
AutoMatch: Automated Matching of Compute
Kernels to Heterogeneous HPC Architectures

Ahmed E. Helal∗, Wu-Chun Feng∗†, Changhee Jung†, and Yasser Y. Hanafy∗

Department of Electrical and Computer Engineering∗,
Department of Computer Science†,

Virginia Tech,
Email: {ammhelal, wfeng, chjung, yhanafy}@vt.edu

Abstract—HPC systems contain a wide variety of heteroge-
neous computing resources, ranging from general-purpose CPUs
to specialized accelerators. Porting sequential applications to such
systems for achieving high performance requires significant soft-
ware and hardware expertise as well as extensive manual analysis
of both the target architectures and applications to decide the
best performing architecture and implementation technique for
each application. To streamline this tedious process, this paper
presents AutoMatch, a tool for automated matching of compute
kernels to heterogeneous HPC architectures. AutoMatch ana-
lyzes the sequential application code and automatically predicts
the performance of the best parallel implementation of its
compute kernels on different hardware architectures. AutoMatch
leverages such prediction results to identify the best device for
each kernel from a set of devices including multi-core CPUs and
many-core GPUs. In addition, it estimates the relative execution
cost between the different architectures to drive a workload
distribution scheme, which enables end users to efficiently exploit
the available compute resources across multiple heterogeneous
architectures. We demonstrate the efficacy of AutoMatch, using
a set of open-source HPC applications and benchmarks with
different parallelism profiles and memory-access patterns. The
empirical evaluation shows that AutoMatch is highly accurate
across five different heterogeneous architectures, identifying the
best architecture for each workload in 96% of the test cases, and
its workload distribution scheme has a comparable performance
to a profiling-driven oracle.

Keywords-HPC; Automatic Performance Prediction; Workload
Distribution; Parallel Architectures; Heterogeneous computing;
Performance Modeling; LLVM; CPU; GPU;

I. INTRODUCTION

With the end of Dennard scaling, the performance of
sequential CPUs has hit the power wall [1]. To meet the
ever-increasing demand for computing performance, driven
by the multitude of data sets, computer architectures have
shifted to parallel processing. However, unlike the sequential
computing era, there is no de facto standard for hardware
acceleration. Rather, the parallel architecture landscape is in
flux as new platforms are emerging to meet the massive
computing needs of new workloads. Therefore, current (and
future) HPC systems contain a wide variety of heterogeneous
computing resources, due to both the diversity of computation
kernels and the lack of a single architecture meeting all their
requirements. In addition, integrating different architectures in
a heterogeneous platform seems the only promising approach
to achieve scalable performance with power efficiency [2].

Porting sequential applications to heterogeneous HPC sys-
tems for achieving high performance requires significant effort
and time to rewrite and optimize the applications for every
target device. In addition, end users need extensive software
and hardware expertise to manually analyze the target architec-
tures and applications to determine the best performing archi-
tecture and implementation technique for each workload. To
streamline this tedious process, programmers need appropriate
tools to automatically predict the best hardware architecture
for their workloads and estimate the potential performance on
such architectures without the need for extensive architecture
expertise and writing parallel code for every target device.

To this end, this paper presents AutoMatch, a tool for
automated matching of compute kernels to heterogeneous HPC
architectures. AutoMatch analyzes the sequential application
code to estimate the benefits of porting this application to
heterogeneous systems. It is a hybrid approach that lever-
ages static and dynamic analysis techniques to extract the
architecture-agnostic characteristics of the sequential applica-
tions. Next, it combines these characteristics with the speci-
fications of the target heterogeneous system to automatically
construct high-level performance models, and predict the per-
formance of the best parallel implementation on the different
architectures. This performance prediction is then used to iden-
tify the best performing architecture for each workload from a
set of architectures including multi-core CPUs and many-core
GPUs. In addition, AutoMatch estimates the relative execution
cost on the different hardware architectures to drive a workload
distribution and partitioning scheme, which enables end users
to efficiently exploit the available compute resources across
multiple heterogeneous architectures.

AutoMatch is designed as a first-order performance predic-
tion tool to help programmers assess the benefits of porting
their sequential applications to heterogeneous systems before
investing effort and time in rewriting and refactoring the
applications for every target devices. While our automatically-
generated models are simple and intuitive, they work sur-
prisingly well on predicting the relative performance across
different architectures and the best workload distribution strat-
egy. Moreover, AutoMatch works on the LLVM intermediate
representation (IR) [3], which makes it language-independent
and applicable to any source code supported by the LLVM
front-ends (e.g., C/C++, FORTRAN, and so on).

Sequential

Application code

Architectural Specs
CPUs, GPUs, …

Representative

Data sets

AutoMatch

Execution Cost Model

Workload

Distribution

Optimized Parallel

Code

Performance prediction

 Best architecture

 Expected performance of

optimized parallel code

 Relative execution cost on

different architectures

Performance Analysis

 Bottlenecks (compute,

memory, synch)

 Parallelism profile

 Memory access pattern

Fig. 1: AutoMatch Framework.

Our tool differs from previous approaches in that it does not
require the availability of the target platforms or the parallel
application code for each platform. In addition, AutoMatch
is automated and applicable to different types of hardware
architectures with minimal efforts. In summary, the following
are the contributions of this work:
• AutoMatch’s compiler analyzes the sequential applica-

tions on a theoretical architecture with infinite resources
and ideal cache-memory model to automatically extract
their architecture-agnostic features, such as the inherent
parallelism, data locality, memory-access pattern, and
synchronization pattern (Section III).

• AutoMatch automatically constructs high-level perfor-
mance models that can be generalized for different archi-
tectures to estimate the computation time, memory-access
time, and synchronization overhead, as well as can predict
the performance of the best parallel implementation on
the different architectures (Section III).

• AutoMatch automatically estimates the relative execution
cost on the different hardware architectures to drive a
workload distribution scheme to efficiently exploit the
available compute resources across multiple heteroge-
neous architectures (Section IV).

• Using a set of open-source HPC applications and bench-
marks, with different parallelism profiles and memory-
access patterns, we show that AutoMatch is highly ac-
curate across five different heterogeneous architectures,
identifying the best architecture for each workload in
96% of the test cases. In addition, the performance of its
workload distribution scheme is comparable to an oracle
based on profiling of the parallel code (Section IV).

II. AUTOMATCH OVERVIEW

AutoMatch analyzes the sequential applications and auto-
matically predicts the best hardware device for them from a set
of heterogeneous devices. The key insight is that AutoMatch
leverages static and dynamic analysis techniques to quantify
the maximum parallelism, the maximum data locality and the
minimum synchronization of the sequential code to estimate
the potential performance of the best parallel implementation.
Moreover, by automatically generating high-level performance
models, AutoMatch can generalize these models and predict
the performance on different types of hardware devices.

Figure 1 shows the overall framework of AutoMatch. It
takes as inputs the sequential code, the target architecture
specifications (which are automatically generated via micro-
benchmarking), and representative input data. AutoMatch au-
tomatically constructs and evaluates the Execution Cost (EC)
model to generate useful performance predictions, including
the best architecture for the target workload, the potential
performance of the best parallel implementation on each
architecture, and the expected relative execution cost between
the different architectures. In addition, AutoMatch provides
detailed information about the inherent characteristics of the
sequential code, such as the parallelism profile, data reuse,
memory access pattern, and bottlenecks (compute, memory,
or synchronization). Such information can help the user to
decide the best optimization and parallelization strategy for
the application. Further, AutoMatch uses the relative execution
cost between the heterogeneous architectures to promote the
development of a run-time workload distribution service that
utilizes multiple heterogeneous devices at the same time.

A. AutoMatch Design and Implementation

To automatically construct the EC model, we use the LLVM
compiler framework [3] and combine static and dynamic
analyses to utilize the information available on LLVM IR of
the sequential code. Figure 2 shows the current design and
implementation of AutoMatch. Clang and other front-ends
parse the sequential code of the target application and emit
its IR without any optimization. In case of multiple IR files,
LLVM-LINK merges them into one file. Next, OPT performs
a set of canonicalization passes on the unoptimized LLVM IR.
While the most important pass is the memory-to-register trans-
lation, which promotes all temporal stack memory allocation
and accesses to registers and converts IR into the single static
assignment (SSA) form, other passes such as function inline
and constant propagation simplifies the induction variables and
control flow and make the analysis easier. In addition, the user
provides the input data and the target kernel name. After that,
AutoMatch, which is implemented in the execution engine
of the dynamic compiler LLI, statically and dynamically
analyzes the optimized IR to extract the architecture-agnostic
characteristics of the sequential code, and combine them with
specifications of the target heterogeneous system to generate
the final performance analysis and predictions.

Clang

Serial Application

LLVM-IR
OPT

LLVM-IR

SSA form
LLI

AutoMatch

In
p

u
t d

a
ta

T
a

rg
e

t K
e
rn

e
l

Performance

Prediction

C/C++

FORTRAN DragonEgg

LLVM-LINK
LLVM-IR

LLVM-IR

Fig. 2: AutoMatch design and implementation

III. AUTOMATCH PERFORMANCE PREDICTION

To identify the best architecture for the target applica-
tion, AutoMatch automatically constructs an analytical perfor-
mance model, the Execution Cost (EC) model, which captures
the complex interaction of the application, input data and
target architectures. In addition, we consider different types of
hardware devices including CPUs and GPUs, and obtain the
hardware architecture specifications in terms of the computa-
tion performance, the memory system latency and bandwidth,
and the synchronization overhead using micro-benchmarks.

A. Hardware Architecture Model

We propose an abstract hardware architecture model that can
be generalized to different shared-memory architectures in-
cluding multi-core CPUs and many-core GPUs. The proposed
model extends the classical external memory model [4], [5] to
parallel architectures, and considers important constraints on
such systems, such as the on-chip memory access time and
the synchronization overhead.

Figure 3 shows the proposed hardware architecture model,
which consists of multiple compute cores that are connected
to a shared on-chip fast memory and off-chip slow memory.
The compute cores can only perform operations on data in
their on-chip private memory, and each core executes floating-
point operations at a peak computing rate of π0 FLOPs per
second. The floating-point throughput of the architecture is
Π = np × π0, where np is the number of compute cores.
The shared fast memory is a fully associative memory with
a size of Z words, and it uses the Least Recently Used
(LRU) replacement policy. The data is transferred between
the compute cores, the fast memory and the slow memory in
messages of L words. The on-chip memory interconnect has
a latency αf and a bandwidth βf , while the off-chip memory
has a memory access latency αs and a memory bandwidth βs.

To reach a globally consistent memory state, the compute
cores perform synchronization operations whose cost depends
on the memory latency and the number of compute cores.
Since the synchronization overhead, s0, significantly affects
the execution time on parallel architectures, especially at
higher core counts [6], [7], the proposed model considers
this overhead. There are two synchronization types: global
synchronization, between coarse-grain threads with different
control units (threads on CPUs and thread blocks on GPUs),
and local synchronization, between fine-grain threads with

Fast memory
Fully-associative, LRU

Slow Memory

……...core

1

core

2

core

n

P

mem

P

mem

P

mem

Βf: Bandwidthαf : Latency

Βs: Bandwidthαs : Latency

π0 : Floating-point

Throughput

Fig. 3: The abstract hardware architecture

shared control units (SIMD lanes on CPUs and threads on
GPUs). Considering the local synchronization overhead is neg-
ligible in comparison with the global synchronization (usually
more than order of magnitude lower) [6], [7], the proposed
model ignores it.

Since the main goal is to match the applications to the
best architecture from a set of parallel architectures that are
fundamentally different, the proposed hardware architecture
model is high-level and does not capture architecture-specific
parameters and low-level hardware details, e.g., hardware
prefetchers and complex memory hierarchies. In addition, it
ignores several initialization and finalization overheads, such
as threads creation/destruction, kernel launch and host-device
data exchanges, which are highly-dependent on the run-time
environment and usually are one-time cost. In section IV,
we show the sensitivity of our performance prediction to the
variations of the architecture capabilities.

1) Inferring the Architecture Specifications: AutoMatch
generates the hardware architecture specifications using micro-
benchmarks. In particular, it uses ERT [8], pointer-chasing [9],
[10], and synchronization [6], [11] micro-benchmarks to esti-
mate the floating-point throughput and memory bandwidth, the
memory access latency, and the global synchronization over-
head respectively. To analyze the effectiveness of AutoMatch,
we consider five architectures (two CPUs and three GPUs)
with different core counts and execution models. We further
divide these architectures into three subsets: (ARC1, ARC3,
ARC5), (ARC1, ARC2), and (ARC4, ARC5). The first
subset contains three significantly different architectures with

TABLE I: Hardware architecture specifications

Model Intel Intel Tesla Tesla Tesla
i5-2400 i7-4700 C2075 K20C K20X

ID ARC1 ARC2 ARC3 ARC4 ARC5
Clock (GHz) 3.1 2.4 1.15 0.732 0.732
Process (nm) 32 22 40 28 28
np 4 4 448 2496 2688
π0

(GFLOPS)
20 33 0.9 0.41 0.42

Z (MB) 6 6 1.6 2.3 2.3
L (Byte) 64 64 128 128 128
βf (GB/s) 285 349 2117 2018 2424
αf (us) 0.004 0.004 0.028 0.045 0.045
βs (GB/s) 18.88 11.5 87.92 129.73 160.1
αs (us) 0.065 0.052 0.71 0.68 0.68
s0 (us) 0.2 0.44 7.22 6.5 6.5

few cores, hundreds of cores and thousands of cores, while
the second and third subsets have two slightly different CPUs
and GPUs respectively. Table I summarizes the specifications
of the target architectures.

Since modern on-chip memories have inclusive memory
levels, AutoMatch chooses the fast memory size, Z, to be
the effective on-chip memory capacity. On CPUs, Z is the last
level data cache; on GPUs, Z is the shared (local) memory and
L2 cache. While the proposed architecture model represents
on-chip memory as a unified fast memory, actual on-chip
memories have complex hierarchies with multiple levels and
some levels are physically distributed (such as L1/L2 on
CPUs and local memory on GPUs). Therefore, AutoMatch
estimates the fast memory bandwidth and latency, βf and αf ,
as the average memory bandwidth and latency of the on-chip
memory hierarchy. In comparison with the slow memory, the
fast memory of the target architectures is better by a factor of
15 approximately in terms of memory bandwidth and latency.
The only exception is ARC2, where the memory bandwidth
ratio between the fast and slow memories is ≈ 30. Finally, Au-
toMatch estimates the global synchronization cost, s0, using
barrier synchronization between threads on CPUs and thread-
blocks on GPUs. There are several inter-block synchronization
methods on GPUs, AutoMatch uses the host-implicit inter-
block synchronization, which is the simplest and most popular
one [6]. Since the number of active threads can significantly
affect the synchronization overhead, AutoMatch estimates the
global synchronization cost at full occupancy, i.e. it launches
one thread per logical core on CPUs and four thread-blocks
of dimension 32× 32 per streaming multiprocessor on GPUs.

B. Computation Time Prediction

AutoMatch combines both static and dynamic analysis
techniques to automatically quantify the inherent parallelism
in the sequential applications, and estimate their computation
time on the different architectures for a given input data. In
particular, it schedules the application on a theoretical archi-
tecture with infinite number of registers and compute units,
and zero memory access latency, such that each operation is
executed as soon as its true dependencies are satisfied.

Figure 4 depicts the As Soon As Possible (ASAP) schedule
of the application on the theoretical architecture, where the
nodes are dynamic instances of the floating-point instructions
(operations), denoted as Inm, and the edges are true depen-
dencies between the operations. Each dynamic instance m of a
floating-point instruction In is scheduled at an execution level
j as soon as its true dependencies are satisfied, hence, Inm
must have dependencies at the execution level j − 1.

Level 0

Level 1

Level 2

Level n

Level n-1

Inm instance m of the floating-

point instruction In

True dependency

Fig. 4: The application ASAP schedule on a theoretical
architecture with infinite resources

This ASAP schedule is similar in spirit to the classical
work-depth model [12], [5], which represents the computations
and inherent parallelism of a given algorithm using a directed
acyclic graph (DAG), where nodes represent operations and
edges are their dependencies. While the classical work-depth
model requires manual analysis to quantify the sequential part
and average parallelism of a given algorithm, AutoMatch
automatically generates the ASAP schedule to estimate the
computation time, and considers the workload imbalance, the
vectorization potential, the instructions mix and the resource
constraints of the target architectures.

To identify the true dependencies between operations, Au-
toMatch uses several static and dynamic analysis techniques.
First, it leverages the existing def-use static analysis to track
data-flow dependencies through registers. Due to the use of
infinite number of registers, only read-after-write true de-
pendency exists. Second, AutoMatch extends the execution
engine of LLI to dynamically track the incoming instructions
to the phi nodes in every basic block, and uses this analysis
to flatten the control flow dependencies. Third, AutoMatch
implements a dynamic analysis technique to track data-flow
dependencies through the memory operations. It uses hash
tables that resembles Content-Addressable Memory (CAM)
to record the load and store accesses to the memory ad-
dresses, and record which instruction generated them and
when they are generated in terms of the execution level. Next,
it dynamically detects read-after-write, write-after-read and

write-after-write memory dependencies by tracking memory
accesses on the use-def chain and examining the CAM data
structure. Finally, AutoMatch adjusts the execution level of
the operations based on the detected true dependencies to
construct the final operation schedule.

After building the application schedule on the theoretical
architecture, AutoMatch analyzes it to compute D, the number
of execution levels (i.e. the depth of the critical path), and
wi, the total number of operations for each execution level i.
In addition, it considers the instructions mix of the sequen-
tial application to estimate fim, the performance degradation
factor relative to the peak floating-point throughput (π0) on
parallel architectures with Fused Multiply-Add (FMA) units.
The instruction mix factor fim is computed as:

fim =
Wadd +Wmul

2×max(Wadd,Wmul)
(1)

where Wadd is the number of addition and subtraction opera-
tions, and Wmul is the number of multiplication operations.

Moreover, AutoMatch leverages the LLVM vectorizer to
identify the loops that are amenable to vectorization, and com-
putes Wvec, the number of floating-point operations that can
efficiently utilize the vector (SIMD) units. Next, it estimates
fv , the performance degradation factor relative to the peak
floating-point throughput on parallel architectures with vector
units, as follows:

fv =
Wvec

W
(2)

where W is the total number of floating-point operations.
Finally, AutoMatch combines the computation characteris-

tics of the sequential application with the specifications of the
target architectures to predict the computation cost on each
architecture. The computation time Tcomp is estimated as:

Tcomp =
D

π0
+
∑ wi

min(wi, np)× (π0 × fv × fim)︸ ︷︷ ︸
∀i

(3)

where np is the number of cores, π0 is the maximum opera-
tions throughput per core, fv is the vectorization factor, and
fim is the instruction mix factor.

C. Memory Access Time Prediction

To predict the memory access time, AutoMatch quantifies
the inherent data locality in the sequential applications by an-
alyzing their memory access pattern on the abstract hardware
architecture model, which has an ideal cache-memory model.
The main goal is to estimate the number of data transfers
between the compute cores and the shared fast memory Qf ,
and between the shared fast and slow memories Qs. Since the
proposed architecture model assumes that the fast memory
is fully associative and uses the LRU replacement policy,
AutoMatch adopts the LRU stack distance analysis [13].

The LRU stack distance is defined as the number of distinct
memory locations accessed between two consecutive accesses
to the same memory location, given that the LRU stack
distance of the first reference to a memory location is ∞.

Figure 5 shows an example of the LRU stack distance analysis
on a memory access trace of 10 memory references.

Memory location accessed a c d b c e g e d d

LRU stack distance ∞ ∞ ∞ ∞ 2 ∞ ∞ 1 4 0

Fig. 5: An example of the LRU stack distance analysis

In fully-associative caches with LRU replacement policy, a
memory reference with an LRU stack distance larger than the
cache size results in a miss or an access to the slow memory.
Hence, Qs and Qf can be estimated from the number of
memory references with an LRU stack distance larger than
the fast memory size, and the number of memory references
with an LRU stack distance less or equal to the fast memory
size respectively. While the LRU stack distance analysis ig-
nores the conflict and contention misses, AutoMatch assumes
that the actual number of memory transfers on the parallel
architectures are bounded by Qs and Qf [14].

AutoMatch automatically estimates the memory access cost
of the target application and input data as follows. First, it
dynamically analyzes the IR instructions stream to capture the
load and store memory operations, and uses a binary search
tree to record the referenced memory locations along with
the index of the last access to these locations in the memory
access stream. The nodes of this binary tree are sorted by
the last access index. Second, whenever a memory location
is referenced, AutoMatch examines the memory tree to find
the last access index; if the target memory location does not
exist in the memory tree, the current memory access has an
LRU stack distance of ∞, otherwise, AutoMatch finds the
nodes with a last access index between the last access to the
target memory location and the current access; the number
of such nodes is the reuse distance of the current memory
reference. Third, AutoMatch counts the number of memory
references with a particular LRU stack distance to generate
the LRU stack distance histogram. Finally, it combines this
histogram with the specifications of the target architectures
and the ASAP schedule of the application to compute Qf and
Qs, and estimate Tmem, the memory access time of the target
application on each architecture, as follows:

Tmem = (αf + αs)×D + (
Qf

βf
+
Qs

βs
)× L (4)

where αf and αs are the access latency of the fast and slow
memories, βf and βs are the memory bandwidth of the fast
and slow memories, D is the depth of the application ASAP
schedule, and L is the memory transfer size.

D. Synchronization Overhead Prediction

AutoMatch uses a heuristic for estimating the required
number of global synchronization points to reach a globally
consistent memory state on parallel architectures. The pro-
posed heuristic is based on detecting loop-carried memory
dependencies. AutoMatch dynamically analyzes the loop nests
of the sequential application to find the inherently sequential

TABLE II: Target workloads

Workload Description Input data
CUTCP Molecular-dynamics simulation of explicit-water biomolecular model that computes the Cutoff

Coulombic Potential over a 3D grid
watbox.sl40.pqr

STENCIL Iterative Jacobi solver on a structured 3-D grid Grid 512x512x64
SPMV Sparse matrix vector multiplication Dubcova3.mtx
LBM Lid-driven cavity simulation using the Lattice-Boltzmann Method 120 120 150 ldc.of
LUD LU decomposition on a dense matrix Matrix 5122

LavaMD Molecular-dynamics simulation that calculates the potential due to mutual forces between
particles in a 3D space

boxes1d 10

HotSpot Thermal simulation and modeling for VLSI designs temp 1024
power 1024

SRAD Image processing used to remove locally correlated noise, known as speckles image 5122

loops, i.e. loops that can not run in parallel due to loop-carried
memory dependencies, and the parallel loops. It estimates the
number of global synchronization points as the trip counts
of the inherently sequential loops with inner parallel loops.
Figure 6 shows an example of this case, where the i-loop is
inherently sequential, and the j-loop is parallel and the number
of global synchronization points is n− 2.

f o r (i =1 ; i<n ; i ++)
{

f o r (j =1 ; j< n ; j ++)
{

a [i] [j] = a [i −1][j] + 2 ;
}

}

Fig. 6: Detection of global synchronization

While this heuristic successfully identified the number of
global synchronization points in the target benchmarks and
applications, AutoMatch enables the user to override the
synchronization estimation heuristic and to manually annotate
the source code to indicate the global synchronization points.
Finally, the synchronization time, Tsyn , is estimated as:

Tsyn = S × s0 (5)

where S is the total number of global synchronization points,
and s0 is the global synchronization cost.

E. The Execution Cost

After analyzing the parallelism profile, the data locality and
the synchronization pattern of the target sequential application,
AutoMatch evaluates equations 1-5 to predict the execution
cost on each architecture, which is estimated as the overall
computation time, memory access time and global synchro-
nization overhead. Next, AutoMatch combines the execution
cost on the different architecture with the floating-point work
of the target application to predict the performance of the best
parallel implementation on the different architectures, the best
architecture for the user workload, and the relative execution
cost between the different architectures.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of AutoMatch,
and its utility as a first-order performance prediction tool
for sequential applications on heterogeneous HPC architec-
tures. We evaluate AutoMatch using eight HPC workloads
from Rodinia [15] and Parboil[16] benchmark suites with
different parallelism profiles and memory access patterns, and
MiniGhost, a representative Computational Fluid Dynamics
(CFD) application [17]. We choose Rodinia and Parboil bench-
mark suites as they provide sequential and multi-threaded CPU
implementations, and GPU implementations.

Table II presents the workloads considered in this study, and
we use the input data sets provided by their benchmark suites.
In the experiments, we use the following compilers: gcc 4.8.2,
icc 13.1.1 and nvcc 6.0.1, and AutoMatch is implemented
in LLVM-3.6.2. While AutoMatch works with any data-type
supported by LLVM, we consider double-precision floating
point only for brevity. In addition, the reported performance
is for the core computation kernels and ignores one-time
cost overheads such as I/O, data initialization (including host-
device data transfer), profiling, timing and debugging.

In the evaluation, we answer the following questions:
• What is the accuracy of AutoMatch’s prediction of the

best architecture (and the relative ranking of the different
architectures) for the test workloads?

• Can AutoMatch predict the performance upper-bound on
heterogeneous parallel systems?

• Is the predicted performance of the best parallel imple-
mentation attainable by actual implementations?

• What is the sensitivity of AutoMatch to the variations of
the architecture characteristics and capabilities?

• What is the performance of AutoMatch-driven workload
distribution in comparison with a profiling-driven oracle?

A. Performance Prediction

We use AutoMatch to analyze the sequential implemen-
tation of the target applications and show the performance
prediction in comparison with the actual performance of the
parallel implementations on the different architectures.

Figure 7 and 8 present the parallelism and LRU stack
distance profiles of the target workloads. Due to the space
limit, we show the detailed profiles of only three workloads:

Fig. 7: Parallelism profile

Fig. 8: LRU stack distance profile

STENCIL, SPMV and LUD. AutoMatch indicates that the
STENCIL benchmark is inherently parallel with few execution
levels and massive amount of work in every execution level,
and it has a uniform memory access pattern with few memory
streams corresponding to the dimensions of the data grid. The
SPMV benchmark has relatively small number of execution
levels, however, the amount of work per execution level is
significantly lower than the STENCIL benchmark, due to the
sparsity of the input matrices. In addition, SPMV suffers
from low data locality, as the compulsory misses (memory
operations with LRU stack distance∞) dominates the memory
accesses. The LUD benchmark has an irregular parallelism
profile that alternate between two bounds corresponding to
the computation of the pivot column and the update of the
trailing sub-matrix respectively, and the amount of work per
execution level decreases as we move down the critical path of
the application schedule, which results in workload imbalance.
Moreover, LUD has scattered memory access streams, because
the data accessed decreases as the execution progress due to
the workload imbalance.

Figure 9 shows AutoMatch’s performance prediction in
comparison with the actual performance of the parallel
OpenMP and CUDA implementations, and Figure 10 provides
AutoMatch analysis of the execution bottlenecks on the dif-
ferent architectures. We consider the first subset of the target
architectures (ARC1, ARC3 and ARC5), which contains het-
erogeneous architectures with significantly different hardware
characteristics and capabilities. The results show that the actual
parallel implementations never exceed AutoMatch’s predic-
tion, which indicates that AutoMatch accurately predicts the
performance upper bound (i.e. the performance of the best
parallel implementation). Moreover, AutoMatch accurately
identifies the best architecture and the relative ranking of the
different architectures in all the test cases. While the gap
between the predicted performance and the actual performance
on the many-core GPUs (ARC3 and ARC5) is small in
most cases (except lavaMD and CUTCP), the performance

prediction gap is very large on the multi-core CPU (ARC1).
After inspecting the actual parallel implementations, we found
that the benchmark suites provide a baseline and unoptimized
OpenMP implementation, while the CUDA implementation is
optimized for Nvidia GPUs.

To show that the predicted performance is attainable, we
optimized the STENCIL benchmark with the help of Au-
toMatch’s analysis. AutoMatch indicates that STENCIL is
bounded by the off-chip memory access time, and it has
few memory access streams corresponding to the dimensions
of the input data grid. We found that the original workload
distribution strategy (of the baseline OpenMP implementation)
partitions the input data grid along the X-axis, which has
the smallest reuse distance or highest locality, and distributes
chunks of Y-Z planes over the different threads. Hence,
we changed the workload distribution strategy to distributes
chunks of X-Y planes over the different threads. As shown
in Figure 9, the performance of our implementation, named
STENCIL-OPT, is significantly better than the original im-
plementation on ARC1, which means that the performance
predicted by AutoMatch can be achieved with platform-
specific optimizations and tuning.

Finally, the gap between the predicted performance and the
actual performance of the many-core GPUs is relatively large
in the lavaMD and CUTCP benchmarks, which are bounded by
the compute time and on-chip memory access time according
to AutoMatch analysis. The analysis of the actual CUDA
implementations of lavaMD and CUTCP show that they suffer
from low occupancy (37% and 27%) and the number of the
concurrently active threads is low. The main reason is that
the two benchmarks have high registers usage, which limits
the number of concurrent threads and thread-blocks. Hence,
extending AutoMatch to predict the possible occupancy on
many-core GPUs would improve the performance prediction
in these benchmarks. However, there is a trade-off between
this additional prediction accuracy, and the generalization of
the Execution Cost model to different types of architectures.

Fig. 9: AutoMatch performance prediction

Fig. 10: AutoMatch bottlenecks prediction

B. AutoMatch Sensitivity

To analyze the sensitivity of AutoMatch’s performance
prediction to the variations of the architecture capabilities, we
consider the second and third subsets of the target architec-
tures, which contain multi-core CPUs (ARC1 and ARC2)
and many-core GPUs (ARC4 and ARC5) architectures with
similar hardware characteristics and capabilities.

Figure 11 shows AutoMatch’s performance prediction and
the actual performance on the two architectures subsets. Sur-
prisingly, AutoMatch accurately predicts the best architecture
in all the test cases, except the LUD benchmark on multi-
core CPUs, which shows that our high-level performance
models are sensitive to the small variations of the target
architectures and can match the compute kernels to differ-
ent types of parallel architectures. For the LUD benchmark,
AutoMatch indicates that it is bounded by the fast memory
access time on multi-core CPUs (ARC1 and ARC2), and
its parallelism and LRU stack distance profiles show a non-
uniform memory access pattern, where the data accessed
decreases as the execution progress due to the workload
imbalance. Hence, our hypothesis is that the higher memory
bandwidth of ARC2 is underutilized due to the non-uniform
memory access pattern of the LUD benchmark, which leads
to the incorrect performance prediction. While our high-level
memory access model captures the data locality of the target
applications, it does not consider the uniformity of the memory
access pattern and its effect on several hardware features, such
as hardware prefetchers, memory coalescing units and write
buffers. In addition, the micro-benchmarking approach has the
same limitation, as it uses a stream-like memory access pattern
to measure the memory bandwidth of the target architecture.

C. Workload Distribution

We use MiniGhost [17], [18], a representative CFD appli-
cation to show the effectiveness of our workload distribution
scheme (based on the EC model generated by AutoMatch)
in comparison with an oracle (based on run-time profiling
of actual parallel implementations). MiniGhost is a proxy
for multi-material, hydrodynamics code that models hydrody-
namic flow and dynamic deformation of solid materials [19].
The main computation kernel is the finite difference solver,
which applies a difference stencil and explicit time-stepping
scheme on a homogenous 3D grid. We use the implementation
provided by the MetaMorph library [20], which supports the
seamless execution of structured grid applications on multi-
ple heterogeneous devices, including CPUs (OpenMP back-
end) and GPUs (CUDA back-end). In addition, we configure
MiniGhost to apply a 3D 7-point stencil on a single global
grid and to use an explicit time-stepping with 100 time steps.

The target platform is a heterogeneous CPU-GPU node that
includes ARC1 and ARC5 devices, and the main goal is
to partition and distribute the global grid over the available
devices to reduce the overall execution time. We evaluate
three different workload partitioning: default, AutoMatch-
driven and Oracle-driven partitioning. The default strategy is
to partition the input grid evenly into two parts and assign
each part to one of the available devices. The AutoMatch-
driven workload partitioning uses AutoMatch to analyze the
sequential implementation and predict the execution cost on
the heterogeneous devices. Next, based on the predicted execu-
tion cost, it distributes the global grid to minimize the overall
execution time. For example, when AutoMatch predicts that
the execution cost on the CPU and the GPU is 3 and 1,

Fig. 11: AutoMatch prediction sensitivity

we partition the global grid to four parts and assign three
parts to the GPU and one part to the CPU. The Oracle-driven
partitioning is similar to AutoMatch-driven strategy; however,
instead of predicting the execution cost, it profiles the parallel
code on the target CPU and GPU and distributes the global
grid over them based on the measured execution time.

Figure 12 shows the overall execution time of MiniGhost
with the different workload distribution strategies, and the run-
time distribution between the CPU and the GPU. Surprisingly,
the AutoMatch-driven and Oracle-driven partitioning achieve
the same performance and outperform the default strategy by
a factor of 3 on average. However, the AutoMatch-driven
strategy has a higher workload imbalance, between the CPU
and the GPU, than the Oracle. In particular, AutoMatch
underestimates the CPU performance relative to the GPU at
the small grid sizes, and assigns more work to the GPU. One
reason is that the small grids fit on a higher memory hierarchy
level, and AutoMatch approximates the on-chip memory hier-
archy as a single fast memory. While this workload imbalance
did not affect the overall execution time, it would be interesting
to investigate its effect on the power consumption, since the
CPU and the GPU have different power characteristics.

Fig. 12: MiniGhost performance (compute kernels) on a
heterogeneous CPU-GPU node (ARC1 & ARC5) with the
different workload distribution strategies: Default, AutoMatch
(AM) and Oracle.

D. Limitations and Extensions

While the results show that AutoMatch works surprisingly
well as a first-order performance prediction tool regardless of
its simple and intuitive model, the tool has several limitations.
First, similar to any dynamic analysis approach, AutoMatch’s
prediction depends on the input data and can change across
multiple inputs; however, programmers can use AutoMatch
with input data sets that represent their typical use cases.

Second, AutoMatch ignores one-time overheads such as host-
device data transfers, and assumes that the performance is
dominated by the compute kernels. While this is a valid
assumption for long-running HPC applications, extending Au-
toMatch to model the host-device interconnect and data trans-
fers enables the users to explore their effect on the overall per-
formance. Third, AutoMatch ignores low-level, architecture-
specific features such as HW prefetchers, memory coalescing,
thread divergence and occupancy. Although AutoMatch can
be extended, beyond its main goal as a first-order performance
prediction tool, to incorporate more sophisticated models (e.g.
[21]), there is a trade-off between the tighter performance
bounds and both the generalization to different architecture
types and the limited insight about the critical parameters that
affect the performance.

V. RELATED WORK

According to Hoefler et al. [22], the main approaches to
predict the performance of an application on computing ar-
chitectures are profiling, simulation, and analytical modeling.

Profiling. Profiling runs the actual code on the target plat-
form, and uses performance counter and timers to measure the
achieved performance. Although profiling captures the interac-
tions between the application and the execution architecture,
it provides limited information about the critical parameters
that affect the performance. In addition, profiling requires the
availability of the target platform and actual parallel code.

Simulation. Detailed simulation [23], [24], [25] can provide
accurate performance prediction of the application without the
availability of the target hardware. However, similar to profil-
ing, it needs the parallel code, and the predicted performance
depends on the end user ability to prallelize and optimize the
application to the simulated architecture.

Analytical Modeling. Analytical modeling maps both the
application and architecture to a set of parameters and math-
ematical expressions that can be evaluated to predict the
execution time. Usually, there is a tradeoff between the number
of parameters and the accuracy of the model. Performance-
bound models (e.g. Roofline [26]) have few parameters to
provide high-level view of the interaction between the appli-
cation and the architecture. However, they are not suitable for
performance predication, as they abstract away critical factors,
e.g. parallelism, data locality and synchronization overhead. In
addition, they are not automated and require extensive manual
analysis of the applications and hardware architectures.

TABLE III: Comparison of recent performance prediction
tools for heterogeneous HPC architectures (CPUs and GPUs)

COMPASS XAPP AutoMatch
Input code Annotated Sequential Sequential
Features
extraction

Static
analysis

Dynamic
analysis

Static/dynamic
analysis

Arch model
generation

By users Training data Micro-
benchmarking

Performance
modeling

ASPEN
model

Machine-
learning

Execution
cost model

Cache-aware No Yes Yes
App generality Low High High
HW generality High Low High
The tool speed Fast Slow Moderate

Helal et al. [11] show an example of matching the compute
kernels to heterogeneous HPC platforms with a large-scale
circuit simulation application. However, the the performance
models are manually constructed, which requires extensive
analysis of both the target architectures and the application.

Automatic performance modeling. Recently, several ap-
proaches have been proposed to automate the performance
prediction using static and/or dynamic analysis. While static
analysis is fast, it requires guidance from the user (e.g. via
annotations). Conversely, dynamic analysis can identify the
application characteristics without the user guidance, but it is
more complex and slower than static analysis. Table III sum-
marizes the comparison of the recent performance prediction
tools for heterogeneous HPC architectures (CPUs and GPUs).

COMPASS [27] is a tool for automated performance mod-
eling. It generates a structured performance model (ASPEN
Model) from the parallel application code using static analysis.
However, the user must indicates the available parallelism
and data movement to generate an accurate model. Otherwise,
COMPASS uses Banerjee-Wolfe dependency analysis, which
can not detect the data dependency through memory operations
and generates a conservative parallelism profile. In addi-
tion, COMPASS can not be used with irregular applications,
where the computation and memory access patterns are data-
dependent, such as sparse linear algebra (SPMV and SPLU).

XAPP [28] uses machine-learning to find the correlation
between the execution profile of the application on a CPU and
the GPU execution time. However, XAPP is heavily influenced
by the training data and its prediction accuracy depends on the
availability of a diverse set of applications along with their
optimized GPU implementation. So, extending XAPP to new
architecture types requires massive effort to rewrite and re-
optimize the training set to these architectures. Moreover, to
predict the performance on a specific GPU device, the user
needs to run the whole training set on this device, which
takes hours. On the contrary, AutoMatch generates the device
parameters using micro-benchmarks, which takes few minutes.
In addition, XAPP’s predicted speedup is not the speedup
upper-bound, and it depends on which optimization techniques
are used in the training application set.

Kismet [29] predicts the speedup of serial applications on
multi-core processors. It instruments the code to build the self-

parallelism profile, and estimates the memory access latency
by profiling the cache misses of the input application on
a CPU cache simulator. Hence, it requires simulating the
memory system hierarchy of each target architecture. On the
contrary, AutoMatch analyzes the application once to estimate
its data locality and memory access time. In addition, Kismet
optimistically assumes that the memory bandwidth is scalable
with the number of threads, which is unrealistic assumption
especially for massively parallel architectures such as GPUs.
Therefore, its predicted speedup is unattainable at higher core
counts and for memory-bound workloads. Parallel Prophet
[30] predicts the speedup of the annotated code on multi-core
CPUs. Unlike Kismet, it does not require parallelism discovery
and uses annotations to identify the available parallelism.
In addition, it uses hardware performance counters, such as
instruction counts and cache misses, to build the performance
model, which requires the availability of the target CPUs and
the parallel (or annotated) code to predict the speedup.

Shen et al. [31] present a workload partitioning framework
for heterogeneous platforms. The framework computes the
partitioning ratio by profiling the actual parallel code to
estimate the relative hardware capabilities and the host-device
data transfer overhead. Conversely, AutoMatch estimates the
workload distribution ratio by analyzing the sequential code.
While AutoMatch assumes that the performance is dominated
by the compute kernels, it can be extended to model the host-
device interconnect and the data transfer overhead. LACross
[32] is a framework for performance and power prediction
of single-core workloads on embedded platforms. It uses
statistical learning approach to find the correlation between
the execution on the host and the target embedded devices.
AutoMatch can be extended to such embedded platforms
to improve the overall performance and power efficiency by
mapping the workloads to the appropriate core.

VI. CONCLUSION

In this paper, we proposed a tool to predict the realiz-
able performance upper bounds of sequential applications on
heterogeneous HPC platforms, and the best hardware device
for each compute kernels. We implemented AutoMatch in
the LLVM compiler framework, and used different static
and dynamic analysis techniques to quantify the application
performance on different target architectures, including multi-
core CPUs and many-core GPUs. The experimental results
show that AutoMatch is highly accurate across five different
heterogeneous architectures and a set of HPC benchmarks with
different parallelism and memory access patterns. It achieves
96% prediction accuracy in identifying the best architecture
for each compute kernel. In addition, the performance of its
workload distribution scheme is comparable to an oracle based
on run-time profiling of actual parallel code. Currently, Au-
toMatch is dedicated to shared-memory architectures, but can
be extended to distributed-memory architectures by automati-
cally constructing the communication models. Our technique
is not restricted only to the performance criteria, but can also
be extended to programmability and power efficiency.

REFERENCES

[1] H. Sutter, “The free lunch is over: A fundamental turn toward con-
currency in software,” Dr. Dobbs journal, vol. 30, no. 3, pp. 202–210,
2005.

[2] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller et al., “Exascale
computing study: Technology challenges in achieving exascale systems,”
2008.

[3] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation,” 2004, pp. 75–86.

[4] A. Aggarwal and S. Vitter, Jeffrey, “The input/output complexity
of sorting and related problems,” Commun. ACM, vol. 31,
no. 9, pp. 1116–1127, Sep. 1988. [Online]. Available:
http://doi.acm.org/10.1145/48529.48535

[5] K. Czechowski, C. Battaglino, C. McClanahan, A. Chandramowlish-
waran, and R. Vuduc, “Balance principles for algorithm-architecture
co-design,” in Proceedings of the 3rd USENIX Conference
on Hot Topic in Parallelism, ser. HotPar’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 9–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2001252.2001261

[6] S. Xiao and W. c. Feng, “Inter-block gpu communication via fast
barrier synchronization,” in Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, April 2010, pp. 1–12.

[7] W. c. Feng and S. Xiao, “To gpu synchronize or not gpu synchronize?”
in Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, May 2010, pp. 3801–3804.

[8] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery,
N. J. Wright, M. W. Hall, and L. Oliker, “Roofline model toolkit: A
practical tool for architectural and program analysis,” in International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems. Springer, 2014, pp. 129–148.

[9] L. McVoy and C. Staelin, “lmbench: portable tools for performance
analysis,” in Proceedings of the 1996 annual conference on USENIX
Annual Technical Conference. USENIX Association, 1996, pp. 23–23.

[10] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in Performance Analysis of Systems & Software
(ISPASS), 2010 IEEE International Symposium on. IEEE, 2010, pp.
235–246.

[11] A. E. Helal, A. M. Bayoumi, and Y. Y. Hanafy, “Parallel circuit
simulation using the direct method on a heterogeneous cloud,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), June
2015, pp. 1–6.

[12] G. E. Blelloch, “Programming parallel algorithms,” Commun. ACM,
vol. 39, no. 3, pp. 85–97, Mar. 1996. [Online]. Available:
http://doi.acm.org/10.1145/227234.227246

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2,
pp. 78–117, 1970.

[14] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri, “Low depth cache-
oblivious algorithms,” in Proceedings of the Twenty-second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, ser.
SPAA ’10. New York, NY, USA: ACM, 2010, pp. 189–199. [Online].
Available: http://doi.acm.org/10.1145/1810479.1810519

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. IEEE, 2009, pp. 44–54.

[16] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[17] R. F. Barrett, C. T. Vaughan, and M. A. Heroux, “Minighost: a miniapp
for exploring boundary exchange strategies using stencil computations
in scientific parallel computing.”

[18] R. F. Barrett, S. D. Hammond, C. T. Vaughan, D. W. Doerfler,
M. A. Heroux, J. P. Luitjens, and D. Roweth, “Navigating
an evolutionary fast path to exascale,” in Proceedings of the
2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, ser. SCC ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 355–365. [Online]. Available:
http://dx.doi.org/10.1109/SC.Companion.2012.55

[19] E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I.
Kerley, J. M. Mcglaun, S. V. Petney, S. A. Silling, P. A. Taylor, and
L. Yarrington, “Cth: A software family for multi-dimensional shock
physics analysis,” in in Proceedings of the 19th International Symposium
on Shock Waves, held at, 1993, pp. 377–382.

[20] A. E. Helal, P. Sathre, and W.-c. Feng, “Metamorph: A library frame-
work for interoperable kernels on multi- and many-core clusters,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16, 2016.

[21] S. Hong and H. Kim, “An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 152–163.
[Online]. Available: http://doi.acm.org/10.1145/1555754.1555775

[22] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance modeling
for systematic performance tuning,” in State of the Practice Reports,
ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 6:1–6:12. [Online].
Available: http://doi.acm.org/10.1145/2063348.2063356

[23] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[24] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-
gpu: A heterogeneous cpu-gpu simulator,” IEEE Computer Architecture
Letters, vol. 14, no. 1, pp. 34–36, 2015.

[25] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011, p. 52.

[26] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

[27] S. Lee, J. S. Meredith, and J. S. Vetter, “Compass: A framework for
automated performance modeling and prediction,” in Proceedings of
the 29th ACM on International Conference on Supercomputing, ser.
ICS ’15. New York, NY, USA: ACM, 2015, pp. 405–414. [Online].
Available: http://doi.acm.org/10.1145/2751205.2751220

[28] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu,
“Cross-architecture performance prediction (xapp) using cpu code
to predict gpu performance,” in Proceedings of the 48th
International Symposium on Microarchitecture, ser. MICRO-48. New
York, NY, USA: ACM, 2015, pp. 725–737. [Online]. Available:
http://doi.acm.org/10.1145/2830772.2830780

[29] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor, “Kismet: Parallel
speedup estimates for serial programs,” in Proceedings of the 2011
ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’11. New
York, NY, USA: ACM, 2011, pp. 519–536. [Online]. Available:
http://doi.acm.org/10.1145/2048066.2048108

[30] M. Kim, P. Kumar, H. Kim, and B. Brett, “Predicting potential speedup
of serial code via lightweight profiling and emulations with memory
performance model,” in Proceedings of the 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, ser. IPDPS ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 1318–1329.
[Online]. Available: http://dx.doi.org/10.1109/IPDPS.2012.128

[31] J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips, “Workload
partitioning for accelerating applications on heterogeneous platforms,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 9,
pp. 2766–2780, Sept 2016.

[32] X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-level
cross-platform power and performance estimation,” in Proceedings
of the 53rd Annual Design Automation Conference, ser. DAC ’16.
New York, NY, USA: ACM, 2016, pp. 4:1–4:6. [Online]. Available:
http://doi.acm.org/10.1145/2897937.2897977

