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ABSTRACT 

Pavement deterioration is an important factor in evaluating and prioritizing pavement 
management and preservation (PMP) projects. The primary goal of this paper is to provide 
quality predictive functions from multiple linear regression (MLR) models that can be adopted 
by Kentucky Transportation Cabinet (KYTC). Furthermore, the paper proposes to use a decision 
analysis procedure, i.e., an analytic hierarchy process (AHP), in developing a composite 
pavement distress index for KYTC to prioritize and select PMP projects.  Such a prioritization of 
candidate PMP projects is based on 11 different distress indices. Numerical results show that the 
MLR models provide relatively high R squared values of approximately 0.8. In addition, 
preliminary study shows that the proposed AHP-based project selection method overcomes the 
drawback of KYTC’s current rating and selection system for overemphasizing the international 
roughness index (IRI) among all distress indices. 

1. INTRODUCTION 
1.1. Background and Problem Statement 

Pavement management and preservation (PMP) is important to our nation’s highway 
infrastructure development. Currently, the Operations & Pavement Management Branch of 
Kentucky Transportation Cabinet (KYTC) performs annual pavement condition evaluations and 
ride quality measurements. Then, pavement rehabilitation and resurfacing treatments and priority 
rankings are recommended based on pavement conditions, traffic considerations and district 
recommendations. Recently, KYTC has increasingly realized the need for an integrated and 
rigorous framework to prioritize alternative PMP projects to assist in final selection of projects to 
be undertaken in each budget cycle.  This framework first requires the knowledge of predicted 
pavement performance for the near future over the given time horizon. The pavement 
performance herein consists of as many as 11 individual distress indices (e.g., wheel path 
cracking, out of section, raveling), each to be predicted for prioritization purpose.  Once these 11 
individual distress indices are predicted, a formal procedure is needed to create a composite or 
overall condition index. Hence, each project or road segment is associated with a single 
composite condition index; and it is based on these composite indices that the integrated project 
selection approach will prioritize alternative projects.  

One focus of the paper is the modeling of pavement deterioration for KY interstate and parkway 
system by the means of statistical methods.  First, the road condition data for KY interstate and 
parkways, focusing on asphalt concrete (AC) roadways during the past ten years will be 
analyzed.  Second, the organized data will then be used to develop predictive models for 
studying the pavement deterioration for KY interstate and parkways.  The predictive model uses 
inputs such as cracking index, pavement age and average daily traffic (ADT) in previous years 
for a certain road segment to predict the pavement performance (e.g., cracking index) in the 
future years.  Particularly, multiple linear regressions (MLR) models are developed. 

Another focus of the paper is the development of an objective priority rating method that can be 
integrated with the above-mentioned distress index prediction models. The decision analysis 
procedure of analytic hierarchy process (AHP) is not only a rather rigorous mathematical 
framework but also widely adopted by decision makers in real world.  Organizations such as 
U.S. DOE, U.S. DOD, NASA, Xerox and IBM have all successfully used AHP in their efforts of 
making choice, prioritization, evaluation, resource allocation, among others. In this project, 
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based on interviews from a KYTC expert panel, weights for 11 individual distress indices are 
calculated and validated. Then, using the predicted individual distress indices and weights 
calculated by the proposed AHP method, each project receives a single overall priority score, 
which allows KYTC to finally select PMP projects to be undertaken in the planning period.    

1.2. Literature Review 

In recent years, predicting the expected pavement deterioration has been the focus of many 
works (Attoh-Okine, 1994) using traffic and time-related models, interactive time, traffic, or 
distress models. To date, approaches used in forecasting the pavement condition have included: 
regression models, artificial neural network, empirical model, mechanistic models and 
deterministic and probabilistic models. Within these approaches, regression analysis is used by 
researchers as a traditional method to predict pavement deterioration rate (see, e.g., Carey and 
Irick, 1960). Particularly, Isa and Hwa (2005) propose a study which established a simple, 
practical pavement performance model for network level of the Malaysian Federal road. They 
also conducted the statistical analysis by the means of multiple linear regressions to test and 
examine the data as well as to develop the model. In their model, relevant variables such as 
pavement condition, pavement strength, traffic loading and pavement age are used as input data 
to predict the target variable rutting depth.  Similarly, Kim and Kim (2006) develop the asphalt 
pavement performance prediction models for the state highways and the interstate highways with 
the applications of simple and multiple regression analysis methods. Kim and Kim’s model uses 
the pavement condition evaluation system (PACES) data rating. They develop three different 
models using one, two and three input variables (AADT, Pavement Age, the interaction) in 
applying linear and multiple regression analysis to predict the value of each road segment. In 
conclusion, AADT, pavement age, and the interaction between AADT and age have significant 
impact on the PACES rating. 

More recently, the development of artificial intelligence and machine learning has spurred new 
methods such as artificial neuron networks (ANN). For example, Yang and Lu (2003) develop a 
pavement performance model applying neural network algorithm for the Florida Department of 
Transportation (FDOT) pavement management system. In their model, a three-layered neural 
network with one output neuron is chosen to be the architecture, back-propagation (BP) method 
applied to be the learning method, at last the sigmoid function was employed as the neuron 
activation function. Similarly, Lou and Gunaratne (2001) also developed multiyear back-
propagation neural network (BPNN) models for Florida’s highway network to forecast 
accurately the short-term time variation of cracking index (CI). On the other hand, Huang and 
Moore (1997) tasked by the Kansas Department of Transportation, use multiple-linear regression 
and two ANN structures to predict the probability of roughness deterioration level for asphalt 
pavements.  In their ANN model, the input layer consists of 17 independent variables such as 
cumulative traffic expressed in 80kN equivalent single axle loads (ESAL), layer thickness and 
back calculated modulus values, and soil support values.  The multiple linear regression models 
in Huang and Moore (1997) experience success rates ranging from 70% to 90%. Between the 
two ANN models, the average success rate ranges from 70% to 93%, slightly higher than that of 
the two regression models.  

In contrast to the literature on pavement deterioration modeling, studies on prioritization and 
selection of pavement-related projects are rather scant. Fwa and Chan (1993) use two different 
priority-setting schemes to test the feasibility of using neural network models. One is a linear 
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rating function, and the other is a nonlinear rating function. In both functions, priority rating is 
expressed as a function of normalized scores for factors such as highway functional class, skid 
resistance, width of crack, length of crack, pavement serviceability and rut depth.  Fwa and Chan 
(1993) show that the ANN model can accurately predict the pavement priority rating governed 
by both the linear and nonlinear equations. Finally, in current practices at KYTC (KYTC, 2006), 
a rating function similar to the above linear rating function is used. Details of the KYTC rating 
function are discussed in Section 3. Using decision analysis, the current paper proposes a more 
objective procedure using AHP to determine the coefficients or weights used in the linear or 
nonlinear equations for priority rating. 

The remainder of the paper is organized as follows. Section 2 introduces the data processing 
procedures. Section 3 presents the design of multiple linear regression models and the AHP 
method for priority rating. Section 4 discusses the results for the MLR prediction models. In 
addition, the results for the current KYTC priority rating system and the proposed AHP-based 
rating method are also discussed. Finally, Section 5 concludes the paper with future directions. 

 
2. DATA PROCESSING 
2.1. Data Collection 

Each spring the Operations and Pavement Management Branch of KYTC performs pavement 
condition evaluations of all interstates and parkways.  These evaluations are used to document 
roadway deterioration, recommend pavement rehabilitation treatments, and prioritize projects.  
The road condition evaluation data maintained by KYTC consists of asphalt concrete (AC), 
Portland cement concrete and composite pavements varying in condition, age, and performance.  
In general, pavement distresses are classified and rated according to type, severity, and extent. 
Ideally, the extent of each severity of each type of distress would be measured and recorded 
using finite values.   

According to the KYTC pavement distress identification manual (2009), a demerit point system 
(0-9) is used to measure pavement distress. Pavements with highest demerit point, i.e., a score of 
9, exhibit greatest deterioration, while those with lowest demerit point, i.e., a score of 0, exhibit 
none deterioration. There are five different types of flexible cracking: wheel path cracking 
(extent and severity), raveling (extent and severity), other cracking (extent and severity), out of 
section (extent and severity) and appearance of pavement.  Thus, in the present paper, nine 
variables are considered by all regression models.  

2.2. Data Processing and Analysis 

Data preprocessing consists of removing incomplete data entries, rounding on the road segment 
mileage marks, removing incompatible data entries and calculating pavement age according to 
most recent maintenance year.  

Within the data set, each data sample (row) has several physical attributes, such as year of 
evaluation, route ID, lane direction, evaluation start and end points, pavement type.  In order to 
use the cracking indices of the current year to predict cracking index of the next year, it is 
necessary to have at least cracking indices on two consecutive years for each road segment.  
However, it remains a challenge to identify the “same” road segment across different years in the 
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original database. It is discovered that the start and end points of road segments varies slightly 
from year to another.  For example, in 2004, Route BG9002 has start and end points at 9.523 and 
16.54 miles, respectively, while in 2003 the same road segment has start and end points as 
10.172 and 16.54 miles, respectively.  In order to mitigate this type of discrepancy and reduce 
the number of road segments with only one year of data (thus including more sample data with 
multiple years of performance in our model), all start_point and end_point are rounded to nearest 
integers.  This has significantly increased the sample size by 100 data points, with final sample 
size being 4,586.  

Another great challenge in data preprocessing is to calculate the age of each pavement segment.  
KYTC has kept information (e.g., year of project, type of rehabilitation) on all 
construction/maintenance projects done to each interstate and highway road segments in the 
database. It is desirable to calculate the age of each road segment as the difference between the 
current year and the most recent maintenance year.  However, in some rows, the construction 
information was recorded incorrectly for unknown reason. Thus, the following two rules are used 
to decide if the given data is incompatible with respect to age calculation: 

1) If a road segment is recorded with rehabilitation in the evaluation year but its corresponding 
cracking indices are not significantly reduced in the following years, the sample data point is 
regarded as incompatible.  

2) If a road segment is not recorded with rehabilitation in the evaluation year but it 
corresponding cracking indices are significantly reduced in the following years, the sample data 
point is regarded as incompatible.     

After incompatible segments are identified, their ages are calculated based on whether or not 
there is a significant decrease in all cracking indices.  For example, if all cracking indices of one 
road segment in a specific year are all reduced from a relatively high value to 0, then it is 
considered there is a major rehabilitation done in this year and the pavement age for the current 
year is reset to zero.  On the contrary, there is also a large amount of road segments having a 
reduced cracking index for the next year even without rehabilitation.  All these type of 
incompatible data points are removed.  After this adjustments to the incompatible data points, the 
sample size is reduces to 3,124, of which only 1,289 are asphalt pavement type.  

In the final data set with 1,289 samples, the following 12 road condition attributes (listed in 
Table 1) are the input variables in all the regression models.  For each regression model, the 
single target variable would represent one of the nine distress indices (i.e., WPC_EXT) for next 
year.  Thus, the dimensionality of the model is 13 (nine cracking indices, pavement age, ADT, 
IRI and the target variable WPC_EXT_t+1). The final 1,289 data samples are used to develop 
the MLR models. 

Table 1. Road Condition Attributes 
WPC_EXT = extent of wheel path cracking WPC_SEV = severity of wheel path cracking 
RF_EXT = extent of raveling RF_SEV = severity of raveling 
OC_EXT = extent of other cracking OC_SEV = severity of other cracking 
OS_EXT = extent of out of section OS_SEV = severity of out of section 
APPEAR = appearance IRI = international roughness index 
ADT = average daily traffic AGE = pavement age 
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JS = joint separation  
 
 

3. METHODOLGY 
3.1. Deterioration Predictive Models using Multiple Linear Regressions 

To accommodate the size and the randomness of the available data, SAS Enterprise Miner 12.1 
(SAS Institute, 1989) is chosen as a tool to assist developing and validation of the models. In 
data mining, a strategy for assessing the quality of model generalization is to partition the data 
source.  A portion of the data, called the training data set, is used for preliminary model fitting.  
The rest is reserved for empirical validation and is often split into two parts: validation data and 
test data.  The validation data set is used to prevent a modeling node from overfitting the training 
data and to compare models.  The test data set is used for a final assessment of the model.  For 
this paper, 50% of the data is allocated to training, 25% to validation and the rest 25% to testing. 

In scientific as well as practical studies, the change of data scale is often done through variable 
transformation. In SAS Enterprise Miner, the Transform Variables node is often used to make 
variables better suited for logistic regression models and neural networks.  In our data sets, the 
ADT is originally in the range of thousands to hundreds of thousands, which is a vastly larger 
range than that of the target variable.  Therefore, the ADT variable is transformed using LG10 
function.  After this transformation, the new range of LG10_ADT is from 3.62 to 5.17. Finally, 
the stepwise regression is chosen as the selection model.   

3.2.Pavement Projects Selection using Decision Analysis 

 Once the individual distress indices are predicted, they need 
to be transformed to a single measure representing the 
overall condition of the pavement for project prioritization. 
The current rating system for interstate and parkways at 
KYTC simply takes the scale points for all nine distress 
indices along with the scale point for international 
roughness index (IRI) and adds them together. In other 
words, each road to be considered for treatment receives a 
total score calculated as follows:  

Total Score= WPC_EXT +WPC_SEV +RF_EXT +RF_SEV 
+OC_ECT+OC_SEV+OS_EXT 
+OS_SEV+APPEAR+JS+SIRI, 

where SIRI represents the scaled point for IRI based a pre-
defined lookup table converting the original IRI to a value 
between 0 and 38.  

      However, the experts of KYTC have concerns that the 
IRI receives too much weight in the overall score while 
recent studies suggest that the impact of roughness index on 
pavement life may not be significant. To this end, this paper 
proposes a new and rather objective method of reconciling 

Collect pavement condition data 
in the past planning cycle 

Run regression models to predict 
nine distress indices for next year 

Perform AHP analysis and 
calculate weights for 11 criteria 

Calculate composite condition 
index for all road segments 

Rank all projects based on 
composite condition index 

Figure 1. The Integrated Approach 
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various indices using AHP.  The AHP is a structured technique for organizing and analyzing 
complex decisions, based on mathematics and psychology. In practice, AHP has been used by 
companies and organizations including Intel, Apple, NASA and Xerox (Forman and Gass, 2001) 
to make decisions on choice, prioritization, resource allocation, among others. 

The goal for this new method is to decide the weights for WPC_EXT, WPC_SEV, RF_EXT, 
RF_SEV, OC_EXT, OC_SEV, OS_EXT, OS_SEV, APPEAR, JS and IRI in prioritizing PMP 
projects. Thus, in the AHP there are 11 criteria and 55 pairwise comparisons. The experts are 
interviewed for relative importance ranging from 1 to 9 between each pairs of criteria. For 
example, when rating the relative importance of  WPC_EXT over RF_EXT, expert would give a 
score of “1” indicating equal importance, or “9” indicating extreme importance, or “5” indicating 
strong importance.   Then the AHP method is applied for developing a composite distress index 
consisting of nine individual indices and a roughness index.  

Figure 1 illustrates the integrated approach for pavement projects selection using AHP and 
deterioration prediction models.  

 
4. PRELIMINARY RESULTS 
4.1. Deterioration Prediction Models 

 
For the deterioration prediction model, we have created four different scenarios described below. 
These scenarios are different in that they use different subsets of the entire 12 input variables or 
factors when predicting each distress index.  For example, S1 uses all 12 input variables in the 
regression models while S3 uses only one input variable. Note that the final regression equations 
for S1 and S2 may only involve some of the designated input variables because others are 
statistically insignificant.    

Scenario 1 (S1). There are a total of 12 input variables, i.e., ADT, age, IRI, APPEAR, 
WPC_EXT, WPC_SEV, RF_EXT, RF_SEV, OC_EXT, OC_SEV, OS_EXT, and OS_SEV. 

Scenario 2 (S2). A subset of the entire 12 input variables is used based on recommendations 
from KYTC experts. For each distress index to be predicted, KYTC expert would recommend a 
set of input variables that they think would affect the deterioration of the concerned index. 
Compared to Scenario 1, this scenario intends to have simplified model with fewer input 
variables. For each distress index, the following section will identify the select input variables 
suggested by KYTC experts. All models derived under Scenario 2 are referred to as “Select” 
models subsequently.  

Scenario 3 (S3). Only use the target variable from the previous year as input variable to predict 
this variable in next year. For example, under this scenario, one would predict the severity of 
“Other Cracking” (or OC_SEV) for next year using OC_SEV for this year as the only input 
variable. 

Scenario 4 (S4). Only use the pavement age as input variable to predict any distress index for 
next year 

Note that among the four experimental scenarios, scenario 1 is intended to be inclusive and 
comprehensive, but may produce a complex prediction model that is impractical to implement in 
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real life.  Scenarios 3 and 4 are intended to be simple, but may produce high prediction errors. 
Scenario 2 is a compromise case that is likely to produce fairly accurate prediction using 
reasonably simple models. 

Furthermore, in the first two scenarios linear, 2nd order polynomial and 3rd order polynomial 
MLR models are applied. For the other two scenarios, only the 3rd order polynomial model due 
to the fact that there is only one input variable is applied. The average squared error (ASE) of 
training, validation and testing data sets, and the R squared value are used in evaluating the 
results of developed models.  

The results are compared in Table 2 (see details in Xu et al., 2014).  In particular, models 
“Polynomial 3”, “Polynomial 2” and “Linear” all belong to Scenario 1 using all 12 input 
variables. Models “Polynomial SLCT 3” and “Polynomial SLCT 2” and “Linear SLCT” all 
belong to Scenario 2, in which experts from KYTC has identified Age, ADT, WPC_EXT, and 
WPC_SEV to be the four input variables. Finally, “WPC_EXT 3” and “Age_3” represent 
Scenarios 3 and 4, respectively.  

It can be observed that except the model with only pavement age as the input variable, the other 
seven models can achieve promising R2 values and relatively low ASE.  For example the cubic 
polynomial model with all 12 input variables can achieve the highest R2 (0.8848) and the 
smallest training ASE (0.9582) among all eight models.  Even the linear model with four 
selected (SLCT) input variables can achieve an R2 of 0.8710 and the average ASE of 1.1037.  
The regression function of each model can be found below Table 2. 

Table 2. Linear Regression Models for WPC_EXT 

Scenarios Model ASE 
Training 

ASE 
Validation 

ASE 
Testing 

ASE 
Average R Square 

S 1 
Polynomial 3 0.9582 1.3173 0.9147 1.0634 0.8848 
Polynomial 2 0.9911 1.2983 0.8888 1.0594 0.8809 

Linear 1.0388 1.2964 0.9214 1.0855 0.8751 

S 2 

Polynomial 
SLCT 3 0.9803 1.2561 0.8956 1.0440 0.8821 

Polynomial 
SLCT 2 1.0335 1.2919 0.8860 1.0705 0.8757 

Linear SLCT 1.0726 1.3123 0.9262 1.1037 0.8710 
S 3 WPC_EXT 3 1.0701 1.3420 0.8998 1.1039 0.8713 
S 4 Age 3 4.0492 3.9725 4.1682 4.0633 0.5132 

Polynomial3:  ݔଵ: ,݁ܿ݊݁ݎܽݎ݁݌݌ܽ :ଶݔ ܽ݃݁, ,ܶܺܧ_ܥܹܲ:ଷݔ :ସݔ ,(ܶܦܣ)10ܩܮ :ହݔ ,ܸܧܵ_ܥܱ :଺ݔ ,ܶܺܧ_ܨ_ܴ :଻ݔ ݐ)_ܶܺܧ_ܥܹܲ ܸܧܵ_ܨ_ܴ + 1) = 0.2113 + ଵݔ0.6897 + ଶݔ0.0585 + ଷݔ0.9701 − ଵଶݔ0.2445 ହݔସݔ0.1476+ − ଷݔହݔ0.1476 + ଺ݔହݔଵݔ0.0299 − ଻ݔସݔଶݔ0.00353 +   ଷଶݔହݔ0.0103
Polynomial 2: ݔଵ: ,݁ܿ݊݁ݎܽݎ݁݌݌ܽ ,ܶܺܧ_ܥܹܲ:ଶݔ :ଷݔ ,(ܶܦܣ)10ܩܮ :ସݔ ݐ)_ܶܺܧ_ܥܹܲ ܸܧܵ_ܥܱ + 1) = 0.3854 + ଵݔ0.7615 + ଶݔ0.9275 − ଵଶݔ0.2136 + ସݔଷݔ0.1068   ଶݔଷݔ0.0624−
Linear: ݔଵ: ,݁ܿ݊݁ݎܽݎ݁݌݌ܽ :ଶݔ ܽ݃݁, :ଷݔ ,ܸܧܵ_ܥܱ ݐ)_ܶܺܧ_ܥܹܲ ܶܺܧ_ܥܹܲ:ସݔ + 1) = 0.4636 + ଵݔ0.3265 + ଶݔ0.0302 + ଷݔ0.1863 +   ସݔ0.8212
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WPC_EXT 3: ݔଵ:ܹܲݐ)_ܶܺܧ_ܥܹܲ ܶܺܧ_ܥ + 1) = 0.5323 + ଵݔ1.46 − ଵଶݔ0.1083 +   ଵଷݔ0.0058
Age 3: ݔଵ: ݐ)_ܶܺܧ_ܥܹܲ ݁݃ܽ + 1) = −0.3547 + ଵݔ0.6292 −   ଵଶݔ0.0146
Polynomial SLCT 3: xଵ: age, xଶ:WPC_EXT, xଷ: LG10(ADT), xସ:WPC_SEV  ܹܲݐ)_ܶܺܧ_ܥ + 1) = −0.0198 + 0.2691xଵ + 0.3664xଶ + 0.1693xଷxଶ − ଶଶݔ0.0263 ଵଷݔ0.000298+ − ଵଶxଷݔ0.00453 +   ଵଶxସݔ0.000474
Polynomial SLCT 2: xଵ: age, xଶ:WPC_EXT ܹܲݐ)_ܶܺܧ_ܥ + 1) = 0.2604 + 0.1039xଵ + 1.1009xଶ − ଵଶݔ0.00276 −   ଶଶݔ0.0259
Linear SLCT: ݔଵ: ܽ݃݁, ,ܶܺܧ_ܥܹܲ:ଶݔ ݐ)_ܶܺܧ_ܥܹܲ  SEV_ܥܹܲ:ଷݔ + 1) = 0.493 + ଵݔ0.0449 + ଶݔ0.8612 +   ଷݔ0.1

 
From the above eight regression functions, the linear model with selected four variables (among 
which three are eventually chosen in the regression model) can achieve relatively low ASE and 
high R2, also the regression function is relatively simple.  Thus, it is finally recommended for 
adoption by KYTC.  

Similar regression analysis, model validation and benchmarking are conducted for all eight 
remaining indices. The R2 values of all the MLR models are larger than 0.8 except OS_SEV. 
Meanwhile, the average ASE from the MLR models is fairly small ranging from 0.1 to 0.5. 
Below is the summary of final recommend regression models.  

ݐ)_ܶܺܧ_ܥܹܲ • + 1) = 0.493 + ଵݔ0.0449 + ଶݔ0.8612 + :ଵݔ	݁ݎℎ݁ݓ ,ଷݔ0.1 ܽ݃݁, ,ܶܺܧ_ܥܹܲ:ଶݔ  SEV_ܥܹܲ:ଷݔ
ݐ)_ܸܧܵ_ܥܹܲ • + 1) = 0.4495 + ଵݔ0.034 + ଶݔ0.2705 + ଷݔ0.0883 + :ଵݔ	݁ݎℎ݁ݓ ସݔ0.807 age, :ଶݔ ,ܸܧܵ_ܱܵ ,ܶܺܧ_ܥܹܲ:ଷݔ  SEV_ܥܹܲ:ସݔ
ݐ)_ܶܺܧ_ܨܴ • + 1) = 0.3436 + ଵݔ0.0257 + ଶݔ0.7064 + 0.1216xଷ + :ଵݔ	݁ݎℎ݁ݓ ,ସݔ0.0358 ܽ݃݁, :ଶݔ ,ܶܺܧ_ܨܴ :ଷݔ ,ܸܧܵ_ܨܴ  ܶܺܧ_ܥܹܲ:ସݔ
ݐ)_ܸܧܵ_ܨܴ • + 1) = 0.4331 + ଵݔ0.0207 + ଶݔ0.2442 + 0.5657xଷ + :ଵݔ	݁ݎℎ݁ݓ ସݔ0.0459 ܽ݃݁, :ଶݔ ,ܶܺܧ_ܨܴ :ଷݔ ,ܸܧܵ_ܨܴ  ܶܺܧ_ܥܹܲ:ସݔ
ݐ)_ܶܺܧ_ܥܱ • + 1) = 0.3156 + ଵݔ0.0178 + ଶݔ0.8588 + :ଵݔ	݁ݎℎ݁ݓ	 ,0.0575 ܽ݃݁, :ଶݔ ,ܶܺܧ_ܥܱ  ܶܺܧ_ܥܹܲ:ଷݔ
ݐ)_ܸܧܵ_ܥܱ • + 1) = 0.2037 + ଵݔ0.0162 + ଶݔ0.1186 + 0.7265xଷ + :ଵݔ	݁ݎℎ݁ݓ	 ସݔ0.0621 ܽ݃݁, :ଶݔ ,ܶܺܧ_ܥܱ :ଷݔ ,ܸܧܵ_ܥܱ :ସݔ  ܸܧܵ_ܨܴ
ݐ)_ܶܺܧ_ܱܵ • + 1) = −0.0751 + ଵݔ0.0794 + ଶݔ0.9372 + ସݔଷݔ0.0297 ଷݔଵݔ0.2177	− + ଺ݔହݔ0.051 − ହݔଷଶݔ0.0252 + ଵݔଷଶݔ0.0857 − :ଵݔ	݁ݎℎ݁ݓ	 ,଻ݔଷଶݔ0.051 ,ܸܧܵ_ܥܱ :ଶݔ ,ܶܺܧ_ܱܵ :ଷݔ ,݁ܿ݊ܽݎܽ݁݌݌ܽ :ସݔ ,ܶܦܣ_10ܩܮ :ହݔ ,ܸܧܵ_ܥܹܲ:଺ݔ																,ܶܺܧ_ܥܱ :଻ݔ  ܸܧܵ_ܱܵ
ݐ)_ܸܧܵ_ܱܵ • + 1) =−0.00473 + ଵݔ0.615 + ଶݔ0.1332 + ସݔଷݔ0.0317 − ହݔସݔ0.3157											 	+ ଷݔଵݔ0.0307 ଺ݔସଶݔ+ − ସݔଷଶݔ0.00103 − ଺ݔସݔଷݔ0.00796 − ଼ݔ଻ݔସݔ0.00254											 + ଻ݔ଺ݔସݔ0.000826 ହଶݔସݔ0.0595+ + ଷݔଶଶݔ0.0014 − ଽݔ଻ଶݔ0.00000518											 + 0.0104xହݔଵ଴ଶ + ଵ଴ଶݔ଼ݔ0.0227 ଵ଴ݔଽݔ଺ݔ0.0103− − ଵଵݔଵ଴ݔ଺ݔ0.00585											 − ଵଵݔଽݔହݔ0.0134 − ଵଵଶݔଵݔ0.00615 ଽݔ଺ଶݔ0.0119+ − :ଵݔ	݁ݎℎ݁ݓ	 ,଺ଷݔ0.00182											 ,ܸܧܵ_ܱܵ ,ܸܧܵ_ܥܹܲ:ଶݔ :ଷݔ ܽ݃݁, :ସݔ ,݁ܿ݊ܽݎܽ݁݌݌ܽ :ହݔ ,ܶܺܧ_ܥܹܲ:଺ݔ 	,ܸܧܵ_ܥܱ :଻ݔ ,ܫܴܫ_ܴܷܥ x଼: ,ܶܺܧ_ܱܵ :ଽݔ ,ܶܺܧ_ܨܴ :ଵ଴ݔ ,ܶܦܣ_10ܩܮ  ܸܧܵ_ܥܹܲ:ଵଵݔ
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௧ାଵܴܣܧܲܲܣ • = 0.2191 + ଵݔ0.8479 + ଶݔ0.00932 + 0.035xଷ, 	ݓℎ݁݁ݎ	ݔଵ: ,݁ܿ݊ܽݎܽ݁݌݌ܽ :ଶݔ ܽ݃݁,  ܶܺܧ_ܥܹܲ:ଷݔ
 
 
 

4.2. Pavement Projects Selection Using AHP 

In order to evaluate the proposed AHP-based PMP projects rating method, a pilot study using a 
subset of 17 road segments is conducted to compare the recommendations from the current rating 
system and the proposed AHP.  The randomly selected 17 road segments are from the 2010 
pavement condition database and they all need some level of treatment.  

After based on importance matrix provided by the panel of KYTC experts, the priority weights 
for WPC_EXT, WPC_SEV, RF_EXT, RF_SEV, OC_EXT, OC_SEV, OS_EXT, OS_SEV, 
APPEAR, JS (joint section) and (adjusted)IRI are determined to be 0.0995, 0.2423, 0.0376, 
0.0646, 0.0894, 0.1710, 0.0244, 0.0521, 0.0242, 0.0745 and 0.1204, respectively. Further, the 
consistency index (CI) of 0.0725 and consistency ratio (CR) of 0.0482.  

Table 3 displays the information for all 11 individual criteria for the 17 roads, as well as the total 
score obtained by KYTC’s current rating system.  The 17 roads are arranged in descending order 
with respect to the total score, i.e., the road with highest priority for treatment is listed on the top. 
Table 4 contains similar information as does Table 3, except the last column “total score” is 
calculated by the proposed new rating method. 

Table 3. Ranking for 17 road segments by using current rating system 

Road 
# 

WPC_EXT WPC_SEV RF_EXT RF_SEV OC_EXT OC_SEV OS_EXT OS_SEV APPEAR JS IRI 
Total 
Score 

4 9 9 4 4 5 4 0.5 1 3 0 85.442 49.5 

16 4 6 4 4 3 3 0 0 2 4 107.111 47 

15 8 7 4 4 2 3 1.5 1.5 2.5 2 72.54 41.5 

5 8 6 4 4 5 2 0 0 2 0 74.989 38 

6 8 7 4 3 5 2 0 0 2 0 74.021 37 

14 6 5 4 4 3 4 1.5 1 2.5 3 64.355 37 

26 7 4 3 2 4 2 1 1 2 1 85.144 37 

7 6 8 2 2 4 3 1 1 1.5 0 80.442 36.5 

29 7 5 4 3 2 3 0 0 2 2 75.578 35 

17 7 7 2 2 4 2 1 1.5 2 0 69.702 33.5 

13 6 4 4 4 3 2 0 0 2 3 68.606 33 

3 7 4 4 4 5 1 0 0 1.5 0 69.54 31.5 

27 6 5 4 5 3 2 0.5 0.5 2 1 57.011 30 

9 6 4 2 2 2 1 1 0.5 2.5 5 60.772 28 

25 4 3 4 3 3 2 0 0 1 2 70.552 27 



10 
Xu, Bai, Sun, Nowaczyk, Shive & Wilcoxson 

20 3 3 2 2 3 2 0 0 1.5 2 80.62 26.5 

30 5 4 3 3 2 3 0.5 0.5 2 2 53.003 25 

 

Table 4. Ranking for 17 road segments by using composite cracking distress index 

Road 
# 

WPC_EXT WPC_SEV RF_EXT RF_SEV OC_EXT OC_SEV OS_EXT OS_SEV APPEAR JS IRI 
Total 
Score 

4 10 10 5 5 6 5 1.5 2 4 1 85.442 0.8432 

15 9 8 5 5 3 4 2.5 2.5 3.5 3 72.54 0.7128 

14 7 6 5 5 4 5 2.5 2 3.5 4 64.355 0.6721 

7 7 9 3 3 5 4 2 2 2.5 1 80.442 0.6521 

16 5 7 5 5 4 4 1 1 3 5 107.111 0.6509 

6 9 8 5 4 6 3 1 1 3 1 74.021 0.6021 

17 8 8 3 3 5 3 2 2.5 3 1 69.702 0.5996 

5 9 7 5 5 6 3 1 1 3 1 74.989 0.5881 

29 8 6 5 4 3 4 1 1 3 3 75.578 0.5524 

26 8 5 4 3 5 3 2 2 3 2 85.144 0.5464 

27 7 6 5 6 4 3 1.5 1.5 3 2 57.011 0.5191 

13 7 5 5 5 4 3 1 1 3 4 68.606 0.5011 

30 6 5 4 4 3 4 1.5 1.5 3 3 53.003 0.4743 

3 8 5 5 5 6 2 1 1 2.5 1 69.54 0.4603 

9 7 5 3 3 3 2 2 1.5 3.5 6 60.772 0.4512 

25 5 4 5 4 4 3 1 1 2 3 70.552 0.4099 

20 4 4 3 3 4 3 1 1 2.5 3 80.62 0.3854 

 

From Tables 3 and 4, it can be observed that the top ten road segments (road #4, #5, #6, #7, #14, 
#15, #16, #17, #26, and #29) are exactly the same by both methods, and the only different is the 
ranking order. This difference is mainly caused by the emphasis given to IRI by the current 
method. For example, in Table 3 compared to road #16, road #14 is more distressed in almost all 
categories except for a significantly lower IRI score. As a result, it is only ranked No. 6 while 
#16 is ranked No. 2 overall. In contrast, the AHP-based rating method successfully addresses this 
overemphasis on IRI, giving road #14 a rank of No. 3 and road #16 a rank of No. 6. This 
indicates that AHP provides a more objective weight than the current rating system. Similarly 
observations can be made between roads #17 and #26, in which case road #26 have relatively 
high IRI thus receiving a higher ranking.  Similarly, Figure 2 depicts the relationship between the 
priority score for a road segment and IRI, in which a higher priority score gives priority for a 
road to receive treatment. The figure indicates that the priority score is less influenced by IRI 
under the AHP-based rating system.  Overall, it can be concluded that AHP-based rating method 
overcomes the problem overemphasizing IRI among all distress indices. 



11 
Xu, Bai, Sun, Nowaczyk, Shive & Wilcoxson 

 

Figure 2. Priority vs. IRI 

 
5. CONCLUSIONS AND FUTURE WORK 

A novel integrated approach for pavement projects selection is developed consisting of two key 
modules: the pavement deterioration models for predicting nine individual distress indices using 
multiple linear regressions; and the hierarchical analytical process for developing a composite 
pavement condition index based on individual distress indices as well as joint separation and IRI. 
The developed prediction models yield an average ASE of around or less than 1.0 with R 
squared value around 0.8, which indicates that the regression model provide high quality 
prediction. The proposed AHP based project selection method is more objective and overcomes 
the problem of overemphasizing IRI in pavement project prioritization. 

Future research includes: extending the prediction period from one year to three years in order to 
match with three-year budgeting cycle, study nonlinear models such as sigmoidal or power 
functions to predict pavement deterioration, and incorporating percentage of truck in lieu of ADT 
in the prediction model. 
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