
Architectural Enhancements to Increase Trust in Cyber-Physical
Systems Containing Untrusted Software and Hardware

Mohammed M. Farag

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Cameron D. Patterson, Chair

Thomas L. Martin

Henning S. Mortveit

Binoy Ravindran

Sedki M. Riad

Mohamed R. Rizk

September 17, 2012

Blacksburg, Virginia

Keywords: Cyber-Physical Systems, Trusted Computing,

Cognitive Radio, Embedded Systems Security, Reconfigurable Hardware,

Hardware Trojans, Process Control Systems

Copyright 2012, Mohammed M. Farag

Architectural Enhancements to Increase Trust in Cyber-Physical Systems
Containing Untrusted Software and Hardware

Mohammed M. Farag

Abstract

Embedded electronics are widely employed in cyber-physical systems (CPSes), which tightly in-

tegrate and coordinate computational and physical elements. CPSes are extensively deployed in

security-critical applications and nationwide infrastructure. Perimeter security approaches to pre-

venting malware infiltration of CPSes are challenged by the complexity of modern embedded sys-

tems incorporating numerous heterogeneous and updatable components. Global supply chains

and third-party hardware components, tools, and software limit the reach of design verification

techniques and introduce security concerns about deliberate Trojan inclusions. As a consequence,

skilled attacks against CPSes have demonstrated that these systems can be surreptitiously compro-

mised. Existing run-time security approaches are not adequate to counter such threats because of

either the impact on performance and cost, lack of scalability and generality, trust needed in global

third parties, or significant changes required to the design flow.

We present a protection scheme called Run-time Enhancement of Trusted Computing (RETC) to

enhance trust in CPSes containing untrusted software and hardware. RETC is complementary to

design-time verification approaches and serves as a last line of defense against the rising number of

inexorable threats against CPSes. We target systems built using reconfigurable hardware to meet

the flexibility and high-performance requirements of modern security protections. Security poli-

cies are derived from the system physical characteristics and component operational specifications

and translated into synthesizable hardware integrated into specific interfaces on a per-module or

per-function basis. The policy-based approach addresses many security challenges by decoupling

policies from system-specific implementations and optimizations, and minimizes changes required

to the design flow. Interface guards enable in-line monitoring and enforcement of critical system

computations at run-time. Trust is only required in a small set of simple, self-contained, and

verifiable guard components. Hardware trust anchors simultaneously addresses the performance,

flexibility, developer productivity, and security requirements of contemporary CPSes.

We apply RETC to several CPSes having common security challenges including: secure reconfig-

uration control in reconfigurable cognitive radio platforms, tolerating hardware Trojan threats in

third-party IP cores, and preserving stability in process control systems. High-level architectures

demonstrated with prototypes are presented for the selected applications. Implementation results

illustrate the RETC efficiency in terms of the performance and overheads of the hardware trust

anchors. Testbenches associated with the addressed threat models are generated and experimen-

tally validated on reconfigurable platform to establish the protection scheme efficacy in thwarting

the selected threats. This new approach significantly enhances trust in CPSes containing untrusted

components without sacrificing cost and performance.

Dedication

I dedicate this dissertation to my family, particularly . . .

to my late father
— your aspirations have inspired my life,

I wish you were among us to see your dreams realized;

to my beloved mother
— your encouragement was my main motivation,

and your prayers for me were what sustained me thus far;

to my precious wife
— without your understanding, support, and patience,

I would not be able to continue and succeed;

to my wonderful children
— your innocence was my fuel and your smile was my remedy,

I will do my best to grant you a better future.

iii

Acknowledgements
First and foremost, praises and thanks to Allah, the Almighty, for His immense blessings and

help granted to me throughout my life, and for providing me this opportunity and granting me the

capability to proceed successfully. This thesis appears in its current form due to the assistance and

guidance of several people. I would therefore like to offer my sincere thanks to all of them.

I would like to express my deepest respect and most sincere gratitude to my advisor, Dr. Cameron

D. Patterson, for his encouragement, guidance, and support and for providing the opportunity

to work on novel and challenging research problems. He did not save an effort to improve my

research and technical writing skills. His constructive criticism and invaluable suggestions from

the initial conception to the end of this work have helped my research and enabled me to develop

a better understanding of the subject. Especially, I would like to thank him for the great effort and

considerable time he invested in the dissertation review. I am greatly indebted to his assistance and

understanding in matters of non-academic concern which have helped me endure some difficult

times during my study period. He is a dedicated person and real advisor, and I am extremely

privileged to have been a student under his supervision.

I extend my gratitude as well to the remaining committee members for serving on my committee.

Especially, I would like to thank Dr. Sedki M. Riad for his extraordinary effort to found the VT-

MENA program and struggle to establish a research foundation in Egypt. Also, I would like to

thank Dr. Henning S. Mortveit for his advice about the dissertation topic and interest in this re-

search. I thank Dr. Thomas L. Martin and Dr. Binoy Ravindran for willingly accepting to be on my

committee. I would like to sincerely thank Dr. Mohammed R. Rizk, my master’s degree advisor,

for supporting me during my undergraduate and graduate levels and serving on my committee.

I want to thank my colleague Lee W. Lerner for the helpful collaboration and fruitful discussions

we held throughout our research partnership, and for his contributions to this dissertation.

A very special appreciation is due to Dr. Ioannis Besieris, an emeritus professor in VT, for his

hospitality, concern, and unreserved support he gave not only for me but also to my colleagues. He

is a real scholar who taught us many valuable lessons on both the academic and personal levels.

From the bottom of my heart, I would like to thank my family for their endless support, love,

prayers, and advice throughout my life. I cannot find words to express my gratitude to my parents

who sacrificed a lot in their lives to bring me to my current position. Certainly, I would not have

reached this stage without their love and sacrifices. I would like to thank my sister for her support;

she always had faith in all my endeavours.

I wish to express my heartfelt thanks and deepest gratitude to my wife, my life-partner, not only

for her constant encouragement but also for her patience and understanding throughout my career.

Without her unreserved support, completion of this work would not have been possible. I am also

greatly indebted to our children for granting me warmth and happiness throughout.

Last but not least, for those who are not mentioned specifically, thank you.

iv

Contents

1 Introduction 1

1.1 Run-time Enhancement of Trusted Computing in CPSes 6

1.2 Research Challenges and Example Applications 11

1.2.1 Secure Reconfiguration Control . 12

1.2.2 Tolerating HTHs in Third-party IP Cores 13

1.2.3 Protecting Process Control Systems Against Cyber Attacks 16

1.3 Thesis Organization . 17

1.4 Thesis Contributions . 19

2 Background 22

2.1 CPS Overview . 22

2.1.1 CPS Security Vulnerabilities . 24

2.1.2 Vulnerabilities Associated with CPSes Containing Untrusted Components . 27

2.1.3 Attackers Classification . 28

2.1.4 Cyber Attacks Types and Objectives . 30

2.2 An Overview of Reconfigurable Hardware . 33

2.2.1 Dynamic Partial Reconfiguration . 34

2.2.2 Reconfigurable Hardware Threats and Measures 37

2.3 A Survey of Trusted Computing in Reconfigurable Hardware 39

2.4 Summary . 47

3 Concepts and Overview 50

v

3.1 Design Requirements . 52

3.2 RETC-CPS High-level Architecture . 55

3.2.1 Interface Guards . 56

3.2.2 Configuration Firewall . 59

3.2.3 Trusted Remote Dynamic Module Server 63

3.3 Design Flow . 64

3.3.1 Reconfigurable Hardware Design Flow 65

3.3.2 RETC-CPS Design Flow . 70

3.4 Summary . 76

4 Application to Cognitive Radio Platforms 79

4.1 An Overview of CR Potentials and Security Challenges 81

4.2 CR Policy Engine Overview . 86

4.2.1 CHARE-CR Policy Engine Security Enhancement 89

4.3 Dynamic Spectrum Access Policy Description and Translation 91

4.3.1 Translating CoRaL into HDL . 93

4.4 Configurable Hardware-assisted Rule Enforcement Architecture 103

4.5 Implementation Details and Results . 106

4.5.1 Secure Reconfiguration Controller . 109

4.5.2 Configuration Firewall . 116

4.6 Summary . 128

5 Application to Untrusted Hardware Blocks 130

5.1 HTH Example: Interacting with Hardware Trojans Over a Network 134

5.1.1 Trojan-enabled Covert Communication Background 136

5.1.2 Example Attack Scenario . 138

5.1.3 HTH Interaction Across 10GbE Physical Links 139

5.1.4 HTH Interaction in Multi-gigabit Transceivers 143

5.2 Multi-gigabit Transceiver Interface Guards . 151

vi

5.2.1 Concepts . 152

5.2.2 Generic Interface Guards . 156

5.2.3 Specific Interface Guards . 158

5.3 Results and Evaluation . 161

5.4 Summary . 166

6 Exploratory Application to Process Control Systems 168

6.1 Existing Approaches to Process Control System Security, Trust, and Reliability . . 170

6.2 An Aircraft Pitch Model and Control . 172

6.3 Controller Attack Prediction and Preemption . 175

6.3.1 Concepts . 176

6.3.2 Controller Organization . 177

6.3.3 Time Projection and Synchronization . 180

6.3.4 Simulation Results and Evaluation . 181

6.4 Summary . 185

7 Conclusions 187

7.1 Review of Contributions . 188

7.2 Strengths and Limitations . 192

7.3 Future Work . 194

Bibliography 198

vii

List of Figures

1.1 CPS domains, design challenges, and applications. 3

1.2 CPS basic architecture. 4

1.3 RETC-CPS block diagram. 8

2.1 CPS Attacks. 31

2.2 FPGA architecture and components. 35

2.3 Methods of delivering a partial bitstream . 36

2.4 Reconfiguration algorithm implemented within the SeReCon IP [88]. 39

2.5 Trusted computing approaches. 41

2.6 Reconfigurable platform with DEFENSE logic [6]. 45

3.1 RETC-CPS High-level Architecture. 56

3.2 Untrusted component interface guard. 58

3.3 SRC reconfiguration flow. 60

3.4 Configuration firewall architecture. 61

3.5 PAU reconfiguration flow. 63

3.6 FPGA design flow. 66

3.7 Dynamic partial reconfiguration design flow [109]. 68

3.8 Typical DPR floorplan . 69

3.9 RETC-CPS design flow. 71

4.1 Frequency allocation in the United States. 82

4.2 Dynamic spectrum access and CR transceiver architecture [8]. 83

viii

4.3 Static versus reconfigurable platforms. 83

4.4 Policy-based CR architecture [134]. 85

4.5 XG CR architecture [172]. 87

4.6 CHARE-CR policy engine architecture. 90

4.7 Basic XG ontologies [46]. 93

4.8 Overview of syntactic constructs in CoRaL . 96

4.9 CHARE prototype platform. 104

4.10 Prototype resources. 107

4.11 CHARE-CR prototype block diagram. 108

4.12 CHARE floorplan on a Xilinx Virtex-5 FX130T FPGA. 109

4.13 SRC peripheral block diagram. 110

4.14 CoRaL Description of Radar “S” band access policy 112

4.15 Snapshots from the SRC SystemVerilog code for the Radar “S” band DSA policy . 114

4.16 Simulation output for the SRC module enforcing the Radar “S” band DSA policy. . 115

4.17 Bitstream supervisor peripheral block diagram. 117

4.18 AES algorithm flow, decipher round, and key expansion round. 120

4.19 AES decryption block diagram, decipher module, and key expansion module. . . . 123

4.20 SHA-256 algorithm description. 125

4.21 HMAC algorithm flow. 126

4.22 HMAC and SHA-256 block diagrams. 127

5.1 Trojan IP system tracking attack scenario. 139

5.2 PCS/PMA 10GBASE-X IP core. 141

5.3 Standard and custom idle sequence timing diagram. 142

5.4 Multi-gigabit transceiver architecture. 144

5.5 Aurora IP core structure. 145

5.6 Modified Aurora IP core. 146

5.7 Standard, PCM, and PWM clock correction signals 147

5.8 Aurora core architecture with generic interface guards. 156

ix

5.9 Aurora core architecture with specific interface guards. 158

5.10 ISQ generator module . 160

5.11 CC covert communication attacks and countermeasures waveform. 162

5.12 ISQ covert communication attack and countermeasure waveform. 163

6.1 Plant fault detection [150]. 170

6.2 Controller fault detection [42]. 171

6.3 Controller intrusion attack detection [31]. 172

6.4 Coordinate axes and forces acting on an aircraft 173

6.5 LQG control architecture. 175

6.6 Open- and closed-loop step response of the pitch angle control system. 175

6.7 Predictive and preemptive DREC security architecture. 178

6.8 Step response of a stable pitch control system versus predictive subsystem. 182

6.9 Relationship between real time and predictive subsystem time. 183

6.10 Step response of a pitch control system and the predictive subsystem under attack. . 184

6.11 Pitch controller static/dynamic analysis . 186

x

List of Tables

2.1 A comparison between general purpose computers, embedded systems, and CPSes. 24

2.2 A comparison between different run-time security approaches. 49

2.3 Existing run-time security approach limitations and RETC enhancements 49

4.1 CoRaL rule examples and their equivalent in SystemVerilog HDL. 98

4.2 Resource usage and maximum throughput of the PAU processor and peripherals . . 128

5.1 A comparison between generic and specific interface guards 154

5.2 Xilinx Virtex-7 FPGA resource utilization for HTHs in a 10GBASE-X IP core (%

of PCS/PMA core). 164

5.3 XC5VFX130T FPGA resource utilization for HTHs in Multi-gigabit Transceivers

(% of Aurora core). 164

5.4 XC5VFX130T FPGA resource utilization for interface guards (% of Aurora core). 165

xi

List of Abbreviations

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

AUSTIN Assuring Software Radios have Trusted Interactions

BDD Binary Decision Diagram

BMM Block RAM Memory Map

CBC Cipher Block Chaining

CC Clock Correction

CHARE Configurable Hardware-Assisted Rule Enforcement

CLB Configurable Logic Block

CoRaL Cognitive Radio Language

COTS Commercial of-the-shelf

CPLD Complex Programmable Logic Device

CPS Cyber-Physical System

CR Cognitive Radio

CTL Computation Tree Logic

DEFENSE Design-for-Enabling-Security

DLL Delay-Locked Loop

DMS Dynamic Module Server

DoS Denial-of-Service

xii

DPR Dynamic Partial Reconfiguration

DREC Design Rule Enforcement Controller

DSA Dynamic Spectrum Access

DSP Digital Signal Processor

ECB Electronic CodeBook

EDA Electronic Design Automation

EDK Embedded Development Kit

FCC Federal Communications Commission

FPGA Field-Programmable Gate Array

FPL Field Programmable Logic and Applications

FSM Finite-State Machine

FTP File Transfer Protocol

GPIO General-purpose Input and Output

HDL Hardware Description Language

HLH Hardware limits raw hardware resource access

HLS Hardware limits access to software and data

HMAC Hash-based Message Authentication Code

HOST Hardware-Oriented Security and Trust

HTH Hardware Trojan Horse

I/O Input and Output

IC Integrated Circuit

ICAP Internal Configuration Access Port

IOB Input and Output Block

IP Intellectual Property

ISE Integrated Synthesis Environment

xiii

ISQ Idle Sequence

IT Information Technology

LFSR Linear Feedback Shift Register

LQG Linear Quadratic Gaussian

LTL Linear Time Logic

LUT Look-Up Table

LWIP Light Wight Internet Protocol

MGT Multi-Gigabit Transceiver

MIMO Multiple-Input and Multiple-Output

MMU Memory Management Unit

NGSCB Next Generation Secure Computing Base

NITRD US Federal Network and Information Technology Research and Development Program

NoC Network on Chip

NSF National Science Foundation

OS Operating System

PAU Plug-in Assist Unit

PCM Pulse Code Modulation

PCS Physical Coding Sublayer

PLB Processor Local Bus

PLC Programmable Logic Controller

PLL Phase-Locked Loop

PMA Physical Medium Attachment

PMD Physical Medium Dependent

PRM Partially Reconfigurable Module

PRR Partially Reconfigurable Region

xiv

PSL Property Specification Language

PUF Physically Unclonable Function

PWM Pulse Width Modulation

RAM Random Access Memory

RETC Run-time Enhancement of Trusted Computing

RMS Root Mean Square

ROBDD Reduced Order Binary Decision Diagram

RTL Register-Transfer Level

RTM Root of Trust for Management

SDK Software Development Kit

SDR Software-defined Radio

SecurIT Security of Internet of Things

SeReCon Secure Reconfiguration Controller

SHA Secure Hash Algorithm

SLH Software limits raw hardware resource access

SLS Software limits access to software and data

SMT Satisfiability Modulo Theories

SMV Symbolic Model Verifier

SoC System-on-Chip

SRAM Static Random-Access Memory

SRC Secure Reconfiguration Controller

SSPL Standard Security Policy Language

STH Software Trojan Horse

TCG Trusted Computing Group

TFTP Trivial File Transfer Protocol

xv

TPM Trusted Platform Module

TSS Trusted Software Stack

TTS Tailored Trustworthy Spaces

TXT Trusted Execution Technology

USRP Universal Software Radio Platform

XG neXt Generation

XPS Xilinx Platform Studio

xvi

Chapter 1

Introduction

The rapid evolution of electronic design technologies and automation tools have led the way to the

information technology (IT) revolution in the last two decades. Extremely fast personal comput-

ers and portable cell phones, numerous software applications and tools, the high-speed worldwide

Internet, and computer networks have changed the way we live. The impact of this revolution obvi-

ously affects every single aspect of our lives. The vast majority of computing devices, however, are

much less visible and embedded in most contemporary electronic devices in common use today.

Embedded systems are special-purpose computing platforms designed for specific control func-

tions under a set of constraints. Applications of embedded systems range from portable devices

like PDAs and cellular phones, to real-time controls equipped in industrial systems and nuclear

power plants. Many embedded systems are deployed in physical systems. However, there is still

a computation gap between the discrete-time cyber world, where computations and information

exchange take place, and the physical world of continuous dynamics in which we live [20].

The term cyber-physical system (CPS) was introduced by the National Science Foundation (NSF)

to mean the integration of computation and a physical process [97]. Typically, a CPS is composed

of physical process monitored and controlled by a cyber system, which is a networked system of

distributed sensing, communication, and computational devices [170]. In a CPS, heterogeneous

embedded systems monitor and control a physical process, usually via feedback loops where the

1

Mohammed M. Farag Chapter 1. Introduction 2

physical process affects computation and vice versa. Emerging CPSes are characterized by large-

scale system sizes, heterogeneity of resources, uncertain system dynamics, and extensive physical

interactions. Unlike traditional embedded systems aiming to optimize computation in highly con-

strained environments using limited resources, the emphasis of CPS research tends to be more on

tight coupling between the computing and physical parts. Embedded systems can be considered

CPSes when they sense or affect dynamic physical environments.

CPSes are the next computing revolution and, recently, the NSF has identified them as a key area

of research. CPS applications include high-confidence medical systems, assisted living, traffic

control and safety, advanced automotive systems, process control, energy conservation, environ-

mental control, avionics, instrumentation, critical infrastructure control, defense systems, dis-

tributed robotics, industrial control systems, smart structures, cellular communication, and au-

tonomic computing systems [96]. CPS design is an interdisciplinary research area of computer

architecture, software, network, physical systems, control, and other engineering disciplines. This

emerging area enables new opportunities and poses additional research challenges including: CPS

decomposition and interoperability; robustness, safety and security; control of hybrid systems;

real-time embedded system abstractions; architecture development; and model-based develop-

ment [137, 151, 154]. Figure 1.1 illustrates CPS domains, design challenges, and potential ap-

plications.

Although CPSes have the potential to dramatically enhance our life and dwarf the 20th century IT

revolution, cyber threats targeting such systems can cause tremendous loss of lives and property.

Traditional embedded systems require more security assurances than general-purpose computing

platforms. In the transition to CPSes, security requirements should be increased to counter the ris-

ing number of threats aiming to damage physical systems through cyber attacks. Without enhanced

security, they will not be deployed in applications such as health care, critical infrastructure, and

other safety-critical systems. Nonetheless, interacting with the physical world opens the door for

new generations of threats specifically targeting CPSes. Unfortunately, cyber security practices are

commonly reactive, increasingly cumbersome, and struggle to mitigate rapidly evolving threats.

Mohammed M. Farag Chapter 1. Introduction 3

Co
nt

ro
l

Computation

Communication
Cyber-

physical
system

Security
Reliability

Safety

S
us

ta
in

ab
ili

ty
Interoper

ability

Abstra
ct

ion

Modeling

Communication

Process control
Va

lid
at

io
n

Smart systems

Infrastructure

Healthcare

Robotics

Infrastructure

Transportation

Figure 1.1: CPS domains, design challenges, and applications.

Typically, a CPS is configured as a closed-loop feedback control system. Figure 1.2 illustrates a

CPS basic architecture, where sensors, actuators, and controllers can be a network of elements.

Embedded controllers are computational systems incorporating a set of components such as pro-

cessors, memory, storage, and input and output (I/O) devices. This infrastructure is abstracted to

layers in order to simplify the development flow. System abstraction layers include hardware, op-

erating system (OS), software, and data. Modern components are characterized by the complexity

of functions and interactions, with data traversing through different abstraction layers.

To increase development productivity and reduce design costs, embedded controllers are often

assembled from commercial of-the-shelf (COTS) components and third-party intellectual property

(IP) modules. Even domestic development of modern systems is often assisted by third-party

Mohammed M. Farag Chapter 1. Introduction 4

Cyber System

Physical System

PPhysical process

Sensor Actuator

Embedded controller

Figure 1.2: CPS basic architecture.

software tools. Open-source development is the major supplier of embedded software. IP cores

are widely employed in both application-specific integrated circuit (ASIC) and field-programmable

gate array (FPGA) designs and commonly distributed as netlist files. For example, IP cores may be

delivered as synthesizable hardware description language (HDL) source that is accessible by the

designer or as an encrypted netlist that can only be treated as a black box module.

Threats to CPSes can originate from numerous sources, including hostile governments, terrorist

groups, disgruntled employees, malicious intruders, and untrusted insiders. Imported components

and integrated circuits (ICs) are vulnerable to tampering and change by untrusted parties through-

out the design and fabrication process. Commonly, such components cannot be trusted because

of either lack of verification or the potential of Trojan inclusions. Trojans can be introduced to

the global supply chain as either hardware or software modifications to embedded components.

Programmable systems have added complexity as software and IP modules can also interface with

hardware configuration controls. Since these controllers are often programmable, many Trojans

need only to be implemented in software. Hardware trust may be even misplaced in reconfigurable

platforms such as FPGAs.

Ensuring trust in third-party IP modules and COTS components individually is extremely challeng-

Mohammed M. Farag Chapter 1. Introduction 5

ing because there is neither an accompanying specification nor a golden reference design [167].

This problem is amplified and may result in system security violations when a controller is com-

posed of numerous modules interfacing in a poorly trusted or understood manner. Even compo-

nents developed by the system designer or other trusted parties cannot be verified using formal

methods because of the associated difficulties. Despite the lack of trust in such components, feasi-

ble alternatives may not exist for the timely development of modern, complex systems. Therefore,

using untrusted components in embedded controllers is inevitable. Enabling trusted computing

requires threat-tolerant security solutions instead of solely relying on threat avoidance techniques.

Generally speaking, security solutions can be classified as either design-time (compile-time) or

run-time [166]. Design-time techniques seek to verify that a computing system is flaw-free pre-

deployment. Such techniques are extremely expensive in terms of both time and money, and

can be only afforded for a limited set of applications. Verification techniques analyze systems

against assigned specifications, which may not capture all vulnerabilities. An example of a design-

time method is formal verification. Run-time techniques employ run-time trusted components to

provide assurances about certain aspects of system behavior. The design flow can be changed or

modified to add the trusted components at design-time. Encryption and authentication modules are

typical examples of run-time trust anchors. They help to ensure information integrity and provide

trusted compartments for secure applications. Nevertheless, such techniques do not ensure trust in

all system components, and the system may remain vulnerable to unanticipated cyber threats.

The security research and design community is largely reactionary due to the imbalance of an

attacker versus defender initiative. Consequently, systems are typically evaluated for trust and se-

curity or protections are created as an afterthought to the initial design process. This is especially

true for legacy embedded systems, such as those used in the CPSes. The constant race to patch

system vulnerabilities against newly discovered exploits indicates the need for proactive protec-

tions to be built-in during the design process. While such protections may be difficult to provide

for highly complicated, general-purpose desktop and server computing platforms, it is feasible to

create them for CPSes and embedded systems intended for specific applications. This is of critical

importance as new threats are now targeting embedded controllers in CPSes deployed in national

Mohammed M. Farag Chapter 1. Introduction 6

infrastructure. Since it is reasonable to assume these threats are built into independently developed

modules, and even trusted designers themselves will likely always be able to build systems they

cannot entirely verify, protections should be built-in as well. New solutions are needed to tailor

embedded systems and CPSes with control assurances that provide system-level trust throughout

the system’s lifetime.

1.1 Run-time Enhancement of Trusted Computing in CPSes

The US Federal Network and Information Technology Research and Development Program (NI-

TRD) has been charged with leading the national cyber security initiatives. NITRD identified

three initial R&D themes to exemplify and motivate future cyber security research activities: tai-

lored trustworthy spaces (TTS), moving targets, and economic incentives [4]. For the TTS theme,

meeting all security requirements derived from different contexts and purposes is infeasible and

the alternative is establishing trustworthy sub-spaces defined in terms of specific uses or types

of interactions, each with its own set of tailored security policies, services, and mechanisms. The

moving target theme addresses resilience through agility by making the security environment more

dynamic and therefore harder to predict. Finally, the economic incentives theme involves finding

ways to encourage good security practices and motivating users to adopt cyber security defenses,

recognizing that convenience has caused consumers to ignore security pop-ups [153]. These ini-

tial cyber security R&D themes pose many challenges for the research community to significantly

enhance the trustworthiness of cyberspace [111].

The TTS theme provides flexible, adaptive, distributed trust environments that can support func-

tional and policy requirements arising from a wide spectrum of activities to thwart evolving threats.

User context is recognized and the TTS evolves with the context. The user chooses to accept the

protections and risks of a tailored space. Attributes of the space must be expressed in an under-

standable way to support informed choice and must be readily customized, negotiated and adapted.

The primary goal of the TTS theme is to identify and develop a common framework supporting

Mohammed M. Farag Chapter 1. Introduction 7

various trustworthy space policies and services for different types of actions. These policies and

services provide visibility into the rules and attributes of the space to inform trust decisions, cre-

ate a context-specific set of trust services, and a means for negotiating the boundaries and rules

of the space [71]. This framework offers assurances about accurate articulation of user require-

ments in the TTS policy, true separation of included spaces, and build-up and tear-down of each

space is clean and trustworthy. The scientific challenges of TTS are providing separation, isola-

tion, policy articulation, negotiation, and assurances necessary to support specific cyber security

sub-spaces [2].

Basic security objectives of CPSes as well as embedded systems include confidentiality, integrity,

availability, and authenticity [30]. Future CPS generations must address several requirements of

trusted computing, and require secure communication and data storage to achieve these goals.

Security can be ensured only if these requirements are built into, rather than onto, system archi-

tectures and implementations. Trusted computing is an emerging technology aiming to implant

trust in computer systems as well as hardware computing platforms. It has been developed and

promoted by the Trusted Computing Group (TCG) with the goal of enforcing consistent behavior

of the computing platform using security building-blocks rather than complete systems [68]. The

TCG idea is to embed trust into a computing platform by providing it with a certain hardware

module responsible for the platform security.

Lack of trust in the underlying system components is a common threat to CPSes as well as em-

bedded systems. Run-time enforcement and verification of security policies is an emerging re-

search topic gaining a growing interest of the security research community [23, 34, 99, 101–103].

In this dissertation, we advance a run-time protection scheme adopting the TTS theme to enable

trusted computing in CPSes containing untrusted software and hardware. Particularly, this protec-

tion scheme targets CPSes built using reconfigurable hardware. The protection scheme is called

Run-time Enhancement of Trusted Computing in CPSes (RETC-CPS).

Figure 1.3 illustrates a simplified block diagram of the RETC-CPS protection scheme. To protect

against various cyber threats, a secure cyber-barrier is placed around the system control path. A

Mohammed M. Farag Chapter 1. Introduction 8

security policy captures permissible I/O behavior, and is enforced at run-time to simultaneously

address design-for-security and -trust. Monitoring I/O behavior is particularly relevant for CPS

applications. System behavior and security checks are synthesized at design-time from the ap-

plication operational and security specifications. Guard components surround the system control

logic, but do not affect the implementation of the control logic itself. Using such an approach, a

tailored trustworthy control flow acts as a last line of defense for the target application. However,

this fundamentally new approach is not domain-specific and provides a proactive approach to sus-

tain system-level security with reliable control. Existing verification techniques are complemented

but not exclusively relied upon to ensure functional system trust and security compliance.

Top-level interface guard
Embedded controller

Physical process

Trusted
component

Interface guard

Untrusted
component

Figure 1.3: RETC-CPS block diagram.

Run-time policy-monitoring and -enforcing guards are tightly integrated into embedded controller

interfaces. Abstract and system-level policy rules may only need to be evaluated on the top-level

interfaces, such as statistical analysis of the I/O activity. This is an ideal scenario because designers

can more easily reason about system security without the burden of developing specialized guards

on a per-module basis. However, suspect or complex IP may still require intra-datapath interface

guards enabling run-time monitoring and enforcement of operational and security specifications as

Mohammed M. Farag Chapter 1. Introduction 9

well as statistics gathering to evaluate performance. Protected modules and systems are treated as

black boxes, and the security policy needs to be enforced at interfaces which can reveal the com-

ponent internal transactions as well as external interactions. The guard components are provided

with inclusive control and overriding capabilities over the protected system allowing them to re-

spond appropriately to non-compliant behaviors according to the underlying policy measures. For

example, detection of anomalous behavior can initiate a set of countermeasures such as forcing a

safe operational mode, disabling the system, or switching to a backup system.

Interacting with the physical world is a featured property of CPSes distinguishing them from

general-purpose computing platforms. This unique characteristic enables framing high-level poli-

cies and trustworthy spaces describing secure and trusted operation of the system. This application-

specific security policy is tailored to a certain class of physical systems. However, the overall

protection scheme is still applied for a wide range of CPSes. Further, circuit-dependent checks

and user-specified rules such as restricted access resources and disallowed simultaneous control

signals can be incorporated into the security policy addressing traditional IT threats. Furthermore,

temporal logic propositions and assertion checkers employed in compile-time verification meth-

ods such as model checking can be included in the security policy enabling run-time verification of

the system. Moreover, intrusion and anomaly detection algorithms can be adopted in the security

policy and enforced at the top-level interfaces to detect specific cyber threats. The security policy

is developed and integrated into the system by a trusted party aware of the system vulnerabilities,

potential threats, and security requirements.

The policy-based approach to enhance trusted computing in CPSes addresses many security chal-

lenges by decoupling policies from system-specific implementations and optimizations. For exam-

ple, this can enable maintaining system security without sacrificing other important metrics such

as power and speed. Such an approach does not impose significant changes to the existing design

flow, and does not need golden designs as security references. Further, RETC-CPS enables exten-

sibility of the security policy over time to address zero-day attacks and threats. It enables updating

guard components without requiring changes to the system implementation. Furthermore, the pro-

posed protection scheme can combat both external and internal threats targeting CPSes because it

Mohammed M. Farag Chapter 1. Introduction 10

responds to the effect of an attack instead of attempting to prevent its cause. Therefore, RETC-CPS

can be considered a threat-tolerant protection scheme, whereas compile-time security techniques

seek threat avoidance. Moreover, the RETC-CPS protection scheme can be generally applied to

enhance trust in various CPSes while having acceptable development and performance costs.

Hardware mechanisms have not been fully utilized or exploited in security solutions. Recently,

hardware-enabled security has gained increasing interest from the research community because of

the potential gains. Software-based protections can easily be undermined by compromising lower

layers of the system software or attacking the underlying hardware. To counter such threats, the

software has to be provided with hardware trust anchors supporting secure bootload and continuous

monitoring of critical software while minimizing the trust chain. Hardware is the lowest abstraction

layer of the computing platform and enforcing trust at this level enables detection of cyber threats

targeting various layers of the system, including the hardware layer itself. Moreover, hardware

designs are verifiable because of their limited state-space and reduced design complexity compared

to software designs.

Hardware-based security solutions may fail because of their impact on performance, power con-

sumption, cost, and usability. Such solutions are dealing with security as an ancillary rather than

the main part of a system, and most these solutions target general-purpose platforms. Therefore,

development of hardware-based architectures addressing these security concerns is a very chal-

lenging task. RETC-CPS tolerates implementing guard components at different abstraction layers,

which facilitates the development of hardware-based security architectures. In this work, we em-

ploy reconfigurable hardware to implement the interface guard components of the RETC-CPS

protection scheme. This simultaneously addresses the performance, flexibility, power, developer

productivity, and security requirements of modern CPSes.

Reconfigurable hardware is a computing architecture characterized by both the flexibility of soft-

ware and the high-performance of ASICs. A bitstream representing a digital design is used to

configure fine-grained customizable logic and programmable interconnect to implement the de-

sign functionalities. The principal difference when compared to software architectures adopting

Mohammed M. Farag Chapter 1. Introduction 11

hardwired processors is the ability to make substantial changes to the datapath. On the other hand,

the main difference with custom static hardware such as ASICs is the possibility to adapt the plat-

form functionality in the field by loading new configuration bitstreams. Modern reconfigurable

platforms such as FPGAs have dynamic partial reconfiguration capabilities allowing run-time

adaptation of a part of the FPGA while the remaining part is still operating. The flexibility and

high-performance characteristics of reconfigurable hardware fulfill the requirements of modern,

data-intensive, computing applications. Reconfigurable hardware serves the purpose of RETC-

CPS in terms of flexibility, locality, verifiability, resistance to software threats, and performance.

1.2 Research Challenges and Example Applications

The RETC-CPS protection scheme is applied to several problems associated with common secu-

rity research challenges, and is supported by prototype developments illustrating scheme efficacy.

The first problem is secure reconfiguration control of a dynamic reconfigurable system contain-

ing untrusted components. Challenges associated with this problem are validating various update

requests issued by untrusted components and authenticating update contents delivered via open

communication channels. The second problem is tolerating hardware Trojan horses (HTHs) in

third-party IP cores used in CPS hardware platforms. Challenges associated with this problem

are detecting anomalous behavior of untrusted components treated as black boxes and enforcing

appropriate countermeasures in response. The third problem is mitigating cyber threats to pro-

cess controllers containing untrusted components. Challenges associated with this problem are

detecting erroneous behavior introduced by potential cyber threats and preempting their effects to

preserve the controlled physical process stability. These security challenges commonly arise in

computing platforms containing untrusted software and hardware components.

A major challenge associated with any security solution is evaluating it not only in terms of per-

formance and overhead, but also in terms of trust and security [10]. Our security architectures are

evaluated by presenting specific threat models, developing testbenches generating these models,

Mohammed M. Farag Chapter 1. Introduction 12

and validating the RETC capability to mitigate theses threats. The presented threat models are

associated with either state-of-the-art cyber threats or novel zero-day attacks. We present our de-

velopment of new HTHs supporting covert communication in high-speed serial interface adapters

widely deployed in modern networks. The RETC-CPS protection scheme is also evaluated in

terms of performance degradation, induced overheads, verifiability, automation applicability, trust

locality, and attainable trust.

1.2.1 Secure Reconfiguration Control

Technological advancement, from high density ICs to communication protocols, has resulted in a

push to develop a new type of software-defined radio (SDR), known as cognitive radio (CR) [7,

100], which can adapt its configuration based on perceived changes or opportunities in the radio

environment. These radios support dynamic physical layer adaptation by scanning the spectrum,

identifying spectrum opportunities from a wide range of operating frequencies, and adapting mod-

ulation waveforms and transmission power to take advantage of opportunities. These modern soft-

ware radios are being developed with powerful protocol processors capable of supporting advanced

networking, ranging from cross-layer protocols that tightly tune the operation of the MAC, network

and transport layer to a new generation of distributed signal coding methods. Since CR devices

are being built using programmable hardware which has computational capabilities rivaling closed

commodity ASICs, they will be highly programmable with open interfaces and specifications, thus

supporting open-source development by the broader community [141].

CR programmability introduces security concerns since all layers of the protocol stack can be mod-

ified, including hardware-implemented layers. Controls must be imposed on the allowed changes,

and hardware should retain some oversight rather than rely solely on software correctness and

integrity. Physical attacks on the mobile platform must also be considered. Trust inheritance

becomes complicated in configurable platforms when software updates the underlying hardware

structure. “In hardware we trust” is no longer axiomatic since the hardware can be modified to vi-

olate specific policies. Current practice places dynamic hardware configuration under the control

Mohammed M. Farag Chapter 1. Introduction 13

of application-level software. Partial hardware modules are application-specific and potentially

untrusted. Software modification of hardware structure is analogous to self-surgery, and indepen-

dent hardware should provide oversight rather than rely solely on the correctness and integrity of

application software and circuits.

We develop a configurable hardware-assisted rule enforcement for CR (CHARE-CR) framework

to automatically integrate PHY- and MAC-layer policy enforcement into the reconfigurable hard-

ware blocks of a CR platform. A remote trusted server generates hardware plug-in by wrapping

the waveform baseband modules in a controller block. Consequently, all update requests from

CR software pass through the controller that serves as an abstraction layer for baseband datapath

modules. An input to the controller synthesis algorithm is the subset of policy database rules af-

fecting the PHY and MAC layers. CHARE-CR simultaneously addresses the performance, power,

developer productivity, and security requirements of high-throughput, reconfigurable platforms.

The generated controller ensures that the requested operations are consistent with CR security

policies, and returns an error status otherwise. Hardware detection of a policy violation indicates

a possible corruption of the CR software. The controller-based abstraction simplifies the CR soft-

ware, enhance portability, and increase radio efficiency and performance by managing the data

path with optimized hardware. When the trusted authority changes the capabilities of the CR,

a new configurable hardware plug-in is quickly generated using the synthesis software. Plug-in

configuration data are securely transferred and stored so that the decrypted versions are physically

inaccessible to CR software. CHARE-CR addresses a typical security threat associated with most

modern CPSes containing untrusted components responsible for system updating control. This

reconfiguration control approach can be generally applied to control updating of different CPS.

1.2.2 Tolerating HTHs in Third-party IP Cores

HTHs are malicious inclusions or alterations to ICs added deliberately by an entity involved in

the IC development and production flow with the purpose of breaking one of the system’s security

Mohammed M. Farag Chapter 1. Introduction 14

objectives. HTHs are a direct example of threats raised by untrusted components deployed in

CPSes. Trojan effects on a host system range from subtle disturbances to catastrophic system

failures. These effects include subtle changes to the chip functionality, performance downgrades,

leaking information, and denial-of-service (DoS). Many taxonomies and classifications have been

proposed to develop a better understanding of HTHs and create effective defenses [84, 85, 166].

HTHs are classified according to the insertion phase, abstraction level, activation mechanisms,

effects or payload, and insertion location. These classifications are very useful in assessing Trojan

detection, mitigation, thwarting, and protection techniques [140].

Development of HTH detection and protection methods is an emerging research topic gaining

increasing interest in the security research community. Design-time detection approaches include

physical analysis, logic-testing, Trojan activation, and side-channel analysis [120]. Contemporary

ICs are characterized by high transistor density making it impossible to find subtle alterations using

chip physical analysis in which suspicious ICs are compared to unaltered reference ICs. Moreover,

such an approach to detect HTHs is destructive and the alternative is using extremely expensive,

non-destructive imaging techniques. HTHs can add malicious functionality to a chip such as data

leakage without disturbing the chip’s normal operation. The Trojan’s activity is usually triggered

by rarely occurring conditions to make it difficult to detect the Trojan using activation and test

vector generation approaches especially with the huge state spaces of modern ICs. Furthermore,

conventional test and validation techniques cannot reliably detect HTHs because these methods

focus on identifying undesired functional behavior rather than additional functionality added by

a HTH. Other detection methods rely on the potential effects induced by HTHs to side-channel

parameters such as current consumption, power trace, and path delay. However, the effectiveness of

side-channel analysis is limited by process-variation effects and measurement noise which induce

effects similar to small HTHs implanted in high-density ICs.

Trust verification in third-party IP cores is further complicated by the need for golden reference

models which are very difficult to obtain in the global supply chain. Third-party IP cores are

treated as black boxes where one can only trust functional specifications. A possible approach

for trust verification is applying direct functional tests. However, such tests might not be able to

Mohammed M. Farag Chapter 1. Introduction 15

detect cleverly developed Trojans activated under rarely occurring conditions because of the huge

state space of modern IP cores. Formal verification is another design-time technique that can be

used to detect HTHs in IP cores pre-deployment. A high-level reference model is developed from

the IP functional specifications and acts as a golden reference. However, formal verification tech-

niques still experience many difficulties because of the huge state spaces of modern designs. As

design-time HTH detection solutions might not provide comprehensive Trojan coverage, run-time

monitoring can be employed to improve the provided assurances. Run-time approaches for Trojan

detection rely on monitoring execution of critical computations to identify specific malicious or

anomalous behaviors triggered during long in-field operation times. Potential countermeasures in-

clude disabling the chip upon malicious activity detection or bypassing the compromised modules

and using backup components to allow reliable operation.

We apply the RETC-CPS protection scheme to detect and tolerate HTHs in third-party IP cores

widely employed in reconfigurable hardware designs. Guard components are developed at design-

time and attached to the IP module interfaces. A security policy is formulated from the IP func-

tional specifications and translated into synthesizable hardware guards and security primitives re-

sponsible for monitoring and enforcement functionalities. Deviation from the nominal behavior

triggers specific countermeasures mitigating HTH effects. Guard components enforcing func-

tional specifications cannot detect non-functional security violations such as information leakage

via side-channels, for example. However, the security policy can include custom rules to address

non-functional specifications.

To evaluate our approach, we advance a lightweight HTH supporting two-way covert communica-

tion in serial high-speed point-to-point physical links by exploiting vulnerabilities in the underlying

media layer protocols. Covert data channels are established by inserting HTHs exploiting unen-

forced, loose specifications of IP cores implementing media layer functionalities in a manner that

maintains system operability. Specifically, we explore insertions in a PCS/PMA 10GBASE-X IP

core implementing the physical layer functionalities of the 10GbE protocol specified in the IEEE

802.3-2008 standard [3], and in an Aurora IP core implementing the link-layer functionalities in

a high-speed serial protocol. Aurora is an open-source implementation of a link-layer protocol

Mohammed M. Farag Chapter 1. Introduction 16

developed by Xilinx to support serial links between chips employing multi-gigabit transceivers

(MGTs), with the protocol specifications adopted from the IEEE 802.3 standard [173].

1.2.3 Protecting Process Control Systems Against Cyber Attacks

Process control systems monitor and control physical processes using closed-loop feedback. Sen-

sory information gathered by physical sensors are fed into an embedded system controlling elec-

tromechanical actuators to preserve process stability. Process controllers are usually developed

using untrusted components and third-party IP cores and consequently are vulnerable to cyber

threats raised by lack of trust in the internal components. Process control systems are widely used

in infrastructure and safety-critical applications where successful cyber attacks can result in catas-

trophic disasters. Because of their connection to national security, process control systems are

exposed to a growing number of attacks.

Preventing malware infiltration has not succeeded because of the complexity of modern networked

control systems having zero-day exploits. Trojans may also arise from the global supply chain

and use of third party IP. This leads to a demonstrated possibility of controllers being surrepti-

tiously compromised. Erroneous controller behavior must be detected before it critically affects

the physical process. Existing approaches to run-time bug and fault detection include monitoring

the process state arising from past controller actions, or comparing present outputs from indepen-

dent controllers. The large number of successful attacks targeting process control systems indicates

the need for proactive security defenses. The most well-known incident exemplifying cyber attacks

against process control systems is the Stuxnet attack targeting an Iranian nuclear power plant.

We provide an exploratory application of the RETC-CPS protection scheme to process control

systems. Our approach does not distinguish between bugs, faults, and malware, and the run-time

system includes a second instance of the active controller connected to a model of the plant giving

a short-term projection of future controller actions and process state. The model’s state is peri-

odically synchronized with the plant’s state to prevent divergence. Guard components enforcing

Mohammed M. Farag Chapter 1. Introduction 17

permissible operation rules are integrated to the predictive system and process controller interfaces.

Erroneous controller behavior is detected before it affects the physical process, allowing preemp-

tive alarms or actions. Trust is required in only a small set of simple, self-contained, and verifiable

guard components, and the inserted guards are synthesized from the process models and specifi-

cations. An aircraft pitch control system illustrates these ideas. Complementary to conventional

security and trust schemes, our’s serves as a last line of defense against cyber threats to process

controllers.

1.3 Thesis Organization

The essence of this work is as follows: Design-time security solutions are necessary but not suffi-

cient to completely protect security-critical CPSes containing untrusted components. Complemen-

tary trustworthy, extensible, threat-tolerant, efficient, and application-specific run-time protections

should be adopted to serve as a last line of defense against cyber threats evading detection by

design-time solutions. The remaining chapters are organized as follows:

Chapter 2,“Background”

The selected applications and previous security work related to the research presented herein are

discussed in this chapter.. Characteristics, vulnerabilities, and CPS threats are surveyed. An intro-

duction to configurable hardware and existing security approaches to control reconfiguration in dy-

namic reconfigurable platforms is presented. This chapter contains an overview of run-time trusted

computing in reconfigurable hardware, with a special treatment of HTHs as emerging threats to

computing platforms, and distinguishing our protections from other works.

Chapter 3, “Concepts and Overview”

The requirements, assumptions, limitations, and expectations of the proposed protection scheme

are discussed in this chapter. RETC-CPS guard development follows a systematic, straightforward

approach which enables design automation of the RETC security anchors. Although we will not

cover design automation of RETC guards, we present a complete design flow of the RETC-CPS

Mohammed M. Farag Chapter 1. Introduction 18

components developed in reconfigurable hardware. This chapter also introduces the RETC-CPS

high-level architecture and basic building blocks.

Chapter 4, “Application to Cognitive Radio Platforms”

In this chapter, the basic concepts and potentials of CR are described followed by discussing

security challenges preventing wide deployment of CR technology in modern cellular systems.

RETC-CPS is used to enforce secure reconfiguration in a CR platform. The reconfiguration con-

trol architecture provided in this chapter is general enough to apply to different CPSes other than

CR. The CHARE-CR implementation is presented and evaluated in terms of the achieved security,

induced performance degradation, and overheads. This implementation is based on commercially

available Virtex-5 devices, and uses the standard Xilinx design flow with some extensions to au-

tomate integrating trust anchors. This work was also presented in the Field Programmable Logic

and Applications conference (FPL) 2011 as a full paper [57].

Chapter 5, “Application to Untrusted Hardware Blocks”

An application of RETC-CPS to detect HTHs in untrusted IP cores is presented in this chapter. A

high-speed serial link adapter used in network backbones is advanced as an example of a complex,

untrusted module widely deployed in cyber networks. We discuss low-level guards to enforce IP

functional specifications. Particularly, we develop interface guards for IP cores with high-speed

interactions or complex behaviors. To evaluate the effectiveness of these guards, we develop novel

side-channel attacks exploiting loose specifications in the link-layer protocols of ubiquitous MGTs.

The RETC protection scheme is evaluated in terms of security, overheads, and performance. This

work was presented in Hardware-Oriented Security and Trust conference (HOST) 2012 as a full

paper [58].

Chapter 6, “Exploratory Application to Process Control Systems”

An exploratory application of RETC-CPS to process control systems is provided in this chapter.

An aircraft pitch controller is selected as an example of a security-critical, feedback process con-

trol system. A system-level security policy defining the permissible system behavior is formulated

from equations and models governing the system physics. RETC-CPS is applied to build a system-

Mohammed M. Farag Chapter 1. Introduction 19

level interface guard enforcing the system security policy. We exploit the unique properties of pro-

cess control systems in a novel way to predict and preempt erroneous controller behavior resulting

from either controller faults or cyber threats. This application illustrates how to apply RETC to

CPSes developed using model-based design flows. Work in this chapter was presented as a full

paper in the Security of Internet of Things conference (SecurIT) 2012 [98], and ideas and results

of this chapter formed the cornerstone of a recent NSF award.

Chapter 7, “Conclusions”

Conclusions are drawn about the overall RETC-CPS protection scheme, CHARE architecture, run-

time guard components as trust anchors, and RETC defenses for process control system. Future

directions for automation, verification, and potential applications are discussed.

1.4 Thesis Contributions

The unique contributions of this work are the following:

• Introducing a threat-tolerant security scheme

The idea of fault-tolerant systems is not new, and has been widely deployed in reliable sys-

tems. Surprisingly, this age-old idea has not been previously employed to build trusted

systems containing untrusted components. RETC-CPS provides a threat-tolerant scheme

addressing security concerns of CPSes containing untrusted components. The protection

scheme described in this dissertation is general enough to be applied to a wide spectrum of

CPSes and embedded systems, and it can be easily integrated with existing design flows,

especially model-based design techniques. The protection scheme is evaluated in terms of

functional correctness and the security component performance and overheads.

• Localization of trust

Existing efforts to build trustworthy systems struggle to assure trust in all system compo-

nents and interactions pre-deployment. Such approaches are extremely expensive in terms

Mohammed M. Farag Chapter 1. Introduction 20

of cost and time because of the modern system complexity. Moreover, they often cannot

guarantee that systems are vulnerability-free. The alternative is localizing trust in a small

set of system components and entrusting these components to enhance trusted computing in

all system components and interactions. In the RETC protection scheme, trust is required

in only a small set of simple, localized, and self-contained guard components, which can be

easily verified using traditional formal verification methods, especially when built in hard-

ware. Such an approach can significantly enhance trusted computing in CPSes containing

untrusted components. Localization of trust is assessed in terms of the trust anchor complex-

ity compared to the whole design complexity, where the hardware complexity is measured

in terms of the resource usage. Trust localization reduces the verification effort.

• Secure reconfiguration control

Existing approaches to secure reconfiguration in dynamic reconfigurable hardware provide

solutions to ensure partial bitstream integrity. However, these efforts do not address validat-

ing reconfiguration requests issued by untrusted components. CHARE-CR addresses secure

reconfiguration control in terms of both validating update requests and authenticating update

contents. It also provides the required assurances about the security of the CR platform to

spectrum regulators and stakeholders. Supporting prototypes are developed for the RETC

trust anchors responsible for secure reconfiguration control. The prototypes are evaluated in

terms of automation feasibility, functional correctness, and localization of trust. The CHARE

architecture presented in this dissertation is general enough to apply to other reconfigurable

applications needing secure reconfiguration control.

• Addressing new vulnerabilities and measures

We investigate the development of HTHs supporting remote interaction over wired computer

networks. Software-based covert communication in computer networks is an active research

area investigating how Trojans can exploit vulnerabilities in the protocol stack. Development

of HTHs exploiting network protocol vulnerabilities is an interesting new area to consider.

In this work, we introduce novel HTHs supporting covert communication over a network

Mohammed M. Farag Chapter 1. Introduction 21

by exploiting newly discovered vulnerabilities in high-speed interface adapter IP cores. We

provide measures enabled by RETC-CPS to counter such threats, and use these novel at-

tacks to evaluate the protection scheme. The protections are evaluated in terms of functional

correctness, localization of trust, and the response time compared to software defenses.

• Predicting and preempting erroneous controller behaviors

Existing run-time security solutions to process control systems rely on observing either the

embedded controller or the physical process and detecting violations affecting them. How-

ever, these solutions are reactive, and can only detect erroneous controller behavior after

its occurrence which might allow a physical processes to become unstable before corrective

action can be taken. We investigate the development of run-time protections leverage RETC-

CPS to enable predicting and preempting erroneous controller behaviors before they affect

the physical process stability. The prediction architecture is evaluated in terms of functional

correctness, localization of trust, and response time.

• Enabling trust extensibility in reconfigurable architectures

Comprehensive security is impossible, and every system has its vulnerabilities that can be

later discovered and exploited. Successful zero-day attacks against various CPSes indicate

that security policies and architectures need to be extended to address new vulnerabilities.

Trust extensibility is commonly employed in software solutions via security updates includ-

ing definitions of new threats and fixes for system vulnerabilities. However, trust extensibil-

ity in hardware architectures is very challenging because of the coupling between the security

components and the system implementation. Localization of trust, separation between sys-

tem implementations and trust anchors, and secure control of system reconfiguration are the

key enablers of trust extensibility in hardware architectures. RETC-CPS enables trust ex-

tensibility in hardware architectures by addressing these key enablers without significantly

altering the conventional design flow.

Chapter 2

Background

The problem of building trusted CPSes containing untrusted components was introduced in the

previous chapter. The background and work related to this problem are presented in this chap-

ter. An overview of CPS characteristics, vulnerabilities, and potential threats, and illustrates CPS

parts addressed by the RETC-CPS protection scheme is provided in Section 2.1. In Section 2.2,

an overview of reconfigurable hardware technology is given including a summary of associated

threats and existing measures, with a special treatment of partial reconfigurable systems. Sec-

tion 2.3 surveys trusted computing approaches in reconfigurable hardware, and compares them to

the RETC-CPS approach. This chapter is summarized in Section 2.4.

2.1 CPS Overview

In order to understand the security requirements of CPSes, we need to describe their characteris-

tics and distinguish between CPSes, traditional embedded systems, and general-purpose comput-

ing platforms. Irrespective of the domain, CPS characteristics include: intensive interaction with

physical systems; heterogeneous resources and diverse capabilities; and increased network inter-

actions. Interacting with the physical world governs the CPS behavior, commonly configured as

22

Mohammed M. Farag Chapter 2. Background 23

closed-loop feedback control systems where a small change in the physical system behavior in-

duces an equivalent change in the cyber system behavior and vice versa. Interacting with physical

systems having continuous temporal dynamics requires real-time computing performance on the

cyber side. Further, the physical world is not entirely predictable, and therefore, a CPS must be

robust to unexpected conditions and subsystem failures.

Interacting with the physical world is the fundamental difference between CPSes and general-

purpose computing platforms, where only users and IT environments are the contributors to system

changes. From the security point of view, as the interaction between the cyber and physical systems

increases, the physical world becomes more susceptible to security vulnerabilities arising in the

cyber system. Further, interacting with physical systems will introduce a new generation of cyber

threats specifically targeting CPSes besides the traditional IT threats. These security concerns

necessitate augmenting trust in CPSes and assuring their safe and trusted operation. Interacting

with the physical world requires creating a TTS and deriving high-level security policies from the

physical system characteristics, and protecting CPSes from the conventional IT threats.

A CPS typically incorporates various heterogeneous components, which can be treated as subsys-

tems, including simple sensors with limited capabilities, wired and wireless communication and

networking devices, and embedded computing systems. Component diversity and large system

scales distinguish CPSes from traditional embedded systems, which can be viewed as subsys-

tems of larger CPSes. Despite the component diversity in CPSes, all components are orches-

trated together to accomplish a unified objective serving the physical systems. On the other hand,

general-purpose computing platforms are not only characterized by the diversity of components

and interactions, but also featured by the variety of goals and objectives. This diversity of re-

sources, interactions, and objectives in general purpose platforms makes it is very difficult, if not

impossible, to build trustworthy personal computers.

A CPS is a system of systems with a tight coupling between computing and physical components.

Coupling between different subsystems, which can be physically separated and distributed over

long distances, is achieved through network interactions in various network domains. This differs

Mohammed M. Farag Chapter 2. Background 24

from traditional embedded systems commonly deployed as standalone system-on-chip (SoC) or

system-on-board platforms. The CPS networking capabilities shifts malware spreading via com-

puter networks from the cyber world to the physical world. The Stuxnet attack is an example of

cyber threats targeting CPSes and propagating over computer networks. Table 2.1 summarizes

differences between general-purpose computers, embedded systems, and CPSes.

Table 2.1: A comparison between general purpose computers, embedded systems, and CPSes.

Personal computers Embedded systems CPSes

Interacting with the phys-
ical world

No Yes Yes

Diversity of components Yes No Yes

Diversity of objectives Yes No No

Networking capability Yes Limited Yes

2.1.1 CPS Security Vulnerabilities

In the past few years, computer security has gained significant attention from the research com-

munity. Various security protocols and standards such as IPSec, SSL, WEP, and WLTS have been

developed to secure communication. While such protocols and standards address security consid-

erations from a functional perspective, several factors shift these concerns to implementation and

architectural perspectives. For example, although a functional security protocol can theoretically

protect the privacy and confidentiality of data, it cannot protect the underlying implementation

against particular threats exploiting certain architectural flaws. Among these factors are increasing

number of successful attacks such as software, hardware, and side-channel attacks against cyber

systems. Power and computation constraints associated with the limited processing capabilities of

embedded platforms result in undesirable tradeoffs between security and other substantial metrics

such as cost, overhead, and performance [90].

Mohammed M. Farag Chapter 2. Background 25

Attacks against a CPS exploit vulnerabilities of a particular system implementation to achieve

their goals, rather than attempting to break cryptographic algorithms and protocols. A security

vulnerability is a flaw, unintentionally developed or deliberately included in a system, which could

later be exploited to cause a loss of system confidentiality, integrity, or availability. A general work

flow can be used to illustrate various CPS security vulnerabilities. This work flow is based on the

general closed-loop feedback control flow and can be categorized into four main steps [170]:

1. Monitoring and sensing: Monitoring of the physical process is a fundamental CPS function

where a set of sensors are used to gather continuous information about the physical system

and send it to the computational elements and controllers of the cyber system. A sensor is

an electromechanical transducer which measures certain attributes of the physical system

such as speed, temperature, and pressure and converts it to an electrical signal. Closed-

loop control systems mainly rely on sensory information to compute the feedback decisions.

Sensor faults are common to all physical systems [145], and many fault-tolerant techniques

and algorithms have been developed to cope with them [152]. Nevertheless, cyber attacks

can target sensors to compromise sensory information. Clever attacks can evade detection

using current fault-tolerant approaches. Hence, these new vulnerabilities need to be identi-

fied and countered using more innovative, application-specific defenses incorporating system

physics. Vulnerabilities related to sensing are not the focus of this dissertation.

2. Communication and networking: A typical CPS is composed of several sensors and em-

bedded controllers interacting with each other. Networks are often used to exchange real-

time data between sensors, computing subsystems, and actuators. Communication between

different CPS elements is vulnerable to various computer network threats such as eaves-

dropping, DoS, data modification, man-in-the-middle, and many other attacks. Existing

practices and solutions addressing the security of communication channels in traditional

computer networks can be utilized to protect CPSes against these threats [159]. Encryption,

authentication, and authorization constitute the essence of information and communication

security. Numerous research efforts have already addressed secure communication in differ-

Mohammed M. Farag Chapter 2. Background 26

ent network types and topologies. In this work, state-of-the-art standards and practices are

employed to secure communication between CPS elements.

3. Processing and computing: In this step, a number of embedded controllers process sensing

data and compute feedback decisions. An embedded controller is a computational platform

incorporating a mixture of software-based and hardware-based processing devices, storage

elements, I/O peripherals, and communication devices interacting together. Processing de-

vices include simple micro-controllers, single and multi-core processors, digital signal pro-

cessor (DSPs), ASICs, and FPGAs. CPSes are not only exposed to all known vulnerabilities

of embedded systems and personal computers, but also are susceptible to zero-day attacks

and cyber threats specifically targeting CPSes such as the Stuxnet worm, which infected a

large number of personal computers hosting the Windows OS, but only affected those con-

trolling the targeted nuclear power plant.

Most computational platform vulnerabilities result from lack of trust in the underlying sys-

tem components and their interactions. The resulting threats are magnified by interacting

with the physical world where successful attacks can endanger human lives. Lack of trust in

the incorporated components is caused by several factors, including verification difficulties

and using imported COTS components and third-party IP cores. Unfortunately, these factors

are promoted throughout modern electronic design flows because they significantly reduce

design costs and development time. In this dissertation, we provide a run-time protection

scheme tolerating inevitable vulnerabilities in embedded controllers incorporating untrusted

software and hardware components.

4. Actuation: In this step, feedback decisions issued by the computing elements are executed

using electromechanical transducers called actuators. Most vulnerabilities associated with

this step are related to the physical part of the system. However, this does not imply that the

actuators are not exposed to cyber threats exploiting actuators vulnerabilities. Several fault-

tolerant techniques have been developed to handle both sensors and actuator faults in control

systems [117, 143]. Threats associated with actuation are not the focus of this dissertation.

Mohammed M. Farag Chapter 2. Background 27

2.1.2 Vulnerabilities Associated with CPSes Containing Untrusted Compo-

nents

The reasons why untrusted components are used in CPSes, and associated potential vulnerabilities

are discussed in this subsection. Established design-for-security approaches seek to avoid threats

by developing trusted application-specific solutions according to rigorous security mechanisms

such as physical separation, information flow analysis, and formal verification methods. How-

ever, these techniques are applied less frequently in the modern design flow for several reasons,

including high development costs and significant verification time [104]. Recently, the security

community has started realizing that threat avoidance techniques are insufficient and impractical

to build trustworthy complex systems. Such techniques can only reduce the number of system

vulnerabilities rather than eliminate all of them. A similar lesson was learned in the reliability

community’s adoption of fault tolerance as a complement to fault prevention.

Most software and hardware components employed in modern embedded systems are imported

from various sources, and cannot be treated as either certified or trusted. This introduces additional

concerns about deliberate malicious inclusions or alterations to the component, besides inadvertent

development flaws. Third-party IP cores and COTS components can contain logic bombs, worms,

viruses, Trojans, and trap doors allowing execution of illegitimate actions violating system operat-

ing and security policies with malicious objectives. Such deliberate vulnerabilities can be included

to the component at any stage of its production flow, including development, fabrication and man-

ufacturing of hardware components, or delivering and updating of software programs. Generally,

such inclusions or modifications are very small and extremely hard to detect in contemporary hard-

ware components comprising millions of transistors or software programs containing millions of

lines of code [155].

Security threats associated with imported components can arise in different phases of the system

development and operation flow, including component design, procurement, integration, employ-

ment, maintenance, and updating [104]. For example, delivering a hardware IP core through an

insecure channel makes it susceptible to tampering and manipulation by malicious parties. Further-

Mohammed M. Farag Chapter 2. Background 28

more, homogeneity and transparency promoted by the mass production of COTS components incur

additional serious concerns about the security of CPSes constructed using these components [11].

Homogeneity means the deployment of a component in several identical systems, and even adopt-

ing several instances of the component in the same system. Transparency indicates the availability

of implementation details to all parties, including malicious ones.

2.1.3 Attackers Classification

Basic security objectives of CPSes as well as embedded systems are confidentiality, integrity, avail-

ability, and authenticity [30], which are also the main goals of information security in general.

Confidentiality refers to preventing information disclosure to unauthorized parties eavesdropping

on communication channels. Integrity refers to trust in data or resources, and lack of it can lead to

deception with compromised sensing data, for example. Availability is the capability of a system

or component to be accessed and respond on demand, and lack of it results in DoS. Availability is

of special importance to CPSes, since DoS can eventually lead to serious damage to the controlled

physical systems. Authenticity is the system’s ability to ensure that data and transactions are gen-

uine. In CPSes, authenticity aims to ensure the correctness of monitoring data sent by sensors,

and feedback information issued by computing elements and received by actuators [170]. Cyber

threats usually target one or more of these objectives.

Cyber attacks against CPSes can be launched by different entities with a range of skills and re-

sources. Modern attackers are characterized by increased skills, innovative thinking, and availabil-

ity of resources. CPS attackers can be categorized into four categories, based on their motivations

and objectives: cyber criminals and skilled hackers; disgruntled employees; terrorists and orga-

nized criminal groups; and nation-states [32]. The first category of attackers seeks for fame or

money by attacking different computer systems, and their attacks may cause serious side effects to

CPSes. Most of these non-targeted threats can be thwarted using traditional IT security solutions,

and attacks launched by this category are of limited effect.

Mohammed M. Farag Chapter 2. Background 29

A significant number of successful attacks targeting different CPSes are launched by cyber crimi-

nals and skilled attackers. For example, a classic computer-based targeted attack has been launched

against the Maroochy Shire Council’s control system in Queensland, Australia in 2000 [157]. A

CIA report reveals that hackers penetrated power systems in several countries and caused power

outages in several cities [126]. The U.S. Federal Aviation Administration has been hacked several

times [94]. Even medical devices implanted into humans have been hacked [95].

Currently disgruntled employees are the main source of attacks against industrial control sys-

tems [32]. They make use of their knowledge and access to system internals to inflict damages

to the controlled physical system. Targeted attacks launched by system operators are still of lim-

ited effect because acting alone limits the consequences of such threats, despite internal access to

the system. Several examples and incidents of attacks launched by this category are cited by [31].

Recently, cyber attacks have become the preferred choice for terrorists, organized criminal groups,

and even nation-states because they are cheaper, less risky, not constrained by distance, and easier

to replicate and coordinate. This category of attacker is more dangerous than the previous two

categories because more powerful cyber attacks can be launched against critical infrastructure and

safety-critical CPSes to inflict economic and strategic damage without resorting to armed inter-

vention. Such attacks are extremely serious because of the resources, organization, and motivation

of such groups. Innovative and non-traditional protections should be developed to protect CPSes

against organized cyber attacks to avoid the potential destruction.

Many cases have been reported about organized cyber attacks against critical infrastructure, trans-

portation systems, process control systems, and other CPSes [60, 136, 142]. However, no other

attack has demonstrated CPS vulnerabilities and the inadequacy of existing security techniques as

much as Stuxnet. It is described as the real start of cyber warfare, with speculation that Israel and

the United States may have been involved [37]. The Stuxnet attack has announced that there is

a certain group with the skills, resources, and motivation to launch sophisticated attacks against

CPSes.

The Stuxnet worm infects Windows computers, spreads via networks and removable storage de-

Mohammed M. Farag Chapter 2. Background 30

vices, and exploits four zero-day attacks to accomplish its mission [36]. Antivirus software missed

the attack because programmable logic controller (PLC) rootkits hide Stuxnet modifications to the

system, and two stolen certificates validate new drivers. The goal of Stuxnet was to sabotage a

specific physical system by reprogramming embedded controllers to operate outside their nom-

inal bounds by intercepting routines that read, write and locate PLC commands and data. The

compromised PLCs caused periodic variations in the uranium-enrichment centrifuge rotor speed,

destroying them over time. Many security companies stated that Stuxnet was the most sophisti-

cated attack they have ever analyzed [31], and it was estimated to have infected 50,000–100,000

computers. The primary target of the Stuxnet is believed to be the Bushehr nuclear plant in Iran,

and it likely caused a 15% drop in the production of highly enriched uranium [35], and damage to

more than 1000 centrifuges in a few months compared to the normal rate of 800 per year [62].

2.1.4 Cyber Attacks Types and Objectives

Figure 2.1 illustrates the general CPS architecture and potential threats. Attacks exemplified by

A1, A2, and A3 are direct attacks against the physical system, sensors, and actuators, respectively.

Such attacks cannot be mitigated by traditional cyber security measures, and significant physical

measures must be adopted to deter and prevent them. Nevertheless, A2 and A3 can take the form of

cyber attacks against sensors and actuators [122]. The goal of such attacks is compromising sensor

and actuator data to conduct deception and DoS attacks. Therefore, rigorous security measures

must be deployed to protect these components against such threats.

The A4, A5, and A6 attacks against a CPS have one of the following objectives: erroneous sys-

tem computations; DoS; eavesdropping on the system; leaking secret information by compromis-

ing security keys; or some combination. A4 refers to all possible forms of cyber attacks against

computer networks, where the communication channel is exposed to man-in-the-middle threats.

Thwarting such attacks requires adopting adequate mechanisms for communication security such

as encryption and authentication, and eliminating plausible covert communication channels. A

covert channel can be defined as “an enforced, illicit signaling channel that allows a user to sur-

Mohammed M. Farag Chapter 2. Background 31

A2

A1

A3

Physical
process

S2

S1

S4
S3

Network

C1 C2 C3

Actuators Sensors

Controllers

A2A3

A1

A4

A6

A5

Figure 2.1: CPS Attacks.

reptitiously contravene the security policy and unobservability requirements of the system” [168].

Oftentimes, covert channels are eliminated by identifying them and preventing their creation at

the communication endpoints, which will be discussed in Chapter 5 and illustrated by a detailed

case study. Nonetheless, network security is not the main focus of this work, and we rely on the

standard practices and techniques to secure communication in CPSes.

A5 and A6 demonstrate both external and internal or insider attacks against computing devices or

controllers. External attacks or intrusions can be launched by a malicious entity, such as system

operators, having physical access to the controller which has some advantages over network at-

tacks such as the ability to acquire side-channel information. Embedded controller peripherals are

compromised to gain access to the controller and exploit its vulnerabilities. For example, a sys-

Mohammed M. Farag Chapter 2. Background 32

tem operator having certain access rights can deceive an industrial control system by deliberately

entering misleading operational instructions. Many external attacks against embedded controllers

can be launched without human intervention to circumvent the controller’s legitimate operation or

leak classified information. Most external threats targeting a CPS exploit existing vulnerabilities

of the system and the inadequacy of perimeter security defenses.

A computation platform is composed of several layers of abstraction, including application soft-

ware, middleware, OS and device drivers, and the hardware or physical layer. The hardware ab-

straction layer may incorporate processors, memory, and I/O peripherals where each one of these

components is associated with a hierarchical computation model and a specific implementation.

Although this view of a computation platform reduces the complexity of the engineering design

problem, it increases security concerns about potential vulnerabilities associated with each layer

of abstraction.

External threats targeting CPS computation elements and controllers include software and hard-

ware attack. Previously, cyber attacks have targeted the software stack of computing platforms by

exploiting various software vulnerabilities such as buffer overflow and format string to execute the

attacker’s malicious code [135]. Recently, hardware attacks have increased because of their ability

to evade detection by the top layers security defenses, and the power gained by controlling the

most privileged layer in the computational platform.

A serious threat to CPS embedded controllers results from the incorporation of untrusted elements

and components. One example of internal threats is a Trojan horse — a malicious inclusion or

alteration to the system to perform certain actions and functionalities not captured by the design

specifications. Trojans execute a predefined malicious operation, and are deliberately developed

and included into a system by an entity participating in the system production flow. Thus, Trojans

are serious threats to the CPS embedded controllers as they aim to disrupt the physical system. On

the other hand, other system vulnerabilities can be inadvertently created by developers which can

be later discovered and exploited.

A Trojan rely on system internals to conduct its functionality without the need for external acti-

Mohammed M. Farag Chapter 2. Background 33

vating triggers or stimuli. Often times, Trojans can evade detection by most perimeter security

measures such as firewalls and intrusion-detection techniques which are primarily developed to

counter attacks from external sources. Trojan effects on the host platform can be partitioned into:

modify the functionality of the target device; modify device specifications and parameters to re-

duce reliability; leak information; and DoS [166]. Trojans can be classified based on their layer

of inclusion into HTHs embedded in the hardware components, and software Trojans associated

with any layer of the software stack. Recently, HTHs have gained an increasing interest from the

security research community because of their potential to conduct more powerful attacks without

being detected using software security solutions.

2.2 An Overview of Reconfigurable Hardware

Reconfigurable hardware has gained a growing interest in the last decade primarily due to three

factors. First, IC density has increased significantly due to the successive reductions in transistor

feature size. This growth has occurred not only in ASICs but also in reconfigurable hardware,

including configurable logic components as well as routing resources [171]. Second, the cost of

ASICs has considerably increased as the feature size has shrunk. This growth in development ex-

penses has led the way to the wide deployment of reconfigurable hardware for lower volume ICs

because of lower non-recurring costs. Further, reconfigurable hardware provides an ideal platform

for prototype development in terms of cost, time, and the associated development and test efforts.

Third, most contemporary high-performance applications requires increasing flexibility unavail-

able in ASICs. The required flexibility is expected to increase for next generation systems and

applications. Software platforms can provide the flexibility but at the expense of reduced perfor-

mance and increased power consumption. These factors have combined to increase the reliance on

reconfigurable hardware in modern embedded systems and CPSes.

Configurable hardware platforms are programmable logic devices originally manufactured with

no particular logic function. There are many types of configurable platforms such as complex

Mohammed M. Farag Chapter 2. Background 34

programmable logic devices (CPLDs) and FPGAs, the latter being the dominant platform for re-

configurable hardware design. FPGAs provide an array of logic structures that can be configured

in the field to perform specific logic functions dictated by the developer. Most FPGAs are static

random-access memory (SRAM)-based, though there are other programmable technologies such

as flash and anti-fuse. SRAM-based devices do not alter the physical structure of the device and

can be reconfigured by changing the SRAM memory contents.

Figure 2.2 illustrates the basic architecture and building blocks of most contemporary FPGAs.

A typical FPGA is composed of an array of configurable logic blocks (CLBs), several I/O blocks

(IOBs), programmable interconnect, clock management resources, and block random-access mem-

ory modules (Block RAMs) as shown in Figure 2.2(a). The CLB incorporates several look-up

tables (LUTs) which can be programmed to implement combinational logic, and D flip-flops sup-

porting sequential and basic memory elements as illustrated in Figure 2.2(b). The IOB contains a

set of logic cells supporting various I/O standards that permit interfacing to diverse systems and

components as demonstrated in Figure 2.2(c). Programmable interconnect is used to customize

connections between different CLBs and other components within the FPGA according to the re-

quired logic function and routing details. Clock management resources such as phase-locked loops

(PLLs) and delay-locked loops (DLLs) are used to generate and manage clock signal delays ac-

cording to the design requirements. Block RAMs depicted in Figure 2.2(d) are high-speed on-chip

dual-port memory modules which can be utilized in applications requiring small yet fast mem-

ory. Many FPGAs also incorporate powerful computational elements such as DSPs and embedded

hardwired microprocessors.

2.2.1 Dynamic Partial Reconfiguration

The density of reconfigurable hardware platforms such as FPGAs has grown exponentially over

the last decade enabling the development of complex systems previously implemented using either

ASICs or embedded processors. While FPGAs have always provided designers with the recon-

figuration flexibility accommodating design revisions, this full reconfiguration capability may not

Mohammed M. Farag Chapter 2. Background 35

I/O Blocks (IOBs)I/O Blocks (IOBs)

Configurable
Logic Blocks
(CLBs)

Configurable
Logic Blocks
(CLBs)

Clock Management
(DCMs, BUFGMUXes)
Clock Management
(DCMs, BUFGMUXes)

Block RAM
resource

Block RAM
resource

Dedicated
multipliers
Dedicated
multipliers

Programmable
interconnect

Programmable
interconnect

(a) Basic FPGA architecture.

Slice 0

LUTLUT CarryCarry

LUTLUT CarryCarry D Q
CE

PRE

CLR

D
QCE

PRE

CLR

��������������

(b) Configurable logic block.

���

���

������	

����

'�+!

'�+,

���

���

������	

����

'�+!

'�+,

-.%

���

���

����

$�+!

$�+,

$'�

(c) I/O block.

DIA
DIPA
ADDRA
WEA
ENA
SSRA

CLKA

DIB
DIPB

WEB
ADDRB

ENB
SSRB

DOA

CLKB

DOPA

DOPB
DOB

18-kb block SelectRAM memory

(d) Block RAM.

Figure 2.2: FPGA architecture and components.

be adequate to satisfy all system constraints. Dynamic partial reconfiguration (DPR) dramatically

extends this inherent flexibility by allowing specific regions of the FPGA to be reconfigured while

the rest of the device continues its operation. DPR enables new types of FPGA designs that provide

efficiencies unattained by conventional design techniques, and addresses three objectives: reduc-

ing cost; allowing run-time adaptation; and reducing power consumption. Partial reconfiguration is

Mohammed M. Farag Chapter 2. Background 36

suitable for designs with many subsystems that do not operate simultaneously such as CR and SDR,

and for applications requiring resource sharing and online modification such as high-performance

computing and real-time systems.

In SRAM-based FPGAs, all user-programmable features are controlled by a volatile memory that

is configured on power-up. The configuration memory is programmed using a bitstream contain-

ing all data for programmable components and interconnections. In Xilinx FPGAs, for example,

devices can be programmed remotely via external ports such as SelectMAP or self-programmed

via the internal configuration access port (ICAP). In partial reconfiguration, a configuration port

loads partial bitstreams to the configuration memory to modify certain regions while the rest of

the FPGA remains fully active [54]. The ICAP is typically controlled by an embedded processor

with access to storage for partial bitstreams. Figure 2.3 depicts two methods of delivering partial

bitstreams via external and internal configuration ports.

External bitstream memory

Reconfigurable platformReconfigurable platform

processor

Configuration
portICAP

Reconfigurable
partition

Reconfigurable
partition

processor

Figure 2.3: Methods of delivering a partial bitstream

Mohammed M. Farag Chapter 2. Background 37

2.2.2 Reconfigurable Hardware Threats and Measures

Partial reconfiguration can dramatically enhance FPGA functionality because of the flexibility pro-

vided. However, it also introduces new security concerns in terms of validating reconfiguration

bitstreams and authorizing reconfiguration requests issued by untrusted components. Such vulner-

abilities are especially important in CPSes because of their interaction with the physical world.

These threats obviously appear in reconfigurable applications such as CR where compromised up-

date requests issued by untrusted components can directly affect spectrum integrity. Consequently,

secure reconfiguration control is a critical aspect of CR technology that can be widely applied for

other CPS applications employing dynamic reconfigurable hardware. In this section we discuss

security threats targeting reconfigurable hardware and discuss existing solutions and their impact

on the secure reconfiguration control problem.

Significant research effort has been devoted to assure integrity of IP cores and manage digital rights

in reconfigurable platforms [19]. IP cores can be delivered as HDL files, synthesized netlists, or

configuration bitstreams. Each IP type is vulnerable to a set of security threats [169]. Threats to

HDL and netlist IP include stealing and tampering by inserting malicious code into the design.

Accredited certificates or golden reference models are needed to ensure design integrity. Often

times, integrity assurances are very difficult to acquire for third-party IP cores.

Methods thwarting HDL IP threats include watermarking [129] and fingerprinting [92,93] to iden-

tify the design owner and even the design version. However, all these methods are passive implying

they can provide ownership proof, but would not be enough to deter piracy. Active hardware me-

tering can thwart cloning of netlist IP cores by including physically unclonable functions (PUFs)

generating a device-specific signature to attach the design to a specific platform [41,91]. PUFs can

be also used to generate cryptography secret keys specific to an FPGA device.

Threats to bitstream IP cores include cloning, tampering, and reverse engineering. Solutions

thwarting HDL-level and synthesized netlist IP can be applied to protect bitstream IP as well.

Moreover, there are techniques specifically developed to address bitstream IP threats. Most fo-

Mohammed M. Farag Chapter 2. Background 38

cus on functional security practices such as cryptography and authentication [50, 51, 87]. Modern

FPGAs is equipped with dedicated cryptographic and authentication modules supporting several

operating modes and key lengths to guarantee secure delivery of bitstream files to the intended

device. Security solutions addressing IP security in reconfigurable hardware mainly focus on pro-

tecting IP against stealing and tampering, yet do not address either deliberate functional inclusions

and alterations or secure control of dynamic partial reconfiguration. Furthermore, such solutions

do not consider potential implementation vulnerabilities and run-time threats.

Zeineddini and Gaj developed a software tool and IP core library addressing security requirements

such as encryption and authentication of partial bitstreams [176]. Current design tools can auto-

matically generate encrypted and authenticated partial bitstreams. Modern FPGAs such as Xilinx’s

Virtex-6 and Virtex-7 families inherently support these functionalities by incorporating hardwired

decryption and authentication modules capable of treating full as well as partial bitstreams. Such

an approach can help to securely deliver partial bitstreams to the intended recipient. Nonetheless, it

does not address either partial bitstreams with self-contained Trojans or validating update requests

in reconfigurable applications such as CR.

Kepa et al. presented a secure reconfiguration controller (SeReCon) algorithm with an embed-

ded IP core to provide protection for self-reconfigurable systems [89]. The SeReCon algorithm

includes a remote trusted authority performing IP encryption and authentication, and generates a

metadata description of modules as shown in Figure 2.4. The SeReCon IP module serves the role

of a TPM-like platform root of trust, and includes public and private key decryption modules per-

forming cryptography and authentication functionalities. An IP analysis module determines the

structure of dynamic modules via bitstream reverse engineering, and compares the result to the

associated metadata. The SeReCon module controls and limits access to the ICAP. Unfortunately,

this approach requires undesirable modifications to the FPGA fabric to generate device-specific

signatures and to store sensitive key materials. Bitstream formats are proprietary and family-

specific requiring a different implementation of the SeReCon module for each FPGA family. In

addition, this approach does not address validating update requests issued by untrusted compo-

nents.

Mohammed M. Farag Chapter 2. Background 39

��������

�	

��
	�
�����

����	���
	��

���

�	����

���	����

������

���	����

���������

 !"�#��

 �������

 !"�#��

 !"�#��

$�%��&"%�'��

�����()
	��
����
	��"*+,-�

��
	.�
	��"*+,-�

 !"/��#��

 !"�'�0'1�

 !"�'�0'1�

2#�'3"

���#%4�#��

���������

 !"�'�0'1�
5 6

Figure 2.4: Reconfiguration algorithm implemented within the SeReCon IP [88].

2.3 A Survey of Trusted Computing in Reconfigurable Hard-

ware

Trust is an increasingly difficult characteristic to sustain for computing systems in an era of global

supply. Counterfeit electronic hardware devices are epidemic in consumer, industry, and gov-

ernment supply chains. Foreign outsourcing of semiconductor fabrication creates a channel for

targeted attacks on a nation or consumer base. Systems are assembled from numerous software

and hardware source modules, often developed by third parties. Moreover, the software tools used

to design and implement these modules are themselves vulnerable to errors and insider threats.

Increasingly exposed hardware configurations can be modified to violate system security policies

or expected behaviors. The resulting state of system security is that once unquestionably trusted

components must now be protected from both the outside world and internal threats. A system

in total can be considered untrusted and insecure until novel techniques are adopted to secure the

underlying components [167].

In this section we present the progression of trusted computing techniques, and survey existing run-

time approaches for trusted computing in reconfigurable hardware. As illustrated by Figure 2.5,

trusted computing applications used in general purpose (and later embedded) systems have had the

Mohammed M. Farag Chapter 2. Background 40

following progression:

1. SLS: Software limits access to software and data.

Software is structured in layers, and application or user requests requiring services from a

more privileged layer are vetted by software-implemented processes. The goal is to separate

layers with robust APIs that cannot be circumvented. Java virtual machines and packet

filters are an example of software stratification. Attacks generally have executable code

masquerade as data, and use vulnerabilities such as buffer overflows to execute the data.

2. SLH: Software limits raw hardware resource access.

Innermost software layers have exclusive responsibility for allocating and managing hard-

ware resources such as CPUs, memory, and peripherals. Examples of layers interacting

directly with hardware are virtual machines and operating systems. Access to hardware does

not necessarily imply access to (possibly encrypted) software and data. Direct program-

matic access to hardware is different from physical access to hardware, which introduces the

possibility of side-channel and probing attacks.

3. HLS: Hardware limits access to software and data.

Static hardware units, possibly controlled by the innermost software layer, assist in the sepa-

ration of software processes and layers. Examples are memory management units (MMUs),

protected execution and launch portions of Intel’s trusted execution technology (TXT) [79],

and the use of eTokens. Although hardware provides enforcement, trust in supervisory soft-

ware may still be needed.

4. HLH: Hardware limits raw hardware resource access.

Static hardware controllers are exclusively responsible for managing hardware-implemented

processes or channels, and can deny requests from software at any layer. Examples are the

protected input and graphics parts of Intel’s TXT, Intel’s Virtualization Technology [80], and

hardware firewalls.

Mohammed M. Farag Chapter 2. Background 41

Software limits access to software
and data (SLS)
• Majority of security solutions such as

passwords, web servers, anti-virus, anti-
malware, …

• Microsoft’s NGSCB
• MILS

Software limits raw hardware
resource access (SLH)
• Operating System: memory management,

device drivers, file systems
• Virtual machine (VMware)
• Software firewalls

Hardware limits access to software
and data (HLS)
• MMU
• TPM
• TXT (protected execution)
• eTokens
• CHARE-CR: Application-specific hardware

controller checks software behavior

Hardware limits access to raw
hardware resources (HLH)
• TXT (protected input, graphics)
• Intel’s Virtualization Technology
• Hardware firewalls
• CHARE-CR: Application-specific hardware

controller protects configurable hardware

Hardware limits access to software Hardware limits access to raw

Protection includes access denial and monitoring
Access to hardware does not imply access to (possibly encrypted) software or data

Access to software does not imply access to (possibly virtualized) hardware
Physical access to hardware introduces side-channel and probing attacks

Figure 2.5: Trusted computing approaches.

Current support for secure computing uses a fixed hardware root of trust to enforce resource sepa-

ration between applications. The TCG developed a trusted platform specification to provide con-

sistent behavior for a certain purpose using software and hardware enforcement [68]. Root of

trust for management (RTM), trusted platform module (TPM), and trusted software stack (TSS)

components provide three basic features: protected capabilities, attestation, and integrity measure-

ment and reporting. Microsoft’s next generation secure computing base (NGSCB) is a software

architecture exploiting the security provided by the TPM. The NGSCB consists of two kernels: an

untrusted mode kernel, and a trusted NEXUS mode kernel that provides a secure environment for

trusted code [133]. Intel’s TXT uses processor enhancements, a TPM, operating system extensions

such as the NGSCB, and enabled applications to protect sensitive information from software-based

attacks [79]. ARM’s TrustZone processor extensions support normal and secure environments,

with a monitor mode providing robust context switches [15].

Mohammed M. Farag Chapter 2. Background 42

In all these commercial examples, the sole focus is software separation, the execution model con-

siders neither hardware adaptability nor hardware threats, and there is excessive reliance on soft-

ware correctness and integrity [148]. Furthermore, several TPM evaluation efforts demonstrate

non-compliance with the TCG specifications for several TPM implementations [144]. Even the

TCG specifications are criticized because of the inadequacy of the incorporated cryptographic al-

gorithms, and the lack of the algorithm agility [67].

Reconfigurable hardware has been used to implement a TPM [55]. Modifications to existing FPGA

architecture are required, including updates to the advanced encryption standard (AES) core bit-

stream decryptor and adding an on-chip non-volatile memory. An FPGA has been augmented with

a trust block consisting of a TPM, a secure ROM storing FPGA configuration data, and switch

logic used to configure the FPGA solely from secure ROM during system boot [64]. Unfortu-

nately, these approaches still suffer from the TPM problems and limitations. These efforts do not

target platforms where the hardware structure potentially changes during operation. On the other

hand, many security solutions address trusted computing in embedded systems independent of the

TCG specifications [16, 130, 138, 155]. Most of these solutions aim to secure program execution

in embedded processors using hardware trust anchors. However, they do not address trusted com-

puting in reconfigurable hardware.

Strict separation and isolation are the first step towards ensuring trusted module interaction in

reconfigurable hardware. One method is to define minimum areas of separation to ensure inde-

pendent modules on a reconfigurable system cannot interact even in the presence of a fault or

radiation-induced upset. Module fences or guard bands can be created using resources that are off-

limits to the design during placement and routing. Fault monitoring circuits may even be carefully

added to the guard band regions without compromising the isolation between independent work-

ing regions. While this method suits systems implementing modular redundancy, a higher degree

of module interaction is required to build most systems. McLean and Moore showed that fences

and red/black analysis can be applied to certify a cryptographic solution on a single reconfigurable

chip [113]. Bus macros with direct routing are carefully inserted to allow communication between

isolated regions. However, the red / black analysis is not well suited for analyzing control flows in

Mohammed M. Farag Chapter 2. Background 43

systems with mixed means of reconfiguration.

Reconfigurable systems often use third party IP cores. Although ideally these cores would be ver-

ified by a trusted party, cost and source code requirements can make such a development model

impractical. Reliance on off-the-shelf IP modules provided by multiple vendors with different lev-

els of trust introduces serious security concerns [75]. Huffmire et al. developed a system of moats

and drawbridges to provide module isolation and communication control for multiple interacting

cores [76]. Moats are similar in concept to guard bands or fences in that they ensure modules do

not share resources that enable communication between them. Drawbridges, which can be opened

or closed, are then used to limit a module’s ability to send and receive information on an inter-

face, such as a connection to a shared bus. Drawbridges may also help to prevent modules from

propagating the effects of undesired behaviors to one another. The moat and drawbridges model

provides spatial module isolation and statically verifiable communication flow [74], but does not

address modules with self-contained Trojan horses. Moats and drawbridges are limited in their

ability to enforce broader system security policies.

Kastner et al. proposed run-time enforcement of information flow guarantees in reconfigurable

systems with mix-trusted IP [86]. This bottom-up approach aims to build a secure computing base

by verifying that interconnected IP adheres to information flow policies. Gate-level information

flow tracking can be used to analyze a netlist through the addition of logic that enables each in-

dividual bit to be followed through the system. This technique may be used to look for security

violations such as the information flow between untrusted and trusted modules, or timing-enabled

side-channels. While this technique could be used to develop run-time information flow tracking,

it does not address non-information flow attacks, such as that targeting configuration control. This

bottom-up approach of building secure systems has significant overheads exceeding 100% to the

gate count since typical implementations require the replication of logic gates.

Proof-carrying hardware is a new approach addressing trust in third-party IP cores. The concept

originates from the proof-carrying code software solution [121] which provides a new way of

assuring safety of untrusted software programs. A formal, automatically verifiable proof of safety

Mohammed M. Farag Chapter 2. Background 44

incorporating a set of predefined rules is generated by the code producer, combined with the code,

and checked by the end user prior to the program execution. Only if the check is passed, the end

user can assure the safety of the untrusted program. A number of problems later have arisen such

as how to verify the code producer [13].

The concept of proof-carrying software was expanded to the hardware trust domain to address the

problem of using untrusted IP cores. In the proof-carrying hardware approach, the IP core producer

generates a configuration bitstream including a hardware design and a formal proof of safety.

Drzevitzky and Platzner presented a proof-of-concept tool flow employing FPGA CAD tools, a

satisfiability (SAT) solver, and a SAT trace checker to generate proof-carrying hardware [53]. The

producer generates a combinational equivalence proof incorporating checking traces for all logic

functions implemented in a bitstream IP core, and distributes this correctness proof along with the

bitstream. The consumer regenerates the traces for each logic function from the design netlist, and

checks it against the corresponding proof traces generated by the producer.

In the proof-carrying hardware approach, the burden of demonstrating security falls on the pro-

ducer. This approach can theoretically address the security aspects of dynamic reconfiguration

control and self-contained Trojans since each module carries its correctness proof [52]. Unfortu-

nately, equivalence checking limits the expressiveness of such an approach because of the need to

specify the exact Boolean functionality of the hardware design [82]. To overcome this limitation,

other solutions have been proposed to provide proofs about HDL IP files rather than bitstream

IP cores [108]. Such solutions require substantial changes to the design flow, and trust in the IP

vendor which is not feasible for the vast majority of third-party IP cores.

Recent progress has been made to embed security-enhancing, application-specific, run-time pro-

tection circuits within a system to establish tailored trustworthy computing bases. Abramovici and

Bradley proposed an application-dependent security infrastructure monitoring datapath signals for

illegal behaviors. This approach adds reconfigurable Design-for-Enabling-Security (DEFENSE)

logic to the functional design to implement run-time security monitors as shown by 2.6 [6]. The

signals are selected by a designer directly in the RTL and grouped to create multiplexed probe

Mohammed M. Farag Chapter 2. Background 45

networks sourcing information to security monitors. The hardware-based monitors are config-

urable finite-state machines (FSMs) that check the current set of signals for behavioral properties

specified by the designer. Probe and monitor configurations are controlled by a security control

processor, which may also initiate countermeasures implemented by controlling specified datapath

signals. When a security violation is detected, the software control processor may override signals

or take actions to isolate a core. However, the authors acknowledge that broader countermeasures

are required to create a system-level protection scheme. In general, it is an intractable problem

to create real-time countermeasures tailored specifically to every possible attack on every system

interface. Therefore, the security designer must also be given the flexibility to create abstract

countermeasures or real-time enforcement practices that align with system specifications.

���

����

���

����

����	
�

�������

�������

���
��
�

�������

��������

Figure 2.6: Reconfigurable platform with DEFENSE logic [6].

For security-critical applications, it is necessary to develop hardware defense measures that over-

come software’s verification challenges and response latency. This necessity becomes more obvi-

ous as systems are increasingly networked. Recent security practices recommend using hardware-

enabled architectures to address the security requirements in modern embedded systems. As dis-

Mohammed M. Farag Chapter 2. Background 46

cussed in [6], checkers should be invisible to embedded software, although the proposed protection

scheme uses embedded software to control the hardware configurations of the distributed defense

infrastructure. The proposed system of countermeasures is also software-initiated, which limits

hardware performance and is often inappropriate for attacks executing at hardware speeds. This

overall approach is unnecessarily complex if trust and security are more tightly integrated with

suspicious modules.

Huffmire et al. make use of reconfigurable hardware to implement policy-driven memory protec-

tion mechanisms [76, 78]. This work develops an access policy language that precisely describes

the fine-grained memory separation of modules on an FPGA. A policy compiler converts the spec-

ified memory access policies into enforcement hardware modules. This work was further devel-

oped into a method of generating hardware-based security checkers to detect processor malicious

inclusions at run-time [26]. Security-relevant invariants of a processor’s architectural specification

are described on corresponding circuits of the processor’s design using formal assertions. Security

checkers are then automatically generated as synthesizable hardware to verify linear temporal logic

properties of expected behaviors.

The Huffmire et al. system of security checkers is further limited when used to create a general

run-time protection scheme. This monitoring-oriented approach does not include integration of

countermeasures or real-time enforcement within a system. Another drawback of this approach

to property specification is that it requires low-level knowledge of the designed circuits. This

limits the ability for more abstract, specification-level security assertions to be made without in-

curring additional designer translations. The use of domain-specific languages also has drawbacks

of unfamiliarity to designers, and limited ability to concisely capture complex monitoring and

enforcement circuit behaviors. It is unclear how this solution provides security assurances for re-

configuration control. The authors indicate that a limitation of this approach is its susceptibility

to attacks that are effective before they are detected and an opportunity for countermeasures is

provided.

Mohammed M. Farag Chapter 2. Background 47

2.4 Summary

In summary, internal threats and many external threats to CPS embedded controllers are enabled

by vulnerabilities associated with most computing platforms, and insufficient security defenses.

Security vulnerabilities can be deliberately included in the platform by a malicious party as Trojan

horses, or unintentionally created by the system developers and exploited later. Such vulnerabili-

ties are leveraged by lack of trust in the underlying system components and interactions between

them. Exploiting system vulnerabilities leads to a set of unintended behaviors violating design

specifications and the system security policy. Recently, hardware-based attacks and HTHs have

started to gain interest by the security research community. Several solutions have been introduced

attempting to detect various vulnerabilities pre-deployment. However, no single solution can dis-

cover all potential vulnerabilities in a computing system, and even collectively these techniques

cannot guarantee that the system is free of vulnerabilities [166].

State-of-the-art run-time solutions to enhance security in CPSes and embedded systems built us-

ing reconfigurable hardware has been presented in this chapter. Configurable platforms are pro-

grammable devices characterized by both software flexibility and ASIC performance and they are

widely deployed in CPSes. Most security research in reconfigurable hardware is to assure IP in-

tegrity and manage digital rights against tampering, stealing, cloning, and reverse engineering.

Established solutions include watermarking, fingerprinting, encryption, and authentication of IP

bitstreams. These solutions do not address either deliberate functional inclusions and alterations to

IP, secure reconfiguration control, potential implementation vulnerabilities, and run-time threats.

In other words, such protections do not enhance security in reconfigurable platforms containing

untrusted third-party IP cores from the user’s and application’s perspectives although they address

security concerns from the IP vendor’s perspective.

We also discussed state-of-the-art security solutions to enhance trusted computing in reconfig-

urable platforms and embedded systems in general. The TCG has developed a set of specifications,

protocols, and modules to enhance trusted computing in general-purpose and embedded platforms.

Most TCG-compliant solutions aim to secure program execution in software architectures using

Mohammed M. Farag Chapter 2. Background 48

hardware trust anchors yet do not either address reconfigurable platform security or trusted com-

puting in CPSes containing untrusted software and hardware, where trust is needed in all system

functionalities. Some security approaches seek to enforce communication flow guarantees either

by strict separation and isolation between system components, or by adopting a bottom-up ap-

proach verifying that interconnect IP adheres to information flow policies. Such approaches do

not address reconfigurable platform security or trusted computing in systems containing untrusted

components with self-contained Trojans, and induces significant overheads.

Other security approaches employ formal methods either pre-deployment or at run-time to verify

system adherence to a set of security specifications. Although such approaches can address un-

trusted component threats, substantial changes are needed to the design flow and trust is required

in the IP vendor which is not feasible for the vast majority of third-party IP cores. Moreover such

approaches suffer from formal verification difficulties and do not address secure reconfiguration

control. The most relevant work to RETC-CPS is the DEFENSE logic added to reconfigurable

platforms to monitor and enforce trusted computing. The DEFENSE protection scheme is limited

in terms of enforcing system-level policies and relies on software for enforcement which is often

inappropriate for attacks executing at hardware speeds. Table 2.2 provides a comparison of secu-

rity approaches presented in this chapter in terms of the security objectives, required architectural

and design flow changes, and limitations. Table 2.3 summarizes limitations of existing run-time

security approaches and illustrates how RETC-CPS addresses these limitations.

Mohammed M. Farag Chapter 2. Background 49

Table 2.2: A comparison between different run-time security approaches.

Objectives Required changes Limitations

SeReCon Secure reconfiguration con-

trol

Platform Does not authenticate re-

configuration requests

TPM-based so-
lutions

Enhancing trusted comput-

ing

Architectural Mainly targets software-

based general purpose ar-

chitectures

Moats & draw-
bridges

Separating components and

regulating communication

Architectural and floor-

planning

Does not address Trojan

threats

Information
flow guarantees

Enforcing information flow

policies

Architectural and design

flow

Requires substantial flow

changes and induces sig-

nificant overheads

Proof-carrying
hardware

Pre-deployment formal veri-

fication

Design flow Requires trust in the IP

developer

DFENESE pro-
tections

Enhancing trusted comput-

ing

Architectural Employs software for en-

forcement

Security check-
ers system

Formal verification at run-

time

Architectural and design

flow

Mainly targets processor

architectures

Table 2.3: Existing run-time security approach limitations and RETC enhancements

Existing protection limitations RETC enhancements to address run-time approach limitations

Impact on performance and cost Using hardware trust anchors, and localizing trust in a small set of com-

ponents to reduce the verification effort

Lack of scalability and generality Addressing trust at different levels of hierarchy, and adopting an

application-specific approach

Requiring trust in global third par-

ties

Treating untrusted modules as black boxes, and framing security poli-

cies from physical characteristics and functional specifications

Significant changes to the design

flow

Separating the system and security design flows, and adopting a top-

down design methodology

Chapter 3

Concepts and Overview

The main philosophy of RETC-CPS is that augmenting a computing platform with simple, veri-

fied, and distributed trust anchors can enhance system security in the context of a specific appli-

cation. Trust anchors are the means to enforce application-oriented security policies at the system

top-level and untrusted component interfaces. Integrating trust anchors into untrusted component

interfaces enables inspecting I/O transactions, inferring component internal states, detecting com-

ponent violations, and enforcing trusted computing policies. The top-level interface guard enforces

a system-level security policy and validates system internal and external interactions. The concept

of compositional security adopted by RETC-CPS has been previously employed in design-time

verification methods such as model checking to reduce the verification complexity [114]. A theory

of compositional security has been outlined in [44]. Compositional security provides the RETC-

CPS security scheme with the scalability required by modern complex systems.

In RETC-CPS, reconfigurable hardware is used to develop embedded controllers as well as in-

terface guards. There are numerous examples of FPGA deployment in CPSes including medical,

industrial control systems, automotive, avionics, and aerospace applications. Reconfigurable hard-

ware platforms can be customized to implement different computational architectures as needed

by various applications. Typical reconfigurable designs adhere to the standard layered computa-

tion model. Each layer is implemented using a number of interacting hierarchical components to

50

Mohammed M. Farag Chapter 3. Concepts and Overview 51

accomplish a set of functionalities.

Most reconfigurable systems are built based on software architectures to realize the layered compu-

tation model. A typical software architecture consists of a microprocessor interacting with various

on-chip and off-chip peripherals and storage devices. Usually, software processors are assisted

by on-chip hardware components to accelerate computation according to the performance require-

ments and constraints. Another typical architecture adopted in CPSes such as SDR and CR ap-

plications is a supervisory processor managing and controlling a hardware datapath, yet not as a

computational element. Various hardware components and processors constitute the physical layer

of a computing platform which can be entrusted by adopting the RETC-CPS protection scheme.

The choice of the computation layer in which trusted computing should be enforced is a critical

decision for any protection scheme. Recently, software-based security approaches have been domi-

nant in both research and practice. However, software security mechanisms are no longer adequate

to counter the growing number of hardware-based attacks and meet the increasing performance

requirements. The RETC-CPS approach targets the hardware layer to add guard components to

enhance trusted computing in the system under protection. Hardware guards enable formal veri-

fication, wide threat detection scope, robustness against software attacks, and controllability over

all computation layers. They also address the performance requirements of modern computing

systems. However, in some applications, other defenses may be still required to enable trusted

computing at higher abstraction layers as well.

Interface guards are integrated into untrusted module and top-level system interfaces. Each hard-

ware module might be composed of smaller building sub-modules organized in a hierarchical struc-

ture. Interface guards can be integrated into hardware components at different levels of hierarchy

as long as the component interfaces are precisely defined. Monitoring hardware interfaces allevi-

ates the need to comprehensive details about the component internals. Moreover, most third party

developers reveal detailed information about the external operation and functional specifications

of their IP yet do not provide precise details about the internal structure. This facilitates deriving

security policies to be enforced at hardware interfaces.

Mohammed M. Farag Chapter 3. Concepts and Overview 52

To apply the RETC protection scheme to CPSes incorporating extensive network access, dis-

tributed subsystems can be protected individually while considering typical network security prac-

tices. The system security policy is decomposed into sub-policies enforced by distributed, trusted

components. Security policies are formulated for individual embedded controllers based on their

role in the whole system. A top-level network protection mechanism can be applied in conjunction

with subsystem guards to enforce overall system security. Such an approach to protect CPS net-

works follows our main philosophy of enforcing trusted computing in embedded controllers using

low-level interface guard components and a top-level supervisory guard. In this work, we will con-

fine ourselves to address the main research topic of this dissertation which is run-time enforcement

of trusted computing in individual embedded controllers deployed in a CPS.

The remainder of this chapter is organized as follows: In Section 3.1, design assumptions and

target application requirements and outcomes gained by adopting the RETC-CPS security scheme

are discussed. The system high-level architecture and RETC-CPS trust anchors are described in

Section 3.2. RETC-CPS design flow in reconfigurable hardware is presented in Section 3.3. This

chapter is summarized in Section 3.4.

3.1 Design Requirements

In order to apply the RETC protection scheme, the target system, application or block must have

the following characteristics:

• Security objectives and, consequently, specifications can be precisely identified and explic-

itly formulated for the target application. This assumption clarifies why the RETC protection

scheme targets CPSes. A major CPS feature is that all cyber system resources serve the phys-

ical system which enables clearly stated security objectives and policy specifications from

the system physical properties. This assumption also illustrates why such an approach cannot

be applied to enhance trusted computing in general purpose computing systems characterized

by the diversity of both goals and resources. This diversity complicates framing enforceable

Mohammed M. Farag Chapter 3. Concepts and Overview 53

policies addressing all system security requirements. Nevertheless, such a policy-based ap-

proach only addresses security requirements identified by particular policy specifications.

• Systems targeted by the RETC protection scheme are built with both trusted and untrusted

components. Trust is measured in terms of the provided assurances against the security re-

quirements dictated by the application context. For example, formally verified modules can

be considered trusted as long as the verification properties address the application security

requirements. Trust certificates issued by trusted third parties are another means of quali-

fying a component as trusted. Extensively tested components in the same application class

may be considered trusted. Other custom assurances can be considered as well if they ad-

dress the application security needs. A component may lack such assurances but still can

be treated as trusted in the application context because it is unable to contravene the system

security requirements. On the other hand, critical components without sufficient assurances

are treated as untrusted. The protection scheme must incorporate a top-level enforcement

guard accounting for unanticipated security violations not captured by lower-level guards or

arising from untrusted components.

• Untrusted modules are treated as black boxes without associated formal models or golden

references. This is a very realistic assumption in contemporary security practices dictated

by globalization which plays a major role in silicon technology supply. In a global supply

chain, assuring component genuineness, provenance, and trustworthiness is extremely dif-

ficult, if not impossible. Furthermore, most third party developers prefer to not reveal the

design models and details. Even if such models are available, there may not be trust in the

model being consistent with the implementation. However, development constraints such

as productivity, cost, and competition dictate the deployment of such untrusted components.

In this scenario, system designers have to use the products offered by anonymous sources,

without any sort of associated assurances, to build security-critical systems. Therefore, the

RETC-CPS protection scheme provides an ideal approach to keep the balance between se-

curity and other design concerns. It enables the deployment of untrusted modules without

Mohammed M. Farag Chapter 3. Concepts and Overview 54

accompanying golden references, and compensates for that by adding trusted components

enhancing system security.

• The system under protection is composed of a mixture of software- and hardware-based

components and, consequently, vulnerable to both software- and hardware-based threats. In

the layered computation model, trusted computing needs to be enforced at different layers

of abstraction. Hardware trust anchors can detect a wide range of threats targeting different

software and hardware abstraction layers. However, not all software attacks are detectable

using hardware defenses. For instance, some software layers employ certain mechanisms

such as data encryption and error correction algorithms preventing data inspection at the

hardware layer. Nonetheless, in this work, we only illustrate the enforcement of security

specifications at the hardware layer to thwart a certain class of software- and hardware-based

threats. Cross-layer approaches to enhance trusted computing in CPSes can be investigated

in future work.

• The platform is susceptible to both internal threats such as Trojan horses and external threats

such as malware and viruses. This assumption acknowledges that lack of trust in system

components can lead to various sorts of threats. The proposed protection scheme is not lim-

ited to a specific threat. A security violation causes anomalous, non-compliant, erroneous,

or extraneous behavior that can be captured by the system specifications. Threats are found

by observing their effects rather than detecting their sources. This addresses different threats

regardless of their origin.

• Protected systems contain updatable software programs and possibly reconfigurable hard-

ware blocks. This assumption admits the fact that complex modern systems require system

updates and reconfigurations to meet adaptive computation requirements. System updates

may contain Trojans and development bugs, and are susceptible to tampering and change

pre-deployment. Consequently, the adopted security defenses should enable trust extensibil-

ity to address modifiable systems and components. Not only system updates are considered

untrusted, but also update requests can be issued by untrusted software and hardware compo-

Mohammed M. Farag Chapter 3. Concepts and Overview 55

nents. Therefore, such update requests must be scrutinized against well-defined, application-

specific, and rigorously enforced policies.

• We do not assume that policy enforcement will always result in typical system behavior,

only that it mitigates the attack consequences. For example, assume that a certain attack can

manipulate the output data of a cryptographic module and this attack can be detected some-

how by the security components. A plausible countermeasure is bypassing the compromised

module and switching to a redundant concurrent backup. Thus, functional duplication might

be needed to enforce typical system behavior. However, not only functional duplication is

needed, but also trust in the redundant function which contradicts the goal of using untrusted

components without accompanying models. Therefore, RETC-CPS can only enhance trust

in a computing platform yet cannot guarantee its typical operation.

• We do not assume that the RETC-CPS protection scheme is comprehensive, instead, view

it as a complementary approach that can serve as a last line of defense against the rising

number of inexorable threats targeting security-critical CPSes. RETC-CPS relies on detect-

ing security violations captured by security policies tailored to a specific application and

enforced by hardware guards monitoring and overriding untrusted component interfaces. In

certain cases where rule enforcement is infeasible, countermeasures may simply be threat

reporting. Such an approach is limited to counting specific threats addressed by the security

policy rather than a holistic security approach which may be infeasible. For instance, it does

not address physical attacks such as probing or side-channel attacks such as power analysis

attacks unless the policy captures such threats.

3.2 RETC-CPS High-level Architecture

In this section we present the RETC-CPS architecture to enhance trusted computing in CPSes

containing untrusted components and built using reconfigurable hardware. Figure 3.1 illustrates

the RETC-CPS high-level architecture. The added trust anchors are: a top-level interface guard,

Mohammed M. Farag Chapter 3. Concepts and Overview 56

untrusted component interface guards, and a configuration firewall. The protected system com-

municates with a trusted remote dynamic module server (DMS) responsible for generating and

delivering partial reconfiguration bitstreams to the system.

Top-level interface guard (DREC) and SRC

Reconfigurable
hardware

Interface guard

Untrusted
module

Trusted
module

Untrusted module

Untrusted
module

Trusted
module

Trusted
module

Untrusted
module

Static Hardware

C
on

fi
gu

ra
ti

on

fi
re

w
al

l

Secure channel

RETC-CPS
trusted

component

System
component

T
ru

st
ed

 r
em

ot
e

D
M

S

Trusted
module

System I/O

Figure 3.1: RETC-CPS High-level Architecture.

3.2.1 Interface Guards

An interface guard is a trusted hardware wrapper limiting access to an untrusted component, mon-

itoring its I/O flow, and enforcing the permissible behavior rules. Trust in guard components is

gained through trusted development and integration flow, formal verification at design-time, secure

delivering and reconfiguration. Trusted development eliminates deliberate vulnerabilities while

formal verification reduces unintentional design bugs. Limiting access to a component is achieved

through physically separating the component resources, and enforcing the security policy at the

I/O interfaces. In reconfigurable hardware, physical separation is implemented by surrounding the

Mohammed M. Farag Chapter 3. Concepts and Overview 57

component of interest by a hardware fabric isolation band in which reconfiguration and routing are

forbidden. The physical separation procedure is conducted at design-time in the placement and

routing phase. At run-time, configuration bitstreams can be inspected to check that isolation bands

have not been exploited to disguise malicious logic such as HTHs.

Figure 3.2 shows how an interface guard wraps untrusted component interfaces. An interface guard

runs concurrently with the protected component as it is implemented using separate resources, yet

shares timing resources such as clock signals. The guard external interface is identical to the com-

ponent interface, whereas the internal interface has reversed I/O directions such that the component

inputs are the guard outputs and vice versa. System interfaces are connected to the component via

the interface guard acting as a component firewall. In this way, the guard can monitor the com-

ponent I/O and control signals and enforce policy rules, while the system can only interact with

the guard rather than the untrusted component. This arrangement adds resource overheads in the

interface guard and isolation logic, and induces timing latency in the I/O and control signals, yet

does not cause a performance degradation as long as the guard timing characteristics accommodate

the component operating frequency. The challenge in developing interface guards is reducing the

induced overheads and latency while maintaining the security requirements.

An interface guard is a hardware component with input ports including platform inputs and com-

ponent outputs, and output ports including platform outputs and component inputs. The guard

monitors the platform inputs and component outputs, and possibly overrides these signals accord-

ing to the policy rules. If no violation is detected, the guard inputs are simply connected to the

corresponding outputs. If a violation is detected, guard actions include overriding the interface

signals with safe values determined by the security policy and/or reporting the violation to the top-

level guard. Such an approach monitors the component I/O interfaces to detect both external and

internal violations of security policies. At the component level of hierarchy, the security policy

is circuit-dependent which can consolidate I/O data flow analysis, control signal inspection, and

internal state inference rules. Known examples of security policies that can be enforced at I/O

interfaces are access policies and information flow guarantees. Usually, framing security policies

capturing every possible threat is an intractable problem, and the alternative is generalizing and

Mohammed M. Farag Chapter 3. Concepts and Overview 58

abstracting security specifications.

Computing platform
Isolation band

Interface guard

Untrusted
componentin

pu
ts

controls

ou
tp

ut
s

P
la

tf
or

m
 in

pu
ts

P
la

tf
or

m
 o

ut
pu

ts

Platform control signals

Figure 3.2: Untrusted component interface guard.

The top-level interface guard is a hardware component integrated into the system interface. In the

RETC-CPS architecture, this top-level guard is called design rule enforcement controller (DREC).

The DREC acts as a firewall monitoring the system I/O buses, and enforces a high-level security

policy. The main distinction between the DREC and untrusted component interface guards is that

the system-level security policy enforced by the DREC is application-oriented rather than circuit-

dependent policies enforced by low-level guards. In CPSes, the security policy is derived from

the characteristics and models of the controlled physical system. The DREC does not need an

isolation band because it wraps the system top-level. Main functions of the DREC are monitoring

the system I/O interfaces, interacting with low-level interface guards, inspecting suspect internal

signals, and enforcing the overall system security policy.

The DREC is equipped with a secure reconfiguration controller (SRC) responsible for receiving

run-time partial reconfiguration requests and evaluating them against a predefined reconfiguration

policy. If a reconfiguration request is approved, the SRC initiates the reconfiguration process; oth-

erwise an error status is returned which can include the denial justification. In CPSes, typically

Mohammed M. Farag Chapter 3. Concepts and Overview 59

a software-based processor is responsible for issuing reconfiguration requests based on perceived

variations of physical process dynamics, computation requirements, and system operating condi-

tions. A reconfiguration request can be a single module swap, multiple module change, or entire

datapath replacement. As illustrated by Figure 3.1, system components are built using reconfig-

urable logic enabling partial run-time reconfiguration at different levels of the datapath hierarchy.

The DREC issues reconfiguration commands to the SRC to swap compromised modules in re-

sponse to security violations either detected by the DREC or raised by low-level interface guards.

Replacement of compromised modules can serve as a countermeasure for a certain class of vi-

olations which cannot be countered with conventional measures. The SRC also can receive re-

configuration requests from the external trusted DMS to update trust anchors according to a trust

extensibility framework.

Figure 3.3 illustrates the DREC reconfiguration request flowchart. The SRC receives reconfigura-

tion requests from a software-based processor, usually untrusted and vulnerable to software attacks,

and evaluates their conformance to the security specifications. If the request is not approved, the

SRC denies the request and sends an error status to the requester. Approved requests are analyzed

to check if they are parameter updates, single module swap, or a whole plug-in change. Parame-

ter updates are very common in reconfigurable hardware designs because they enable a module’s

function to change without the need to completely replace the module. Parameter updates are

performed by the DREC by controlling low-level components parameters and attributes, while

approved reconfiguration requests are escalated to the configuration firewall.

3.2.2 Configuration Firewall

The configuration firewall is the entity responsible for receiving reconfiguration commands from

the SRC and taking actions to fulfill them. The configuration firewall can be developed in either

software or hardware depending on the reconfigurable platform’s available resources. In the soft-

ware design, all firewall functionalities can be implemented in a single processor using established,

trusted software programs and libraries. This approach saves hardware resources needed to build

Mohammed M. Farag Chapter 3. Concepts and Overview 60

Idle

Check policy
conformance

Valid
request ?

Respond to the
issuer (disallowed)

No Parameter
update?

Yes

Change the corresponding
parameters

Yes
Module
 swap ?

No

Send reconfiguration
data to the PAU

Yes

Send the plug-in
change request

and data to PAU

No

Update request

Respond to issuer
(Done)

Idle

Figure 3.3: SRC reconfiguration flow.

complex modules such as Ethernet protocols. However, hardware implementation of the firewall

is preferred to avoid vulnerabilities associated with software, yet it adds a significant overhead.

Hardware-software co-design of the configuration firewall is a good solution to gain advantages

of both. Security-critical components such as encryption and authentication modules are built in

hardware, whereas high overhead components such as Ethernet protocols are developed in soft-

ware. Regardless of the adopted implementation architecture, the configuration firewall is built in

reconfigurable hardware as a static partition which is never changed during platform operation.

Figure 3.4 depicts the basic architecture of the mixed configuration firewall. The main components

are:

• External storage: partially reconfigurable modules (PRMs) are stored on an external non-

Mohammed M. Farag Chapter 3. Concepts and Overview 61

volatile memory such as a flash memory or a hard disk drive due to the on-chip storage

constraints of FPGA platforms. As off-chip memories are vulnerable to tampering at sev-

eral points such as the data bus, PRMs are securely stored using standard encryption and

authentication techniques. The PRM memory is divided into a number of partitions based

on the reconfigurable platform floorplanning and the number of PRM alternatives included

in a dynamic subset. This partitioning helps to expedite the search and fetch of a requested

PRM. However, the PRM memory cannot simultaneously retain all PRM alternatives be-

cause of the embedded storage limits. This justifies the need to a remote DMS generating

and delivering PRMs not available on the platform local PRM storage.

Configuration firewall
(Static hardware)

Bitstream
inspector ICAP controller

IC
A

P

External storage
(Flash memory)

I/O interface
(Ethernet adapter)

Memory
controller

Trusted remote DMS

DREC

P
A

U

P
ro

ce
ss

or

Hardware-based security components

GPIO

Plug-in #1
PRM #1 alternatives

PRM #2 alternatives

PRM #m alternatives

Plug-in #n
PRM #1 alternatives

PRM #2 alternatives

PRM #m alternatives

Bitstream
authentication

module
(HMAC SHA-2)

Authentication
PUF keygen

Bitstream
decryptor

(AES)

Decryption
PUF keygen

Figure 3.4: Configuration firewall architecture.

• Plug-in Assist Unit (PAU): The PAU is a software-based processor receiving reconfiguration

commands from the DREC, initiating and controlling the reconfiguration flow, and commu-

nicating the reconfiguration status back to the DREC. The PAU controls an I/O interface

such as an Ethernet adapter, a memory controller, and the hardware-based security modules.

An Ethernet protocol stack such as lightweight internet protocol (LWIP) accommodating

the embedded platform resource constraints is developed in software to support file transfer

protocols (FTPs) between the DMS and the platform. The PAU interacts with the DREC

via a general-purpose I/O (GPIO) peripheral. A handshaking protocol between the DREC

Mohammed M. Farag Chapter 3. Concepts and Overview 62

and PAU is developed based on sender initiated protocols and interrupt service routines.

Hardware security components employed in the configuration firewall are synchronized and

controlled by the PAU.

• Hardware security components: Authentication, decryption, and bitstream inspection are

the main security components employed in the PAU. These components are managed and

coordinated with the assistance of the PAU, yet decrypted bitstreams are not revealed to

the processor. The AES algorithm is used to decrypt the PRM bitstreams loaded from the

local PRM memory. The Hash-based Message Authentication Code (HMAC) is used in

conjunction with the Secure Hash Algorithm (SHA-2) to authenticate the decrypted PRM

bitstreams. PUF-based structures are used to generate unique cryptography and authentica-

tion keys which are known to the DMS. A bitstream inspector is used to check a meta-data

file sent along with a PRM bitstream. This file defines the PRM location and interfaces to

avoid the need to apply bitstream reverse engineering techniques to extract module place-

ment information. The ICAP is controlled using a hardware module supporting various port

widths. Full implementation details and results of the configuration firewall are provided in

Chapter 4.

Figure 3.5 illustrates the flowchart of reconfiguration commands to the SRC. The DREC sends

PRM reconfiguration commands to the PAU including the module tag and location data. The PAU

searches for the PRM bitstream on the local memory storage, and if the bitstream is not found, the

PAU downloads the bitstream file from the remote DMS and stores the PRM file to the appropriate

location on the PRM flash memory. The PAU initiates and controls the memory reading operation

via the memory controller. Retrieved bitstreams are decrypted and passed to the authentication

module to be validated, and if a bitstream is not approved, an error status is sent to the DREC.

Then, the bitstream inspector checks PRM locality and interfaces, and an error status is sent to the

DREC if the inspection fails. If the bitstream passed all checks, the ICAP controller writes the

bitstream to the reconfiguration memory while the PAU sends a completion status to the DREC.

Mohammed M. Farag Chapter 3. Concepts and Overview 63

Idle

Locally
available ?

Request from the
DMS

No

Store to the local
memory

Read the DPM
bitstream

Yes

Authentic
module?

Generate
authentication error

No

Yes

Inspect the
bitstream

Request from the
DMS

Authenticate the
bitstream

Valid
location?

Idle

Yes

No

Decrypt the
bitstream

Write to the ICAP
Generate inspection

error

Figure 3.5: PAU reconfiguration flow.

3.2.3 Trusted Remote Dynamic Module Server

The trusted remote DMS is a powerful workstation responsible for generating PRMs on the fly

and delivering them to the served platforms via a dedicated network. The DMS is equipped with

the RETC-CPS development tools and FPGA design software enabling expedited generation of

the PRMs. The DMS generates PRMs and transfers them to the reconfigurable platform in re-

sponse to update requests. The DMS also can send PRMs incorporating updated trust anchors to

extend trust in the computing platform if security violations are reported. In both cases, the PRM

bitstream includes a RETC interface guard wrapping the requested module. These two parts can-

Mohammed M. Farag Chapter 3. Concepts and Overview 64

not be separated and transferred individually because of the security requirements as well as the

dynamic reconfiguration flow limitations. In case of a whole system reconfiguration request, the

DMS generates a hardware plug-in incorporating the new datapath and RETC-CPS guards. The

DMS extracts placement data from PRMs and generates meta-data description files in a predefined

format which is sent along with the module bitstream. Other functionalities performed by the DMS

are encryption and authentication of PRM files.

In bitstream generation, the DMS considers on-chip storage limitations in the FPGA platform.

PRM bitstream files are partitioned into equal size, small blocks to enable buffering bitstream

blocks on the on-chip memory during the decryption and authentication operations. Encryption

and authentication procedures are consequently executed on a block basis. The secure version of

a PRM bitstream is constructed by concatenating encrypted blocks and authentication message

digests in a proprietary sequence to increase the difficulty of potential bitstream IP attacks. The

transferred PRM file consists of the meta-data file concatenated with the secure PRM bitstream.

In the reconfigurable platform, bitstream blocks are loaded in tandem, decrypted, authenticated,

inspected, and temporarily stored in the on-chip memory sourcing the ICAP.

3.3 Design Flow

Advances in semiconductor technology and successive reductions in transistor dimensions have

increased the complexity and density of modern systems. Manual design techniques cannot support

development of high-density circuits. Electronic design automation (EDA) enables development of

such complex systems. Current directions in EDA dramatically improve productivity by integrating

methods and tools for digital system design, verification, and implementation. State-of-the-art

EDA technologies include methods capturing abstract system-level design specifications, synthesis

and implementation tools addressing the requirements of high-speed and low power designs, and

validation tools enabling high-speed simulation and formal verification methods.

Advancements in EDA technologies create new opportunities and challenges requiring effective

Mohammed M. Farag Chapter 3. Concepts and Overview 65

design methodologies. Top-down design addresses productivity, cost, design complexity, and time-

to-market constraints in modern digital IC and SoC design. System-level models and verification

environments accelerate digital system development by avoiding the need to deal with low-level

circuit details required in bottom-up design methodologies. Automated tools synthesize high-level

system descriptions into optimized logic- or transistor-level circuits. The following subsections

describe the RETC-CPS design flow targeting reconfigurable hardware platforms.

3.3.1 Reconfigurable Hardware Design Flow

The typical reconfigurable hardware design flow used in FPGA development is illustrated in Fig-

ure 3.6. The main stages of this flow are as follows:

• Design specification: This stage involves analysis of the design functional and architectural

requirements, system decomposition, workload partitioning, and creation of verification en-

vironments. Inter- and intra-system interfaces, timing characteristics, and design constraints

are precisely defined in this step. Design tools, target platforms and architectures, and self-

developed and imported components are determined according to the development budgets,

goals, and time-to-market constraints. In good design practices, the output of this stage is a

document describing the overall design plan, specific procedures and goals, and timelines to

achieve these objectives.

• Design entry: In this stage, the design is captured and managed using software tools such

as Xilinx ISE and Altera Quartus. Digital designs can be captured in HDLs such as VHDL

or Verilog, schematic representations, or a combination of both. HDLs capture the design

at multiple abstraction levels including behavioral, data flow, RTL, and structural descrip-

tions. Schematic-based entry provides more visibility into the design, while HDLs offer a

level of abstraction isolating the designer from low-level details. Modern HDLs such as

Bluespec [124] and SystemVerilog [164] can provide software-like levels of abstraction and

clean semantics. All design entry methods enable design reuse and productivity by instanti-

Mohammed M. Farag Chapter 3. Concepts and Overview 66

Embedded system
development

Design verification

Design specification

Design entry

Logic Synthesis

Implementation

Behavioral simulation

Logical simulation

Static timing analysis

Embedded system building

Netlist
generation

Software development

Memory map generation

XML generation

Bitstream generation Device Programming

Hardware testing and software debug

Testbench design

Figure 3.6: FPGA design flow.

ating already developed components and third-party IP cores.

• Logic synthesis: This stage includes translation of HDL and RTL descriptions into a netlist

which is a circuit description format enumerating the design logic gates and interconnec-

tions. Synthesis checks the HDL code syntax, analyzes the design hierarchy, generates de-

sign netlists of instantiated components, and optimizes the design architecture according to

the design specifications and requirements. Logic synthesis optimization objectives include

minimizing occupied area, maximizing design speed, and reducing power consumption. The

design netlist provides rudimentary timing information denoting logic gate delays. There are

numerous synthesis tools available from different FPGA and EDA vendors.

• Implementation: This stage includes three phases: translate, map, and place and route. In

the translate phase, multiple design netlists and constraints such as port assignments and

timing requirements are merged into a single netlist. An automated Map tool groups the

Mohammed M. Farag Chapter 3. Concepts and Overview 67

logic blocks defined in the design netlist into corresponding FPGA physical resources. Place

and route software selects the positions of resources needed on the chip according to design

and placement constraints, connects them, and extracts precise timing data.

• Bitstream generation and device programming: In this step, the design bitstream is generated

from the physical implementation files. The generated bitstream can be protected using

specific encryption and authentication techniques. This bitstream is used to program the

FPGA device using the chosen programming port.

• Design verification: Each stage of the design flow is followed by a verification procedure to

assure compliance with the design specifications. Test environments and behavioral mod-

els are captured using traditional design entry methods. Timing simulation is the main

verification tool in reconfigurable hardware design flows. Modern tools and flows enable

assertion-based verification and temporal logic checks used in formal verification methods.

Such flows are assisted by advanced HDLs such as Bluespec [123] and SystemVerilog [25],

and state-of-the-art simulation and synthesis tools.

In simulation, signals and variables are observed, procedures and functions are traced, and

breakpoints are set. Behavioral simulation follows the design entry phase, and validates the

functional correctness of the design as captured by HDLs or schematics. Timing delays

do not appear in this functional simulation. Gate delays are known after synthesis, and

routing delays are known after placement and routing. Negative verification results after any

design phase require changing the design to resolve the raised problems and meet the design

requirements.

• Embedded system development: Commonly, modern SoC designs rely on software architec-

tures providing both flexibility and design productivity. Modern FPGAs are equipped with

hardwired processors or are capable of hosting processor IP cores supporting software. Stan-

dard processor architectures such as PowerPC and ARM are available in FPGA platforms to

enable standard embedded development. Vendor-specific design tools such as Xilinx Plat-

form Studio (XPS) are used to define the embedded processor architecture, memory and

Mohammed M. Farag Chapter 3. Concepts and Overview 68

storage devices, I/O interfaces, and incorporated peripherals based on the architectural re-

quirements and available platform resources. The output of this step is a netlist file defining

logic resource requirements and an XML file describing the processor architecture, memory

ranges, I/O interfaces and peripherals. Embedded software development is conducted using

FPGA vendor-specific tools such as Xilinx SDK, and the output of this stage is a BRAM

memory map (BMM) file mapping software executable binaries to the platform BRAMs.

The generated bitstream and BMM files are used to program the device which is followed

by the hardware testing and software debugging phases.

Run-time partial reconfiguration introduces additional steps to the conventional FPGA design flow.

Figure 3.7 depicts the DPR design flow [109]. In the planning and synthesis phase, DPR opportu-

nities are identified by recognizing mutually exclusive functionalities, and the design is partitioned

into static and dynamic subsets. This part of DPR design closely maps to the traditional FPGA

flow. The output of this stage is a set of HDL files describing the design top-level interfaces, static

logic, and PRMs. g

Design

Partitioning

Design

Floorplanning

and Budgeting

Top level

implementation

PRM

implementation

Merged

Bitstream

Generation

PRMs:

 HDL Files

Static and

Toplevel Design

HDL Files

Static Design

implementation

Placement

Constraints

Placement and

Context Constraints

Implemented

Static Design

Implemented

PRMs

PRM

Bitstreams

PRR ‘Blank’

Bitstreams

Static Design

Bitstreams Merged

with PRM Bitstreams

Reconfigurable

Design Specification

Static Routes

Excluded from

PRMs

Figure 3.7: Dynamic partial reconfiguration design flow [109].

Mohammed M. Farag Chapter 3. Concepts and Overview 69

The next phase is design floorplanning and budgeting. Location and size of partially reconfigurable

regions (PRRs) are allocated based on PRM needed resources and interfaces. A PRR is a phys-

ical area on the FPGA device reserved for implementing PRMs grouped in one dynamic subset.

Figure 3.8 exemplifies a simplified floorplan of a dynamic reconfigurable design. Intra-chip inter-

faces between PRRs and the static partition must be precisely defined and unchanged throughout

the DPR design flow. Design floorplanning can be done manually or automatically using specific

tools such as Xilinx PlanAhead which can be employed between the synthesis and implementation

stages. Partition pins are automatically inserted between PRRs and static logic to provide static

routing connections minimizing any timing closure issues related to the PRR interfaces. The cur-

rent implementation of partition pins employs proxy logic, which is a LUT inserted between input

and output paths of the PRR.

PRM1

System top-level

PRR_2

PRR_1

Static
partition

PRM1PRM_1_A

PRM1

PRM1PRM_2_A

Figure 3.8: Typical DPR floorplan

Subsequent phases are top-level and static logic implementation. Top-level and static design

netlists are implemented using conventional tools while considering the DPR placement con-

straints. Static modules are prohibited from using logic resources in PRRs, but are allowed to

use routing resources in these regions. This is followed by implementing PRMs according to their

placement and route constraints while excluding routing resources used by the static design. Each

PRM is separately implemented from other PRMs in the same dynamic subset. In the final phase,

a number of complete designs, depending on PRM combinations, are built from the static design

integrated with all possible combinations of PRMs. For example, if the number of dynamic subsets

Mohammed M. Farag Chapter 3. Concepts and Overview 70

is two, and the number of PRMs per set is three, then the number of complete designs is nine. The

output of this phase is a group of bitstream files representing the full design and individual PRMs.

3.3.2 RETC-CPS Design Flow

Lack of automation is a major bottleneck confronting many security solutions in both the software

and hardware domains. For example, most formal verification methods and especially theorem

proving techniques suffer from automation difficulties because of the need for human interaction

and the huge state space of modern systems. Some hardware-based security solutions such as

proof-carrying hardware [53] and gate-level information flow enforcement [86] adopt a bottom-up

design methodology. Such an approach complicates secure system development by introducing a

huge amount of low-level details to the automation process. The RETC-CPS design flow addresses

these challenges by decoupling security development from the system design flow.

RETC-CPS adopts a top-down design methodology which can be easily integrated into reconfig-

urable hardware design flow to build the trust anchors. The RETC-CPS flow is independent of and

parallel to the conventional FPGA design flow as illustrated by Figure 3.9. The FPGA design flow

is kept unchanged because of the policy-based security approach adopted by RETC-CPS. Guard

components are developed by a trusted party aware of the system security requirements, top-level

interfaces, and untrusted components. This party can be the system developer if the condition of

security awareness is satisfied. In this section we present the extra design phases added by the

RETC-CPS flow.

Security Policy Specification, Description, and Translation

Policies are the means to dynamically specify security specifications in computational platforms

without changing system-specific implementations. By changing policies, trust anchors can be

continually updated enabling trust extensibility. A security policy is a high-level specification of

the security properties that a trusted system should possess. These specifications must be explicitly

Mohammed M. Farag Chapter 3. Concepts and Overview 71

RETC-CPS design flowFPGA design flow

Design specification

HDL description

Functional verification
and testing

Logic synthesis

Gate-level netlist

Logical verification
and testing

Floorplanning and
implementation

Physical layout

Layout verification and
testing

Bitstream generation

Security policy specification

Policy description

HDL translation

Logic synthesis

Gate-level netlist

Formal translation

Integration and
wrapping

HDL description

Design representation
level Design process

Logical verification
and testing

Formal description

Formal verification

Figure 3.9: RETC-CPS design flow.

stated at the start of system development [12]. Unlike design specification which should capture

all system functional and architectural details, policy specification only describes a set of rules and

boundaries defining the system secure operation. This distinction is extremely important because

it sets an upper limit on the complexity and overhead induced by RETC-CPS security components.

In complex systems, the security policy can be decomposed into smaller sub-policies facilitating

the allocation of efficient security mechanisms to enforce the overall policy [147]. However, a top-

level policy is essential to any security scheme because sub-policies may not capture component

interactions.

Mohammed M. Farag Chapter 3. Concepts and Overview 72

In the policy specification phase, a high-level security policy is described and documented by a

trusted party aware of the security requirements and threats. In CPSes, security policies can be de-

scribed in several ways with a major objective of protecting physical systems against various cyber

threats. Top-level security policies can be assisted by physical models and equations governing the

controlled physical systems. Model-assisted security solutions can accurately detect anomalous

behaviors and accordingly enforce corrective actions based on the models. This approach is quite

similar to the security through diversity approach deployed in the software security domain [105].

Such an approach can be easily integrated into model-based design flows to enhance development

productivity of RETC-CPS security components. However, model-based security schemes may

induce significant resource and computation overheads because of the associated redundancies.

On the other hand, security policies can be established by defining permissible and impermissi-

ble behaviors of the protected system in the form of rules and assertions. In CPSes, policy rules

must be capable of describing both application-dependent as well as component-based security

rules. To enable run-time enforcement of security policies, rules should define violation detection

criteria along with the corresponding countermeasures. This policy-based approach requires an

appropriate representation and management of security policies. An application-specific policy

language is the best means to describe security policies. Many research efforts have been devoted

to developing policy languages such as Ponder [43], Rei [73], and the property specification lan-

guage (PSL) [1]. Some have proposed development of security-specific policy languages such

as the standard security policy language (SSPL) [9]. Regardless of specific details, security pol-

icy languages must possess certain characteristics including declaration, formality, expressiveness,

scalability, and extensibility.

The next phase is policy translation into HDL descriptions and formal models using language-

specific compilers. A detailed example of translating a memory access policy language into Ver-

ilog HDL is presented in [77]. The policy description language must be formal to enable formal

verification of security policies. Formal languages are capable of expressing stateless as well as

stateful policies incorporating temporal logic propositions. Security policies described by formal

languages can be translated into formal models verifiable using an appropriate model checking

Mohammed M. Farag Chapter 3. Concepts and Overview 73

tool. Temporal assertions generated by formal policy languages can be translated into advanced

HDLs such as SystemVerilog. Such HDL descriptions can be synthesized using advanced tools en-

abling synthesis of temporal propositions, and implemented as run-time hardware checkers [26].

However, development of new security policy languages and compilers is not the focus of this

work.

Formal Verification

Verification is the major bottleneck in modern design flows, where up to 80% of the overall design

costs are due to verification. Simulation can confirm design correctness under some conditions but

cannot affirm that the design is free of errors under all operating conditions. The compelling need

for error-free designs in security-critical applications has increased interest in formal verification

methods [49]. Formal verification is the use of mathematical techniques to ensure that a design

conforms to some precisely expressed notion of functional correctness. Formal verification is a

substantial requirement in digital system design, not only to enable trusted system development

but also to provide a proof of trust to regulators and stakeholders. Although formal verification

research has achieved significant improvements in the recent decade, simulation remains the main

validation tool of complex digital design, especially at the higher levels of design abstractions.

Our vision for RETC-CPS is to integrate simple, trusted, and verifiable components to top-level

system and untrusted component interfaces. These guards monitor and possibly override the un-

derlying interfaces to regulate their operation according to an explicitly defined policy addressing

the system security requirements tailored to a certain class of applications. Verification of third-

party IP cores requires the availability of associated formal models which can be only obtained

from the IP developer. This leads to the dilemma of trust in the third party. Unlike conventional

security approaches, RETC-CPS does not require formal verification of untrusted components be-

cause of reliance on verifying in-house guard components. Furthermore, the RETC-CPS approach

alleviates the need to fully verify complex systems and components which can be intractable in

modern designs. Formal verification is only required for guard components to prove their correct-

Mohammed M. Farag Chapter 3. Concepts and Overview 74

ness against a set of application-driven security properties. The policy-based approach keeps guard

components as simple as possible to ensure verification tractability.

The two main elements of the formal verification problem are the design model and specifications.

There are various approaches to formally verify a digital design, with theorem proving (logical

inference) and model checking being the most deployed verification techniques. In theorem prov-

ing, both the design and specifications are formally described by applying rules of inference to the

specifications in order to derive new properties of interest. Theorem proving techniques are often

too expensive because of automation difficulties and the need for human interaction [72].

Model checking was developed by Clarke and Emmerson in 1981 [39] and, currently, it is the

most widespread technique for digital design verification. In model checking, the verified design

is abstracted as an FSM and the specifications are written in temporal propositional logic, either

as computation tree logic (CTL) or linear time logic (LTL). Model checking is a fully automated

exhaustive search in the state space of the FSM to verify that the specifications are satisfied by the

FSM model [83]. The model checking algorithm is developed based on the mathematical fixed

point theorem of complete lattices [165]. Most automatic model checkers are capable of providing

a counterexample in case of verification failure.

The main concern with model checking is a possible state explosion problem caused by the enor-

mous state space of current digital designs [22]. The state explosion problem constitutes the main

bottleneck confronting model checking of software designs due to the enormous state space. On

the other hand, digital hardware designs are characterized by a finite state space facilitating model

checking [149]. However, high-density ICs and complex hardware components and IP cores may

still suffer from the space explosion problem. RETC-CPS addresses this problem by reducing

the need to formally verify whole systems or components. The provided alternative only requires

formal verification of RETC guard components having reduced state spaces.

Many enhancements have been added to the original model checking algorithm to deal with the

state explosion problem. The introduction of symbolic model checking by McMillan in 1992 is

generally considered a breakthrough, enabling verification of systems clearly out-of-reach of any

Mohammed M. Farag Chapter 3. Concepts and Overview 75

explicit-state model checker [115]. Symbolic model checking applies Clarke’s model checking

algorithm for a symbolic version of the verified model. The FSM is represented with boolean

encoding and is manipulated using reduced order binary decision diagrams (ROBDDs). Symbolic

model verifier (SMV) is the software tool developed by McMillan to enable automatic verification.

Verified designs are modeled in a custom description language while the verification properties are

expressed as temporal logic propositions.

Considerable research effort has been devoted to enable formal verification of both software and

hardware systems, especially in safety-critical applications. Most work seeks to provide a set of

formally verified primitives forming a basis for system design. However, some efforts attempt to

integrate formal verification with the hardware design flow in a simplified way facilitating verifica-

tion practises for the majority of digital system developers. Arvind et al. highlighted research chal-

lenges that reduce the gap between formal methodologies and engineering practices [17]. Formal

methods must be invoked through high-level design languages and must present a semantic model

that makes sense to the designer. Examples incorporating assertions in SystemVerilog language

expose the need for several verification techniques even in the same application. Integration of

model checking techniques with the IBM hardware development flow has been recently described

by Schlipf et al. [146] and Abarbanel-Vinov et al. [5]. They concluded that model checking is

a powerful extension of formal verification complementing simulation and emulation techniques.

Development of a memory bus adapter at IBM illustrates that 24% of design defects have been

detected with model checking, while 40% of these bugs have not been caught by simulation.

Integration and Wrapping

Subsequent steps include the conventional phases of the FPGA design flow. Guard component

logic synthesis translates the guard’s HDL description and formal assertions into logical netlists

incorporating hardware checkers. The next phase is logical verification and testing of the interface

guard logical operation. Failure of the formal verification or the logical verification phases requires

manipulating the security policy to fix verification errors. Outputs of this phase are netlist files of

Mohammed M. Farag Chapter 3. Concepts and Overview 76

the system top-level guard and the untrusted component guards.

The next phase is integrating guard components with the target system. In this step, guard compo-

nent netlists are instantiated in the design along with the system components. Guard modules are

inserted into system top-level and untrusted component interfaces. The next step is floorplanning

and implementation of the full design incorporating the guard components. Physically separated

partitions are allocated to different system components according to the component’s needed re-

sources and interfaces. Physical separation helps to regulate data flow between internal system

components and minimizes physical shared resources, such as LUTs and BRAMs. The design is

then implemented using conventional FPGA design tools and verified using simulation to assure

the satisfaction of timing constraints. The bitstream file is generated and protected using standard

authentication and encryption methods to be securely delivered to the target FPGA platform.

3.4 Summary

In this chapter we discussed the RETC-CPS design concerns including assumptions and outcomes,

high-level architecture, and development flow. RETC-CPS is a complementary protection scheme

serving as a last line of defense against various cyber threats. This scheme targets systems and ap-

plications where security policies can be clearly formulated. The system under protection contains

untrusted components and IP cores developed by third parties and treated as black boxes. Targeted

systems incorporate untrusted software- and hardware-based components, and attacks against them

can originate from different sources including the components themselves. Such systems accom-

modate software updates as well as hardware reconfigurations enabling potential exploits. Trust

needs to be enforced at different abstraction layers using both software and hardware trust anchors.

In this dissertation, we only study development of hardware interface guards to address specific

threat models targeting both software and hardware layers.

RETC-CPS does not change the conventional design flow, yet it adds a number of phases relying

on existing tools in reconfigurable hardware design and formal verification methods to develop

Mohammed M. Farag Chapter 3. Concepts and Overview 77

the system trust anchors. An application-specific formal policy language describes a system-level

security policy to be enforced by hardware guards. Established physical and mathematical models

of the target system can constitute the basis of the security policy. Language-specific compilers

translate the captured policy specifications into HDL descriptions and formal models in prepara-

tion for circuit implementation and verification. Guard components are synthesized and verified

using existing reconfigurable hardware design and model checking tools. RETC trust anchors are

integrated with the system netlists developed using the conventional design flow.

Trust anchors added by the RETC-CPS protection scheme include the DREC, SRC, configuration

firewall, and low-level interface guards. The DREC is a hardware component wrapping the target

system and enforcing a system-level, application-oriented security policy at the top-level system

interface. The SRC is a hardware module responsible for receiving update or reconfiguration re-

quests from specific system components and validating these requests according to a predefined

reconfiguration policy. The configuration firewall is a static hardware module which receives up-

date commands from the SRC, and securely manages transfer, authentication, and reconfiguration

of the requested PRM bitstreams. Low-level interface guards are hardware trust anchors wrapping

untrusted components and enforcing low-level, circuit-dependent security policies at the compo-

nent interfaces. The RETC protection scheme is developed in reconfigurable hardware, yet the

presented concepts are generally applicable to software-based systems as well as ASICs and SoCs.

Hardware-based trust anchors simultaneously address system security and performance require-

ments.

In order to illustrate the RETC-CPS features, we apply RETC to different design examples in the

next three chapters. These applications are carefully selected to demonstrate applicability to a wide

range of CPSes, and the efficacy in addressing various threats raised by incorporating untrusted

components in CPS embedded controllers. In this dissertation, the main focus is presenting high-

level architectures and prototype development for the RETC-CPS protections and evaluating these

defenses against specific software- and hardware-based threat models. The selected applications

demonstrate the RETC-CPS main functionalities presented in this chapter. Design automation is

planned to be a part of our future work.

Mohammed M. Farag Chapter 3. Concepts and Overview 78

A CR example illustrating the high-level architectures and prototype developments of the DREC,

SRC, and PAU is provided in Chapter 4. The main objective of this chapter is demonstrating how

RETC-CPS can secure dynamic reconfiguration in a CR platform containing untrusted software

and hardware components. The major threats are compromised update requests issued by un-

trusted software modules responsible for device reconfiguration, and open communication chan-

nels used to deliver PRM bitstreams. CR security threats can directly affect spectrum integrity

and, consequently, primary users via illegal channel allocation. This example also demonstrates

the language-based design approach to develop RETC-CPS guards.

An example of developing low-level interface guards protecting untrusted components in embed-

ded controllers is presented in Chapter 5. The main objective of this chapter is demonstrating how

to apply RETC-CPS low-level protections to secure third-party IP cores extensively employed in

reconfigurable designs. A high-speed I/O serial interface adapter IP widely deployed in modern

CPS controllers illustrates RETC-CPS low-level protections. Third-party IP cores are exposed

to malicious insertions and alterations embodied by HTHs. The main challenge facing detection

of HTHs in third-party IP cores is difficulty of acquiring golden references and trusted models.

This example also demonstrates how to secure network interactions against unconventional threats

raised by embedded HTHs.

An example of developing a system-level interface guard in process control systems is given in

Chapter 6. The main objective of this chapter is to demonstrate how RETC-CPS can be applied to

secure process controllers and preserve the stability of the controlled physical processes. The threat

model is erroneous controller behavior associated with untrusted components employed in PCS

embedded controllers. An aircraft pitch controller is selected as an example of a security-critical

control system. System models and control principles are employed to build the DREC for the

chosen controller. The DREC exploits timing characteristics of process control systems to predict

and preempt erroneous behavior resulting from either faults or cyber threats. This application also

demonstrates how to apply the RETC protection scheme to CPSes developed using model-based

design flows.

Chapter 4

Application to Cognitive Radio Platforms

CR is an emerging technology that aims to improve radio spectrum utilization in wireless commu-

nication applications. The main idea is that a secondary user can dynamically utilize vacant radio

channels allocated to primary licensed users according to a spectrum access policy. This concept

of opportunistic access of spectrum holes can significantly increase spectrum utilization efficiency.

A CR device is a smart SDR capable of changing its architecture to exploit different spectrum op-

portunities. The main functionalities of a CR device are spectrum sensing, opportunity reasoning,

access policy enforcement, architectural adaptation, and spectrum access. Reconfigurable hard-

ware is a potential platform offering both flexibility and performance required by CR. Commonly,

CR devices are built with untrusted software and hardware components using model-based de-

sign tools. Therefore, CR technology provides a typical example of a CPS containing untrusted

components, built using reconfigurable hardware, and including frequent system updates.

The RETC-CPS protection scheme secures reconfiguration control in CPS applications including

frequent updates with potential exploits. Two main challenges are associated with secure reconfig-

uration control in a CPS containing untrusted components. The first challenge is validating update

requests issued by an untrusted component, which is usually a software processor. Commonly,

software verification is extremely difficult and software attacks are more prevalent. Therefore,

reliance on software correctness to validate update requests threatens the platform security. The

79

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 80

second challenge is authenticating update contents and ensuring secure update generation, transfer,

and application.

As described in Chapter 3, RETC-CPS provides a secure, rigorous, and straightforward update

mechanism addressing the foregoing challenges. In this chapter, we introduce the application

of the RETC-CPS protection scheme to CR. The main threat model introduced by this exam-

ple is compromising update requests issued by untrusted software. We do not discuss potential

software exploits that can result in compromised update requests, yet we acknowledge plausible

consequences due to lack of trust in software. The main components responsible for secure recon-

figuration control in the RETC-CPS architecture are the DREC, SRC, and configuration firewall.

CHARE-CR is the name of the framework integrating the DREC, SRC, and configuration firewall

implemented in reconfigurable hardware to enforce spectrum access policies in a CR platform.

CHARE is an essential part of the RETC-CPS overall security architecture.

The results of this research have been applied to the development of a trusted platform for cognitive

radios, as part of the NSF-funded AUSTIN (Assuring Software Radios have Trusted Interactions)

project with the collaboration between researchers from the Wireless Information Network Lab-

oratory (WINLAB) at Rutgers University, Wireless @ Virginia Tech (VT), and the University of

Massachusetts (Amherst). AUSTIN consists of efforts covering theoretical work on regulating

CR interactions, the design of architectures for securing networks of CRs, on-board hardware and

software security methods, and algorithms and protocols to enact regulation at the local, network

or external level. The proposed work provides a trusted platform capable of understanding and

enforcing policies and regulations associated with CR interactions. Designing security into (rather

than onto) the reconfigurable embedded platform along with hardware policy enforcement make

this project considerably different from previous work in the area, and serves as a primary focus

for the proposed research.

In this chapter we present the high-level architecture, implementation details, and evaluation of

the CHARE-CR framework. The remaining of this chapter is organized as follows: An overview

of CR potentials and security challenges is provided in Section 4.1. In Section 4.2, we present

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 81

an overview of the CR policy engine, highlight previous approaches to build the policy engine,

and introduce our approach to develop the CHARE-CR policy engine. Description and translation

of spectrum access policies into hardware assertion checkers are presented in Section 4.3. The

CHARE-CR high-level architecture in reconfigurable hardware is presented Section 4.4. Imple-

mentation details and results of the SRC and the configuration firewall are given in Section 4.5.

This chapter is summarized in Section 4.6.

4.1 An Overview of CR Potentials and Security Challenges

Radio spectrum is a vital yet limited resource in wireless communication. In current wireless al-

location charters, governmental agencies assign radio spectrum to license holders on a long-term

basis for large geographical regions. Recently, because of the increase in spectrum demand, this

technique has led to scarcity in particular spectrum bands [8]. Open spectrum bands (e.g., the

900MHz, 2.4GHz and 5GHz ISM/U-NII bands) have become overcrowded with various wireless

applications. In contrast, a large portion of the assigned spectrum is used sporadically, leading to

underutilization of a significant amount of the spectrum. Figure 4.1 illustrates the frequency allo-

cation chart in the United States as reported by the National Telecommunications and Information

Administration.

Dynamic radio access is an alternative to inefficient static spectrum allocation. In dynamic spec-

trum access (DSA), licensed radio bands are opened to unlicensed operations on a non-interfering

basis to incumbent users. To achieve interference-free coexistence, secondary users identify fal-

low licensed spectrum and opportunistically utilize these white spaces as shown in Figure 4.2.

The main components of DSA are spectrum sensing, spectrum decision, spectrum sharing, and

spectrum mobility. CR is the key enabling technology of DSA [8], and IEEE 802.22 is the first

worldwide wireless standard that is designed to achieve opportunistic spectrum sharing based on

CR technology [160].

A CR device is a smart SDR, a radio that can be configured by software to dynamically access the

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 82
U.

S.

DEPA
RTMENT OF COMMERC

EN
A

TIO
N

A
L

TELEC
O

M
M

UNICATIONS & INFORMATIO
N

A
D

M
IN

IS
TR

A
TI

O
N

MO
BI

LE
 (

AE
RO

NA
UT

IC
AL

 T
EL

EM
ET

ER
IN

G)

S)

5.
68

5.
73

5.
90

5.
95

6.
2

6.
52

5

6.
68

5
6.

76
5

7.
0

7.
1

7.
3

7.
35

8.
1

8.
19

5

8.
81

5

8.
96

5
9.

04
0

9.
4

9.
5

9.
9

9.
99

5
10

.0
03

10
.0

05
10

.1
10

.1
5

11
.1

75
11

.2
75

11
.4

11
.6

11
.6

5

12
.0

5

12
.1

0

12
.2

3

13
.2

13
.2

6
13

.3
6

13
.4

1
13

.5
7

13
.6

13
.8

13
.8

7
14

.0
14

.2
5

14
.3

5

14
.9

90
15

.0
05

15
.0

10
15

.1
0

15
.6

15
.8

16
.3

6

17
.4

1
17

.4
8

17
.5

5

17
.9

17
.9

7
18

.0
3

18
.0

68
18

.1
68

18
.7

8
18

.9
19

.0
2

19
.6

8
19

.8
0

19
.9

90
19

.9
95

20
.0

05
20

.0
10

21
.0

21
.4

5
21

.8
5

21
.9

24
22

.0

22
.8

55
23

.0
23

.2
23

.3
5

24
.8

9
24

.9
9

25
.0

05

25
.0

1
25

.0
7

25
.2

1
25

.3
3

25
.5

5
25

.6
7

26
.1

26
.1

75
26

.4
8

26
.9

5
26

.9
6

27
.2

3
27

.4
1

27
.5

4
28

.0

29
.7

29
.8

29
.8

9
29

.9
1

30
.0

UNITED
STATES

THE RADIO SPECTRUM

NON-GOVERNMENT EXCLUSIVE

GOVERNMENT/ NON-GOVERNMENT SHAREDGOVERNMENT EXCLUSIVE

RADIO SERVICES COLOR LEGEND

ACTIVITY CODE

NOT ALLOCATED RADIONAVIGATION FIXED

MARITIME MOBILE
FIXED

MARITIME MOBILE

FIXED

MARITIME MOBILE

Radiolocation RADIONAVIGATION

FIXED

MARITIME
MOBILE

Radiolocation

FIXED

MARITIME
MOBILE FIXED

MARITIME
MOBILE

AERONAUTICAL
RADIONAVIGATION

AE
RO

NA
UT

IC
AL

RA
DI

ON
AV

IG
AT

IO
N

Ae
ron

au
tic

al
Mo

bil
e

Ma
riti

me
Ra

dio
na

vig
ati

on
(R

ad
io

Be
ac

on
s)

MA
RI

TIM
E

RA
DI

ON
AV

IG
AT

IO
N

(R
AD

IO
 B

EA
CO

NS
)

Ae
ron

au
tic

al
Ra

dio
na

vig
ati

on
(R

ad
io

Be
ac

on
s)

3 9 14 19
.9

5

20
.0

5

30 30 59 61 70 90 11
0

13
0

16
0

19
0

20
0

27
5

28
5

30
0

3 kHz 300 kHz

300 kHz 3 MHz

3 MHz 30 MHz

30 MHz 300 MHz

3 GHz

300 GHz

300 MHz

3 GHz

30 GHz

 Aeronautical
Radionavigation
(Radio Beacons)

MARITIME
RADIONAVIGATION
(RADIO BEACONS)

Ae
ron

au
tic

al
Mo

bil
e

Ma
riti

me
Ra

dio
na

vig
ati

on
(R

ad
io

Be
ac

on
s)

AE
RO

NA
UT

IC
AL

RA
DI

ON
AV

IG
AT

IO
N

(R
AD

IO
 B

EA
CO

NS
)

 AERONAUTICAL
RADIONAVIGATION
(RADIO BEACONS)

 Aeronautical
Mobile

Ae
ron

au
tic

al
Mo

bil
e

RA
DI

ON
AV

IG
AT

IO
N

 A
ER

ON
AU

TI
CA

L
RA

DI
ON

AV
IG

AT
IO

N
M

AR
IT

IM
E

M
OB

IL
E Aeronautical

Radionavigation

 M
OB

ILE
 (D

IS
TR

ES
S

AN
D

CA
LL

IN
G)

MA
RI

TI
ME

 M
OB

ILE

M
AR

IT
IM

E
M

OB
IL

E
(S

HI
PS

 O
NL

Y)

M
OB

IL
E

AE
RO

NA
UT

IC
AL

RA
DI

ON
AV

IG
AT

IO
N

(R
AD

IO
 B

EA
CO

NS
)

AE
RO

NA
UT

IC
AL

RA
DI

ON
AV

IG
AT

IO
N

(R
AD

IO
 B

EA
CO

NS
)

BROADCASTING
(AM RADIO)

MA
RI

TIM
E

MO
BI

LE
 (T

EL
EP

HO
NY

)

MA
RI

TIM
E

MO
BI

LE
 (T

EL
EP

HO
NY

)
 M

OB
ILE

 (D
IS

TR
ES

S
AN

D
CA

LL
IN

G)

MARITIME
MOBILE

LAND MOBILE

MOBILE

FIXED ST
AN

DA
RD

 FR
EQ

. A
ND

 TI
ME

 S
IG

NA
L (

25
00

kH
z)

ST
AN

DA
RD

 FR
EQ

. A
ND

 TI
ME

 S
IG

NA
L

Sp
ac

e R
es

ea
rch MARITIME

MOBILE

LAND MOBILE

MOBILE

FIXED

AE
RO

NA
UT

IC
AL

MO
BI

LE
 (R

)

ST
AN

DA
RD

 FR
EQ

.

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (R

)

AE
RO

NA
UT

IC
AL

MO
BI

LE
 (O

R)

AE
RO

NA
UT

IC
AL

MO
BI

LE
 (R

)

FIXED

MOBILE**

Radio-
location

FI
XE

D
MO

BI
LE

*

AMATEUR

FI
XE

D

FI
XE

D

FI
XE

D

FIXED

FI
XE

DMARITIME
MOBILE

MO
BI

LE
*

MO
BI

LE
*

M
OB

IL
E

ST
AN

DA
RD

 FR
EQ

. A
ND

 TI
ME

 S
IG

NA
L (

50
00

 K
HZ

)

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (R

)

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (O

R)

ST
AN

DA
RD

 FR
EQ

.
Sp

ac
e R

es
ea

rch

MOBILE**

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (R

)

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (O

R) FI
XE

D
M

OB
IL

E*

BR
OA

DC
AS

TI
NG

MA
RI

TI
ME

 M
OB

ILE

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (R

)
AE

RO
NA

UT
IC

AL
 M

OB
ILE

 (O
R) FI
XE

D
Mo

bil
e

AM
AT

EU
R

SA
TE

LL
IT

E
AM

AT
EU

R

AM
AT

EU
R

FIXED

Mobile

MA
RI

TIM
E M

OB
ILE

MARITIME
MOBILE

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (R

)
AE

RO
NA

UT
IC

AL
 M

OB
ILE

 (O
R)

FI
XE

D

BR
OA

DC
AS

TI
NG

FI
XE

D
ST

AN
DA

RD
 FR

EQ
. A

ND
 TI

ME
 S

IG
NA

L (
10

,00
0 k

Hz
)

ST
AN

DA
RD

 FR
EQ

.
Sp

ac
e R

es
ea

rch
AE

RO
NA

UT
IC

AL
 M

OB
ILE

 (R
)

AM
AT

EU
R

FIXED

Mobile* AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (R

)
AE

RO
NA

UT
IC

AL
 M

OB
ILE

 (O
R)

FIX
ED

FIX
ED

BR
OA

DC
AS

TI
NG

M
AR

IT
IM

E
M

OB
IL

E

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (R

)
AE

RO
NA

UT
IC

AL
 M

OB
ILE

 (O
R)

RA
DIO

 AS
TR

ON
OM

Y
Mo

bil
e*

AM
AT

EU
R

BR
OA

DC
AS

TI
NG

AM
AT

EU
R

AM
AT

EU
R S

AT
EL

LIT
E

M
ob

ile
*

FI
XE

D

BR
OA

DC
AS

TI
NG

ST
AN

DA
RD

 FR
EQ

. A
ND

 TI
ME

 S
IG

NA
L (

15
,00

0 k
Hz

)
ST

AN
DA

RD
 FR

EQ
.

Sp
ac

e R
es

ea
rch

FIXED

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (O

R)

M
AR

IT
IM

E
M

OB
IL

E

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (O

R)
AE

RO
NA

UT
IC

AL
 M

OB
ILE

 (R
)

FIX
ED

FI
XE

D

BR
OA

DC
AS

TI
NG

ST
AN

DA
RD

 FR
EQ

.
Sp

ac
e R

es
ea

rch

FI
XE

D

MA
RI

TI
ME

 M
OB

ILE

Mo
bil

e
FI

XE
D

AM
AT

EU
R

AM
AT

EU
R

SA
TE

LL
IT

E

BR
OA

DC
AS

TI
NG

FI
XE

D
AE

RO
NA

UT
IC

AL
 M

OB
ILE

 (R
)

MA
RI

TI
ME

 M
OB

ILE

FI
XE

D
FI

XE
D

FI
XE

D

 M
ob

ile
*

 M
OB

ILE
**

FI
XE

D

ST
AN

DA
RD

 FR
EQ

. A
ND

 TI
ME

 S
IG

NA
L (

25
,00

0 k
Hz

)
ST

AN
DA

RD
 FR

EQ
.

Sp
ac

e R
es

ea
rch

 L
AN

D
MO

BI
LE

MA
RI

TI
ME

 M
OB

ILE
 L

AN
D

MO
BI

LE
 M

OB
ILE

**
 R

AD
IO

 A
ST

RO
NO

MY
BR

OA
DC

AS
TI

NG
MA

RI
TI

ME
 M

OB
ILE

 L
AN

D
MO

BI
LE

FI
XE

D
 M

OB
ILE

**
FI

XE
D

 M
OB

ILE
**

 M
OB

ILE

FI
XE

D

FI
XE

D

FI
XE

D
FI

XE
D

FI
XE

D

 LA
ND

 M
OB

ILE

 M
OB

ILE
**

AM
AT

EU
R

AM
AT

EU
R

SA
TE

LL
IT

E

 M
OB

ILE

 L
AN

D
MO

BI
LE

M
OB

IL
E

M
OB

IL
E

FI
XE

D

FI
XE

D

M
OB

IL
E

M
OB

IL
E

FI
XE

D

FI
XE

D

LA
ND

M
OB

IL
E

LA
ND

M
OB

IL
E

LA
ND

M
OB

IL
E

LA
ND

 M
OB

ILE
Ra

dio
 A

str
on

om
y

RA
DI

O
AS

TR
ON

OM
Y

LA
ND

 M
OB

ILE

FI
XE

D
FIX

ED

M
OB

IL
E

MO
BIL

E

MOBILE

LA
ND

 M
OB

ILE

FIXED

LA
ND

M
OB

IL
E

FI
XE

D

FIX
ED

M
OB

IL
E

MO
BIL

E

LAND
MOBILE AMATEUR

BROADCASTING
(TV CHANNELS 2-4)

FI
XE

D
M

OB
IL

E

FI
XE

D
M

OB
IL

E

FI
XE

D
M

OB
IL

E
FI

XE
D

M
OB

IL
E

AE
RO

NA
UT

IC
AL

 R
AD

IO
NA

VI
GA

TI
ON

BROADCASTING
(TV CHANNELS 5-6)

BROADCASTING
(FM RADIO)

AERONAUTICAL
RADIONAVIGATION

AE
RO

NA
UT

IC
AL

MO
BI

LE
 (R

)
AE

RO
NA

UT
IC

AL
 M

OB
ILE

AE
RO

NA
UT

IC
AL

 M
OB

ILE

AE
RO

NA
UT

IC
AL

MO
BI

LE
 (R

)

AE
RO

NA
UT

IC
AL

MO
BI

LE
 (R

)
AE

RO
NA

UT
IC

AL
 M

OB
ILE

 (R
)

M
OB

IL
E

FI
XE

D
AM

AT
EU

R

BROADCASTING
(TV CHANNELS 7-13)

MOBILE

FIXED

MOBILE

FIXED

MOBILE SATELLITE

FIXED

MOBILE
SATELLITE

MOBILE

FIXED

MOBILE
SATELLITE

MOBILE

FI
XE

D
MO

BI
LE

AE
RO

NA
UT

IC
AL

 R
AD

IO
NA

VI
GA

TI
ON

ST
D.

 F
RE

Q.
 &

 T
IM

E
SI

GN
AL

 S
AT

. (4
00

.1
MH

z)
ME

T. S
AT

.
(S-

E)
SP

AC
E R

ES
.

(S-
E)

Ea
rth

 E
xp

l.
Sa

tel
lite

 (E
-S

)

MO
BI

LE
 S

AT
EL

LIT
E

(E
-S

)

FI
XE

D
MO

BI
LE

RA
DI

O
AS

TR
ON

OM
Y

RA
DI

OL
OC

AT
IO

N
Am

ate
ur

LA
ND

 M
OB

ILE

Meteorological
Satellite (S-E)

LA
ND

 M
OB

ILE
BR

OA
DC

AS
TIN

G
(TV

 CH
AN

NE
LS

 14
 - 2

0)

BROADCASTING
(TV CHANNELS 21-36)

TV BROADCASTINGRA
DI

O
AS

TR
ON

OM
Y

RA
DI

OL
OC

AT
IO

N

FI
XE

D

Am
ate

ur

AERONAUTICAL
RADIONAVIGATION

MO
BI

LE
**

FI
XE

D

AE
RO

NA
UT

ICA
L

RA
DIO

NA
VIG

AT
ION

Ra
dio

loc
ati

on

Ra
dio

loc
ati

on
MA

RI
TI

ME
RA

DI
ON

AV
IG

AT
IO

N

MA
RI

TI
ME

RA
DI

ON
AV

IG
AT

IO
N

Ra
dio

loc
ati

on

Radiolocation

Radiolocation

RADIO-
LOCATION RADIO-

LOCATION

Amateur

AE
RO

NA
UT

IC
AL

RA
DI

ON
AV

IG
AT

IO
N

(G
rou

nd
)

RA
DI

O-
LO

CA
TIO

N
Ra

dio
-

loc
ati

on

AE
RO

. R
AD

IO
-

NA
V.(

Gr
ou

nd
)

FIX
ED

 SA
T.

 (S
-E)

RA
DI

O-
LO

CA
TIO

N
Ra

dio
-

loc
ati

on

FIXED

FIXED
SATELLITE

(S-E)

FI
XE

DAE
RO

NA
UT

IC
AL

 R
AD

IO
NA

VI
GA

TI
ON MO

BI
LE

FI
XE

D
MO

BI
LE

RA
DI

O
AS

TR
ON

OM
Y

Sp
ac

e R
es

ea
rch

 (P
as

siv
e)

AE
RO

NA
UT

IC
AL

 R
AD

IO
NA

VI
GA

TI
ON

RA
DI

O-
LO

CA
TI

ON
Ra

dio
-

loc
ati

on
RA

DI
ON

AV
IG

AT
IO

N

Ra
dio

loc
ati

on

RA
DI

OL
OC

AT
IO

N
Ra

dio
loc

ati
on

Ra
dio

loc
ati

on

Ra
dio

loc
ati

on
RA

DI
OL

OC
AT

IO
N

RA
DI

O-
LO

CA
TI

ON

MA
RI

TI
ME

RA
DI

ON
AV

IG
AT

IO
N

MA
RI

TIM
E

RA
DI

ON
AV

IG
AT

IO
N

ME
TE

OR
OL

OG
IC

AL
AI

DS

Am
ate

ur

Am
ate

ur

FIX
ED

FIX
ED

SA
TE

LL
ITE

 (E
-S

)
MO

BI
LE

FIX
ED

SA
TE

LL
ITE

 (E
-S

)

FIX
ED

SA
TE

LL
ITE

 (E
-S

)
M

O
BI

LE

FIX
ED FIX

ED

FIX
ED

FIX
ED

MO
BI

LE

FIX
ED

SP
AC

E
RE

SE
AR

CH
 (E

-S
)

FIX
ED

Fix
ed

MO
BIL

E
SA

TE
LL

ITE
 (S

-E
)

FIX
ED

 S
AT

EL
LIT

E
(S-

E)

FIX
ED

 S
AT

EL
LIT

E
(S-

E)

FIX
ED

SA
TE

LL
ITE

 (S
-E)

FIX
ED

SA
TE

LL
ITE

 (S
-E

)

FIX
ED

SA
TE

LL
ITE

 (E
-S

)
FIX

ED
SA

TE
LL

ITE
 (E

-S
) FIX

ED
SA

TE
LL

ITE
(E-

S)
FIX

ED
SA

TE
LL

ITE
(E-

S)

FIX
ED

FIX
ED

FIX
ED

FIX
ED

FIX
ED

FIX
ED

FIX
ED

ME
T.

SA
TE

LL
ITE

 (S
-E)

Mo
bil

e
Sa

tel
lite

 (S
-E

)
Mo

bil
e

Sa
tel

lite
 (S

-E
)

Mo
bile

Sa
tel

lite
 (E

-S)
(no

 ai
rbo

rne
)

Mo
bile

 S
ate

llite
(E-

S)(
no

 ai
rbo

rne
)

Mo
bil

e S
ate

llite
 (S

-E
)

Mo
bil

e
Sa

tel
lite

 (E
-S

)

MO
BI

LE
SA

TE
LL

ITE
 (E

-S
)

EA
RT

H
EX

PL
.

SA
TE

LL
ITE

(S -
E)

EA
RT

H
EX

PL
.

SA
T.

(S-
E)

EA
RT

H
EX

PL
.

SA
TE

LL
ITE

 (S
-E)

ME
T.

SA
TE

LL
ITE

(E-
S)

FIX
ED

FIX
ED

SP
AC

E
RE

SE
AR

CH
 (S

-E
)

(de
ep

 sp
ac

e o
nly

)
SP

AC
E

RE
SE

AR
CH

 (S
-E

)

AE
RO

NA
UT

IC
AL

RA
DI

ON
AV

IG
AT

IO
N

RA
DI

OL
OC

AT
IO

N
Ra

dio
loc

ati
on

Ra
dio

loc
ati

on

Ra
dio

loc
ati

on

Ra
dio

loc
ati

on

MA
RI

TI
ME

RA
DI

ON
AV

IG
AT

IO
N Me

teo
rol

og
ica

l
Aid

s
RA

DI
ON

AV
IG

AT
IO

N

RA
DI

OL
OC

AT
IO

N
Ra

dio
loc

ati
on

RA
DI

O-
LO

CA
TI

ON

Ra
dio

loc
ati

on

Ra
dio

loc
ati

on
Am

ate
ur

Am
ate

ur
Am

ate
ur

Sa
tel

lite
RA

DI
OL

OC
AT

IO
N

FIX
ED

FIX
ED

FIXED

FI
XE

DFIXED
SATELLITE

(S-E)

FIXED
SATELLITE

(S-E)

Mobile **

SP
AC

E
RE

SE
AR

CH
(Pa

ssi
ve

)
EA

RT
H

EX
PL

.
SA

T.
(P

as
siv

e)
RA

DI
O

AS
TR

ON
OM

Y
SP

AC
E

RE
SE

AR
CH

 (P
as

siv
e)

EA
RT

H
EX

PL
.

SA
TE

LL
ITE

 (P
as

siv
e)

RA
DI

O
AS

TR
ON

OM
Y

BR
OA

DC
AS

TI
NG

SA
TE

LL
IT

E

AE
RO

NA
UT

IC
AL

 R
AD

IO
NA

V.
Sp

ac
e R

es
ea

rch
 (E

-S
)

Space
Research

La
nd

 M
ob

ile
Sa

tel
lite

 (E
-S

)

Ra
dio

-
loc

ati
on

RA
DI

O-
LO

CA
TIO

N

RA
DI

O
NA

VIG
AT

IO
N

FI
XE

D
SA

TE
LL

IT
E

(E
-S

)
La

nd
 M

ob
ile

Sa
te

llit
e

(E
-S

)

La
nd

 M
ob

ile
Sa

tel
lite

 (E
-S

)
Fix

ed
Mo

bil
e

FIX
ED

 SA
T.

 (E
-S

)

Fix
ed

Mo
bil

e
FIX

ED

Mo
bil

e
FIX

ED

MO
BI

LE
Sp

ac
e R

es
ea

rch
Sp

ac
e R

es
ea

rch

Sp
ac

e R
es

ea
rch

SP
AC

E
RE

SE
AR

CH
(P

as
siv

e)
RA

DI
O

AS
TR

ON
OM

Y
EA

RT
H

EX
PL

. S
AT

.
(P

as
siv

e)

Ra
dio

loc
ati

on
RA

DI
OL

OC
AT

IO
N

Ra
dio

loc
ati

on

FX
 S

AT
 (E

-S
)

FIX
ED

 S
AT

EL
LIT

E
 (E

-S
)

FI
XE

D

FIX
ED

FI
XE

D
M

O
BI

LE

EA
RT

H
EX

PL
.

SA
T.

(Pa
ssi

ve)

M
O

BI
LE

Ea
rth

 Ex
pl.

Sa
tel

lite
 (A

ctiv
e)

Sta
nd

ard
Fre

qu
en

cy
 an

d
Tim

e S
ign

al
Sa

tel
lite

 (E
-S

)

Ea
rth

Ex
plo

rat
ion

Sa
tel

lite
(S

-S
)

MO
BI

LE
FIX

ED

M
O

BI
LE

FI
XE

D
Ea

rth
Ex

plo
rat

ion
Sa

tel
lite

 (S
-S

)

FI
XE

D
M

O
BI

LE
FI

XE
D

SA
T

(E
-S

)

FIX
ED

 S
AT

EL
LIT

E
(E

-S
)

MO
BI

LE
 S

AT
EL

LIT
E

(E
-S

)

FIX
ED

SA
TE

LL
ITE

(E
-S

)

MO
BI

LE
SA

TE
LL

ITE
(E

-S
)

Sta
nd

ard
Fre

qu
en

cy
 an

d
Tim

e S
ign

al
Sa

tel
lite

 (S
-E

)
Sta

nd
. F

req
ue

nc
y

an
d T

im
e S

ign
al

Sa
tel

lite
 (S

-E
)

FIX
ED

MO
BI

LE

RA
DI

O
AS

TR
ON

OM
Y

SP
AC

E
RE

SE
AR

CH
(P

as
siv

e)

EA
RT

H
EX

PL
OR

AT
IO

N
SA

T.
(P

as
siv

e)
RA

DI
ON

AV
IG

AT
IO

N

RA
DI

ON
AV

IG
AT

IO
N

IN
TE

R-
SA

TE
LL

IT
E

RA
DI

ON
AV

IG
AT

IO
N

RA
DI

OL
OC

AT
IO

N
Ra

dio
loc

ati
on

SP
AC

E
RE

.
.(P

as
si

ve
)

EA
RT

H
EX

PL
.

SA
T.

(P
as

siv
e)

FI
XE

D
M

O
BI

LE

FI
XE

D
M

O
BI

LE

FI
XE

D
MO

BI
LE

M
ob

ile
Fi

xe
dFIX

ED
SA

TE
LL

ITE
 (S

-E
)

BR
O

AD
-

CA
ST

IN
G

BC
ST

SA
T.

FIX
ED

MO
BI

LE

FX
SA

T(
E-

S)
M

O
BI

LE
FI

XE
D

EA
RT

H
EX

PL
OR

AT
IO

N
SA

TE
LL

IT
E

FI
XE

D
SA

TE
LL

ITE
 (E

-S)
MO

BIL
E

SA
TE

LL
ITE

 (E
-S)

M
O

BI
LE

FI
XE

D

SP
AC

E
RE

SE
AR

CH
(P

as
si

ve
)

EA
RT

H
EX

PL
OR

AT
IO

N
SA

TE
LL

ITE
(P

as
siv

e)

EA
RT

H
EX

PL
OR

AT
IO

N
SA

T.
(P

as
siv

e)

SP
AC

E
RE

SE
AR

CH
(P

as
siv

e)

IN
TE

R-
SA

TE
LL

ITE
RA

DIO
-

LO
CA

TIO
N

SP
AC

E
RE

SE
AR

CH
FI

XE
D

MOBILE

F IXED

MOBILE
SATELLITE

(E-S)

MO
BIL

E
SA

TE
LL

ITE
RA

DIO
NA

VIG
AT

IO
N

RA
DI

O-
NA

VIG
AT

IO
N

SA
TE

LL
ITE

EA
RT

H
EX

PL
OR

AT
IO

N
SA

TE
LL

ITE F IXED
SATELLITE

(E-S)

MO
BI

LE
FIX

ED
FIX

ED
SA

TE
LL

ITE
 (E

-S
)

AM
AT

EU
R

AM
AT

EU
R

SA
TE

LL
IT

E

AM
AT

EU
R

AM
AT

EU
R

SA
TE

LL
IT

E

Am
at

eu
r

Sa
te

llit
e

Am
at

eu
r

RA
DI

O
-

LO
CA

TI
O

N

MO
BI

LE
FIX

ED
MO

BI
LE

SA
TE

LL
ITE

(S
-E

)

FIX
ED

SA
TE

LL
ITE

(S
-E

)

MO
BI

LE
FIX

ED
BR

OA
D-

CA
ST

IN
G

SA
TE

LL
ITE

BR
OA

D-
CA

ST
IN

G

SPACE
RESEARCH

(Passive)

RADIO
ASTRONOMY

EARTH
EXPLORATION

SATELLITE
(Passive)

MOBILE

FI
XE

D

MO
BI

LE
FIX

ED
RA

DI
O-

LO
CA

TIO
N

FIX
ED

SA
TE

LL
ITE

(E
-S

)
MOBILE

SATELLITE

RADIO-
NAVIGATION
SATELLITE

RADIO-
NAVIGATION

Radio-
location

EA
RT

H
 E

XP
L.

SA
TE

LL
ITE

 (P
as

siv
e)

SP
AC

E
RE

SE
AR

CH
(P

as
siv

e)

FI
XE

D
FI

XE
D

SA
TE

LL
IT

E
(S

-E
)

SPACE
RESEARCH

(Passive)

RADIO
ASTRONOMY

EARTH
EXPLORATION

SATELLITE
(Passive)

FIXED

MOBILE

M
O

BI
LE

IN
TE

R-
SA

TE
LL

ITE

RADIO-
LOCATION

INTER-
SATELLITE

Radio-
location

MOBILE

MOBILE
SATELLITE

RADIO-
NAVIGATION

RADIO-
NAVIGATION
SATELLITE

AM
AT

EU
R

AM
AT

EU
R

SA
TE

LL
IT

E
Am

ate
ur

Am
ate

ur
 S

ate
llit

e
RA

DI
O-

LO
CA

TI
ON

MO
BI

LE
FIX

ED
FIX

ED
SA

TE
LL

ITE
 (S

-E
)

MO
BI

LE
FIX

ED
FIX

ED
SA

TE
LL

ITE
(S

-E
)

EA
RT

H
EX

PL
OR

AT
IO

N
SA

TE
LL

ITE
 (P

as
siv

e)
SP

AC
E

RE
S.

(P
as

siv
e)

SP
AC

E R
ES

.
(P

as
siv

e)

RA
DI

O
AS

TR
ON

OM
Y

FIXED
SATELLITE

(S-E)

FIXED

MO
BI

LE
FIX

ED

MO
BI

LE
FIX

ED

MO
BI

LE
FIX

ED

MO
BI

LE
FIX

ED

MO
BI

LE
FIX

ED

SP
AC

E R
ES

EA
RC

H
(P

as
siv

e)
RA

DI
O

AS
TR

ON
OM

Y
EA

RT
H

EX
PL

OR
AT

IO
N

SA
TE

LL
ITE

 (P
as

siv
e)

EA
RT

H
EX

PL
OR

AT
IO

N
SA

T.
(Pa

ssi
ve

)

SP
AC

E
RE

SE
AR

CH
(P

as
siv

e)
IN

TE
R-

SA
TE

LL
ITE

IN
TE

R-
SA

TE
LL

ITE

IN
TE

R-
SA

TE
LL

ITE

IN
TE

R-
SA

TE
LL

ITE

MOBILE

MOBILE

MO
BI

LEMOBILE
SATELLITE

RADIO-
NAVIGATION

RADIO-
NAVIGATION
SATELLITE

FIXED
SATELLITE

(E-S)

FIXED

FIX
ED

EA
RT

H
EX

PL
OR

AT
IO

N
SA

T.
(P

as
siv

e)
SP

AC
E

RE
S.

(P
as

siv
e)

SPACE
RESEARCH

(Passive)

RADIO
ASTRONOMY

EARTH
EXPLORATION

SATELLITE
(Passive)

MO
BI

LE
FIX

ED

MO
BI

LE
FIX

ED

MO
BI

LE
FIX

ED

FIX
ED

SA
TE

LL
ITE

 (S
-E

)

FIX
ED

SA
TE

LL
ITE

(S
-E

) FIX
ED

SA
TE

LL
ITE

 (S
-E

)

EA
RT

H
EX

PL
.

SA
T.

(P
as

siv
e)

SP
AC

E R
ES

.
(P

as
siv

e)

Ra
dio

-
loc

ati
on

Ra
dio

-
loc

ati
on

RA
DI

O-
LO

CA
TIO

N

AM
AT

EU
R

AM
AT

EU
R

SA
TE

LL
IT

E

Am
ate

ur
Am

ate
ur

 S
ate

llit
e

EA
RT

H
EX

PL
OR

AT
IO

N
SA

TE
LL

ITE
 (P

as
siv

e)
SP

AC
E

RE
S.

 (P
as

siv
e)

MOBILE

MOBILE
SATELLITE

RADIO-
NAVIGATION

RADIO-
NAVIGATION
SATELLITE

MOBILE

MOBILE

FIXED

RADIO-
ASTRONOMY

FIXED
SATELLITE

(E-S)

FIXED

3.
0

3.
02

5

3.
15

5

3.
23

0

3.
4

3.
5

4.
0

4.
06

3

4.
43

8

4.
65

4.
7

4.
75

4.
85

4.
99

5
5.

00
3

5.
00

5
5.

06
0

5.
45

MARITIME
MOBILE

AM
AT

EU
R

AM
AT

EU
R

SA
TE

LL
IT

E
FI

XE
D

Mo
bil

e
MA

RI
TIM

E M
OB

ILE

ST
AN

DA
RD

 FR
EQ

UE
NC

Y &
 TI

ME
 SI

GN
AL

 (2
0,0

00
 K

HZ
)

Sp
ac

e R
es

ea
rch

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (O

R)

AM
AT

EU
R

SA
TE

LL
IT

E
AM

AT
EU

R

ME
T.

SA
T.

(S-
E)

MO
B.

SA
T.

(S-
E)

SP
AC

E R
ES

. (S
-E)

SP
AC

E O
PN

. (S
-E)

ME
T.

SA
T.

(S-
E)

Mo
b.

Sa
t. (

S-E
)

SP
AC

E R
ES

. (S
-E)

SP
AC

E O
PN

. (S
-E)

ME
T.

SA
T.

(S-
E)

MO
B.

SA
T.

(S-
E)

SP
AC

E R
ES

. (S
-E)

SP
AC

E O
PN

. (S
-E)

ME
T.

SA
T.

(S-
E)

Mo
b.

Sa
t. (

S-E
)

SP
AC

E R
ES

. (S
-E)

SP
AC

E O
PN

. (S
-E)

MOBILE

FIXED

FIX
ED

La
nd

 M
ob

ile
FIX

ED
MO

BIL
E

 L
AN

D
MO

BI
LE

 LA
ND

 M
OB

ILE

 M
AR

ITI
ME

 M
OB

ILE
 M

AR
ITI

ME
 M

OB
ILE

 M
AR

IT
IM

E
MO

BI
LE M

AR
ITI

ME
 M

OB
ILE

 L
AN

D
MO

BI
LE

FIX
ED

MO
BI

LE
MO

BIL
E S

AT
EL

LIT
E (

E-S
)

Ra
dio

loc
ati

on
Ra

dio
loc

ati
on

LA
ND

 M
OB

ILE
AM

AT
EU

R

 M
OB

ILE
 S

AT
EL

LIT
E

(E
-S

)
 R

AD
IO

NA
VIG

AT
IO

N
SA

TE
LL

ITE

ME
T.

AI
DS

(R
ad

ios
on

de
)

ME
TE

OR
OL

OG
IC

AL
 A

ID
S

(R
AD

IO
SO

ND
E)

SP
AC

E
RE

SE
AR

CH
 (S

-S
)

FI
XE

D
MO

BI
LE

LA
ND

 M
OB

ILE
FI

XE
D

LA
ND

 M
OB

ILE

FI
XE

D
FI

XE
D

RA
DI

O
AS

TR
ON

OM
Y

RA
DI

O
AS

TR
ON

OM
Y

ME
TE

OR
OL

OG
IC

AL
AI

DS
 (R

AD
IO

SO
ND

E)

ME
TE

OR
OL

OG
IC

AL
AI

DS
 (R

ad
ios

on
de

)
ME

TE
OR

OL
OG

IC
AL

SA
TE

LL
IT

E
(s-

E)

Fixed

FIXED

MET. SAT.
(s-E)

FI
XE

D

FI
XE

D

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 S

AT
EL

LIT
E

(R
) (

sp
ac

e t
o E

art
h)

AE
RO

NA
UT

ICA
L R

AD
ION

AV
IGA

TIO
N

RA
DIO

NA
V.

SA
TE

LLI
TE

 (S
pac

e t
o E

art
h)

AE
RO

NA
UT

ICA
L M

OB
ILE

 SA
TE

LLI
TE

 (R
)

(sp
ace

 to
 Ea

rth
)

Mo
bile

 Sa
tell

ite
 (S

- E
)

RA
DIO

 DE
T.

SA
T.

(E-
S)

MO
BI

LE
SA

T(
E-

S)
AE

RO
. R

AD
ION

AV
IGA

TIO
N

AE
RO

. R
AD

ION
AV

.
AE

RO
. R

AD
ION

AV
.

RA
DIO

 DE
T. S

AT
. (E

-S)
RA

DIO
 DE

T. S
AT

. (E
-S)

MO
BIL

E
SA

T.
(E-

S)
MO

BIL
E S

AT
. (E

-S)
Mo

bile
 Sa

t. (
S-E

)
RA

DIO
 AS

TR
ON

OM
Y

RA
DI

O
AS

TR
ON

OM
Y

 M
OB

ILE
 S

AT
. (

E-
S)

FI
XE

D
MO

BI
LE

FI
XE

D

FI
XE

D
(L

OS
)

MO
BIL

E
(LO

S)
SP

AC
E

RE
SE

AR
CH

(s-
E)(

s-s
)

SP
AC

E
OP

ER
AT

IO
N

(s-
E)(

s-s
)

EA
RT

H
EX

PL
OR

AT
ION

SA
T.

(s-
E)(

s-s
)

Am
ate

ur

MO
BI

LE
Fix

ed
RA

DIO
LO

CA
TIO

N

AM
AT

EU
R

RA
DI

O
AS

TR
ON

.
SP

AC
E

RE
SE

AR
CH

EA
RT

H
 E

XP
L

SA
T

FIX
ED

 S
AT

.
 (S

-E
)

FIXED

MOBILE

FIXED
SATELLITE (S-E)

FIX
ED

MO
BI

LE
FIX

ED
SA

TE
LL

ITE
 (E

-S
)

FIX
ED

SA
TE

LL
ITE

(E
-S

)
MO

BI
LE

FIX
ED

SP
AC

E
RE

SE
AR

CH
 (S

-E)
(D

ee
p S

pa
ce

) AE
RO

NA
UT

IC
AL

 R
AD

IO
NA

VI
GA

TIO
N

EA
RT

H
EX

PL
. S

AT
.

(Pa
ssi

ve
)

30
0

32
5

33
5

40
5

41
5

43
5

49
5

50
5

51
0

52
5

53
5

16
05

16
15

17
05

18
00

19
00

20
00

20
65

21
07

21
70

21
73

.5
21

90
.5

21
94

24
95

25
01

25
02

25
05

28
50

30
00

RADIO-
LOCATION

BR
OA

DC
AS

TIN
G

FIXED

MOBILE

AM
AT

EU
R

RA
DI

OL
OC

AT
IO

N

MO
BI

LE
FIX

ED
MA

RI
TIM

E
MO

BI
LE

MA
RI

TIM
E

MO
BI

LE
 (T

EL
EP

HO
NY

)

MA
RI

TIM
E

MO
BIL

E
LA

ND
MO

BIL
E

MO
BIL

E
FIX

ED

30
.0

30
.5

6

32
.0

33
.0

34
.0

35
.0

36
.0

37
.0

37
.5

38
.0

38
.2

5

39
.0

40
.0

42
.0

43
.6

9

46
.6

47
.0

49
.6

50
.0

54
.0

72
.0

73
.0

74
.6

74
.8

75
.2

75
.4

76
.0

88
.0

10
8.

0

11
7.

97
5

12
1.

93
75

12
3.

08
75

12
3.

58
75

12
8.

81
25

13
2.

01
25

13
6.

0

13
7.

0
13

7.
02

5
13

7.
17

5
13

7.
82

5
13

8.
0

14
4.

0
14

6.
0

14
8.

0
14

9.
9

15
0.

05
15

0.
8

15
2.

85
5

15
4.

0

15
6.

24
75

15
7.

03
75

15
7.

18
75

15
7.

45
16

1.
57

5
16

1.
62

5
16

1.
77

5
16

2.
01

25

17
3.

2
17

3.
4

17
4.

0

21
6.

0

22
0.

0
22

2.
0

22
5.

0

23
5.

0

30
0

ISM – 6.78 ± .015 MHz ISM – 13.560 ± .007 MHz ISM – 27.12 ± .163 MHz

ISM – 40.68 ± .02 MHz

ISM – 24.125 ± 0.125 GHz 30 GHz

ISM – 245.0 ± 1GHzISM – 122.5 ± .500 GHzISM – 61.25 ± .250 GHz

30
0.

0

32
2.

0

32
8.

6

33
5.

4

39
9.

9

40
0.

05
40

0.
15

40
1.

0

40
2.

0

40
3.

0
40

6.
0

40
6.

1

41
0.

0

42
0.

0

45
0.

0
45

4.
0

45
5.

0
45

6.
0

46
0.

0
46

2.5
37

5
46

2.7
37

5
46

7.5
37

5
46

7.7
37

5
47

0.
0

51
2.

0

60
8.

0
61

4.
0

69
8

74
6

76
4

77
6

79
4

80
6

82
1

82
4

84
9

85
1

86
6

86
9

89
4

89
6

90
19

01
90

2

92
8

92
9

93
0

93
1

93
2

93
5

94
0

94
1

94
4

96
0

12
15

12
40

13
00

13
50

13
90

13
92

13
95

20
00

20
20

20
25

21
10

21
55

21
60

21
80

22
00

22
90

23
00

23
05

23
10

23
20

23
45

23
60

23
85

23
90

24
00

24
17

24
50

24
83

.5
25

00
26

55
26

90
27

00

29
00

30
00

14
00

14
27

14
29

.5

14
30

14
32

14
35

15
25

15
30

15
35

15
44

15
45

15
49

.5

15
58

.5
15

59
16

10
16

10
.6

16
13

.8
16

26
.5

16
60

16
60

.5
16

68
.4

16
70

16
75

17
00

17
10

17
55

18
50

MA
RIT

IME
 M

OB
ILE

 SA
TE

LLI
TE

(sp
ace

 to
 Ea

rth
)

MO
BIL

E S
AT

EL
LIT

E (
S-E

)

RA
DI

OL
OC

AT
IO

N
RA

DI
ON

AV
IG

AT
IO

N
SA

TE
LL

IT
E

(S
-E

)

RA
DI

OL
OC

AT
IO

N
Am

ate
ur

Ra
dio

loc
ati

on
AE

RO
NA

UT
IC

AL
RA

DI
ON

AV
IG

AT
IO

N

SP
A

CE
 R

ES
EA

RC
H

(P
as

siv
e)

EA
RT

H
EX

PL
 S

AT
 (P

as
siv

e)
RA

DI
O

AS

TR
ON

OM
Y

MO
BI

LE
MO

BI
LE

 **
FIX

ED
-S

AT

 (
E-

S)
FI

XE
D

FI
XE

D FI
XE

D*
*

LA
ND

 M
OB

ILE
 (T

LM
)

MO
BIL

E S
AT

.
(Sp

ac
e t

o E
art

h)
MA

RIT
IM

E M
OB

ILE
 SA

T.
(Sp

ac
e t

o E
art

h)
Mo

bile
(Ae

ro.
 TL

M)

MO
BI

LE
 S

AT
EL

LIT
E

(S
-E

)

MO
BIL

E S
AT

EL
LIT

E
(Sp

ace
 to

 Ea
rth

)
AE

RO
NA

UT
ICA

L M
OB

ILE
 SA

TE
LLI

TE
 (R

)
(sp

ace
 to

 Ea
rth

)

3.
0

3.
1

3.
3

3.
5

3.
6

3.
65

3.
7

4.
2

4.
4

4.
5

4.
8

4.
94

4.
99

5.
0

5.
15

5.
25

5.
35

5.
46

5.
47

5.
6

5.
65

5.
83

5.
85

5.
92

5

6.
42

5

6.
52

5

6.
70

6.
87

5

7.
02

5
7.

07
5

7.
12

5

7.
19

7.
23

5
7.

25

7.
30

7.
45

7.
55

7.
75

7.
90

8.
02

5

8.
17

5

8.
21

5

8.
4

8.
45

8.
5

9.
0

9.
2

9.
3

9.
5

10
.0

10
.4

5

10
.5

10
.5

5
10

.6

10
.6

8

10
.7

11
.7

12
.2

12
.7

12
.7

5

13
.2

5
13

.4

13
.7

5
14

.0

14
.2

14
.4

14
.4

7
14

.5
14

.7
14

5

15
.1

36
5

15
.3

5

15
.4

15
.4

3

15
.6

3
15

.7
16

.6
17

.1

17
.2

17
.3

17
.7

17
.8

18
.3

18
.6

18
.8

19
.3

19
.7

20
.1

20
.2

21
.2

21
.4

22
.0

22
.2

1
22

.5

22
.5

5

23
.5

5

23
.6

24
.0

24
.0

5

24
.2

5
24

.4
5

24
.6

5

24
.7

5

25
.0

5

25
.2

5
25

.5
27

.0

27
.5

29
.5

29
.9

30
.0

ISM – 2450.0 ± 50 MHz

30
.0

31
.0

31
.3

31
.8

32
.0

32
.3

33
.0

33
.4

36
.0

37
.0

37
.6

38
.0

38
.6

39
.5

40
.0

40
.5

41
.0

42
.5

43
.5

45
.5

46
.9

47
.0

47
.2

48
.2

50
.2

50
.4

51
.4

52
.6

54
.2

5
55

.7
8

56
.9

57
.0

58
.2

59
.0

59
.3

64
.0

65
.0

66
.0

71
.0

74
.0

75
.5

76
.0

77
.0

77
.5

78
.0

81
.0

84
.0

86
.0

92
.0

95
.0

10
0.

0

10
2.

0

10
5.

0

11
6.

0

11
9.

98

12
0.

02

12
6.

0

13
4.

0

14
2.

0
14

4.
0

14
9.

0

15
0.

0

15
1.

0

16
4.

0

16
8.

0

17
0.

0

17
4.

5

17
6.

5

18
2.

0

18
5.

0

19
0.

0

20
0.

0

20
2.

0

21
7.

0

23
1.

0

23
5.

0

23
8.

0

24
1.

0

24
8.

0

25
0.

0

25
2.

0

26
5.

0

27
5.

0

30
0.

0

ISM – 5.8 ± .075 GHz

ISM – 915.0 ± 13 MHz

IN
TE

R-
SA

TE
LL

ITE
RA

DIO
LO

CA
TIO

N
SA

TE
LLI

TE
 (E

-S)

AE
RO

NA
UT

IC
AL

RA
DIO

NA
V.

PLEASE NOTE: THE SPACING ALLOTTED THE SERVICES IN THE SPEC-
TRUM SEGMENTS SHOWN IS NOT PROPORTIONAL TO THE ACTUAL AMOUNT
OF SPECTRUM OCCUPIED.

AERONAUTICAL
MOBILE

AERONAUTICAL
MOBILE SATELLITE

AERONAUTICAL
RADIONAVIGATION

AMATEUR

AMATEUR SATELLITE

BROADCASTING

BROADCASTING
SATELLITE

EARTH EXPLORATION
SATELLITE

FIXED

FIXED SATELLITE

INTER-SATELLITE

LAND MOBILE

LAND MOBILE
SATELLITE

MARITIME MOBILE

MARITIME MOBILE
SATELLITE

MARITIME
RADIONAVIGATION

METEOROLOGICAL
AIDS

METEOROLOGICAL
SATELLITE

MOBILE

MOBILE SATELLITE

RADIO ASTRONOMY

RADIODETERMINATION
SATELLITE

RADIOLOCATION

RADIOLOCATION SATELLITE

RADIONAVIGATION

RADIONAVIGATION
SATELLITE

SPACE OPERATION

SPACE RESEARCH

STANDARD FREQUENCY
AND TIME SIGNAL

STANDARD FREQUENCY
AND TIME SIGNAL SATELLITE

RA
DI

O
AS

TR
ON

OM
Y

FIXED

MARITIME MOBILE

FIXED

MARITIME
MOBILE Aeronautical

Mobile

ST
AN

DA
RD

 FR
EQ

. A
ND

 TI
ME

 S
IG

NA
L (

60
 kH

z)
FIX

ED
Mo

bil
e*

ST
AN

D.
FR

EQ
. &

 TI
ME

 SI
G.

ME
T. A

IDS
(Ra

dio
son

de
)

Sp
ace

 O
pn.

 (S
-E)

MO
BIL

E.
SA

T. (
S-E

)

Fix
ed

Sta
nd

ard
Fre

q.
an

d
Tim

e S
ign

al
Sa

tel
lite

 (E
-S)

FI
XE

D

ST
AN

DA
RD

 FR
EQ

. A
ND

 TI
ME

 S
IG

NA
L (

20
 kH

z)

Am
ate

ur

M
O

BI
LE

FIX
ED

 SA
T.

 (E
-S

)
Sp

ac
e

Re
se

arc
h

ALLOCATION USAGE DESIGNATION
SERVICE EXAMPLE DESCRIPTION

Primary FIXED Capital Letters
Secondary Mobi le 1st Capital with lower case letters

U.S. DEPARTMENT OF COMMERCE
National Telecommunications and Information Administration
Office of Spectrum Management

October 2003

MO
BI

LE
BR

OA
DC

AS
TIN

G

TRAVELERS INFORMATION STATIONS (G) AT 1610 kHz

59-64 GHz IS DESIGNATED FOR
UNLICENSED DEVICES

Fixed

AE
RO

NA
UT

IC
AL

RA
DI

O
NA

VI
G

AT
IO

N

SP
AC

E
RE

SE
AR

CH
 (P

as
siv

e)

* EXCEPT AERO MOBILE (R)

** EXCEPT AERO MOBILE WAVELENGTH

BAND
DESIGNATIONS

ACTIVITIES

FREQUENCY

3 x 107m 3 x 106m 3 x 105m 30,000 m 3,000 m 300 m 30 m 3 m 30 cm 3 cm 0.3 cm 0.03 cm 3 x 105Å 3 x 104Å 3 x 103Å 3 x 102Å 3 x 10Å 3Å 3 x 10-1Å 3 x 10-2Å 3 x 10-3Å 3 x 10-4Å 3 x 10-5Å 3 x 10-6Å 3 x 10-7Å

0 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz 100 GHz 1 THz 1013Hz 1014Hz 1015Hz 1016Hz 1017Hz 1018Hz 1019Hz 1020Hz 1021Hz 1022Hz 1023Hz 1024Hz 1025Hz

THE RADIO SPECTRUM
MAGNIFIED ABOVE3 kHz 300 GHz

VERY LOW FREQUENCY (VLF)
Audible Range AM Broadcast FM Broadcast Radar Sub-Millimeter Visible Ultraviolet Gamma-ray Cosmic-ray

Infra-sonics Sonics Ultra-sonics Microwaves Infrared
P L S XC Radar

Bands

LF MF HF VHF UHF SHF EHF INFRARED VISIBLE ULTRAVIOLET X-RAY GAMMA-RAY COSMIC-RAY

X-ray

ALLOCATIONS
FREQUENCY

B
R

O
A

D
C

A
ST

IN
G

FI
XE

D
M

O
B

IL
E*

BR
O

AD
C

AS
TI

N
G

FI
XE

D
BR

O
AD

C
AS

TI
N

G
FI

XE
D

 M
ob

ile

 F
IX

ED
BR

O
AD

C
AS

TI
N

G

BR
OA

DC
AS

TIN
G

FIX
ED

FIX
ED

BR
OA

DC
AS

TI
NG

FIX
ED

BR
OA

DC
AS

TIN
G

FIX
ED

BR
OA

DC
AS

TIN
G

FIX
ED

BR
OA

DC
AS

TIN
G

FIX
ED

BR
OA

DC
AS

TIN
G

FIX
ED

BR
OA

DC
AS

TIN
G

FIX
ED

FIX
ED

FI
XE

D

FI
XE

D
FI

XE
D

FI
XE

D

LA
ND

M
OB

IL
E

FI
XE

D

AE
RO

NA
UT

IC
AL

 M
OB

ILE
 (R

)

AM
AT

EU
R

SA
TE

LL
IT

E
AM

AT
EU

R MO
BI

LE
 S

AT
EL

LIT
E

(E
-S

)

FI
XE

D

Fi
xe

d
M

ob
ile

Ra
di

o-
lo

ca
tio

n
FI

XE
D

M
O

BI
LE

LA
ND

 M
OB

ILE
 M

AR
IT

IM
E

MO
BI

LE

FI
XE

D
 L

AN
D

MO
BI

LE

FIX
ED

LA
ND

 M
OB

ILE

R
A

D
IO

N
A

V
-S

A
TE

LL
IT

E
FIX

ED
MO

BI
LE

FIX
ED

 L
AN

D
MO

BI
LE

ME
T. A

IDS
(R

ad
io-

so
nd

e)
SP

AC
E O

PN
.

 (S
-E)

Ea
rth

 Ex
pl

Sa
t

(E-
S)

Me
t-S

ate
llite

 (E
-S)

ME
T-S

AT
.

 (E
-S)

EA
RT

H
EX

PL
SA

T.
(E-

S)

Ea
rth

 Ex
pl

Sa
t

(E-
S)

Me
t-S

ate
llite

 (E
-S)

EA
RT

H
EX

PL
SA

T.
(E-

S)
ME

T-S
AT

.
 (E

-S)

LA
ND

 M
OB

ILE
LA

ND
 M

OB
ILE

FI
XE

D LA
ND

 M
OB

ILE
FI

XE
D

FI
XE

D

FI
XE

D
 L

AN
D

MO
BI

LE

LA
ND

 M
OB

ILE FI
XE

D
 L

AN
D

MO
BI

LE
LA

ND
 M

OB
ILE

 L
AN

D
MO

BI
LE

LA
ND

 M
OB

ILE

MO
BI

LE
FI

XE
D

MO
BI

LE
FI

XE
D

 B
RO

AD
CA

ST
MO

BI
LE

FI
XE

D

MO
BI

LE
FI

XE
D

FI
XE

D
LA

ND
 M

OB
ILE

LA
ND

 M
OB

ILE
FI

XE
D

LA
ND

 M
OB

ILE AE
RO

NA
UT

IC
AL

 M
OB

ILE

AE
RO

NA
UT

IC
AL

 M
OB

ILE FI
XE

D
LA

ND
 M

OB
ILE

LA
ND

 M
OB

ILE
LA

ND
 M

OB
ILE

FI
XE

D

LA
ND

 M
OB

ILE
FI

XE
D

M
O

BI
LE

FI
XE

D

FI
XE

D
FI

XE
D

MO
BI

LE
FI

XE
D

FI
XE

D
FI

XE
D

 B
RO

AD
CA

ST

LA
ND

 M
OB

ILE
LA

ND
 M

OB
ILE

FI
XE

D
LA

ND
 M

OB
ILE

ME
TE

OR
OL

OG
ICA

L
AID

S

FX
Sp

ac
e r

es
.

Ra
dio

 A
st

E-
Ex

pl
Sa

t
FI

XE
D

MO
BI

LE
**

MO
BI

LE
 S

AT
EL

LIT
E

(S
-E

)
RA

DI
OD

ET
ER

MI
NA

TIO
N

SA
T.

(S
-E

)

Ra
dio

loc
atio

n
MO

BI
LE

FI
XE

D

Am
at

eu
r

Ra
dio

loc
ati

on

AM
AT

EU
R

FI
XE

D
MO

BI
LE

B-
SA

T
FX

MO
B

Fix
ed

Mo
bil

e
Ra

dio
loc

at
ion

RA
DI

OL
OC

AT
IO

N

MO
BI

LE
 **

Fix
ed

 (T
LM

)
LA

ND
 M

OB
ILE

FIX
ED

 (T
LM

)
LA

ND
 M

OB
ILE

 (T
LM

)
FIX

ED
-S

AT

 (
S-

E)
FIX

ED
 (T

LM
)

MO
BIL

E

MO
BIL

E S
AT

.
(Sp

ac
e t

o E
art

h)
M

ob
ile

 *
*

MO
BI

LE
**

FI
XE

D

MO
BI

LE

MO
BI

LE
 S

AT
EL

LIT
E

(E
-S

)

SP
AC

E
OP

.
(E

-S
)(s

-s)
EA

RT
H

EX
PL.

SA
T. (

E-S
)(s-

s)
SP

AC
E

RE
S.

(E
-S

)(s
-s)

FX
.

MO
B.

MO
BI

LE
FI

XE
D

Mo
bil

e

R-
 LO

C.

BC
ST

-S
AT

EL
LIT

E
Fi

xe
d

Ra
dio

-
loc

ati
on

B-
SA

T
R-

 LO
C.

FX
MO

B
Fix

ed
Mo

bil
e

Ra
dio

loc
at

ion
FI

XE
D

MO
BI

LE
**

Am
ate

ur
RA

DI
OL

OC
AT

IO
N

SP
AC

E R
ES

..(S
-E

)

MO
BI

LE
FI

XE
D

MO
BI

LE
 SA

TE
LL

IT
E (

S-
E)

M
AR

IT
IM

E
M

OB
IL

E

M
ob

ile FIX
ED

FI
XE

D

 B
RO

AD
CA

ST
MO

BI
LE

FI
XE

D MO
BI

LE
 S

AT
EL

LIT
E

(E
-S

)

FI
XE

D

 F

IXE
D

M
AR

IT
IM

E
M

O
BI

LE
FI

XE
D

FI
XE

D
MO

BI
LE

**

FI
XE

D
MO

BI
LE

**

FI
XE

D
 S

AT
 (S

-E
)

AE
RO

.
RA

DI
ON

AV
.

FIX
ED

SA
TE

LL
ITE

 (E
-S

)

Am
ate

ur
- s

at
(s-

e)
Am

ate
ur

M
O

BI
LE

FI
XE

D
SA

T(
E-

S)

FI
XE

D
FIX

ED
 S

AT
EL

LIT
E

(S
-E

)(E
-S

)

FIX
ED

FIX
ED

 S
AT

 (E
-S

)
M

O
BI

LE

Ra
dio

-
loc

ati
on

RA
DI

O-
LO

CA
TIO

N
F

IX
E

D
 S

A
T.

(E
-S

)

M
ob

ile
**

Fi
xe

d
M

ob
ile

FX
 S

AT
.(E

-S
)

L M
 S

at(
E-

S)

AE
RO

RA

DI
ON

AV
FI

XE
D

SA
T

(E
-S

)
AE

RO
NA

UT
IC

AL
 R

AD
IO

NA
VI

GA
TIO

N
RA

DI
OL

OC
AT

IO
N

Sp
ac

e
Re

s.(
ac

t.)

RA
DI

OL
OC

AT
IO

N
Ra

dio
loc

ati
on

Ra
dio

loc
.

RA
DIO

LO
C.

Ea
rth

 E
xp

l S
at

Sp
ac

e
Re

s.
Ra

dio
loc

ati
on

BC
ST

 S
AT

.

FI
XE

D
FIX

ED
 S

AT
EL

LIT
E

 (S
-E

)
FI

XE
D

SA
TE

LL
IT

E
(S

-E
)

EA
RT

H
EX

PL
. S

AT
.

FX
 S

AT
 (S

-E
)

SP
AC

E
RE

S.

FI
XE

D
SA

TE
LL

IT
E

(S
-E

)

FI
XE

D
SA

TE
LL

IT
E

(S
-E

)
FI

XE
D

SA
TE

LL
IT

E
(S

-E
)

MO
BIL

E
SA

T.
(S

-E
)

FX
 S

AT
 (S

-E
)

M
OB

IL
E

SA
TE

LL
IT

E
(S

-E
)

FX
 S

AT
 (S

-E
)

ST
D

FR
EQ

. &
 TI

ME
MO

BIL
E

SA
T

(S
-E

)
EA

RT
H

EX
PL

. S
AT

.
M

O
BI

LE
FI

XE
D

SP
AC

E
RE

S. FI
XE

D
M

O
BI

LE
M

O
BI

LE
**

FI
XE

D
EA

RT
H

EX
PL

. S
AT

.
FI

XE
D

MO
BI

LE
**

RA
D.

AS
T

SP
AC

E
RE

S.

FI
XE

D
M

O
BI

LE

IN
TE

R-
SA

TE
LL

ITE

FI
XE

D

RA
DI

O
AS

TR
ON

OM
Y

SP
AC

E
RE

S.
(P

as
si

ve
)

AM
AT

EU
R

AM
AT

EU
R S

AT
EL

LIT
E

Ra
dio

-
loc

ati
on

Am
ate

ur
RA

DIO
-

LO
CA

TIO
N

Ea
rth

 E
xp

l.
Sa

te
lli

te
(A

cti
ve

)

FI
XE

D

IN
TE

R-
SA

TE
LL

ITE
RA

DI
ON

AV
IG

AT
IO

N

RA
DIO

LO
CA

TIO
N

 SA

TE
LLI

TE
 (E

-S)
IN

TE
R-

SA
TE

LL
ITE

FI
XE

D
SA

TE
LL

IT
E

(E
-S

)
RA

DI
ON

AV
IG

AT
IO

N

FI
XE

D
SA

TE
LL

IT
E

(E
-S

)
FI

XE
D

MO
BI

LE
 S

AT
EL

LIT
E

(E
-S

)
FI

XE
D

SA
TE

LL
IT

E
(E

-S
)

M
O

BI
LE

FI
XE

D
Ea

rth

Ex
plo

rat
ion

Sa
tel

lite

(S
-S

)

std
 fre

q
 &

 tim
e

e-e
-sa

t (
s-s

)
M

O
BI

LE
FI

XE
D

 e
-e-

sa
t

M
O

BI
LE

SP
AC

E
RE

SE
AR

CH
 (d

ee
p s

pa
ce

)

RA
DI

ON
AV

IG
AT

IO
N

IN
TE

R-
 S

AT
SP

AC
E

RE
S.

FI
XE

D
M

O
BI

LE
SP

AC
E

RE
SE

AR
CH

(s
pa

ce
-to

-E
ar

th
)

SP
AC

E
RE

S.

FI
XE

D
SA

T.
 (

S-
E)

M
O

BI
LE

FI
XE

D

FI
XE

D-
SA

TE
LL

IT
E

MO
BI

LE
FI

XE
D

FI
XE

D
SA

TE
LL

IT
E

M
O

BI
LE

SA
T.

FI
XE

D
SA

T
M

O
BI

LE
SA

T.
EA

RT
H

EX
PL

SA
T

(E
-S

)

Ea
rth

Ex
pl.

Sa
t (

s -
 e)

SP
AC

E
 R

ES
. (E

-S
)

FX
-S

AT
(S

-E
)

FIX
ED

MO
BI

LE
BR

O
AD

-
CA

ST
IN

G
BC

ST
SA

T.

RA
DI

O
AS

TR
ON

OM
Y

FI
XE

D
M

O
BI

LE
**

FI
XE

D
SA

TE
LL

ITE
 (

E-
S)

MO
BI

LE
SA

TE
LL

ITE
 (

E-
S)

FI
XE

D
SA

TE
LL

ITE
 (

E-
S)

M
O

BI
LE

RA
DI

O
NA

V.
SA

TE
LL

IT
E

FI
XE

D
M

O
BI

LE
MO

B.
 SA

T(
E-

S)
RA

DI
ON

AV
.S

AT
.

M
O

BI
LE

SA
T

(E
-S

).

FI
XE

D
M

O
BI

LE
FX

SA
T(

E-
S)

M
O

BI
LE

FI
XE

D

IN
TE

R-
 S

AT
EA

RT
H

EX
PL

-S
AT

 (
Pa

ss
ive

)
SP

AC
E

RE
S.

IN
TE

R-
 S

AT
SP

AC
E

RE
S.

EA
RT

H-
ES

IN
TE

R-
 S

AT
EA

RT
H-

ES
SP

AC
E

RE
S.

M
O

BI
LE

FI
XE

D
EA

RT
H

EX
PL

OR
AT

IO
N

SA
T.

(P
as

siv
e)

SP
AC

E
 R

ES
.

M
O

BI
LE

FI
XE

D
IN

TE
R

- S
AT

FI
XE

D
M

O
BI

LE

IN
TE

R-
SA

T
RA

DIO
-

LO
C.

M
O

BI
LE

FI
XE

D
EA

RT
H

EX
PL

OR
AT

IO
N

SA
T.

(P
as

siv
e)

MO
BI

LE
FI

XE
D

IN
TE

R-
SA

TE
LL

ITE
FI

XE
D

M
O

BI
LE

**

M
O

BI
LE

**
IN

TE
R-

SA
TE

LL
ITE

M
O

BI
LE

IN
TE

R-
SA

TE
LL

ITE

RA
DI

O
LO

C.
Am

at
eu

r
Am

at
eu

r S
at

.
Am

at
eu

r
RA

DI
O

LO
C.

AM
AT

EU
R

SA
T

AM
AT

EU
R

RA
DI

O
LO

C.

SP
AC

E
RE

SE
AR

CH
(P

as
siv

e)

EA
RT

H
EX

PL
 SA

T.
(P

as
siv

e)

FI
XE

D
M

O
BI

LE
IN

TE
R-

SA
TE

LL
ITE

SP
AC

E
RE

SE
AR

CH
(P

as
siv

e)

EA
RT

H
EX

PL
 SA

T.
(P

as
siv

e)

Am
atu

er
FI

XE
D

M
O

-
BI

LE
IN

TE
R-

SA
T.

SP
AC

E
RE

S.
E A

 R T
 H

 EX
PL

 . S
AT

IN
TE

R-
SA

TE
LL

ITE

IN
TE

R-
SA

T.
IN

TE
R-

SA
T.

MO
BI

LE
FI

XE
D

FX
-S

AT
 (S

 - E
)

BC
ST

 -
SA

T.
B-

 S
AT

.
MO

B*
*

FX
-S

AT

SP
AC

E
RE

SE
AR

CH

SP
AC

E
RE

S..

This chart is a graphic single-point-in-time portrayal of the Table of Frequency Allocations used by the
FCC and NTIA. As such, it does not completely reflect all aspects, i.e., footnotes and recent changes
made to the Table of Frequency Allocations. Therefore, for complete information, users should consult the
Table to determine the current status of U.S. allocations.

Figure 4.1: Frequency allocation in the United States.

spectrum and adapts its configuration based on perceived changes in its environment. The main

characteristics of CR are cognitive capability and reconfigurability, and the basic functionalities

of a CR system include spectrum sensing, cognitive medium access control and cognitive net-

working [100]. A CR dynamically adapts the physical layer by scanning spectrum and changing

modulation waveforms and transmission power to utilize spectrum opportunities [139]. These new

SDRs are developed with powerful processors supporting advanced networking functionalities.

CRs are built on programmable platforms supporting open-source development [107].

Traditional radios are developed with fixed communication parameters to use predetermined chan-

nels licensed to particular radio applications. Enforcing proper transmission behavior in such

legacy radios (e.g., cellular phones) is relatively straightforward since the spectrum access poli-

cies are an inseparable part of the radios firmware and platform. In contrast, CR is a highly

programmable technology that can opportunistically use fallow radio channels. As shown in Fig-

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 83

Time

Dynamic
spectrum

access

Frequency
Spectrum in use

“Spectrum hole”

Power

Tr
an

sm
it

Re
ce

iv
er

Fr
om

 u
se

r
To

 u
se

rRF front-end
(wideband sensing)

Radio
frequency

(RF)
Baseband
processing

Analog-to-digital
converter

(A/D)

Control
(reconfiguration)

Figure 4.2: Dynamic spectrum access and CR transceiver architecture [8].

ure 4.3, traditional computing platforms have a fixed trust hierarchy consisting of static hardware,

operating system, middleware, and application software. However, trust inheritance becomes com-

plicated in configurable platforms when software updates the underlying hardware structure. “In

hardware we trust” is no longer axiomatic since the hardware can be modified to violate specific

policies. CR programmability can be abused by malicious entities participating in radio software

development to violate or bypass proper spectrum access policies.

 Hardware is
 immutable

 Hardware can be changed
by software

Hardware is
 immutable

Traditional Configurable

Figure 4.3: Static versus reconfigurable platforms.

CR security threats can directly affect spectrum integrity and, consequently, primary users via il-

legal channel allocation. Plausible spatial and temporal long-term effects may occur because the

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 84

cognitive nature of CR [29,38]. Programmability of reconfigurable hardware-based CR introduces

additional security concerns since all layers of the protocol stack can be modified, including hard-

ware implemented-layers. In traditional computing platforms, the software has a static hardware

root of trust. In a reconfigurable hardware platform, trust inheritance is complicated by the ability

of software to modify the hardware structure. An analogy is trying to build a secure (software)

fence on a shifting foundation of (hardware) sand. Thus, it is essential that security is designed

into, rather than onto, the next generation of SDR platforms. Controls must be imposed on the

allowed hardware changes, and hardware should retain some oversight rather than rely solely on

software correctness and integrity.

In order to fully reap the potential benefits of dynamic spectrum access, radios need to be able

to cope with evolving spectrum access policies and constantly changing application requirements.

Policy-based cognitive radios address these challenges by decoupling policies from device-specific

implementations and optimizations. These radios can invoke situation-appropriate adaptive actions

based on policy specifications and the current spectrum environment [63]. Figure 4.4 illustrates

the policy-based CR architecture proposed by DARPA’s neXt Generation (XG) communication

program [134]. Basic components include a policy manager for managing local policies and com-

municating with a remote server, a policy conformance reasoner for reasoning over policies and

device-provided evidence, a system strategy reasoner for adjusting and selecting the device’s oper-

ational mode, and a policy enforcer for governing the radio by permitting only allowed transmis-

sion requests.

The policy reasoner is a component that evaluates compliance of transmission requests to DSA

policies by making logical inferences from a set of policies. It should be able to formally prove or

disprove a hypothesis that a transmission request is policy compliant, and capable of inferring

additional knowledge such as identifying transmission opportunities for unbound transmission

requests. The first generation of policy reasoners are designed as stateless systems to facilitate

component verification and certification. The policy enforcer examines transmission control com-

mands received from the system strategy reasoner to ensure its conformance to the DSA policies.

The policy enforcer may maintain a record of previous transmission decision to accelerate future

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 85

computations.

��������	
����������������������������	
��

����������������

���������

��������������������
��������
��������

��������

�

��������

�

����������������

�������
������������

�������
������������

 ��!"���������� ��!"���������� ����#$�������#$���

���������%�����

&�����

���'���

&�����

���'���

&�����
�����������
��������

&�����
�����������
��������

&������(�������&������(�������

&�����
�������

&�����
�������

)$�����

�����$����
���

&��$��

��!���������

*+,-./01

2--,33�

4567-8

��������
�������

��������
�������

Figure 4.4: Policy-based CR architecture [134].

There is a dramatic increase in standards development due to the progress of CR technology and

rapid changes in spectrum allocation charters dictated by the Federal Communications Commis-

sion (FCC). With the introduction of DSA techniques, the need for new radio spectrum policies

necessitated the development of modern standards to manage spectrum access rights. The IEEE

P1900 committee was established in 2005 to develop standards dealing with new technologies

and techniques of the next-generation radio and advanced spectrum management [66]. The IEEE

P1900.5 working group focuses on policy language and policy architecture for managing CR for

DSA applications.

Policy languages must serve all the participants of the spectrum utilization including regulators,

operators, stakeholders, manufacturers, and consumers. A standardized policy language adds value

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 86

in situations where flexibility is needed such as frequent changes of radio access policies [118].

DARPA’s XG communication program developed a cognitive policy radio language (CoRaL),

based on a subset of first-order logic, supporting description of various DSA policies and toler-

ating policy extensibility [46]. CoRaL satisfies the requirements of having expressive constructs

for numerical constraints, supporting efficient reasoning, and being verifiable [56].

The state of the art in CR as an emerging technology is an extensive growth in standard develop-

ment supported by a far less implementation effort. Most CR implementations are software-based

employing the open-source GNU radio software development toolkit that provides signal process-

ing blocks to implement software radios, and the universal software radio platform (USRP) for

RF transmission. CR implementations on reconfigurable hardware platforms are much less com-

mon. Delorme et al. presented an FPGA partial reconfiguration design approach for CR based on

network-on-chip (NoC) architecture [45]. Lotze et al. advanced a model-based design approach

to CR design [106]. To the best of our knowledge, CHARE-CR is the first showing how reconfig-

urable hardware enables creation of a trusted CR platform containing untrusted components. [57].

4.2 CR Policy Engine Overview

As shown by Figure 4.5, the main components of a policy-based CR device are a system strategy

reasoner, a policy reasoner and enforcer. The system strategy reasoner gathers sensory informa-

tion, formulates transmission strategies based on these information, and interacts with the policy

reasoner to determine policy-conformant opportunities. Design of the system strategy reasoner is

not the main concern of this work. The policy reasoner is responsible for validating transmission

requests according to the DSA policies and the underlying radio capabilities. Different policies

can include conflicts between permissive and prohibitive rules. Transmission requests may include

missing or incomplete information required for reasoning. The policy reasoner should consider and

resolve conflicts between different DSA policies and should be capable of dealing with underspec-

ified transmission requests. Resolving DSA policy conflicts necessitates prioritizing prohibitive

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 87

rules over permissive rules to avoid potential spectrum interference. A secondary functionality of

the policy reasoner is to provide optimal transmission constraints to the strategy reasoner address-

ing denied and underspecified requests.

XG Radio

System
strategy
reasoner

RF Policy
reasoner and

enforcer

Sensors

Transmission
request

Transmission
replay

Policy update

Sensor
control

Spectrum
state

Receive
message

Send
message

Policy
database

Figure 4.5: XG CR architecture [172].

Significant research efforts have been expended in the investigation of software development of

the DSA policy reasoner. The core reasoning problem is inferring transmission legitimacy from

a set of policies, evidences, and facts about the radio which is quite similar to classical theorem

proving problems. The transmission permit can be obtained by an incremental proof including

several rounds of interaction between the policy reasoner and the strategy reasoner.

Wilkins et al. present a software implementation of the policy engine based on CoRaL [172].

This implementation uses a custom-made proof system supporting a combination of functional,

equation, and logic programming language and automated theorem proving. In this system, some

techniques are employed to reason about transmission requests. Forward reasoning enables quick

filtering of inapplicable policies. Partial evaluation techniques evaluate policy terms. Backward

chaining supports user-defined predicates and hierarchies. Conditional equation rewriting enables

reasoning with user-defined functions. Constraint propagation and simplification techniques sup-

port built-in predicates and functions, and enables detecting inconsistencies. Unfortunately, this

implementation does not return missing parameter values for underspecified requests. Rather, it

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 88

returns an arbitrarily complicated first-order formula representing all possible constraints enabling

transmission.

Bahrak et al. developed a policy reasoner for processing spectrum access policies represented by

binary decision diagrams (BDDs) [21]. This work does not provide an expressive language such

as CoRaL to specify DSA policies, yet the system reads certain types of policies written in XML

and converts them to Boolean functions represented as BDDs. This is done by assigning a distinct

Boolean variable to each atomic expression appears in the policy. A number of graph algorithms

are used to translate policies into BDDs, merge policies into a single meta-policy, and reason about

transmission request conformance to the DSA meta-policy. Transmission requests are interpreted

as Boolean variables by assigning attribute values such as power and frequency to the appropri-

ate atomic expressions in the meta-policy and evaluating the corresponding Boolean values. The

policy reasoner is capable of computing opportunity constraints for underspecified and denied

transmission requests. In DSA, transmission parameters do not have the the same willingness to

change. For example, if a request is denied and the constraints to allow transmission are to re-

duce the power level or change the transmission time, then the power parameter is more willing to

change than the time parameter. This approach supports assigning weights to transmission param-

eters representing their willing to change. Three graph-based algorithms are proposed to compute

opportunity constraints. The developed policy reasoner is evaluated in terms of the decision com-

putation time versus the number of policies and the number of transmission parameters, and the

computation time is in the range of 1-20 msec. Such an approach lacks an expressive policy repre-

sentation framework and semantics for the numeric constraints pervading DSA policies which are

represented in Boolean forms enabling BDD manipulations.

Arkoudas et al. present a software development of a CR policy reasoner based on Aethna, an in-

teractive proof system for polymorphic multi-sorted first-order logic with equality, algebraic data

types, and subsorting [14, 158]. DSA policies are represented and manipulated in the Aethna

proof framework based on first-order logic with arithmetic and algebraic data types. Reasoning

about transmission request validity is formulated as a satisfiability modulo theories (SMT) prob-

lem. Commercial SMT solvers are used to evaluate transmission queries and provide opportunity

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 89

constraints for underspecified and denied transmission requests. Optimal reasoning about trans-

mission requests and opportunity constraints is achieved by modeling the problem as an SMT in-

stance of weighted MAX-SAT. The developed policy reasoner is evaluated in terms of the decision

computation time versus the number of policies and transmission parameters, and the computation

time is in the range of 50-400 msec. This approach provides both expressiveness and performance

required by CR technology. Unfortunately, such policy reasoner relies on the Aethna proof frame-

work and cutting-edge SMT solvers requiring extensive computation resources which exceeds the

capabilities of embedded CR platforms. This approach suits remote reasoning about DSA queries

using powerful servers running the required software tools rather than run-time, infield reasoning

required by CR devices.

4.2.1 CHARE-CR Policy Engine Security Enhancement

Unlike previous CR architectures where the policy reasoner and enforcer are developed in soft-

ware, the CHARE-CR policy engine is composed of a software-based system strategy reasoner

and policy reasoner and a hardware-based policy enforcer. Functionalities assigned to the software-

based components include discovering spectrum opportunities and reasoning about the legitimacy

of these opportunities in the light of predefined DSA policies. Reasoning is the ability to make

inferences, and automated reasoning is concerned with developing computational systems that au-

tomate this process. Automated reasoning techniques extensively use complex algorithms and data

structures suiting software implementations. Often times, automatic reasoners adopt third-party

compilers, theorem proving tools, and SAT solvers to accelerate both development and computa-

tion. Such critical components are vulnerable to security threats which can result in compromised

decisions. The main threat associated with the policy reasoner is allowing transmission requests

not conforming to DSA policies and denying requests conforming to DSA policies. Therefore,

decisions issued by the policy reasoner software should be inspected by a trusted, policy-aware

entity to prove their correctness.

In CHARE-CR, the hardware-based policy enforcer is responsible for inspecting transmission re-

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 90

quests and reasoner decisions and validate their conformance to DSA policies. Unlike the policy

reasoner, the policy enforcer does not need reasoning capabilities to validate reasoner decisions or

evaluate transmission constraints for underspecified requests. Inputs to the policy enforcer can be

either a complete request-decision pair or an underspecified request-transmission constraints pair

which indicates that all parameter values needed to compute a transmission decision will be avail-

able to the enforcer. The policy enforcer simply assigns request parameter values and transmission

constraints to the corresponding policy rules, evaluates request legitimacy, and validates reasoner

decisions. The hardware-based policy enforcer adds another layer of security to the CR policy

engine by validating reasoner decisions in trusted hardware.

The policy enforcer can be implemented in hardware as assertion checkers encoding DSA policy

rules. In CHARE-CR, the SRC is the entity playing the role of the policy enforcer. Figure 4.6

illustrates the CHARE-CR policy engine architecture. Inputs to the SRC include transmission re-

quest parameters, sensory evidences, radio parameters, and decisions issued by the policy reasoner.

Transmission requests address changes to some physical quantities such as power and frequency.

In reconfigurable platforms , a secondary functionality of the SRC is mapping physical parameters

of approved transmission requests to the corresponding platform attribute changes and/or dynamic

reconfiguration commands. The SRC communicates with the configuration firewall to initiate re-

configuration for allowed requests and sends the status back to the system strategy reasoner.

Policy engine
Software-based processor

System strategy
reasoner Policy reasoner

Hardware-based policy enforcer
Secure reconfiguration controller (SRC)

R
ad

io

pa
ra

m
et

er
s

Evidences

Sensing data

Request
replay

Transmission
decision

Transmission Rqst

Reconfiguration
commands and status

Figure 4.6: CHARE-CR policy engine architecture.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 91

4.3 Dynamic Spectrum Access Policy Description and Transla-

tion

DSA policies regulate how a CR device is allowed to behave. Different policies are applicable

for different geographical regions and various spectrum bands. Even in the same region or band,

different policies may be imposed by different regulators and spectrum allocators. Therefore, a CR

device should be capable of loading new policies at run-time. Advantages of using policy-based

approach to enable DSA include:

• Policy-based DSA enables expedited adaptation of radio behavior according to situation and

environment changes.

• Policies can be easily manipulated by regulators and stakeholders to fit their objectives.

• A policy-based approach decouples policy definition, loading, and enforcement from device-

specific implementations, allowing independent evolution of policies and devices, and reduc-

ing certification efforts.

• DSA policies can be extended to accommodate adaptable operating conditions and support

new policy parameters.

DSA policies are declarative statements dictating permissible and impermissible behaviors of CR

devices on a non-interference basis. The main concern of regulators is enforcement of admissible

transmission behavior regardless of specific implementation details. On the other hand, radio

engineers are interested in exploiting various transmission opportunities by enhancing the system

strategy and policy reasoner capabilities to discover, exploit, and validate various opportunities.

The policy-based DSA key enabler is a declarative policy specification language with simple and

unambiguous semantics serving the purposes of both spectrum regulators and radio engineers. In

this section we provide a brief overview of the CoRal policy language developed by DARPA’s

XG communication program, and present an example of DSA policies described by CoRaL and

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 92

enforced by CHARE-CR. There is no standard policy language for DSA, yet CoRaL is the state-

of-the-art language for describing DSA policies. The overview and examples presented in this

section are mainly acquired from the XG policy language description document [47] and the XG

policy engine article [46].

CoRaL is a typed fragment of first-order logic with equality, enabling representation of various do-

main concepts such as: frequency, power, location, powermask, and signal. A policy is composed

of several permissive and restrictive rules expressed using allow and disallow predicates. Pol-

icy rules are logical axioms expressing conditions for which these predicates hold, and can involve

declared parameters representing the radio capabilities and sensory information. Conditions can

use predicates expressing mode of operation, location, etc. to enable dynamic policy adjustment to

the current situation. CoRal enables expressing numerical constraints and powermasks, which are

extensively employed in DSA policies, using built-in predicates. For example, a policy can allow

transmission in the frequency range between 5 MHz and 5.5 MHz if the sensed channel power is

less than -100 dBm. Restrictive policy rules take precedence over permissive rules in case of policy

conflicts. Some simple example DSA policy rules encodable by CoRaL are as follows [172]:

• Frequency band: Allow transmission between 5180 and 5250 MHz.

• Time: Allow transmission between 06:00 and 13:00 local time.

• Location: Allow transmission if the radio is at most 30 miles away from the geographic

coordinates (39 10’ 30”N, 75 01’ 42”).

• Node identity: Allow transmission if the radio belong to Red Cross.

• Sensed data: Allow transmission if radio’s peak sensed power is at most -80 dBm and the

maximum transmit power is 10 mW.

CoRaL uses ontologies to represent hierarchies of types and related functions or predicates. On-

tologies only define concepts, whereas policies must define rules and may also define concepts.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 93

DARPA’s XG program defines ontologies for basic types (such as frequency, power, and band-

width), radio capabilities, evidence, signals, time, powermasks, and transmission and request pa-

rameters as summarized in Figure 4.7.. Ontologies and domain concepts are defined using type and

subtype declarations. The request-parameter ontology defines three transmission request variables:

req radio describes requesting radio characteristics; req transmission represents transmission re-

quest parameters; and req evidence provides sensory information evidences.

ontologyName

Type
Subtype

signal

Signal
RadarSignal
TVSignal

NTSCSignal
PALSignal
SECAMSignal

BeaconSignal

radio

Radio
Detector

SignalDetector
ContinuousSignalDet
PeriodicSignalDetector

LocationDetector
TimeDetector
MessageDetector

RadioCapability
ProcessCapability

transmission

Transmission

geo basic_types timemessage

powermask

request_parameters

req_radio
req_transmission
req_evidence

evidence

Evidence
SignalEvidence
LocationEvidence
TimeEvidence

MaskShape
Powermask

Legend:

Figure 4.7: Basic XG ontologies [46].

4.3.1 Translating CoRaL into HDL

CoRaL is a formal language backed by a first-order logical system enabling expressing DSA poli-

cies and reasoning about transmission requests in an efficient manner. A logical system is a formal

system with a form of semantics which assigns truth values to sentences of the formal language.

Logical systems include propositional logic, first-order logic, temporal logic, and higher-order

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 94

logic. In propositional logic, propositions are statements formulating certain facts about a system

of interest and can be only evaluated as true or false. For example, “measured power is less than

-100 dBm” is a proposition which can be true or false. Propositional logic lacks the expressiveness

required to describe DSA policies because this logic does not support quantification over variables.

First-order or predicate logic is a rich, expressive, and formal language that can be used to describe

stateless DSA policies. In first-order logic, each sentence, or statement, is broken down into a

subject and a predicate [131]. The predicate modifies or defines the properties of the subject and

a predicate can only refer to a single subject. Complete sentences are logically combined and

manipulated according to the same rules as those used in propositional logic. The main difference

between propositional and predicate logic is that the latter enables quantification over individual

variables. In other words, propositional logic is a subset of first-order logic. The alphabet of the

first-order logic language includes:

• Constants such as (a, b, c, . . .) denote fixed individual objects.

• Variables such as (x, y, z, . . .) denote variable individual objects.

• Functions such (f, g, h, . . .) denote operations that may be performed on a sequence of

individual objects to yield another object.

• Predicates such as (P, Q, R, . . .) denote properties or relations that hold for a sequence of

individual objects.

Every function and predicate has an arity indicating the number of associated arguments. The

formal language of predicate logic consists of two parts: terms are intended to denote objects

in the world, and propositions are intended to express facts about these objects. Both terms and

propositions are defined recursively:

• Constants and variables are terms.

• If f is an n-ary function, and t1, t2, . . . , tn are terms, then f(t1, t2, . . . , tn) is a term too.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 95

• If P is an n-ary predicate, and t1, t2, . . . , tn are terms, then the expression P (t1, t2, . . . , tn)

is an (atomic) proposition.

• If φ is a proposition, then ¬φ is a proposition too.

• Nothing else is a term.

• If φ, ψ are propositions, then φ ∨ ψ, φ ∧ ψ, φ → ψ, φ ↔ ψ are propositions too.

• If x is a variable, and φ is a proposition, then ∀xφ and ∃xφ are propositions too.

• Nothing else is a proposition.

The symbols ¬,∨,∧,→,↔ are logical connectives denoting negation, disjunction, conjunction,

implication, and equivalence, respectively. The symbols ∀ and ∃ are quantifiers, called the uni-

versal and the existential quantifiers which denote for all and there exists, respectively. Figure 4.8

illustrates syntactic constructs applicable to rule declarations in CoRaL [47].

CoRaL is a declarative language used to describe DSA policies without specifying how to enforce

these policies. In the XG project, the policy reasoner uses theorem proving tools to reason about

policies described in CoRaL. Automated reasoning is a static technique adopting loop invariant

inference algorithms to prove certain facts about first-order logic predicates such as the request

eligibility and transmission constraints. Static proving methods do not require translating declar-

ative policies into imperative or executable policies. In CHARE-CR, development of the policy

enforcer requires translating declarative policies described in first-order logic into an imperative,

synthesizable HDL describing the SRC. Such an approach shifts the problem from the static rea-

soning domain to the dynamic verification domain. The main challenge is that CoRaL is a language

of invariants and assertions designed for simplicity of semantics and tractability of proofs, and not

for run-time checking.

In order to implement the hardware SRC, we present some rules to translate CoRaL constructs

shown in Figure 4.8 into an HDL. CoRaL constructs include standard and equational rules applied

to propositional and first-order formulas. Propositional formulas can include predicates, binary

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 96

Rules

Standard Rules

Equational Rules

forall (V1:T1, V2:T2,..) predicate(V1,V2,…)
if First-Order-Formula

forall (V1:T1, V2:T2,..) function(V1,V2,…)
= constant

if Propositional-Formula

First-Order-Formula (FOF)

Predicate

Existentially quantified FOF

Universally quantified FOF

not FOF

FOF Binary-Connective FOF

Propositional-Formula (PRP)

Predicate

Constraint-Formula

not PRP

PRP Binary-Connective PRP

Constraint-Formula

Binary Connective

and

implies

or

Constraint-Formula Term Constraint-Symbol Term

Constraint Symbol

=

=<

>=

<

>

in

Figure 4.8: Overview of syntactic constructs in CoRaL

connectives, and constraint formulas. In an HDL, predicates are expressed as boolean variables

with true or false values. Binary connectives including ¬,∧, and ∨ are equivalent to the negation,

conjunction, and disjunction logical operators. Implication and equivalence connectives can be

expressed using HDL conditional statements and atomic guards. Constraint formulas are directly

translated into HDL relational and equality operators. Mathematical functions and numerical con-

straints extensively used in DSA policies can be efficiently handled using HDL types, constructs,

and mathematical operators. In this way, propositional rules and formulas can be easily translated

into HDL assertions.

The main difference between propositional and first-order logic is quantifiers which are the main

source of the expressiveness power of first-order logic. Quantifiers are essential to state that a group

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 97

of objects satisfies the desired properties. Unlike imperative constructs such as loops, quantifiers

feature a number of well-understood mathematical properties facilitating automated reasoning us-

ing static theorem proving tools. On the other hand, quantifiers are one of the main difficulties

confronting run-time checking of policies expressed in first-order logic. In CoRaL, quantification

is performed over finite and infinite variable types. Variables can be classified as temporal or non-

temporal variables. Temporal variables are of infinite type while non-temporal variables can be of

infinite types such as integers or of finite types such as user-defined sets. CoRaL only allows a very

specific form of infinite quantified formulas to ensure proper processing between the radio and the

policy reasoner.

The main challenge associated with translating first-order logic policies into synthesizable logic is

realizing quantification over unbounded variables. In the dynamic domain, quantification over un-

bounded variables cannot be realized using finite resources. In practice, however, most unbounded

variables can be limited to a finite range in the application context. Therefore, we will adopt a

context-specific approach to reduce the range of quantified, unbounded variables introduced by the

DSA policy. This is quite similar to run-time checking for program verification presented in [175].

In CHARE-CR, a formula quantified over a temporal variable is translated into a hardware checker

continuously asserting corresponding predicates and computing associated functions. In other

words, quantification over time is translated into continuous run-time monitoring. A formula quan-

tified over a non-temporal variable is translated into multiple instances of the formula realization

developed for different values of the quantified variable. For non-temporal variables of infinite

type, quantification is bounded by identifying the application context that enforces bounds on the

quantified variables. For example, if the quantified variable is a mobile base station in the U.S.,

this variable can be bounded for a CR device located in a certain geographical area. This approach

can be generalized to bound variable range for different CR device situations and contexts. The

CHARE-CR framework can exploit dynamic reconfiguration of the CR device to update the SRC

according to the device situation and the application context.

In this work, we do not develop algorithms to automatically translate from CoRaL to HDL, but

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 98

rather just establish the translation feasibility. Table 4.1 presents some examples of CoRaL rules

and their SystemVerilog HDL equivalents. SystemVerilog supports enumerated types, permits

a for loop index to be declared in the for statement, , adds the ++ operator, and has a foreach

statement to iterate over an array. Presented examples cover all CoRaL syntactic constructs il-

lustrated by Figure 4.8. Registers and variables representing request parameters and predicates

presented in Figure 4.7 are declared once for all examples. The modulus operator is used to map

integer types to a subrange, prevent overflow, and automatically wrap from the last value to the

first. Processes set a register to a default value, and override that assignment only when the condi-

tion or its negation is met. This synthesis-friendly scheme works nicely for both “if exists()” and

“if forall()” quantifiers, and allows both loop forms to exit early using a break statement.. Note

that because synthesis must unroll for loops, the for loops essentially have implicit generate

statements.

Table 4.1: CoRaL rule examples and their equivalent in SystemVerilog HDL.

Rule type CoRaL description and SystemVerilog HDL translation

CoRaL types def-

inition and predi-

cate declaration

deftype Frequency = Float;
deftype Power = Float;
deftype Speed = Float;
deftype DetectionParameters =

{minDuration:TimeDuration,
dwellTime:TimeDuration,
minRate:SensingRate,
allFrequencies:{Frequency}};

const device_ok : Pred;
const sensing_ok : Pred;
const usage_ok : Pred;
const frequency_ok : Pred;
const channel_ok_slave_rd: Pred;
const database_test_ok : Pred(Int);
const in_restricted_area : Pred(Int);
const dbtest_ok : Pred(Int);
const emission_test_ok : Pred(Int);
const db_and_em_test_ok : Pred(Int);
const max_detected : Pred(Signal, Power, TimeDuration,

DetectionParameters);
const tests_ok : Pred;
const maxSpeed : Speed;

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 99

SV HDL type def-

inition and register

declaration

1t y p e d e f enum { yes =1 ’ b1 , no =1 ’ b0} Pred ;

2t y p e d e f r e a l Frequency ;

3t y p e d e f r e a l Speed ;

4t y p e d e f r e a l Power ;

5t y p e d e f r e a l Ra te ;

6t y p e d e f S i g n a l ;

7Pred r e q r e a d y ; / / Th i s s i g n a l i n d i c a t e s t h e e x i s t e n c e o f a

DSA r e q u e s t

8/ / / / / / / / / / / / / / / / / / P r e d i c a t e r e g i s t e r s / / / / / / / / / / / / / / / / / / /

9Pred d e v i c e o k ;

10Pred s e n s i n g o k ;

11Pred u s a g e o k ;

12Pred f r e q u e n c y o k ;

13Pred a l l o w ;

14Pred c h a n n e l o k s l a v e r d ;

15Pred m a x d e t e c t e d ;

16/ / Array s i z e i s a s s i g n e d t o an a r b i t r a r y l a r g e v a l u e f o r

i n f i n i t e v a r i a b l e t y p e s

17Pred i n r e s t r i c t e d a r e a [0 : 1 0 2 3] ;

18Pred d a t a b a s e t e s t o k [0 : 1 0 2 3] ;

19Pred d b t e s t o k [0 : 1 0 2 3] ;

20Pred e m i s s i o n t e s t o k [0 : 1 0 2 3] ;

21Pred d b a n d e m t e s t o k [0 : 1 0 2 3] ;

22/ / / / / / / / / / / / / / / / / / Reques t p a r a m e t e r s /

23Power MaxRadarPower [0 : 1 2 7] ;

24Power MaxThreshold [0 : 1 2 7] ;

25S i g n a l r a d a r S i g n a l [0 : 1 2 7] ;

26S i g n a l p o s i t i v e G P S ;

27s t r u c t { t ime : minDura t i on = 6 0 ;

28t ime : dwel lTime ;

29Ra te : minRate = 5 ;

30F requency : a l l F r e q u e n c i e s ;

31} D e t e c t i o n P a r a m e t e r s ;

32t ime smal lAge ;

33t ime Age ;

34Speed maxSpeed ;

Standard rule with

predicate

allow if device_ok;

1a lways @ (posedge c l k i f f r e q r e a d y) b e g i n

2a l l o w <= no ;

3i f (d e v i c e o k) b e g i n

4a l l o w <= yes ;

5end

6end

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 100

Standard rule with

negated formula

(forall M:int) database_test_ok(M) if
not in_restricted_area(M);

1a lways @ (posedge c l k i f f r e q r e a d y) b e g i n

2f o r e a c h (d a t a b a s e t e s t o k [i]) / / The f o r loop and f o r e a c h

s t a t e m e n t can be used t o r e a l i z e q u a n t i f i c a t i o n

ove r a v a r i a b l e

3d a t a b a s e t e s t o k [i] <= no ;

4i f (! i n r e s t r i c t e d a r e a [i]) b e g i n

5d a t a b a s e t e s t o k [i] <= yes ;

6end

7end

Standard rule with

binary connective

allow if device_ok and sensing_ok and usage_ok;

1a lways @ (posedge c l k i f f r e q r e a d y) b e g i n

2a l l o w <= no ;

3i f (d e v i c e o k && s e n s i n g o k && u s a g e o k) b e g i n

4a l l o w <= yes ;

5end

6end

Standard rule with

constraint formula

frequency_ok if carrierFrequency in {470..512};

1a lways @ (posedge c l k i f f r e q r e a d y) b e g i n

2f r e q u e n c y o k <= no ;

3i f ((c a r r i e r F r e q u e n c y > 4 7 0 . 0 0) && (c a r r i e r F r e q u e n c y <
5 1 2 . 0 0)) b e g i n

4f r e q u e n c y o k <= yes ;

5end

6end

Standard rule with

universally quanti-

fied formula (infi-

nite variable type)

(forall M:int) db_and_em_test_ok(M) if
dbtest_ok(M) and emission_test_ok(M);

1a lways @ (c l k i f f r e q u e s t r e a d y) b e g i n

2f o r (i = M1; i < M2; i ++) / / I n f i n i t e v a r i a b l e s a r e

bounded based on t h e CR d e v i c e c o n t e x t

3d b a n d e m t e s t o k [i] <= no ;

4i f (d b t e s t o k [i] && e m i s s i o n t e s t o k [i]) b e g i n

5d b a n d e m t e s t o k [i] <= yes ;

6end

7end

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 101

Standard rule with

universally quanti-

fied formula (finite

variable type)

emission_test_ok if
(forall (maxSignal:Signal,maxPower:Power))
max_detected(radarSignal,MaxRadarPower,someAge

,someSensingParams);

1a lways @ (c l k i f f r e q u e s t r e a d y) b e g i n

2e m i s s i o n t e s t o k <= yes ;

3f o r e a c h (maxSigna l [i]) b e g i n

4i f (! (m a x d e t e c t e d (r a d a r S i g n a l [i] , MaxRadarPower [i] ,

someAge , someSens ingParams)) b e g i n

5e m i s s i o n t e s t o k <= no ;

6b r e a k ;

7end

8end

9end

Standard rule with

existentially quan-

tified formula (fi-

nite variable type)

channel_ok_slave_rd if
(exists MaxRadarPower:Power, MaxThreshold:Power)
max_detected(radarSignal, MaxRadarPower,
Time_duration , {minDuration=60, minRate=5,
allFrequencies={5250..5350,5470..5725}}) and
(MaxRadarPower >= 200 and MaxThreshold =< -64)

1a lways @ (c l k i f f r e q r e a d y) b e g i n

2c h a n n e l o k s l a v e r d <= no ;

3f o r e a c h (MaxRadarPower [i]) b e g i n

4i f ((m a x d e t e c t e d (r a d a r S i g n a l [i] , MaxRadarPower [i] ,

5T i m e d u r a t i o n , D e t e c t i o n P a r a m e t e r s) &&

6(MaxThreshold [i] <= −64) &&

7(MaxRadarPower [i] >= 200)) b e g i n

8/ / m a x d e t e c t e d i s a p r e d e f i n e d f u n c t i o n r e t u r n i n g

p r e d i c a t e

9c h a n n e l o k s l a v e r d <= yes ;

10b r e a k ;

11end

12end

13end

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 102

Standard rule with

existentially quan-

tified formula over

time

tests_ok if
(exists Age:TimePoint)
received(positiveGPS,Age) and
db_and_em_test_ok(modificationFactor(maxSpeed,Age));

1a lways @ (c l k) b e g i n

2/ / q u a n t i f i c a t i o n ove r t ime i s t r a n s l a t e d i n t o c o n t i n u o u s

m o n i t o r i n g which r e q u i r e s d i r e c t , c o n t i n u o u s a c c e s s t o

t h e checked p a r a m e t e r s and s e n s o r s r a t h e r t h a n j u s t

r e a d i n g some r e g i s t e r s r e p r e s e n t i n g i n s t a n t a n e o u s

v a l u e s

3/ / In t h i s example , r e c e i v e d p o s i t i v e G P S and maxSpeed a r e

t h e s i g n a l s n e e d i n g d i r e c t a c c e s s

4Age <= (Age + c l k p e r i o d) % p o s i t i v e G P S e x p i r a t i o n t i m e ;

5i f (r e c e i v e d p o s i t i v e G P S && d b a n d e m t e s t o k (

m o d i f i c a t i o n F a c t o r (maxSpeed , Age)) b e g i n

6Age <= 0 ;

7t e s t s o k <= yes ;

8end

9e l s e i f (Age == 0)

10t e s t s o k <= no ;

11end

Equational rule w/

constraint formula

(forall S:Speed, A:TimePoint)
modificationFactor(S,A) = S*A+10 if A>=smallAge ;

(forall S:Speed,A:TimePoint)
modificationFactor(S,A) = 0 if A< smallAge ;

1/ / A l l e q u a t i o n a l r u l e s can be t r a n s l a t e d i n t o f u n c t i o n

a s s i g n m e n t s gua rded by a c o n d i t i o n which can be a

p r e d i c a t e , p r o p o s i t i o n a l fo rmula , o r c o n s t r a i n t

f o r m u l a

2f u n c t i o n i n t m o d i f i c a t i o n F a c t o r (Speed S , t ime A, t ime

smal lAge) b e g i n

3i f (A < smal lAge)

4r e t u r n 0 ;

5e l s e

6r e t u r n S*A+10;

7end

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 103

4.4 Configurable Hardware-assisted Rule Enforcement Archi-

tecture

The programmability and performance of reconfigurable hardware suits data-intensive embedded

computing applications. Current practice places dynamic hardware configuration under the con-

trol of application-level software, and even proposed OS-managed reconfiguration remains an SLH

solution. Dynamic hardware blocks are application-tailored and potentially untrusted. In such plat-

forms, software control of hardware configuration introduces new security concerns compared to

static hardware systems. Software modification of hardware structure is analogous to self-surgery,

and independent hardware should provide oversight rather than solely rely on the correctness and

integrity of application software and circuits.

System trust can be enhanced by enforcing application-specific access control policies using either

software or hardware. Hardware, which has greater tamper resistance and is better suited to formal

analysis than software, provides policy oversight in the CHARE platform. We insert a hardware-

implemented, application-specific controller and monitor on the boundary between static hardware

(which hosts software) and dynamic application hardware. This HLH approach retains most of the

flexibility of application software directly controlling dynamic hardware, while enhancing trust-

worthiness, performance, and hardware abstraction.

Separation is a fundamental tool in secure system design and should be used in reconfigurable

platforms with hardware and software interactions. As shown in Figure 4.9, the CHARE architec-

ture has four major components: an embedded application processor, a reconfigurable controller-

wrapped datapath, dedicated hardware to securely configure the datapath, and secure access to a

shared configuration server. Xilinxs Embedded Development Kit (EDK) connects one of the em-

bedded PowerPC 440 processors to peripherals over a Processor Local Bus (PLB). The processor

runs real-time Linux for data-intensive applications implemented with both software and custom

hardware. The system strategy reasoner and the policy reasoner are implemented in this proces-

sor. A GPIO control interface stores datapath update request parameters while buffers transfer data

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 104

between software and the reconfigurable hardware.

Plug-in
Assist Unit

(PAU)

Memory
Controller

Decryption &
Authentication

Unit

Dynamic
Module Server

(DMS)

 Embedded Linux Processor
(PowerPC 440)

RF front-end

Reconfigurable
Hardware

FPGA System on Chip

Configuration Firewall

ICAP
controller

External
Memory

 Data:

 Control:

DREC and SRC

Application
Software

GPIO
Interface

Data
Buffers

P
LB Baseband Datapath

Figure 4.9: CHARE prototype platform.

The reconfigurable hardware block consists of a DREC-wrapped datapath. Parameterized IP cores

are connected to implement streaming algorithms in domains such as DSP, communication, and

video. The SRC is a hardware-based controller responsible for checking that software-issued dat-

apath update requests conform to policy rules embedded in the DREC. In CR platforms, the SRC

is developed by translating a set of active DSA policies into hardware assertion checkers repre-

senting the policy enforcer module. Software-visible datapath update registers contained in the

GPIO bus interface are not directly connected to the datapath, and may not even have a one-to-one

correspondence with actual datapath parameters. Invalid update requests return an error, while

requests conforming to policy rules can result in a parameter update, individual module swaps, or

a complete datapath plug-in replacement.

The DREC serves as a datapath hardware abstraction layer. This has two advantages: software

interaction with the hardware is simplified to enhance portability, and the datapaths detailed im-

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 105

plementation is not revealed to software. For example, software is oblivious to the possible use of

reconfiguration for swapping cores in response to datapath update requests. The hardware model

presented to software restricts the set of control capabilities to that of a virtual ASIC implementing

only the configuration options currently authorized. An additional advantage of custom hardware

plug-ins is the provision of software-independent cryptographic services. For example, data may

be automatically encrypted or decrypted by the plug-in using a key embedded in the datapath

controller. Configurable hardware is generally more efficient than software for cryptographic al-

gorithms [132], yet can be changed as readily as software implementations. Session keys may be

used as a means of imposing expirations on particular capabilities.

The DREC logic is never updated independently of the datapath, and any policy updates neces-

sitate a complete plug-in replacement. Plug-ins may include monitors to check the operation of

individual cores that may be untrusted or subject to single-event upsets. Detection of anomalous

behavior signals the DREC to reload the plug-in if an upset occurred or a Trojan horse was enabled.

New plug-ins are securely (and perhaps wirelessly) transferred from a remote, shared and trusted

DMS. Server-class hardware suits the time- and memory-intensive EDA tools required to generate

new FPGA configurations; these tools exceed the resources available in embedded platforms. The

DMS runs the PATIS tools to accelerate hardware plug-in implementation through the automatic

parallel application of standard implementation tools [33].

The CHARE platform has a configuration firewall containing a dedicated PAU processor for secure

communication with the DMS. Similar to the protocols and safeguards used in cryptographic co-

processors and TPMs, the configuration firewall performs critical functions in isolated hardware

and does not share processor, logic, memory or routing resources with other CHARE subsystems.

A private key embedded within the PAU provides a public key-based authentication protocol with

the DMS. Decrypted partial FPGA configurations for hardware plug-ins are not revealed outside

the configuration firewall or even to PAU software. External flash memory stores encrypted partial

bitstreams received from the DMS, with just-in-time decryption of bitstreams transferred to the

FPGAs ICAP. For the sake of both speed and security, a hardware-implemented flash memory

controller controls the ICAP.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 106

4.5 Implementation Details and Results

CHARE-CR is implemented on the ML510 evaluation platform offering a versatile Virtex-5 FXT

platform for rapid prototyping and system verification. In addition to the more than 130,000

logic cells, over 10,700 Kb of block RAM, dual IBM PowerPC 440 processors, and RocketIO

transceivers available in the FPGA, the ML510 provides an on-board Ethernet MAC PHY, DDR2

memory, multiple PCI bus slots, and standard front panel interface ports within an ATX form fac-

tor motherboard. The ML510 platform is based on the Xilinx Virtex-5 XC5VFX130T FPGA. A

custom board interfaces two RocketIO gigabit serial transceivers on the ML510 to two USRP2

modules, for optional multiple-input and multiple-output (MIMO) CR clients. The USRP2 serves

as the RF interface for the CR client. Figure 4.10 demonstrates the prototype resources used in this

work.

A CHARE-CR prototype is developed with the aid of the XPS, Integrated Synthesis Environ-

ment (ISE), and Software Development Kit (SDK) tools enabling hardware-software co-design of

CHARE and CR components. The XPS tool helps the designer to easily build, connect and con-

figure embedded processor-based systems. The CHARE-CR prototype block diagram is shown in

Figure 4.11 with two strictly separate PowerPC 440 processors. One of the processors is operated

by the Linux OS and hosts the CR software including the system strategy and policy reasoner

functionalities while the second PowerPC implements the PAU module of the configuration fire-

wall. Both processors run at 400 MHz clock frequency and connected to memory devices and I/O

peripherals via completely separate PLBs running at at a 100 MHz clock frequency.

This architecture realizes the separation of resources security principle by separating the applica-

tion processor from the reconfiguration processor and resources. The Linux PowerPC processor

is equipped with 1 GB of DDR2 RAM memory and a floating point unit facilitating memory in-

tensive mathematical operations extensively deployed in DSP and communication applications.

The SRC is developed as a custom peripheral IP attached to the Linux PowerPC PLB in a slave

configuration and provided with a peripheral interrupt service. Reconfiguration requests are di-

rectly written by the CR processor to the SRC peripheral address range and stored in dedicated,

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 107

Figure 4.10: Prototype resources.

software controlled registers. Reconfiguration decisions are communicated to the CR processor

through the assertion of predefined interrupt signals initiating service routines to read SRC dedi-

cated software registers. Figure 4.12 shows the separate regions allocated to these components on

the Xilinx Virtex-5 FX130T FPGA used in the initial prototype, with controlled communication

between regions. There are few static routes crossing the dynamic region since most of the I/O

signals connected to the two processors reside in the leftmost I/O banks. Roughly 70% of the

chip area, including all 320 DSP slices and the majority of the Block RAM, is allocated to the

reconfigurable plug-in region.

The configuration firewall PowerPC processor is interfaced to a set of peripherals enabling various

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 108

SPLB

Ethernet_MAC

SPLB 1 0

xps_intc
xps_intc_0

SPLB 0

SPLB
xps_uartlite

RS232_Uart_1

SPLB 0 0

SLAVES OF plb_v46_0

PROCESSOR

jtagppc_cntlr
jtagppc_cntlr_inst

JTAGJTAG

proc_sys_reset
proc_sys_reset_0

RESERESE

SPLB0

xps_intc
xps_intc_2

SPLB 1
xps_timer

xps_timer_1

SPLB 1 1

xps_uartlite
RS232_Uart_2

SPLB 0 1

SLAVES OF plb_v46_1

PROCESSOR

ppc440mc_ddr2
DDR2_SDRAM_DIMM1

PPC4

src
SPLB

Secure_reconfiguration_controller0

ppc440_virtex5
PPC_Linux_OS

JTAG PPC4

MPLBRESE

1

ppc440_1_jtagppc_bus

ppc_reset_bus_2nd

ppc440_1_PPC440MC

plb_v46_0

plb_v46_1

ppc440_1_jtagppc
_bus

ppc_reset_bus
_2nd

ppc_reset
_bus

ppc440_virtex5
PAU

JTAG
MPLB
RESE

0

ppc440_0_jtagppc_bus

xps_ethernetlite

bram_block
xps_bram_if_cntlr_1_bram

PORTA

xps_bram_if_cntlr
xps_bram_if_cntlr_1

SPLB PORTA

bram_block
xps_bram_if_cntlr_2_bram

PORTA

xps_bram_if_cntlr
xps_bram_if_cntlr_2

SPLB PORTA

mpmc
DDR2_SDRAM_DIMM0

MPMC Module Interface

bitstream_supervisor
Bitstream_superv

isor_0

xps_mch_emc
Flash_controller

IP

util_reduced_logic
ORGate_1

clock_generator
clock_generator_0

src_inteface
SPLB

SRC_interface_0

21

xps_timer
xps_timer_0

SPLB 2 0

3 0

4 0

ppc_reset_bus

SPECS
EDK VERSION 13.2
ARCH virtex5
PART xc5vfx130tff1738-2
GENERATED Thu Jun 28 21:43:43 2012

KEY
SYMBOLS

bus interface

shared bus

Bus connections
master or initiator
slave or target
master slave
monitor

External Ports
input
output
inout

Interrupts
x Interrupt Controller
x Interrupt Target
y x Interrupt Source

X = Controller ID
Y = Interrupt Priority

COLORS
Bus Standard

DCR
FCB

FSL
LMB

OPB
PLB

SOCM
Xilinx P2P

USER P2P

Figure 4.11: CHARE-CR prototype block diagram.

functionalities described in Section 3.2. The AES decryption, HMAC authentication, and ICAP

controller modules are trusted hardware components combined in a single peripheral called the bit-

stream supervisor. An SRC interfacing peripheral connects the SRC to the configuration firewall

through a custom I/O bus. The SRC interfacing peripheral can be developed as a partially recon-

figured block within the bitstream supervisor peripheral. Custom registers are developed in the

SRC and SRC interfacing modules to communicate configuration commands and status between

the two peripherals without resorting to add a shared communication facility between the separate

processors. The bitstream supervisor is connected to the PAU PLB in a slave configuration and

equipped with a peripheral interrupt service. Other peripherals connected to the PAU processor

include an Ethernet media access controller and a flash controller providing network communi-

cation and bitstream storage functionalities. The PAU processor fetches approved reconfiguration

bitstreams from the flash storage or downloads them from a remote DMS and writes them to a

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 109

Figure 4.12: CHARE floorplan on a Xilinx Virtex-5 FX130T FPGA.

dedicated FIFO buffer within the bitstream supervisor peripheral. A predefined interrupt service

communicates the reconfiguration status back to the PAU processor which, in turn, writes them to

the appropriate registers in the SRC interfacing component. Implementation details and results of

the SRC and bitstream supervisor peripherals are presented in the following sections.

4.5.1 Secure Reconfiguration Controller

The SRC is a hardware peripheral interfaced to an application processor running the Linux OS. Fig-

ure 4.13 illustrates the block diagram of the SRC peripheral module. The SRC peripheral performs

three main roles: receiving update requests and reasoning decisions from the application proces-

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 110

sor, checking the request-response pair validity and translating valid request physical parameters to

the corresponding parameter changes and/or reconfiguration commands, and interacting with the

configuration firewall to send reconfiguration commands and receive reconfiguration status. Two

sets of software registers called the request parameter and SRC reply registers communicate DSA

requests and SRC responses between the peripheral and the application processor with the aid of an

interrupt source controller module. Two sets of registers called the reconfiguration parameter and

reconfiguration status registers communicate SRC reconfiguration commands and configuration

firewall responses between the SRC peripheral and the bitstream supervisor peripherals. The SRC

module contains two blocks: the policy enforcer module implementing functionality described

in Section 4.2.1 and a mapping module translating approved requests into parameter changes or

reconfiguration requests. An FSM controller manages the operation of the SRC peripheral and

coordinates between different components as demonstrated by Figure 4.13.

32 words

SRC

32 words32 words

32
 b

its

User logic software registers

EDK SPLB interface
controller

EDK interrupt
source controller

SRC reply
64 words

32
 b

its

Request
parameters

Reconfiguration
parameters

Reconfiguration
status

Policy
enforcer

Mapping
module

Configuration firewall
interface controller

Configuration firewall registers
FSM controller

Check
request

Idle

Write
SRC

reply

Map
request

Get
reconfig
response

DSA request

Deny request

Allow request

Change
parameters

done

Updating done

Write
reconfig
params

Update
datapath
params

Reconfigure module
or datapath

Writing done

Reading
done

Data
Control

32
 b

its

32
 b

its

Figure 4.13: SRC peripheral block diagram.

In order to illustrate the SRC implementation details, we provide an example of a DSA policy as

described in CoRaL and the corresponding hardware implementation of the SRC module enforcing

this policy. This example is acquired from CoRaL description article [47], and applies to CR

devices operating in the Radar “S” band according to a regulating DSA policy. A CR device senses

channel power within the intended operating frequency, and can access the channel as needed based

on the DSA policy. Transmit power is regulated as a function of the received power. The CoRaL

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 111

description of the Radar band access policy is shown in Figure 4.14 [47]. Specific rules for CR

radios operating in this band are:

1. Transmission is allowed within 3100 to 3300 MHz frequency band.

2. The radio’s sensing threshold must be less than -110 dBm in a 100 KHz channel.

3. The device should be equipped with an opportunity identification mechanism with the fol-

lowing specifications:

(a) The device should sense received power within the intended frequency channel of no

more than 100 KHz width. There must be a look-through interval with a minimum of

3 seconds, and a dwell time of 500 μs. Look-through is the period between successive

sensing operations, and the dwell time is the time over which energy is accumulated

and integrated by the sensor.

(b) The maximum authorized transmit power is a function of the sensed channel power:

i. The maximum transmit power is 50 mW if the peak sensed power is less than

-100 dBm.

ii. The maximum transmit power is 10 mW if the peak sensed power is between -80

and -100 dBm.

iii. Transmission is prohibited if the peak sensed power is greater than -80 dBm.

(c) To authorize transmission or power level increasing, the sensed power should not ex-

ceed the prescribed bound for at least 5 minutes.

4. The device should be equipped with a mechanism of interference-limited use of the spectrum

opportunity having the following properties:

(a) Power outside the radio channel should be less than 1% of the transmit power.

(b) The maximum continuous on time is 1 second and the minimum off time is 100 ms.

(c) The device response time to sensor changes should be less than 1 second.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 112

policy RadarBandSensingBased is

include XGTypes.xg;

/* Predicate declarations */

const device_ok : Pred;
const sensing_ok : Pred;
const usage_ok : Pred;
const frequency_ok : Pred;
const sensing_threshold_ok : Pred;
const channel_width_ok : Pred;
const look_through_interval_ok : Pred;
const dwell_time_ok : Pred;
const peak_received_power_ok : Pred;
const signal_age_ok : Pred;
const outside_band_leakage_ok : Pred;
const max_ontime_ok : Pred;
const min_offtime_ok : Pred;
const channel_closing_time : Pred;

/* Policy Rules */
allow if device_ok and sensing_ok and usage_ok;

device_ok if
frequency_ok and sensing_threshold_ok
and channel_width_ok;

sensing_ok if
look_through_interval_ok and dwell_time_ok and
peak_receieved_power_ok and signal_age_ok;

usage_ok if
outside_band_leakage_ok and max_ontime_ok
and min_offtime_ok and channel_closing_time_ok;

frequency_ok if carrier_frequency in {3100..3300};
sensing_threshold_ok if sensing_threshold =< -110;
channel_width_ok if channel_width =< 100;

look_through_interval_ok if look_through_interval =< 3;
dwell_time_ok if dwell_time =< 500;

peak_received_power_ok if
(peak_received_power < -100 implies max_tx_power=50)
and (peak_received_power >= -100 and peak_recieved_power < -80
implies max_tx_power=10)

disallow if peak_received_power >= -80;

signal_age_ok if signal_age >= 5;

outside_band_leakage_ok if outside_band_leakage < 0.1;

max_ontime_ok if max_ontime =< 1;
min_offtime_ok if min_offtime >= 100;
channel_closing_time_ok if channel_closing_time =< 1;

end

Figure 4.14: CoRaL Description of Radar “S” band access policy

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 113

The policy enforcer for the Radar “S” band policy mainly performs device-, sensing-, and usage-

oriented checks, where the transmission is allowed if the three checks are OK. Transmission re-

quest parameters are the carrier frequency and maximum transmitted power. Sensing parameters

are the peak received power, signal age, look through interval, and dwell time. Device parameters

are the CR sensing threshold and channel width. Usage parameters are the max on time, minimum

off time, channel closing time, and outside band leakage. Each of these parameters is treated as an

input to the policy reasoner which evaluates transmission requests based on these inputs and the

embedded policy rules.

Figure 4.15 illustrates snapshots from the SystemVerilog code describing the SRC enforcing the

Radar policy. Inputs to the SRC module are the request ready and reasoner decision

signals, and the outputs include the transmission decision and reasoner check sig-

nals. Upon a transmission request, the SRC reads the software parameters registers written by

the application processor, performs DSA rule checks, compares the enforcer’s decision with the

reasoner’s decision, and initiates the reconfiguration operation for allowed requests. DSA policy

checks are translated from the CoRaL policy description into SystemVerilog assertions according

to translation rules presented in Section 4.3. Figure 4.15 shows selected snapshots from the HDL

description of some DSA policy rules presented in Figure 4.14. Resources needed by the SRC

module include 15 32-bit registers, 15 flip-flops, and 10 comparators. Resource overhead intro-

duced by the SRC module is negligible when compared to the total resources offered by modern

FPGAs.

In order to evaluate the SRC security, we developed a testbench that generates different values for

input parameters and signals, monitors internal signals and predicates, and displays output signals

and states. Different parameter value sets representing four transmission requests are generated of

which two conform to the policy and two do not conform. For non-conforming requests, only a

single parameter is generated to deviate from the sanctioned range to demonstrate the SRC’s abil-

ity to detect minor attacks. Figure 4.16 illustrates simulation results for the generated stimulus. In

this testbench, a signal representing the reasoner’s decision is generated to indicate two compro-

mised decisions and two valid decisions. Compromised decisions are detected by comparing the

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 114

1module SRC(i n p u t c lk , r s t , r e q r e a d y ,

2/ / t h e p o l i c y r e a s o n e r d e c i s i o n

3r e a s o n e r d e c i s i o n ,

4/ / t r a n s m i s s i o n r e q u e s t p a r a m e t e r s

5[3 1 : 0] c a r r i e r f r e q u e n c y ,

6[3 1 : 0] max tx power ,

7/ / s e n s i n g p a r a m e t e r s

8[3 1 : 0] p e a k r e c e i v e d p o w e r ,

9[3 1 : 0] s i g n a l a g e ,

10[3 1 : 0] l o o k t h r o u g h i n t e r v a l ,

11[3 1 : 0] d w e l l t i m e ,

12/ / d e v i c e p a r a m e t e r s

13[3 1 : 0] s e n s i n g t h r e s h o l d ,

14[3 1 : 0] c h a n n e l w i d t h ,

15/ / u sage p a r a m e t e r s

16[3 1 : 0] max ontime ,

17[3 1 : 0] m i n o f f t i m e ,

18[3 1 : 0] c h a n n e l c l o s i n g t i m e ,

19[3 1 : 0] o u t s i d e b a n d l e a k a g e ,

20o u t p u t r e g a l low , r e a s o n e r c h e c k) ;

21

22/ / Some p r e d i c a t e d e c l a r a t i o n

23t y p e d e f enum {yes , no} Pred ;

24Pred d e v i c e o k ;

25Pred s e n s i n g o k ;

26Pred u s a g e o k ;

27Pred f r e q u e n c y o k ;

28Pred p e a k r e c e i v e d p o w e r o k ;

29

30/ / Some p o l i c y r u l e s t r a n s l a t e d i n t o

S y s t e m V e r i l o g p r o c e s s e s

31a lways @ (posedge c l k) b e g i n

32i f (r e q r e a d y) b e g i n

33i f ((d e v i c e o k) && (s e n s i n g o k)

&& (u s a g e o k)) b e g i n

34a l l o w <= 1 ’ b1 ;

35end

36e l s e b e g i n

37a l l o w <= 1 ’ b0 ;

38end

39end

40e l s e b e g i n

41a l l o w <= 1 ’ b0 ;

42end

43end

44

45a lways @(posedge c l k i f f r e q r e a d y)

b e g i n

46i f (a l l o w == r e a s o n e r d e c i s i o n)

b e g i n

47r e a s o n e r c h e c k <= 1 ’ b1 ;

48end

49e l s e b e g i n

50r e a s o n e r c h e c k <= 1 ’ b0 ;

51end

52end

53

54a lways @ (posedge c l k i f f r e q r e a d y)

b e g i n

55d e v i c e o k <= no ;

56i f ((f r e q u e n c y o k) && (

s e n s i n g t h r e s h o l d o k) && (

c h a n n e l w i d t h o k)) b e g i n

57d e v i c e o k <= yes ;

58end

59end

60

61a lways @ (posedge c l k i f f r e q r e a d y)

b e g i n

62f r e q u e n c y o k <= no ;

63i f ((c a r r i e r f r e q u e n c y >3100)&&(

c a r r i e r f r e q u e n c y <3300)) b e g i n

64f r e q u e n c y o k <= yes ;

65end

66end

67

68a lways @ (posedge c l k i f f r e q r e a d y)

b e g i n

69p e a k r e c e i v e d p o w e r o k = no ;

70i f (((p e a k r e c e i v e d p o w e r < −100)

&& (max tx power == 50)) | | ((

p e a k r e c e i v e d p o w e r >= −100) &&

(p e a k r e c e i v e d p o w e r < −80) && (

max tx power == 10))) b e g i n

71p e a k r e c e i v e d p o w e r o k <= yes ;

72end

73e l s e i f (p e a k r e c e i v e d p o w e r >=

−80) b e g i n

74p e a k r e c e i v e d p o w e r o k <= no ;

75end

76end

77

78endmodule

Figure 4.15: Snapshots from the SRC SystemVerilog code for the Radar “S” band DSA policy

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 115

reasoner’s decision to the enforcer’s decision. The reasoner check output signal is asserted to

logic “1” if both decisions are identical. Computation time of the reasoner’s decision represented

by the allow output is two clock cycles as depicted by the third and forth requests. In a more

exhaustive testbench, we generate different combinations of device parameters for which more

than one are out of authorized ranges to test the SRC’s ability to detect different attacks. Simula-

tion results indicate that the SRC is able to detect attacks targeting different parameters in several

combinations.

800 1600 2400 3200 4000 4800 5600 6400 ns

clk
rst
request_ready
reasoner_decision
allow
reasoner_check
device_ok
carrier_frequency
frequency_ok
sensing_threshold
sensing_threshold_ok
channel_width
channel_width_ok
sensing_ok
peak_received_power
max_tx_power
peak_received_power_ok
signal_age
signal_age_ok
dwell_time
dwell_time_ok
look_through_interval
look_through_interval_ok
usage_ok
outside_band_leakage
outside_band_leakage_ok

no yes yes yes

0 3500 0 3150 0 3245 0 3200 0

no yes yes yes

0 -110 0 -110 0 -112 0 -110 0

yes yes yes yes

0 100 0 100 0 100 0 100 0

yes yes yes yes

yes no yes yes

0 -105 0 -107 0 -87 0 -110 0

0 50 0 120 0 10 0 50 0

no no yes yes

0 10 0 6 0 5 0 9 0

yes yes yes yes

0 500 0 500 0 500 0 500 0

yes yes yes yes

0 3 0 3 0 3 0 3 0

yes yes yes yes

yes yes yes yes

0 9 0 9 0 9 0 9 0

yes yes yes yes

Signal name

max_ontime_ok
min_offtime
min_offtime_ok
channel_closing_time
channel_closing_time_ok

yes yes yes yes

0 100 0 100 0 100 0 100 0

yes yes yes yes

0 1 0 1 0 1 0 1 0

yes yes yes yes

1 400 ns1 500 ns

1 400 ns2 900 ns

200 ns4 300 ns

1 200 ns4 500 ns

200 ns5 700 ns

5 900 ns

Cursor 1

Cursor 2

Cursor 3

Cursor 4

Cursor 5

Cursor 6

0

0

0

0

0

0

0

0

0

0

0

0

usage_ok
outside_band_leakage
outside_band_leakage_ok

0

max_ontime_ok
min_offff tff ime
min_offff tff ime_ok
channel_closing_timme
channel_closing_timme_ok

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

sensing_ok
peak_received_powwer
max_tx_power
peak_received_powwer_ok
signal_age
signal_age_ok
dwell_time
dwell_time_ok
look_through_intervvrr al
look_through_intervvrr al_ok

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

device_ok
carrier_frequency
frequency_yy ok
sensing_threshold
sensing_threshold__ok
channel_width
channel_width_ok

yes

9

es

es

00

es

1

es

y

y

1

y

y

yes

10

50

es

9

es

00

es

3

es

-1

5

y

y

5

y

y

yes

200

es

10

es

00

es

32

y

-1

y

1

y

yes

9

es

es

00

es

1

es

y

y

1

y

y

yes

87

10

es

5

es

00

es

3

es

-

1

y

y

5

y

y

48

yes

245

es

112

es

00

es

32

y

-1

y

1

y

yes

9

yes

yes

100

yes

1

yes

no

-107

120

no

6

yes

500

yes

3

yes

3200

yes

3150

yes

-110

yes

100

yes

yes

9

yes

yes

100

yes

1

yes

yes

-105

50

no

10

yes

500

yes

3

yes

1600

no

3500

no

-110

yes

100

yesDe
vi

ce
 p

ar
am

et
er

s
Se

ns
in

g
pa

ra
m

et
er

s
U

sa
ge

 p
ar

am
et

er
s

Disallowed requestsDisallowed requests Allowed requestsAllowed requests

Figure 4.16: Simulation output for the SRC module enforcing the Radar “S” band DSA policy.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 116

4.5.2 Configuration Firewall

The configuration firewall is composed of software- and hardware-based components interacting

under the control of the PAU processor to actualize SRC reconfiguration commands and ensure bit-

stream integrity. The PAU processor is connected to a flash memory, a remote DMS, the SRC via

several interface peripherals and controllers operated by a simple, standalone, low-level software

layer executing custom software programs, APIs, and drivers written in the C programming lan-

guage. The standalone software layer provides access to basic processor features such as caches,

interrupts and exceptions as well as basic features of the hosted environment, such as standard input

and output, profiling, abort and exit. The standalone software layer is an OS alternative to simplify

the PAU software verification and limit the memory requirements. The PAU processor has 512 KB

of dedicated BRAM memory accommodating the standalone software execution requirements.

Major software programs included in the standalone layer are flash memory read and write APIs,

the LwIP protocol stack, the trivial file transfer protocol (TFTP), and custom-developed read, write,

and control APIs and interrupt service routines for the bitstream supervisor. The LwIP is a widely

used, open source TCP/IP stack designed for embedded systems with the goal of reducing resource

usage. The TFTP is a simple, unsecured file transfer protocol implemented using a very small

amount of memory to enable bitstream transfers from the DMS to the configuration firewall. PRM

bitstreams are generated, authenticated, and encrypted in the remote DMS on a block-by-block

basis, and a unique ID is assigned to each PRM. The block size can be parametrized according to a

desirable resource-speed trade-off considering the buffering requirements, authentication standard,

and the decryption and authentication module architecture. Requested bitstreams are downloaded

from the DMS and stored in the flash memory. The PAU processor does not have access to the

decryption keys generated by the hardware PUFs. Bitstream supervisor APIs initiate and control

writing bitstreams to the dedicated FIFO buffer and reading reconfiguration commands and status

from the corresponding registers.

Figure 4.17 illustrates the bitstream supervisor peripheral block diagram with a simplified version

of the module FSM controller. The AES decipher, HMAC module, PUFs, comparator, ICAP, and

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 117

FSM controllers are user-developed hardware blocks while the FIFO buffers, SPLB interface, and

interrupt source controllers are Xilinx IP cores automatically generated by the XPS tool. All com-

ponents are developed and optimized for the 32-bit bus architecture of the PAU processor. Most

FIFO buffers and registers are synchronous dual port BRAMs enabling control signal exchange

and data flow from the processor memory to the FPGA configuration memory. FIFOs also enable

data flow through several computation modules running at different data rates.

AES Decipher

24 words

32
 b

its

24 words

32
 b

its HMAC
SHA256

8 words

32
 b

its

Co
m

pa
ra

to
r

IC
AP

 c
on

tr
ol

le
r

PUF Decryption
Key (256 bits)

PUF HMAC
Key (256 bits)

Software FIFO Bitstream buffer Hash FIFO

FSM controller

Dec

HMACAuth

Write
ICAP

IdleWrite
status Start

Dec

do
ne

Hashing
done

N
ot

au
th

en
tic

OK

IC
AP

do

ne

done EDK SPLB interface
controller

Data
Control

32
 w

or
ds

32 bits

So
ft

w
ar

e
re

gi
st

er
s

Device interrupt
source controller

64
 w

or
ds

32 bits

SR
C

re
gi

st
er

s

Figure 4.17: Bitstream supervisor peripheral block diagram.

SRC registers enables exchanging configuration commands and status between the bitstream super-

visor and SRC peripherals. The bitstream supervisor has write access to a set of the SRC registers

which are read by the SRC and the SRC has write access to a set of the SRC registers which are

read by the bitstream supervisor. Software registers enable exchanging configuration commands

and status between the bitstream supervisor and the PAU processor. A software FIFO stores PRM

bitstream blocks written by the PAU processor in preparation to the decryption process. The FIFO

depth depends on the bitstream block size parameter which is assigned to 24 words in our design to

satisfy resource-speed constraints. A bitstream buffer stores decrypted blocks to be authenticated

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 118

with the HMAC module. A Hash FIFO stores hash values computed by the HMAC in order to be

validated with the block hash.

The FSM controller initiates and manages data flow between different computing modules and

storage elements based on a set of control words in the SRC and software registers and control

signals from various system components. The SRC writes reconfiguration commands and PRM

IDs to a set of software registers continuously monitored by the FSM controller during the idle

state. The controller, in turn, interrupts the PAU processor to read the PRM IDs. The PAU fetches

the PRM from the local storage and writes bitstream blocks to the software FIFO. The FIFO full

signal starts the AES decryption operation whereas the empty signal terminates the block decryp-

tion. Unlike the software FIFO, the bitstream buffer is a content addressable memory enabling

data buffering rather than data flow.

The FSM controller initiates the HMAC module operation after receiving the decryption comple-

tion signal. The SHA256-based HMAC computes the block hash values from the first 16 words of

the bitstream buffer — the size of a single SHA256 block is 512 bits or 16 words — and writes the

8-word hash value to the hash FIFO. The hash FIFO full signal initiates the comparator operation

to validate the block integrity by comparing the computed hash to the attached hash stored in the

bitstream buffer. Authentic blocks are sourced to the ICAP controller while non-authentic blocks

terminates the reconfiguration process. The FSM controller writes reconfiguration status to a soft-

ware register and interrupts the PAU processor to run a service routine to read this status. Failing

to authenticate any of the bitstream blocks makes the PAU write “reconfiguration failed” status to

an SRC register, whereas writing all PRM blocks successfully to the ICAP causes the PAU to write

“reconfiguration done” status to the SRC register.

AES Decryption Module

AES is a symmetric-key block cipher based on a substitution-permutation network in which the

block length is 128 bits and the key length can be 128, 192, 256 bits [127]. AES operates on a

4x4 column-major matrix of bytes called the state, and most AES calculations are performed in a

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 119

special finite field. The key size determines the number of transformation rounds Nr that convert

the plaintext into the ciphertext and vice versa. Each round consists of several processing steps

including one that depends on the encryption key. All encryption transformations are reversible to

enable decryption. Figure 4.18(a) illustrates the AES algorithm flow for arbitrary number of rounds

Nr. A key expansion algorithm generates a number of sub-keys required by the AES cipher and

decipher rounds. Each encryption round consists of four transformations operating on input states:

• Substitute Bytes transformation is a non-linear byte substitution that operates inde-

pendently on each byte of the state using a substitution table (S-box).

• Shift Rows is a transposition step where each row of the state is cyclically shifted a

certain number of steps.

• Mix Columns is a mixing operation operates on the state column-by-column performing

modulo multiplication by a constant in Galois Field 28.

• Add Round Key is a simple bitwise XORing operation adding a state column to the cor-

responding sub-key word generated by the key expansion algorithm.

These transformations are reversed in the decipher round as depicted in Figure 4.18(b). The

key expansion round adopts Substitute Bytes transformation, cyclic shift, and predefined

round constants to generate 4 sub-key words from the previous round sub-keys as shown in Fig-

ure 4.18(c).

AES can operate in one of several modes for which some of them are non-feedback modes such

as electronic codebook (ECB) while the others are feedback modes such as cipher block chaining

(CBC). Non-feedback modes offer less security but can achieve more speed-up by processing

multiple block simultaneously. In the CBC feedback modes, input to the cipher is constructed

by feeding back the previous ciphertext to be XORed with the new plaintext. In our design, we

implement the AES decipher in the CBC mode which can offer more security at the expense of

the achievable speed-up. Many architectural and algorithmic optimizations investigating area-

speed trade-offs have been proposed for AES implementations in FPGAs. Since AES rounds

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 120

Ro
un

d
1Add Round Key

Inverse Mix Cols

Inverse SubBytes

Inverse ShiftRows

Ro
un

d
1

Add Round Key

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Plaintext
128 bits

Key (128-192-256 bits)

Ro
un

d
N r

-1

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Ro
un

d
N r

Ciphertext
128 bits

Substitute Bytes

Shift Rows

Add Round Key

Expand Key

Ro
un

d
N r

-1

Add Round Key

Add Round Key

Ciphertext
128 bits

Inverse Mix Cols

Inverse SubBytes

Inverse ShiftRows

Ro
un

d
N rAdd Round Key

Inverse SubBytes

Inverse ShiftRows

Plaintext
128 bits

W[Nb* (Nr-1):Nb*Nr-1]

W[Nb*Nr:Nb*(Nr+1)-1]

W [4:7]

W [0:3]

(a) AES algorith flow

S0,0 S0,1 S0,2

S2,2

S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2

S2,0

S0,3

S1,3 S1,0 S1,1 S1,2

S2,2 S2,3 S2,1

S3,1 S3,2 S3,3 S3,0

InvShiftRows()

S`0,0 S`0,1 S`0,2

S`2,0

S`0,3

S`1,3 S`1,0 S`1,1 S`1,2

S`2,2 S`2,3 S`2,1

S`3,1 S`3,2 S`3,3 S`3,0

S0,0 S0,1 S0,2

S2,0

S0,3

S1,3 S1,0 S1,1 S1,2

S2,2 S2,3 S2,1

S3,1 S3,2 S3,3 S3,0

InvMixColumns()

S0,0 S0,1 S0,2

S2,0

S0,3

S1,3 S1,0 S1,1 S1,2

S2,2 S2,3 S2,1

S3,1 S3,2 S3,3 S3,0

InvSubBytes() AddRoundKey()

l = round * Nb

S0,c

S1,c

S2,c

S3,c

S0,c

S1,c

S2,c

S3,c

wl wl+1 wl+2 wl+3
wl+c

S`0,c

S`1,c

S`2,c

S`3,c

Sr,c S`r,c

(b) Decipher round.

wl wl+1 wl+2 wl+3

w0, l+3

w1, l+3

w2, l+3

w3, l+3

w1,l+3

w2, l+3

w3, l+3

w0, l+3

w0,l+3

w1, l+3

w2, l+3

w3, l+3

RotWord() SubWord()

w`r, l+3

Rc
on
[i
/N
k
]

te
m
p

wl

wr, l+3

w`l wl+1 w`l+1 wl+2 w`l+2 wl+3 w`l+3

(c) Key expansion round.

Figure 4.18: AES algorithm flow, decipher round, and key expansion round.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 121

are identical, architectural optimization depends on either resource reuse with feedback to save

area or resource duplication with pipelining to increase speed. Algorithmic optimization exploits

the ability to implement individual AES transformations and functions in several ways and the

possibility of sharing resources between some functionalities. A detailed explanation of the AES

and modes of operation and architectural and algorithmic optimization approaches is provided

in [59].

Our approach to implement the bitstream AES decipher relies on something arising in both the de-

cipher and key expansion rounds. All round transformations can be performed on a word-by-word

basis, where the word size is 32 bits, instead of a state-by-state basis as illustrated by Figure 4.18.

This indicates that the basic building block of AES can be word transformations rather than state

transformations to accommodate 32-bit processor architectures. Applying such an approach to

implement a hardware AES cipher/decipher can result in either a very high-speed architecture by

reducing the critical path of the pipeline building units or a very small-area architecture by limiting

resource requirements to a small building block. Since the security is the main goal of this work,

we decide to implement the AES in CBC feedback mode to gain more security. Speed optimiza-

tions will not result in significant improvements for feedback modes of operation. Moreover, the

ICAP maximum operating frequency is 100 MHz which is considered the main bottleneck in the

bitstream supervisor module. Therefore, we decide to implement the 256-bit key, area-optimized

AES bitstream decipher and present the implementation results. In this work we do not discuss

side-channel attacks on block ciphers and their potential countermeasures.

Figure 4.19(a) illustrates the AES decryption module block diagram. Module inputs include a

256-bit key and valid signal generated by the PUF, 32-bit data input; module outputs include 32-

bit data out. Valid and ready signals perform simple I/O handshaking procedures. The decryption

module comprises two building blocks: the key expansion and decipher modules. These modules

are composed of a set of registers, computational elements, multiplexers and demultiplexers, in-

dexers, and controllers as depicted in Figure 4.19. Without delving into specific implementation

and operational details, the main points demonstrating how the resource usage is optimized with

the presented architecture are:

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 122

• Only a single round is implemented for both the key expansion and decipher modules.

• This single round is reused 4∗Nr times with feedback to compute the 128-bit plaintext from

a given 128-bit ciphertext, where the round computation time is 4 clock cycles. For a 256-bit

key, the decryption period of 128-bit ciphertext equals 56 clock cycles.

• Sourcing and sinking of I/O data are performed on a word-by-word basis.

• In the decipher block, buffering requirements correspond to the state size whereas computa-

tion resources are only developed for a single word as shown by Figue 4.19(b).

• In the key expander, buffering requirements correspond to the key size whereas computation

resources are only developed for a single round as shown by Figure 4.19(c). The input key

to this module is not the encryption key but the last eight sub-key words generated by the

key expansion algorithm.

• Multiplexers select the appropriate word to be processed from various registers while demul-

tiplexers select the appropriate register to store the fed-back computation result.

• Indexers incorporate multiple counters controlling multiplexer and demultiplexer selector

and output enable signals according to the active round index.

• Controllers are mainly composed of FSMs managing I/O interfaces and coordinating the

internal module operation in collaboration with the indexers.

HMAC-SHA-256 Authentication Module

A cryptographic hash function is a function taking an arbitrary block of data called the message

and returns a fixed-size bit string called the hash value or message digest, such that any change

to the message will result in different hash value. SHA-256 is a hash function that takes an ar-

bitrary message of a maximum length of 264 − 1 bits and produces a message digest of 256-bit

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 123

Key expansion
module

AES Decipher
module

Key_in

Key_valid

256 bits
32 bits

W_out

W_valid
7 bits

W_index

Data_in

Input_valid
32 bits

Input_ready

Data_out

32 bits

Out_valid

Out_ready

Clock

Reset

(a) AES decryption block diagram

Sr,0

32 bits

Sr,1

Sr,2

Sr,3
M

U
X

InvSubBytes
(InvShiftRow

s(S))
32 bits

32 bits

Subkey_word_in

InvMixCol(S)

M
U

X

DE
M

U
X

Indexer

Out_enable
Data_out

7 bits

Word_index

32 bits

32 bits

Data_in

32 bits

Controller

Input_ready

Input_valid

Output_ready

Output_valid

Key_valid

Clock

Reset

(b) AES decipher module.

W0

W1

W2

W3

W4

W5

W6

W7

SubWord (RotWord ())
xor Rcon (index%Nk)

SubWord ()

Indexer
DEM

U
X

M
U

X

32 bits

32 bits

Word_out

M
U

X

Key_in

256 bits

M
U

X

32 bits

Controller

Clock

Reset

Key_valid
Word_index

7 bits

Word_ready

(c) Key expansion module.

Figure 4.19: AES decryption block diagram, decipher module, and key expansion module.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 124

length [128]. SHA-256 operations are performed on 32-bit words and include bitwise logical op-

erations, bitwise rotation, and modulo addition. Figure 4.20 illustrates the SHA-256 algorithm

flow and operations. Input message is padded and partitioned into 512-bit blocks for which a hash-

ing function of 64 rounds is applied on a block-by-block basis. Message words are expanded to

64 words with a message schedule function as shown in Figure 4.20(b). Round function inputs are

8 words called the working variables, a message word, and a constant word K. The round function

structure is depicted in Figure 4.20(c).

HMAC is an authentication algorithm computing a message authentication code using a crypto-

graphic hash function in conjunction with a cryptographic key. HMAC can use any standard hash

function and private key of an arbitrary length as shown in Figure 4.21. The key is padded or

truncated to be of a standard size determined by the adopted hash function. The key is XORed

with a predefined input pad and attached to the message to be hashed. The computed hash value

is appended to the key XORed with an output pad, and this combination is hashed to produce a

unique HMAC value for this particular pair of the key and message.

Many architectural optimizations investigating area-speed trade-offs have been presented for SHA-

2 implementations in FPGAs [112, 162]. Loop unrolled and pipelined architectures can result in

high-speed implementations while using the basic architecture with a single hashing round with

feedback can result in reduced area implementations. In our development of the SHA-256 algo-

rithm, resource limitations of the bitstream supervisor module are the main reason to investigate

area-optimized architectures. Another factor that can help to reduce buffering requirements is lim-

iting the message size which can be achieved by limiting the PRM bitstream block size to 512 bits,

which is the basic size of the SHA-256 block.

Figure 4.22(a) shows the block diagram of the area-optimized SHA-256 authentication module.

The SHA-256 authentication module needs 64 clock cycles to hash a 512-bit block. Buffering

requirements include 16x32-bit word registers storing input data and message schedule words,

8x32-bit registers buffering the working variables, and 64x32-bit ROM storing round constants.

Computational resources are only required to implement the round function and the message ex-

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 125

Message (n-bits)

Message (n-bits) 100 . . . 00 n
Padding

Message
length

512 bits
k*512 bits

Hashing function

H0

M0Initial hash
(256 bits)

H1

Hashing function

M1

H2

Mk-1

Hk-1

Hashing function

Hk

Final hash
(256 bits)

(a) SHA-256 algorithm flow.

Hi (256 bits)

a b c d e f g h
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

M
essage (512 bits)

K W

63 63

Round function

a b c d e f g h

Round function

a b c d e f g h

Round function

MEXPMessage
expansion function

MEXP

a b c d e f g h

Hi+1 (256 bits)

(b) SHA-256 hashing computation.

a b c d e f g h

a b c d e f g h

Ch

Ma

Ʃ1

Ʃ0

Wt

Kt

SHA-256 functions

(c) SHA-256 round function.

Figure 4.20: SHA-256 algorithm description.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 126

K (n-bits)

K 00 . . . 00
(512-n) bits

512'h3636363636363636
ipad (512 bits)

Si (512-bits) Message

SHA256H0 (256 bits)

256 bits

512'h5c5c5c5c5c5c5c5c
opad (512 bits)

So (512-bits) H(Si || M)

SHA256H0 (256 bits)

HMAC (K,M)

Figure 4.21: HMAC algorithm flow.

pansion schedule. The multiplexer selects the appropriate words to be processed from various

registers while the demultiplexer selects the appropriate word register to store the computation re-

sult. The indexer controls multiplexer and demultiplexer selectors based on the active round index.

The controller is an FSM managing I/O interface and coordinating the internal module operation in

collaboration with the indexer. The HMAC module is implemented using a single instance of the

SHA-256 module as depicted by Figure 4.22(b). The developed HMAC module requires 256 clock

cycles to hash a 512-bit block.

Table 4.2 shows resource usage and maximum throughput achieved for the AES decipher and

HMAC modules. It also illustrates total resource usage for the dual processors and the attached

peripherals. Resource usage is depicted as the number of used LUTs, registers, and BRAMs and

their ratio to the total resources available on the FPGA. Results demonstrate that the configuration

firewall consumes less than 10% of the FPGA resources leaving more than 90% of the resources

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 127

W0
W1
W2

W14
W15

Custom
 M

U
X

M
essage expansion

function

32 bits

32 bits M
U

X

DEM
U

X

Indexer

a
b
c

K0
K1
K2

K62
K63

32 bits

d
e
f
g
h

32 bits

Round functionM
U

X

Message_in

Controller

Clock

Reset

Input_ready

Input_valid

Output_ready

Output_valid

Last_word

256 bits

1

1

2

2

2

32 bits

W0

Wt Kt

Initial hash H0 ROM

Output hash register
Hash_out

256 bits

256 bits

256 bits

(a) SHA-256 block diagram.

SHA256
Key

management
unit

Key_in

256 bits

Message
32 bits

Concatenation
module32 bits 32 bits

M
U

X

256 bits
32 bits

HMAC_out

Indexer

Controller

Clock

Reset

Input_ready

Input_valid
Output_ready

Output_valid

Key_valid

M
U

X

32 bits

32 bits

M
U

X

32 bits
32 bits

(b) HMAC block diagram.

Figure 4.22: HMAC and SHA-256 block diagrams.

to be utilized by the CR datapath. Total reconfiguration time equals the sum of the encryption,

authentication, and writing to the ICAP time periods where the ICAP is a developed hardware

controller with 32-bit data input and 100 MHz operating frequency.

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 128

Table 4.2: Resource usage and maximum throughput of the PAU processor and peripherals

of LUTs # of slice registers # of BRAMs Throughput

AES 1314 (1.6%) 268 (0.0%) 0 (0.0%) 395 Kb/sec

HMAC 1464 (1.7%) 781 (0.95%) 0 (0.0%) 306 Kb/sec

PAU peripherals 7,341 (8.96%) 8,598 (10.5%) 241 (0.95%) —

Total FPGA resources 81,920 81,920 25,280 —

4.6 Summary

In this chapter we provided an introduction to CR technology and an associated security challenge.

In CR, all layers of the protocol stack are accessible for manipulation including the hardware

layer. An untrusted software program controls platform reconfiguration which endangers radio

spectrum integrity and primary users. We motivated the policy-based approach to protect CR de-

vices against reconfiguration attacks, and presented existing techniques to enforce DSA policies

in CR platforms 4.2. Such techniques solely rely on pure software architectures lacking basic se-

curity assurances. Most of the major advances in computer system security rely on hardware for

enforcement. Data-intensive embedded platforms may require a hardware reorganization capabil-

ity, introducing development complications and new types of security threats including zero-day

attacks. We introduced the CHARE-CR framework to enhance the policy-based CR security in

Section 4.4. CHARE-CR generates application-specific dynamic hardware plug-ins consisting of

controller-wrapped datapaths. Software drivers are simplified by the controllers encapsulation and

abstraction of the datapath structure. Hardware augments software monitoring and enforcement

through the development of a controller incorporating datapath policy rules.

The CHARE framework provides secure reconfiguration control using the SRC and reconfigura-

tion firewall. The main challenges associated with secure reconfiguration control in a CPS con-

Mohammed M. Farag Chapter 4. Application to Cognitive Radio Platforms 129

taining untrusted components are validating update requests issued by untrusted components and

authenticating update contents delivered via open communication channels. The SRC is responsi-

ble for validating update requests, and the reconfiguration firewall is responsible for authenticating

update contents and securing the communication channel. We presented high-level architectures

and prototype developments of the SRC and reconfiguration firewall in the context of the CR ap-

plication in Section 4.5. The SRC is developed by translating DSA policies described in CoRaL, a

domain-specific formal language based on first-order logic, into hardware synthesizable assertions.

Although design automation is not the main focus of this work, we established automation feasibil-

ity by providing concrete examples showing the mapping from CoRaL to SystemVerilog HDL for

all CoRaL syntactic constructs. As a result, CHARE simultaneously addresses the performance,

developer productivity, and security requirements of high-throughput, reconfigurable platforms.

To illustrate how to map the conceptual CHARE-CR framework into a real reconfigurable platform,

we presented the CHARE floorplan with an efficient placement of the RETC security anchors on a

Xilinx Virtex-5 FPGA. We verified the CHARE-CR framework functional correctness by develop-

ing a testbench generating various update requests including allowed and compromised requests,

and assessing the SRC decisions. The SRC is capable of validating transmission requests regard-

less of the software correctness. The SRC and reconfiguration firewall prototypes were evaluated in

terms of overheads compared to the total resources of the FPGA evaluation platform. The SRC was

developed for a CR device operating in the Radar “S” band enforced by a regulating DSA policy

described in CoRaL. The hardware SRC overheads are negligible compared to the total platform

resources and gained security. We utilized state-of-the-art cryptography and authentication stan-

dards and practices to build the reconfiguration firewall. Implementation results demonstrated that

overheads do not exceed 10% of the total platform resources, leaving over 90% of the resources

available for the CR datapath

Chapter 5

Application to Untrusted Hardware Blocks

Fabrication and assembly of contemporary electronics are generally outsourced to a global supply

chain. Even domestic development of modern systems is often assisted by third-party IP modules

and COTS components to increase productivity and reduce design costs. High volume chip manu-

facturing cannot be considered trusted since ICs are vulnerable to tamper and change by untrusted

parties throughout the design and fabrication process. HTHs are malicious IC inclusions or alter-

ations to perform certain actions and functionalities not captured by design specifications [166].

HTHs are emerging threats to embedded systems and CPSes with a potential to break all security

objectives without being detected using traditional solutions. SoC ICs are especially vulnerable to

HTHs as they are assembled from designer-generated register-transfer level (RTL) hardware de-

scriptions, software, and third-party IP cores. All these sources can harbor undocumented, errant,

and Trojan behaviors. Heterogeneous IP cores and components deployed in thousands of products

are more dangerous, especially with plausible interactions between underlying HTHs. Actions of

HTHs include function modification, specification modification, and information leakage.

Most research to develop trustworthy and security protections for SoCs has focused on develop-

ing pre-deployment evaluation techniques. Hardware fabrication might be inspected in a sample

of devices through a variety of destructive and non-destructive techniques, such as sophisticated

imaging of chip layers [26, 84]. The system design can be scrutinized through netlist analysis and

130

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 131

formal verification techniques, simulation, automatic test pattern generation, assertion verification,

or model and information flow checking. Evaluation methods can also be applied on an imple-

mentation of a prototype or final system, such as functional testing or emulation with property

checkers. Equivalence checking between various stages of the design implementation may even be

used to ensure trust in the design tools themselves. Unfortunately, most trust evaluation method-

ologies require the existence of golden reference devices and netlists [167]. Each technique has its

limitations and no single one is comprehensive enough to guarantee trust and security throughout

a system’s lifetime. For example, netlist analysis and emulation techniques are sometimes ineffec-

tive in finding Trojans and illegitimate behaviors that are difficult to activate and observe. Another

unfortunate reality is that even if feasible evaluation methods are available, certifying an SoC as

trusted pre-deployment is too expensive and time-consuming for many designers.

Many Trojan detection methodologies have been proposed to detect HTHs pre-deployment. The

compile-time detection methods are categorized as either analysis of side-channels or Trojan acti-

vation methods [166]. Side-channel analysis techniques attempt to detect HTHs by measuring the

induced changes of a side-channel signals, including timing and power. Trojan activation methods

aim to increase the likelihood of activating HTHs. Unfortunately, detecting HTHs using compile-

time approaches is extremely difficult for several reasons including:

• The large number of IP cores used in computing systems, in addition to the complexity of

modern IP blocks.

• The small feature size of modern nanometer ICs complicates detecting such alterations using

physical inspection and reverse engineering methods.

• HTHs are very small compared to the containing components.

• Usually, HTHs are kept dormant waiting for rarely-occurred triggering conditions, which

complicates their detection using traditional simulation methods.

• Many detection methods need Trojan-free references which can be difficult to find.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 132

• Side-channel variations induced by HTHs are comparable to those caused by process varia-

tions and measurement noise.

Design for hardware trust is the alternative approach to improve Trojan detection by modifying the

design flow to add trust anchors. Run-time checkers are derived from assertions about a system’s

operational or security policies and embedded into modules to monitor and enforce properties in

real-time. This protection scheme does not assume the existence of a golden reference or the ability

to inspect the internals of third-party IP modules. It provides assurances for suspected behaviors

that are difficult to activate or prove. Hardware-based checkers also offer the observability and

performance necessary to deter high-speed attacks.

In RETC-CPS, hardware guard components are developed at design-time and integrated into the

IP module interfaces to monitor and enforce permissible behavior policies at run-time. Unlike

other design-time Trojan detection approaches, RETC-CPS treats untrusted components as black

boxes without needing Trojan-free golden references. Regardless of the component complexity

and Trojan features, guard components solely rely on monitoring component interfaces to detect

anomalous behavior and enforce permissible operation. The generated run-time guard compo-

nents are capable of detecting HTHs whenever they get activated during the component’s life time.

This approach requires that every impermissible behavior of the protected module, even those as-

sociated with Trojans supporting side-channels or covert communication, can be captured by the

security policy. For example, a HTH leaking information from a chip via wireless channels, might

consume large spikes in power during a relatively idle period when no communication is taking

place. Hence, run-time monitoring of power traces can be used to detect such Trojan instances.

As described in Chapter 3, RETC-CPS provides low-level protections that can detect and tolerate

threats raised by HTHs in untrusted components. In this chapter we apply the RETC-CPS pro-

tection scheme to third-party hardware IP cores as an example of untrusted components widely

deployed in CPSes. The main components responsible for low-level protections in the RETC-

CPS architecture are the untrusted component interface guards. IP functional specifications are the

only thing that a designer can entrust to formulate the security policy because golden references

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 133

and trusted models for third-party IP cores are difficult to obtain. Therefore, the low-level secu-

rity policies are circuit- and component-based rather than application-based policies enforced at

system-level interfaces. Although functional specifications are necessary to enforce the required

component behavior, they might not be adequate to enforce the typical behavior without extra

functionalities. However, specific security policies and specialized primitives can be employed

to enforce non-functional security specifications addressing extraneous functionalities and side-

channel attacks, for example.

To illustrate our approach, we present a development of HTHs enabling covert communication

in third-party IP cores of high-speed serial interface adapters commonly used in cyber networks.

The presented HTHs exploit loose specifications of the underlying media link protocols charac-

terizing the operation of the serial high-speed interface adapters. Usually, operating protocols and

functional specifications retain some flexibility to support a variety of applications and operating

conditions. However, this flexibility can serve as a double-edged sword that can be exploited by

malicious entities to conduct Trojan functionalities without altering the component functionalities.

The regular operation of the infected IP cores is not disturbed, yet the embedded HTHs perform

extra, non-typical operations enabling covert communication in point-to-point physical links es-

tablished between infected adapters.

Such HTHs are difficult to detect using conventional design-time HTH detection techniques be-

cause they get activated under rarely occurring triggering conditions and they induce marginal area

and power consumption overheads. Therefore, the run-time monitoring and enforcement approach

adopted by RETC-CPS is indispensable to detect such cleverly designed HTHs and counter their

effects. Loose specifications of the underlying protocols are confined to the specific application

requirements. Security policies and protection primitives are drawn from the tightened functional

specifications, translated into hardware guard components, and integrated into the IP core inter-

faces. Countermeasures include overriding affected interfaces and sourcing typical alternative sig-

nals if possible, bypassing the infected component and activating a redundant backup if available,

reporting the threat to the DREC, or swapping the compromised IP core with another one using

dynamic reconfiguration.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 134

The remaining of this chapter is organized as follows: In Section 5.1, we provide a brief intro-

duction and background about the developed HTHs and their potentials in cyber networks. Also,

we present a potential attack scenario illustrating how the developed HTHs can be exploited to

leak confidential information about the containing systems. High-speed serial interface adapter IP

cores hosting the developed HTHs are introduced in Section 5.1. RETC-CPS low-level interface

guards are presented in Section 5.2. HTH and interface guard implementation details, results, and

evaluation are given in Section 5.3. This chapter is summarized in Section 5.4.

5.1 HTH Example: Interacting with Hardware Trojans Over a

Network

HTH insertion and detection methods are emerging research topics that can partially leverage soft-

ware Trojan horse (STH) ideas and experiences. However, software platform homogeneity and

programmability provide a higher degree of transitive (non-direct) observability and controllabil-

ity compared to HTHs, making STHs the preferred choice for attacks. For SoC ICs, development

of programmable and transitive HTHs would support more powerful attacks by enhancing con-

trollability and observability. In a HTH context, transitivity is a module’s covert ability to relay

information of interest from a module’s input interface, with or without processing, to a certain des-

tination linked to the module’s output interface. Transitivity would extend HTH communication

beyond the local node’s environment.

The enabling mechanism for HTH transitivity is a means of interaction. HTHs are stealthy by

nature and covert communication is their usual means of interaction. A covert channel can be

defined as “an enforced, illicit signaling channel that allows a user to surreptitiously contravene

the security policy and unobservability requirements of the system” [168]. System vulnerabilities

leading to covert channels are a result of design oversights, weakness inherent in the system design,

or underspecification of underlying protocols. System vulnerabilities must first be identified in

order to provide a defense against covert data channels. Vulnerabilities caused by design oversights

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 135

can be eliminated once they are discovered in the system design phase. On the other hand, it may

not be possible to remove all potential weaknesses since doing so may lead to inefficient systems.

Flexible protocol specifications enable application scalability even though loose specifications may

lead to vulnerabilities that can be exploited to violate security specifications and establish covert

channels.

We investigate development of HTHs supporting remote interaction over wired computer networks.

Software-based covert communication in computer networks is an active research area investigat-

ing how STHs can exploit vulnerabilities in the protocol stack [119]. Development of HTHs

exploiting network protocols vulnerabilities is an interesting new area to consider. However, it is

also challenging due to the number and diversity of layers implemented with both hardware and

software. Various layers of the protocol stack can be exploited to create covert data channels,

but intended recipients may differ from one layer to another. To set up end-to-end (peer-to-peer)

communication in different network topologies, a logical link between endpoints is established by

employing a chain of physical links to a particular destination. The route to a particular destination

is usually not fixed, and a logical link may be established with temporally varying physical links.

Upper (host) layers of the protocol stack are typically connected to applications or users serving as

the ultimate source and sink of commands and data.

On the other hand, covert data channels established with lower (media) layers of the protocol

stack act as carriers across the endpoints of a physical link. Interactions between multiple HTHs

along a logical link require connecting a chain of compromised physical links. Escalating covert

information from a compromised lower layer to upper layers of the stack is another way of deliv-

ering covert data to intended recipients. Alteration between upper and lower layer covert channels

might help to evade detection by specific defenses. However, it may not be necessary to create an

end-to-end covert channel because the attacker may be a man-in-the-middle eavesdropping on the

network.

In this chapter we advance a lightweight HTH supporting two-way covert communication in point-

to-point physical links by exploiting vulnerabilities in the underlying media layer protocols. Covert

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 136

data channels are established by inserting HTHs exploiting unenforced, loose specifications of

IP cores implementing media layer functionalities in a manner that maintains system operability.

Specifically, we explore insertions in a PCS/PMA 10GBASE-X IP core implementing the physical

layer functionalities of the 10GbE protocol specified in the IEEE 802.3-2008 standard [3], and

in an Aurora IP core implementing the link-layer functionalities in a high-speed serial protocol.

Aurora is an open source implementation of a link-layer protocol developed by Xilinx to support

serial links between chips employing MGTs, with the protocol specifications adopted from the

IEEE 802.3 standard [173].

5.1.1 Trojan-enabled Covert Communication Background

Previous research addressing covert communication using HTHs has emphasized the use of hidden

modules and structures to leak sensitive information from a chip. Common underlying assumptions

are that a HTH can be added to critical components on the chip such as cryptographic modules, an

inability to detect the HTH with existing analysis techniques, and the attacker has local access to

the compromised IC. HTHs of this type commonly employ electromagnetic radiation via hidden

on-chip antennas, power, or temperature side-channels to encode and leak sensitive information

off a chip. Such HTHs transmit covert data over a short range, limited by the hidden nature of the

Trojan, such that an attacker residing close to the compromised IC can receive and decode leaked

information. Karri et al. presented several examples of covert communication using power and

temperature side-channels in their Trojan taxonomy [85]. Most of the existing covert communica-

tion techniques adopting HTHs and side-channels are localized in the sense that an attacker needs

physical proximity or access to the compromised device to exploit information obtained by the

embedded HTH.

Adding HTHs to input/output subsystems of a compromised IC provides another means to estab-

lish covert channels. Information is covertly transferred via existing interfaces and peripherals

by hiding extra data in legitimate communication and interface protocols. For example, HTHs

can support covert communication by changing signaling specifications of existing hardware in-

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 137

terfaces. Characteristics such as phase, rate, or sequencing can be modulated in unconventional

way to encode covert data along with legitimate data. To evade detection by evaluations and typical

run-time defenses, covert data transferred using a shared medium should mask itself in signaling or

data that is generally ignored by the designer. Attributes characterizing legitimate communication

should not be significantly affected by channel sharing. For example, the data rate of a legitimate

interface should not be reduced by the insertion of covert information.

The Embedded Systems Challenge competition demonstrates leaking sensitive information from a

BASYS FPGA board by changing the RS232 serial interface signaling specifications [24,81]. Sun

et al. developed a pin hijacking transceiver module exploiting idle or dead time in an I2C interface

to create two-way communication between an FPGA chip and a serial memory device [161]. They

also described another covert channel encoding data in a DDR2 memory interface’s phase delay

attribute, which is normally used for calibration purposes. HTHs exploiting existing interfaces

for covert communication are normally limited to inter-chip interactions, and we are not aware of

HTHs supporting covert communication across computer networks.

Covert communication in computer networks uses protocols such as TCP/IP for information trans-

fer instead of the payload data used in steganography. The vast amount of data, large number of

existing protocols, and the ease of eavesdropping on computer networks provide many opportuni-

ties for high bandwidth covert communication. Zander et al. surveyed a number of software-based

covert channels in network protocols, and possible countermeasures [174]. Covert channels may

be classified as storage channels involving a shared medium accessed by both the transmitter and

receiver, and timing channels involving modulation of certain characteristics.

Various protocols and layers have been exploited by STHs to create covert channels over networks.

Examples of such exploits include unused header bits, header extensions and padding, TCP initial-

ization sequences, IP identification and framing offset, checksum fields, and many other vulner-

abilities. For example, a TCP initial sequence number is used to coordinate between transmitter

and receiver, and may be optionally selected by the client according to loose rules. As reported

in [174], a covert channel may encode information in this field while maintaining a uniform data

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 138

distribution. Previous research addressing covert channels in computer networks has emphasized

software methods, with less attention to hardware exploits and countermeasures.

5.1.2 Example Attack Scenario

In this section we present an attack scenario to illustrate communicating useful information with

HTHs. Our attack makes use of PUFs, which when challenged provide identifier responses unique

to the devices on which they are implemented due to subtle variations in the fabrication pro-

cess [156]. PUFs have been proposed for device and IP authentication across an untrusted supply

chain [65]. It has also been suggested that the unique identifiers PUFs provide might be useful for

device tracking [69]. Building on this idea, our attack utilizes PUFs to perform reconnaissance on

target systems post-deployment.

Figure 5.1 illustrates conceptually how a PUF with additional Trojan circuitry inserted into a third-

party IP module might be used to track systems. An attacker first distributes the Trojan IP as an

encrypted netlist core to the target organization. After this point, the attacker may have no visibility

into which systems use the IP. However, this attack does not require PUF signatures to be linked

to devices beforehand as the attacker would still likely be able to generally target a specific project

and may be able to infer system information from recovered PUF identifier information when the

system comes online. A PUF is particularly useful for this attack because it enables a single Trojan

IP core to be implemented on any number of devices while providing unique information for each.

In Figure 5.1, devices A, B, and E make use of the Trojan IP while devices C and D do not. The

attack is considered successful when the HTH communicates its PUF-created unique identifier,

and perhaps an origination address copied from observed data packets, back to the attacker. The

attacker must ultimately have some level of observability over a part of the cyber system in order

to recover HTH communications.

We develop possible ways for the distributed Trojan IP to communicate tracking information to

the attacker. Section 5.1.3 explores point-to-point covert data channels created over Ethernet links,

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 139

Network

PUF signatures
and origination

addresses

Device B

IP w/
HTH

Serial connection

Device A

IP w/
HTH

Device C

IP

Device D

IP

Ethernet connection

Distribute Trojan IP (attacker
has no direct access)

Collect tracking information
(attacker has access)

Device E

IP w/
HTH

Figure 5.1: Trojan IP system tracking attack scenario.

illustrated in Figure 5.1 as the connection between device B and the computer network. This

enables tracking information to be recovered by eavesdropping on the network with which the

system communicates. More deeply embedded HTHs may require intra- or inter-device point-

to-point links to propagate information out of a system. Section 5.1.4 therefore explores covert

channels over serial links such as the connection between devices A and E. This also enables

tracking information to be recovered by monitoring a device in a HTH chain. The attacker can

leverage access to device E to recover tracking information sourced from device A.

5.1.3 HTH Interaction Across 10GbE Physical Links

We first consider how to propagate covert information across 10GbE links, enabling a PUF signa-

ture to be transmitted from a device to a network. 10GbE offers a more efficient and less expensive

approach to moving data on backbone connections between network switches while also providing

a consistent technology end-to-end. It uses the IEEE 802.3 MAC sublayer, connected through a

10 gigabit media independent interface (XGMII) to the 10GBASE physical layer entity specified

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 140

in IEEE 802.3 clause 48. The physical layer of 10GbE consists of the physical coding sublayer

(PCS), the physical medium attachment (PMA), and the physical medium dependent (PMD) sub-

layers [3].

10GBASE-X is a serial interface IP block implementing the PCS and PMA functionalities between

the XGMII MAC and the PHY layers. The 10GBASE-X PCS maps XGMII data and control char-

acters to/from a stream of code groups according to an 8B/10B transmission code. The PCS is

responsible for data encoding/decoding, lane synchronization and alignment, conversion of XG-

MII idle control characters to/from a randomized sequence of code groups, and PHY clock rate

compensation achieved by embedding special non-data code groups in the idle stream. Clock re-

covery and serializing/deserializing data are performed in the PMA. The PMD layer consists of

four lanes employing high speed serial transceivers running at 3.125 GHz. Figure 5.2 illustrates

the block diagram of the PCS/PMA 10GBASE-X IP core.

The PCS transmit process continuously generates code groups based upon transmit data (TXD)

and control (TXC) signals, while the PCS receive process continuously accepts code groups from

the PMA service interface and generates receive data (RXD) and control (RXC) on the XGMII. All

received idle code groups are replaced with idle characters before forwarding to the XGMII. The

8B/10B transmission code as well as the rules by which the PCS encode and decode code groups

are specified in IEEE 802.3 clause 36. 10GBASE-X PCS ordered sets consists of combinations

of special and data code groups of length four beginning in lane 0. The PCS defines special code

groups for control purposes, and provides capabilities such as synchronization, deskew, and error

detection.

Idle Sequence-based Covert Channels

In this section we sketch HTHs enabling covert communication in 10GbE physical links by chang-

ing signaling specifications of the underlying PCS layer. Idle ordered sets ‖I‖ are transmitted in

full columns whenever the XGMII is idle. The idle sequence (ISQ) provides a continuous fill pat-

tern to establish and maintain lane synchronization, perform lane-to-lane deskew, and achieve PHY

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 141

PCS

Transmit control

8b
/1

0b

en
co

de
r

8b
/1

0b

en
co

de
r

8b
/1

0b

en
co

de
r

8b
/1

0b

en
co

de
r

8b
/1

0b

de
co

de
r

8b
/1

0b

de
co

de
r

8b
/1

0b

de
co

de
r

8b
/1

0b

de
co

de
r

Code group
alignment

Synchronize

Deskew

Receive
control

Elastic buffer

P
M

ASerializerDeserializer

8-
bi

ts

8-
bi

ts

8-
bi

ts

8-
bi

ts
10

-b
it

s

10
-b

it
s

10
-b

it
s

10
-b

it
s

T
X

D
<3

1:
0>

T
X

C
<3

:0
>

R
X

C
<3

:0
>

R
X

D
<3

1:
0>

R
X

_C
LK

tx_lane<3:0>rx_lane<3:0>

T
X

_C
LK

 I
dl

e
ra

nd
om

iz
er

XGMII

MDI

PMD
Receive Transmit

PCS service
interface

PMA service
interface

PMD service interface

C
on

fi
gu

ra
ti

on

ve
ct

or

S
ta

tu
s

ve
ct

or

RX
HTH

TX
HTH

PUF

TX
memory

RX
memory

tx_code_group<39:0>rx_unaligned<39:0>

Figure 5.2: PCS/PMA 10GBASE-X IP core.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 142

clock rate compensation. An ‖I‖ sequence consists of one or more consecutive sync column ‖K‖,

skip column ‖R‖, or align column ‖A‖ ordered sets. Some of the rules governing ‖I‖ ordered set

sequencing are:

• Each ‖A‖ is sent after r non-‖A‖ columns where r is a randomly distributed number between

16 and 31.

• When not sending an ‖A‖, either ‖K‖ or ‖R‖ is sent with a random uniform distribution

between the two.

Both ‖A‖ spacing as well as ‖K‖, ‖R‖, or ‖A‖ selection are based on a random integer r generated

by a PCS idle randomizer employing a pseudo-random binary sequence generator. We exploit the

ISQ ordered sets to encode covert data between the endpoints of the physical link by adding a

HTH to the standard idle randomizer. To satisfy ISQ constraints, only ‖K‖ and ‖R‖ ordered sets

are used to encode data as shown in Figure 5.3. Spacing between consecutive ‖A‖’s is fixed at

32 characters, the maximum value permitted. Other techniques such as Huffman encoding enable

uniformly distributed covert data using the three ordered sets to increase entropy.

-R+K +R +K +K +R +A -R-A +K +R -K -R -R +K -K -R

Pseudo random spacing

Fixed spacing (32-characters)

 , 0 1 0 1 1 0 0 1 0 1 1 0 0 1 , 1

A. Standard Idle Sequence
(Pseudo random)

-A+K +R+K +K +R +A -R-A +K +R -K -R -R+A -K -R

B. Custom Idle Sequence
Covert information

Figure 5.3: Standard and custom idle sequence timing diagram.

As shown in Figure 5.2, the TX HTH is a binary encoder instantiated inside the PCS idle random-

izer, and the RX HTH is a binary decoder instantiated inside the receive control module. The TX

and RX HTHs could be selectively enabled by a rarely occurring data sequence in the transmit and

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 143

receive sides. In our example scenario, a tracking PUF provides the TX HTH with the IP or device

signature to be sent over the ISQ covert channel. Configuration and status vectors are possible

interfaces for covert information flowing to and from the core. Portions of these interfaces may be

used in the development and test phases while kept idle during normal operation. These interfaces

could be employed by the TX and RX HTHs to forward covert data to upper layers of the protocol

stack. Store and forward techniques using hidden memory modules might also also be used.

5.1.4 HTH Interaction in Multi-gigabit Transceivers

We now consider how to propagate covert information across high-speed serial links adopting

MGTs to enable a PUF signature to be transmitted between devices. MGTs are the preferred

means of transferring high-speed data between integrated circuits. The sender and receiver do not

share a global or transmitted clock signal. Parallel data words are serialized by the MGT trans-

mitter, and the receiver performs the reverse function. Low voltage current mode logic supports

signaling rates up to 28 Gbps over a single differential pair of conductors. Compared to parallel

data transfer, MGTs reduce pin count, electromagnetic interference, ground bounce due to simul-

taneous switching outputs, and power. MGTs are widely deployed in ASIC- and FPGA-based

communication standards and applications such as PCIe, SATA, Fibre Channel, Infiniband, SAS,

Serial RapidIO, and Gigabit Ethernet. Figure 5.4 illustrates the basic architecture of an MGT.

The PCS is responsible for idle pattern generation, data encoding/decoding, and lane alignment.

Channel transmission normally uses 8B/10B encoding, which defines 256 data characters and 12

control characters represented as 10-bit code groups. Clock differences between the sender and

receiver can be tolerated without requiring flow control. The PMA is responsible for serializing

and deserializing data [18].

An MGT integrates clock, data, and control in a single bitstream transferred over a point-to-point

serial link. Data and control information are encoded in different characters groups and sequences,

and a PLL is used to recover the clock. Channel control characters are added and interpreted by the

link-layer protocol based on application requirements and physical channel state. Aurora 8B/10B

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 144

MGT Transceiver
Physical Coding Sublayer

(PCS)

User (parallel) clock domain

Physical Medium
Attachment (PMA)

Serial clock domain

C
R
C

TX data 8B/10B
encoder

F
I
F
O

Serializer TX buffer
TX+

TX-

Elastic
buffer

8B/10B
decoderRX data

CRC
Channel bonding &

clock correction

Deserializer
& comma
detector

RX buffer
RX+

RX-

TX clock generator

RX PLL &
 clock generator

Ref Clk

8/16/32 bits

8/16/32 bits

Control

Figure 5.4: Multi-gigabit transceiver architecture.

is a simple example of a link-layer protocol defining the packet structure, communication channel

initialization and validation, error handling, and clock compensation [173]. Figure 5.5 shows the

top-level block diagram of the Aurora IP core, including a brief description of individual modules.

Aurora shares characteristics and basic functionalities of other link-layer protocols such as PCIe

and XAUI [125].

Though the design and use of MGTs has been extensively addressed, we are not aware of investiga-

tions regarding their use in covert communication. We present system modifications and internal

IP alterations and additions enabling covert communication using MGTs, and demonstrate spe-

cific proof-of-concept implementations for each. Figure 5.6 depicts insertion points and top-level

interfaces of the additions and modifications. The HTHs are evaluated in terms of performance

measured by covert communication bit rate, cost estimated by resources usage, productivity as-

sessed by implementation difficulty, and impact on the main communication channel.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 145

 Aurora IP core

Lane Logic

 Transceiver initialization
 Control characters
 Encoding & decoding
 Error detection
 Single or multi-lanes

Global Logic

 Channel initialization
 Random idle sequence generation
 Global channel maintenance
 Error monitoring

RX Interface

 Framing or streaming
 RX Flow control

TX Interface

 Framing or streaming
 Clock correction
 TX Flow control

M
G

T
bo

un
da

ry

H
ig

h
sp

ee
d

se
ri

al
 b

ou
nd

ar
yInternal

signals

M
ul

ti
-g

ig
ab

it
 T

ra
ns

ce
iv

er

g i
b

p
d

A
ur

or
a

bo
un

da
ry

RX data

TX data

Control

Control

Serial I/O

Figure 5.5: Aurora IP core structure.

Clock Correction-based Side-Channel

The tight jitter requirements on a transmission clock normally prevent an MGT from using the

recovered clock as a reference clock. Each MGT system often has its reference oscillator generat-

ing its unique frequency. Small deviations between the transmitter and receiver clock frequencies

result in either overflow or underflow of the receiver FIFO. Clock correction (CC) compensates

advance/delay of the received clock due to the deviation between oscillators’ frequencies. Most

MGTs have a built-in CC option which involves a unique symbol or sequence of symbols not found

elsewhere in the data stream.

On the transmitter side, the Aurora protocol implements CC by periodically inserting clock com-

pensation sequences composed of multiple instances of the control character /CC/ into idle pat-

terns or user data. On the receiver side, if the FIFO is getting close to full, the PCS looks for

the next CC sequence and drops it. Conversely, if the FIFO is getting close to empty, the PCS

writes the next CC sequence twice into the FIFO [173]. The Aurora IP core is provided with an

external CC module which generates a standard CC signal. Customizing the CC module should be

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 146

Aurora IP Core

Lane Logic

Global Logic

RX Interface

TX Interface

Custom TXISQ

(binary encoder)

ISQ data
valid

ISQ TX side-
channel data

M
G

T
 P

H
Y

ISQ control

RXISQ

(binary decoder)

RXCC

(PCM / PWM
decoder)

Multiplexer

S
tandard

C
C

m

odule

C
ustom

 T
X

C
C

(P
C

M
/P

W
M

encoder)

M
ultiplexer

DO_CC

CC TX side-
channel Data

CC data
valid

ISQ RX
data

S
er

ia
l

 I
/O

RX data

TX data

Standard ISQ
pseudo random

generator (LFSR)

CC RX
data

Control

Control

Trojan circuitry and connections
Core circuitry and connections

Figure 5.6: Modified Aurora IP core.

performed with careful analysis, testing, and consideration of the following guidelines:

• CC sequences should last at least two cycles to ensure they are recognized by the receiver

(TCC min = 2TRef clk), where the Ref clk is the parallel data clock.

• Duration and period should be precisely assigned to correct for the maximum difference

between frequencies of the used oscillators.

• The minimum separation time between consecutive CC sequences is eight clock cycles

(TSep min = 8TRef clk).

CC can source covert information with CC variation instead of standard periodic initiation. The

CC is performed by asserting a DO CC control signal which stalls data and relays a sequence of

repeated /CC/ characters. The DO CC is an input to the TX user interface of the Aurora IP shown

in Figure 5.5. Different pulse modulation techniques can be used for covert data encoding. We

employ pulse code modulation (PCM) and pulse width modulation (PWM) to encode data in the

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 147

CC, as illustrated in Fig. 5.7. In a PCM CC cycle, asserting DO CC for a certain period denotes a

logic 1 while releasing it denotes a logic 0. In a PWM CC cycle, n bits of data can be encoded

in the DO CC signal hold time (pulse width). The CC TX HTH is a custom encoder driving the

DO CC signal as shown by Figure 5.6. The CC TX HTH is a custom decoder instantiated inside

the Aurora RX interface module to detect received CC sequences carrying covert information. In

both encoding schemes, the CC is periodically asserted under the control of covert information.

Transmitter circuits are selectively activated under a triggering condition of a certain data sequence.

A. Standard Clock Correction

C. Custom PWM Clock Correction

T
Tpw Tsep

DO_CC

DO_CC

DO_CC

B. Custom PCM Clock Correction

Covert information (n=3)

Covert information

DD DCC D D DD D D D D DCC D D D CC DD D D

Serial stream

DD DCC D D DCC D D D D DCC D D D CC DD D CC

001 000 010 000 101

0 1 1 0 1

DD CCCC D D DCC D D D D DD D D D CC CCD D D CC

Serial stream

Serial stream

Figure 5.7: Standard, PCM, and PWM clock correction signals

The CC-based transmitter provides a general model for establishing covert communication using

an MGT flow control mechanism. The transmitter is either a custom PCM or PWM module driving

the DO CC input to the Aurora IP, sharing communication channel with the main serial stream,

and sending data by modulating the CC incident. We provide the transmitter with a a triggering

input indicating the presence of covert information and a predefined initialization and termination

sequences signaling the start and end of the transmission, respectively. The custom DO CC output

of the transmitter is multiplexed with a standard CC signal and the selector is a data valid

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 148

signal indicating the existence of covert information. The receiver is either a custom PCM or

PWM decoder module instantiated inside the Aurora IP core with internal access to the RX user

interface internal signals shown ny Figure 5.6. The IP internal signals are used to detect received

CC sequences carrying covert information.

The bitrate R of covert communication can be defined as the number of bits transferred via the

covert channel per second. The number of bytes/lane does not contribute to the number of encoded

bits/cycle since the same character denotes the CC for all bytes. The covert transmission stops the

main data flow because of the channel sharing which reduces the data rate of the main communi-

cation. Rate reduction resulted by the channel utilization induced by the CC is a crucial factor in

evaluating the HTHs. Channel utilization ratio U is function of the CC pulse width TPW , period

T , and occurrence probability PCC .

R =
bits encoded/CC cycle

CC period
(5.1)

U =
TPW

T
PCC (5.2)

The PCM transmitter encodes a single bit per CC cycle, as exemplified by Figure 5.7, where the

CC period is constant value. The probability of the CC occurrence equals the probability of logic

“1” existence in the covert channel information which equals 50% in balanced data. The PCM

transmitter maximum bitrate and channel utilization are evaluated by substituting the CC pulse

width and separation time with the CC customization constraints.

RPCM =
1

TPW + TSep

(5.3)

UPCM =
TPW

2(TPW + TSep)
(5.4)

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 149

RPCM max =
1

2TRef clk + 8TRef clk

=
fRef clk

10
(5.5)

UPCM max =
2TRef clk

2(2TRef clk + 8TRef clk)
= 10% (5.6)

PWM transmitter can encode n bits of data in the DO CC signal pulse width by asserting it for a

variable number of clock cycles ranging from 2 to (2n + 1) and fixing the separation time which

satisfies the CC constraint. To regulate the DO CC signal, the period T is fixed to a predefined

value as shown in Figure 5.7. In our design, T is selected to be m times the maximum pulse

width where m is an integer number larger than one to satisfy the third constraint. The CC occur-

rence probability is 100% (PCC = 1) since CC takes place regularly with a variable pulse width.

Channel utilization UPWM can be evaluated by assigning an average value to the CC pulse width.

Assuming uniform distribution of covert information, TPW avg is the mean of the variable CC pulse

width TPW . The PWM transmitter maximum bitrate and channel utilization can be calculated by

assigning the minimum value of m, which equals 2, in Eq (5.7) and Eq (5.8), respectively.

RPWM =
n

T
=

n

mTPW max

=
n

m(2n + 1)
fRef clk (5.7)

UPWM =
1/2((2n + 1) + 2)TRef clk

m(2n + 1)TRef clk

=
2n + 3

2m(2n + 1)
(5.8)

RPWM max =
n

2(2n + 1)
fRef clk (5.9)

UPWM max =
2n + 3

4(2n + 1)
(5.10)

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 150

Idle Sequence-based Covert Channels

MGTs must incorporate a number of functions to permit high line rates. ISQs are ordered sets of

control characters used to perform word boundary alignment and channel bonding during initial-

ization. During operation, ISQs are inserted during wait states to keep the channel active. The

Aurora protocol’s ISQ uses /A/, /K/, and /R/ control characters applied in a pseudo-random

sequence subject to the Aurora constraints drawn from IEEE 802.3 [173]. We change the signaling

specification of the Aurora protocol to encode covert information in ISQs in a manner similar to

Section 5.1.3, and as follows:

• /A/ spacing is randomized with a minimum of 16 code groups but no more than 32 code

groups between any two /A/ code groups.

• /K/’s and /R/’s are randomly placed between /A/’s as long as the 0/1 running disparity

maintains DC balance.

• The minimum transmit pattern is one symbol pair. Any of the three characters can be sent,

as long as the preceding two rules are obeyed. If the /A/ is sent, the spacing rule must still

be obeyed.

• For multi-lane channels, the same idle symbol-pair must be transmitted simultaneously on

all lanes that require an idle at that time.

Wait states can encode covert information in the ISQ without affecting the main channel commu-

nication rate. To satisfy ISQ constraints, only /K/ and /R/ characters are used to encode data as

shown in Figure 5.3. Spacing between consecutive /A/’s is fixed to 32 characters, the maximum

value permitted. The ISQ TX HTH is a binary encoder instantiated inside the Aurora core and the

ISQ RX HTH is a binary decoder instantiated inside the Aurora lane logic module. ISQ TX HTH

encodes binary data in /K/ and /R/ characters between separating /A/ characters as illustrated

by Figure 5.6. The ISQ TX HTH bit rate depends on the number of bytes per lane, where every

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 151

byte corresponds to an idle character. The covert channel bandwidth B is a function of the achieved

bit rate and the MGT wait state time percentage I%:

RISQ = 31/32 · Bytes/lane ·fref clk (5.11)

BISQ = Bytes/lane ·fref clk · I% (5.12)

5.2 Multi-gigabit Transceiver Interface Guards

Assuming that a designer needs to employ the Aurora IP core developed by a third-party in a

security-critical application. Of course, the designer does not have any idea about the embedded

Trojans and is not aware of the core’s internal structure. Only the IP functional specifications

can be obtained from the third-party developer. Hence, building run-time security defenses and

protection primitives is necessary and such protections should mainly rely on the IP functional

specifications. Specific protections can be developed to thwart cyber threats not captured by the IP

functional specifications such as information leakage via side-channel communication.

Similar to the CHARE-CR framework, security policies can be drawn from the IP functional spec-

ifications and enforced at the module interfaces. Such an approach requires describing functional

specifications in a formal language and translating these descriptions into hardware assertions.

The functional specifications are a set of rules describing the component behavior in terms of time.

Therefore, the language used to describe such properties must be supported by a temporal logic

system. The IEEE PSL provides a formal notation for expressing temporal logic properties that

can be automatically verified on electronic system models. Many ongoing research efforts attempt

to develop automated tools enabling direct hardware synthesis from specifications [27]. In this

work, we will not discuss the language-based approach to develop low-level guards because this

approach has been described previously in Chapter 4.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 152

In this chapter, our approach to develop low-level guards relies on building some security primi-

tives directly synthesized from the IP functional specifications. Unlike language-based protections,

security primitives are developed from informal specifications and might require formal verifica-

tion pre-deployment. Moreover, a security primitive can be an imperative realization of a func-

tional specification rather than a declarative description of what should be enforced as practised

in language-based protections. Those primitives can build a security library which can be later

used in future security projects. This idea is similar to building verifiable component libraries to

reduce the formal verification effort. The security primitives are hardware components realizing

the functional specifications of the IP core under protection. Such primitives can be employed in

conjunction with language-based protections to build more robust low-level interface guards.

In this section we present our implementation of interface guards for low-level untrusted modules.

In particular, we explore the effectiveness of using interface guards in detecting the MGT-based

covert channel activities introduced in the last section, assuming lack of knowledge about the devel-

oped HTHs. In our specific examples, interface guard responsibilities include run-time detection of

unsanctioned behaviors introduced by external and/or internal threats, and enforcement of counter-

measures dictated by the policy. We provide several developments of the interface guards showing

security alternatives available to the designer and analysing these choices in terms of the offered

security and induced overheads. The diversity of security alternatives results from the variety of

available detection methods and associated countermeasures.

5.2.1 Concepts

Policies enforced by interface guards comprise a number of guard-action rules with high-level co-

ordination between them. Countermeasures enforced by an interface guard are specified as either

passive or active measures. Passive measures do not affect the module’s operation yet raise alarms

and report anomalous events to the top-level DREC. Active measures involve enforcement of cor-

rective actions such as overriding compromised interfaces, disabling infected modules, switching

to redundant backups, or swapping compromised modules using partial reconfiguration. The en-

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 153

forced countermeasures are selected based on the policy specifications, threat severity level, and

the provided assurances about detected violations.

Guard monitors are designated to either cover a wide range of threats or only catch specific threats.

Therefore, violation detection methods can be classified into generic and specific methods. Both

guard classes can be used to monitor the same interface at different levels of abstraction. In generic

monitors, interface specifications are abstracted and generalized to extend the range of addressed

threats including zero-day attacks. For example, in a serial high-speed interface, the effective data

rate can be affected by several threats including the CC attack. Therefore, data rate change can

indicate the incidence of an anomalous activity which can be raised by a cyber threat. However,

because such an attribute can be affected by several stimuli including non-malicious operating

conditions, the assurance level provided by such a generic monitor neither confirms the attack nor

determines the threat origin if any. The advantage of using generic guards is that the number of

required monitors, and consequently the induced overhead, can be reduced as several threats can

be addressed by a single generic monitor. Because generic guards do not look for a predefined

attack signature, such guards can detect zero-day threats lacking predefined signatures. Generic

guards can raise proactive alarms about potential threats to the top-level DREC which decides the

suitable response.

Specific monitors employ the component’s functional specifications to detect malicious activities.

A specific monitor assures that a certain functionality of the IP core under protection conforms

to the corresponding functional specifications. Specific monitors must be capable of detecting

both anomalous and extraneous behaviors to assure functional conformance. For example, the

Aurora IP core performs multiple functionalities including physical and link layers interfacing,

link initialization and error handling, data stripping, flow control, CC, channel synchronization,

and ISQ generation. Each of these functionalities can be associated with different threats which

requires allocating a specific monitor to detect functionality-oriented violations. This approach to

detect specific violations requires functional duplication to create a monitor reference. Therefore, if

we need to detect idle sequence-oriented violations, we should develop the original ISQ generator

as a security reference and continuously ensure that the monitored conforms to the reference ISQ.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 154

Some threats can be detected by adopting anomalous detection algorithms and intrusion detection

methods without duplicate the complete functionality. Specific monitors increase the assurance

level of detecting specific threats and identifying the threat origin. However, using specific moni-

tors to detect all security violations can be intractable. Moreover, assigning monitors to particular

functionalities limits their detection scope to specific and known threats. Interface guards can in-

corporate multiple monitors of different types to increase their detection scope. A specific guard

can be initially integrated to a module interface or can be subsequently attached to the interface at

run-time if an alarm is issued by a generic monitor.

Often times, the adopted monitor class dictates the type of countermeasures enforced by an in-

terface guard. Generic monitors do not provide adequate assurances about a threat incidence and

origin. Consequently, countermeasures associated with generic monitors are usually passive re-

sponses such as raising alarms about suspect modules and calling for specific monitors to increase

certainty about a threat. On the other hand, specific monitors provide definite information about

specific functionalities and, therefore, assurances offered by such monitors are adequate to identify

a threat incidence and origin. Consequently, countermeasures associated with specific monitors can

be active measures such as disabling compromised modules or enabling safe mode operation. In

specific monitors developed using functional duplication, the reference functionality can be used

to override compromised interfaces if possible during the attack period. Table 5.1 illustrates the

main differences between generic and specific interface guards.

Table 5.1: A comparison between generic and specific interface guards

Generic interface guards Specific interface guards

Detection criteria abstract attribute reference functionality

Assurance level low high

Induced overhead low high

Detection scope wide narrow

Associated countermeasures passive active

IP core functional specifications usually describe the core’s external operation yet do not provide

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 155

detailed information about the core’s internal structure. Such specifications are associated with

the core external interfaces which are clearly defined compared to internal nets and buses. This

simplifies selecting and allocating the protection infrastructure monitoring probes. Therefore, the

external interfaces of an untrusted component are the ideal place to add the RETC-CPS interface

guards. However, not all security violations can be detected through interface monitoring because

some threats can achieve their goals without affecting the component’s external operation. An

example of these threats are HTHs leaking information via a power side-channel. Threats which

cannot be detected through interface monitoring and require deployment of specific protection

techniques are outside the scope of this dissertation.

The insertion point of an interface guard directly affects the enforced policy rules, design complex-

ity, guard detection scope, and resources requirements. In our specific example, potential interface

guard insertion points are the Aurora IP boundary, MGT boundary, and high-speed serial boundary

as shown in Figure 5.5. It is assumed that internal signals cannot be probed in black box modules

supplied by third-party IP vendors. The serial boundary is the external transceiver pin interface.

Adding a guard to this interface gives a high-level view of the overall system activity, extending

guard detection scope but with considerable speed and complexity costs. We can integrate an

interface guard at the Aurora IP boundary running at the parallel data rate to reduce the design

complexity. However, interface guards inserted at certain points may not always be able to detect

all the threats caused by internal IP alterations. For example, the ISQ HTH activity does not affect

traffic on the the Aurora IP boundary and hence it cannot be detected using the Aurora interface

guard. Therefore, several guards can be integrated into different interfaces to gain wider oversight

of the system behavior.

In our implementation, interface guards are inserted at the Aurora IP boundary and the MGT hard

core boundary to monitor all Aurora input and output signals. The MGT module is instantiated

as a building block within the Aurora top-level module, and the MGT interfaces belong to the IP

internal signals. However, the MGT interface is still accessible because the MGT is a physical

block with a predefined interface to the FPGA programmable fabric. The MGT interface guard

can be integrated into the IP netlist after the synthesis phase to enable probing the MGT interfaces.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 156

Using such a configuration, enforced policies may apply statistical analysis of I/O activities.

5.2.2 Generic Interface Guards

In this section we present our development of the Aurora and MGT generic interface guards. Fig-

ure 5.8 illustrates the top-level architecture of the Aurora IP core with generic interfaces guards.

The generic guards probe the Aurora IP and MGT interfaces but do not have the capability to

override these interfaces. As Aurora is a serial high-speed interface, the effective data rate is a

substantial assessment criteria of the IP operation. Therefore, we employ the data rate attribute as

an indicator of anomalous behavior, and two rate meters acting as generic monitors are integrated

into the Aurora and MGT I/O interfaces.

M
G

T
 P

H
Y

S
er

ia
l

 I
/O

Untrusted IP Core

Aurora
 IP

module

input data

output data

TX data

RX data

Aurora Interface Guard

TX, RX rate meter FSM
enforcer

CE

MGT Interface Guard

I/O rate meter FSM
enforcer

CE

SoC IC

Figure 5.8: Aurora core architecture with generic interface guards.

The Aurora TX and RX rate meters measure the number of transmitted and received bits/sec during

active transmit and receive periods. The MGT rate meters measures the number of transmitted and

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 157

received data bits/sec excluding initialization data, idle sequences, and flow control characters.

The MGT generic guard filters out all control characters from the I/O parallel streams to enable

the rate meter to measure the effective data rate. Countermeasures enforced by these two generic

monitors include reporting potential threats to the DREC and disabling the compromised module

if the threat is confirmed by the DREC.

We now discuss potential threats that can be detected by each interface guard. Nominal TX and

RX effective data rates are predefined values calculated from the reference clock frequency and

the actual line rate. Factors affecting the effective data rate include the communication channel

bit error rate and potential cyber threats. Rate deviations from nominal bounds indicates either

an increased bit error rate in the communication channel or a suspicious behavior which might

be caused by several threats including CC-based covert communication. As both the TX and RX

use the same channels, variations between the TX and RX effective data rates may affirm that the

functionalities of the lower rate communication channel are affected by a cyber threat.

Threats associated with the previous cases might arise from compromising either the Aurora IP

core or the MGT physical module, although the interface guards cannot exactly assert either the

affected module or the compromised functionality. In this specific example, the MGT physical

module is a fixed silicon block, and most probably that a rate deviation from nominal values or a

rate variation between the TX and RX is more likely caused by a potential threat in the configurable

logic used by the Aurora module. Another violation that can be detected by analysing the two data

rates is rate variations between the Aurora and MGT inputs or between the two module outputs.

The effective data rate of both modules in a certain direction must be equal and rate variations

directly indicate a potential threat associated with the Aurora module. However, even in this case,

the generic monitors cannot assert the compromised functionality is within the Aurora IP.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 158

5.2.3 Specific Interface Guards

In this section we present our development of the Aurora and MGT specific interface guards. Fig-

ure 5.9 illustrates the top-level architecture of the Aurora IP core with specific interfaces guards.

The developed specific guards follow the RETC-CPS architecture presented in Chapter 3 where

the guard’s inputs are the untrusted component’s outputs and the guard’s outputs are the compo-

nent’s inputs. This configuration enables the interface guard to override compromised interfaces

if a violation is detected. As specific guards increase the assurance level about potential threats,

affected modules can be immediately disabled or overridden if a violation is detected The Aurora-

and MGT-specific guards can be inserted into an already running system using dynamic recon-

figuration based on proactive alarms issued by in-field generic monitors attached to the protected

components.

A
ur

or
a

 I
P

 m
od

ul
e

A
ur

or
a

In
te

rf
ac

e
G

ua
rd

TX data

RX data

Control

M
G

T
 P

H
Y

M
G

T
 I

nt
er

fa
ce

 G
ua

rdinput data

output data

S
er

ia
l

I/O

CE CEApplication
boundary

Link-layer
boundary

Figure 5.9: Aurora core architecture with specific interface guards.

The main objective of the Aurora interface guard is to detect CC functional violations of the Au-

rora IP core. Although this guard is specifically developed to detect the CC HTHs presented in

Section 5.1, the same concept can be generally applied to develop more specific guards for other

IP functionalities. The standard CC module sources a fixed number of CC characters periodically

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 159

by asserting the DO CC control signal to compensate for variations between the TX and RX clocks.

The CC period and duration are predefined parameters depending on the frequency difference be-

tween the TX and RX clocks. Incorporating these specifications, the CC-specific interface guard

is developed to monitor the DO CC control signal at run-time and assert that the CC period and

duration match the standard, predefined values. This interface guard can detect different CC HTHs

which alter the standard functionality of the CC standard module generating the DO CC signal on

the TX side. Consequently, the Aurora-specific guard can override the compromised DO CC signal

with the standard signal defined by the specifications. However, because this interface guard does

not have access to the link-layer boundary revealing the control characters received by the Aurora

module, it cannot detect CC covert communication on the RX side.

The MGT-specific interface guard is placed at the link-layer boundary and is charged with three

responsibilities:

• Monitoring the MGT input data and detecting ISQ violations caused by alterations to the

Aurora IP module. The standard ISQ is a pseudo-random sequence generated from a lin-

ear feedback shift register (LFSR) module defined by the Aurora functional specifications.

Figure 5.10 illustrates the LFSR module generating the Aurora standard ISQ as acquired

from the functional specifications [173]. The ISQ LFSR generator is developed within the

ISQ monitor as the ISQ functionality reference. The ISQ-specific monitor circuit decodes

the parallel input stream looking for the ISQ control characters /A/, /K/, /R/. A sym-

bol detection module aware of the Aurora control characters is developed to identify and

track these characters. The monitor asserts at run-time that the ISQ generated by the Aurora

IP matches the standard ISQ generated internally. Variations between the actual and stan-

dard ISQs indicates a problem with the Aurora ISQ functionality. The monitor immediately

overrides the compromised ISQ with the standard ISQ in response to violation detection.

• Monitoring the MGT output data and detecting ISQ violations on the RX side. A second

instance of the ISQ LFSR is instantiated in the ISQ monitor to set a reference for the RX

stream. The ISQ specific monitor circuit decodes the parallel output stream looking for the

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 160

��������	
�����
�������
��	�� ��������	
������
�����

��
������ ��
������

��
�����������

��
���������

� �

����
���
����
��

� � � � �

��� � � � �

�����

��� ���
�

��
������
������� !��
�����������"��
������������!��
������������������	
������#

��
������
���������
��������������
���������

��
��$���
���������
������������!��
����������!��������	
������

Figure 5.10: ISQ generator module

ISQ control characters /A/, /K/, and /R/. The monitor asserts at run-time that the ISQ

received by the MGT physical module matches the standard ISQ generated internally. Vari-

ations between the actual and standard ISQs indicates that the RX stream is compromised.

In this case, overriding a compromised RX stream does not affirm that covert information

encoded in the stream have not been received elsewhere prior to detection. For example,

the covert communication decoder module can be embedded in the MGT physical mod-

ule. Therefore, the best countermeasure in this case is alerting the DREC and disabling the

affected modules. The aforementioned cases demonstrate that detecting violations at their

sources enables tolerating the associated threats which can be unaffordable if violations are

detected elsewhere.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 161

• Monitoring the MGT output data and detecting CC violations on the RX side. The ISQ-

specific monitor circuit decodes the parallel output stream looking for the CC control char-

acter. Incorporating the CC functional specifications, this monitor is developed to decode the

RX CC control character at run-time and assert that the CC period and duration match the

standard, predefined values. This monitor can detect different CC variations on the RX side.

Similar to the ISQ RX monitor, the best countermeasure in this case is alerting the DREC

and disabling the affected modules.

5.3 Results and Evaluation

To demonstrate the functionality of the developed HTHs and interface guards, we develop a test-

bench connecting two infected Aurora modules in a loopback configuration. Figure 5.11 illustrates

selected waveforms from the developed testbench for the CC covert communication attacks and

specific countermeasures. In the CC PWM attack, the data signal modulates the DO CC dura-

tion to send a covert message to the RX node as shown by Figure 5.11(a). During the CC period,

the control character /CC/ is repeatedly sourced to the TXDATA IN signal as shown by Fig-

ure 5.11(b). In the CC PCM attack, the data signal switches DO CC between logic ’1’ and ’0’

to send a covert message to the RX node as shown by Figure 5.11(c) and Figure 5.11(d). On the

RX side, the CC RX HTHs decode the covert messages by probing the rx src rdy signal to get

data out. The CC TX-specific interface guard detects the CC variations and overrides DO CC

with the standard CC signal generated internally by the guard as shown in Figure 5.11(e). The

duration and period of the standard CC are fixed as shown by Figure 5.11(f).

Figure 5.12 illustrates selected waveforms from a developed testbench for the ISQ covert com-

munication attack and countermeasures. During the wait state indicated by TX VALID, the data

signal modulates the ISQ of TXDATA to send a covert message to the RX node as shown by Fig-

ure 5.12(a). On the RX side, the ISQ RX HTH decodes the covert message to get data out

during wait states indicated by the data valid signal. The duration between consecutive /A/

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 162

0 us 20 us 40 us 60 us 80 us 100 us

(a) CC PWM covert communication waveform.

71 us 72 us 72 us 73 us 73 us 74 us 74 us 75 us

(b) Zoomed snapshot of the CC PWM covert communication waveform.

0 us 10 us 20 us 30 us 40 us

(c) CC PCM covert communication waveform.

25 us 30 us 35 us 40 us

(d) Zoomed snapshot of the CC PCM covert communication waveform.

0 us 20 us 40 us 60 us 80 us 100 us

(e) Standard enforced CC waveform.

USER_CLK

enable_cc_c

start_cc_c

DO_CC

TXDATA_IN[31:0] d… e… 76… b… 5d… ae… 5… 2b… 1… 0a… f7f7f7f7 8… 42… 2… 90… 48… a… 52… a… d4… e… 75… b… 5d… a… d7… e… f5…

46,600 ns 46,700 ns 46,800 ns 46,900 ns 47,000 ns

(f) Zoomed snapshot of the standard enforced CC waveform.

Figure 5.11: CC covert communication attacks and countermeasures waveform.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 163

characters is fixed as shown by Figure 5.12(b). The ISQ TX-specific interface guard detects the

ISQ variations and overrides the TXDATA signal with the standard ISQ generated internally by

the guard in which the duration between consecutive /A/ characters is random as shown in Fig-

ure 5.12(c).

0 us 5 us 10 us 15 us 20 us 25 us 30 us

(a) ISQ covert communication waveform.

data[3:0] 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5 6 7 8 9 a b c d e f 0 1 2 3 4 5

USER_CLK

GEN_A

GEN_K[0:3] 3 4 5 6 7 8 9 a b c d 6 f 0 1 2 3 4 5 6 7 8 9 a b c d 6 f 0 1 2 3 4

GEN_R[0:3] c b a 1 8 7 6 5 4 3 2 1 0 f e d c b a 1 8 7 6 5 4 3 2 1 0 f e d c b

TX_TVALID

TXDATA_IN[31:0] d… e… f… 7… 3… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1… b… 1…

RX_TDATA[0:31] 7… b… d… e… 7… b… 5… 2… 1… 0… 8… 4… a… d… e… f… 7… 3… 9… c… 6… 3… 1… 8… c… e… 1… 1… 1… 7… 1… b… b… b… b… b… b…

RX_CHAR_IS_K[3:0] 0 f

RX_CHAR_IS_COMMA[3 0 3 4 5 6 7 8 9 a b c d 6 f 0

data_valid

data_out[3:0] 0 3 4 5 6 7 8 9 a b c d 6 f

14,900 ns 15,000 ns 15,100 ns 15,200 ns 15,300 ns 15,400 ns

(b) Zoomed snapshot of the ISQ covert communication waveform.

USER_CLK

TX_TVALID

GEN_A

GEN_K[0:3] e c 8 0 1 2 5 a 4 9 3 6 d b 7 f 6 c 8 0 1 2 5 a 4 9 3 6 d b 7 e c 8 0 1

GEN_R[0:3] 1 3 7 e d a 5 b 6 4 9 2 4 8 0 1 3 7 f 6 d a 5 b 6 c 1 2 4 8 0 1 3 7 e

TXDATA_IN[31:0] d… e… f… 7… 3… 1… b… 1… b… 1… 1… b… b… 1… b… b… b… b… 1… 1… 1… 1… b… 1… b… 1… 1… b… b… 1… b… b… b… b… 1… 1… 1…

RX_TDATA[0:31] 7… b… d… e… 7… b… 5… 2… 1… 0… 8… 4… a… d… e… f… 7… 3… 9… c… 6… 3… 1… 8… c… e… 7… 1… 1… 1… b… 1… b… 7… 1… b… b…

RXCHARISCOMMA_O 0 8 4 a 5 2 9 c 6 b d e f 6

RXCHARISK_OUT[3: 0 f

14,900 ns 15,000 ns 15,100 ns 15,200 ns 15,300 ns 15,400 ns

(c) Zoomed snapshot of the standard enforced ISQ waveform.

Figure 5.12: ISQ covert communication attack and countermeasure waveform.

The developed testbench is experimentally validated using the RocketIO transceivers on a Xilinx

Virtex-5 FX130T FPGA. The Xilinx CoreGen tool provides HDL for the Aurora core. Two MGTs

running at 2.5 Gbps line rate and 125 MHz reference clock frequency are connected on a custom

MGT interface board attached to a Xilinx ML510 evaluation platform. The maximum bit rates of

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 164

the PCM and the PWM covert communication are 12.5 and 23.43 Mbps (for n=3), respectively,

at 10% and 25% channel utilization. Moreover, the bit rate and channel utilization are parametric

functions with tunable design parameters that can be adjusted to achieve significant data rates at

marginal channel utilizations. Established pulse modulation and digital encoding practices sim-

plify the design effort. In a test with a 125 MHz reference clock frequency, 4-byte lane width, and

assuming 10% idle time, the ISQ-based covert channel communication bit rate is 600 Mbps while

the bandwidth is 60 Mbps without decreasing the main channel bandwidth. Table 5.2 shows the

incremental resource utilization of the HTHs in a 10GBASE-X IP core on a Xilinx Virtex-7 FPGA.

Table 5.3 shows the absolute and relative resource utilization of TX and RX HTHs in an Aurora

IP core on a Xilinx Virtex-5 FPGA. The overheads induced by the developed HTHs are marginal

whereas the covert communication achieved data rates are significant.

Table 5.2: Xilinx Virtex-7 FPGA resource utilization for HTHs in a 10GBASE-X IP core (% of

PCS/PMA core).

Regs # LUTs
TX HTH 16 (0.7%) 13 (0.5%)

RX HTH 5 (0.23%) 5 (0.2%)

PCS/PMA IP 2146 2473

Table 5.3: XC5VFX130T FPGA resource utilization for HTHs in Multi-gigabit Transceivers (%

of Aurora core).

Regs # LUTs
PCM HTH (TX, RX) 24, 20 (1.4%, 1.2%) 27, 31 (1.4%, 1.6%)

PWM HTH (TX, RX) 22, 17 (1.3%, 1%) 34, 29 (1.8%, 1.5%)

ISQ HTH (TX, RX) 16, 5 (1%, 0.3%) 13, 5 (0.7%, 0.3%)

Aurora IP 1630 1870

Hardware guards are instantiated in the HDL top-level module to probe the Aurora core boundary

and MGT interface. The guards comprise sequential and combinational monitors capturing multi-

ple interface specifications, and are controlled by an FSM responsible for enforcement. Synthesis

results and experimental tests of the developed guards on the XC5VFX130T FPGA show that the

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 165

maximum operating frequency of the developed guards is 432.8 MHz and the enforcement latency

is 2.9 ns. Preventing attacks demands low latency countermeasures such as disabling the module.

For example, defending against the ISQ-based covert channel attack requires detection of the threat

and enforcement of its associated countermeasure in a single clock cycle. If the MGT reference

clock frequency is 125 MHz, the maximum allowed latency to stop the attack is 8 ns which is

achieved using the developed hardware guard. Table 5.4 shows the resources utilization of the

deployed guards. Interface guards resource requirements are usually independent of the monitored

module’s implementation complexity.

Table 5.4: XC5VFX130T FPGA resource utilization for interface guards (% of Aurora core).

Regs # LUTs
Aurora generic interface guard 57 (3.5%) 45 (2.4%)

MGT generic interface guard 69 (4.2%) 53 (2.8%)

Aurora-specific interface guard 50 (3.1%) 46 (2.5%)

MGT-specific interface guard 73 (4.5%) 61 (3.3%)

Aurora IP 1630 1870

Alternatives to the hardware-based interface guards are either software-implemented guards where

both monitoring and enforcement are in software, or hybrid guards where both software and hard-

ware are used. To assess these choices, assume a software-based interface guard utilizes a GPIO

to probe a module interface and transfer data to a processor. Also assume that a dedicated embed-

ded processor such as MicroBlaze is used to implement a single interface guard. For a MicroB-

laze processor running at its maximum operating frequency of 125 MHz clock frequency in an

XC5VFX130T FPGA, the measured latency to read a GPIO is 90 cycles (0.72 μs), and the write

latency is 99 cycles (0.792 μs). This implies that the maximum operating frequency of modules

protected by such guard cannot exceed 661.4 KHz. Software attack susceptibility and unacceptable

latency make the use of software-based solutions impractical in the run-time protection of many

hardware-implemented subsystems.

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 166

5.4 Summary

In this chapter, we presented an application of RETC-CPS to untrusted hardware IP cores deployed

in various computing platforms. This application supports the RETC functionality of protecting

low-level components against potential cyber threats. In particular, we applied RETC to untrusted

hardware components vulnerable to HTHs. We provided a brief background about HTHs as an

emerging threat to computing platforms, and some challenges confronting HTH detection methods.

The run-time security approach to protect against HTH threats was motivated by enumerating the

design-time detection method limitations.

We advanced novel implementations of HTHs enabling covert channel communication in 10GbE

physical links and high-speed serial point-to-point physical links operated by the Aurora link-

layer protocol IP. The developed HTHs exploit loose specifications of the underlying media link

protocols to send and receive covert messages without violating the IP legal operation. The HTHs

are activated under rarely occurring conditions and induce marginal area and power overheads to

evade detection by design-time techniques. Significant covert communication data rates can be

achieved with the developed HTHs, and multiple parameters are provided to change the data rate

and channel utilization. The maximum bit rates of the PCM, PWM, and ISQ covert communication

are 12.5, 23.43 Mbps, and 60 Mbps at 10%, 25%, and 0% channel utilization,respectively. The

developed HTHs provides examples of threats raised by incorporating untrusted components in

computing platforms.

We discussed how to use run-time protections to tolerate HTH threats in untrusted hardware com-

ponents, and proposed two protection classes in Section 5.2. Generic guards are hardware security

modules integrated into the module under protection interfaces to monitor abstract module at-

tributes such as the data rate, detect and analyze anomalous variations to the monitored attributes,

and raise threat alarms to the DREC. Assurances provided by the generic interface guards neither

confirms the attack nor determines the threat origin and, consequently, countermeasures associated

with generic guards are passive responses such as threat reporting. Specific guards are hardware

components to enforce the IP functional specifications. We provided several developments of

Mohammed M. Farag Chapter 5. Application to Untrusted Hardware Blocks 167

both generic and specific guards thwarting HTHs, and assessed overheads compared to the total

resources of the FPGA evaluation platform.

Functional simulations and timing diagrams of a testbench connecting two infected Aurora mod-

ules demonstrated the HTH effects and interface guard countermeasures. The developed testbench

was experimentally validated using the RocketIO transceivers on a Xilinx Virtex-5 FX130T FPGA.

The maximum operating frequency of the developed guards is 432.8 MHz and the enforcement la-

tency is 2.9 ns. If the MGT reference clock frequency is 125 MHz, the maximum allowed latency to

stop the attack is 8 ns which is achieved using the developed hardware guard. The measured latency

of a guard processor running at its maximum operating frequency of 125 MHz is 1.5 μs. These re-

sults illustrate that the hardware guard is 500× faster than alternative software defenses employing

a dedicated processor per guard. Run-time violations are rapidly detected and acted upon without

incurring latencies by software or non-local communication. Overheads were marginal compared

to the total resources consumed by the Aurora IP core. Trust is localized in Aurora guards con-

suming less than 10% of the total IP resources, reducing the verification effort by a factor of 10.

As a result, the performance, developer productivity, and security requirements of data-intensive

platforms are simultaneously addressed.

Chapter 6

Exploratory Application to Process Control

Systems

Process control systems are a subset of CPSes adopting feedback control, where an embedded

controller uses sensor measurements of a physical plant to compute feedback signals preserving

system stability. They are widely used in infrastructure and safety-critical applications such as

power grids, assembly lines, water systems, pipelines, industrial systems, and power plants [28,

40]. Process controllers are usually built using untrusted components and third-party IP cores.

Recent attacks against process control systems such as Stuxnet, which is described as the real start

of cyber warfare, have highlighted CPS vulnerabilities and the inadequacy of existing security

solutions. This chapter illustrates how to apply the RETC architecture to protect model-based

designs exemplified by an aircraft pitch control system. It also depicts how to formulate a system-

level security policy using system physical models and specifications which are enforced at the

controller’s top-level interface.

In this chapter we apply the RETC-CPS protection scheme to build secure embedded controllers

containing untrusted components. We exploit the model-based approach in a novel way to develop

RETC guards in process control applications by predicting and preempting erroneous controller

behavior at run-time. The process models normally developed when designing a process control

168

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 169

system capture the system-level behavior to be enforced by RETC. Prediction logic incorporates a

second instance of the embedded controller connected to a physical plant model running faster than

real time in order to predict the future state of the physical system. The model’s state is periodically

synchronized with the physical plant’s state to prevent divergence. DREC interface guards check

if future system states will violate system-level policies. If a violation is detected, enforcers switch

from the faulty controller to a lower-performance and high-assurance backup controller until the

system is stabilized. For process control networks, RETC may be collectively applied over the

network of controllers, sensors, and supervisory software.

We generate RETC components to simultaneously address design-for-security, and -trust in pro-

cess control systems. System-level reliability is also enhanced by incorporating specifications that

should already be defined for high-reliability systems. RETC addresses several aspects of con-

trol security, including high-assurance module interactions and reconfiguration management. The

DREC serves as the most privileged root-of-trust for control flow, and inserts a distributed set of

policy-aware interface guards on module boundaries. Interface guards provide on-line monitor-

ing and proactive enforcement of policy rules emanating from security, performance, or reliability

specifications. The DREC may also contain specialized logic to increase system reliability, such

as redundant controller modules or violation prediction logic. DREC reconfiguration allows policy

changes, but DREC logic can only be updated by a trusted authority.

An exploratory application of RETC-CPS to process control systems is presented in this chapter.

The remainder of this chapter is organized as follows: A survey of existing approaches to process

control system reliability and security is presented in Section 6.1. A brief description of some

basic process control concepts and introduces an aircraft pitch control system example is given in

Section 6.2. Concepts, models, and simulation results for pitch control prediction and preemption

are illustrated in Section 6.3. This chapter is summarized in Section 6.4.

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 170

6.1 Existing Approaches to Process Control System Security,

Trust, and Reliability

Run-time fault detection techniques in process control typically observe either physical process

measurements to new controller inputs or controller responses to new sensor measurements. Sha

introduced a protection architecture based on monitoring physical process measurements to detect

faults [150]. In this architecture, sensors measurements of the physical process are monitored by

decision logic that determines if a process violation has occurred, as illustrated by Figure 6.1.

If a violation is detected, the decision logic switches control to a high-assurance and presumably

slower version of the controller until the system is stabilized. Unfortunately, system stability cannot

always be recovered as the controller fault is not detected until after it has caused the physical

process to deviate from allowed operational limits.

Embedded system

High-performance-
control subsystem

High-assurance-
control subsystem

P
hysical plant

Decision
Logic

yk

yk

uk

M
U

X

Figure 6.1: Plant fault detection [150].

Dai et al. advanced a fault detection architecture based on observing controller responses to new

sensor inputs [42]. Physical process measurements are sent to both the regular high-performance

version of the process controller and a trusted benchmark version of the controller algorithm. The

responses of both controllers are used to generate a residual to determine if a controller fault has

occurred, as shown in Figure 6.2. Unfortunately, the physical process is already affected by the

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 171

erroneous controller output by the time the controller fault is detected and corrective actions, such

as switching over to a high-assurance version of the controller, can occur. This may result in the

inability to return the system to a stable state before damage is incurred.

Embedded system

Residual evaluatorResidual generator

Embedded
controller

Benchmark
controller

Physical plant

-

Fault
detector

Maximum
likelihood
estimator

Fault alarm

yk

uk

Figure 6.2: Controller fault detection [42].

Cárdenas et al. presented a physical model-based attack detection method complementing intrusion

detection methods for networks and computer systems [31]. Threats addressed include embedded

controller intrusion attacks arising from compromised measurements of plant sensors. Instead of

using models of network traffic or software behavior, physical system models are used to develop

a change detection-based intrusion detection algorithm. An embedded system implementation of

a physical plant linear model runs concurrently with the plant, as illustrated in Figure 6.3. A con-

troller response is sent to both the physical plant and the embedded model. In normal operating

conditions, physical plant measurements are sent to the embedded controller to compute the feed-

back response. During intrusion detection, the embedded model output is sent to the embedded

controller to filter out compromised measurements. This work develops a rigorous analysis and

classification of intrusion attacks against process control systems and associated detection meth-

ods. However, it does not provide a means to detect and circumvent Trojan threats to controllers.

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 172

Embedded system

Physical plant

Linear plant model Anomaly detection
module Controller

++ ++

Intrusion attackNoise

uk

yk

Figure 6.3: Controller intrusion attack detection [31].

Although many security solutions have been proposed for legacy embedded systems [30], these

solutions are not optimized for process control applications. Design-time security techniques are

very expensive and may not anticipate all system vulnerabilities. Such techniques often do not

address vulnerabilities raised by software patches and updates, hardware reconfigurations, and

zero-day exploits. This leads to a demonstrated possibility of controllers being surreptitiously

compromised. The alternative approach is admitting the possibility of unanticipated threats and

trying to cope with them using run-time security defenses. However, existing run-time protections

are reactive, and can only detect erroneous controller behavior after its occurrence. Such detec-

tion methods may allow a physical processes to become unstable before corrective action can be

taken. These techniques also tend to be threat-specific, leading to increased overheads for required

defenses.

6.2 An Aircraft Pitch Model and Control

The motion of an aircraft is governed by a set of six nonlinear differential equations. These equa-

tions can be decoupled into longitudinal and lateral equations under certain assumptions [116].

The pitch angle is a third-order longitudinal problem and is controlled by adjusting the angle of

the rear elevator. Figure 6.4 shows the basic coordinate axes and forces acting on an aircraft.

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 173

Lift

Z`, WeightZ

Drag

δ

α
v

θ

X

X`
γ

α: Angle of attack
θ: Pitch angle
δ: Elevator deflection angle
γ: Flight path angle

Figure 6.4: Coordinate axes and forces acting on an aircraft

As described in [116], the equations of motion of a Boeing commercial aircraft can be written as:

α̇ = −0.313α + 56.7q + 0.232δe

q̇ = −0.0139α− 0.426q + 0.0203δe

θ̇ = 56.7q

where α is the angle of attack; q is the pitch rate; θ is the pitch angle; and δe is the elevator

deflection angle.

Using the differential equations controlling the plane motion, the state space representation of the

pitch angle system is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α̇

q̇

θ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

q

θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.232

0.0203

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
δe

]

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 174

y =

[
0 0 1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

q

θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

[
0

] [
δe

]

In the presence of noise, this equation can be written as:

ẋ = Ax+Bu+ ωproc

y = Cx+Du+ vsensor

where x is a column matrix composed of α, q, and θ elements representing system’s state; the

input u is the elevator deflection angle δe; the output y is the pitch angle θ; and ωproc and vsensor are

the process and measurement noise, respectively. The noise is assumed to be Gaussian distributed

with zero-mean and constant variance.

The autopilot uses a feedback controller in a closed-loop configuration to stabilize the aircraft by

adjusting its attitude angle. For this system, the input is the elevator deflection angle and the output

is the pitch angle. Linear Quadratic Gaussian (LQG) control is one of the most commonly used

optimal control techniques, and combines a Kalman filter (a linear-quadratic estimator) with a

linear-quadratic regulator [163]. The Kalman filter optimally estimates the state of a linear system

disturbed by noise. Figure 6.5 shows the structure of the LQG control technique.

Knowing the system state helps maintain synchronization between the physical system and our

predictive subsystem. In the pitch control application we develop a discrete LQG controller, as

is commonly done in modern control theory. Design constraints include limits on the maximum

overshoot, rise time, settling time, and steady-state error. Figure 6.6 illustrates the step response

of the pitch controller system for both the open-loop system and the closed-loop feedback control

configurations.

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 175

Physical plant

K

+-

ye
xe

y

kDukxCky
kDukxCkyLkBukxAkx

��

������
ˆˆ

)ˆ(ˆ1ˆ
Kalman filter observer

Feedback gain
Embedded controller

sensorvkDukCxky
processkBukAxkx

���

���� �1

R
ef

i/p

Figure 6.5: LQG control architecture.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Time

P
itc

h
an

gl
e

(ra
di

an
s)

Pitch controller system step response

Closed loop pitch angle
Estimator output
Open loop pitch angle/100

Figure 6.6: Open- and closed-loop step response of the pitch angle control system.

6.3 Controller Attack Prediction and Preemption

The goal of this example is to illustrate how to apply RETC-CPS in order to protect embedded

controllers using the RETC security architecture. Trust is not required in the controller or its

update and communication infrastructure, and applies only to a small set of simple, self-contained,

and verifiable add-ons. The DREC ensures that security and reliability specifications are being

observed, and essentially serves the role of an ideal control room operator. Interface guards enable

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 176

the DREC to directly monitor system operation and override the controller under protection. The

RETC solution incorporates security enhancements to the system structure and automatic tool

extensions to the existing design flow.

Our threat model does not distinguish between hardware faults, software bugs, and malware such

as Trojans since the common denominator is non-compliant controller behavior. A cyber threat

can hide itself using sophisticated means, but is less able to disguise its ultimate goal of disturbing

system stability. Regardless of how the threat originates, the focus is anticipation and disabling of

any negative consequences to the controlled process. Based on this philosophy, we present a novel

method to predict and preempt erroneous behavior in physical process control. For the control

domain, specifications for normal system behavior are already known, and accurate models for the

controlled process usually exist. Our protection scheme is complementary to other approaches that

try to validate the design or prevent malware infiltration, and serves as a last line of defense against

various threats to embedded controllers.

6.3.1 Concepts

Physical systems and processes are characterized by quantitative temporal properties such as pro-

cess response time, actuator delays, and sensor time constants. These physical latencies are not

inherent in system models. The vast majority of physical processes can be described and modeled

as linear time invariant systems with a high degree of accuracy under very realistic assumptions.

Often, a plant model running on an embedded processor can be executed much faster than a real

plant operating in a physical system. In a feedback control system, an embedded controller re-

sponds to variations in the state of a physical plant in order to maintain system stability. Execution

speed of an embedded controller corresponds to the temporal characteristics of the associated phys-

ical process. The typical operating frequency of a digital embedded system controlling a physical

process is proportional to the sampling rate of the physical process. Our approach to detect erro-

neous behavior of embedded controllers exploits potential speed differences between a physical

plant and its model, which is analogous to the difference between running a physical system and

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 177

simulating it.

The main idea to predict faults is examining what the controller implementation will try to do in the

future by embedding a second instance of the controller with an accelerated model of the plant. The

model can be implemented in either reconfigurable hardware or software (perhaps on a separate

processor) depending on the required speed-up. The second controller instance should be identical

to the original controller and implemented on the same platform. To maintain convergence with

the physical system, the model’s state is periodically synchronized with the plant’s state. The

embedded controller instance should be subject to the same conditions as the active controller by

synchronizing the model’s input with the system reference input, and applying the same patches

and updates to both instances. A redundant embedded subsystem incorporating these measures

can accurately predict the behavior of an embedded controller for a certain period of future time.

6.3.2 Controller Organization

Basic concepts of feedback control and modern control systems are presented in [48, 61]. In or-

der to enhance the security, trust, and reliability of an embedded controller, the existing system

is augmented with modules synthesized from a process model and specifications. As shown in

Figure 6.7, major components of the predictive and preemptive architecture are:

• A control system containing an active controller and a high-assurance backup controller,

and a switching mechanism. This embedded system runs at the typical sampling rate of the

physical plant.

• A predictive subsystem consisting of a plant model and a second instance of the embedded

controller. This subsystem runs n times faster than the active control system. The model’s

state is periodically synchronized with the estimated state of the physical plant.

• A DREC wrapping the control system and predictive subsystem, containing interface guard

monitors and enforcers, and synchronization and timing blocks.

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 178

Embedded system
 & DREC wrapper

 Active control system

Predictive subsystem

 Plant model
A

B

D

C1/z
++

++xk-1 xk yk
uk

Embedded controller instance
#2

Physical plant

Backup controller

Mux

+-

Embedded controller
 instance#1

Kalman filter
observer

Feedback
controller

y
u

xe

S
am

pl
e

&
 h

ol
d

m
od

ul
e

Interface guard monitor

Maximum
likelihood
detector

Fault
detector

+-

In
te

rf
ac

e
gu

ar
d

en
fo

rc
er

M
ux

T
im

in
g

&
 s

yn
ch

ro
ni

za
ti

on
 m

od
ul

e

ypred

Upred

R
ef

i/p
C

lo
ck

C
lk

co
nt

ro
l

C
lk

pr
ed

Figure 6.7: Predictive and preemptive DREC security architecture.

Interface guards can monitor either the physical plant or the embedded controller input/output

activity to assure compliance with the desired behavior of the physical process or a benchmark

controller. In our architecture, an interface guard monitor is integrated to the plant model in the

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 179

predictive subsystem, as shown by Figure 6.7. Detection of anomalous behavior in the predictive

subsystem triggers the enforcer to switch the active controller of the physical plant to a high-

assurance controller. Such an approach provides preemptive countermeasures in safety-critical

process control systems. Recursion is possible with more than one backup controller and their

predictive counterparts. The synchronization module is responsible for periodically updating the

state of the model with the estimated state of the physical plant. A sample and hold module

updates the predictive subsystem input with the physical plant reference input. The timing module

is responsible for clock generation and time emulation for the predictive subsystem.

The monitoring guard module employs a maximum likelihood detector and a fault detector to pre-

dict faults before they really occur in the actual controller. Theoretically, if the predictive controller

is secure and no threats are affecting it, the output of the controller will conform to the normal op-

erating criteria described by the security policy and embedded in the fault detector module. Any

threat affecting the predictive controller, which will show up later in the actual controller if not

preempted, will result in a significant change in the predictive controller’s output. In practice,

however, many other factors other than security threats can cause such a deviation from the normal

operating conditions such as miss-tuning of the controller parameters and more importantly the

process random noise. The challenge is how to distinguish faults resulted by cyber attacks from

the noise or faults caused by other reasons. Such a distinction requires an accurate description of

the controller characteristics, operating conditions, and the noise statical distribution.

The fault detection module does not relay on a single sample to decide the controller’s integrity.

For process control systems, it has been shown that as the number of the observed samples increase,

the statistical distribution of the process noise becomes Gaussian with constant mean and variance

values [42]. Consequently, the statistical distribution of the controller’s output follows the Gaussian

noise distribution as it is the only random variable in the output equation. Deviation from the

normal operating conditions caused by cyber threats and controller faults shifts the controller’s

output mean and variance computed over a significant number of samples to new values outside

the range defined by the security policy. In this example, the fault detector is developed to detect

the mean change through run-time monitoring. Other fault detection techniques attempt to detect

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 180

faults by inspecting the variance change, which can be more accurate yet expensive in terms of the

computation and resource overheads. The maximum likelihood estimator computes the mean of

the output moving samples and sends the results to the fault detector. Based on the updated mean,

the detector tests the controller’s output to validate if the likelihood ratio lies within the predefined

threshold range captured by the security policy. Once the predictive controller’s output is out of

range, the detector raises an alarm to the interface guard enforcer to switch to the backup controller

to preempt the fault before its occurrence in the actual controller.

6.3.3 Time Projection and Synchronization

Our approach advances new terminology such as: the time scaling factor n which indicates the

predictive subsystem speed-up; the prediction window Wpred which denotes the foreseen time pe-

riod; and synchronization time Tsync which determines the updating frequency of the model’s state

in the predictive subsystem. Wpred is function of n and Tsync as shown by equation (6.1). Tsync

is application-dependent whereas n is both application- and platform-dependent. Assuming flexi-

bility in assigning n and Tsync, increasing n improves Wpred at zero cost in terms of the updating

frequency, while increasing Tsync augments Wpred on the expense of reducing the updating fre-

quency. Tsync is often the more flexible and tunable parameter when significant changes to Wpred

are needed. Multiple trade-offs must be evaluated when assigning values of n and Tsync where the

physical process characteristics and the embedded platform features are the assignment criteria.

Wpred = n · Tsync (6.1)

Time scaling is accomplished by applying modifications to both system and input signals. Sys-

tem modifications vary for continuous and discrete time models of the physical process. For a

continuous time model, time scaling is achieved by multiplying system state space matrices by

the desired time scaling factor n. For discrete time systems such as those employed in embedded

controllers, scaling down the sampling time of the physical process by a factor of n automatically

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 181

scales down the time of the system internal signals. Input signal time cannot be scaled down be-

cause this requires prior knowledge of signal contents. To tackle this problem, the model’s input

can be periodically synchronized with the reference input at the physical system sampling rate by

assigning Tsync to be Tsampling seconds. However, this approach limits the prediction window to

n · Tsampling seconds.

Another approach can be adopted where the plant model and the physical system are synchronized

whenever the reference input to the physical system is changed. Such an approach produces an

adaptive prediction window, which may not be preferred for security reasons. In feedback control,

the reference input to a physical process is often the desired stable output of the system which

implies that reference input changes are limited in terms of both amplitude and frequency. This

implies that a sample and hold technique can be used to periodically update the model’s input

with the reference input without the need for an adaptive synchronization method. We adopt this

approach to establish a security scheme with a controllable synchronization time and a fixed pre-

diction window.

6.3.4 Simulation Results and Evaluation

In order to illustrate and evaluate our approach, the aircraft autopilot pitch controller is used as

a case study [116]. Flight control is a safety-critical application where controller faults can have

catastrophic consequences. LQG control is a modern approach adopting time-domain analysis,

state space representations, and state observers to enhance the control process. It concerns uncer-

tain linear systems disturbed by additive white Gaussian noise and undergoing control subject to

quadratic costs [163]. LQG controllers are widely deployed, and their structure helps to present

our concepts and architecture effectively. Nevertheless, our approach is still applicable to other

control techniques.

Matlab Simulink is used to model and evaluate the application and security enhancements. Com-

monly used model-based design flows permit software or hardware implementations to be automat-

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 182

ically synthesized from Matlab. In our experiments, the sensor sampling rate is 100 samples/sec,

the time scaling factor n is 10, and two values of Tsync (1 and 10 seconds) are used for different

prediction windows. Figure 6.8 illustrates the step response of a stable pitch control system versus

the predictive subsystem, and synchronizes between both systems for the test case of Tsync = 1

second. A moving window allows periodic projection of the future system state from the updated

current system state.

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

P
itc

h
an

gl
e

(ra
di

an
s)

Step response of the pitch control system and predictive subsystem

Opem loop pitch angle/100
Closed loop system pitch angle
Kalman filter estimated pitch angle
Predictive system estimated output

T
sync

Synchronization points

Figure 6.8: Step response of a stable pitch control system versus predictive subsystem.

Faults and cyber threats in embedded systems can be roughly classified into event-driven and time-

driven faults. Accurate detection of event-driven faults depends on the proper and frequent updat-

ing of the model’s state in the predictive subsystem. Figure 6.7 shows the switching technique cre-

ated to update the model’s state xk with the estimated plant’s state xe generated by the Kalman filter

state observer. The model’s state updating frequency is a function of the desired prediction window

and the model’s input synchronization scheme. Predictive subsystem time must emulate the real

time in order to successfully detect time-driven faults and properly operate time-driven modules

and processes. Time emulation requires generating the predictive subsystem time in terms of n and

Tsync, and relating it to the real time t. The predictive subsystem time is directly proportional to

n, whereas Tsync formulates the reference time base which periodically resets the predictive time

tpred to the real time t as shown by equation (6.2). Figure 6.9 illustrates the predictive subsystem

time for the selected case studies.

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 183

tpred = Tsync ·
 t

Tsync

�+ n · mod(
t

Tsync

) (6.2)

� � � 	
 �� �� �� �	 �
 ��
�

��

��

��

����������������������������

� � � 	
 �� �� �� �	 �
 ��
�

��

���

���

�����!�����!�

"
��

�
��

��
#
�

�!
$
!
��

�
��

��
�

�
!
�

�
�

�
�

!
�

%��&��'��������������������

Figure 6.9: Relationship between real time and predictive subsystem time.

To illustrate the effectiveness of our approach in predicting and preempting erroneous behavior, we

insert a time-driven fault in the embedded controller’s model. The fault is injected by manipulating

a single element of the gain matrix in the feedback controller model. This fault is kept dormant

for a pre-assigned period of time as shown by Figure 6.10(a). Such a fault can be inserted during

aircraft maintenance as a system patch or update to a rigorously verified embedded controller, and

can force the plane out of its stable state in a very short time. Figure 6.10(b) and (d) illustrate the

predictive subsystem output for different windows. Initial system stability is assumed. The smaller

prediction window predicts the fault 10 seconds before its occurrence, and the larger prediction

window foresees the fault about 50 seconds before its occurrence. Smaller windows are more

accurate but see the fault later. As time advances, the predictive subsystem anticipates the fault as

the sawtooth waveform with increasing peaks indicating fault advancement.

In the presence of noise, physical system faults can be detected with the aid of a Kalman filter in-

novation sequence characterized by a zero mean and a fixed covariance matrix in normal operation

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 184

� �� �� �� �� �� 	�
(��

�

��

����$!����!������!���!��)����������*

� �� �� �� �� �� 	�
�

��

��

%��"�������#��!)%!$!�����)��)��+���!������������������������

� �� �� �� �� �� 	�
�

�-�

�

"
��
�
.
��

�
'
��

�
��

�
��

�
!
�

���/����������!��������!�'����+���!������������������������

� �� �� �� �� �� 	�
�

���

���

���"�������#��!)%!$!�����)��)��+������'��������������������

� �� �� �� �� �� 	�
�

�-�

�

���/����������!��������!�'����+������'��������������������

� �� �� �� �� �� 	�
(�

�

�

�����!�����!�

+���$!����!������!���!�����.���)�������!)��

1�)��

"��������
+�)��

�
!$��

�
!$��"��������

+�)��

Figure 6.10: Step response of a pitch control system and the predictive subsystem under attack.

conditions [70]. Our approach to detect faults employs a maximum likelihood detector module

to evaluate the root mean square (RMS) value of the model’s output in the predictive subsystem.

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 185

Deviation of the output RMS value from nominal bounds indicates a fault sensed by the detector

module shown in Figure 6.7. Fault detection in the predictive subsystem triggers the interface

guard enforcer to switch from the active controller to the backup controller. The backup controller

used in this evaluation is simply the developed fault-free LQG controller. Figure 6.10(c) and (e)

show the multiplexer selection signal and the time of switching for the two selected prediction

windows. For both case studies, the countermeasure has successfully prevented faults occurring as

illustrated by Figure 6.10(f).

This proof-of-concept experiment was performed by modeling the process and our protection

system in Simulink. Future experiments will examine a fully hardware-oriented root-of-trust.

Simulink profiler results for the pitch controller model are given in Figure 6.11. One minute

of real time is simulated in 22 sec of CPU time on a single core of a 2.80 GHz Intel Core i7

workstation with 24GB of memory and running the Linux 2.6.32 kernel. In practice, optimized C

implementations would run more quickly than the Simulink models.

The predictive subsystem and active control system design complexity are almost the same, and

the DREC contributes about 25% of the total complexity as measure in terms of total software

methods. However, it is anticipated that the overhead of the root-of-trust will shrink significantly

for a hardware-based implementation. Most of the CPU time is consumed by the predictive sub-

system as it runs n times faster than the active controller. On a multicore platform, however, the

predictive subsystem runs concurrently with the active controller.

6.4 Summary

In this chapter RETC-CPS was applied to build a DREC protecting a safety-critical process control

system against cyber threats. This application illustrates the RETC-CPS mitigation of cyber attacks

on CPSes containing untrusted components. The DREC is a system-level interface guard moni-

toring top-level system interfaces, and enforcing application-oriented security policies emanating

from the system’s physical characteristics. Background on the established security approaches to

Mohammed M. Farag Chapter 6. Exploratory Application to Process Control Systems 186

3���#��
�����������
!$!����

��	4��	5�

"�������#��
!)%!$!����

���������4���5�

89;/�
��'�������
�����+����
')���!�

���4���5�

�����'�
���)��!�
��4�	5�

3���#��
�����������
!$!����

�5�

"�������#��
!)%!$!����

��5�

89;/�
��'�������
�����+����
')���!�
�	5�

�����'�
���)��!�

��5�

(a) Number of methods (b) Execution time percentage

Figure 6.11: Pitch controller static/dynamic analysis

process control systems motivated the need for proactive run-time defenses preserving the physical

process stability during potential cyber attacks. The pitch controller application introduced basic

process control concepts.

Unlike previous RETC applications, unique process control system characteristics were exploited

not only to protect the system against potential attacks, but also to predict and preempt these threats

before their occurrence in real time. The DREC incorporates a second instance of the embedded

controller connected to a physical plant model running faster than real time in order to predict the

future state of the physical system. The model’s state is periodically synchronized with the physical

plant’s state to prevent divergence. Erroneous controller behavior is detected before it affects the

physical process, allowing preemptive alarms or actions. Simulation results and timing diagrams

for the pitch controller illustrated that the DREC can predict erroneous behaviors and switch to

a high-assurance backup controller to preserve process stability. Trust is localized in the DREC

which contributes about 25% of the total complexity measured in terms of total software methods

and, thus, the verification effort has been reduced by a factor of 4. This application also established

the feasibility of integrating the RETC flow within the model-based design flow commonly used

during process control systems development.

Chapter 7

Conclusions

As cyber technology becomes more pervasive in the physical world, the need to enhance CPS se-

curity increases. The reason underlying the work in this dissertation is that design-time security

solutions are necessary but not sufficient to protect CPSes. Complementary run-time protections

should be adopted to serve as a last line of defense against cyber threats evading detection by

design-time solutions. Run-time protections must be trustworthy, threat-tolerant, extensible, effi-

cient, and tailored to a certain application class. We advanced the RETC-CPS protection scheme to

increase trust in CPSes containing untrusted software and hardware and built using reconfigurable

hardware. This scheme targets systems and applications having clearly framed and enforceable

security policies.

RETC enhances trust in platform reconfiguration, low-level components, and system-level interac-

tions. RETC was illustrated with three applications having research challenges commonly arising

in CPSes containing untrusted components. First, we provided an analysis of the CR security

requirements, a high-level architecture of CHARE, a security framework realizing these require-

ments, and prototype development supporting the CHARE architecture. Second, RETC-CPS was

applied to third-party hardware components with prototype development of novel HTHs and RETC

low-level guards thwarting the associated threats. Third, RETC-CPS was applied to process control

systems with a model-based design containing the RETC high-level security protections.

187

Mohammed M. Farag Chapter 7. Conclusions 188

In this dissertation, the main focus has been to present high-level architectures, prototype devel-

opments, and threat models to establish the implementation feasibility, effectiveness, efficiency,

and functional correctness of the RETC protection scheme. Although this work does not address

RETC design automation, a detailed design flow established automation feasibility in Chapter 3.

Applications are carefully selected to demonstrate the RETC main functionalities, applicability to

a wide range of CPSes, and efficacy in tolerating various threats raised by incorporating untrusted

components in CPSes. The RETC prototypes were developed in reconfigurable hardware, yet the

concepts presented are generally applicable to software-based systems as well as ASICs and SoCs.

Hardware trust anchors simultaneously address system security and performance requirements.

7.1 Review of Contributions

Introducing a threat-tolerant security scheme

Existing design-time security approaches seek to avoid threats by developing trusted application-

specific solutions according to rigorous security practices and standards. However, such ap-

proaches fail to provide modern, complex systems with the desired comprehensive security. The

RETC-CPS protection scheme does not rely on such techniques to verify that a system under

protection is vulnerability-free, and augments the system with run-time interface guards monitor-

ing and enforcing application-specific security policies. Run-time protections serve as a last line

of defense against potential threats evading detection by design-time techniques. We presented

RETC trust anchors for three different applications in Chapters 4, 5, 6. Applying RETC-CPS to

different CPSes at different hierarchy levels demonstrates the protection scheme generality and

scalability. Automation feasibility was established for the CHARE framework presented in Chap-

ter 4. RETC functional correctness was established by validating the RETC prototypes against

custom-developed testbenches addressing specific threat models commonly arising in CPSes. The

developed testbenches were experimentally validated on a Xilinx Virtex-5 FX130T FPGA, and the

testing results illustrated the RETC efficacy in thwarting the selected threats.

Mohammed M. Farag Chapter 7. Conclusions 189

Localization of trust

Existing efforts to build trustworthy systems struggle to assure trust in all system components and

interactions pre-deployment. Such solutions are extremely expensive and they often cannot guar-

antee that systems are vulnerability-free. The alternative is localizing trust in a small set of system

modules and using these modules to enhance trusted computing in all system components and in-

teractions. In the RETC protection scheme, trust is required in only a small set of simple, localized,

verifiable, and self-contained guard components. We proposed a high-level architecture realizing

these requirements, and presented the RETC-CPS requirements, assumptions, limitations, expec-

tations, and design flow in Chapter 3. The prototypes were evaluated in terms of the performance

and overheads indicating the achieved localization of trust and the verification effort reduction

factor.

Trust anchors added by RETC-CPS include the SRC, configuration firewall, low-level interface

guards, and DREC. The SRC is a hardware module responsible for receiving update or reconfig-

uration requests from untrusted system components and validating these requests according to a

predefined reconfiguration policy. The configuration firewall is a static hardware module which

receives update commands from the SRC, and securely manages transfer, authentication, and re-

configuration of the requested PRM bitstreams. A prototype development of the SRC and recon-

figuration firewall for a CR was presented in Chapter 4. Implementation results demonstrated that

overheads do not exceed 10% of the total platform resources, leaving over 90% of the resources

available for the CR datapath. Low-level interface guards are hardware trust anchors wrapping un-

trusted components and enforcing low-level, circuit-dependent security policies at the component

interfaces. A prototype development of RETC low-level interface guards protecting third-party IP

cores widely employed in reconfigurable platforms was introduced in Chapter 5. Implementation

results illustrated that the hardware guard is 500× faster than software defenses. Trust is localized

in RETC guards consuming less than 10% of the total IP resources, reducing the verification effort

by a factor of 10. The DREC is a hardware component wrapping the system under protection and

enforcing a system-level, application-oriented security policy at the top-level system interface. A

model-based design of the DREC in process control CPSes was advanced in Chapter 6. Trust was

Mohammed M. Farag Chapter 7. Conclusions 190

localized in the DREC contributing about 25% of the total complexity measured in terms of total

software methods and the verification effort was reduced by a factor of 4.

Secure reconfiguration control

Secure reconfiguration control was ensured by RETC-CPS, illustrated by a CR CPS demanding

frequent platform updates in Chapter 4. The main threat models addressed by this application

were compromised update requests issued by untrusted software and open communication chan-

nels used to deliver update contents. The CHARE-CR framework incorporates the SRC, reconfig-

uration firewall, and a trusted DMS to address reconfiguration threats. We presented the CHARE

high-level architecture mapped reconfigurable platforms. The CHARE framework enhances trust

in CR by adding a simple and verifiable hardware module responsible for platform adaptation

without relying on software correctness or needing to software verification. Although the CHARE

framework was originally developed for CR, concepts associated are generally applicable to other

CPSes built using reconfigurable hardware.

CR DSA policies described in CoRaL, a domain-specific formal language based on first-order

logic, were translated into hardware assertions to implement the SRC responsible for validating

update requests issued by the policy engine software. Automation feasibility was established by

providing concrete examples demonstrating the mapping from CoRaL to SystemVerilog HDL for

all CoRaL syntactic constructs. We presented a prototype hardware development of the SRC for

a CR operating in the Radar “S” band. State-of-the-art cryptographic and authentication standards

were employed to implement a hardware/software reconfiguration firewall responsible for authen-

ticating update contents delivered via open communication channels. Prototype reconfigurable

implementations were provided for the SRC and reconfiguration firewall. A custom-developed

testbench generating potential reconfiguration attacks was run on the Xilinx Virtex-5 FX130T

FPGA to validate CHARE functional correctness. The SRC can detect compromised transmis-

sion requests regardless of software correctness.

Addressing new vulnerabilities and measures

MGTs are the preferred technology for high-speed communication in modern systems. We intro-

Mohammed M. Farag Chapter 7. Conclusions 191

duced novel HTHs enabling covert communication in 10GbE physical links and high-speed serial

point-to-point physical links by exploiting loose specifications in the underlying link-layer pro-

tocol 5. The maximum bit rates of the PCM, PWM, and ISQ covert communication are 12.5,

23.43, and 60 Mbps at 10%, 25%, and 0% channel utilization, respectively. System and module

specifications can be necessarily loose to enhance portability or enable certain applications such

as autonomic computing. As shown in this chapter, such ambiguities can be leveraged to violate

system-level security policies while maintaining legal operation as defined in design specifications.

Thus, verification of functional specifications alone is an inadequate method of evaluating and pro-

viding system security, and even specifications with rigorous provisions to enhance security may

be insufficient to prevent new attacks. The attacks also illustrated security threats arising from the

use of third-party IP to assemble computing platforms.

In response, we presented the RETC-CPS low-level protections employing both generic and spe-

cific interface guards to tolerate HTH threats in untrusted hardware components. RETC-CPS treats

the module under protection as a black box without an associated golden reference. Security prim-

itives were built to enforce abstract and specific IP functional specifications at the module’s inter-

faces. Hardware was developed for both the HTHs and interface guards thwarting the associated

threats. HTH and interface guard overheads were minor compared to the resources consumed by

the IP blocks. A testbench demonstrated RETC interface guard countermeasures for HTH attempts

at covert communication. The developed testbench was experimentally validated using the Rock-

etIO transceivers on a Xilinx Virtex-5 FX130T FPGA. Run-time violations were rapidly detected

and acted upon without latencies incurred by software or non-local communication.

Predicting and preempting erroneous controller behaviors

RETC-CPS application to process control systems was explored in Chapter 6. The DREC is

a system-level guard monitoring top-level interfaces and enforcing application-oriented security

policies capturing physical characteristics. The DREC high-level architecture was presented and

illustrated by a model-based design for an aircraft pitch control application. The run-time system

included a second instance of the active controller connected to a model of the plant giving a short-

term projection of future controller actions and process state. The model’s state was periodically

Mohammed M. Farag Chapter 7. Conclusions 192

synchronized with the plant’s state to prevent divergence. A simulation testbench generated time-

triggered controller faults to validate the functional correctness of the DREC. Erroneous controller

behavior was detected before it affects the physical process, allowing preemptive alarms or actions.

The predictive subsystem and active control system design complexity are almost the same, and

the CHARE trust anchor contributes about 25% of the total complexity as measure in terms of total

software methods.

Enabling trust extensibility in reconfigurable architectures

The key enablers to trust extensibility in reconfigurable platforms are: decoupled system imple-

mentations and trust anchors, secure control of system reconfiguration, and separating the system

and security design flows. The RETC-CPS security guards are localized and integrated to the

protected system interfaces. RETC’s policy-based approach allows evolution of trust components

independent of particular system implementations. This was clearly depicted in the RETC-CPS

high-level architecture presented in Chapter 3 and supported by the selected applications. Secure

reconfiguration control enables trust in system security updates, as demonstrated by the CHARE

framework presented in Chapter 4. RETC-CPS treats systems under protection as black boxes and

relies on enforcing security policies independent of particular system implementations to isolate

functionality and security This property was supported by the RETC-CPS design flow in reconfig-

urable hardware presented in Chapter 3, and illustrated by the selected applications.

7.2 Strengths and Limitations

We note the following strengths of the RETC-CPS protection scheme:

• It addresses several threats associated with untrusted components regardless of the threat

origin because of the run-time monitoring approach adopted.

• Trust can be enhanced at the system-level or on a per-module basis or even on a per-function

basis.

Mohammed M. Farag Chapter 7. Conclusions 193

• It works across simulation and emulation and detects threats after deployment with the same

trust anchors.

• System operation is not affected by the security components.

• Trust anchors are not fixed and can be added, removed, or swapped to enable new security

mechanisms.

• RETC does not require either trust in the IP vendor or golden reference models, and treats

the protected modules as black boxes

• RETC employs functional specifications revealed by the IP developers to enhance security

at the IP interfaces.

• RETC does not require significant changes to the design flow.

Limitations include:

• RETC can only protect systems and components having clearly stated security policies.

• RETC induces area overheads and time delays which, in certain cases, can be significant.

• Countermeasures enforced by RETC can mitigate threat consequences but cannot guarantee

normal system operation.

• Security policies may not contain all permitted and prohibited behaviors. For instance, if the

security policy is derived from the IP functional specifications, threats that do not affect IP

operation cannot be detected.

• Framing security policies for all system functionalities can be intractable.

• Not all cyber threats can be inferred and detected at component or system interfaces.

• Even hardware protections may not preclude zero-cycle attacks such as immediate DoS.

• The RETC protections can be bypassed by a malicious entity aware of the security scheme.

Mohammed M. Farag Chapter 7. Conclusions 194

• Hardware protections do not enable detection of all violations targeting different software

layers.

7.3 Future Work

The results of this research indicate that run-time security protections can enhance trust in CPSes,

but as with any research, questions arise along the way that require further research. Future work

directions are summarized in the following points:

• Design automation

As mentioned in Chapter 3, lack of automation is a major bottleneck confronting many

security solutions. Design automation was not the main focus of this dissertation, yet a de-

tailed design flow was proposed in Chapter 3, and the automation feasibility was established

for the CHARE framework presented in Chapter 4. We plan to develop tools to automati-

cally generate the RETC trust anchors in both the model-based and language-based security

design flows for the presented applications. This includes development of a trusted DMS

responsible for automatic generation and delivery of the hardware plug-ins incorporating the

RETC trust anchors and protected reconfigurable modules. In particular, we will focus on

model-based design to generate solutions for problem domains that have a well-established

mathematical basis, such as process control, signal processing, and communications. PSL

will be investigated as a standard policy language to enable automatic design and verifica-

tion of the RETC components in the policy-based design flow. Design experiences presented

in [78] will be leveraged to automate the RETC-CPS component generation.

• New threats arising from predictive architectures

The DREC architecture introduced in Chapter 6 enables predicting future controller behav-

ior and preempting controller faults. The major advantage is gaining significant time that

might be required to enforce countermeasures preserving physical process stability. Pre-

liminary results demonstrate possible time gains in a safety-critical application. However,

Mohammed M. Farag Chapter 7. Conclusions 195

we still need to investigate the protection scheme applicability to different process control

systems by characterizing possible time scaling factors and prediction windows for various

applications. Moreover, the trust anchors added to the process control system make it sig-

nificantly more complex, and complexity is the enemy of security and trust. Subtle new

attack mechanisms can be introduced to compromise the DREC protections such as a ma-

liciously designed control algorithm exploiting the knowledge that it will be used for both

prediction and production. We will investigate possible new threats arising from predictive

architectures, and enhancements required to the DREC to address such threats.

• Development of cross-layer defenses

Most of the major advances in computer system security rely on hardware-based security

architectures for enforcement. The RETC-CPS hardware protection scheme simultaneously

addresses the performance, developer productivity, and security requirements for the selected

applications and threat models. However, as indicated in Chapter 3, hardware-based security

cannot address all cyber threats associated with software or user layers. We plan to investi-

gate cross-layer security approaches to enable trusted computing in CPSes for complex threat

models. Specifically, we will focus on run-time, cross-layer security protections for PLCs

to extend RETC-CPS applicability from configurable hardware platforms to software-based

architectures extensively deployed in CPSes.

• Establishing mathematical models, formal verification, and trust evaluation methods

The main focus of this work has been to present high-level architectures and prototypes

for run-time protections, addressing specific threat models commonly arising in CPSes, and

validating the protection scheme’s ability to thwart these threats. This approach is common

practice in the security research community to demonstrate the solution efficiency against

different threats. However, the presented architectures need rigorous mathematical models

that are formally verified. We plan to develop mathematical models for the RETC-CPS trust

anchors and apply the model checking techniques introduced in Chapter 3. Trust inherited by

adopting RETC-CPS needs to be evaluated for the whole design rather than solely relying on

Mohammed M. Farag Chapter 7. Conclusions 196

trust anchor verification. We plan to evaluate trust of the presented applications using attack

surface measurement techniques [110].

• Run-time detection and mitigation of HTHs

As mentioned in Chapter 5, HTHs are emerging threats to embedded systems and CPSes

with a potential to break security objectives without being detected using traditional solu-

tions. In this work, we presented specific HTH threat models and countermeasures in the

form of RETC-CPS low-level generic and specific interface guards. Future work will focus

on using general guards to address the gap between loose design specifications and overall

system security. The ability to automatically synthesize generic guards from succinct, high-

level system operation and security specifications should provide an effective run-time pro-

tection scheme. The RETC low-level protections will be applied to a wider range of HTHs,

especially those associated with software-like threat models. Moreover, we will investigate

RETC applicability and required modifications to address side-channel enabled HTHs. Re-

lying solely on specific guards is undesirable as they require low-level design expertise, and

the number of specific guards needed may be excessive.

• Application to networked CPSes

The emphasis of this dissertation has been on enhancing trust in individual embedded con-

trollers deployed in a CPS assuming conventional network security practices. Novel HTHs

enabling covert communication in cyber networks provided an example of unconventional

threats resulting from lack of trust in individual network nodes. As a CPS is a system of

systems featuring extensive network interactions and increasing number of nodes, we plan

to extend the RETC-CPS protection scheme to enhance trust in cyber networks by devel-

oping a top-level network protection mechanism that can be applied in conjunction with

individual controller defenses and RETC trust anchors to enforce overall system security.

Formal methods will be applied to the extended protection scheme in order to investigate

the state explosion problem on the CPS network scale. We plan to investigate design-for-

verification methods to address potential state explosion by adding run-time monitors incor-

Mohammed M. Farag Chapter 7. Conclusions 197

porating temporal logic assertions to dynamically verify specific security requirements in

complex CPSes. The focus will be on extending the CHARE framework presented in Chap-

ter 4 to enhance trust in CR networks against configuration attacks. A network model will

be developed to predict the protection scheme efficiency in countering plausible spatial and

temporal long-term effects raised by the cognitive nature of CR. This research may provide

required assurances about the CR network and platform security to spectrum regulators and

stakeholders, thus enabling wide deployment of this emerging technology.

Bibliography

[1] IEEE standard for property specification language PSL. IEEE Std 1850-2005, pages 1–143,

2005.

[2] A Roadmap for Cybersecurity Research, November 2009. http://www.cyber.st.dhs.gov/

docs/DHS-Cybersecurity-Roadmap.pdf.

[3] IEEE standard for information technology-telecommunications and information exchange

between systems-local and metropolitan area networks-specific requirements part 3: Carrier

sense multiple access with collision detection CSMA/CD access method and physical layer

specifications amendment 4: Media access control parameters, physical layers and manage-

ment parameters for 40 Gb/s and 100 Gb/s operation. IEEE Std 802.3ba-2010 (Amendment

to IEEE Standard 802.3-2008), pages 1 –457, 22 2010.

[4] NSF Workshop on the Future of Trustworthy Computing, Waterview Conference Center,

Arlington, VA, October 2010. http://tc2010.cse.psu.edu/index.html.

[5] Yael Abarbanel-Vinov, Neta Aizenbud-Reshef, Ilan Beer, Cindy Eisner, Daniel Geist, Tamir

Heyman, Iris Reuveni, Eran Rippel, Irit Shitsevalov, Yaron Wolfsthal, and Tali Yatzkar-

Haham. On the effective deployment of functional formal verification. Formal Methods

System Design, 19(1):35–44, 2001.

[6] Miron Abramovici and Paul Bradley. Integrated circuit security: new threats and solutions.

In Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence

198

Bibliography 199

Research: Cyber Security and Information Intelligence Challenges and Strategies, CSIIRW

’09, pages 55:1–55:3, New York, NY, USA, 2009. ACM.

[7] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, and Shantidev Mohanty. NeXt generation

dynamic spectrum access cognitive radio wireless networks: A survey. Computer Networks,

50(13):2127 – 2159, 2006.

[8] I.F. Akyildiz, Won-Yeol Lee, M.C. Vuran, and S. Mohanty. A survey on spectrum manage-

ment in cognitive radio networks. Communications Magazine, IEEE, 46(4):40 –48, April

2008.

[9] M. Al-Morsy and H. Faheem. A new standard security policy language. Potentials, IEEE,

28(2):19 –26, march-april 2009.

[10] M. Anand, E. Cronin, M. Sherr, M. Blaze, Z. Ives, and I. Lee. Security challenges in

next generation cyber physical systems. Beyond SCADA: Networked Embedded Control for

Cyber Physical Systems, 2006.

[11] Robert H. Anderson and Richard Hundley. The implications of COTS vulnerabilities for the

dod and critical U.S. infrastructures: What can/should the DoD do? Technical report, CA:

RAND Corporation, Santa Monica, 1998. http://www.rand.org/pubs/papers/P8031.

[12] Ross Anderson, Frank Stajano, and Jong-Hyeon Lee. Security policies. Advances in Com-

puters, pages 185 – 235. Elsevier, 2002.

[13] A.W. Appel. Foundational proof-carrying code. In Logic in Computer Science, 2001. Pro-

ceedings. 16th Annual IEEE Symposium on, pages 247 –256, 2001.

[14] K. Arkoudas, R. Chadha, and J. Chiang. An application of formal methods to cognitive

radios. In DIFTS’11: 1st INTERNATIONAL WORSKHOP ON DESIGN and IMPLEMEN-

TATION OF FORMAL TOOLS AND SYSTEMS, pages 3–12. Austin, TX, November 2011.

[15] ARM. ARM security technology: Building a secure system using TrustZone technology,

July 1999.

Bibliography 200

[16] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha. Hardware-assisted run-time monitoring

for secure program execution on embedded processors. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 14(12):1295–1308, December 2006.

[17] Arvind, Nirav Dave, and Michael Katelman. Getting formal verification into design flow. In

Jorge Cuellar, Tom Maibaum, and Kaisa Sere, editors, FM 2008: Formal Methods, volume

5014 of Lecture Notes in Computer Science, pages 12–32. Springer Berlin / Heidelberg,

2008.

[18] Abhijit Athavale and Carl Christensen. High-Speed Serial I/O Made Simple. Xilinx, 2005.

[19] B. Badrignans, J.L. Danger, G. Gogniat, V. Fischer, and L. Torres. Security Trends for

FPGAS: From Secured to Secure Reconfigurable Systems. Springer Verlag, 2011.

[20] R. Baheti and H. Gill. Cyber-physical systems. The Impact of Control Technology, pages

161–166, 2011.

[21] B. Bahrak, A. Deshpande, M. Whitaker, and Jung-Min Park. Bresap: A policy reasoner

for processing spectrum access policies represented by binary decision diagrams. In New

Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, pages 1–12, April 2010.

[22] Christel Baier and Joost P. Katoen. Principles of Model Checking. The MIT Press, May

2008.

[23] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime

verification. In Verification, Model Checking, and Abstract Interpretation, volume 2937 of

Lecture Notes in Computer Science, pages 277–306. Springer Berlin / Heidelberg, 2004.

[24] Alex Baumgarten, Michael Steffen, Matthew Clausman, and Joseph Zambreno. A case

study in hardware Trojan design and implementation. International Journal of Information

Security, 10:1–14, 2011.

[25] J. Bergeron. Verification methodology manual for SystemVerilog. Springer-Verlag New York

Inc, 2006.

Bibliography 201

[26] Michael Bilzor, Ted Huffmire, Cynthia Irvine, and Tim Levin. Security checkers: Detect-

ing processor malicious inclusions at runtime. In Hardware-Oriented Security and Trust

(HOST), 2011 IEEE InternationalSymposium on, pages 34–39, June 2011.

[27] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer. Automatic

hardware synthesis from specifications: A case study. In Design, Automation Test in Europe

Conference Exhibition, 2007. DATE ’07, pages 1–6, April 2007.

[28] M. Brundle and M. Naedele. Security for process control systems: An overview. Security

Privacy, IEEE, 6(6):24–29, Nov–Dec 2008.

[29] J.L. Burbank. Security in cognitive radio networks: The required evolution in approaches

to wireless network security. pages 1 –7, May 2008.

[30] A.A. Cárdenas, S. Amin, and S. Sastry. Secure control: Towards survivable cyber-physical

systems. In Distributed Computing Systems Workshops, 2008. ICDCS ’08. 28th Interna-

tional Conference on, pages 495–500, Jun 2008.

[31] Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen Huang, and

Shankar Sastry. Attacks against process control systems: risk assessment, detection, and

response. In Proceedings of the 6th ACM Symposium on Information, Computer and Com-

munications Security, ASIACCS’11, pages 355–366, 2011.

[32] Alvaro A. Cárdenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian Perrig, and

Shankar Sastry. Challenges for securing cyber physical systems. 2010.

[33] A. Chandrasekharan, S. Rajagopalan, G. Subbarayan, T. Frangieh, Y. Iskander, S. Craven,

and C. Patterson. Accelerating FPGA development through the automatic parallel appli-

cation of standard implementation tools. In Field-Programmable Technology (FPT), 2010

International Conference on, pages 53–60, December 2010.

[34] Feng Chen and Grigore Roşu. MOP: an efficient and generic runtime verification frame-

work. SIGPLAN Not., 42(10):569–588, October 2007.

Bibliography 202

[35] T.M. Chen. Stuxnet, the real start of cyber warfare? Network, IEEE, 24(6):2 –3, November–

December 2010.

[36] T.M. Chen and S. Abu-Nimeh. Lessons from Stuxnet. Computer, 44(4):91 –93, April 2011.

[37] Steven Cherry. Sons of Stuxnet. IEEE Spectrum, December 2011. http://spectrum.ieee.org/

podcast/telecom/security/sons-of-stuxnet.

[38] T.C. Clancy and N. Goergen. Security in cognitive radio networks: Threats and mitigation.

pages 1 –8, May 2008.

[39] Edmund Clarke. The birth of model checking. In Orna Grumberg and Helmut Veith, editors,

25 Years of Model Checking, volume 5000 of Lecture Notes in Computer Science, pages 1–

26. Springer Berlin / Heidelberg, 2008.

[40] F. Cohen. Automated control system security. Security Privacy, IEEE, 8(5):62–63, Sep–Oct

2010.

[41] F. Dabiri and M. Potkonjak. Hardware aging-based software metering. In Design, Automa-

tion Test in Europe Conference Exhibition, 2009. DATE ’09., pages 460–465, april 2009.

[42] C. Dai, S.H. Yang, and Liansheng Tan. An approach for controller fault detection. In Fifth

World Conference on Intelligent Control and Automation (WCICA), volume 2, pages 1637–

1641, Jun 2004.

[43] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The Ponder policy

specification language. In Proceedings of the International Workshop on Policies for Dis-

tributed Systems and Networks, POLICY ’01, pages 18–38, London, UK, 2001. Springer-

Verlag.

[44] A. Datta, J. Franklin, D. Garg, Limin Jia, and D. Kaynar. On adversary models and compo-

sitional security. Security Privacy, IEEE, 9(3):26 –32, may-june 2011.

Bibliography 203

[45] J. Delorme, J. Martin, A. Nafkha, C. Moy, F. Clermidy, P. Leray, and J. Palicot. A FPGA

partial reconfiguration design approach for cognitive radio based on NoC architecture. In

Circuits and Systems and TAISA Conference, 2008. NEWCAS-TAISA 2008. 2008 Joint 6th

International IEEE Northeast Workshop on, pages 355 –358, June 2008.

[46] G. Denker, D. Elenius, R. Senanayake, M.-O. Stehr, and D. Wilkins. A policy engine for

spectrum sharing. In New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN

2007. 2nd IEEE International Symposium on, pages 55 –65, April 2007.

[47] G. Denker, D. Elenius, R. Senanayake, M.O. Stehr, C. Talcott, and D. Wilkins. Cogni-

tive policy radio language (CoRaL) a language for spectrum policies, XG policy language.

Version 0.1, ICS-16763-TR-07-001, SRI, 2007.

[48] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 9th edition, 2000.

[49] R. Drechsler and G. Fey. Formal verification meets robustness checking: Techniques and

challenges. In Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2010

IEEE 13th International Symposium on, pages 4 –4, April 2010.

[50] Saar Drimer. Volatile FPGA design security – a survey, 2007.

[51] Saar Drimer. Security for volatile FPGAs. PhD thesis, November 2009.

[52] S. Drzevitzky. Proof-carrying hardware: Runtime formal verification for secure dynamic

reconfiguration. In Field Programmable Logic and Applications (FPL), 2010 International

Conference on, pages 255 –258, 31 2010-sept. 2 2010.

[53] S. Drzevitzky and M. Platzner. Achieving hardware security for reconfigurable systems on

chip by a proof-carrying code approach. In Reconfigurable Communication-centric Systems-

on-Chip (ReCoSoC), 2011 6th International Workshop on, pages 1 –8, June 2011.

[54] D. Dye. Partial reconfiguration of Virtex FPGAs in ISE 12. Xilinx white paper WP374,

2010.

Bibliography 204

[55] Thomas Eisenbarth, Tim Güneysu, Christof Paar, Ahmad-Reza Sadeghi, Dries Schellekens,

and Marko Wolf. Reconfigurable trusted computing in hardware. In STC ’07: Proceedings

of the 2007 ACM workshop on Scalable trusted computing, pages 15–20, New York, NY,

USA, 2007. ACM.

[56] D. Elenius, G. Denker, M.-O. Stehr, R. Senanayake, C. Talcott, and D. Wilkins. CoRaL–

policy language and reasoning techniques for spectrum policies. In Policies for Distributed

Systems and Networks, 2007. POLICY ’07. Eighth IEEE International Workshop on, pages

261 –265, June 2007.

[57] M.M. Farag, L.W. Lerner, and C.D. Patterson. Thwarting software attacks on data-intensive

platforms with configurable hardware-assisted application rule enforcement. In Field Pro-

grammable Logic and Applications (FPL), 2011 International Conference on, pages 207–

212, September 2011.

[58] M.M. Farag, L.W. Lerner, and C.D. Patterson. Interacting with hardware Trojans over a

network. In Hardware-Oriented Security and Trust (HOST), 2012 IEEE International Sym-

posium on, pages 69–74, June 2012.

[59] Mohamemd M. Farag. Hardware implementation of advanced encryption standard on field

programmable gate array. Master’s thesis, Alexandria University, 2006.

[60] J.P. Farwell and R. Rohozinski. Stuxnet and the future of cyber war. Survival, 53(1):23–40,

2011.

[61] Gene F. Franklin, David J. Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic

Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 4th edition, 2001.

[62] K. Fysarakis, C. Manifavas, and K. Rantos. Embedded systems security. In The 10th

International Symposium on Ambient Intelligence and Embedded Systems, AMIES 2011,

2011.

Bibliography 205

[63] A. Ginsberg, W.D. Home, and J.D. Poston. Community-based cognitive radio architecture:

Policy-compliant innovation via the semantic web. In New Frontiers in Dynamic Spectrum

Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, pages 191

–201, april 2007.

[64] B. Glas, A. Klimm, O. Sander, K. Muller-Glaser, and J. Becker. A system architecture for

reconfigurable trusted platforms. In Design, Automation and Test in Europe, 2008. DATE

’08, pages 541 –544, March 2008.

[65] Jonathan Graf and John Hallman. Trust in the FPGA supply chain using physically un-

clonable functions. In The 35th Annual Government Microcircuit Applications & Critical

Technology Conference (GOMACTech), 2010.

[66] L.M. Grande. IEEE dynamic spectrum access policy standards work. In Military Commu-

nications Conference, 2009. MILCOM 2009. IEEE, pages 1 –4, October 2009.

[67] Johann Grossschadl, Tobias Vejda, and Dan Page. Reassessing the TCG specifications for

trusted computing in mobile and embedded systems. In Proceedings of the 2008 IEEE

International Workshop on Hardware-Oriented Security and Trust, HST ’08, pages 84–90,

Washington, DC, USA, 2008. IEEE Computer Society.

[68] TRUSTED COMPUTING GROUP. Trusted computing group home page, 2009. http:

//www.trustedcomputinggroup.org.

[69] Jorge Guajardo, Sandeep Kumar, Geert-Jan Schrijen, and Pim Tuyls. FPGA intrinsic PUFs

and their use for IP protection. In Cryptographic Hardware and Embedded Systems - CHES

2007, volume 4727 of LNCS, pages 63–80. Springer, 2007.

[70] C.M. Hajiyev and F. Caliskan. Fault detection in flight control systems via innovation se-

quence of Kalman filter. In Control ’98. UKACC International Conference on, pages 1528–

1533 vol.2, September 1998.

Bibliography 206

[71] Melissa Hathaway. Cyberspace policy review and blueprint for research priorities. In Pro-

ceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Re-

search, CSIIRW ’10, pages 11:1–11:1, New York, NY, USA, 2010. ACM.

[72] Constance Heitmeyer. Developing safety-critical systems: the role of formal methods and

tools. In Proceedings of the 10th Australian workshop on Safety critical systems and soft-

ware - Volume 55, SCS ’05, pages 95–99, Darlinghurst, Australia, Australia, 2006. Aus-

tralian Computer Society, Inc.

[73] Lalana Kagal Hp and Lalana Kagal. A policy language for the me-centric project. Technical

report, 2002.

[74] T. Huffmire, B. Brotherton, Gang Wang, T. Sherwood, R. Kastner, T. Levin, T. Nguyen, and

C. Irvine. Moats and drawbridges: An isolation primitive for reconfigurable hardware based

systems. In Security and Privacy, IEEE Symposium on, pages 281–295, May 2007.

[75] Ted Huffmire, Brett Brotherton, Nick Callegari, Jonathan Valamehr, Jeff White, Ryan Kast-

ner, and Tim Sherwood. Designing secure systems on reconfigurable hardware. ACM Trans.

Des. Autom. Electron. Syst., 13:44:1–44:24, July 2008.

[76] Ted Huffmire, Timothy Levin, Thuy Nguyen, Cynthia Irvine, Brett Brotherton, Gang Wang,

Timothy Sherwood, and Ryan Kastner. Security primitives for reconfigurable hardware-

based systems. ACM Trans. Reconfigurable Technol. Syst., 3:10:1–10:35, May 2010.

[77] Ted Huffmire, Shreyas Prasad, Tim Sherwood, and Ryan Kastner. Policy-driven memory

protection for reconfigurable hardware. In Proceedings of the 11th European conference on

Research in Computer Security, ESORICS’06, pages 461–478, Berlin, Heidelberg, 2006.

Springer-Verlag.

[78] Ted Huffmire, Timothy Sherwood, Ryan Kastner, and Timothy Levin. Enforcing memory

policy specifications in reconfigurable hardware. Computers and Security, 27(5-6):197–215,

2008.

Bibliography 207

[79] Intel Corp. Intel trusted execution technology overview.

[80] Intel Corp. Intel virtualization technology overview.

[81] Yier Jin, Nathan Kupp, and Yiorgos Makris. Experiences in hardware Trojan design and

implementation. In Proceedings of the 2009 IEEE International Workshop on Hardware-

OrientedSecurity and Trust, pages 50–57. IEEE Computer Society, 2009.

[82] Yier Jin, Eric Love, and Yiorgos Makris. Design for hardware trust. In Mohammad Tehra-

nipoor and Cliff Wang, editors, Introduction to Hardware Security and Trust, pages 365–

384. Springer New York, 2012.

[83] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model Checking. The MIT

Press, 1999.

[84] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. Trustworthy hardware: Identify-

ing and classifying hardware trojans. Computer, 43(10):39–46, October 2010.

[85] Ramesh Karri, Jeyavijayan Rajendran, and Kurt Rosenfeld. Trojan taxonomy. In Introduc-

tion to Hardware Security and Trust, pages 325–338. Springer New York, 2012.

[86] Ryan Kastner, Jason Oberg, Wei Huy, and Ali Irturk. Enforcing information flow guarantees

in reconfigurable systems with mix-trusted IP. In Engineering of Reconfigurable Systems

and Algorithms (ERSA2011), July 2011.

[87] Tom Kean. Secure configuration of field programmable gate arrays. In FPL ’01: Proceed-

ings of the 11th International Conference on Field-Programmable Logic and Applications,

pages 142–151, London, UK, 2001. Springer-Verlag.

[88] K. Kepa, F. Morgan, and K. Kosciuszkiewicz. Intellectual property protection in self-

reconfigurable embedded systems. In Consumer Electronics, 2009. ICCE ’09. Digest of

Technical Papers International Conference on, pages 1–2, January 2009.

Bibliography 208

[89] K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Surmacz. Serecon: a secure reconfigura-

tion controller for self-reconfigurable systems. International Journal of Critical Computer-

Based Systems, 1(1):86–103, 2010.

[90] P. Koopman. Embedded system security. Computer, 37(7):95–97, July 2004.

[91] Farinaz Koushanfar, Gang Qu, and Miodrag Potkonjak. Intellectual property metering. In

Proceedings of the 4th International Workshop on Information Hiding, IHW ’01, pages 81–

95, London, UK, UK, 2001. Springer-Verlag.

[92] J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Fingerprinting techniques for field-

programmable gate array intellectual property protection. Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, 20(10):1253 –1261, October 2001.

[93] John Lach, William Mangione-Smith, and Miodrag Potkonjak. Fingerprinting digital cir-

cuits on programmable hardware. In Information Hiding, volume 1525 of Lecture Notes in

Computer Science, pages 16–31. Springer Berlin / Heidelberg, 1998.

[94] Chris Lane. Systems software integrity assurance. In Proceedings of the ACM SIGAda an-

nual international conference onSIGAda, SIGAda ’10, pages 11–12, New York, NY, USA,

2010. ACM.

[95] Neal Leavitt. Researchers fight to keep implanted medical devices safe from hackers. Com-

puter, 43(8):11–14, August 2010.

[96] E.A. Lee. Cyber physical systems: Design challenges. In Object Oriented Real-Time Dis-

tributed Computing (ISORC), 2008 11th IEEE International Symposium on, pages 363 –

369, May 2008.

[97] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, A Cyber-Physical

Systems Approach. 2011. http://LeeSeshia.org.

Bibliography 209

[98] L.W. Lerner, M.M. Farag, and C.D. Patterson. Run-time prediction and preemption of

configuration attacks on embedded process controllers. In Security of Internet of Things

(SecurIT), 2012 First International Conference on, August 2012.

[99] Martin Leucker and Christian Schallhart. A brief account of runtime verification. Journal

of Logic and Algebraic Programming, 78(5):293 – 303, 2009.

[100] Ying-Chang Liang, Hsiao-Hwa Chen, J. Mitola, P. Mahonen, R. Kohno, J.H. Reed, and

L. Milstein. Guest editorial - cognitive radio: Theory and application. Selected Areas in

Communications, IEEE Journal on, 26(1):1–4, January 2008.

[101] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mechanisms for

run-time security policies. International Journal of Information Security, 4:2–16, 2005.

[102] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety policies.

ACM Trans. Inf. Syst. Secur., 12(3):19:1–19:41, January 2009.

[103] Jay Ligatti and Srikar Reddy. A theory of runtime enforcement, with results. In Computer

Security ESORICS 2010, volume 6345 of Lecture Notes in Computer Science, pages 87–

100. 2010.

[104] U. Lindqvist and E. Jonsson. A map of security risks associated with using COTS. Com-

puter, 31(6):60 –66, June 1998.

[105] Bev Littlewood and Lorenzo Strigini. Redundancy and diversity in security. In Computer

Security ESORICS 2004, volume 3193 of Lecture Notes in Computer Science, pages 423–

438. Springer Berlin / Heidelberg.

[106] J. Lotze, S.A. Fahmy, J. Noguera, and L.E. Doyle. A model-based approach to cognitive ra-

dio design. Selected Areas in Communications, IEEE Journal on, 29(2):455–468, February

2011.

Bibliography 210

[107] Jorg Lotze, Suhaib A. Fahmy, Juanjo Noguera, Linda Doyle, and Robert Esser. An FPGA-

based cognitive radio framework. In Signals and Systems Conference, 208. (ISSC 2008).

IET Irish, pages 138–143, June 2008.

[108] E. Love, Yier Jin, and Y. Makris. Enhancing security via provably trustworthy hardware

intellectual property. In Hardware-Oriented Security and Trust (HOST), 2011 IEEE Inter-

national Symposium on, pages 12 –17, June 2011.

[109] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford. Invited paper: Enhanced

architectures, design methodologies and CAD tools for dynamic reconfiguration of Xilinx

FPGAs. In Field Programmable Logic and Applications, 2006. FPL ’06. International

Conference on, pages 1–6, August 2006.

[110] P. Manadhata and J.M. Wing. An attack surface metric. Technical report, DTIC Document,

2005.

[111] Douglas Maughan. The need for a national cybersecurity research and development agenda.

Commun. ACM, 53:29–31, February 2010.

[112] R.P. McEvoy, F.M. Crowe, C.C. Murphy, and W.P. Marnane. Optimisation of the SHA-2

family of hash functions on FPGAs. In Emerging VLSI Technologies and Architectures,

2006. IEEE Computer Society Annual Symposium on, March 2006.

[113] Mark McLean and Jason Moore. Securing FPGAs for red/black systems: FPGA-based

single chip cryptographic solution. Military Embedded Systems Mag., 2007.

[114] K. L. McMillan. A methodology for hardware verification using compositional model

checking. Sci. Comput. Program., 37(1-3):279–309, May 2000.

[115] Kenneth Lauchlin McMillan. Symbolic model checking: an approach to the state explosion

problem. PhD thesis, Pittsburgh, PA, USA, 1992. UMI Order No. GAX92-24209.

[116] W.C. Messner and D.M. Tilbury. Control tutorials for MATLAB and Simulink: User’s

Guide. Addison-Wesley, 1998.

Bibliography 211

[117] Prashant Mhaskar, Charles McFall, Adiwinata Gani, Panagiotis D. Christofides, and

James F. Davis. Isolation and handling of actuator faults in nonlinear systems. Automatica,

44(1):53 – 62, 2008.

[118] J. Mitola. Cognitive radio policy languages. In Communications, 2009. ICC ’09. IEEE

International Conference on, pages 1–4, June 2009.

[119] Ira S. Moskowitz, Richard E. Newman, and Allen R. Crepeau, Daniel P. andMiller. Covert

channels and anonymizing networks. In Proceedings of the 2003 ACM workshop on Privacy

in the electronic society, WPES’03, pages 79–88. ACM, 2003.

[120] Seetharam Narasimhan and Swarup Bhunia. Introduction to Hardware Security and Trust,

chapter Hardware Trojan Detection, pages 339–364. Springer New York, 2012.

[121] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’97, pages 106–119, 1997.

[122] C. Neuman. Challenges in security for cyber-physical systems. In DHS: S&T Workshop on

Future Directions in Cyber-physical Systems Security. Citeseer, 2009.

[123] R. Nikhil. Bluespec System Verilog: efficient, correct RTL from high level specifications. In

Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04. Proceedings. Second

ACM and IEEE International Conference on, pages 69 – 70, June 2004.

[124] Rishiyur S. Nikhil and Arvind. What is bluespec? SIGDA Newsl., 39(1):1–1, January 2009.

[125] P. Noel, F. Zarkeshvari, and T. Kwasniewski. Recent advances in high-speed serial I/O

trends, standards and techniques. In Electrical and Computer Engineering, 2005. Canadian

Conference on, pages 1292–1295, May 2005.

[126] Kelly O’Connell. INTERNET LAW-CIA Report: cyber extortionists attacked foreign power

grid, disrupting delivery. Internet Business Law Services, January 2008.

Bibliography 212

[127] National Institute of Standards and Technology. FIPS 197: Advanced Encryption Standard

(AES). Federal Information Processing Standards (FIPS) Publication, 2001.

[128] National Institute of Standards and Technology. FIPS 180-3: Secure Hash Standard (SHS).

Federal Information Processing Standards (FIPS) Publication, 2008.

[129] A.L. Oliveira. Techniques for the creation of digital watermarks in sequential circuit de-

signs. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

20(9):1101–1117, September 2001.

[130] S. Papa, W. Casper, and S. Nair. Placement of trust anchors in embedded computer systems.

In Hardware-Oriented Security and Trust (HOST), 2011 IEEE International Symposium on,

pages 111 –116, June 2011.

[131] D.L. Parnas. Predicate logic for software engineering. Software Engineering, IEEE Trans-

actions on, 19(9):856–862, September 1993.

[132] C. Patterson. High performance DES encryption in Virtex FPGAs using JBits. In Field-

Programmable Custom Computing Machines, 2000 IEEE Symposium on, pages 113 –121,

2000.

[133] Marcus Peinado, Yuqun Chen, Paul England, and John Manferdelli. NGSCB: A trusted open

system. In Information Security and Privacy, volume 3108 of Lecture Notes in Computer

Science, pages 86–97. 2004.

[134] F. Perich. Policy-based network management for next generation spectrum access control.

In New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE

International Symposium on, pages 496 –506, april 2007.

[135] N. Potlapally. Hardware security in practice: Challenges and opportunities. In Hardware-

Oriented Security and Trust (HOST), 2011 IEEE InternationalSymposium on, pages 93 –98,

june 2011.

[136] P. Quinn-Judge. Cracks in the system. TIME Magazine (9th Jan 2002), 2002.

Bibliography 213

[137] R. Rajkumar, Insup Lee, Lui Sha, and J. Stankovic. Cyber-physical systems: The next

computing revolution. In Design Automation Conference (DAC), 2010 47th ACM/IEEE,

pages 731 –736, june 2010.

[138] Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hattangady. Security in em-

bedded systems: Design challenges. ACM Transactions on Embedded Computing Systems,

pages 461–491, August 2004.

[139] D. Raychaudhuri, N.B. Mandayam, J.B. Evans, B.J. Ewy, S. Seshan, and P. Steenkiste.

Cognet: an architectural foundation for experimental cognitive radio networks within the

future internet. In Proceedings of first ACM/IEEE international workshop on Mobility in

the evolving internet architecture, pages 11–16. ACM, 2006.

[140] T. Reece and W.H. Robinson. Hardware Trojans: The defense and attack of integrated

circuits. In Computer Design (ICCD), 2011 IEEE 29th International Conference on, pages

293–296, October 2011.

[141] J.H. Reed. Software radio: a modern approach to radio engineering. Prentice Hall Profes-

sional, 2002.

[142] T. Reed. At the abyss: an insider’s history of the Cold War. Presidio Press, 2005.

[143] F. Rouissi and G. Hoblos. Multi-criteria based approach for fault tolerant actuator selec-

tion. In Control and Fault-Tolerant Systems (SysTol), 2010 Conference on, pages 359 –364,

October 2010.

[144] Ahmad-Reza Sadeghi, Marcel Selhorst, Christian Stüble, Christian Wachsmann, and Marcel

Winandy. TCG inside?: a note on TPM specification compliance. In Proceedings of the first

ACM workshop on Scalable trusted computing, STC ’06, pages 47–56, New York, NY,

USA, 2006. ACM.

[145] Ihab Samy, Ian Postlethwaite, and Da-Wei Gu. Survey and application of sensor fault de-

tection and isolation schemes. Control Engineering Practice, 19(7):658 – 674, 2011.

Bibliography 214

[146] T. Schlipf, T. Buechner, R. Fritz, M. Helms, and J. Koehl. Formal verification made easy.

IBM J. Res. Dev., 41(4-5):567–576, 1997.

[147] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and

System Security (TISSEC), 3(1):30–50, February 2000.

[148] Seth Schoen. Trusted computing: Promise and risk. Electronic Frontier Foundation, 16:26,

October 2003.

[149] Carl Seger. An introduction to formal hardware verification. Technical report, Vancouver,

BC, Canada, Canada, 1992.

[150] Lui Sha. Using simplicity to control complexity. Software, IEEE, 18(4):20–28, Jul–Aug

2001.

[151] Lui Sha, S. Gopalakrishnan, Xue Liu, and Qixin Wang. Cyber-physical systems: A new

frontier. In Sensor Networks, Ubiquitous and Trustworthy Computing, 2008. SUTC’08.

IEEE International Conference on, pages 1 –9, June 2008.

[152] Abhishek B. Sharma, Leana Golubchik, and Ramesh Govindan. Sensor faults: Detection

methods and prevalence in real-world datasets. ACM Trans. Sen. Netw., 6(3):23:1–23:39,

June 2010.

[153] F.T. Sheldon and C. Vishik. Moving toward trustworthy systems: R&D essentials. Com-

puter, 43(9):31–40, September 2010.

[154] Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. A survey of cyber-physical systems. In

Wireless Communications and Signal Processing (WCSP), 2011 International Conference

on, pages 1 –6, nov. 2011.

[155] R. Simha, B. Narahari, J. Zambreno, and A. Choudhary. Secure execution with components

from untrusted foundries. 2006.

Bibliography 215

[156] Eric Simpson and Patrick Schaumont. Offline hardware/software authentication for recon-

figurable platforms. In Cryptographic Hardware and Embedded Systems - CHES 2006,

volume 4249 of LNCS, pages 311–323. Springer, 2006.

[157] Jill Slay and Michael Miller. Lessons learned from the Maroochy water breach. In Eric

Goetz and Sujeet Shenoi, editors, Critical Infrastructure Protection, volume 253 of IFIP

International Federation for Information Processing, pages 73–82. Springer Boston, 2007.

[158] Dawn Xiaodong Song. Athena: a new efficient automatic checker for security protocol

analysis. In Computer Security Foundations Workshop, 1999. Proceedings of the 12th IEEE,

pages 192–202, 1999.

[159] W. Stallings. Network Security Essentials: Applications and Standards. Prentice Hall Press,

Upper Saddle River, NJ, USA, 4th edition, 2010.

[160] C. Stevenson, G. Chouinard, Zhongding Lei, Wendong Hu, S. Shellhammer, and W. Cald-

well. IEEE 802.22: The first cognitive radio wireless regional area network standard. Com-

munications Magazine, IEEE, 47(1):130 –138, January 2009.

[161] Ji Sun, Ray Bittner, and Ken Eguro. FPGA side-channel receivers. In Proceedings of the

19th ACM/SIGDA international symposium on Field programmable gate arrays, FPGA ’11,

pages 267–276, New York, NY, USA, 2011. ACM.

[162] Wanzhong Sun, Hongpeng Guo, Huilei He, and Zibin Dai. Design and optimized imple-

mentation of the SHA-2(256, 384, 512) hash algorithms. In ASIC, 2007. ASICON ’07. 7th

International Conference on, pages 858–861, October 2007.

[163] L.M. Surhone, M.T. Tennoe, and S.F. Henssonow. Optimal Projection Equations. VDM

Verlag Dr. Mueller AG & Co. Kg, 2010.

[164] S. Sutherland, S. Davidmann, and P. Flake. SystemVerilog for Design: A Guide to Using

SystemVerilog for Hardware Design and Modeling. Springer, 2006.

Bibliography 216

[165] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. In Pacific J. Math.

Volume 5, Number 2, pages 285–309, 1955.

[166] M. Tehranipoor and F. Koushanfar. A survey of hardware Trojan taxonomy and detection.

Design Test of Computers, IEEE, 27(1):10–25, January–February 2010.

[167] Mohammad Tehranipoor, Hassan Salmani, Xuehui Zhang, Michel Wang, Ramesh Karri,

Jeyavijayan Rajendran, and Kurt Rosenfeld. Trustworthy hardware: Trojan detection and

design-for-trust challenges. Computer, 44(7):66–74, July 2011.

[168] The Common Criteria Recognition Arrangement. Common criteria for information technol-

ogy security evaluation. Technical report, Common Criiteria, September 2006.

[169] Steve Trimberger. Trusted design in FPGAs. In Proceedings of the 44th annual Design

Automation Conference, DAC ’07, pages 5–8, New York, NY, USA, 2007. ACM.

[170] E.K. Wang, Yunming Ye, Xiaofei Xu, S.M. Yiu, L.C.K. Hui, and K.P. Chow. Security

issues and challenges for cyber physical system. In Green Computing and Communications

(GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber, Physical and

Social Computing (CPSCom), pages 733–738, December 2010.

[171] Richard Wawrzyniak. Changing the systems landscape with low-cost FPGAs. Xcell Journal,

Second Quarter 2005.

[172] D. Wilkins, G. Denker, M-O. Stehr, D. Elenius, R. Senanayake, and C. Talcott. Policy-based

cognitive radios. Wireless Communications, IEEE, 14(4):41–46, August 2007.

[173] Xilinx. Aurora 8B/10B Protocol Specification, April 2010.

[174] S. Zander, G. Armitage, and P. Branch. A survey of covert channels and countermeasures in

computer network protocols. Communications Surveys Tutorials, IEEE, 9(3):44–57, 2007.

[175] Karen Zee, Viktor Kuncak, Michael Taylor, and Martin Rinard. Runtime checking for pro-

gram verification. In Proceedings of the 7th international conference on Runtime verifica-

tion, pages 202–213, 2007.

Bibliography 217

[176] A.S. Zeineddini and K. Gaj. Secure partial reconfiguration of FPGAs. In Field-

Programmable Technology, 2005. Proceedings. 2005 IEEE International Conference on,

pages 155–162, December 2005.

