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1. Introduction - the Classical Limit of Quantum Mechanics

How deterministic classical mechanics (CM) emerges from probabilistic quantum

mechanics (QM) is a conundrum which is yet to be resolved. As first noticed by

Dirac1, the Poisson brackets of CM can be considered the ~ → 0 limit of commuta-

tors in QM, and the Heisenberg equation goes over to Hamilton’s equation in that

limit:

dÂ

dt
=

1

i~
[ Â, Ĥ ]

~→0−−−→ dA

dt
= {A, H } . (1)

1
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Despite this formal correspondence, however, it is far from clear how the full classical

theory would be recovered from QM in such a limit. In particular, what happens

to the Hilbert space of QM in the ~ → 0 limit is a difficult question.a Also, ~ being

a dimensionful quantity, the limit ~ → 0 itself is not particularly well-defined.b

In order to see the CM↔QM correspondence more clearly, several attempts

have been made to make CM look more like QM via the introduction of wave-

functions, operators, and probability distributions. The WKB approximation3,4,5

to the Schrödinger equation has been reinterpreted as the wave-function of CM

by Van Vleck6 and subsequently by Schiller,7,8,9 with observables represented by

commuting hermitian operators with continuous eigenvalues. However, utilizing the

rewriting of the Schrödinger equation by de Broglie in his pilot-wave theory,10 which

was later elaborated on by Bohm to discuss a hidden variable interpretation of

QM,11,12 Rosen has shown that taking the ~ → 0 limit of the Schrödinger equation

does not necessarily recover the Hamilton-Jacobi equation for superpositions of

states.13,14,15

Koopman16 and von Neumann17,18, and later Sudarshan19, developed a com-

plete formulation of CM on a Hilbert space, which was again characterized by

commuting hermitian operators as observables. Recent work on extending the

Koopman-von Neumann-Sudarshan formalism with the introduction of path in-

tegrals, etc. include Refs. 20, 21, 22, 23, 24. It should be emphasized that the

Koopman-von Neumann-Sudarshan theory is not the ~ → 0 limit of QM. Indeed,

the operators that correspond to position and momentum in their formalism com-

mute with each other without the taking of any limit, and respectively have canon-

ically conjugate operators with which they do not commute but are deemed unob-

servable. The superposition of states also correspond to ensembles of classical states,

and not macroscopic Schrödinger-cat like states. Thus, though the Koopman-von

Neumann-Sudarshan theory is a formulation of CM on a Hilbert space, it does not

(yet) provide much insight on how CM can emerge from QM, or vice versa.

Given the apparent absence of macroscopic Schrödinger-cat like states, they

must somehow vanish in the classical limit. Several approaches have been used

to address this problem, the most prominent being that of ‘environmental deco-

herence’ reviewed in Refs. 25, 26 by Zurek. There, the system under observation

and its environment (rest of the universe) are both treated quantum mechanically,

and it has been shown that the interaction between the two suppresses the off-

diagonal terms in the density matrix in a preferred basis. The statistical nature

of the theory remains, however, and leads to the many-worlds interpretation of

QM developed from the pioneering work of Everett27. Other approaches to the

system-environment interaction problem treat the environment classically, and the

aThe singularity of the ~ → 0 limit has been emphasized in an illuminating review by Berry2.
bGiven the dimensionfulness of ~, the ~ → 0 limit should be understood as ~ ≪ S where S is
the classical action that is used to describe the quantum formulation as, say, in the path integral
approach.
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interaction with the quantum system leads to classical-quantum ‘hybrid’ theories,

the properties of which are still under investigation.c

Thus, despite impressive developments in our understanding of QM during the

past century, the CM/QM divide remains and bridging that gap is still an intense

area of investigation. What seems probable is that recovering CM from QM would

require more than taking the ~ → 0 limit of QM in some yet to be discovered

way, or the rewriting of CM or QM to look more like the other in some fashion.

A more generic theory which encompasses both CM and QM may be necessary to

understand the CM↔QM correspondence.

As with any difficult problem, finding a toy analog which simplifies the situation

while maintaining the essence of the quandary is often instructive. In Refs. 40 and

41 we constructed a toy analog of N -level QM on the vector space FN
q , where Fq =

GF (q) is the Galois field of order q = pn, with p prime and n ∈ N, which we dubbed

“Galois Field Quantum Mechanics” (GQM).d GQM was necessarily different from

canonical QM in many ways, due to the vector space FN
q not possessing an inner

product. Consequently, observables were not represented by operators, hermiticity

being difficult to define without an inner producte, and without operators there

were no commutators, or ~ for that matter. However, in it, physical states were still

represented by elements of a projective geometry, and the theory still predicted

probabilities of the outcomes of a measurement which could not be mimicked by

any hidden variable theory. Thus GQM, despite being constructed on a discrete and

finite vector space FN
q without an inner product, nevertheless captured some of the

quantum-ness of canonical QM. A natural question to ask then is: does GQM have

a ‘classical’ limit in which this quantum-ness is lost and replaced by classical-ness?

An answer to this could help us understand how canonical QM becomes CM also.

In this paper, we present the observation that even though GQM does not have

an ~ in its formulation, its ‘classical’ limit can still be defined by taking the limit

q → 1. In that limit, the Galois Field Fq can be expected to become F1, aka Fun,
f the

‘field with one element,’ an exotic and somewhat nebulous mathematical concept

first suggested by Tits in 1957.58 Fq in turn can be considered the ‘quantum’-

deformation of F1.
59 Though dormant for many decades, the study of F1, and efforts

to actually define what it is, has intensified since the 1990’sg under the expectation

cSee Refs. 19, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39 and references therein.
dSee also Refs. 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55.
eIt is possible to define analogs of hermitian operators using biorthogonal systems. See Refs. 51,
56, 57.
fDenoting F1 as Fun is a French-English bilingual pun. See, e.g. Refs. 75, 76.
gSee, for instance, Refs. 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84.
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that it would lead to a proof of the Riemann hypothesis.hi

This paper is organized as follows. In section 2 we review how GQM is con-

structed on FN
q . We will look at what happens to the theory if we let q = 1 for

the case N = 2, and discuss its ‘classical’ properties. In section 3 we review the

notion of F1, the ‘field with one element,’ following the treatment of Kurokawa and

Koyama,85 and show that the q = 1 limit of GQM can be constructed directly on

the ‘vector’ space FN
1 . The resulting state space is a projective geometry, just as

with GQM and canonical QM. The theory on FN
1 also prohibits the superposition

of states, precisely the property one expects in a ‘classical’ theory. Discussion on

what this teaches us is given in section 4.

2. Galois Field Quantum Mechanics

2.1. The Model

Since the details of GQM can be found in Refs. 40 and 41, here we only present the

basic outline.

Consider the vector space FN
q . Vectors in FN

q represent states of the model

system, while dual vectors in the dual vector space FN∗
q represent possible outcomes

of measurements. The probability of obtaining the outcome represented by the dual-

vector 〈x| ∈ FN∗
q when a measurement is performed on the state represented by the

vector |ψ〉 ∈ FN
q is given by

P (x|ψ) =

∣

∣〈x|ψ〉
∣

∣

2

∑

y

∣

∣〈y|ψ〉
∣

∣

2
, (2)

where the sum in the denominator runs over all the dual vectors 〈y| in a basis of

FN∗
q which includes 〈x|. The choice of basis of FN∗

q corresponds to an observable,

each dual vector in the basis representing a different outcome.

The absolute value function in the above expression converts elements of Fq into

either zero or one in R:

| k | =

{

0 if k = 0 ,

1 if k 6= 0 .
(3)

Here, underlined numbers and symbols represent elements of Fq, to distinguish

them from elements of R or C. Since Fq\{0} is a cyclic multiplicative group, this

assignment of ‘absolute values’ is the only one consistent with the requirement that

hAccording to Kurokawa and Koyama in Ref. 85, the proof for the analogue of the Riemann
hypothesis on projective algebraic varieties over Fq is known (one of the Weil conjectures proved
by Deligne in 1974). The hope is that reinterpreting the integers Z as a projective algebraic
variety over F1 will lead to a proof of the Riemann hypothesis utilizing similar techniques. In a
separate popular book86, Kurokawa and Koyama state that Mochizuki’s recent work on the ABC
conjecture87 also uses ideas based on F1.
iSee also Ref. 88 for a quantum mechanical approach to the Riemann hypothesis.
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the map from Fq to non-negative R be product preserving, that is: |kl| = |k||l|.j
Since the same absolute value is assigned to all non-zero brackets, all outcomes 〈x|
for which the bracket with the state |ψ〉 is non-zero are given equal probabilistic

weight.

Note also that the multiplication of |ψ〉 with a non-zero element of Fq will not

affect the probability. Thus, vectors that differ by non-zero multiplicative constants

are identified as representing the same physical state, and the state space is endowed

with the finite projective geometry 89,90,91,92

PG(N − 1, q) = (FN
q \{0} )

/

(Fq\{0} ) , (4)

where each ‘line’ going through the origin of FN
q is identified as a ‘point,’ in close

analogy to the complex projective geometry CPN−1 of canonical N -level QM de-

fined on CN .

2.2. An Example

To give a concrete example of our proposal, let us construct a 2-level system, anal-

ogous to spin, on F2
q for which the state space is PG(1, q). This geometry consists

of q + 1 ‘points,’ which can be represented by the vectors

| 0 〉 =
[

1

0

]

, | 1 〉 =
[

0

1

]

, | r 〉 =
[

ar−1

1

]

, (5)

r = 2, 3, · · · , q, where a is the generator of the multiplicative group Fq\{0} with

aq−1 = 1. The number q + 1 results from the fact that of the q2 − 1 non-zero

vectors in F2
q, every q − 1 are equivalent, thus the number of inequivalent vectors

is (q2 − 1)/(q − 1) = (q + 1). Similarly, the q + 1 inequivalent dual-vectors can be

represented as:

〈 0 | =
[

0 −1
]

,

〈 1 | =
[

1 0
]

,

〈 r | =
[

1 −ar−1
]

, r = 2, 3, · · · , q , (6)

where the minus signs are dropped when the characteristic of Fq is two.k From

these definitions, we find:

〈r̄|s〉 = 0 if r = s ,

6= 0 if r 6= s , (7)

jThe product preserving nature of the absolute value function guarantees that the probabilities of
product observables on product states factorize in multi-particle systems. This property is crucial
if we want to have isolated particle states.
kThe ‘characteristic’ of a field is the smallest non-negative integer m such that 1 + 1 + · · ·+ 1

︸ ︷︷ ︸

m times

= 0,

where 1 is the multiplicative unit and 0 is the additive unit. For example, the characteristic of Fq

with q = pn is the prime p. The characteristics of Q, R, and C are defined to be zero.
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and

∣

∣〈r̄|s〉
∣

∣ =

{

0 if r = s ,

1 if r 6= s .
(8)

Observables are associated with a choice of basis of F2∗
q :

Ars ≡ { 〈r̄|, 〈s̄| } , r 6= s . (9)

We assign the outcome +1 to the first dual-vector of the pair, and the outcome

−1 to the second to make these observables spin-like. This assignment implies

Asr = −Ars. The indices rs can be considered as indicating the direction of the

‘spin,’ and the interchange of the indices as indicating a reversal of this direction.

Applying Eq. (2) to this system, it is straightforward to show that

P (Ars = +1 | r) = 0 , P (Ars = −1 | r) = 1 ,

P (Ars = +1 | s) = 1 , P (Ars = −1 | s) = 0 ,

P (Ars = ±1 | t) = 1

2
, for t 6= r, s , (10)

and thus,

〈Ars〉r = −1 ,

〈Ars〉s = +1 ,

〈Ars〉t = 0 , for t 6= r, s. (11)

So for each ‘spin’ Ars there exist two ‘eigenstates’: |s〉 for +1 (‘spin’ up) and |r〉 for
−1 (‘spin’ down). For all other states the two outcomes ±1 are equally probable.

2.3. Spin Correlations

A two-‘spin’ system can be constructed on the tensor product space F2
q ⊗ F2

q = F4
q.

The number of non-zero vectors in this space is q4 − 1, of which every q − 1 are

equivalent, so the number of inequivalent states is (q4−1)/(q−1) = q3+ q2+ q+1.

Of these, (q+1)2 are product states, leaving (q3 + q2+ q+1)− (q+1)2 = q(q2 − 1)

that are entangled. Of these, there exists an analog of the spin-singlet state given

by

|S〉 = |r〉 ⊗ |s〉 − |s〉 ⊗ |r〉 , r 6= s , (12)

for any two states |r〉 and |s〉 up to a multiplicative constant. If the characteristic

of Fq is two, the minus sign is replaced by a plus sign.

Products of the ‘spin’ observables are defined as

ArsAtu = { 〈r̄| ⊗ 〈t̄| , 〈r̄| ⊗ 〈ū| , 〈s̄| ⊗ 〈t̄| , 〈s̄| ⊗ 〈ū| } , (13)

the four tensor products representing the outcomes ++, +−, −+, and −−, and the

expectation value giving the correlation between the two ‘spins.’ The probabilities

of the four outcomes are particularly easy to calculate for the state |S〉 since 42

(

〈r̄| ⊗ 〈s̄|
)

|S〉 = 0 if r = s ,
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Observable ++ +− −+ −− E.V.

ArsArs 0
1

2

1

2
0 −1

ArsArt 0
1

3

1

3

1

3
−1

3

ArsAst

1

3

1

3
0

1

3
+
1

3

ArsAtu

1

4

1

4

1

4

1

4
0

Table 1. Probabilities and expectation values of product observables in the state |S〉. The indices
r, s, t, and u are distinct. Cases that can be obtained by flipping signs using Ars = −Asr are not
shown.

6= 0 if r 6= s , (14)

thus
∣

∣

∣

(

〈r̄| ⊗ 〈s̄|
)

|S〉
∣

∣

∣
= 1− δrs , (15)

and we obtain the probabilities and correlations listed in Table. 1. It is straightfor-

ward to show that these probabilities cannot be reproduced by any classical hidden

variable theory.40,41 Thus, GQM is ‘quantum’ in this sense.

It should be noted, though, that GQM also has a common feature with

CM when we look at the Clauser-Horne-Shimony-Holt (CHSH) version of Bell’s

inequality.93,94 The CHSH bound95 is the upper bound of the absolute value of the

following combination of correlators:

〈A, a ;B, b〉 ≡ 〈AB〉+ 〈Ab〉+ 〈aB〉 − 〈ab〉 , (16)

where A and a are two observables of particle 1, and B and b are two observables

of particle 2. All four observables are assumed to take on only the values ±1 upon

measurement. For classical hidden variable theory the bound on |〈A, a;B, b〉| is

2,95 while for canonical QM it is 2
√
2.96,97 l Despite GQM not allowing a hidden

variable minic, we can nevertheless show, again using Table 1, that its CHSH bound

is the ‘classical’ value of 2. This bound is independent of the value of q chosen for

our Galois field Fq and is thus also independent of the size of the vector space

F2
q ⊗ F2

q = F4
q.

40,41 So the limitation on the correlations is not due to the limited

number of ‘spin’ direction available in the model. This GQM example shows that

the absence of hidden variable mimics does not necessarily guarantee the violation

of the classical CHSH bound.

lThe largest possible value of the CHSH bound is 4.98 See Ref. 51 for a model which saturates
this bound.



August 28, 2014 0:40 Report Number: IPMU13-0235

8

2.4. The q = 1 Limit

The Galois fields Fq are only defined for q = pn, that is, the order q must be a

power of a prime p. Thus, setting q = 1 is illegitimate from the Galois field point of

view. Indeed, Fq consists of q elements so taking the naive q = 1 limit, one expects

F1 to consist of only one element (which could be denoted by either 0 or 1) with

no distinction between addition and multiplication. Such an object is obviously

not a “field.” In other words, a “field with one element,” in the usual sense of the

term, does not and cannot exist. However, a different and more interesting picture

emerges if instead of trying to define F1 first, we set q = 1 directly in the N = 2

‘spin’ model we constructed above.

First, the number of states given in Eq. (5) will be reduced to q + 1 = 2,

| ↑ 〉 ≡ |0〉 =

[

1

0

]

, | ↓ 〉 ≡ |1〉 =

[

0

1

]

, (17)

as are the possible outcomes listed in Eq. (6):

〈 ↓ | ≡ 〈0| = [ 0 1 ] , 〈 ↑ | ≡ 〈1| = [ 1 0 ] . (18)

The sole observable of the system, Eq. (9), will be

A ≡ A10 = −A01 = { 〈1| , 〈0| } = { 〈 ↑ | , 〈 ↓ | } , (19)

for which | ↑ 〉 and | ↓ 〉 are ‘eigenstates’:

〈A〉↑ = 1 , 〈A〉↓ = −1 . (20)

Thus, a measurement of A on | ↑ 〉 will always yield +1, while that on | ↓ 〉 will

always yield −1. No superpositions of these states exist, so the system reduces to

a ‘classical’ one where each states has a definite outcome upon measurement.

The ‘two’-spin system will reduce to q3+q2+q+1 = 4 states, of which q(q2−1) =

0 are entangled. These four are the product states

| ↑↑ 〉 ≡ | ↑ 〉 ⊗ | ↑ 〉 =









1

0

0

0









, | ↑↓ 〉 ≡ | ↑ 〉 ⊗ | ↓ 〉 =









0

1

0

0









,

| ↓↑ 〉 ≡ | ↓ 〉 ⊗ | ↑ 〉 =









0

0

1

0









, | ↓↓ 〉 ≡ | ↓ 〉 ⊗ | ↓ 〉 =









0

0

0

1









.

(21)

The sole product observable, Eq. (13), is

AA = { 〈 ↑↑ | , 〈 ↑↓ | , 〈 ↓↑ | , 〈 ↓↓ | } , (22)

where

〈 ↑↑ | = 〈 ↑ | ⊗ 〈 ↑ | = [ 1 0 0 0 ] ,

〈 ↑↓ | = 〈 ↑ | ⊗ 〈 ↓ | = [ 0 1 0 0 ] ,
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〈 ↓↑ | = 〈 ↓ | ⊗ 〈 ↑ | = [ 0 0 1 0 ] ,

〈 ↓↓ | = 〈 ↓ | ⊗ 〈 ↓ | = [ 0 0 0 1 ] . (23)

The four states are all ‘eigenstates’ of AA with definite outcomes when AA is

measured. Thus, the system is ‘classical’ and its CHSH bound is trivially 2.

This discussion can be easily generalized to generic N -level GQM, in which

the q = 1 case reduces to a situation where all surviving states are simultaneous

‘eigenstates’ of all surviving observables.m What this exercise shows is that the

q = 1 limit of GQM, though admittedly fairly trivial, does make sense as a ‘classical’

theory. Note, however, that in letting q = 1 we have retained the formalism of GQM

as is from the ‘quantum’ q 6= 1 cases. The only thing that has changed is the value

of q, which changes the number field over which the state space is constructed,

formally, from Fq to F1. But what is F1?

3. The Field with One Element F1

3.1. The Observation of Tits

The concept of F1 first appeared in a 1957 paper by Tits58 as the “corps de car-

actéristique 1.” The main objective of the Tits paper was to use projective geome-

tries to define the then recently discovered Chevalley groups geometrically.n To each

Dynkin diagram and choice of finite field Fq a projective geometry was associated,

and the Chevalley group identified with the group of projective transformations

on the geometry. For instance, the projective geometry PG(N − 1, q) is associated

with the Dynkin diagram for AN−1, and the corresponding Chevalley group is the

projective linear group PGL(N, q). Towards the end of the paper, Tits argues that

the q = 1 limit of PG(N − 1, q) actually makes sense as a projective geometry,o

and that the corresponding group of projective transformations is SN .

To see this, let us first list a few properties of PG(N − 1, q) for q 6= 1:

• The number of points in the geometry PG(N − 1, q) is
[

N

1

]

q

= [N ]q =
qN − 1

q − 1
= 1 + q + q2 + · · ·+ qN−1 . (24)

(See chapter 9 of Ref. 101.) Here, the notation is:
[

N

M

]

q

=
[N ]q!

[M ]q![N −M ]q!
, (25)

with

[N ]q ≡ 1 + q + q2 + · · ·+ qN−1 =
qN − 1

q − 1
,

mNote that the vector space FN
q has qN − 1 non-zero vectors, of which every q − 1 of them are

physically equivalent in GQM. Thus, the number of physically distinct states is (qN −1)/(q−1) =
[N ]q, which reduces to N in the q = 1 limit.
nChevalley originally used purely algebraic methods in his definition.99
oWith a minor modification to the axioms. See Ref. 100.
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[N ]q! ≡ [N ]q[N − 1]q · · · [2]q[1]q . (26)

Eq. (25) is known as the Gaussian binomial coefficient, [N ]q the q-analogue

of the natural number N , and [N ]q! the q-factorial.

• The number of k-dimensional subspaces (points, lines, planes, etc.) in

PG(N − 1, q) are
[

N

k + 1

]

q

=
[N ]q[N − 1]q · · · [N − k]q

[k + 1]q[k]q · · · [1]q

=
(qN − 1)(qN−1 − 1) · · · (qN−k − 1)

(qk+1 − 1)(qk − 1) · · · (q − 1)
. (27)

Each subspace contains

[k + 1]q =
qk+1 − 1

q − 1
= 1 + q + q2 + · · ·+ qk (28)

points.

In the limit q → 1, the q-analog [N ]q reduces to N , the q-factorial to the usual

factorial, and the Gaussian binomial coefficients to the usual binomial coefficients.

So the ‘projective’ space PG(N − 1, 1) should be a space consisting of N ‘points,’

and the number of k-dimensional subspaces should be NCk+1, each consisting of

k + 1 points. This would simply be a set consisting of N elements, and all the

subsets consisting of k+1 elements are the k-dimensional subspaces. The group of

all possible transformations, projective or not, for a set with N elements is obviously

SN .

For instance, say N = 3: PG(2, 1) would consist of three ‘points.’ Let us call

them a, b, and c. The ‘lines’ in this geometry would be {a, b}, {b, c}, and {c, a}, and
the ‘plane’ would be the entire space {a, b, c}. There is a nice discussion in Ref. 100

on how this definition of ‘geometry’ satisfies all the required axioms. All possible

ways to map the three points onto themselves form the group S3.

Now, recalling that PG(N − 1, q) was obtained by identifying the lines through

the origin of FN
q as points, Tits argues that the ‘projective geometry’ PG(N − 1, 1)

should be interpretable as

PG(N − 1, 1) =
(

FN
1 \{0}

)

/

(

F1\{0}
)

, (29)

where F1 is the “corps de caractéristique 1,” aka the field with one element.

3.2. F1 according to Kurokawa and Koyama

Taken literally, “corps de caractéristique 1” impliesp

1 = 0 , (30)

pSee footnote k.
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that is, the multiplicative unit and the additive unit are the same number, so it

may seem that F1 = {1} = {0}, where

1× 1 = 1 , 1 + 1 = 1 . (31)

Such an object would not have any structure to speak of and it is difficult to envision

how one could construct any geometry, projective or otherwise, on it. Thus, a more

sophisticated definition of F1 is called for.

Various definitions of F1 and F1-geometries exist in the literature, which en-

deavor to make sense of these concepts, a survey of which can be found in Ref. 74

by Lorscheid and Lopez-Pena. Here, we adopt the definition of F1 by Kurokawa and

Koyama in Ref. 85 who argue that F1 should be interpreted as the set F1 = {1}+{0}
on which only multiplication is defined. Note that 1 is the multiplicative unit, and

0 is the multiplicative zero, that is:

1 k = k 1 = k , 0 k = k 0 = 0 , k = 0 or 1 . (32)

This is different from F2 = {0, 1} in that addition is not allowed.q This is the reason

for the unfamiliar notation {1}+ {0}: {1} is the multiplicative group by itself, and

{0} is the multiplicative zero (but not the additive unit since there is no addition)

which is tacked on. Thus, F1 is not really a field but what is known as a ‘monoid.’

Since addition is not allowed, ‘vector’ spaces over FN
1 are not truly ‘vector’

spaces in the usual sense of the term. However, lacking a better alternative, let us

use vector space terminology anyway. Since FN
1 is an N -dimensional space, it will

have N basis vectors, which we denote

|1〉, |2〉, · · · , |N〉 . (33)

The linear combinations of these basis vectors are of the form

N
∑

i=1

ci|i〉 , ci ∈ F1 , (34)

but since we should have no addition, only one of the ci’s is allowed to be non-zero

at a time. So the N basis vectors are the only (non-zero) vectors in this space. They

will each be represented by column vectors with only one 1, the remaining elements

being all 0. Note that these are precisely the states we obtained in taking the limit

q = 1 in GQM.

Linear transformations on FN
1 must not lead to addition of the basis vectors. So

the only allowed transformations are those for which the N ×N matrix representa-

tion has at most one 1 in each row. The non-singular ones, i.e. the automorphisms,

are the ones in which there is one 1 in each row and each column. These are simply

the matrices that permute the N basis vectors. Since F1\{0} = {1}, the projective

qIt may be more precise to say that only the addition of 0 is allowed. 1+1 is prohibited. Another
definition referred to in the literature62,82,83,84 defines 1 + 1 = 1 with all other additions and
multiplications among 0 and 1 defined in the usual way, cf. Eq. (31).
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space PG(N − 1, 1) will simply consist of the non-zero vectors in FN
1 . There are

N of these, as required for PG(N − 1, 1). The projective linear group PGL(N, 1)

would be SN .

Linear maps from FN
1 to F1, i.e. the dual vectors, must also satisfy the no-

addition requirement, so they would be N × 1 row-vectors, each with only one

1, the remaining elements all 0. These are precisely the dual vectors representing

outcomes in the q = 1 limit of GQM.

Thus, the Kurokawa-Koyama approach matches well with the GQM construc-

tion, and the q = 1 ‘classical’ limit can be constructed directly on FN
1 defined in

this fashion. The resulting state space has the projective geometry PG(N − 1, 1).

Note, particularly, that the prohibition of addition in Kurokawa-Koyama leads to

the lack of superposition of states in the ‘classical’ limit of GQM. Therefore, the

q = 1 limit of GQM can be considered to be ‘classical’ due to this very special

feature of F1.

4. Summary and Discussion

Illuminating the precise relation between CM and QM remains one of the outstand-

ing problems in the foundations of physics. In this note we point out that a simple

discrete toy model sheds new light on this important problem.

In order to compare the two seemingly disparate formalisms of physics, first,

one needs a unifying mathematical language for such a comparison. This idea, that

classical theory should be rewritten using the mathematics of QM goes back at least

to Koopman16 and von Neumann.17,18 In our proposal this unifying mathematical

language is provided by the projective spaces of GQM.40,41

We have demonstrated that GQM defined on FN
q becomes ‘classical’ in the limit

q = 1. The field with one element F1, over which this limit can be constructed,

have all the ‘classical’ properties of consisting only of zero and one, and addition

being prohibited. In other words, the ‘classical’-ness of q = 1 GQM can be traced

to the ‘classical’-ness of F1. This way of achieving ‘classicality’ from ‘quantum’-ness

is quite different from the usual methodology of taking ~ → 0, in the limit of which

operators become commuting. In GQM, there is no ~ and there are no operators.

Our result suggests that the pathway from a ‘quantum’ theory to a ‘classical’

one may not be unique. Looking at canonical QM, taking the ~ → 0 limit (in some

yet unknown pathway) may not be the only way for the theory to become classical.

Perhaps replacing C with some other mathematical structure, perhaps a continuous

analog of F1, though there is no telling such an entity exists, could lead to a theory

which is ‘classical’ in some new way.

The basic premise of this paper is that the relation between CM and QM lies in

the differences in the structure and geometry of the underlying number fields upon

which the descriptions are predicated. While we have not discussed the limit q → 1

within the context of the Biorthogonal Quantum Mechanics we defined in Ref. 51,

the premise is quite apparent there as well. The approach there was an alternative
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method of constructing a quantum-like theory on FN
q . The CHSH bound on ‘spin’

systems defined on F4
q = F2

q × F2
q in this approach is q-dependent. We were able

to demonstrate that this bound takes on the classical value of 2 for q = 3, and

the super-quantum value of 4 for q = 9. Once again, it is the differences in the

structure of the underlying number fields F3 and F9 = F3[i], the latter of which

accommodates the analog of the imaginary unit i, and their associated geometries,

that presage classical, quantum, and super-quantum correlations.r

QM is our current fundamental framework of physics. As such it has passed all

available observational tests. And yet our understanding of QM remains limited.

In particular, one would still like to understand if QM follows from few elementary

axioms, in analogy what happens in the special theory of relativity. Also, one would

like to understand in more detail the precise relation between QM and its classical

limit, the problem addressed in this paper. Finally, could QM be part of a larger

framework, the way CM appears as a formal limit of QM (or in another context,

similar to the way the special theory of relativity can be naturally generalized to

the general theory of relativity)? It is very difficult to answer all three questions

within the framework of canonical QM of the real world as we understand it today,

so a simpler model was called for. This was the main motivation of our effort to

build a toy model of QM using Galois fields. Surprisingly, all three questions can

be addressed in this context. In our previous publications on this subject40,41 we

have constructed the precise mathematical rules of the game in this toy world, and

we have shed light on the nature of quantum correlations, on the nature of super-

quantum correlations51 (which generalize the usual quantum framework) as well

as on the difference between classical and quantum correlations. In this paper, we

complete this picture by addressing the subtle question of the ‘classical’ limit in

the context of GQM. Understandably enough, our toy world is not the real world.

However, for the first time, the two known theories of the real world (the classical

and quantum theory) as well as the conjectured third theory (based on stronger

than quantum, or superquantum, correlations) can be addressed in one coherent

theoretical framework, that is simple yet illuminating. And this is where we find

the most useful lessons of our work.
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olution par approximations successives,” Comptes Rendus de l’Academie des Sciences
183, 24–26 (1926).

6. J. H. Van Vleck, “The Correspondence Principle in the Statistical Interpretation of
Quantum Mechanics,” Proceedings of the National Academy of Sciences of the USA
14, 178–188 (1928).

7. R. Schiller, “Quasi-Classical Theory of the Nonspinning Electron,” Phys. Rev. 125,
1100–1108 (1962).

8. R. Schiller, “Quasi-Classical Transformation Theory,” Phys. Rev. 125, 1109–1115
(1962).

9. R. Schiller, “Quasi-Classical Theory of the Spinning Electron,” Phys. Rev. 125, 1116–
1123 (1962).

10. G. Bacciagaluppi and A. Valentini, “Quantum Theory at the Crossroads: Reconsid-
ering the 1927 Solvay Conference” (Cambridge University Press, 2013) [arXiv:quant-
ph/0609184]

11. D. Bohm, “A Suggested Interpretation of the Quantum Theory in Terms of “Hidden”
Variables I,” Phys. Rev. 85, 166–179 (1952).

12. D. Bohm, “A Suggested Interpretation of the Quantum Theory in Terms of “Hidden”
Variables II,” Phys. Rev. 85, 180–193 (1952).

13. N. Rosen, “The Relation Between Classical and Quantum Mechanics,” Am. J. Phys.
32 (1964) 597–600.

14. N. Rosen, “Mixed States in Classical Mechanics,” Am. J. Phys. 33 (1964) 146–150.
15. N. Rosen, “Quantum Particles and Classical Particles,” Foundations of Physics 16

(1986) 687–700.
16. B. O. Koopman, “Hamiltonian Systems and Transformations in Hilbert Space,” Pro-

ceedings of the National Academy of Sciences of the USA, 17 (1931) 315–318.
17. J. von Neumann, “Zur Operatorenmethode In Der Klassischen Mechanik,” An-

nals of Mathematics 33 (3) (1932) 587–642.
18. J. von Neumann, “Zusätze Zur Arbeit ‘Zur Operatorenmethode...’,” Annals of Math-

ematics 33 (4) (1932) 789–791.
19. E. C. G. Sudarshan, “Interaction between classical and quantum systems and the

measurement of quantum observables,” Pramana 6 (1976) 117–126.
20. E. Gozzi and D. Mauro, “Minimal coupling in Koopman-von Neumann theory,” An-

nals Phys. 296, 152–186 (2002) [quant-ph/0105113].
21. D. Mauro, “On Koopman-von Neumann waves,” Int. J. Mod. Phys. A 17, 1301–1325

(2002) [quant-ph/0105112].
22. D. Mauro, “Topics in Koopman-von Neumann Theory,” arXiv:quant-ph/0301172.
23. E. Gozzi and D. Mauro, “On Koopman-von Neumann waves 2,” Int. J. Mod. Phys.



August 28, 2014 0:40 Report Number: IPMU13-0235

15

A 19, 1475–1494 (2004) [quant-ph/0306029].
24. P. Carta, E. Gozzi and D. Mauro, “Koopman-von Neumann formulation of classical

Yang-Mills theories. I.,” Annalen Phys. 15, 177–215 (2006) [hep-th/0508244].
25. W. H. Zurek, “Decoherence and the Transition from Quantum to Classical – Revis-
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