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ABSTRACT 

 

Dense fluid-particulate systems are widely encountered in the pharmaceutical, energy, 

environmental and chemical processing industries. Prediction of the heat transfer 

characteristics of these systems is challenging. Use of a high fidelity Discrete Element 

Method (DEM) for particle scale simulations coupled to Computational Fluid Dynamics 

(CFD) requires large simulation times and limits application to small particulate systems.  

The overall goal of this research is to develop and implement parallelization techniques 

which can be applied to large systems with O(105- 106) particles to investigate particle 

scale heat transfer in rotary kiln and fluidized bed environments.  

The strongly coupled CFD and DEM calculations are parallelized using the OpenMP 

paradigm which provides the flexibility needed for the multimodal parallelism 

encountered in fluid-particulate systems. The fluid calculation is parallelized using 

domain decomposition, whereas N-body decomposition is used for DEM. It is shown that 

OpenMP-CFD with the first touch policy, appropriate thread affinity and careful tuning 

scales as well as MPI up to 256 processors on a shared memory SGI Altix. To implement 

DEM in the OpenMP framework, ghost particle transfers between grid blocks, which 

consume a substantial amount of time in DEM, are eliminated by a suitable global 

mapping of the multi-block data structure. The global mapping together with enforcing 

perfect particle load balance across OpenMP threads results in computational times 

between 2-5 times faster than an equivalent MPI implementation. 

Heat transfer studies are conducted in a rotary kiln as well as in a fluidized bed equipped 

with a single horizontal tube heat exchanger. Two cases, one with mono-disperse 2 mm 

particles rotating at 20 RPM and another with a poly-disperse distribution ranging from 

1-2.8 mm and rotating at 1 RPM are investigated. It is shown that heat transfer to the 

mono-disperse 2 mm particles is dominated by convective heat transfer from the thermal 
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boundary layer that forms on the heated surface of the kiln. In the second case, during the 

first 24 seconds, the heat transfer to the particles is dominated by conduction to the larger 

particles that settle at the bottom of the kiln. The results compare reasonably well with 

experiments. In the fluidized bed, the highly energetic transitional flow and thermal field 

in the vicinity of the tube surface and the limits placed on the grid size by the volume-

averaged nature of the governing equations result in gross under prediction of the heat 

transfer coefficient at the tube surface. It is shown that the inclusion of a subgrid stress 

model and the application of a LES wall function (WMLES) at the tube surface improves 

the prediction to within ± 20% of the experimental measurements.  
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1. Introduction 

Motivation 

Dense fluid–particulate systems are frequently encountered in a wide range of 

applications in the chemical, petrochemical, energy, metallurgical and pharmaceutical 

industries. The complexity of these multiphase flows makes it difficult to study them 

experimentally and requires the use of computational techniques. There are two 

mainstream approaches of modeling fluid-particulate multiphase flows, two fluid model 

and discrete element method (DEM), also called as discrete particle method (DPM). In 

the two fluid model, solid and fluid phases are treated as interpenetrating media 

interacting through interphase momentum and energy exchange terms. Only volume or 

ensemble average information of flow quantities is obtained and it lacks the detailed 

description of physics at the particle scale. For the accurate prediction of fluid particulate 

flows, it is essential that both the fluid–particle as well as the particle–particle 

interactions be accurately modeled. This is addressed in the DEM approach which solves 

the particulate phase in the Lagrangian frame where each particle is tracked, giving 

details of individual particle behavior, while the fluid is treated in an Eulerian frame. 

DEM is widely used in the numerical analysis of dense particulate systems in which the 

solid volume fractions are typically greater than 40%. The DEM includes models for 

particle-particle and particle-surface collisions using a soft-sphere model, particle-particle 

and particle-surface conduction heat transfer during each collision, and particle-gas 

convective heat transfer.  

In this research the DEM is used to investigate heat transfer in fluid particulate systems. 

The DEM operates at an individual particle level, and thus provides high fidelity. The 

method itself has been in use for some time but never applied to investigate heat transfer 

at the scale of O(105-106) particles in three-dimensional (3D) bed configurations because 

of the high computational complexity. Most previous work with this method, has been in 

two-dimensions (2D) with O(103-104) particles due to high CPU and memory 

requirements. Since the current work involved 3D DEM simulation studies with O(105-

106) particles,  it is essential to have highly parallelizable code for the multiphase 

problem. In fluid particulate systems such as rotary kilns and fluidized beds, particles are 
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heavily concentrated in a small part of the full computational domain. If the work load 

associated with these particles is large, as is often the case, then treating them in the 

domain decomposition framework of MPI can lead to severe load imbalances and 

inefficiencies. By introducing the OpenMP parallelization paradigm the above load 

imbalance is addressed. The OpenMP parallelization involves domain decomposition for 

the fluid field and N-body decomposition for the particulate phase. This flexibility 

offered by OpenMP parallelism will help accelerate complex computations such as 

fluidized bed heat transfer characterization. With the anticipated massive growth in core 

count per node as well as accelerating units with shared memory architecture such as 

General Purpose Graphic Processing Units (GPGPUs) and Many-Integrated Cores 

(MICs), OpenMP parallelism will also see wide spread utility in high performance 

computing. 

Contributions of this Work 

The main scientific and engineering contributions of this work are the development of a 

parallel framework to simulate fluid-particulate systems with particle scale heat transfer 

capabilities. The in-house code GenIDLEST was parallelized and the then the parallel 

performance of the code was fine-tuned using profiling and other tools. The heat transfer 

capability was achieved by implementing particle scale heat transfer models in the 

framework of the GenIDLEST code. To our knowledge, this is the first study to have 

used OpenMP parallelism for coupled fluid-particulate systems on a large scale 

effectively.  This advance allowed the application of DEM to investigate 3D fluid 

particulate systems with heat transfer. While DEM has been applied in the past to 

investigate heat transfer, the current capability allows the simulation of larger more 

realistic non-canonical systems. To the best of our knowledge, this is the first DEM 

investigation of heat transfer in a rotary kiln with a distribution of particle diameters, 

unlike existing studies with mono-disperse particles. An additional contribution of this 

work has been to overcome the deficiency imposed by the volume-averaged nature of the 

fluid equations on the minimum grid size which is limited to 2.5-3.0 times the particle 

diameter. While this requirement is not very restrictive in hydrodynamic studies of 

fluidized beds, it severely limits the grid resolution near heat transfer surfaces and grossly 
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under predicts convective heat transfer. In this work it is established that an LES 

approach with a wall model (WMLES) can make up for the lack of grid resolution near 

heat transfer surfaces.   

The following journal articles and conference papers are an integral part of this 

dissertation:  

 OpenMP parallelism for fluid and fluid-particulate systems, Amit Amritkar, 

Danesh Tafti, Rui Liu, Rick Kufrin, Barbara Chapman, Parallel Computing, 

Volume 38, Issue 9, September 2012, Pages 501–517 

 Efficient parallel CFD-DEM simulation of fluid-particulate system using 

OpenMP, Amit Amritkar, Surya Deb, Danesh Tafti, Journal of Computational 

Physics, Under review 

 Particle scale heat transfer analysis in rotary kiln, Amit Amritkar, Danesh Tafti, 

Surya Deb, Proc. of ASME HT2012, Puerto Rico, July 8-12 2012. 

 Heat transfer analysis in a rotary furnace with a poly-disperse particle distribution, 

Amit Amritkar, Danesh Tafti, Powder Technology, to be prepared and submitted 

 Wall modeled LES for heat transfer in fluidized bed with a horizontal tube heat 

exchanger, Amit Amritkar, Danesh Tafti, Journal of Heat Transfer, to be prepared 

and submitted 

Organization of Thesis 

The rest of the manuscript is organized as follows. The second chapter introduces the 

application of OpenMP parallelism to the in-house code GenIDLEST and discusses the 

code performance. The application of OpenMP parallelism to tightly coupled fluid-

particulate system is discussed in Chapter 3. Chapter 4 presents the governing equations 

and methods used for particle scale heat transfer. Chapter 5 presents results of heat 

transfer analysis for a rotary kiln with poly dispersed particles followed by results of heat 

transfer analysis in a fluidized bed with a horizontal tube heat exchanger. Finally, 

conclusions and future scope of this work are presented in Chapter 6. 
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2. OpenMP parallelism for fluid flow 1 

Introduction 

High-end applications have relied on the Message Passing Interface (MPI) over the last 

two decades for programming parallel applications. MPI has provided scalability on large 

applications by forcing data locality. Data locality together with SPMD style 

programming using spatial domain decomposition has been a very successful model for 

high-end computing. While this model is inevitable in a clustered environment, it has also 

proved its mettle on large SMP (Shared-memory MultiProcessor) architectures, in spite 

of the shared cache-coherent memory model and the added overhead of MPI calls, by 

forcing an explicit link between processor and memory and eliminating references to 

remote memory, except through explicit message passing.  

The often quoted drawback of MPI is the high programming, development, and 

maintenance costs. Additionally, a major drawback stems from what gives MPI its 

strength – explicit array partitioning. Within this framework, any parallelism which 

deviates from this model incurs heavy costs in performance. In engineering 

computations, one example is dispersed two phase flow in which solid particles are 

individually tracked in a fluid domain. The particle distribution is a function of the 

physical attributes of the solid-fluid system and could well lead to all particles 

accumulating on a few processors leading to severe load imbalances [1].  Similar 

irregularities exist in a number of multiphysics applications in which the explicit static 

data partitioning becomes inefficient.  

An alternative to MPI programming on SMPs is the use of OpenMP. OpenMP directives 

are easy to implement, and can be used for incremental parallelism in a serial application 

[2]. It is much more flexible than MPI in that it lends itself to different types of 

                                                 

 

1 Majority part of this chapter is published in OpenMP parallelism for fluid and fluid-particulate systems, 

Amit Amritkar, Danesh Tafti, Rui Liu, Rick Kufrin, Barbara Chapman, Parallel Computing, Volume 38, 

Issue 9, September 2012, Pages 501–517. Used with permission of Elsevier, 2013 
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parallelism. It can exploit SPMD type parallelism (similar to that in MPI), functional 

parallelism, and task parallelism in a single program unit and is not tied down to any 

single mode. For instance in the above example, in an OpenMP code, the fluid domain 

could be parallelized using a domain decomposition style of programming similar to what 

would be used in an MPI decomposition, whereas N-body parallelism could be used for 

the dispersed phase.  Undoubtedly, OpenMP is much more suitable for dynamic irregular 

applications [3, 4]. However, it has not seen widespread use in high-end HPC 

applications because of its inability to scale to a large number of processors and also to a 

large extent, the lack of portability (re-compile and run) across distributed clusters. 

Efforts have been made to combine the advantages of both paradigms (MPI/OpenMP) on 

DSM (Distributed Shared Memory) architectures. The hybrid paradigm strives to take 

advantage of the scalability of MPI together with the flexibility of OpenMP. Early studies 

[5] used the hybrid paradigm to implement embedded parallelism at a coarse level via 

MPI and at a fine level via OpenMP threads. It was shown that it was possible to combine 

the two paradigms within the framework of a single program. [4] also showed that the 

hybrid paradigm could be used for treating dynamic irregular applications, by using 

dynamic OpenMP threads to balance the computational needs in a MPI process. In two-

phase dispersed particulate flows, OpenMP helper threads could be invoked on heavily 

loaded MPI processors where the particles tend to accumulate.  

In the past, many studies have been conducted in which the performance of OpenMP has 

been compared with MPI. The average filtered timing data for seven simple test programs 

(two communication oriented and five kernels) was measured by [6]. MPI performed 

better than OpenMP for most of the cases. In an OpenMP study on a CFD code [7] it was 

found that the OpenMP results showed poor scalability compared to MPI for 8 

processors. They also did studies involving scheduling strategies and critical versus 

reduction operations to conclude that the static scheduling performed the best and critical 

sections are more time consuming. In another study [8] on ocean models, OpenMP 

performance was found to be competitive on shared memory platforms since the 

parallelization strategy was domain decomposition. On a Sun Microsystems machine, [2] 

performed OpenMP and MPI runs for up to 144 processors on a molecular modeling code 

of about 2000 lines. They established that the Sun studio’s OpenMP implementation 
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scaled better because the memory bandwidth for MPI communications was limited. In 

other research, a comparison of MPI and three different OpenMP parallelization 

approaches on the NAS Parallel Benchmarks was done [9]. They found the OpenMP 

SPMD programming style and the optimized loop level OpenMP programming was 

competitive with MPI but overall MPI still performed better. In a scaling study of an 

unstructured fluid solver [10], the OpenMP and MPI performances were observed to be 

10% apart for upto 128 processors. Recently, performance analysis of a finite element 

based CFD code called FEFLO for upto 96 processing cores was performed [1]. The 

study showed good OpenMP scaling for edge based parallelization in finite element 

discretized space. The performance characterization of the Columbia cluster at NASA 

was carried out using NAS parallel benchmarks and 3 CFD applications [11]. The Cart3D 

fluid solver which solves the Euler equations showed excellent scaling for both MPI and 

OpenMP for 474 CPUs. The performance results of INS3D (incompressible Navier 

Stokes equation solver) and OVERFLOW-D (compressible Navier Stokes equation 

solver) codes in hybrid execution mode (OpenMP+MPI) show performance degradation 

after about 144 processors for INS3D and 64 processors for OVERFLOW-D. 

In an alternate study, MPI and hybrid performance results were compared for the NAS 

Parallel Benchmarks and four CFD applications (one structured CFD application 

(OVERFLOW-2), one Cartesian grid application (CART3D), one unstructured 

tetrahedral CFD application (USM3D), and one application from climate modeling 

(ECCO)) for up to 1024 cores on different architectures with the help of performance 

measurement tools [12]. The study indicated that overall the MPI performance is better 

than the hybrid (MPI+OpenMP) execution except when the number of cores per node 

was increased to 32. The MPI performance was poor due to limited memory bandwidth 

available for the MPI communications. Another CFD application called TAU, developed 

by the German aerospace agency (DLR) to solve the compressible Navier Stokes 

equations on unstructured grids [13] was tested using hybrid parallelization up to 

O(1000) processors.   

The lack of data placement directives among threads and processor cores for data locality 

in the OpenMP standard can be addressed by either compiler directives or runtime 

systems for data distribution. Nonlinear Euler equations in 3D with MPI, hybrid 
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(MPI+OpenMP) and different OpenMP parallelization strategies were solved by [14]. 

The work concluded that using the first touch placement policy was essential on NUMA 

machines and in the absence of this policy; the page replication technique performed 

better than page migration. An alternate approach of copy-inside-copy-back (CC) to 

achieve data locality was used by [15]. The CC approach is applicable only for coarse 

grain parallelism where the ratio of computation time to copy operation time is high.  

The literature also describes different strategies and methods used for porting MPI codes 

or legacy serial codes to OpenMP with the help of different performance tools. Code 

porting strategies were suggested with code tuning using prof, ssrun, perfex on a single 

processor for a Large Eddy Simulation code [16]. In their study, the use of first touch 

policy for OpenMP execution was emphasized along with a demonstration of load 

balancing in arrays for cache optimization. Similarly Hackenberg et al [17] recommended 

the first touch implementation for data initialization in OpenMP. 

The conversion of combustion codes  to run in parallel using OpenMP was done by [18]. 

They tested the memory usage, scheduling strategies, first touch placement policy, loop 

fusion (combining loops together), loop collapsing for better load balancing and the 

usage of parallel regions with the 'nowait' OpenMP clause. It was concluded that the 

parallel region in OpenMP lacked a reduction clause outside of the context of a work-

sharing loop and OpenMP I/O was 100 times slower than MPI. It was shown that a large 

page size improved OpenMP performance by 30% along with performance optimization 

using 'nowait' loop blocking for efficient cache utilization and processor binding using 

environmental variables [19]. Large pages of 64 kb resulted in reducing the overhead of 

translating a program page address to a memory page address (reducing the TLB miss 

rate and L1 cache miss). Simulations were performed on a large benchmarking code 

SPECseis, which is a seismic process analysis suite [20]. OpenMP and MPI performance 

was found to be similar for up to four processors.  

More recently hybrid code usage is increasing across various scientific applications due 

to the shift toward the multi-core architecture. The performance study of the NAS 

benchmarks for four different parallelization strategies (MPI, OpenMP, MPI-OpenMP 

and two hybrid methods) on symmetric multiprocessors (SMP) [21] indicated that pure 

MPI performed best with high speed interconnects but on slow networks hybrid codes 
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performed better than MPI. In another investigation [22] on a 3D image construction 

code, hybrid code (MPI+OpenMP) performed 10% better than MPI as the OpenMP part 

took advantage of the lower latency of shared memory threads across processors. On 

contrary, it was found that MPI outperformed hybrid (MPI+OpenMP) runs, with static 

OpenMP scheduling, for a CFD solver [23].  

The current work is motivated by the flexibility afforded by OpenMP in multiphysics 

applications where the physics does not permit a single mode of parallelism but to 

multiple modes for optimal parallel efficiency. The solution of grid based field equations 

like the Navier-Stokes equations map to the domain decomposition mode of parallelism, 

whereas discrete N-body type of computations map to the discrete particle numbers. 

When both are combined in a single multiphysics code, domain decomposition type 

parallelism for the field equations is not an efficient choice for parallelizing the N-body 

problem. In such situations OpenMP is more flexible with less overhead in changing 

from one mode of parallelism to the other – that is if OpenMP can be made to efficiently 

scale to a large number of processors. Thus, the objective of this work is to parallelize a 

large production CFD code (>100,000 lines) with OpenMP and show that its scalability 

can match that of MPI over O(100) processors. In this research fine grain OpenMP 

parallelism has been implemented and the performance on 256 cores investigated. The 

simplicity of the loop level OpenMP parallelism is maintained in the implementation by 

prudently using parallel initialization of data and process placement tools. Finally, the 

potential use of OpenMP is presented in a multiphysics fluid-particulate system by 

comparing its scalability to MPI.  

In this chapter, the structure and capabilities of the GenIDLEST code are listed. 

Performance measurement and optimization techniques used are briefly discussed 

followed by the description of the system and the test problems used for performance 

testing. The scalability results of OpenMP, MPI and Hybrid execution of GenIDLEST are 

discussed and finally the scalability results for a multiphysics fluid-particulate system are 

enumerated. In this chapter the dual core system refers to two individual processing units 

(called cores in this sense) on a chip whereas single core refers to a single processing unit 

on the chip. 
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Methodology  

The scalability study and testing of the OpenMP API on a real world CFD simulation 

code called GenIDLEST [24, 25] (Generalized Incompressible Direct and Large Eddy 

Simulation of Turbulence) is performed in this study. GenIDLEST is a computational 

fluid dynamics package that solves for the velocity, pressure, temperature and species 

fields in turbulent multi-phase flows. It solves the time-dependent Navier-Stokes and 

energy equations in a multiblock generalized body-fitted coordinate system and is used 

extensively in propulsion, energy and biology related applications to complex multi-

physics flows [26-29]. At its core, the code uses a finite volume formulation with second 

order central difference discretization scheme. A fractional step algorithm using semi 

implicit Adams-Bashforth/Crank-Nicolson, or a fully-implicit Crank-Nicolson method 

for a predictor step, with the corrector step solving a pressure Poisson equation to satisfy 

mass continuity [24, 25] is implemented.  The core algorithmic features are shown in 

Figure 2.1. Supplementing the core algorithm are different options for discretization, 

linear solvers and boundary conditions. Algorithmic modifications are also implemented 

for incorporating property variations with temperature, for dynamic moving grids, for 

incorporating coupled fluid-particle transport physics, turbulence models, structural 

models, and coupled solid-fluid heat transfer models.  The code has been under 

development since the mid-90s at the National Center for Supercomputing Applications 

(NCSA) and has undergone a number of rewrites to adjust the data structures, memory 

allocation procedures, I/O policies, parallelization strategies to take maximum advantage 

of current day hierarchical memory, and parallel architectures mostly within the context 

of MPI. The code spans over 300 subroutines and more than 100,000 lines. It uses an 

overlapping multiblock grid framework and its computational identity is best 

characterized by structured grids, sparse linear algebra, coupled with N-body 

computations for dispersed dense particulate flows. In the past, GenIDLEST has been 

used for various tests including power modeling, OpenMP barrier algorithms, etc. [30-

32]. 
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Figure 2.1 GenIDLEST computational structure for solving the Navier-Stokes and energy equations 

using a fractional step method. 

Data distribution and parallelization 

The overlapping multiblock framework used in GenIDLEST provides a natural 

framework for parallelization. The degree of overlap between adjoining blocks in 

GenIDLEST is dictated by the order of spatial discretization used and is one 
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computational cell wide. This offers the framework within which independent 

computations can be performed in each block, provided that the ghost cell has been 

updated at inter-block boundaries by a suitable data transfer from the adjoining block. 

Within this framework, Figure 2.2 illustrates the data structure and the multiple levels of 

parallelism which can be extracted. The mesh generation process has two implicit 

constraints imposed on it: the number and size of blocks dictated by the physical 

complexity of the geometry; and by the degree and efficiency of parallelism sought. 

Depending on the total number of mesh blocks and the degree of parallelism sought, each 

node can have multiple blocks residing on it as shown in the Figure 2.2. It is to be noted 

that the total number of blocks is always dictated first and foremost by the geometrical 

complexity of the computational domain, with the degree of parallelism sought being a 

secondary but important consideration. Hence, multiple overlapping blocks are the norm 

even though pure OpenMP parallelism does not explicitly require this mapping. In the 

context of Figure 2.2, all blocks in a pure OpenMP would map to a single shared memory 

node with multiple processors or cores, whereas with MPI, the blocks would be spread 

across multiple nodes or processors or cores as the case may be. Further within each 

block, “virtual cache blocks” are used. The 'virtual' blocks are not explicitly reflected in 

the data structure but are used only in the solution of linear systems, which are the most 

time consuming part of the fluid phase calculations (between 50-90% of computational 

time). The motivation to construct much smaller 'cache' blocks is to extract performance 

on cache based hierarchical memory systems by using them as the basic sub-structures in 

a two–level domain decomposition additive Schwarz algorithm to precondition Krylov 

based solvers [5].  In this method, the full system of equations is sub-structured into 

smaller sets of overlapping domains, which are then solved individually in an iterative 

manner, updating the boundaries periodically such that the global system is driven to 

convergence. Each subdomain is smoothed with an iterative method such as the Jacobi 

method or Symmetric Successive Over-relaxation (SSOR) or Incomplete LU (ILU) 

decomposition. By sub-structuring the large system into smaller systems that are 

designed to fit into cache memory, main memory accesses are minimized, and result in 

large single processor performance gains.  
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The data structure in GenIDLEST lends itself to multiple modes and levels of parallelism. 

For example, a 256 block geometry can be spread across a single shared memory node on 

a large SMP with OpenMP threads acting independently on each block or a collection of 

blocks, or spread across multiple processors on a distributed memory architecture using 

MPI. It can also use hybrid MPI-OpenMP parallelism across blocks. The virtual cache 

blocks provide a further level of parallelism which can be exploited by using multi-level 

parallelism in OpenMP. 

Communication 

In GenIDLEST, the inter block boundary communication to exchange variable values 

among processors is done in a separate subroutine called exchange_var. The subroutine 

exchange_var collects the block boundary values of a variable from all the blocks sharing 

the same memory into a buffer. The data exchange is performed in a similar manner with 

MPI and OpenMP. For MPI transfers to remote memory, MPI isend/ireceive operations 

are used, whereas inter-block transfers in local memory are done using copy operations. 

Hence, in the MPI framework, a combination of local copies and MPI message passing is 

used compared to pure OpenMP operation which uses only local copies.  Using a ghost 

cell in the block topology of OpenMP has several advantages and chief among them is 

complete portability between an OpenMP run, a MPI run, and a hybrid run. Also, the 

ghost cell data is accessed multiple times by the OpenMP thread on which the block 

resides and by eliminating the ghost cell, the thread would be forced to fetch ghost cell 

data from another thread adding to the computational overhead. The cost of multiple 

remote thread accesses during computations overshadows the cost of retaining the ghost 

Node domain Mesh 

blocks 

Virtual Cache 

blocks 
Global 

domain 

Figure 2.2 Data structure and mapping to cores and threads with different programming paradigms 

used in GenIDLEST 
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cell and doing a single copy in exchange_var. These communication overheads are 

reflected within data generated by performance tools under the time spent in the calls to 

the subroutine exchange_var for both MPI and OpenMP. 

Performance measurement and optimization 

The OpenMP run time of the GenIDLEST application is measured using MPI function 

MPI_Wtime and cross checked with FORTRAN function date_and_time. The 

performance optimization tools are used iteratively, to check for code consistency, 

accuracy and efficiency. These tools and their use for GenIDLEST performance tuning is 

discussed in this section. Intel FORTRAN compiler, version 11.1.038, with the compiler 

optimization option –O3 is used. 

Code consistency  

The parallel execution of GenIDLEST using MPI has been verified in the past in various 

publications [33-35]. In this study the emphasis is on using OpenMP in a scalable, 

accurate and consistent manner which is tested using different test cases and software 

tools. 

The TotalView debugger is used for finding memory related issues including checks for 

memory leaks and stack memory usage. OpenUH is an open source compiler suite for 

OpenMP 2.5 in conjunction with C, C++, and Fortran 77/90/95 and the IA-64, x86, 

x86_64 Linux ABI and API standards [36]. The OpenUH FORTRAN compiler is mainly 

used for checking the scope of variables in OpenMP. Intel Thread Checker is used for 

checking parallel consistency of the code in both MPI runs and OpenMP runs. 

Performance tools  

Monitoring the performance of parallel computing applications needs specialized tools. 

In this study, hardware counter based performance tools PerfSuite and TAU are used for 

analyzing the performance of GenIDLEST. 

NCSA developed PerfSuite [37] which is a small set of light weight performance 

monitoring tools and libraries based on PAPI (Performance Application Programming 

Interface). PerfSuite operates in one of two primary modes: in “counting mode”, one or 

more user-selected hardware performance events are activated and reported at the end of 



14 

 

monitoring as aggregate event counts along with associated derived metrics; in “profiling 

mode”, the hardware performance event under measurement periodically triggers an 

interrupt on a user-selected overflow interval, resulting in a source-level profile gathered 

through statistical sampling. This study employed PerfSuite in both counting and 

profiling modes in order to gain a comprehensive view of the performance characteristics 

of GenIDLEST. 

In profiling mode, event based sampling over total number of cycles is performed to 

obtain detailed information about the time spent in various subroutine calls and line 

summary of different function files. This performance data is used to identify the 

bottlenecks in the subroutines. Subroutine by subroutine comparison between MPI and 

OpenMP results is helpful in understanding the code signatures. 

In counting mode, the overall performance statistics of the program is obtained (cache 

miss ratio, memory bandwidth usage, etc). The performance statistics obtained in the 

counting mode are used for the code behavior monitoring and optimization.  

As an example of the usefulness of PerfSuite analysis, several rounds of counting runs for 

both MPI and OpenMP were done to identify the most significant stall event 

(BE_L1D_FPU_BUBBLE_L1D) which was then used to profile GenIDLEST 

application. Intel's documentation for Itanium 2 hardware performance events defines this 

as "the number of full-pipe bubbles in the main pipe due to stalls caused by either the 

floating point unit or L1 data cache". A "bubble" refers to a condition that prevents the 

processor from making forward progress. In both MPI and OpenMP, the subroutine line 

contributing the largest number of counting samples is in the pre-conditioning function, 

indicating that the most stalls occurred there. The stall information directly relates to the 

subsystem “cache” block size in GenIDLEST since the CPU is data starved because of 

the latency and bandwidth associated with memory access. Thus by adjusting the virtual 

cache blocks higher cache hit ratio can be achieved.  

Detailed information about the MPI communication time and time spent in OpenMP 

parallel regions is not available through PerfSuite. Due to these limitations, the TAU 

(Tuning and Analysis Utilities) performance system [38], developed at the University of 

Oregon, is currently used to obtain the detailed performance regression analysis. 

Primarily the results from TAU are used as a check for the PerfSuite results. 
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The performance tools generate data for each thread and to analyze the system wide 

parallel performance of the application it is important to be able to analyze potentially 

large amounts of performance data effectively. ParaProf, a performance profile 

visualization tool that is part of TAU, is used in this study to obtain a graphical 

visualization of the vast amounts of performance data. 

Placement and locality issue 

Two key issues with applications parallelized with OpenMP are process/thread and data 

placement. Keeping the data local to the core gives vastly improved performance. This 

can be controlled using SGI’s dplace tool and SGI’s first touch policy and SGI’s thread 

affinity tools – dplace/omplace. Since the parallelization strategy used is fine grain 

parallelized or fork and join parallelization [39], there is a possibility that data assignment 

to threads could migrate from one core to another during the execution of the code. To 

avoid this cost, the thread affinity is kept in check by using static scheduling, which is the 

default on most of the systems. 

First touch placement 

On SGI Altix systems, the data placement is done by first touch placement policy. 

According to the policy, the data is placed within a node that contains that core which 

allocates and initializes the memory block first. Applications using OpenMP require that 

the data initialization be done in parallel in order to implement the first touch placement. 

The initialization of arrays is performed in parallel such that each core initializes data that 

it is likely to access later for calculation. This configuration ensures that the data is placed 

where it is most frequently accessed. This placement policy has no effect on the 

applications using MPI parallelization since the data is distributed manually to each core 

in MPI. The example of this code change is shown in Table 2.1 and shows that the 

original FORTRAN 90-style array syntax was changed to an OpenMP parallel loop in 

order to effect the proper per-thread initialization. 
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Table 2.1 Code snippet of the modifications to implement first touch policy 

Original Code Code modified for first touch policy implementation 

      buf2ds=0.0 

      buf2dr=0.0 

c$omp parallel do private(m) 

      do m = 1, m_blk(myproc) 

      buf2ds(:,:,:,m)=0.0 

      buf2dr(:,:,:,m)=0.0 

      enddo 

c$omp end parallel do 

SGI tools for processes placement  

dplace and omplace 

Thread affinity restricts execution of certain threads to a set of the CPUs in a 

multiprocessor system.  Depending on the topology of the system, thread affinity can 

have a remarkable effect on the execution speed of an application.  omplace and dplace 

are tools provided by SGI for process or thread placement on NUMA systems. The 

omplace tool is particularly applicable for hybrid MPI/OpenMP codes where successive 

threads are placed on unique CPUs. omplace is easier to use and has stricter placement 

policies compared to dplace,  even though it is essentially a wrapper around dplace.  

After a few experiments with thread placement, it was concluded that the option dplace –

s1 –x2 gave the best results for OpenMP execution. For this placement to work, two 

additional cores are requested for correct dplace functioning during OpenMP runs.  

Proper thread placement was verified by observing CPU/thread assignments at runtime 

through standard Linux facilities (e.g., the ‘ps’ command and the /proc filesystem). Under 

SGI’s ProPack software stack and MPT MPI library, most MPI applications are launched 

by mpirun and use N + 1 processes. The first process is the MPI helper process which is 

mainly inactive and usually does not need to be placed. The option -s1 causes dplace to 

not place the MPI helper process that is mostly inactive. The option –x provides the 

ability to skip placement of processes and it is recommended for Intel OpenMP 

applications be placed using -x2 when using the NPTL POSIX threads implementation 

under Linux. 

In addition to the SGI’s placement tools, the OpenMP runtime library of the Intel 

compiler has the ability to bind OpenMP threads to CPUs. The KMP_AFFINITY is an 
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environmental variable for setting the thread binding. It is set to “disabled” to avoid 

interfering with the correct functioning of SGI’s dplace utility. 

dlook 

dlook is an SGI tool for showing process memory map and cpu usage. This tool is used to 

probe and verify the correctness of CPU and data placement across nodes in terms of 

number of memory pages.  

Memory management  

Stack size 

The stack memory size available varies with different OS (operating system) 

distributions. In OpenMP framework, there are multiple thread private copies of arrays 

created during execution of an OpenMP parallel loop. This puts additional demands on 

memory and makes the memory management more difficult. Considering the limited 

amount of stack memory available due to the above mentioned constraints, the majority 

of the variables need to be allocated on the heap memory. The heap memory allocation 

allows the execution of large problems using GenIDLEST but slows the execution due to 

the inherently slow nature of heap memory. On the other hand excessive use of stack 

memory with OpenMP private arrays leads to stack overflows. In the Intel Fortran 

compiler, when -openmp compile flag is used, the local arrays become automatic arrays 

and are placed on the stack memory by default. To add to this, the Intel Fortran compiler 

uses stack space to allocate a number of temporary or intermediate copies of array data 

which piles up in the stack memory. Hence, memory management for a large code such 

as this is a challenge and a careful balance has to be struck between stack and heap 

memories. 

When allowed, the stack memory size limit is removed so that more variables can be 

allocated on the stack memory. The Linux command 'ulimit –s unlimited' is used in this 

study to obtain the maximum possible stack memory size. 

The environmental variables OMP_SLAVE_STACK_SIZE and KMP_STACKSIZE 

which govern the thread private memory and thread private stack size, respectively, are 
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used for allowing better memory management of thread private data. The sizes of these 

memories vary as per the application. 

diff_coeff subroutine 

The diff_coeff subroutine calculates the gradient operator coefficients at cell faces for 

momentum and energy equations. The gradient operators are then used to construct the 

Laplacian operator. The code snippet of the diff_coeff subroutine is shown in the Table 2. 

In the diff_coeff module a large number of temporary arrays are created.  

To overcome the above challenges a strategy of converting local arrays to global arrays is 

applied. Thus the local arrays are selectively made global by allocating them in heap 

memory as shown in the Table 2.2. These changes in the code considerably reduce the 

demands on stack memory by allocating multiple arrays in the heap memory. The option 

of additional compiler flag of '–heap-arrays' also locates all the local arrays in heap 

memory but can have unwanted effects on data sharing and was found to slow the 

execution of GenIDLEST. 

Table 2.2 Code snippet showing the modification in the diff_coeff subroutine for efficient memory 

management 

Original Code  c$omp parallel do private(m,i,j,k,tauc,ii,jj,kk,n,nf),                         

c$omp+ private(ib,ie,jb,je,kb,ke,i_f,i_l,j_f,j_l,k_f,k_l)                      

c$omp+ private(ad_ci_xi_e, ad_ci_xi_w, ad_ci_eta_nw, ad_ci_eta_sw,             

c$omp+ ad_ci_eta_w, ad_ci_eta_ne, ad_ci_eta_se, ad_ci_eta_e,                   

c$omp+ ad_ci_zeta_wh, ad_ci_zeta_wl, ad_ci_zeta_w, ad_ci_zeta_eh,              

c$omp+ ad_ci_zeta_el, ad_ci_zeta_e, ad_cj_xi_se, ad_cj_xi_sw,                  

c$omp+ ad_cj_xi_s, ad_cj_xi_ne, ad_cj_xi_nw, ad_cj_xi_n,                       

c$omp+ ad_cj_eta_n, ad_cj_eta_s, ad_cj_zeta_sh, ad_cj_zeta_sl,                 

c$omp+ ad_cj_zeta_s, ad_cj_zeta_nh, ad_cj_zeta_nl, ad_cj_zeta_n,               

c$omp+ ad_ck_xi_el, ad_ck_xi_wl, ad_ck_xi_l, ad_ck_xi_eh,                      

c$omp+ ad_ck_xi_wh, ad_ck_xi_h, ad_ck_eta_nl, ad_ck_eta_sl,                    

c$omp+ ad_ck_eta_l, ad_ck_eta_nh, ad_ck_eta_sh, ad_ck_eta_h,                   

c$omp+ ad_ck_zeta_h, ad_ck_zeta_l) 

       ……. 

c$omp end parallel do 

Modified code for 

efficient memory 

management 

c$omp parallel do private(m,i,j,k,tauc,ii,jj,kk,n,nf), 

c$omp+ private(ib,ie,jb,je,kb,ke,i_f,i_l,j_f,j_l,k_f,k_l) 

       ……. 

c$omp end parallel do 
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Computational details  

The lid driven cavity problem [40] is a common test case in mechanical engineering 

simulations. The problem has a simple geometry but still has complex flow features. 

From the computational viewpoint, the problem set up is done such that during 

computations most of the subroutines in the time integration loop are used to obtain a true 

measure of the speedup and scaling capabilities of the code.  

The total number of processors used in the experiments is always a power of two as the 

speedup study and scaling analysis with load balanced problems can be easily performed 

with this configuration. The performance testing was done on NCSA’s SGI-Altix system 

which has a Single System Image (SSI) and a DSM architecture with Intel Itanium-2 

processors. It consists of three partitions, which is refereed in this chapter as compute-1, 

compute-2 and compute-3. The important differences between the various partitions are 

the number of cores and memory per core. Of the three systems, compute-2 (Altix 3700 

with 2 cores/node and 12 Gbytes memory/node) has the highest memory per core, 

whereas compute-3 (Altix 4700 with 4 cores/node and 12 Gbytes memory/node), the only 

dual core system, has slightly higher memory per node than compute-1 (Altix 3700 with 

2 cores/node and 4 Gbytes memory/node). 

The speedup and scalability experimentations are done using two different problem types, 

fixed problem and scaled problem. In a fixed problem, the problem size remains constant 

and the workload per core decreases with increase in core count to obtain the speedup 

characteristics (also known as “strong scaling”). The problem size is about 16 million 

grid nodes for compute-1 and compute-2. On compute-3, due to a limit on the maximum 

cores available, the problem is scaled down to 8 million grid nodes in order to solve the 

problem on up to 128 cores. In a scaled problem, the data used for calculations per core 

remains constant (also known as “weak scaling”). The weak scaling study of 

GenIDLEST is performed on compute-2. In this study, each core is assigned a 

computational block. Each computational block consists of 65536 grid nodes. 

Unidirectional stacking of computational blocks in the z-direction is done to construct the 

problem geometries up to 32 blocks. A 64 block geometry is constructed by stacking 32 

similar blocks in the y-direction to the existing 32 block geometry. Similarly, for 

constructing a 128 block geometry, 64 more blocks are stacked in the x-direction to the 
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existing 64 block geometry. Finally, for the 256 block problem another 128 blocks are 

stacked in the z-direction. This particular stacking strategy was chosen in order to keep 

the physical dimensions of the problem the same for different number of blocks while 

avoiding cells with high aspect ratios. 

Scaling results and discussion 

The scaling performance of the GenIDLEST code for 10 time steps of fluid simulations 

using MPI, OpenMP and hybrid parallel programming paradigms is discussed in this 

section. The tuning of the MPI version of the GenIDLEST code has been carried out over 

the years including employing an efficient communication strategy by overlapping 

computations with communications. Single core performance optimization has been done 

in the past and is not included in this study since the performance of GenIDLEST using 

various parallel programming models is the focus here. Some details about performance 

optimization on a single core can be found in other GenIDLEST studies including [5, 41].  

Initial results 

Initially the performance of the GenIDLEST code was observed to be significantly worse 

for OpenMP execution compared to MPI. For a 2 million grid cell geometry executed 

with 8 OpenMP threads and default Intel compiler version 10.1.017, the OpenMP 

execution took 498 seconds of wall clock time, whereas the MPI execution took about 69 

seconds. It was identified that the Intel compiler version 10.1.017 had a compatibility 

problem with dplace that effectively serialized thread execution within parallel regions. 

The compiler was then replaced with version 11.1.038 and the resulting OpenMP wall 

clock time decreased to around 169 seconds. The OpenMP version was then profiled with 

PerfSuite to identify the top CPU time consuming subroutines and lines. Based on the 

profiling results, parallel initialization of some arrays was done to ensure favorable data 

locality through first touch data placement, and the wall clock time decreased further to 

around 84 seconds. Further tuning of the code decreased the execution time to about 70 

seconds. This performance evolution shown in Figure 2.3 clearly shows the importance 

of thread affinity or the process placement and first touch data placement.  
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After all such modifications, the study of performance comparison between MPI, 

OpenMP, and hybrid models on NCSA’s SGI Altix system is carried out. 

 

Figure 2.3 Wall clock time for a 2 million grid cell geometry executed using 8 OpenMP threads 

depicting GenIDLEST performance evolution with various modifications for OpenMP parallelism. 

GenIDLEST profiling 

The GenIDLEST code is fairly large and the identification of the code signature based on 

time spent in various subroutine calls is vital in performance prediction [42]. The analysis 

of individual code subroutines is obtained in the profiling mode of PerfSuite. In Figure 

2.4, the most time consuming subroutines on a single core of compute-2 for the two 

extreme problem sizes are shown. The two problem sizes are compared to gauge the 

relative time spent in subroutine calls. These fifteen subroutines cover over 90% of the 

total run time for the small problem (65536 grid nodes in a single block geometry) and 

about 80% for the large problem (16 million grid nodes in a 256 block geometry).  
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Figure 2.4 Percentage time spent in important GenIDLEST subroutines on a single core of compute-

2. The two cases of 65,536 grid cells and 16 million grid cells are compared. 

In the subroutine labeling convention used in GenIDLEST, subroutine names with ‘pc' 

indicate that it is a subroutine in the application of the preconditioner in the Krylov 

method (BiCGSTAB in this case) for the iterative solution of the pressure and 

momentum equations. Subroutines with 'implct' in the name represent the subroutines 

associated with the solution of linear systems generated in the momentum equation only. 

The subroutine matxvec is a sparse matrix-vector multiplier called by the Krylov method 

used in the solution of the momentum and pressure equations.  

The diff_coeff subroutine calculates the gradient operator coefficients at cell faces for the 

momentum and energy equations followed by the calculation of the Laplace operator. 

The diff_coeff subroutine is not only memory intensive, but also performs a large number 

of floating point operations, and thus takes comparatively more execution time for the 

large problem size. For the larger problem size, the memory access cost for inter block 

data copy in the exchange_var subroutine is more, resulting in higher time consumption. 

It is noted that exchange_var is called multiple times to check if any boundary updates 
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are required even in a single block geometry. Due to the increase in memory access cost 

for memory intensive subroutines, the relative time spent in the preconditioner is less for 

the larger problem. 

Single core system performance 

Weak scaling study 

The weak scaling study is done with multi block problems, where each block consists of 

65,536 grid nodes and is assigned to a processor core. The performance results for 

constant load per processor case (scaled problem) on the compute-2 system are shown in 

Figure 2.5. The trend in the execution time for both MPI and OpenMP is almost identical 

and constant indicating good scaling up to 32 cores. Beyond 32 cores, both OpenMP and 

MPI performance deteriorate as the communication overhead increases, yielding longer 

execution times. The PerfSuite performance regression analysis shows that the OpenMP 

runs spend an increasingly longer time in the OpenMP library calls and that the 

exchange_var subroutine takes a higher percentage of total execution time with the 

increasing core count, signifying an increase in the communication cost with number of 

cores. 

The jump in the execution time from one core to two cores is analyzed. The performance 

regression analysis using PerfSuite revealed that almost all the subroutines take more 

time to execute for both MPI and OpenMP when the number of cores is changed from 

one to two. In a single core problem, there is no message passing between blocks as there 

is only one block, whereas for a two core problem, unidirectional data communication 

between blocks is introduced. The stall cycles waiting on any resource increased by 

almost 50 % along with an increase in cache miss ratios supporting the idea of 

communication overheads. Figure 2.6 shows the overall time consumed in the major 

modules, consolidated from different subroutines to identify segments of computation. 

The momentum and pressure linear solvers comprise of the subroutines which solve the 

momentum and pressure equations, respectively, using iterative Krylov subspace 

methods with additive Schwarz preconditioners. The diffusion term represents the 

calculation of diffusion coefficients for all momentum equations including the calculation 

of the gradient and Laplacian operator in diff_coeff. As mentioned earlier, the exchange 
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variable module updates the boundary surface values between adjacent block boundaries 

mainly for the primitive variables (velocities, pressure, and temperature). “Interpolation” 

is used to calculate the finite-volume cell-face values of variables using the second-order 

central difference approximation. 

 

Figure 2.5 GenIDLEST weak scaling performance on compute-2 for simulation of a lid driven cavity 

problem with 65,536 grid nodes per core comparing MPI versus OpenMP parallelism. 

The observed increase in execution time due to communication overheads can be 

extended to explain the degradation of performance at higher core counts in the weak 

scaling study. The unidirectional stacking of computational blocks introduces message 

passing with an average message size of 16,384 double precision words for both sends 

and receives in the z-direction. As mentioned in section 4, for the 64 block geometry the 

blocks are stacked bi-directionally, thus messages are now exchanged in two directions. 

The message size in the z-direction is 16,384 words, and 512 words in the y-direction. 

Similarly for 128 blocks tri-directional stacking requires data communication in 3 

different directions with a message size of 512 words in the x- and y-direction and 16,384 

words in the z-direction. This increase in message passing traffic is reflected in the 

scaling performance. With introduction of message passing there is an increase in run 

time from 1 to 2 cores. From 32 cores to 64 cores, the bidirectional communication per 

core further increases the execution time. For 128 cores, the tri-directional message 

passing increases the communication overhead further, resulting in an increase in 
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execution time compared to the 64 core problem. Finally, for 256 blocks there is twice 

the communication traffic as compared to 128 blocks resulting in a further increase in run 

time. 

 

Figure 2.6 Comparison of time spent in important GenIDLEST functions on compute-2 for different 

core counts and parallelization paradigms for simulation of a lid driven cavity problem with 65,536 

grid nodes per core. 

Strong scaling study on Compute-1 

The speedup results on the Altix 3700 – compute-1 are shown in Figure 2.7. For a fixed-

size problem (16 million grid nodes), the strong scaling results can be divided into 3 

regions.  

1. The sub-linear region  

2. The linear region  

3. The communication controlled region. 
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Figure 2.7 GenIDLEST strong scaling performance on compute-1 for simulation of a lid driven 

cavity problem with 16 million grid nodes. Speedup is shown on left axis with node count on the right 

axis. 

In the sub-linear region, both OpenMP and MPI performances fall below linear scaling. 

In this region, the total memory required for the problem per node is larger than the 

system memory available per node. To compensate, the scheduler allocates more nodes 

for the problem and uses memory from additional nodes. The allocation of remote-to-

node memory results in slow remote memory access which is a typical characteristic of a 

NUMA machine, resulting in performance degradation for up to 16 cores. Performance 

tools indicate that the floating point units are data starved as a result of the slow remote 

memory access. That is, the cache miss ratio is high up to 16 cores as the processors have 

to wait longer for the data from remote memory to be loaded into the cache. The data 

distribution across nodes was examined using the "dlook" utility, which verified that the 

overall memory consumption of 50GB required a minimum of 13 nodes contributing 

memory for runs up to 16 cores.  Consequently, in the single-core run, 12 nodes (23 

CPUs) were not active in the computation but only contributed their local memories.  At 

higher levels of parallelism, data distribution and locality improve accordingly for the 

strong scaling runs. With an increase in core count beyond 16, the performance abruptly 

jumps above the linear performance curve. This region, where the performance is above 

linear performance, is categorized as the linear scaling region. The reason for this abrupt 
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improvement lies in the fact that the whole problem is accommodated on the local 

memory of nodes, eliminating the need for data fetching from the remote memory of 

distant inactive nodes. At 128 cores, the communication overheads increase slightly 

causing both MPI and OpenMP speedup to decline slightly. This communication 

controlled region is predominantly observed for the code execution with 256 cores.  The 

overall OpenMP speedup performance on compute-1 is slightly better than MPI.  

Strong scaling study on Compute-2 

To validate the observations made on compute-1, a similar strong scaling study is 

conducted on compute-2 which has 12 GBytes of memory per node versus 4 GBytes on 

compute-1.  As seen in Figure 2.8, beyond 8 cores the problem can be accommodated in 

a core’s local memory resulting in both MPI and OpenMP scaling slightly better than 

linear up to 128 cores. In this region, the memory bandwidth usage is highest for both 

OpenMP and MPI, achieving linear performance. Beyond 128 cores, the communication 

overhead starts increasing and there is a slight performance drop with additional cores. 

Both MPI and OpenMP performance at high core count is similar to compute-1 in the 

communication controlled region. 

 

Figure 2.8 GenIDLEST strong scaling performance on the larger memory compute-2 for simulation 

of a lid driven cavity problem with 16 million grid nodes comparing MPI and OpenMP on left 

dependent axis. The total number of compute nodes used is listed on right dependent axis. 
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The average memory bandwidth usage across all processors for OpenMP and MPI 

paradigm is illustrated in Figure 2.9 with standard deviation bars. The exact counts for 

the hardware performance events PAPI_L2_TCM, PAPI_L3_TCM and 

PAPI_TOT_CYC were measured. Here, PAPI_L2_TCM is Level 2 cache misses, 

PAPI_L3_TCM represents Level 3 cache misses and PAPI_TOT_CYC is total cycles. 

The Itanium-2 CPUs on the compute-2 system have four hardware performance counters 

which are the same as the number of events measured. Thus, the counts were exact 

without any event multiplexing.   

 

Figure 2.9 Average memory bandwidth usage with standard deviations on compute-2 for different 

number of cores for a lid driven cavity problem with 16 million grid nodes comparing MPI and 

OpenMP parallelism. 

The bandwidth was determined using the following formulas:  

Memory bandwidth used to 

L2 cache (MB/s) 

PAPI_L2_TCM * L2_cache_line_size / 

(PAPI_TOT_CYC / CPU_MHz) 

2.1 

Memory bandwidth used to 

L3 cache (MB/s) 

PAPI_L3_TCM * L3_cache_line_size / 

(PAPI_TOT_CYC / CPU_MHz) 

2.2 

 

The (PAPI_TOT_CYC / CPU_MHz) is equivalent to the CPU time spent by the 

thread.  The cache line sizes have constant values for a given type of CPU; for the 

Itanium-2 CPUs on compute-2, the L2 and L3 cache line sizes were 128 bytes.  
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Both the paradigms show similar trends of bandwidth usage but MPI has higher L2 and 

L3 cache memory bandwidth usage compared to OpenMP throughout. When the problem 

is run on 8 cores, OpenMP uses higher or almost the same bandwidth as compared to 

MPI and thus the OpenMP speedup performance is better than MPI for this case. 

As shown in Figure 2.10, the trends in average (across all cores) floating point operations 

per cycle explain the speedup performance of GenIDLEST. For OpenMP the floating 

point operations per cycle decrease up to four cores and then increase up to 64 cores. 

Whereas, the floating point operations per cycle decrease up to 8 cores for MPI. Then 

there is a sudden jump in the floating point operations at 16 cores and the curve levels out 

beyond that. This behavior is consistent with the performance characteristics linked to 

remote memory access cost.  

 

Figure 2.10 Average (across all cores) floating point operations per cycle with standard deviations on 

compute-2 for a lid driven cavity problem with 16 million grid nodes comparing MPI and OpenMP 

parallelism. 

The average L3 cache miss ratio for both MPI and OpenMP is approximately constant up 

to 16 cores as shown in Figure 2.11. Beyond 16 cores the cache miss ratio drops resulting 

in a linear speedup performance. 
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Figure 2.11 Average L3 cache miss ratio with standard deviations on compute-2 for a lid driven 

cavity problem with 16 million grid nodes comparing MPI and OpenMP parallelism. 

Dual core system performance 

To contrast the single core performance characteristics, the same strong scaling study is 

carried out on the dual core Altix 4700 system (compute-3) as shown in Figure 2.12 for 

MPI, OpenMP and a hybrid study in which OpenMP threads are mapped to each core on 

a node.  The performance trends of OpenMP and MPI are very similar to that obtained on 

compute-1 and -2. The time required for OpenMP runs is slightly lower than MPI runs 

for the entire speedup range except for the 128 core run. The hybrid execution time falls 

between that of MPI and OpenMP, MPI being on the higher side. This behavior is 

expected since OpenMP has lower latency at the multi-core level across a processor [22].  
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Figure 2.12 Strong scaling performance on dual core compute-3 system for hybrid (OpenMP+MPI), 

OpenMP and MPI parallelism. Speedup is reported for a lid driven cavity problem with 8 million 

grid nodes. 

Fluid-particulate system 

In the previous section it is shown that OpenMP performance can be tuned to be at par 

with MPI, when both are restricted to the SPMD mode of parallelism.  In this section, the 

flexibility offered by the OpenMP paradigm is highlighted in discrete phase particulate-

fluid systems.  

In fluid particulate systems (e.gs. circulating fluidized beds (CFBs), rotary kilns, and 

pneumatic transport) particles are often heavily concentrated in a small part of the full 

computational domain. In these applications, the spatially decomposed fluid field is 

calculated in an Eulerian framework, while the particles are treated in a Lagrangian 

framework. Since the particles are tracked individually in the Lagrangian framework, 

data associated with each particle (location, mass, properties, velocities, temperatures) 

needs to be communicated from one fluid domain to the next as they traverse the 

computation domain. 

If the workload associated with these particles is large, as is often the case, then treating 

them in the domain decomposition framework of MPI can lead to severe load imbalances 

and inefficiencies.  In these systems, while the data structure of the fluid field variables 



32 

 

map to the domain decomposed framework, the particle data structure maps to particle 

number. In the OpenMP framework, by parallelizing the discrete phase computational 

loops over the total number of particles and not over the computational grid, the 

workload can be evenly distributed across all the threads in OpenMP. Whereas in MPI, 

only those cores on which the particles exist can be used for particle related 

computations. To parallelize the particulate phase uniformly in the MPI framework, all 

particle data (which includes fluid field data at particle location) needs to be gathered 

onto a single processor in order to evenly scatter the particle workload across all the 

processors. After the particulate phase calculations are performed, the particle data again 

needs to be gathered and scattered to perform the fluid field calculation, which depends 

on spatial particle concentration. Thus, at every fluid time step, the entire data structure 

has to be reshuffled twice. This method of dealing with the discrete phase in the MPI 

framework leads to large overheads and inefficiencies, to the extent of making the 

parallelization futile. Other alternate strategies can be devised, but which would be 

equally complex with large overheads, particularly when the two phases are tightly 

coupled and interdependent.  Hence, in such cases OpenMP has a clear advantage over 

MPI, in spite of some inefficiency introduced by the non-locality of fluid data which the 

particles require for their computations. The mismatch in data locality arises because the 

fluid flow data is distributed by first touch based on the domain decomposition, whereas 

the particles are distributed by first touch based on particle number. However, the 

relatively large amount of work done on the dense particulate phase offsets the remote 

memory access costs associated with the fluid data. 

Loosely coupled fluid-particulate system in a lid driven cavity 

To exemplify the previous point, a 256 computational block geometry, same as in the 

previous strong scaling study, is used on compute-1 for the fluid-particulate simulations. 

In this geometry, the particulate phase was introduced locally in a single computational 

block. These are point mass particles and the interaction between particles is not 

considered. The performance of OpenMP and MPI is compared by varying the number of 

particles and keeping the number of cores constant at 32. Figure 2.13 shows the 

performance of the GenIDLEST code for 10 time steps of localized dense discrete phase 
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simulations. As the number of particles is increased, the advantage of being able to 

switch the mode of parallelism in OpenMP becomes evident – the large number of 

particles increases the workload on a single MPI process, while the other MPI processes 

wait for the particle computations to complete. In OpenMP, however, the particle 

workload is distributed evenly between all the threads yielding much faster execution.  

 

Figure 2.13 Dense discrete phase simulations on compute-1for different number of particles injected 

locally on single core. A lid driven cavity problem with 16 million nodes is executed on 32 cores with 

MPI and OpenMP parallelism. 

In order to investigate the impact of communication costs for a fluid-particulate system, a 

lid driven cavity test case with a four block geometry is used. In this problem, 10,000 

particles are injected on two blocks each. Figure 2.14 shows OpenMP and MPI TAU 

profiling data which compares exclusive timings for various subroutines and function 

calls for 6000 time steps of simulation. The OpenMP profiling data shows almost 

uniform timings for most of the subroutines across all the threads. Column 1 shows the 

time spent in particle calculations. In the MPI framework, particle calculations are 

performed on only two blocks, thus the workload is on only two cores as indicated in 

column 1 in Figure 2.14. On the other hand, the particle calculations are uniformly 

distributed on all four cores in the OpenMP framework. While the particulate phase 

calculations are performed, the other two cores wait which is represented by the 

MPI_waitall and MPI_allreduce calls taking longer on processor 1 and 4 as depicted in 
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columns 2 and 3, respectively. The corresponding timings for OpenMP are absent. 

Column 4 represents the MPI_isend and MPI_irecv operations which take longer on 

processors 2 and 3, because of the additional particle data which needs to be sent and 

received between the two processors. Column 5 represents the time spent in the rest of 

the subroutines. Coalescing the above data, the overall time taken for OpenMP 

communications (inclusive of time taken in the exchange_par subroutine where particle 

data is exchanged between blocks) was found to be less than 0.01% of total time whereas 

for MPI it was 10% of the total wall clock time, including wait time.  

 

Figure 2.14 TAU profiling analysis of GenIDLEST code for a fluid particulate system on four cores 

with MPI and OpenMP parallelism. Columns represent time spent in (1) particle calculations; (2) 

MPI_waitall; (3) MPI_allreduce; (4) MPI_isend and MPI_irecv; (5) other subroutines. 

Applicability and future  

The results from this study clearly show the utility of the first touch policy, consistent 

data placement at runtime, and memory management in the OpenMP context, all of 

which have a direct impact on parallel efficiency of any code. With the anticipated 

massive growth in core count, more control of data locality is likely to be critical for all 

OpenMP codes. Data locality and affinity is one of the topics being debated in the context 

of preparation for OpenMP 4.0. Current work favors both an ability to perform a “next 

touch” for migrating data explicitly as well as the use of locality specifications rather like 
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those offered in the HPCS languages X10 (“places”) and Chapel (“locales”). This 

approach was explored by one of the authors and her group and is the subject of [43]. It is 

also established that in the realm of solving any type of field or Eulerian equations which 

are spatially decomposed for parallelization, the flexibility of OpenMP’s light-weight 

threads have an advantage over MPI because they can be applied to different parallel 

tasks in a system.  

In this study an example of fluid-particulate flow is given, but the same arguments can be 

applied to multi-physics field equations in which the physics is different in different parts 

of the computational domain. For example, in atmospheric codes, there might be ice 

formation in one part of the domain which might require additional local computations. 

Task based parallelism in OpenMP, which simply cycles through parallel tasks is more 

appropriate in this case than MPI based spatial decomposition. The same is true for 

adaptive meshes [3]. 

Heterogeneous architectures including systems that combine CPUs with graphical 

processing units (GPUs) and many-integrated cores (MIC) seem to be the future 

platforms for high performance computing. GPUs require a host CPU, and data must be 

transferred to and from the GPU explicitly. Their programming requires very careful 

partitioning of data and work, an overlapping of GPU computations with asynchronous 

data copying between GPU and CPU, and carefully memory allocation and mapping on 

the GPU itself. Two different vendor proposals for OpenMP-like directives to support the 

specification of GPU code and data transfer [44, 45] were input to an OpenMP 

subcommittee that was formed to define OpenMP extensions for heterogeneous systems. 

An early outcome is the announcement of OpenACC (see http://www.openacc-

standard.org); an initiative led by NVidia that exploits this work by providing GPU-

specific extensions that can be easily combined with OpenMP features in an application. 

Experiences gained from the use of OpenACC directives are expected to contribute to the 

effort to integrate such features into OpenMP itself.   

On these newer architectures, the fluid-particulate flows can be load balanced by 

offloading the linear system (fluid phase) onto the GPUs and solving the irregular part 

(particulate phase) on the CPU for simultaneous computations. This particular work 

sharing strategy should be useful because all the computations for a domain decomposed 
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fluid phase involve a stencil consisting of data from neighboring cells on the Eulerian 

grid and this data structure fits the new GPU based architectures. Other strategies such as 

offloading all the work including particulate workload to GPUs with a modified neighbor 

search algorithm for faster GPU computations can also be applied. With such work load 

decomposition strategies and the advent of OpenMP features for the newer architectures, 

OpenMP would be an attractive parallelization paradigm for irregular applications like 

fluid-particulate system.  

Summary 

The OpenMP API gives excellent scalability and speedup when implemented carefully 

with the use of first touch placement policy and appropriate thread affinity, both of which 

are critical for scalability over more than a few processors/cores.  In addition to these 

factors, application code scalability also depends on the memory signature of the code 

relative to the hardware. Strong and weak scaling results are compared for both MPI and 

OpenMP. The results from weak scaling studies on the GenIDLEST code show the effect 

of increasing communication overhead as the problem is scaled with the number of cores 

for both MPI and OpenMP. The strong scaling results show the effect of memory usage 

on scalability. The parallel performance of OpenMP and MPI paradigms on a single core 

system is almost identical on ccNUMA architectures. The dual core system shows similar 

trends as well. The hybrid code (MPI+OpenMP) execution yields almost identical results 

compared to OpenMP and MPI since both MPI and OpenMP scale closely. In this study 

for a CFD application, OpenMP performance is shown to be a competitive alternative to 

MPI on different SGI Altix shared memory machines for up to 256 processing cores.  

It is also established that OpenMP threads offer considerable advantages over MPI 

processes in multiphysics applications which do not adhere to a single mode of 

parallelism. This is highlighted in fluid-particulate systems, in which the best parallel 

performance is obtained by switching the mode of parallelism from domain 

decomposition for the fluid calculations to N-body parallelism for the particles.   
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3. Parallelism for tightly coupled fluid-particulate system 

Introduction 

Dense fluid-particle systems are encountered in a wide range of applications in the 

pharmaceutical and chemical processing industry. The complexity of these multiphase 

flows makes it difficult to study them experimentally. To gain insight into the internal 

dynamics of these systems, experimental techniques have to be intrusive because 

common non-intrusive optical techniques have limitations due to the opaque nature of the 

particulate phase in three dimensional (3D) flows. Because of such measurement 

restrictions, it becomes essential to model such multiphase flow using high fidelity 

computational techniques. 

There are two approaches of modeling fluid-particulate multiphase flows, Euler-Euler (E-

E) and Euler-Lagrangian (E-L). In the E-E approach or the two fluid model, the solid and 

fluid phases are treated as interpenetrating media interacting through interphase 

momentum and energy exchange terms.  Only volume or ensemble average information 

of flow quantities is obtained by the E-E approach which lacks the detailed description of 

physics at the particle scale. On the other hand, the E-L approach solves the particulate 

phase in the Lagrangian frame where each particle is tracked, giving details of individual 

particle behavior, while the fluid is treated in an Eulerian frame. Also commonly referred 

to as the Discrete Element Method (DEM) [46], this method is widely used in the 

numerical analysis of dense particulate systems in which the solid volume fractions are 

typically greater than 40%. In the DEM, each individual particle in the bed is tracked by 

the application of Newton’s laws of motion which calculates particle acceleration due to 

fluid-to-particle forces, multi-particle collisions, particle-wall collisions and particle body 

forces. The solid and discrete phases are tightly coupled through interphase exchange of 

momentum and energy in their respective governing equations [47]. Additionally, a 

volume fraction of fluid is used in the continuum fluid equations to account for the 

presence of particulate phase [48].  

Particle-particle and particle-wall collision forces are calculated using either a hard 

sphere model or a soft sphere model. The hard sphere model assumes binary 
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instantaneous collisions between particles at a single point of contact between collision 

free periods of flight [49]. The soft sphere model on the other hand takes into account a 

finite collision time with inelastic deformation of the colliding particles with the inclusion 

of frictional sliding forces [46]. This model is more appropriate in dense beds with long 

duration multiple-particle contacts. The DEM model has the advantage that it provides a 

more fundamental high fidelity approach in calculating bed dynamics at the scale of each 

individual particle. However, it is computationally expensive. The calculation of collision 

forces increases the computational complexity of the calculation and also restricts the 

time step, while introducing additional overheads in a parallel computing environment. 

Just like ghost cells or overlap regions are required for the parallel solution of the fluid 

equations, similarly, the calculation of collision forces requires a list of ghost or halo 

particles at each time step. Since particle locations are dynamic, the list has to be 

constructed at each time step. 

For parallelization, the solution of grid based field equations like the Navier-Stokes 

equations are best mapped to the spatial decomposition mode of parallelism [1, 10, 13, 

50], whereas discrete N-body type of computations are best mapped to discrete particle 

numbers [51-54]. Thus when grid based methods have to interface with N-body methods 

in a tightly coupled framework, careful consideration has to be given to the mode of 

parallelism used in the calculation for optimal performance. There are various algorithms 

to accelerate parallel N-body calculations of which the most common are mirror domain 

technique [55, 56], particle subset method [57, 58] and domain decomposition [59, 60].  

In the mirror domain technique each CPU has a copy of all the particle data but only 

works on part of it. The advantage of this method is that there is no communication 

during computations but it has large memory foot print. The particle subset method 

involves an even distribution of particle workload amongst CPUs. This method has ideal 

load balancing at the cost of data communication during computations. For the domain 

decomposition based parallelization method, spatial decomposition of the computational 

domain is performed irrespective of number of particles in each domain. This method is 

easy to implement but does not address load balancing issues when they exist.  

The individual components of the CFD-DEM system have been researched extensively. 

Whereas the work on code parallelization of coupled system of CFD-DEM is limited. 
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Few techniques for running these components in parallel computing environment have 

been studied. So far MPI has been the choice for parallelizing coupled E-L kind of 

systems until recently when a hybrid MPI-OpenMP approach was implemented [61, 62]. 

Using one-dimensional domain decomposition for both fluid and particulate phase in the 

MPI framework, a large 3-D fluidized bed was analyzed with 4.5 million particles on 16 

CPUs [60]. Domain size dependency study was performed which was inconclusive. 

Almost perfect speed up was achieved when the processors were increased from 4 

processors to 16 processors. In an effort to implement the parallelism of E-L method into 

commercial packages, Kloss et al. [63] coupled two commercial packages, EDEM for 

particles and FLUENT for fluid flow using an MPI based domain decomposition strategy 

for both. The DEM model in which inter-particle collision forces are neglected was 

shown to give 4 times quicker solution compared to DEM due to the computational 

savings. In a similar effort, Goniva et al. [64]  coupled open source software LAMMPS 

(discrete phase) and OpenFOAM® (fluid phase). 

In order to parallelize Euler-Lagrange model more efficiently, Darmana et al. [56] used 

domain decomposition for fluid phase using the PETSc libraries and N-body simulations 

for the disperse phase composed of a maximum of 105 bubbles. The mirror domain 

technique was used for the dispersed phase where the entire disperse phase data was 

available on each processor at every time step. In contrast to this work, the parallelizing 

of fluid-particle system by Kafui et al. [58] use the mirror domain technique for the fluid 

field data and a processor ring communication algorithm in MPI framework. In this 

effort, Parawise parallelization environment and Parawise communication libraries were 

used to parallelize an existing CFD-DEM code. The SPMD (single program multiple 

data) technique was used in which parallelization was done by domain decomposition of 

fluid domain over the k-direction and N-body decomposition for the particle phase. The 

particle interactions at the inter-processor boundaries were modeled using min-cut 

decomposition based on a graph partitioning algorithm for further performance 

improvement. It was shown that the various strategies used in this work improved the 

parallel performance on 32 processors for 50,000 particles as compared to work by 

Darmana et al. [56]. The mirror domain technique where either the fluid phase or the 

particulate phase is replicated after every time step on all the processors has its 
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limitations. It is a memory intensive technique and limits the largest problem size that can 

be computed. The overheads associated with data synchronization at the end of every 

time step are also significant. 

Using MPI parallelism, another study [65] investigated two parallelization strategies for 

dynamic load balancing. In the first strategy, sub-domains partitioned for CFD and DEM 

were not identical and coupling between them needed data from other processors which 

incurred large overheads. For the second strategy, the data partitioning was based on the 

DEM work load while the CFD data was divided dynamically since the DEM 

calculations dominated the computation time. The dynamic load balancing using the 

second strategy gave linear performance till 8 processors and limited performance gains 

after that till 16 processors. This strategy created additional overheads of repartitioning 

and redistributing the fluid grid on processors at every time step. 

More recent work has taken advantage of hybrid programming. Yakubov et al. [61] used 

this approach for solving the fluid flow with the dispersed phase of bubbles (without 

inter-bubble interaction). Domain decomposition for fluid flow in the MPI framework 

and bubble number (N-body) for dispersed phase using OpenMP at the node level was 

used. This strategy partially helped to reduce the load imbalance of the system. Using a 

similar approach, hybrid parallelization on a multi-core cluster was used for a fluid-

particulate system  [62]. Domain decomposition for fluid phase and N-body 

decomposition for particulate phase was used. In fluid particulate systems, particles are 

often heavily concentrated in a small part of the full computational domain which limits 

the load balancing capability of the hybrid approach. 

To summarize, there have been various attempts to combine the domain decomposition 

strategy with N-body simulation for efficient parallelization of E-L type systems but with 

limited success. All previous efforts have been fundamentally limited by the static nature 

of MPI decomposition and the high cost of implementing dynamic modes of parallelism 

into this framework.  Thus, the current work is motivated by the flexibility afforded by 

OpenMP [3, 4, 50] in multi-physics applications where the physics dictates the use of 

multiple modes of parallelism for optimal parallel efficiency. When domain 

decomposition and N-body mode are combined in a single multi-physics code, spatial 

decomposition type parallelism is not an efficient choice for parallelizing the N-body 
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problem. In such situations OpenMP is more flexible with less overhead in changing 

from domain decomposition mode of parallelism to the particle subset type of 

parallelism. Thus, the objective of this work is to instrument loop level OpenMP 

parallelism by prudently using parallel initialization of data and process placement tools 

for a CFD-DEM code. The concept is highlighted in two systems, particle dynamics in a 

fluidized bed with uniform particle distribution and heat transfer in a rotary kiln with a 

non-uniform particle distribution.  

In this chapter, the methodology used for coupled CFD-DEM code is detailed followed 

by parallelization and the structure of the code GenIDLEST (Generalized Incompressible 

Direct and Large Eddy Simulation of Turbulence). Finally the simulation details along 

with the parallel performance results for fluidized bed and rotary kiln geometries are 

discussed. 

Methodology 

As discussed in the previous chapter, GenIDLEST [24, 25] is a computational fluid 

dynamics package that solves for the velocity, pressure, temperature and species fields in 

turbulent dispersed-phase flows and is used in this study. Algorithmic modifications are 

implemented for incorporating coupled fluid-particle transport physics which demand 

modifications in the parallelism used and are discussed in this chapter. 

CFD-DEM Coupling Algorithm 

At the start of a time step, first the fluid velocity field and temperature are advanced in 

time using a fractional-step method with void fractions and interphase exchange terms 

calculated at the new particle locations from the previous time step. The discrete phase 

calculation is then invoked using the following steps which are applicable in domain 

decomposed framework: 

1. Locate particles with known (x,y,z) coordinates by assigning them (i,j,k) values on 

the background grid of each block. During this step, particles which have travelled 

to another block or processor and cannot be found are packed and sent to the 

appropriate neighboring block and/or processor to which they have moved. 
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2. Particles which lie in overlap or ghost cells in blocks are exchanged between 

adjoining blocks to construct a list of ghost particles on each processor. The ghost 

particles are used to construct the neighbor list for collision force and inter-particle 

heat transfer calculation. 

3. The neighbor list of colliding particles is constructed by binning the particles in 

individual particle cells and then cycling through all particles in neighboring cells to 

identify overlapping or colliding particles. 

4. Fluid velocity and temperature are interpolated from the fluid grid to particle 

locations for calculation of interphase momentum and energy transfer. 

5. Particle-particle collision forces and particle-wall collision forces and heat transfer 

are calculated based on the soft sphere model.  

6. Other forces characterizing interphase drag and energy transfer and gravitational 

forces are calculated. 

7. Particle acceleration is calculated and new particle (x,y,z) locations are calculated.  

8. Interphase momentum and energy terms are transferred to the fluid grid for 

inclusion in the fluid momentum and energy equations respectively. 

9. Void fractions are calculated on the particle grid and transferred to the fluid grid for 

inclusion in the fluid momentum and energy equations. 

Parallelization and data distribution 

This section describes parallelism used in the GenIDLEST framework for fluid phase and 

particulate phase. The central idea is to use OpenMP parallelization for the CFD-DEM 

scheme. In order to make sure that the OpenMP performance was optimal, process/thread 

and data placement was done as follows. Keeping the data local to the core gave optimal 

performance which was achieved using the first touch placement policy. In first touch 

placement policy, the data is placed within a node that contains the core which allocates 

and initializes the memory block first. Hence, the initialization of all arrays is performed 

in parallel ensuring that the data is placed where it is most frequently accessed. This is 

supplemented with additional placement tools which during runtime ensured 

thread/process affinity to a particular processor for the duration of the run. 
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Fluid field parallelism 

The overlapping multiblock framework used in GenIDLEST provides a natural 

framework for parallelizing the fluid field solver based on spatial domain decomposition. 

The degree of overlap between adjoining blocks in GenIDLEST is dictated by the order 

of spatial discretization used and is one computational cell wide for second-order 

accuracy. This offers the framework within which independent computations can be 

performed in each block, provided that the overlapping or ghost cell has been updated at 

inter-block boundaries by a suitable data transfer from the adjoining block. Within this 

framework, multiple levels of parallelism can be extracted.  

The mesh generation process has two implicit constraints imposed on it: the number and 

size of blocks dictated by the physical complexity of the geometry; and by the degree and 

efficiency of parallelism sought. Depending on the total number of mesh blocks and the 

degree of parallelism sought, each node can have multiple blocks residing on it. It is to be 

noted that the total number of blocks is always dictated first and foremost by the 

geometrical complexity of the computational domain, with the degree of parallelism 

sought being a secondary but important consideration. Hence, multiple overlapping 

blocks are the norm even though pure OpenMP parallelism does not explicitly require 

this mapping. All blocks in pure OpenMP map to a single shared memory node with 

multiple processors or cores, and as such do not need an overlap layer because they are 

mapped to a shared address space.  In addition to providing complete portability between 

MPI, OpenMP and hybrid MPI-OpenMP calculations, since OpenMP threads are applied 

across blocks, having an overlap region for each block allows complete localization of 

the data pertaining to that block, thus increasing parallel performance.  However, the 

overlapping block framework requires the overlap regions to be updated in the OpenMP 

framework by copying data from one memory location to another as opposed to explicit 

message passing in the MPI framework.  

Particulate phase parallelism 

The particle phase is best parallelized by distributing the work load based on the number 

of particles.  This method requires a change in the mode of parallelism and will incur 

large inter-processor communication overheads in the domain decomposed framework 



44 

 

(mostly used in MPI framework) in which particles are attached to blocks decomposed 

spatially over different processors. Hence the principal strategy is to default to spatial 

decomposition of the particles based on the fluid grid, but which could lead to large load 

imbalances if the particles are not uniformly distributed across blocks, which is often the 

case.  In this situation, the flexibility offered by the light weight OpenMP threads to 

switch parallelism from across spatial blocks to particle numbers (particle subset 

method), gives OpenMP a distinct advantage over MPI. In this method, the particle phase 

work load is evenly divided based on number of particles and not based on the spatial 

decomposition. Under the OpenMP framework all data can be seen by all the threads. 

Thus, it is possible to separate the particulate phase calculations from grid based 

calculations and apply a different parallelism scheme.  

The particle data distribution introduces some inefficiency by the non-locality of fluid 

data which the particles require for their computations. The mismatch in data locality 

arises because the fluid flow data is distributed based on the domain decomposition, 

whereas the particles are distributed based on particle number, irrespective of their spatial 

location [50]. Additionally, when the particle neighbor is associated with a different 

thread it necessitates remote memory access. The non-locality of particle data could 

happen due to their initial distribution or as a result of the flow physics. However, the 

inherent load balancing of the particulate phase calculation and the relatively large 

amount of work done on the dense particulate phase largely offsets the remote memory 

access costs associated with the fluid and particle data. 

Modification for discrete phase under OpenMP framework 

Based on the performance analysis, the most time consuming subroutine in the CFD-

DEM calculations of dense particulate flow is the ‘search for colliding neighbor 

particles’.  In the GenIDLEST framework, the DEM neighbor search calculations are 

efficiently done by first binning the particles in the fluid cells in which they belong. This 

is followed by a search in the neighborhood cells (27 in 3D) for particles which overlap 

or collide with each particle in cell (i,j,k) to construct the neighborhood list.  Prior to the 

neighbor search however, the block boundaries or overlap cells have to be populated with 

ghost or halo particles from the adjoining blocks which could potentially be in contact 
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with an internal particle in the block. This involves packing relevant particle information 

from the adjoining sending block and copying it to the receiving block in the ghost layer. 

This is a very time-consuming operation because unlike a few particles moving from one 

block to another in step 1 (CFD-DEM coupling algorithm), a substantial number of ghost 

particles exist at any given instant. While the packing-sending-receiving-unpacking of 

ghost particle data is unavoidable in the MPI framework, in the OpenMP framework it is 

precipitated from the overlapping block data structure used and can be eliminated by a 

suitable mapping of blocks to a global data structure. This is made possible because all 

the data is available in shared memory. Once the grid map is created the particles are 

binned in various computational cells, the particle’s neighbors are searched through the 

neighboring grid cell stencil using the global map. Thus, a separate update of ghost 

particles at each time step and for each block is not needed in the OpenMP framework. 

Results and Discussions 

For a comparative performance evaluation of MPI and OpenMP, simulations of strongly 

coupled fluid-particulate system in fluidized beds and in a rotary kiln are discussed in this 

section. The fluidized bed simulation was used for validating the hydrodynamics whereas 

the particle scale heat transfer was validated against rotary kiln experiments.  The 

fluidized beds have near perfect load balancing between MPI processes and performance 

degradation compared to OpenMP can be attributed to the identification and 

communication of ghost particles in the MPI framework. The rotary kiln calculations 

introduce substantial load imbalances in the MPI framework and performance 

degradation can be attributed to both ghost particles and the ensuing load imbalance 

between MPI-processes. All the computations were run on Virginia Tech’s shared 

memory resource called 'HokieOne'. HokieOne is a shared memory SGI UV system with 

Intel Xeon X7542 processors and 5.3GB of memory/core. 

Application to fluidized bed   

A small scale fluidized bed was simulated to validate the CFD-DEM implementation. 

The validated code was then used to study parallel performance of a large scale fluidized 

bed with MPI and OpenMP parallelism. 



46 

 

Small Scale fluidized bed 

Validations for the CFD-DEM solver were carried out with a uniformly fluidized bed 

having a porous distributor plate. The dimensions of the fluidized bed in the experiment 

by Müller et al. [66] were 44 mm 10 mm 1500 mm (width, depth/transverse thickness, 

height).  The height of the bed in the simulation was reduced to 160 mm in order to 

reduce the computational time involved. The experimental technique used in their 

analysis to measure void fractions was Magnetic Resonance (MR). Superficial gas 

velocities of 0.6 m/s and 0.9 m/s were used to investigate the bed behavior. Poppy seeds 

were used as particles in the experiment. Numerical simulations were also performed by 

[66] to validate their DEM code. The initial static height of the bed was 30 mm with 9240 

particles. Both the experiments and the simulations were time averaged for 23 seconds.  

For the superficial velocity of 0.9 m/s, the voidage values obtained from the simulations 

compare very well with the experimental values [66] both near the center of the bed as 

well as near the walls. Details of this validation study can be found in [67]. 

For parallelization of the validation case, the domain was decomposed in the x-direction 

balancing the fluid and particle workload almost evenly across the processors. The 

particles were fluidized for 0.5 second for initial mixing with 0.9 m/s as the superficial 

velocity. Parallel performance in the form of time to solution from 0.5 to 0.6 seconds or 

20,000 time steps is reported on 2 and 4 processors.  

The run time for 20,000 time steps of fluidized bed simulation on 2 and 4 cores is listed 

in Table 3.1. It can be noted that the total time taken by OpenMP parallel code is about 

10% less than the MPI run on 2 cores, while OpenMP-DEM run time is 20% less than 

MPI-DEM. The reason for the performance improvement, though modest, is that there 

are no ghost or halo particles created in the OpenMP framework which reduces the 

workload per processor. This is countered by an increase in the cost resulting from 

remote memory data fetches for neighboring particles at inter – processor boundaries. 

Since particle drag calculations need the fluid velocity at the particle location, it could be 

possible that the fluid velocity resides at a distant memory location. Similarly the 

calculation of a number of terms which couple the two phases could have similar 

overheads. On increasing the core count from two to four processors, perfect scaling is 

observed in the OpenMP-DEM calculation. This effect can become significant on a large 

 
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number of cores spread across computational nodes. With the increase in number of cores 

from 2 to 4, there is still improvement in performance owing to the fact that the particle 

workload is the dominant part of the computations. OpenMP-DEM scales linearly with 

the increase in core count whereas MPI-DEM does not. The main reason for this is that 

the number of ghost particles increase in MPI-DEM (~1500 on two cores versus ~4600 

on four cores) which need to be identified and communicated to the adjoining processor.  

Because of the global mapping used in OpenMP-DEM, no ghost particles need to be 

identified. In both paradigms, the fluid calculation time is high and takes up a much 

larger fraction of the total compute time than on 2 cores. This is because the fluid grid is 

quite coarse and on four cores, fluid communication costs start to dominate. Thus the 

fluid calculation has very poor scaling when the core count is further increased to four.  

Table 3.1 Runtime taken to run 0.1 second of fluidized bed simulation after 0.5 second of initial 

fluidization for 9240 particles 

 Number of 

thread/processor 

Fluid phase time Particulate phase time 

OpenMP MPI OpenMP MPI 

Time (seconds) 2 1550 1585 1715 2075 

Time (seconds) 4 1235 1265 820 1310 

Simulation of large scale fluidized bed  

The scalability of the code was evaluated with a large fluidized bed calculation. The 

fluidized bed consisted of 1.3 million particles and 1 million fluid cells. The dimensions 

of the bed and properties of the particles used are listed in Table 3.2. The 3D bed was 

spatially decomposed along the x- and z-directions. This decomposition strategy was 

chosen to distribute the fluid load evenly across all the processors/threads and also to 

distribute the particle load almost evenly among all the spatial domains. This ensured that 

there is load balance among the MPI processes similar to the OpenMP runs which also 

were load balanced. 

The boundary conditions for the problem were similar to the smaller fluidized bed with 

the superficial velocity being higher at 2.6 m/s. The critical time step was computed to be 

7.445x10-4 seconds [47], and a time step of 6x10-5 seconds was used for the calculations.  

The fluidized bed was initially allowed to mix for about 1 second and the strong 

scalability results were obtained for 10 time steps of run time (0.6 milliseconds) as shown 
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in Figure 3.1. There is a clear advantage with OpenMP parallel runs over MPI runs as the 

runtime for fluid phase is almost the same for both the parallel paradigms but the particle 

calculations approximately take half the time. There are multiple reasons as to why 

OpenMP outperforms MPI in these calculations. Firstly, in the MPI framework there are 

ghost particles created and in this large calculation the number of ghost particles is about 

50% of existing particles in the internal mesh blocks. This leads to a significant increase 

in calculations (mainly building close to half a million ghost particles and associated 

computations) as well as communication costs at each time step. On contrary, in the 

OpenMP framework only the overhead associated with remote memory access 

(communication cost) increases as there is only a onetime cost associated with the global 

grid map creation. Even though the OpenMP runtime is less than MPI, both OpenMP and 

MPI runs scale well till 32 cores. In the OpenMP case, the performance levels out at 64 

cores whereas for MPI it deteriorates. The performance drop in MPI runs is a result of the 

increase in the MPI communication overheads at higher core count. 

Table 3.2 Particle properties and parameters used in the large fluidized bed simulations 

Simulation parameters Notation Al particles 

Bed 

Width (m) W 3.072 

Transverse Thickness (m) T 3.072 

Height (m) H 0.768 

Particles 

Sphericity Sp 1 

Number  N 5308416 

Diameter (mm) dp 4 

Density ( kg/m3) ρ 2700 

Elastic modulus  (GPa) E 69 

Poisson’s ratio σp 0.3 

Coefficient of normal restitution en 0.9 

Coefficient of friction µp-p 0.3 

Spring stiffness coefficient (N/m) K 800 

Time step (seconds) Δt 1x10-6 
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Figure 3.1 Strong scaling study of a fluidized bed with 1.3 million particles and 1 million fluid cells 

The Figure 3.1 also indicates that for the fluid phase, both the MPI and OpenMP perform 

almost the same with a slight increase in runtime for MPI case on 64 cores. The fluid 

runtimes are almost the same because the same domain decomposition strategy is used 

for parallelizing both OpenMP and MPI runs. This implies that the cost of inter-block 

MPI communication is almost the same as that is needed for remote memory fetching in 

OpenMP framework. The optimal fluid grid size per process/thread is clearly achieved at 

16 cores (65,000 fluid cells) after which the parallel performance drops. Overall, the total 

runtime taken for the fluidized bed calculations with OpenMP parallelism is almost 20 to 

30% less than the MPI calculations. 
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Figure 3.2 Fluidized bed with 5.3 million particles colored by vertical velocity component 

In order to test the scalability on even larger particle counts, a larger fluidized bed 

problem was also simulated. This fluidized bed, shown in Figure 3.2, had the same 

characteristic as that of the 1.3 million particle bed except the particle count in this case 

was 5.3 million and the time step was 1x10-6 seconds. For this case the time required to 

run 50 time steps on 32 processors was compared after the bed was allowed to mix for 5 

seconds. The domain decomposed MPI implementation took 330 seconds of runtime 

whereas the OpenMP parallel code took 170 seconds in the particle calculations. The 

main reason for particle calculations with OpenMP taking about 50% of the MPI runtime 

is the absence of ghost particles. The total ghost particles were approximately 17% of the 

total particle count and increased the computations as well as communication overheads 

in the MPI framework. During the bubbling of the bed, there is movement of particles 
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across block boundaries and thus the particles migrate from one mesh block to the other. 

This leads to minor load imbalance of about 5% in the domain decomposed framework 

(MPI paradigm) for the particulate phase work load. This could also lead to some 

additional slowdown of MPI parallel calculations. This additional overhead in MPI is not 

significant in the fluidized bed calculations where there is minor load imbalance but it 

becomes more critical when there is higher load imbalance, such as in rotary kiln case. 

On the other hand, the particle movement causes non-locality of fluid data needed for 

particle calculations in the OpenMP framework. Thus there is an overhead associated 

with remote data fetching in the OpenMP framework. The remote data fetching overhead 

is highly dependent on the initial distribution of the particles and the ensuing flow 

physics. Similar to load imbalance for MPI case, remote data fetching overheads for 

fluidized bed simulations are relatively small as there are many particles which don’t 

leave the spatial domain on which they initially were introduced. This overhead would 

become limiting when all the particles leave the spatial domain in which they were 

introduced initially. 

Application to a rotary kiln 

The partially filled rotary kiln creates a natural load imbalance due to the presence of 

localized particulate phase. Simulations were performed for such tightly coupled fluid-

particulate system to measure parallel performance. A cylindrical rotary kiln with 

dimensions of 0.1524m diameter and 0.0762m axial length was simulated. A thin section 

of length 0.01524m of the same kiln geometry was simulated as well. In these three 

dimensional simulations, 900 fluid cells in a body fitted mesh with 20,000 alumina 

particles were used for rotary kiln section and 4500 fluid cells and 100,000 particles for 

the full scale kiln. The body fitted mesh consisted of 5 mesh blocks for the thin section 

and 25 mesh blocks for the full scale rotary kiln. The fluid calculation was parallelized 

using domain decomposition by assigning each block to a MPI process or OpenMP 

thread. The details of these computations are discussed in Chapter 5. 

Figure 3.3 (A) compares the uneven work load for a domain decomposed problem (thin 

section of rotary kiln) unlike the fluidized beds which have fairly even load distribution 

of both particulate and fluid phase. The particles are colored based on the 
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processor/thread to which they are assigned. In this initial state of the bed, fluid block 1 

has approximately 8000 particles, with approximately 4000 particles each in blocks 2, 4 

and 5, with no particles in block 3. After rotation of the bed, under domain 

decomposition, fluid blocks 2 and 4 have approximately 7800 particles, with 

approximately 4100 particles in block 5 and a few hundred particles in each of block 1 

and 4. Whereas, in OpenMP framework all the particles and fluid mesh blocks are evenly 

distributed amongst the OpenMP threads at both the instances. 

After initial gravitational settling of the particles in the kiln, it is rotated at 20 RPM and 

the simulation run for 5 milliseconds or 1000 time steps to collect performance data with 

both MPI and OpenMP.  The MPI run calculates both the fluid and the particles in the 

domain decomposed framework, with block 3 having no contribution to particle 

computations, which in this case is significantly more than the fluid calculations.  In the 

OpenMP framework, however, the particle calculations are distributed across 5 threads in 

chronological order from 1-4000 on block 1, 4001-8000 on block 2, and so on. Figure 3.3 

(A) shows the initial distribution of the particles (colored by particle number) in the fluid 

blocks. Thus, thread 1 works on particle numbers 1-4000, most of which are concentrated 

in fluid block 1, and thread 2 works on particle numbers from 4001-8000, which also are 

mostly concentrated in block 1. Unlike in the MPI framework in which process 3 has no 

particles to work on, thread 3 is assigned particle numbers 8001-12000, which mostly 

exist on fluid block 2. Since particle calculations require local fluid velocity field data, 

there is some additional overhead of fetching fluid data from non-local thread memory as 

is clearly the case for particle numbers 4001-16000 in Figure 3.3 (A). This overhead 

increases as the kiln continues to rotate and particles continue to mix as shown in Figure 

3.3 (B). However, the additional overhead is miniscule, compared to having an idle 

processor in MPI. This is reflected in Figure 3.4, which demonstrates the advantage of 

using the task based parallelism of OpenMP threads over MPI. With MPI, process 1 

works on 8000 particles, whereas process 3 remains idle for most of the computation, 

since particle calculations dominate the overall computational time. On the other hand, 

with OpenMP, the particle calculations are more uniformly distributed across all threads, 

barring the larger percentage time taken by thread 1 which has to compute the serial parts 

of the particle algorithm. This flow is particle collision dominated and thus the 
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computations per particle are much higher and the benefit of OpenMP parallelism can be 

observed even for a small number of particles. 

 

 

Figure 3.3 (A) Initial distribution of particles in a rotary kiln (thin section) showing domain 

decomposition used in MPI framework and N-body particle decomposition for OpenMP. (B) 

Comparison of particle workload division after roation of the kiln. Different particle colors represent 

the workload assignment to various cores in the two modes. 

Table 3.3 summarizes the timings for MPI and OpenMP for the 5 and 25 processor 

calculations with 20,000 and 100,000 particles corresponding to the rotary kiln section 



54 

 

simulation and full scale simulation respectively. The load imbalance in the MPI run is 

reflected in Table 3.3, which shows that the time taken is between 60 and 100% higher 

than the OpenMP parallel run for the 5 and 25 block calculations, respectively. This flow 

is particle collision dominated and thus the computations per particle are much higher 

and the benefit of OpenMP parallelism can be observed for the relatively modest number 

of particles per core. Since the 5 block geometry calculations were performed on a single 

node the remote data fetching communication time was minimal but when the larger 

problem was run across multiple nodes, communication overhead of remote data fetching 

increased. In spite of this, the OpenMP parallel version ran 40% faster than the domain 

decomposed (MPI) run mostly because of the load balance achieved. Even though the 

workload per processor was the same for the two different sized problems listed in Table 

3.3, there is a much higher cost associated with message passing in MPI and remote 

memory accesses in OpenMP when the data is distributed across multiple nodes as is the 

case for the larger problem. In the domain decomposed particle workload partitioning 

scheme, when a particle crosses mesh block boundaries, data associated with that particle 

is packed and sent to the mesh block which receives the particle. Whereas in the OpenMP 

framework once a particle is assigned to a particular thread, the particle stays with that 

thread irrespective of its location. Because of this, the fluid data needed by the particle 

may only be available at a memory location associated with another thread, which has to 

be fetched at an increased communication latency cost. Additionally, based on the 

domain decomposition strategy selected for the fluid domain, the smaller geometry has 

message passing in two directions as compared to three directions for the larger case, 

increasing the communication costs in the larger geometry. 

Table 3.3 Total runtime taken to run 0.01 second of rotary kiln simulation on HokieOne for 20,000 

and 100,000 particle cases after 1 second of initial rotation 

 Number of Mesh Blocks OpenMP MPI 

Time (seconds) 5 160 330 

Time (seconds) 25 275 445 
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Figure 3.4 Comparision of time spent by MPI-parallel and OpenMP-parallel paradigms in 

communications, particle,  and fluid (miscellaneous) computations in a rotary kiln (thin section) 

simulation with 900 fluid cells and 20,000 particles. 

Additional strong scaling results in which the problem size is kept constant and the 

number of cores is varied is shown in Figure 3.5 for MPI and OpenMP for 25 blocks and 

100,000 particles.  It is noted that the majority of the computational time is spent in the 

DEM for the rotary kiln. The benefits of using the OpenMP framework where the particle 

work load is evenly distributed across all the processors can be observed. As the number 

of processors is varied from 5 to 25, the time required to perform the calculations drops 

but not linearly. This indicates that the inter-processor communication overheads in MPI 

and remote data fetches in OpenMP become significant as the number of cores increase 

and also establishes that a minimum of approximately 10,000 particles per core are 

necessary to offset the communication overheads. 
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Figure 3.5 Scaling study of rotary kiln case with 100,000 particles for 10 milliseconds of runtime 

comparing domain decomposed parallelism against the hybrid of particle subset parallelism for 

particulate phase and domain decomposition for the fluid phase. The OpenMP parallel version 

outperforms MPI parallel version for different number of cores. 

Summary 

It is established that OpenMP threads offer considerable advantages over MPI processes 

in multiphysics applications which do not adhere to a single mode of parallelism.  MPI, 

while ensuring data locality has large overhead associated with changing modes of 

parallelism. On the other hand, OpenMP does not ensure data locality, but is very 

adaptable to different modes of parallelism. By carefully constructing OpenMP code to 

increase data locality for scalable performance, its adaptability can be exploited 

effectively. This is highlighted in tightly coupled fluid-particulate systems (DEM-CFD), 

in which the best parallel performance is obtained by switching the mode of parallelism 

from domain decomposition for the fluid calculations to N-body parallelism for the 

particles. In DEM, building ghost particle lists at process boundaries is a very time 

consuming communication-heavy operation, which is eliminated in the OpenMP parallel 

framework. For a 1.3 million particle uniformly fluidized bed system it is shown that 

OpenMP-DEM is twice as fast as MPI-DEM on up to 64 processors or cores.  The 

adaptability of OpenMP is illustrated in a rotary kiln application in which particles are 

not uniformly distributed across the domain decomposed computational blocks and suffer 
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large load imbalances when parallelized in the MPI framework. Changing modes of 

parallelism in this framework with MPI would involve very large overheads.  It is shown 

that in spite of OpenMP suffering from decreasing data locality on large core counts, it is 

50-90% faster than MPI. These developments are very relevant to recent advanced co-

processing architectures with a large number of shared memory cores. 
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4. Methodology and validation for heat transfer analysis 2 

Methodology 

Computational methods for predicting large-scale fluid-particulate flows have been 

developed over the last 20 years. The in-house code GenIDLEST [24] was used for this 

work. The overall algorithm, data structure and capabilities of the code are mentioned in 

chapter 2 and 3. GenIDLEST uses an incompressible variable property fractional step 

algorithmic model solving the mass, momentum and energy conservation equations 

which are listed in this chapter. Particle scale validation studies are also discussed later in 

this chapter. 

Governing equations 

Built on top of the existing capability, a number of multiphysics modules were developed 

to attack the full range of physics in multiphase flows. Notable among these are particle-

particle and particle-wall collisions and the ensuing transfer of momentum and heat 

between solid-solid and gas-solid-gas. For this work, particle-particle and particle-wall 

collision momentum transfer using DEM, which is a fundamental capability required for 

simulation of particulate flow dynamics, was used together with appropriate particle-

fluid, particle-particle and particle-wall heat transfer models [68]. 

Fluid Flow and Energy Governing Equations 

The governing equations for incompressible variable property unsteady viscous flow in a 

generalized coordinate system consist of mass, momentum and energy conservation laws. 

The equations are mapped from physical (𝑥 ) to logical/computational space (𝜉 ) by a 

boundary conforming transformation (𝑥 ) = 𝑥 (𝜉 ), where (𝑥 ) = (𝑥, 𝑦, 𝑧) and (𝜉 ) =

                                                 

 

2 Majority part of this chapter is published in Particle scale heat transfer analysis in rotary kiln, Amit 

Amritkar, Danesh Tafti, Surya Deb, Proc. of ASME HT2012, Puerto Rico, July 8-12 2012. Used with 

permission of ASME, 2013 
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(𝜉, 𝜂, 𝜁). The equations are converted to non-dimensional form using the following 

parameters, 

𝜌 =
𝜌∗

𝜌𝑟𝑒𝑓
∗   𝜇 =

𝜇∗

𝜇𝑟𝑒𝑓
∗   𝜅 =

𝜅∗

𝜅𝑟𝑒𝑓
∗   𝑐𝑝 =

𝑐𝑝
∗

𝑐𝑝𝑟𝑒𝑓
∗   

𝑥
→= 𝑥

→∗

𝐿𝑟𝑒𝑓
∗   

𝑢
→= 𝑢

→∗

𝑈𝑟𝑒𝑓
∗   𝑡 =

𝑡∗𝑈𝑟𝑒𝑓
∗

𝐿𝑟𝑒𝑓
∗   𝑃 =

𝑃∗−𝑃𝑟𝑒𝑓
∗

𝜌𝑟𝑒𝑓
∗ 𝑈𝑟𝑒𝑓

∗ 2   𝑇 =
𝑇∗−𝑇𝑟𝑒𝑓

∗

𝑇0
∗  

4.1 

The equations for incompressible variable property flow coupled with a solid discrete 

phase in dimensionless form are written as: 

Continuity: 

𝜕

𝜕𝜉
(𝜌𝜖√𝑔𝑈𝑗) = 0 4.2 

Momentum: 

𝜕

𝜕𝑡
(𝜌𝜖√𝑔𝑢𝑖) +

𝜕

𝜕𝜉𝑗
((𝜌𝜖√𝑔𝑈𝑗)𝑢𝑖) = −

𝜕

𝜕𝜉𝑗
(√𝑔(𝑎 𝑗)

𝑖
𝑝) +

1

𝑅𝑒

𝜕

𝜕𝜉𝑗
(𝜖(𝜇 +

𝜇𝑡)√𝑔𝑔𝑗𝑘 𝜕𝑢𝑖

𝜕𝜉𝑘
) + 𝑆𝑓𝑝𝑖

  

4.3 

Energy: 

𝜕

𝜕𝑡
(𝜌𝜖√𝑔𝑇) +

𝜕

𝜕𝜉𝑗
((𝜌𝜖√𝑔𝑈𝑗)𝑇) =

1

𝑅𝑒𝑃𝑟

𝜕

𝜕𝜉𝑗
(𝜖(𝜅 + 𝜅𝑡)√𝑔𝑔𝑗𝑘

𝜕𝑇

𝜕𝜉𝑘
) + 𝑄𝑓𝑝 4.4 

Equation of State: 

𝜌 =
𝑃

𝑅𝑇
 4.5 

where √𝑔𝑈𝑗 = √𝑔(𝑎 𝑗)
𝑘
𝑢𝑘 is the contravariant flux vector, 𝑎 𝑖 are the contravariant basis 

vectors, √𝑔  is the Jacobian of the transformation, 𝑔𝑖𝑗 is the contravariant metric tensor, 

𝑢𝑖 is the Cartesian velocity vector, p is the kinematic pressure and P is the total pressure, 

T  is the temperature, 𝜀 is the void fraction, Sfp and Qfp are the total non-dimensional 

interphase momentum and energy transfer terms in a given computational cell, 
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respectively. Both, the Reynolds number (Re) and Prandtl number (Pr) are defined based 

on the reference quantities. 𝜇𝑡 is the non-dimensional turbulent eddy-viscosity given by, 

𝜇𝑡 = ρCs
2(√g)

2
3|S ̅| 4.6 

where | 𝑆̅| is the magnitude of the strain rate tensor given by| 𝑆̅| = √2Sik̅̅ ̅Sik̅̅ ̅;  and the 

strain rate tensor is given by, 

Sij
̅̅̅ =

1

2
(
∂ui̅

∂xj

+
∂uj̅

∂xi
) 4.7 

and the Smagorinsky constant Cs
2 is calculated using the Dynamic subgrid stress model 

[69], κt is the turbulent conductivity or reciprocal of the turbulent Prandtl number times 

the turbulent viscosity. 

The above formulation takes into account property variation with temperature. The 

dynamic viscosity and thermal conductivity variations are calculated based on 

Sutherland’s law for gases whereas the specific heat is assumed constant as it has a much 

weaker dependence on temperature. 

Further details about the algorithm, functionality, and capabilities can be found in [24, 

25]. The software has been applied to various turbulent flow and heat transfer problems 

[26]. In this study, the fluid equations are solved by a semi-implicit version of the 

fractional-step method.  

Particle Scale Modeling 

The DEM operates at the particle scale providing a framework to investigate the 

hydrodynamics and heat transfer mechanisms in detail. Central to the DEM is the 

treatment of multiple particle-particle and particle-wall interactions of spherical smooth 

particles. A soft sphere methodology has been implemented to model these interactions. 

The idea of discrete particle modeling using the soft sphere method was originally 

developed by [46]. In their approach, they use a linear spring-dashpot system to model 

the inter particle interactions in dense granular flows. In the soft sphere methodology, 

multiple particle interactions can be taken into consideration unlike the hard sphere 

model [70], where only binary collisions are considered. The soft sphere model was first 

applied by [47] to a 2D fluidized bed. The forces acting on any individual particle i are 

calculated based on Newton’s second law as follows, 
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𝑚𝑝,𝑖

𝑑𝑢⃗ 𝑝,𝑖

𝑑𝑡
= (𝜌𝑝 − 𝜌𝑓)𝑉𝑝,𝑖𝑔 +

𝑉𝑝,𝑖𝛽

1 − 𝜀
(𝑢⃗ 𝑓 − 𝑢⃗ 𝑝,𝑖) + ∑𝐹 𝑝,𝑖𝑗 4.8 

where 𝑚𝑝,𝑖, 𝜌𝑝, 𝜌𝑓 , 𝑉𝑝,𝑖, 𝑢⃗ 𝑓𝑎𝑛𝑑 𝑢⃗ 𝑝,𝑖 are the particle mass, particle density, fluid density, 

particle volume, fluid velocity and particle velocity, respectively, 𝜀 represents the void 

fraction, and 𝛽 represents the momentum exchange coefficient between the solid and the 

fluid phase. ∑𝐹 𝑝,𝑖𝑗 represents the net contact forces due to collisions with other particles 

and with walls. The first term on the right hand side accounts for the buoyancy of the 

particle in the fluid medium. The second term accounts for the particle-fluid coupling 

through the drag formulation. The inter phase momentum exchange coefficient 𝛽 is 

modeled by combining correlations given by [71] for dense regimes (𝜀 < 0.8) and by [72] 

for dilute regimes (𝜀 > 0.8). The combined drag forces of all the particles inside a fluid 

grid and the calculated voidage are transferred to the fluid equations to couple the fluid 

and particle phase. 

Particle rotation is also considered in the calculations. The angular acceleration of each 

particle i is computed as follows, 

𝐼𝑝,𝑖

𝑑𝜔⃗⃗ 𝑝,𝑖

𝑑𝑡
= ∑𝜏 𝑝,𝑖𝑗

𝑗

;           𝜏⃗⃗ 𝑝,𝑖𝑗 = 𝑟 𝑝,𝑖 × 𝐹 𝑝,𝑖𝑗_𝑡𝑜 

 

4.9 

where, 𝐼𝑝,𝑖, 𝜔⃗⃗ 𝑝,𝑖,  𝜏⃗⃗ 𝑝,𝑖𝑗, 𝑟 𝑝,𝑖𝑎𝑛𝑑𝐹 𝑝,𝑖𝑗_𝑡𝑜 are particle moment of inertia, angular velocity, 

torque acting due to collision with a neighboring particle j , radius of the particle and 

tangential force acting due to collision with a neighboring particle j.  

The collision forces (𝐹 𝑝,𝑖𝑗) are calculated using the soft sphere model. The contact forces 

acting on a particle in collision with its neighbor is modeled as a linear spring dashpot 

system in the normal and tangential directions. In the tangential direction, there is an 

additional sliding element that controls the magnitude of the tangential force acting on 

the particle and enables sliding. Figure 4.1 shows the normal and the tangential spring 

systems involved in soft sphere modeling. The details of this spring dashpot slider model 

can be found in [47]. 
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Figure 4.1 The soft sphere spring - dashpot - slider model 

Methodology for Thermal DEM 

There are different modes of heat transfer in a dense particulate system. The most 

common modes of heat transfer pertaining to the particulate phase are the particle-particle 

and particle-wall conduction heat transfer, thermal conduction through the gas between 

the particles (gas lens and liquid bridge effect), convective heat transfer with the 

surrounding gas, radiative heat transfer with the gas phase and the bed walls and 

frictional heating between the particle and a wall or another particle. Usually radiation 

heat transfer can be neglected at low temperatures, typically <700K [73].   

Prior to explaining the microscopic models, the characteristic equation describing heat 

transfer for the dispersed phase is given by,  

𝑚𝑝,𝑖𝑐𝑝,𝑖

𝑑𝑇𝑝,𝑖

𝑑𝑡
= 𝑄𝑓𝑝,𝑖 + 𝑄𝑝,𝑖 + 𝑄𝑓𝑟𝑖𝑐,𝑖 + 𝑄𝑟𝑎𝑑,𝑖 4.10 

where, Qfp,i is the convective heat transfer between particle and fluid, Qp,i is the source 

term arising from inter-particle and particle-wall interactions and 𝑄𝑓𝑟𝑖𝑐,𝑖 is the frictional 

heating. The convective heat transfer (𝑄𝑓𝑝,𝑖) between particle and fluid is calculated by 

assuming a lumped capacitance system (Bi<0.1) and using one of many correlations 

available in the literature for dense particulate systems [74-77]. An equal and opposite 

convective heat transfer source term is transferred to the fluid energy equation. 

Particle – fluid convection heat transfer:  

The convective heat transfer coefficient between particles and fluid phase is calculated 

based on Nusselt number correlations. There are many correlations in the literature which 

describe the heat transfer rates between solid and fluid phase. Some of these correlations 

involve the void fraction whereas some of them are dependent on the particle properties 
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and applicable only in a certain range of flow parameters. In this study, a widely 

employed correlation proposed by [77] is used which is as follows, 

𝑁𝑢 = (7 − 10𝜀 + 5𝜀2) (1 + 0.7𝑅𝑒𝑝
0.2𝑃𝑟

1
3) + (1.33 − 2.4𝜀 + 1.2𝜀2)𝑅𝑒𝑝

0.7𝑃𝑟
1
3 4.11 

where, 𝑅𝑒𝑝 = 𝜀𝑢𝑝𝑑𝑝/𝜈 

Friction heating 

Particle flow in the rotary kiln is governed by large particle contact times with each other 

and with the walls of the kiln, making it essential to include the heating due to friction. 

The frictional heating [78] between a particle and another particle or a surface is 

calculated as, 

𝑄𝑓𝑟𝑖𝑐,𝑖 = γi,j𝜇|𝑉⃗ 𝑇||𝐹 𝑁| 4.12 

where the partition coefficient of generated heat flow is given by γi,j =
𝜅𝑝,𝑖

𝜅𝑝,𝑖+𝜅𝑝,𝑗
 for inter-

particle collision and γi,j = 0.5 for particle wall collision, μ is coefficient of friction, 𝑉⃗ 𝑇 is 

the tangential velocity, 𝐹 𝑁 is the normal force, and κp is the thermal conductivity. 

Particle/surface – particle conduction heat transfer:  

The literature suggests mainly two approaches for calculating inter-particle and particle-

surface collision heat transfer. The first method, which is used in this study,  is based on 

the quasi steady state solution of the collisional heat transfer between two spheres [79]. 

The other approach is based on the analytical solution of the one dimensional unsteady 

heat conduction between two semi-infinite objects [68].  

The quasi steady state solution approach has been widely used for many granular flow 

applications in the pharmaceutical, petrochemical, and mineral industries, energy 

conversion, gaseous and particulate pollutant transport in the atmosphere, and heat 

exchangers amongst others [80]. This modeling approach is particularly useful for 

applications where the collision between particles involves more than two particles and 

the time of collision between any two particles is influenced by the presence of additional 

colliding particle(s) as is the case in dense particulate flows. The approximate analytical 
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solution of contact conductance [81] from one stationary particle center line to the other 

stationary particle in vacuum is given by, 

𝐻𝑝𝑐,𝑖𝑗 = 2𝜅𝑝,𝑖𝑟𝑐,𝑖𝑗 4.13 

where 𝜅𝑝,𝑖 is the thermal conductivity and 𝑟𝑐,𝑖𝑗 is the contact radius between the colliding 

particles i and j (assuming 𝑟𝑐,𝑖𝑗 ≪ 𝑅∗
𝑖𝑗). It is implicitly assumed that the thermal 

conductivity ratio of particle to fluid is large for the above contact conductance to be 

valid. The instantaneous conductance Hpc,ij is calculated as a function of the material 

properties and the actual contact force based on Hertz’s theory as follows,  

𝐻𝑝𝑐,𝑖𝑗 = 2𝜅𝑝,𝑖 [
𝐹 𝑝,𝑖𝑗,𝑛 𝑅

∗
𝑖𝑗

𝐸∗
𝑖𝑗

]

1/3

 4.14 

where, 𝑅∗
𝑖𝑗 is the geometric mean of the particle radii, 𝐹 𝑝,𝑖𝑗,𝑛 is the normal contact force 

calculated from the DEM simulation and 𝐸∗
𝑖𝑗 is the equivalent Young’s modulus given 

by, 

𝐸∗
𝑖𝑗 =

4/3

1 − 𝜎𝑝𝑖
2

𝐸𝑝𝑖
+

1 − 𝜎𝑝𝑗
2

𝐸𝑝𝑗

 
4.15 

where, Epi and Epj are the elastic moduli of the colliding particles and σpi and σpj are the 

Poisson’s ratio, respectively. The amount of heat transported across the collisional 

interface per unit time (𝑄𝑝𝑐,𝑖𝑗) is thus given by, 

𝑄𝑝𝑐,𝑖𝑗 = 𝐻𝑝𝑐,𝑖𝑗(𝑇𝑗 − 𝑇𝑖) 4.16 

The above formulation was modified by [82] to account for cases with different material 

properties of colliding particles or particle and surface. 

𝑄𝑝𝑐,𝑖𝑗 =
4𝑟𝑐,𝑖𝑗(𝑇𝑗 − 𝑇𝑖)

(1 𝜅𝑝𝑖
⁄ + 1

𝜅𝑝𝑗
⁄ )

 4.17 

The other approach (unsteady approach) of solving the inter-particle conduction is by 

solving the unsteady heat transfer equation in the direction normal and parallel to the 

contact area. There are a number of implicit assumptions in this formulation, namely, that 

the contact area is much smaller than particle diameter, time of contact is short such that 

the two particles can be treated as infinite mediums, and that the particles are perfectly 

smooth with no contact resistance. The analytical solution of this equation exists for the 
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assumption of one dimensional heat transfer where the Fourier number 𝐹𝑜𝑝𝑖𝑗  =

𝛼𝑖𝑡𝑐,𝑖𝑗/𝑟𝑐,𝑖𝑗
2  approaches zero. 

𝑞0,𝑖𝑗 = (0.87𝛽𝑝,𝑖𝛽𝑝,𝑗(𝑇𝑝,𝑗 − 𝑇𝑝,𝑖)𝐴𝑐,𝑖𝑗𝑡𝑐,𝑖𝑗
−0.5)/(𝛽𝑝,𝑖 + 𝛽𝑝,𝑗) 4.18 

where, 𝛽𝑝,𝑖 = (𝜌𝑝,𝑖𝑐𝑝,𝑖𝜅𝑝,𝑖)
0.5, 𝜌𝑝,𝑖 is the density of the particle material, 𝜅𝑝,𝑖 is the 

thermal conductivity of the particle, Ac.ij is the maximum contact area based on Hertz’s 

theory [68]  given by, 

𝐴𝑐,𝑖𝑗 = 𝜋(5𝑚𝑅∗
𝑖𝑗

2/4𝐸𝑖𝑗
∗)

2/5
(𝑢⃗ 𝑝,𝑖𝑗_𝑛)

4/5
 4.19 

where m is the reduced mass and tc is the total time of collision. The estimation of this 

time is done using the elastic collision time as given by,  

 𝑡𝑐,𝑖𝑗 = 2.94(5𝑚/4𝐸𝑖𝑗
∗)

2/5
(𝑅∗

𝑖𝑗𝑢⃗ 𝑝,𝑖𝑗_𝑛)
−1/5

 4.20 

A correction term is proposed to compensate for radial heat conduction in cases 

where 𝐹𝑜𝑝𝑖𝑗 > 1.  

𝑄𝑝𝑐,𝑖𝑗 = 𝐶𝑞0,𝑖𝑗 4.21 

The correction coefficient ‘C’ is obtained by solving the complete heat equation 

numerically [68]. 

The calculation of the collisional heat transfer is done by numerically integrating the 

analytical solution of the 1D heat conduction equation as mentioned above. This involves 

obtaining Ac, 𝑟𝑐,𝑖𝑗 and tc from the soft sphere collision model. The soft sphere model 

slows down the process of collision by reducing the normal spring constant associated 

with the particle material. Computational efforts show that the softening treatment has no 

effect on the overall movement of the particles since the particle velocity is independent 

of the normal spring stiffness. However, this leads to a higher estimation of heat transfer 

between the particles as the heat transfer process is highly sensitive to the contact time 

and area of contact. [83] proposed area and time restoration factors for Ac and tc based on 

the actual normal spring constant. The restoration factors are listed below as,  

𝐴𝑐𝑎/𝐴𝑐,𝑖𝑗 = √𝑘𝑛𝑖/𝑘𝑛𝑎
4      ,    𝑡𝑐𝑎/𝑡𝑐,𝑖𝑗 ≈ √𝑘𝑛𝑖/𝑘𝑛𝑎 4.22 

The restoration is then applied to the Ac,ij and tc,ij as mentioned above to obtain the 

corrected area and time of contact Aca and tca respectively. 
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Zhou et al. [84] proposed another method of finding the actual area of contact which 

implicitly accounts for contact time correction. They propose a correction factor for the 

contact radius as, 

𝑐 = 𝑟𝑐𝑎/𝑟𝑐,𝑖𝑗 = (𝐸𝑖𝑗/𝐸𝑖𝑗
∗ )

1/5
 4.23 

where, 𝐸𝑖𝑗  is the equivalent Young’s modulus calculated based on the material properties 

used in soft sphere modeling of the colliding particles. Instead of using an explicit 

correction factor for contact time as done by [83], this approach uses the 𝐸𝑖𝑗 [85] 

obtained from the DEM simulations as follows, 

𝐸𝑖𝑗 = 3𝑘𝑝,𝑖(1 − 𝜎𝑝,𝑖
2 )/√2𝑟 4.24 

The collisional heat transfer is then summed over all the collisions (𝑛𝑝,𝑖) a particle is 

undergoing at a given instant with its neighboring particles, 

𝑄𝑝𝑐,𝑖 = ∑𝑄𝑝𝑐,𝑖𝑗

𝑛𝑝,𝑖

𝑗=1

      &        𝑄𝑝𝑐𝑤,𝑖 = ∑𝑄𝑝𝑐𝑤,𝑖𝑗

𝑛𝑤,𝑖

𝑗=1

 4.25 

The heat transfer source terms from particle-particle and particle-surface interactions are 

corrected and then summed together to obtain the source term in the particle energy 

equation for particle 𝑖. 

𝑄𝑝,𝑖 = 𝑄𝑝𝑐,𝑖 + 𝑄𝑝𝑐𝑤,𝑖 4.26 

Radiation heat transfer 

At temperatures higher than 700K, radiative heat transfer has larger contribution to the 

heat transfer and can no longer be neglected. To calculate the radiation between the 

particle and its local environment, an enclosed domain is considered around each particle. 

For closely packed bubbling fluidized beds this consideration is reasonable due to the 

closely packed nature of the bed particles [86]. In this study the size of the enclosing 

domain for radiative heat transfer is considered to be the same as the computational cell 

which could range between 2.5 to 3 times the particle diameter depending on the body 

fitted grid size. Thus the radiative heat transfer between a particle and its surrounding is 

given by, 

𝑄𝑟𝑎𝑑,𝑖 = 𝜎𝜖𝐴𝑠(𝑇𝑏𝑒𝑑
4 − 𝑇𝑖

4) 4.27 
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𝑇𝑏𝑒𝑑 = 𝜀𝑓𝑇𝑓,𝑔𝑟𝑖𝑑 +
(1 − 𝜀𝑓)

𝑛
∑𝑇𝑝,𝑖

𝑛

𝑖=1

  4.28 

where n is the number of particles in the fluid grid. To simplify the computations the 

radiative heat transfer between fluid and its surrounding is neglected in this work. 

Particle scale validation studies 

The validation of the code was done using various experimental studies. The particle 

surface collision heat transfer was validated with experiments by Ben-Ammar et al. [87] 

and inter-particle collision was validated using experiments by Kuwagi et al. [88]. The 

heat transfer validation for multi-particulate system was accomplished by comparing the 

experimental data [89] of hot sphere cooling in a packed bed. Finally, a rotary kiln 

validation is performed by comparing the computational results with the experimental 

[90] bed temperature.  

Particle-surface collision simulations  

Collision between a particle and a surface was simulated for calculation of heat transfer 

based on thermal DEM and compared with experiments. Ben-Ammar et al. [87] 

performed experimental measurements by colliding heated stainless steel particles of 

diameter 0.00476 m with a surface at 2.3 m/s relative velocity. The experiments provide 

an average range of heat transferred per collision. The experiments were performed in 

vacuum which made sure that the convection heating is completely eliminated and the 

maximum temperature of the particles was also below 360K, which allowed neglecting 

radiative heat transfer in the simulations [73]. 

As listed in Table 4.1, the heat transfer calculations based on the quasi steady approach 

and the unsteady approach are within the experimental uncertainty. 

Table 4.1 Validation of particle-surface heat conduction with experiments 

Particle-surface collision  Total energy transferred per impact (J) 

Experimental  1-3 E-04 

Unsteady approach 1.106E-04 

Quasi steady approach 1.220E-04 
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Particle-particle collision simulations  

Kuwagi et al. [88] performed experiments to measure the dynamic heat transfer during 

the collision of hot (423K) and a cold (294K) stainless steel particles at a relative velocity 

of 2.81 m/s. The experiments used electrical current as a measure of the heat transfer by 

using a curve fitted function to convert the electric current to heat flux.  

The result of the unsteady approach with the correction for the actual contact area and 

time is compared with results of the experiment and the quasi steady state solution 

approach. As listed in Table 4.2, the heat transfer calculation with the unsteady approach 

is within the estimated experimental uncertainty whereas the calculation based on the 

quasi steady approach under predicts the heat transfer. The difference in prediction can be 

attributed to the uncertainty associated with the experimental correction used for 

converting the electric current into energy which was based on static contact 

observations. In addition to the experimental uncertainty, for the particle diameter of 

0.0198m, the Biot number is approximately 0.1 where the lumped capacitance 

assumption of the quasi-steady model might not hold true.  In contrast, the Fourier 

number is of O(10-3) for which the unsteady heat transfer model is more appropriate. 

Table 4.2 Validation of particle-particle heat conduction with experiments 

Particle-particle collision Total energy transferred per impact (J) 

Experimental 2.788E-02 

Unsteady approach 2.289E-02 

Quasi steady approach 3.949E-03 

 

In the packed bed and rotary kiln simulations, the quasi steady state approach is used for 

particle-particle and particle-wall heat transfer since the time of contact between particles 

acutely exceeds the collisional time estimated by Hertzian contact theory [68].  

Hot particle cooling in packed bed  

The validity of the proposed heat transfer model in a multi-particle scenario is examined 

by considering the cooling of a hot sphere in a fluidized bed. In the experiments 

performed by Collier et al. [89] the temperature of the hot sphere was measured by a 

thermocouple directly attached to the particle whereas in the CFD-DEM simulations the 
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temperature of any particle in the bed is readily available. The properties of the particles 

used and simulation parameters are listed in Table 4.3.  

Table 4.3 Particle properties and parameters used in the fluidized bed simulations 

 Notation Fluidized bed 

Number of particles N 16000 

Density (kg/m3) ρ 420 

Hot particle diameter (mm) dph 2 

Bed particle diameter (mm) dpb 3 

Poisson’s ratio σp 0.3 

Young’s Modulus (GPa) E 5.0 

Friction Coefficient μ 0.4 

Thermal conductivity (W/m-K) κ 0.84 

Heat Capacity (J/Kg-K) Cp 800.0 

Coefficient of restitution e 0.9 

Spring stiffness coefficient (N/m) K 2000 

Time step (seconds) Δt 1x10-6 

Fluidization velocity (m/s) Umf 0.74 

Fluidized bed size (mm) W,H,T 90,900,24 

Grid size (mm) Δx,Δy,Δz 9,9,8 

 

All the external bounds of the computational domain consist of no-slip walls. The top 

surface of the domain was an outlet boundary condition whereas the bottom surface was 

wall boundary with superficial inlet velocity. Initially all the particles in the bed were 

allowed to attain equilibrium under the influence of gravity. Since the exact location of 

the hot particle in the experimental setup was not known, for computations an 

approximate location was chosen in the center of the bed. Once the packed bed was 

formed, as shown in Figure 4.2 where all the particles are stationary, fluid with a 

superficial velocity of 0.58Umf was introduced from the bottom wall. Simultaneously a 

particle in the middle of the bed at about 168 mm height from the bottom of the bed was 

instantaneously heated to 180 oC and then allowed to cool. The cooling curve of the 

particle was recorded and is reported in Figure 4.3. The 3D calculations took about 17 

days of wall clock time on 2 CPU cores for 8 seconds of physical time.  
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Figure 4.2 Validation setup for cooling of a hot sphere in a packed bed 

As shown in Figure 4.3, the computational temperature is comparable with the measured 

one. The cooling curve of the hot sphere is slightly different than the experiments, 

indicating that the thermal behavior of hot sphere varies with their initial locations. These 

minor variations can be attributed to the different packing fractions in various regions of 

the bed once the air flow has started. Also, the use of lumped capacitance to model the 

cooling of a single particle in a flow yields a slower cooling rate as it doesn’t account for 

the additional cooling through particle-particle conduction. 

 

Figure 4.3 Cooling curves for a single hot sphere cooling in a packed bed 
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Summary 

The particle scale heat transfer models including conduction, convection, radiation and 

friction heating were incorporated in the in-house code GenIDLEST. Two types of 

conduction models were incorporated namely, quasi-steady model (equation 4.14) and 

dynamic collision model (equation 4.18) with corrections for actual time of contact and 

area of contact. Validation studies at the particle scale were conducted at single particle 

scale for various models used. Finally, the usefulness of having collisional conduction 

model over lumped capacitance calculations was illustrated.  
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5. Heat transfer studies in fluid-particulate systems 

Introduction 

The effects of mono dispersed as well as poly dispersed particles in a rotary kiln are 

presented in this chapter. These results are followed by heat transfer analysis in fluidized 

bed with an immersed tube heat exchanger to study the average heat transfer coefficient 

around the immersed tube. LES wall function is used to resolve the near wall coarse grid. 

The results focus on identifying primary mechanism of particle scale heat transfer in such 

systems. 

Heat transfer analysis in rotary furnace 

Rotary kilns are widely used reactors in metallurgical and chemical industries to handle 

bulk material. The reactor is a cylindrical vessel rotated around the drum axis with bulk 

material loaded inside for processing as shown in Figure 5.1. Typically the rotary kiln is 

rotated either by a friction drive wheel system or a positive rack/pinion or chain drive 

depending upon the size and production requirements. Considering the wide range of 

high temperature applications of the rotary furnaces, it is essential to understand the bed 

hydrodynamics along with the mechanisms of heat transfer occurring inside the reactor. 

 

Figure 5.1 Rotary furnace rotating clockwise 

To investigate the heat transfer mechanisms, several experiments have been performed in 

rotary furnaces for a wide range of process parameters including the effects of bed 

material properties like specific heat capacity and thermal conductivity, vessel rotational 

speeds, fill levels and so on. In one such experimental study [91] using Ottawa sand in a 

rotary furnace for convective heat transfer effects of hot air on the rolling solids and 

walls, it was found that the air to solids heat transfer coefficient was about an order of 
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magnitude higher than that from air to walls. In another study [92], theoretical analysis of 

the heat transfer mechanisms in a rotary furnace was performed giving an overview of 

various heat transfer coefficients along with experiments for contact heat transfer 

coefficient determination. To quantify particle-particle conduction heat transfer, 

experimental measurements [89] of cooling of a hot particle, directly connected to a 

thermocouple, in packed as well as fluidized bed was performed. It was found that when 

the hot particle was much smaller than the bed particles the particle-particle conduction 

heat transfer is negligible. Unlike fluidized beds, continuous temperature measurement in 

the rotary furnace is complicated due the continuous moving bed and the kiln. Hence, the 

data reported in the literature has been limited to the bed surface or to near the kiln walls. 

Recent advancements in measurement technology have helped overcome these 

limitations. A new measurement technique [93] employing radio transmission of 

temperature measurements from the rotating furnace was used to record 3D temperatures 

within a rotating sand bed as well as the temperature of freeboard gas (The freeboard 

region of a rotary reactor refers to the free space above the particulate bed.) and kiln 

walls. The authors observed large temperature gradients in the radial directions of the kiln 

whereas the axial variation was minimal and approached the wall temperature.  

The heat transfer study of rotary kiln gets more complicated when the granular bed has 

particles of different sizes. The hydrodynamic behavior of such poly-dispersed particles 

in rotary kiln was studied experimentally by many previous studies [94-97]. They 

observed that there is clear segregation of smaller particles at the core of the bed and the 

larger particles surround them. Based on the percolation of particles in the bed, Boateng 

et al. [97] came up with a mathematical model to predict the preferential particle motion 

in poly-dispersed rotary kiln. Experimental study by Dhanjal et al. [98] looked at the 

effects of poly-dispersed particles on heat transfer in rotary kiln. It was observed that 

there was little influence of particle segregation on overall heat transfer and there was 

inadequate particles mixing which caused radial temperature gradients. 

Experiments still lack the ability to capture the details of all the heat transfer 

mechanisms; thus there have been efforts to numerically simulate granular flows. 

Without considering interstitial gases, DEM simulations were performed with alumina 

powder in rotary kiln [90]. Additional DEM simulations with copper particles were 
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performed to explore the parameter space. Chaudhuri et al. [99] in their previous work 

also investigated the effects of thermal conductivity, specific heat capacity, vessel 

rotational speeds, fill levels and baffle sizes for different particles. It was observed that 

the heating was faster in high conductivity and lower heat capacity materials. To further 

enhance numerical capabilities, inclusion of fluid becomes essential. A two-dimensional 

rotary kiln was studied using CFD-DEM by Schmidt et al. [100]. In that study, a hard 

sphere model was used for inter-particle and particle-wall interactions. The DNS study 

involved modeling the large individual particles of 28mm diameter for temperature 

distribution inside particles; which allowed them to show that the lumped capacitance 

assumption was not valid. In another work [101] using CFD-DEM, heat transfer 

calculations for a rotary kiln were performed. They investigated particle of 3 different 

materials with 3 mm diameter for 2 different kiln rotational speeds with periodic 

boundaries axially in the rolling bed mode. Non-uniform grids were used along with a 

fictitious or mathematical wall to model the curved boundary. It was found that the ratio 

of heat transfer coefficient of convection to conduction for aluminum particles was 

almost 1.0, whereas for steel it was higher, and even higher for glass. 

There are six different bed behavior modes which are documented in the literature based 

on the operating conditions of the kiln [97]. These modes are, slipping, slumping, rolling, 

cascading, cataracting and centrifuging. The computational heat transfer studies of rotary 

kiln so far have concentrated on the rolling mode and the literature lacks comprehensive 

studies in other bed modes. Thus, the objective of this work was to segregate the different 

modes of heat transfer that dominate the heating of particulate phase in a rotary kiln 

running in the cascading mode. The dominant modes of heat transfer are identified for a 

mono-dispersed particulate flow.  

Additionally, there are no computational studies in the literature known to the author that 

have studied the effects of particle size distribution on bed heating in a rotary kiln. Thus a 

rotary kiln was studied to segregate various modes of heat transfer with poly-disperse 

distribution of particles in a slipping bed regime. There are few additional challenges 

associated with such computational study. Some of these challenges are, 1. Small 

computational time step is required since it is governed by the smallest particle diameter. 

2. Identification and storing of neighbors becomes memory intensive as the maximum 
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number of neighbors can easily exceed those in a closely packed bed with a single 

particle size. These issues are addressed using OpenMP parallelism to accelerate the 

computations and use of shared memory systems.  

Problem setup for mono-dispersed particulate flow 

Using the validated code, DEM simulations were run for a rotary kiln. The computational 

geometry, boundary conditions and physical parameters considered for rotary kiln 

calculations are summarized in this section. As discussed in chapter 3, two different 

geometries, the full scale rotary kiln and a thin section of the same kiln, were simulated. 

The thin section kiln was used only for parallel performance study. The thin section 

geometry is described in chapter 3 whereas the particle properties and other 

computational details are same as the full scale rotary kiln as listed below. The following 

chapter deals only with full section results. 

The model assumptions require that the resistance to heat transfer inside the particle is 

significantly smaller than the resistance between the particles. The Biot number [102] 

using the quasi steady conduction model (equation 4.14) assumptions require that the 

resistance to heat transfer inside the particle is significantly smaller than the resistance 

between the particles. The Biot number [102] is calculated using, 

Bi =
2

π
(
𝑟𝑐,𝑖𝑗

R
) 5.1 

where R is the particle radius. The maximum Bi number was found to be Bi~0.06. Thus 

the assumption of lumped heat capacitance at particle scale for these calculations is valid 

since Bi<0.1. 

Computational Grid 

The full scale cylindrical rotary kiln was simulated for validation and heat transfer 

studies. The dimensions of the horizontal cylinder were 0.1524m diameter with 0.0762m 

axial length. A 50% fill level was used based on the experiments performed by 

Chaudhuri et al. [90]. To avoid discontinuities in the void fraction profiles, the fluid cell 

size selected was 2.5 to 3 times the particle diameter [48]. Thus in this simulation, 4500 

fluid cells in a body fitted mesh with 100,000 alumina particles were used. The number 

of fluid cells in the axial direction was 15 cells with a total axial length of 40 particle 
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diameters, making the calculations fully three-dimensional (3D) for both fluid and 

particulate phase. 

Boundary and initial conditions 

All the external bounds of the kiln consist of no-slip walls. Initially all the particles were 

introduced uniformly throughout the cylinder and then allowed to reach mechanical 

equilibrium at the bottom of the stationary kiln, under the influence of gravity. After 

settling, the curved walls were instantaneously heated and maintained at a temperature of 

373K and the kiln was rotated at a constant rate of 20 RPM. The flat axial walls of the 

kiln were adiabatic to both fluid and particulate phase. Initially all the particles, air and 

the side walls are assumed to be at the room temperature of 298K. 

Computational details 

All the fluid pertinent equations were solved semi-implicitly with the Crank-Nicolson 

scheme. The particle equations were solved explicitly. The coupling terms computed as 

per equation 4.6 and 4.9 were introduced in the equations 4.3 and 4.4 respectively as 

source terms. The quasi-steady model of heat transfer as listed in equation 4.14 for 

conduction between particle-particle and particle-wall was used. The turbulent viscosity 

and turbulent conductivity were neglected in equations 4.3 and 4.4 as the fluid flow in the 

kiln falls in the laminar flow regime. 

The critical time step or the time of elastic collision between particles, based on the work 

by Tsuji et al. [103] and given in equation 5.2, was computed to be 1x10-4 seconds. In 

order to resolve the particle collisions, 1/20th of the critical time step was used for the 

simulations. The material properties of the bed particles are listed in Table 5.1. 

∆tcritical =
π

√𝐾 (
1 − 𝛿2

𝑚 )

 
5.2 

where 𝛿 denotes a constant given by, 

𝛿 =
−ln (𝑒)

√(𝜋2 + ln(𝑒)2)
 5.3 

The average temperature of all the particles in the bed is reported as average bed 

temperature in the computations and was used for comparison with the experimental 
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results [90]. In order to quantitatively describe the dynamics of temporal evolution of the 

particle temperature field, the conduction heat transfer flux, convective heat transfer flux 

and average bed temperature were computed. These variables were used to examine heat 

transport mechanisms in the system of interest here. Since the maximum possible 

temperature difference is 75 K for the rotary kiln, the temperature for calculations of air 

properties is assumed to be constant at room temperature. 

Table 5.1 Particle properties and parameters used in the rotary kiln simulations 

 Notation Al particles 

Number of particles N 100000 

Density (kg/m3) Ρ 3900 

Diameter (m) dp 0.002 

Poisson’s ratio σp 0.3 

Young’s Modulus (GPa) E 193.05 

Friction Coefficient  

  particle-particle 

  particle-wall 

 

µp-p 

 

0.5 

µp-w 0.7 

Thermal conductivity (W/m-K) Κ 36.0 

Heat Capacity (J/Kg-K) Cp 875.0 

Coefficient of restitution E 0.8 

Spring stiffness coefficient (N/m) K 6000 

Time step (seconds) Δt 5x10-6 

Results and discussion 

The 3D calculations of the full scale kiln took about 4.5 days of wall clock time on 25 

CPU cores for 12 seconds of physical time or 4 rotations of the rotary kiln after initial 

particle settling. The results of the full scale rotary kiln are discussed in this section.  

This work uses non-dimensional temperature based on equation 5.4, where the reference 

temperature used was the ambient temperature of 298K. 

𝑇 =
𝑇∗ − 𝑇𝑟𝑒𝑓

∗

𝑇𝑤
∗−𝑇𝑟𝑒𝑓

∗  5.4 

Figure 5.2 shows the variation of non-dimensional average bed temperature for full scale 

kiln simulation and experiment. The computational average bed temperature under 

predicted the experimentally measured bed averaged temperature by Chaudhuri et al. 

[90]. A number of experimental and computational deficiencies can potentially lead to 

these differences. The experimental study reports the average bed temperature by 

measuring temperature at ten locations in the bed along a vertical line as opposed to the 
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average temperature of all the bed particles. In the experiments, when the bed is stopped 

for measurements the thermocouple locations align with the maximum bed depth 

direction and the reading of temperature is taken in that direction. During thermocouple 

insertion in the bed in the experiments, it is very likely that the temperature recorded by 

the thermocouple is an average measure of the fluid and particle temperatures. The 

difference between average bed temperature and experiment can also be attributed to the 

coarse fluid grid which is a requirement for the volume averaged nature of the gas phase 

equation to be valid. The coarse fluid grid near the heated kiln walls cannot resolve the 

thermal boundary layer with precision and subsequently could reduce the heat transferred 

from the wall-to-fluid-to-particles. 

 

Figure 5.2: Average bed temperature in a rotary kiln running at 20 RPM compared with 

experimental data. 

Hydrodynamics and thermodynamics 

Figure 5.3 shows the flow field of air in the laboratory sized rotary kiln in hydrodynamic 

equilibrium after 12 seconds of rotation. The lip in the particle flow, a characteristic of 

cascading flows, can be seen in the figure. The stream traces show the presence of two 

counter-rotating vortices, one of which is present in the particle bed, and the other in the 

free board region. Since air flow is obstructed in the particle bed, convective velocity of 

air is small and is not particularly effective in facilitating convective transfer of heat to 

the fluid in the particle bed. On the other hand, the rotating flow cell in the freeboard is 
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more effective in convecting heat from the wall into the interior as seen in the figure. 

Axial transport of fluid at the core of these counter-rotating vortices is negligible.  

 

 

 

 

Figure 5.3: (a) Air stream traces and (b) Non-dimensional air temperature in the full scale rotary 

kiln after 12 seconds from the stationary position 

The granular flow with temperature evolution of particles is shown in Figure 5.4. The 

cascading flow simulations are shown after every revolution of the kiln starting from the 

stationary bed position. In Figure 5.4 (a), the internal core of particles which remains 

quasi static during the calculations can be distinctly seen at the middle of the bed. As 

time progresses, the near wall particles heat up due to both conduction heat transfer as 

well as convection heat transfer. These particles are transported to the freeboard as the 

kiln rotates. With subsequent rotations, the solid’s thermal boundary grows as the heat 

penetrates to include more heated particles. This happens as heated particles from near 

the wall transmit heat to surrounding particles as they move toward the freeboard region 

and as particles from the core slowly diffuse toward the wall under the action of gravity. 

Figure 5.4 (c) indicates that there are fewer hot particles on the freeboard side since only 

a thin layer of particles adjacent to the rotating walls are transported to the freeboard. 
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Figure 5.4: Particle temperatures in the full scale rotary kiln (a) after 3 seconds, (b) after 6 seconds, 

(c) after 9 seconds and (d) after 12 seconds from stationary bed position 

To separate out the heat transfer mechanisms of particle heating in the cascading kiln, 

particle-wall conductive heat transfer fluxes and convective heat transfer fluxes between 

fluid-particles are recorded. The average of these heat fluxes over all the particles was 

calculated and is reported in Figure 5.5. The contribution of convective heat transfer from 

fluid-to-particle in the near wall region dominates the direct transfer of heat from wall-to-

particles by conduction. Conduction heat transfer is about 10% as compared to about a 

90% contribution from convective heat transfer. 
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Figure 5.5: Conduction heat transfer between particle-wall and convection heat transfer between air-

particles in the rotary kiln 

The full scale rotary kiln was approximately divided into 5 axial sections and the average 

particle temperature in these sections was calculated. The axial variation in temperature 

can be seen in Figure 5.6. Sections 1 and 5 both encompass the wall region and have the 

end wall effects, whereas the temperature variation between sections 2 – 4 is 

comparatively negligible. Thus the axial temperature varies only near end wall whereas 

in the middle of the particle bed, there is not much variation. 

  

Figure 5.6 Axial variation of average particle temeprature in the full scale rotary kiln 
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Heat transfer in poly-dispersed rotary kiln with effect of modulus of elasticity 

Additional simulations were performed to study the effects of particle size distribution on 

heat transfer in a rotary kiln. The geometry selected for these simulations was based on 

the experimental setup of [98]. In order to reduce the computational expenses, a thin 

section of the rotary kiln with periodic boundaries in the axial direction was used. As 

observed in the previous study with the full scale rotary kiln, there are minimal axial 

variations of average bed temperature in the middle of the kiln and thus a thin section is 

found to be sufficient. The kiln dimensions were 0.4 m of diameter and 9 times average 

particle diameter thickness. The bed had about 20% fill level. The fluid domain was 

decomposed into 5 body fitted mesh blocks. The properties of sand particles used are 

listed in Table 5.2. The properties of the kiln wall material are assumed to be the same as 

the particles. Note that the modulus of elasticity of the sand particles is about 20000 times 

less than that of the Aluminum particles used in the previous section. 

Table 5.2 Particle properties and parameters used in the rotary kiln simulations with particle size 

distribution 

 Notation Sand particles 

Number of particles N 58000 

Density (kg/m3) Ρ 1428 

Average particle diameter (m) dp 0.0019 

Diameter range with normal distribution (m)  0.000988-0.002811 

Poisson’s ratio σp 0.3 

Young’s Modulus (MPa) E 10 (70, 700) 

Friction Coefficient  

  particle-particle 

  particle-wall 

 

µp-p 

 

0.4 

µp-w 0.4 

Thermal conductivity (W/m-K) Κ 2.9 

Heat Capacity (J/Kg-K) Cp 733 

Coefficient of restitution E 0.9 

Spring stiffness coefficient (N/m) K 800 

Time step (seconds) Δt 6x10-6 

Boundary conditions 

Initially the particles were uniformly distributed in the rotary kiln and allowed to settle 

under the influence of gravity. The particles and the air in the bed were initially at 

ambient temperature of 25 Celsius. After the particles reached a mechanical equilibrium 
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(particle velocity < 1x10-6 m/s approximately), the kiln was rotated with 1 RPM and the 

kiln walls were instantaneously heated to 800 Celsius. 

All the fluid equations were solved semi-implicitly whereas the particle equations were 

solved explicitly. The quasi-steady model (equation 4.14) of conduction heat transfer 

between particle-particle and particle-wall was used. The temporal evolution of the 

particle temperature field is described using contribution from the conduction heat 

transfer flux, convective heat transfer flux, and radiation heat transfer. Since the 

maximum possible temperature difference is 775 K for the rotary kiln, variable air 

properties were used based on Sutherland's law as discussed in chapter 4 . 

Parallel performance 

Using OpenMP parallelism, 12 seconds of simulation took about 10 days where as with 

MPI it took 65 days. Here the advantage of OpenMP parallelism gets magnified due to 

the fact that even though the fluid domain is decomposed into 5 fluid blocks the particles 

can be decomposed in as many threads as the number of particles would allow to sustain 

a high parallel efficiency. For parallel efficiency, 16 maximum OpenMP threads were 

specified compared to 5 static MPI processes yielding over 600% time savings. 

Results and Discussion 

The experiments by Dhanjal et al. [98] report the bed temperature at 4 different probe 

locations. The temperatures recorded by the probe placed 0.01 m away from the wall in 

the deepest bed section, is used for comparing the results. The temperature reported in the 

computations is the average of fluid and particulate temperature at the probe location 

calculated based on equation 4.28. The comparison with probe temperature is shown in 

Figure 5.7. The experimental results are reported for a much longer duration and due to 

the high computational cost associated with such long durations, only simulation results 

up to 74 seconds are included in Figure 5.7. The computational results match within 10% 

of the polynomial curve fit to the experimental data.  
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Figure 5.7 Temperature comparison with experiments for a poly dispersed rotary furnace 

Instantaneous particle temperatures in rotary kiln are shown after every 20 seconds for 

first minute of calculations in Figure 5.8. As it can be seen, the internal core of particles 

remains quasi static during the single revolution simulated. The heating from the wall is 

dominant but as the time progresses, the heating of particles near the freeboard becomes 

more prominent. Since the particles are in slipping bed mode, the particles near the 

freeboard do not get transported along the freeboard as they experience negligible rolling 

motion. Thus the shrinkage of the colder particle core from the freeboard side is 

dominated by convective heat transfer from the air which gets heated in the freeboard 

cavity with time. 

 

Figure 5.8 Non-dimensional particle temperature after 20, 40 and 60 seconds 

The average contribution of various modes of heat transfer is shown in Figure 5.9. At 

early times, conduction heat transfer from the wall is the dominating mode of heat 
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transfer. However, after about 40 seconds, there is a sharp increase in the percentage of 

heat transferred to the particles by convection and a modest increase in the heat 

transferred by radiation.  The increase in convective heat transfer is because the air in the 

freeboard region gets heated enough that the convective heat transfer from air to particles 

at the freeboard interface increases. The increase in radiative heat transfer as time 

progresses is due to the increase in particle and fluid temperature and the fourth power 

dependence of radiation heat transfer on these quantities. This behavior has also been 

observed in other fluid-particulate systems such as fluidized beds [86]. 

 

Figure 5.9 Decomposition of various modes of heat transfer in the rotary kiln 

The Figure 5.10 shows aggregate contribution of various modes of heat transfer for 

different particle sizes. The overall range of diameters was subdivided into 9 different 

sizes and the average heat transfer contribution for the first 74 seconds was calculated. 

Since radiation heat transfer was negligible during the initial period, its contribution is 

not included in the Figure 5.10. As seen from the figure, both conduction and convection 

are relatively less in particles with small diameter except for the smallest particles (<1.4 

mm) whereas the larger particles tend to dominate the heating of the particulate phase. 

The main reason for this to happen is because the large particles settle at the bottom of 

the bed initially and are in the proximity of the heated kiln walls for most of the time 

averaging duration. The smallest particles reside in the voids of these larger particles near 

the wall and also get heated due to wall conduction and near wall convection as time 

progresses. When looking at the larger particles (>2.6 mm), the conduction heat transfer 
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is high as the area of contact between the particle and the heated wall is much larger than 

the smaller particles. 

 

Figure 5.10 Effect of particle size distribution on heat transfer modes 

This behavior of larger particles segregating towards the outer walls and subsequently to 

the free board is also observed in the literature [97]. The overall effect of the particle size 

distribution on the flow field is that the smaller particles occupy the voids created in 

between the larger particles as shown in Figure 5.12. This gives rise to low void fraction 

or a tightly packed bed and thus low convective heat transfer. Also, there is higher 

particle-particle and particle-wall contact area giving rise to higher conductive heat 

transfer. This is because of the lower modulus of elasticity. The coefficient of conduction 

heat transfer in the quasi steady model is inversely proportional to the modulus of 

elasticity. In the poly dispersed case the modulus of elasticity of particles is four orders of 

magnitude smaller than the mono dispersed case. Thus conduction plays a much larger 

role in the poly dispersed rotary kiln. The effect of variation of modulus of elasticity is 

shown in Figure 5.11 by comparing the actual values and percentage heat transferred by 

different modes of heat transfer during the first 5 seconds of rotation. The conduction 

heat transfer is larger for low modulus of elasticity and it drops with an increase in the 

modulus of elasticity whereas the convective heat transfer remains almost the same. 

Thus, with the increase in modulus of elasticity the contribution of conduction heat 
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transfer reduces as the contact area between particle and heated walls reduces and 

consequently the percentage of convection heat transfer increases. 

  

Figure 5.11 Variations in heat transfer mechanisms with change in modulus of elasticity 

The thermal boundary layer growth for fluid and for particulate phase can be noted in 

Figure 5.12. The fluid field develops the boundary layer more rapidly in the free board 

area where as it is predominantly absent in the particle bed as the particles take away 

most of the heat from fluid via convection.  

 

Figure 5.12 Void fraction profile in the rotary kiln with magnified view of particle size distribution 

colored by temperature after 74 seconds. The arrows represent fluid velocity vectors 
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Summary 

In this study, numerical simulations were performed using coupled Discrete Element 

Method (DEM) and Computational Fluid Dynamics (CFD) to analyze heat transfer in a 

non-reacting rotary kiln.  

Microscopic models of particle-particle, particle-fluid, particle-surface and fluid-surface 

heat transfer are used in the analysis. For the mono-dispersed aluminum particles the 

results show that the convective heat transfer between particle and air dominates the 

overall heat exchange. Particles are heated near the rotary kiln walls by convection heat 

transfer as they pass through the thermal boundary layer of the heated fluid. These 

particles are transported to the center of the kiln where they transfer heat to the cooler 

particles in the quasi static core of the kiln and back to the cooler fluid at the center of the 

kiln.  It is found that 90% of the heat transferred to particles from the kiln walls is a result 

of convection heat transfer, whereas only 10% of the total heat transfer is due to direct 

conduction from the kiln walls.  

When particle with different sizes are introduced in the kiln, the bed becomes tightly 

packed. The modulus of elasticity of the poly dispersed sand particles is much smaller 

than the mono dispersed aluminum particles and thus the convective heat transfer 

becomes secondary to conduction heat transfer as the main mode of bed heating at the 

beginning of the kiln rotation. Convective and radiative heat transfer play a larger role as 

the bed temperature increases. 

Heat transfer in fluidized bed with a tube heat exchanger 

Introduction 

Fluidized beds heat exchangers have been used to enhance heat transfer capacity which 

has led to many studies of fluidized beds with immersed heat transfer tubes. In these 

exchangers, hydrodynamic and thermodynamic bed characteristics around the tube 

surface are critical in understanding the heat transfer mechanisms to or from the tube with 

the bed. These characteristics have been obtained through several experimental studies. 

They have led to development of mechanistic models and subsequently numerical 

correlation for calculating heat transfer coefficient in such systems. More recently 
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computational studies have been used to analyze the heat transfer coefficients due to the 

presence of immersed tubes in fluidized beds. A brief overview of the literature is 

presented below.  

Experimental studies 

Heat transfer on immersed surfaces in a fluidized bed is a function of the thermal 

properties of the solid and gas, the state of fluidization in the bed or fluidization velocity, 

particle size, and orientation of the surface in the bed. The transfer of heat from the bed to 

any surface takes place through direct particle contact with the surface through unsteady 

conduction and through gas convection for bed temperatures below 700 K [104] for 

which radiative effects can be neglected.  Hence the dominant mode of heat transfer is 

dependent on the solid and fluid fraction in the vicinity of the surface of interest.  

The majority of experimental studies have quantified heat transfer to walls and tubes 

through measurement of water inlet and exit temperatures and surface temperatures [105, 

106] or electrically heated probes in a room temperature bed [107, 108]. Other specially 

designed probes were used to measure local heat transfer at different locations around an 

immersed tube as well as local particle solid fraction [107].   

Experiments suggest that the heat transfer coefficient initially increases with particle 

diameter up to about 100 microns and then decrease as the size increases further up to 

about 1 mm, after which there is a gradual increase [109-114]. For very fine particle (< 

50-100 micron diameter), the heat transfer is mostly controlled by the rate of exchange of 

particles between the bulk and the wall and on contact the particles reach thermal 

equilibrium with the wall very quickly transporting heat to or from the surface.  The 

decrease in heat transfer coefficient for dp>100 micron is due to an increase in the gas 

fluidization velocity, a decrease in solids fraction near the heat transfer surface, and an 

increase in gas resistance to heat flow between the particle and surface. In this regime, 

the particles that come in contact with the wall do not change their temperature 

substantially during contact. For larger particles, because of the higher fluidization gas 

velocity, the bed transitions to turbulence and heat transfer due to gas convection 

increases at the surface, increasing the heat transfer coefficient. Consequently, particle 

heat capacity has a substantial effect on the heat transfer coefficient at small particle 
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diameters but a small effect for large particle diameters. The particle thermal conductivity 

has a significant influence on heat transfer coefficient only when kf/kp > 10% [115]. On 

the other hand, the heat transfer coefficient increases linearly with gas thermal 

conductivity [115]. 

Mechanistic models and numerical correlations 

A number of mechanistic models have been proposed to describe the heat transfer in 

fluidized bed heat exchangers. The earliest and the most studied is the “packet” model of 

Mickley et al. [116] for bubbling beds. In this model they use a picture of fluidization in 

which a small group or assembly of particles (“packets”) move as individual 

homogeneous units through the bed as the dense phase is stirred and that the principle 

resistance to the transfer of heat from surfaces to dense fluidized beds exists in the layers 

of solid particles nearest the surface.  The packets are not permanent but are accorded a 

finite persistence in time given by a root mean square mean residence time and a time 

fraction of contact by the dense phase. During contact, the void fraction, density and heat 

capacity are those of the quiescent bed and are assumed to be homogeneous. The model 

disregards any changes in the structure of the packet during contact, disregards any 

convective heat transfer between the surface and the gas, disregards any change in 

temperature of the packet for long residence times, and disregards any contact resistance 

between the packet and the surface and the orientation or geometry of the surface. 

Subsequently a number of modifications have been proposed to this model to account for 

these deficiencies. Baskakov [117] and Koppel et al. [118] introduced an empirical, time-

independent contact resistance at the wall-packet interface. Gelperin et al. [119] solved 

the basic packet model in terms of two heat transfer resistances, one due to the increased 

voidage in the vicinity of the wall that extended to one-half the diameter of a particle, and 

the other due to an adjoining two-phase packet. Baskakov [114] introduced gas to surface 

convection in the model. Antonishin et al. [120] analyzed heat conduction by allowing 

for local temperature relaxation in the heterogeneous medium. Kubie at al. [121] 

accounted for the wall effect by introducing a property boundary layer. Ozkaynak et al. 

[122] used the concept of penetration depth to make an allowance for the influence of the 

wall on void fraction at short residence times. They also experimentally determined 
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empirical curves for the mean residence time and time fraction as a function of excess gas 

velocity over the minimum fluidization velocity.  

While the packet or emulsion model worked reasonably well in dense beds with small 

particles (typically less than 1 mm), it breaks down for large particle diameters and high 

fluidization velocities, when gas convection starts playing a dominant role. Many 

investigators [110], [123-132] have investigated convective gas-surface heat transfer and 

have developed correlations for large particle systems.  

Numerous correlations have been developed from the mechanistic models and theories 

put forth in the literature for vertical surfaces e.g. [133-137] and single tubes e.g. [108, 

138-144] with diameter DT placed in a fluidized bed with particle size dp and superficial 

fluidization mass flux given by G. Typically the correlations are expressed in terms of 

𝑁𝑢 = 𝑓(𝐴𝑟, 𝑅𝑒, 𝑅𝑒𝑝, 𝑃𝑟, 𝜀, 𝑑𝑝, 𝐷𝑇 , 𝑓𝑙𝑢𝑖𝑑 𝑎𝑛𝑑 𝑠𝑜𝑙𝑖𝑑 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) where 𝑁𝑢 = ℎ𝐷𝑇/𝑘𝑓 , 

𝐴𝑟 =
𝑔𝑑𝑝

3𝜌𝑓(𝜌𝑝−𝜌𝑓)

𝜇𝑓
2  is the Archimedes number, 𝑅𝑒 = 𝐺𝐷𝑇/𝜇  and 𝑅𝑒𝑝 = 𝐺𝑑𝑝/𝜇, Pr is 

the Prandtl number, and  is the void fraction. Often, due to the lack of data in the 

immediate vicinity of the tube,  is assumed to be that of a packed bed at about 0.40, 

while others use correlations relating  to the fluidization velocity. A sample study of the 

variation in heat transfer coefficients for an immersed tube in fluidized bed is listed in 

Appendix A. 

Computational studies 

The most common computational approach used in the past has been the Eulerian-

Eulerian two fluid approach in which the solid phase is treated as a continuum. With 

respect to heat transfer calculations, one of the major sources of uncertainty is the 

calculation of the effective thermal conductivity of solid and fluid phase used in the 

calculations. The effective thermal conductivity depends on the thermal properties of the 

gas and solid, on the void fraction, and on the collision between particles in the bed. 

There are many approaches cited in the literature to find the effective thermal 

conductivity. The standard approach is that given by  [145] which calculates the bulk 

conductivity based on spherical packing in a stationary bed and as a function of the fluid 

and solid thermal properties  [146]. In another approach, the kinetic theory of granular 
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media is applied to estimate the effective solid and gas conductivity taking into account 

the collision between solid particles [147]. 

Schmidt et al. [148] used two different effective thermal conductivity models for Geldart 

B particles for 2D simulations of fluidized beds on a structured grid to observe the effects 

on a single immersed tube and multi immersed tube heat exchangers. They observed that 

the particle renewal at the wall led to instantaneous high heat transfer coefficients. There 

was a significant gap in the experimental results and the simulations in the average 

temperature profiles. This was attributed to the short simulation periods (2s) compared to 

the experiments (60s). Another recent study with the two fluid model approach has been 

performed by [149] for an immersed tube bank in a fluidized bed. They used the standard 

approach for calculating effective thermal conductivity in the bed but used a modified 

approach near the wall [150]. In their 2D fluidized bed simulations, the immersed tubes 

are modeled with a square cross-section. A deviation of 20% from the experimental 

results was observed. The difference has been attributed to the 2D simulation, no 

turbulence models, and the square tube geometry and low averaging times. Armstrong et 

al. [151] have also carried out heat transfer simulations for 1, 2 and 3 tubes immersed in 

fluidized beds using the two fluid model approach. The effective thermal conductivity 

model used in their study is simply the addition of the two different approaches taken by 

[148]. 2D simulations with Geldart B particles are performed and compared with another 

simulation study [152] showing over 300% differences. The authors attributed the 

differences to the symmetry conditions used by [152]. Armstrong et al. [153] used the 

same computational set up as their immersed tube paper [151] for calculating the heat 

transfer coefficients between a fluidized bed and walls. Geldart B particles in 2D bed 

simulations were used and 25-30% difference in estimation of the heat transfer 

coefficient compared to experiments was observed. This difference in results was 

ascribed to the difference in the initial conditions and also to the short duration of 

simulations (2s). Patil et al. [154] use Geldart B particles in 2D fluidized bed simulations 

using a two fluid model. Effective thermal conductivity is modeled based on a 

combination of the standard approach and kinetic theory of granular flow and the results 

are compared with experiments. Due to inaccuracies in the description of the 

hydrodynamics near the wall, differences in the wall heat transfer coefficients are 
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observed. Another study by Sun et al. [155] using two fluid model observed the effects of 

superficial velocity on the heat transfer coefficient for an immersed tube and found linear 

correlation between effective heat transfer coefficient and the superficial velocity albeit 

without experimental validation. Study by Dong et al. [156] over predicted the heat 

transfer coefficient around a circular and square tube as compared to the experiments as 

they found that the porosity model used in the two fluid modeling approach to be 

inadequate. 

Recently, studies using coupled computational fluid dynamics and discrete particle 

method have also been applied to investigate heat transfer in fluidized beds. Di Maio et 

al. [104] performed 2D simulations using 25,000 Geldart B particles to estimate the heat 

transfer coefficient on a circular probe. The immersed boundary method is used for 

modeling the tube like probe. Based on the combination of the microscopic heat transfer 

models used, a range of heat transfer coefficients from 43 to 340 W/m2-K are obtained as 

compared to the experimental value of 160 W/m2-K. A model in which heat transfer 

through direct contact and conduction through the surrounding gas during contact is 

included, gives the closest results to the experiments. Zhao et al. [157] used a 2D 

unstructured mesh to perform simulations of fluidized bed with an embedded tube. A 

DEM approach is used with particle-particle conduction heat transfer modeled using the 

quasi steady state solution of contact conductance. The turbulent dense gas–solid two 

phase flow using the k-ε model and multiway coupling heat transfer model among 

particles, walls and gas is solved. Up to 68,000 particles of diameter 0.5, 1 and 1.5 mm 

are used. It is observed that the heat transfer coefficient value is low at the top and bottom 

of the tube, high at the left and right sides, and the minimum is 70–80% of the maximum, 

which shows qualitative agreement with experiments. There is no quantitative 

comparison with experimental studies. Hou et al. [86, 158] have also performed 2D 

simulations of an immersed tube in fluidized beds using the DEM approach with 30,000 

particles of Geldart B type. A combination of both particle-particle conduction heat 

transfer modes (static and collisional) is applied. The near wall convective heat flux 

calculations are performed based on correlation instead of solving for the temperature 

field of the fluid. There is qualitative agreement with experiments but there is over 30-

35% difference quantitatively. 
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In summary, extensive experiments have been done in the past to develop mechanistic 

models and numerous correlations for prediction of heat transfer coefficients to surfaces 

submerged in a fluidized bed.  Most experiments have used energy balances to quantify 

the heat transfer coefficient. These efforts have yielded in several numerical correlations 

with more than 100% deviation in predicted heat transfer coefficients. Computational 

analysis has been limited on one hand by the incomplete physicality and 

phenomenological modeling of the two-fluid Eulerian-Eulerian model, and on the other 

hand by the computational expense of the more physics based discrete particle method 

based on the scale of individual particles, but which has been limited to two-dimensional 

calculations with less than 100,000 particles because of computational cost.  

Problem description 

The heat transfer study between the fluidized bed and a horizontal tube heat exchanger 

performed was based on the experiments performed by [159]. The effects of heat transfer 

between the tube and the fluidized bed are localized to the surrounding of the tube and 

thus a smaller sized geometry was used for computational simplicity [86]. A thin section 

of the fluidized bed is used with 9 times the particle diameter thickness. Both DEM and 

CFD calculations are performed in three dimensions (3D) in order to simulate the bed. 

Figure 5.13 shows a magnified view of the fluidized bed with tube heat exchanger. The 

domain decomposition used for fluid phase calculations and a body fitted mesh with 

dimensions of 2.5 to 3 times the particle diameter is also highlighted in the figure. The 

geometry parameters and the material properties of particles, tube, and walls are listed in 

Table 5.3.  
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Table 5.3 Particle properties and parameters used in the fluidized bed with tube heat exchanger 

simulations 

Bed 

Width (m) W 0.06 

Transverse Thickness (m) T 0.0054 

Height (m) H 0.768 

Tube 

Height from bottom of bed (m)  0.03 

Diameter (m) Dt 0.024 

 

Simulation parameters Notation Sand particles Tube/Wall properties 

Density ( kg/m3) ρ 2600  

Thermal conductivity (W/m-K) κ 1.1 380 

Heat capacity (J/Kg-K) Cp 840 24.4 

Elastic modulus  (MPa) E 10 10 

Poisson’s ratio σp 0.3 0.3 

Coefficient of normal restitution en 0.9 0.9 

Coefficient of friction µp-p 0.3 0.3 

Spring stiffness coefficient (N/m) K 800 800 

Initial temperature (K) Tinit 298 298 

Sphericity Sp 1  

Number  N 67500  

Diameter (mm) dp 0.6  

Time step (seconds) Δt 2x10-5  

Methodology 

The methodology used for this simulation is discussed in chapter 4. The properties of air 

are assumed to be constant since the maximum temperature difference is 75K. For 

particle-particle and particle-surface conduction heat transfer, the quasi-steady 

formulation given in the equation 4.14 is used. The radiative heat transfer was neglected 

since the maximum temperature reached was << 700K. 

Periodic boundary condition is applied to the front and back of the fluidized bed to avoid 

end wall effects. Convective outflow boundary condition is applied at the outlet. Ambient 

air at a predetermined superficial velocity is injected from the bottom wall to fluidize the 

bed. The immersed tube surface was set to a constant temperature of 373K whereas all 

the other walls were set as adiabatic for both particle as well as fluid phase. 
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Figure 5.13 Magnified view of body fitted mesh around tube heat exchanger in a fluidzed bed with 

domain decomposition for fluid phase calculations. 

Initially, the particles are distributed uniformly in the fluidized bed and allowed to settle. 

Once the particles are settled, the tube is instantaneously heated and ambient temperature 

air with 0.77 m/s superficial velocity is injected in the bed.  

The average heat transfer coefficient (HTC) is calculated based on the following 

formulation, 

ℎ =
𝑄𝑓𝑙𝑢𝑖𝑑−𝑡𝑢𝑏𝑒 + ∑ 𝑄𝑝𝑐𝑤,𝑖

𝑛
𝑖=1

𝐴𝑠(𝑇𝑡𝑢𝑏𝑒 − 𝑇𝑏𝑒𝑑)
 5.5 

where Tbed is calculated based on equation 4.28 for which the domain considered is the 

computational cell size, 𝑄𝑓𝑙𝑢𝑖𝑑−𝑡𝑢𝑏𝑒 is the convective heat transfer and is obtained from 

zonal two layer wall model as listed in equation 5.7, Qpcw is the particle-tube conduction 

heat transfer and As is the surface area of the tube (computational grid).  

The angular position used the in the results is measured form the top center of the tube as 

shown in the insert of Figure 5.14. 

Wall modeled LES 

The requirement of a coarse grid which is at least 2-3 times the particle diameter due to 

the volume averaged nature of the governing equations [48] limits the use of DEM for 

heat transfer studies because the thermal boundary layer cannot be resolved, particularly 

at high fluidization velocities. Thus there are a limited number of immersed tube heat 
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transfer studies in fluidized beds using DEM where they use a turbulent Nusselt number 

correlation to resolve the thermal boundary layer. This work attempts to tackle this issue 

by using LES with a zonal two layer heat transfer model at the walls. A brief description 

of this model is given below and further details can be found in [160].  

The two layer wall model used in this study solves simplified boundary layer equations in 

the inner wall layer. These equations are solved on a virtual grid between the wall node 

and first off-wall node (y+<50). By using the instantaneous outer flow velocity as a 

boundary condition for the inner layer to solve for wall shear stress in the inner layer and 

using this wall shear stress as the boundary condition to the outer layer at the first off-

wall node, the coupling between the inner and outer layers is achieved. 

The momentum and energy equations are solved in local wall coordinates (n,t) in the 

normal and tangential directions. By neglecting the convection terms and the time 

derivative terms from the momentum equation, considerable simplifications are obtained 

as shown in equation 5.6. 

𝜕

𝜕𝑛
[(

1

𝑅𝑒
+

1

𝑅𝑒𝑡
)
𝜕𝑢𝑡

𝜕𝑛
] =

𝜕𝑃

𝜕𝑡
 5.6 

with 𝑢𝑡 = 0 at the wall and 𝑢𝑡 = ||𝑈𝑡|| at the edge of the inner layer. The turbulent 

Reynolds number (Ret) is calculated using the Johnson-King turbulence model [160]. 

Neglecting the advection term and in absence of any additional source term, the 

simplified energy equation becomes, 

𝜕

𝜕𝑛
[(1 +

𝑅𝑒𝑃𝑟

𝑅𝑒𝑡𝑃𝑟𝑡
)
𝜕𝑇

𝜕𝑛
] = 0 5.7 

where Prt is turbulent Reynolds number. The turbulent Prandtl number requires a closure 

equation and the formulation of Kays is used [161]. This formulation accounts for the 

higher values of turbulent Prandtl number very close to wall. For the specified 

temperature boundary condition on the wall node, the boundary condition for the first off-

wall node is specified as the heat flux boundary as obtained from the inner layer 

temperature profile.  
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Results and discussion 

Initial estimates of heat transfer coefficient around the tube 

The calculation for the local HTC was initially performed without the use of LES and the 

wall model. The convective heat flux required in equation 5.5 was calculated by 

assuming a linear temperature profile between wall node (𝑇𝑤𝑎𝑙𝑙) and the first off-wall 

node (𝑇𝑓𝑙𝑢𝑖𝑑) as follows, 

𝑄𝑓𝑙𝑢𝑖𝑑−𝑡𝑢𝑏𝑒 = −𝑘𝐴𝑠

(𝑇𝑓𝑙𝑢𝑖𝑑 − 𝑇𝑤𝑎𝑙𝑙)

∆𝑛
 5.8 

where ∆n is the normal distance between the wall and the first off-wall node. 

The comparison of the simulation results and the experimental results [159] is shown in 

Figure 5.14. Clearly the predicted HTC values are only about 20% of the measured 

values.  

 

Figure 5.14 Local heat transfer coefficient around immersed tube without wall model 

As mentioned previously, this issue is often seen in computational heat transfer studies in 

fluidized beds due to the coarse nature of the computational grid which is necessitated by 

the volume-averaged nature of the fluid equations. Most studies in the literature [74, 76, 

86, 162, 163] suggest the use of heat transfer correlations for fluid-wall convection 

instead of actually resolving the thermal boundary layer. Thus in this work a novel 

approach of solving simplified flow and temperature fields is used to resolve the inner 

region of the boundary layers.   
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The use of the wall model to resolve the inner boundary layer 

The comparison of the time averaged local HTC, calculated using the wall model, with 

experiments [159] is shown in Figure 5.15. As it can be seen from the figure the 

experimental results and the computational results are within reasonable limits. The 

overall trend also compares qualitatively with other experimental studies of [106, 107]. 

The computational results give jagged profile compared to experiments possibly because 

the time averaging of data in simulations is performed for 2.5 seconds; which most 

probably is much smaller as compared to the experimental data. The HTC is not uniform 

around the tube and the localized mechanism for heat transfer differs which is discussed 

later. 

 

Figure 5.15 Local heat transfer coefficient around the immersed tube in fluidized bed. 

The presently used wall model is applicable for fully turbulent flows. In order to justify 

the use of LES with a wall layer model in this study, velocity signal at a location 45° 

from the stagnation point of the tube, as shown by the darkened computational cell in 

Figure 5.13, was recorded. This signal is shown in Figure 5.16 along with the 

corresponding energy spectrum of the signal. As commonly seen in such energy spectrum 

[164], with increasing frequency the energy drops. The majority of the energy is 

associated with the lower frequencies which indicates that the flow is governed by larger 

flow structures. The lower frequencies associated with a signal in fluidized beds are 

normally associated with the bubble or particle packet motion and the higher frequencies 
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are attributes of local particle motion [165]. Such behavior also observed in the current 

study (based on power spectrum of the HTC) is typically associated with non-laminar 

flows. This does not necessarily indicate that the flow is fully turbulent but hints at the 

transitional nature of the flow. The y+ around the tube was observed to vary between 10 

and 50 and occasionally going up to 60.  

 

Figure 5.16 Velocity signal at the probe location and its energy spectrum 

The Figure 5.17 shows the particle configuration for different instances in time. The 

particle temperature in the figure is non-dimensional temperature based on equation 5.4. 

The reference temperature is the ambient temperature of 298K. 

 

Figure 5.17 Particle positions at different time instantances colored by non-dimensional temperature 

 

The nature of gas bubbles in the fluidized bed is completely changed due to the presence 

of the immersed tube. The particles in the bed move vigorously with the bubbles in the 

bed transferring heat from the tube surface.  As seen in the Figure 5.17, packets of 

particles pick up heat from the tube surface and convect into the wake before collapsing 
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on the tube and into the bed. It can also be noted that except for the last two frames, the 

stagnation region of the tube is mostly encapsulated in a gas bubble. 

The time averaged contribution of conduction and convection heat transfer along with the 

variations in the void fraction around the tube is shown in Figure 5.18. Convective heat 

transfer is the dominating mechanism of heat transfer accounting for almost all of the 

heat transfer in all the regions around the tube except the wake region of the tube. In the 

wake region, the particle heat conduction increases due to the longer residence times of 

particles and less violent fluid flow. The void fraction profile around the tube reaffirms 

the longer residence time of particles in the tube wake region. 

 

Figure 5.18 Time averaged contributions of conduction and convection heat flux along with average 

void fraction around the immersed tube 

Higher the void fraction around the tube, larger is the probability of the presence of a 

bubble around the tube. Thus the average void fraction profile can be considered as an 

approximate indicator of gas bubbles around the tube. The average HTC around the tube 

is constantly changing based on the bed dynamics. The time evolution of the spatially 

average HTC and void fraction around the tube is shown in Figure 5.19 (A). The 

variation in HTC is clearly dominated by low frequencies indicating that the HTC is 

largely a function of bubble dynamics. 

The time evolution of convection heat transfer and conduction heat transfer around the 

tube is show in the Figure 5.19 (B). The dominant mechanism of heat transfer is clearly 

convection, accounting for about 95% of the total heat transfer. 
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Figure 5.19 Time evolution of (A) void fraction and heat trasnfer coefficient and (B) contributions of 

conduction and convection heat flux, spatially averaged around the immersed tube 

When comparing the results with available correlations in literature as shown in Figure 

5.20, it can be noticed that the average HTC is of the same order as that is predicted by 

many correlations for 0.6 mm particles. Packing fraction is required to predict HTC in 

majority of these correlations. HTC is highly sensitive to the packing fraction which in 

this case was assumed to be 0.6. 

 

Figure 5.20 Comparison of numerical correaltions of local heat transfer coefficient [113, 131, 166] 
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Summary 

In summary, performing heat transfer studies using coupled CFD-DEM is a challenge 

due to the coarse grid required to avoid discontinuities in the void fraction profiles. To 

overcome this issue, LES with a wall model was used in the framework of CFD-DEM. 

Though the wall model assumes fully turbulent flow, it has been successfully applied to 

transitional flow regime with presence of particulate phase. The average heat transfer 

coefficient obtained from the simulations compare within 20% of experiments. In the 

scope of current study, the dominant mode of heat transfer was observed to be 

convection.  
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6. Conclusions and future scope 

The main purpose of this work is to illustrate the effectiveness of OpenMP parallelism in 

computational fluid dynamics along with its superiority over MPI in dense fluid-

particulate systems. Using the parallel performance optimized code; heat transfer studies 

of fluid-particulate system in rotary kiln and fluidized bed with tube heat exchanger are 

completed. The conclusions from the current work for each of the objectives stated in the 

introduction are presented below.  

OpenMP parallelism for GenIDLEST 

With the prudent use of first touch placement policy and appropriate thread affinity, the 

OpenMP API gives excellent scalability and speedup for fluid phase calculations. 

Efficient parallelism of coupled CFD-DEM 

Modified algorithm used for tightly coupled fluid-particulate calculations provided 

OpenMP threads considerable advantages over MPI processes which adhere to a single 

mode of parallelism.  

Heat transfer in rotary kiln – effect of particle size distribution 

The study of rotary kiln heat transfer in cascading bed mode yielded the dominant 

mechanism of heat transfer as convective heat transfer. On the other hand, poly dispersed 

kiln in slipping bed mode was dominated by conductive heat transfer at the beginning of 

kiln rotation. Convective and radiative heat transfer played a larger role as the bed 

temperature increased.  

Heat transfer in fluidized bed with tube heat exchanger 

Subgrid stress model along with LES wall function (WMLES) at the tube surface was 

used in the framework of CFD-DEM to analyze heat transfer in fluidized bed with tube 

heat exchanger. The dominant mode of heat transfer was observed to be convection. 

Future scope 

On heterogeneous computing architectures including systems that combine CPUs with 

graphical processing units (GPUs) and many-integrated cores (MIC), MPI has seen little 
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success as compared to OpenMP. These accelerators have shared memory layout and 

thus OpenMP seems to be more suitable to such systems for high performance 

computing. With the coprocessing capabilities it will be apt to apply the flexibility of 

OpenMP parallelism to offload a set of computations in a multi-physics application to 

achieve better load balancing and parallel performance. Using such optimized codes, 

computational studies in the area CFD-DEM can be further accelerated to better 

understand existing systems and study more complex systems such as industrial scale 

problems. 
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Appendices 

Appendix A: Heat transfer coefficient calculations based on numerical correlations 

To illustrate the large variations between the numerical correlations for heat transfer 

coefficient calculations as discussed in Chapter 5, polypropylene particles [167] in 

fluidized bed tube heat exchanger are considered. The mechanical and thermal properties 

of polypropylene are given in Table A.1. For illustration purposes, the fluid has been 

assumed to be air at 100 °C. Five particle diameters are considered ranging from 100 

micron to 2 mm as given in Table A.2. In calculating the heat transfer coefficients, it is 

assumed that the particles are spherical, the heat exchanger tube in the fluidized bed has a 

diameter of 0.02 m, and the superficial mass fluidization velocity, G, is assumed to be 

twice the minimum fluidization velocity. The void fraction is assumed to be that of a 

packed bed. Table A.2 lists the Archimedes number and the Reynolds number based on 

the fluidization velocity and particle diameter, which are used in calculating the heat 

transfer coefficients. The minimum fluidization velocity is calculated based on the [168] 

correlation, 𝑅𝑒𝑚𝑓 = 33.7[(1 + 3.59 × 10−5𝐴𝑟)0.5 − 1] , which is valid in the range 

0.01 < Remf < 1000. Approximately 2 times the minimum fluidization velocity was 

used as superficial velocity for each particle diameter considered. The Archimedes 

number, is representative of the density difference driven flow set up in the fluidized bed 

and larger its value, the stronger the fluidization in the bed. According to [132], for 

3<Ar<21700, the interstitial gas is in the laminar flow regime and HTC decreases with an 

increase in particle diameter, whereas for Ar>1.6x106, the gas flow is fully turbulent and 

the HTC is strongly dependent on gas convection, increasing with an increase in particle 

diameter. Between the two extremes, the flow is transitional during which both solid 

phase conduction and gas convection to the heat transfer surface are important. 

Table A.1 Properties of Polypropylene particles 

Density 

(Kg/m3) 

Specific heat 

Cp (J/Kg-K) 

Thermal 

conductivity 

k (W/m-K) 

Modulus of 

Elasticity E (Pa) 

Poisson's 

ratio 

Thermal 

diffusivity α 

(m2/s) 

882 1926 0.138 2.50E+09 0.25 8.12E-08 
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Table A.2 Non-dimensional parameters relevant to fluidized bed with tube heat exchanger for 

polypropylene particles 

dp (mm) (Geldart class.) & Ar Rep Umf (m/s) 

0.10 (A) 17 0.03 0.003 

0.25 (A-B) 269 0.32 0.015 

0.50 (B) 2149 2.6 0.059 

1.00 (B)17188 18 0.211 

2.00 (D) 137504 97 0.558 

 

Figure A.1 plots the predicted heat transfer coefficients for the five particle sizes in Table 

A.2 using different correlations available in the literature. The dark symbols in the figure 

are from heat transfer correlations for large particles in which gas convection starts 

dominating the heat transfer [128, 144, 169], whereas most of the other correlations are 

for particle diameters in the range 200 micron to 1 mm. The predicted heat transfer 

coefficients exhibit a large scatter with variability ranging over 100% between the 

minimum and maximum values. The variability is largest for the small particles and this 

could be because most of the correlations are built on experiments which have been 

conducted or particle sizes between 200 micron and 1 mm.  

 

Figure A.1 Average heat transfer coefficients for horizontal tube in a fluidized bed of polypropylene 

particles using numerical correlations. 
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Appendix B: Octave code for power spectrum of a signal 

Below is the Octave code used for analyzing the input velocity signal from the probe in 

the fluidized bed flow field. 

%---------------------------------------------------------------------% 

clear all 

close all 

clc 

u1=load('data.txt'); % load velocity signal 

N=length(u1); % number of data points 

l_ref=0.06; % reference length 

u_ref=0.77; % reference velocity 

dtime=2.56e-4; % time step 

  

n=0:N-1; 

T=N*l_ref/u_ref*dtime; % Total time of simulation 

freq=[0:N/2-1]/T; % sampling frequency 

t=[1:N].*(T/N); % time axis 

t=t'; 

plot(t,u1); % original signal 

xlabel('Time(s)'); 

ylabel('Velocity(m/s)'); 

  

p=abs(fft(u1))/(N/2); 

p=p(1:N/2).^2; 

  

figure(); 

loglog(freq,p); % power spectrum 

xlabel('Frequency(Hz)'); 

ylabel('Energy'); 

%---------------------------------------------------------------------% 


