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Introduction

• Virginia Tech Stability Wind Tunnel has been used extensively for
aerodynamic/aeroacoustic measurements of wind turbine airfoils

• However, comparisons with wind tunnel results from European wind
tunnels showed . . .
• Reduced lift-curve slopes (3.0–5.5% lower for the DU96-W-180)
• Reduced clmax

(0.04–0.12 lower for the DU96-W-180)

• Although differences in lift curve slopes and maximum lift coefficients
are not uncommon in wind tunnel testing (McCroskey [1] and
Troldborg et al. [2]), this was viewed as an opportunity to thoroughly
investigate airfoil testing in the Virginia Tech Stability Wind Tunnel.
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Objective

• Goal: investigate and evaluate all aspects of airfoil model testing in
the Virginia Tech Stability Tunnel, from model fabrication through
data reduction

• This work has validated the majority of procedures at the Stability
Wind Tunnel, but identified three areas that need to be addressed:

• Model Surface Quality
• Pressure Tap Diameters
• Model Deflections Under Aerodynamic Loading
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Stability Wind Tunnel

• 6 ft. × 6 ft. × 24 ft. test
section

• Two configurations: Anechoic
and Aerodynamic

• Flow speeds up to 85 m/s

• Turbulence levels below 0.03%

• Airfoil models mounted
vertically along the centerline
of the test section

• Testing Capabilities

• Wall & model pressure
measurements

• Phased microphone
arrays

• Pitot-static wake rake
• Suction system for

control of end-wall effects
• IR thermography
• Flow visualization
• Laser diagnostics

Kuester et al. 6/9/2015 4 / 21



DU96-W-180 Model

• 0.8 m chord DU96-W-180

• Made from CNC machined
aluminum laminates (50 mm wide)

• Laminates stacked, pinned, and
held in compression

• Measurements at Rec = 3.0
Million (U∞ ∼ 60 – 65 m/s)
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Naphthalene Transition Visualization

• Typically use IR thermography for transition detection → model is covered
in thin insulative material

• Naphthalene visualization shows the effect of surface quality on boundary
layer transition on the clean surface

• Sublimation rate is proportional to shear stress → naphthalene sublimates
quickly in turbulent boundary layers

Pressure Side Suction Side

Rec = 3.0 Million, α = 8◦
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Turbulent Wedges From Surface Defects

Rec = 3.0 Million
α = 0◦

Suction Side

Rec = 3.0 Million
α = 8◦

Pressure Side

Turbulent wedges caused by tape (40 µm) and defects
at laminate edges.
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Effect on Lift Curve Slope
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• All tape was removed, and
holes were filled/sanded.

• Surface was systematically
sanded/polished after each
naphthalene run.

• Eliminating turbulent wedges,
particularly on the suction
side, led to a 3.1% increase in
lift curve slope.

• Issue with models that are
taken apart and reassembled
several times → defects on
laminate edges.
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Additional Pressure Taps

• DU96-W-180 model has 79
pressure taps (1.0 mm ID)

• Additional taps were added
to investigate tap diameter
effects

S1

S2

S3

Tap Side z/span x/c Tap Diameter

S1 Suction 0.361 0.050 1.0 mm
S2 Suction 0.369 0.050 0.5 mm
S3 Suction 0.353 0.050 0.3 mm
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Additional Pressure Taps
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• Comparison of clean and
tripped cases shows that
increased ∆Cp spread
occurs in turbulent
boundary layers

• ∆Cp spread ordered
according to tap
diameter

• S1: 1.0 mm ID →
highest pressure

• S2: 0.5 mm ID
• S3: 0.3 m ID →

lowest pressure
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Tap Diameter Corrections

• Used skin friction estimates from XFOIL and a turbulent pressure tap
diameter correction from Shaw [3] to correct measurements
downstream of transition

• 0.8 m chord model, Rec = 3.0 Million, 1 mm taps → d+ = 50–300
• Small correction to maximum lift (0.004)
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Pressure Tap Tripping

α = 8◦ α = 11◦

• Turbulent wedge from leading edge pressure taps appears on the suction side for α > 6◦

• Wedge was not removed by lightly sanding around the leading edge taps

• Naphthalene tests on another model with 0.5 mm taps did not show a wedge from the
leading edge taps

• Use 0.5 mm ID taps on all new models
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Laser Angle of Attack Measurements

• Calibration using αencoder with flow off
to calculate laser position & orientation
relative to the C.O.R.

• Distance reading is used to calculate the
position of the model, assuming the
C.O.R. is fixed

• Calibration accuracy: ±0.07◦ for laser 1,
±0.02◦ for lasers 2-4

• Single laser installed in the anechoic test
section (looking down through an
optical panel in the ceiling)
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Additional Laser Measurements
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• Analysis computes αlaser
assuming . . .
• Profile shape remains

constant
• Center of rotation

remains fixed

• Laser 1 is is 6” upstream
of the C.O.R.

• Lasers 2-4 are 14”-15”
downstream of the C.O.R.
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Rotation/Translation Analysis
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Lasers 1 & 2 are at the
same spanwise location.

Laser distance
measurements from
flow off and flow on

conditions at matching
αencoder yields

translation of the
C.O.R. and ∆α.
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Rotation/Translation Analysis
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• Noise generated by slight mismatches in αencoder between flow-on and flow-off

• C.O.R. shifting up to 2 mm in the lift direction

• Lasers 2-4 track the change in rotation angle to ∼ ±0.1◦

• Rotation accounts for 1.6% reduction in measured lift curve slope
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Airfoil Model Loading Rig

• Models mount to steel structure that is
nearly identical to tunnel mounting
system

• Three pistons are attached to loading bar
that applies spanwise uniform load at
desired chord location (up to 3000 lbs.)

• Multiple laser distance sensors are
traversed along the span of the model to
measure shape profiles

• Preliminary results have shown deflection
in both the models and the mounting
system
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Conclusions

• Naphthalene visualizations showed tape and defects at laminate edges
were tripping the boundary layer, resulting in a ∼3% reduction in lift
curve slope.

• 1.0 mm diameter pressure taps create a slight pressure bias in
turbulent boundary layers (∆Cp < 0.02 at Rec = 3.0 Million,
resulting in a 0.004 reduction in measured maximum lift.)

• Pressure taps at leading edge created a turbulent wedge on the
suction side for positive angles of attack.

• Laser distance sensors installed in the wind tunnel walls identified
multiple modes of model deflection, including a rotation effect that
reduced the measured lift curve slope by 1.6%

• Laser distance system defines effective angle of attack to within
∼ 0.1◦, including uncertainty due to model bending/translation.
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Continuing Work

• Create new instrumented laminates with 0.5 mm diameter taps
• Tap diameter effects
• Leading edge tripping

• Use the model loading rig to further diagnose model deflections
• Comparisons to laser deflection data with DU96-W-180
• Corrections for past datasets
• Redesign of airfoil mounting system
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