, we have shown several benefits to analyzing
data in this way. Specifically, in Section 5.1, we showed that it is possible to reverse the effect
of rotation about the boresight during an exposure. This correction leads to more precise
measurements of objects contained in the image. Further, other types of traditional analysis
are possible in the corrected space, possibly enabling a wide variety of alternative data
processing techniques. In particular, Section 5.2 showed that it is possible to formulate the
star subtraction routine originally developed in Section 4.3 in this corrected space. Through
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this type of analysis it is possible to remove stars with a common template even when there
is extreme rotation around the boresight and the geometry of each star is dependent on its
location in the image.

It is important to note that the results in Sections 5.1 and 5.2 are dependent on two key
assumptions. The first is that the sensor has a small field of view. Choosing the appropriate
field of view is dependent on the acceptable level of error and may be inferred from the
neglected terms of Equations 3.22 and 3.25. The second constraint on these results is that,
if the sensor is rotating, the axis of rotation must be constant. This constraint is slightly
relaxed from the assumption of constant angular rate for the dynamic analysis in Sections
3.1 and 3.2, but applies to a similar set of scenarios.

Section 5.3 explored a different type of geometric image analysis. This work uses the deriva-
tions of the epipolar geometry for multi-sensor systems from Section 3.4 to augment tradi-
tional space object classification routines. We have shown that, with two or more sufficiently
separated observers, it is possible to classify an object as a star or non-star without it ex-
hibiting any apparent motion. Additionally, after a conclusive object classification the full
position of the object is immediately available.

These multi-sensor algorithms have two key constraints placed on them. With the particular
implementation derived here the sensors must adhere to the pinhole camera model. It is
possible, however, to derive a model for the epipolar geometry among the sensors that uses
higher fidelity models. The sensors must also be widely separated to enable the classification
and triangulation procedures. In simulated scenarios, a baseline separation of 10 times the
distance to the object from the observers was ideal.

These techniques offer a fundamentally new approach to looking at optical sensor data.
By analyzing the geometry of sensor systems we gain a deeper insight into the nature of
the sensor. This insight further enables a wider range of data processing routines that are
applicable to a diverse set of optical sensors.



Chapter 6

Summary of Contributions

The work in this dissertation is intended to provide a set of general algorithms for handling
optical data from diverse sources. As the number of space objects in Earth orbit grows, more
sensors are necessary to maintain a precise space object catalog. The work here aligns well
with the data-centric approach of DARPA’s OrbitOutlook program which aims to extend
data collection efforts to non-traditional sources such as commercial, university, and hobbyist
level sensors [12]. With this broadening data collection effort comes a new set of challenges;
low cost, non-traditional sensors do not necessarily provide the same precision of tasking
and quality of data as the sensors that make up the Space Surveillance Network currently.
So, in order to develop a centralized data processing pipeline, this work approaches data
analysis from a fundamental standpoint. Only by leveraging the basic physics and geometry
underlying optical systems will it be possible to fully utilize a diverse pool of sensors.

In all, this dissertation outlined six high-level approaches to image analysis enabled by the
low-level sensor analysis derived in Chapter 3. Section 4.1 contained two algorithms pertain-
ing to space object tracking and classification in optical imagery. These algorithms provide
a novel approach to reducing optical image data based on the motion models from Chapter
3. Though we only considered two motion models in particular, a similar architecture may
be built on any of the models depending on which set of assumptions best fit the system at
hand. This type of general tracking and classification process is a powerful tool for devel-
oping a generalized pipeline that is capable of reducing data from a wide variety of sensors.
For specific formulations of this pipeline, see [68] and [100].

The advanced shift and add process developed in Section 4.2 provides a higher-fidelity ap-
proach to the shift and add process that is typically applied for detection of dim space objects
[15, 92]. Rather than simply assuming that objects of interest have a constant velocity across
the image plane, we can relax this assumption and broaden the range of scenarios in which
shift and add is beneficial. The results in this dissertation open up the shift and add process
to a much broader range of sensors and space objects which may violate the typical assump-
tions. Maximizing the gain of low-quality sensors is a key aspect of utilizing a set of diverse
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observers to its full potential.

Star removal with the algorithm developed in Section 4.3 augments many of the other tech-
niques discussed and developed here. Star clutter is often a problem for analysis of optical
imagery because space objects of interest move independently of the stellar background.
The presence of star clutter is perhaps most problematic when performing shift-and-add,
but tracking algorithms can benefit from this process to a lesser extent. A convex formula-
tion for the star removal problem is a novel, efficient method for removing stars. Though it
does not have the fidelity of some existing approaches, the global process is flexible and may
be extended to leverage deeper knowledge of an existing sensor. This work was presented at
the 26th AAS/AIAA Space Flight Mechanics meeting [101].

The geometric approach to image analysis enables a way to account for non-ideal sensor
tasking that includes rotation around the boresight. From Section 3.3, we know that the
path of a star across the image plane of a sensor rotating with a fixed axis of rotation is
a conic section. The results in Section 5.1 leverage this result to counteract the effect of
rotation around the boresight. This rotation is undesireable because it leads to curvature in
the background star signals and by extension reduces the accuracy of attitude knowledge.
By performing image analysis with the motion profile of stars in mind, we are able to remove
this effect and return to the level of accuracy that is typical of measurements of star signals
without curvature. For more on this topic, see [102].

Finally, Section 5.3 extended our analysis to multi-sensor configurations. We have shown
that it is possible to leverage the epipolar geometry of multiple sensors to not only triangulate
space objects but also enhance the space object discrimination capability of an individual
sensor. The results in Section 5.3 show that it is possible to build a probabilistic argument
that a particular object in view of multiple sensors is not a star even when there is no
apparent motion to differentiate it. In a centralized data processing pipeline, this approach,
in conjunction with all of the other techniques described here, could provide higher-level
analysis to intelligently merge data streams from individual sensors. This type of multi-
sensor analysis has the potential to maximize extraction of information from individual
sources to enhance overarching orbit determination routines.
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