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Abstract 50 
 51 
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-52 
based geostatistical analysis, we show that spatial processes differentially affect biogeochemical 53 
condition and pattern across a headwater stream network.  We analyzed a high-resolution dataset 54 
consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire 55 
fifth-order stream network.  These samples were analyzed for an exhaustive suite of chemical 56 
constituents.  The fine grain and broad extent of this study design allowed us to quantify spatial 57 
patterns over a range of scales using empirical semivariograms that explicitly incorporated 58 
network topology.  Here, we show that spatial structure, as determined by the characteristic 59 
shape of the semivariograms, differed both among chemical constituents and by spatial 60 
relationship (flow-connected, flow-unconnected, or Euclidean).  Spatial structure was apparent at 61 
either a single scale or at multiple nested scales, suggesting separate processes operating 62 
simultaneously within the stream network and surrounding terrestrial landscape.  Expected 63 
patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity 64 
with downstream distance) occurred for some chemical constituents (e.g., dissolved organic 65 
carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium).  By comparing 66 
semivariograms for the different chemical constituents and spatial relationships, we were able to 67 
separate effects on streamwater chemistry of (1) fine- versus broad-scale processes and (2) in-68 
stream processes versus landscape controls.  These findings provide novel insight on the 69 
hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical 70 
patterns in stream networks. 71 
 72 
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 75 
Significance Statement 76 
 77 
Headwater streams are important sources of water for downstream ecosystems and human 78 
communities. These streams comprise the vast majority of stream and river kilometers in 79 
watersheds and affect regional water quality. However, the actual spatial variation of water 80 
quality in headwater streams is often unknown. Our study uses an unusually high-resolution 81 
spatial dataset from a headwater stream network and employs a new statistical tool to objectively 82 
describe spatial patterns of streamwater chemistry within a stream network. This approach 83 
provides new insights on how flowing water interacts with vegetation, soil, and geologic 84 
materials in the surrounding landscape. Application of this method may help to identify factors 85 
impairing water quality and to inform strategies for protecting aquatic ecosystems. 86 
  87 
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 88 
\body 89 
Introduction 90 
Spatial heterogeneity of ecosystems has been a focus of landscape ecology for over two decades, 91 
but the linkages between these patterns and underlying processes are still poorly understood (1-92 
3).  Quantifying these pattern-process links is largely a problem of scale.  Specifically, it is 93 
difficult to perform experiments at the landscape scale and measure responses over the range of 94 
spatial and temporal scales commensurate with the processes of interest (4, 5).   95 
 96 
This problem of scale limits our understanding of both terrestrial and freshwater ecosystems.  97 
Effects of landscape pattern on ecosystem response can be evaluated at stream outlets using 98 
biogeochemical signals that integrate physical and biological conditions of the catchment (6, 7).  99 
However, the spatial complexity of biogeochemical patterns and processes within stream 100 
networks has not been fully investigated because it is difficult to quantify such patterns at a grain 101 
and extent sufficient for examining spatial heterogeneity and processes across scales (8).  102 
Quantifying this variability and linking fine- and broad-scale patterns and processes within the 103 
branched topology of stream networks is essential for understanding aquatic ecosystem function 104 
and aquatic-terrestrial ecosystem connections, but requires new conceptual and methodological 105 
approaches (9, 10). 106 
 107 
Major advances in understanding biogeochemical fluxes and cycles in rivers and streams have 108 
resulted from increased recognition of how spatial heterogeneity and network topology reflect 109 
land–water interactions (e.g., 11, 12).  However, our understanding of biogeochemical processes 110 
in stream networks is still limited to small-scale experiments (e.g., 13), often with limited spatial 111 
extent or replication, and large-scale correlative models (14).  Fine-grained observations at 112 
intermediate scales (e.g., 1 to 10 km2) may be especially powerful for advancing understanding 113 
of complex aquatic and terrestrial effects on biogeochemical fluxes throughout stream networks 114 
(15-17).  115 
 116 
Studies quantifying streamwater chemistry in a spatially intensive manner at intermediate scales 117 
have revealed a high degree of spatial structure that cannot be explained by current models of 118 
biogeochemical processes (11, 18).  Specifically, these results show that traditional, continuum-119 
based models—where conditions are regulated primarily by upstream processes, and thus exhibit 120 
gradual downstream gradients—are insufficient for describing the true spatial complexity of 121 
biogeochemical patterns and processes in stream networks. This unfamiliar ground between fine 122 
and coarse scales of understanding is the crux of field-based science, in which the “preferred 123 
modes of explanation…appear to be systematically related to customary human scales of 124 
perception of the world” (19).  Likewise, obtaining a bird’s-eye view of biogeochemical patterns 125 
at fine to coarse scales may be crucial for advancing ecosystem science and explaining the 126 
spatial complexity of streamwater chemistry within landscapes.   127 
 128 
Recent developments in geostatistical modeling provide a valuable new perspective on stream 129 
networks by revealing hydrological and ecological patterns in a spatially continuous manner (20, 130 
21).  To date, the relatively few sample points required to generate spatial interpolations have 131 
fueled the popularity of these models.  However, the increasing use of network-based 132 
geostatistical techniques underscores a need to understand the processes from which these 133 
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patterns arise, or, more broadly, to elucidate ecosystem processes from spatial patterns and 134 
develop new hypotheses about system function (22). Recent theoretical and empirical approaches 135 
show that this is possible using empirical semivariograms and synoptic sampling (e.g., 23).  136 
Specifically, the combination of spatial analysis and synoptic sampling allows one to visualize 137 
how patterns occur across different scales, while providing the empirical foundation needed to 138 
identify the processes that give rise to those patterns.  Geostatistics have only recently been used 139 
to describe spatial patterns throughout stream networks (24, 25), even though these tools have 140 
long been used to quantify spatial structure in terrestrial ecology (26). 141 
 142 
We apply geostatistical techniques to an unusually high-resolution synoptic dataset of 143 
streamwater chemistry collected throughout the Hubbard Brook Valley in New Hampshire to 144 
explore the spatial structure of biogeochemical patterns at multiple scales (18). The dataset 145 
consisted of 664 water samples collected over a three-month period every 100 m throughout all 146 
32 tributaries of the 3600 ha, fifth-order stream network of the Hubbard Brook Valley. We show 147 
previously undescribed patterns of spatial dependence based on three spatial relationships, 148 
revealing biogeochemical determinants occurring across scales, both within the stream network 149 
and surrounding catchment.  Stream network patterns were defined by two spatial relationships: 150 
flow-connected and flow-unconnected (sensu 20, 21). The straight-line distance between two 151 
points defines Euclidean relationships.  Flow-connected and unconnected network relationships 152 
describe distances along the stream network and were considered “connected” if water flows 153 
from one site to another.  Thus, all points downstream of other points on the stream network 154 
were considered connected, but points upstream of tributary junctions that do not share flow 155 
were considered “unconnected.”   156 
 157 
Empirical semivariograms based on these three spatial relationships suggest the importance of 158 
different drivers of spatial variability in streamwater chemistry at multiple scales, e.g., fine 159 
(<1500 m) and broad scales (>3000 m) (Figure 1).  For example, semivariograms of flow-160 
connected relationships indicate whether downstream flow and longitudinal transport exert a 161 
dominant control on streamwater chemistry by showing the level of autocorrelation between 162 
flow-connected samples.  Likewise, semivariograms of flow-unconnected relationships provide 163 
information about the similarity/dissimilarity of tributary branches due to influences of landscape 164 
properties (e.g., soils or geology).  Semivariograms of streamwater chemistry using Euclidean 165 
relationships reveal interactions or lateral connectivity between the stream network and the 166 
landscape. Therefore, both Euclidean and flow-unconnected network relationships provide 167 
information on how the landscape influences patterns of streamwater chemistry within a single 168 
catchment/network, whereas a flow-connected relationship largely describes the effect of 169 
hydrologic transport and upstream spatial dependence.   170 
 171 
Extensive work in the Hubbard Brook Ecosystem Study (HBES) over the last five decades 172 
provides the temporal context for understanding biogeochemical processes and landscape change 173 
through ecosystem change revealed by long-term research (27, 28).  The current study aims to 174 
provide a spatial context (29) for interpreting how biogeochemical patterns observed from sparse 175 
fixed sites (e.g., outlets of experimental watersheds) fit within the larger stream network. We 176 
expect spatial dependence of streamwater chemistry to be structured by flow directionality and 177 
network topology, especially for constituents that are not strongly biologically cycled in 178 
headwater streams (e.g., base cations, Cl-, SO4

2-).  However, patchiness longitudinally in the 179 
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stream network and across the landscape (i.e., by Euclidean distances) may arise due to the local 180 
influences of landscape features such as seeps and springs, and variation in vegetation, soil, and 181 
geologic materials.  Our objectives were to (1) quantify spatial heterogeneity in streamwater 182 
chemistry at multiple scales within the stream network, (2) compare patterns of streamwater 183 
chemistry using different spatial relationships within the stream network and across the 184 
landscape (i.e., using network and Euclidean relationships), and (3) evaluate this approach for 185 
linking biogeochemical patterns and processes by identifying potential drivers of spatial patterns 186 
in streamwater chemistry that bridge scales from tributaries, to the main stem, and throughout the 187 
entire Hubbard Brook Valley.  188 
 189 
Results 190 
Spatial structuring in streamwater chemistry 191 
Streamwater chemistry patterns throughout the Hubbard Brook Valley exhibited spatial 192 
patchiness and gradients at multiple scales (see supplemental information [Figure S1] for a 193 
complete set of distribution maps for all chemical constituents).  However, it is difficult to 194 
systematically compare these patterns visually due to the spatial complexity of the data.  For 195 
example, patterns of dissolved organic carbon (DOC), sodium, dissolved silica, and specific 196 
conductance were visibly different (Figure 2), but the extent and typology of these differences 197 
cannot be quantified based on visual inspection alone.  In contrast, analysis with empirical 198 
semivariograms revealed a high degree of spatial structuring in streamwater chemistry, as 199 
indicated by the overall shape of the semivariograms (Figures 3 and S2).  Specifically, some of 200 
the semivariograms showed spatial structure at predominantly one scale of variation (<1500 m) 201 
(cf. Figure 1c, flow-connected semivariograms in Figure 3), whereas other semivariograms 202 
varied substantially among spatial relationships and exhibited spatial structure at multiple scales 203 
(cf. Figure 1d, Figure 3).  Semivariograms of the 16 chemical constituents exhibited several of 204 
the theoretical spatial structures described in Figure 1 (Table 1, Figures 3 and S2): (1) 205 
nonstructured, or poorly defined structure (NH4

+, NO3
-, PO4

3-; cf. Figure 1a); (2) single-scale 206 
structure (many examples; cf. Figure 1c); and (3) nested structure (many examples; cf. Figure 207 
1d).  Scales of variation in streamwater chemistry ranged from 500 to >6000 m for the variables 208 
that showed spatial structure (Table 1). The finest and broadest scales of variation were 209 
associated with semivariograms of the nested type, for which Euclidean and flow-unconnected 210 
relationships had the finest scales of variation, and flow-unconnected relationships had the 211 
broadest scales of variation.  Scales of variation for flow-connected network relationships were 212 
less variable compared to the other spatial relationships. 213 
 214 
Effects of network connectivity on patterns of spatial dependence  215 
Patterns of spatial dependence in streamwater chemistry varied not only among chemical 216 
constituents but also depending on how connectivity, or relationships among sample points, was 217 
defined in space.  For example, semivariograms of specific conductance differed in shape and 218 
overall variance (i.e., height of the curve with respect to the y-axis) based on the way the spatial 219 
relationship was calculated between sample points (i.e., flow-connected, flow-unconnected, and 220 
Euclidean spatial relationships) (Figure 3d).  Specifically, the shape of the flow-connected 221 
semivariogram of specific conductance indicated the presence of spatial structure at one scale 222 
(Figure 3d), whereas the semivariogram of flow-unconnected relationships exhibited pronounced 223 
patterns associated with nested spatial structure at two scales.  The semivariogram based on the 224 
Euclidean spatial relationship also exhibited a nested pattern, but was not as clearly defined as 225 
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the flow-unconnected semivariogram.  Overall variance was generally highest for the 226 
semivariogram based on Euclidean relationships and lowest for the flow-connected 227 
semivariograms. 228 
 229 
The differences described above for semivariograms of specific conductance generally applied to 230 
the majority of chemical constituents that exhibited spatial structure (i.e., monomeric aluminum 231 
[Alm], Cl-, dissolved inorganic carbon [DIC], DOC, K+, dissolved Si, and SO4

2-) (Figure S2), but 232 
there were some notable exceptions.  For example, semivariograms of acid-neutralizing capacity 233 
(ANC), Ca2+, and K+ were also similar, but only for flow-connected and Euclidean spatial 234 
relationships with distances less than about 4500 m (Figure S2).  Semivariograms of Mg2+ and 235 
Na+ exhibited an analogous pattern but at shorter distances (~1500 m).  The nugget value (i.e., 236 
discontinuity at the origin) (e.g., defined in Figure 1c) of semivariograms based on Euclidean 237 
and flow-connected relationships were close to zero for all chemical constituents except for DIC 238 
(Figures 3 and S2), whereas nugget-variance for flow-unconnected semivariograms were 239 
substantially greater than zero for all chemical constituents except Alm and K+. 240 
 241 
Discussion 242 
Understanding controls on spatial patterns of streamwater chemistry and developing tools for 243 
predicting spatial variation of stream chemistry in headwaters is important for managing water 244 
quality in downstream systems.  Headwater streams comprise the vast majority of stream length 245 
in watersheds (30) and perform critical functions for downstream ecosystems, but are still 246 
considered aqua incognita in hydrology and ecology (31, 32).  We found complex variability in 247 
spatial patterns of streamwater chemistry (multi-scale structure) across the Hubbard Brook 248 
Valley, suggesting that different processes are affecting streamwater chemistry at different scales 249 
and with different spatial relationships. Our results suggest that streamwater chemistry is more 250 
complex than the expected pattern of a single scale of spatial autocorrelation (Figure 1c) or 251 
increasing homogeneity with downstream distance.  There is both fine-scale patchiness and 252 
broad-scale trend operating within the stream network and across the landscape.  These 253 
observations may provide clues about how streams function and ultimately lead to better models 254 
of aquatic and terrestrial ecosystem interactions in stream networks.  Furthermore, the spatial 255 
structure of stream network chemistry that emerges from our analysis is similar to patterns that 256 
have been observed in landscape ecology, where both broad-scale gradients and fine-scale 257 
patchiness are influenced by environmental attributes (33). 258 
 259 
Semivariograms of water chemistry in the stream network of the Hubbard Brook Valley revealed 260 
spatial structure at multiple scales previously described only in unbranched stream sections (11) 261 
or for a limited suite of chemical constituents examined at much coarser scales (34).  Other 262 
pioneering studies of stream networks have examined spatial heterogeneity or developed 263 
predictive models in stream networks (16, 35), but these studies have been too coarse in grain 264 
(low resolution) to detect spatial structure at scales ranging from hundreds to thousands of 265 
meters.  Our analysis of the shape and characteristics of semivariograms (Figure 1) of water 266 
chemistry in a stream network provide empirical support for three models of spatial structure in 267 
stream networks (sensu 26): (1) broad-scale heterogeneity with few patches (Figure 1b; e.g., the 268 
Euclidean relationship of Na+, dissolved Si, and DIC), (2) fine-scale heterogeneity with many 269 
patches (Figure 1c; e.g., flow-connected K+, Cl-, DOC), and (3) nested heterogeneity that 270 
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contains fine-scale patchiness and broad-scale heterogeneity (Figure 1d; e.g., flow-unconnected 271 
H+, Alm, DOC).  272 
 273 
The different spatial relationships permit the examination of heterogeneity dominated by 274 
landscape versus stream network processes.  Euclidean and flow-unconnected network 275 
relationships were associated with the nested type of heterogeneity indicative of landscape 276 
influences occurring over multiple spatial scales, such as soil, geology, and vegetation controls 277 
on the chemistry of water sources.  In contrast, flow-connected relationships were entirely (with 278 
the exception of Na+) of the single-scale type, suggesting that similarity at large stream distances 279 
in the network was largely controlled by channel-mediated transport and groundwater flow 280 
accumulation, which seemed to stabilize the variance of all chemical constituents at about 2000 281 
m separation distance.  This range among the semivariograms for flow-connected relationships 282 
provides an indication of where the hydrologic control on variability begins to overwhelm the 283 
patchiness at the fine-scale (<2000 m). As one would expect, hydrologic transport and 284 
longitudinal gains of groundwater were the main drivers of the spatial pattern among most of the 285 
solutes. At Hubbard Brook, solute chemistry is relatively constant temporally compared to 286 
discharge, which may suggest general persistence in these spatial relationships (17).  287 
 288 
Euclidean and flow-unconnected semivariograms exhibit higher variance, spatial dependence at 289 
broader scales, and multiple structures (single and nested) compared to flow-connected 290 
semivariograms, suggesting processes other than hydrologic transport were also responsible for 291 
observed patterns of streamwater chemistry.  Chemical constituents typically considered to be 292 
controlled by mineral weathering (e.g., Ca2+, dissolved Si, DIC, Mg2+, ANC, and Na+) all show 293 
either broad- or multi-scale heterogeneity with the Euclidean relationship and high nugget values 294 
with the flow-unconnected network relationship, suggesting discontinuity or dissimilarity among 295 
short unconnected distances such as two sites above a confluence residing on different tributaries 296 
(Figure S2).  The broad-scale component of variation in the Euclidean relationships may be 297 
explained by either gross changes in bedrock type or glacial till composition/thickness across the 298 
Hubbard Brook Valley.  The Valley is underlain by granodiorite in the western portion and 299 
pelitic schist in the eastern portion (36) with an overlying soil parent material composition that 300 
varies with lithologic sources eroded and deposited by the most recent glaciation (37).  The most 301 
apparent broad-scale pattern occurs with Na+ where the Euclidean semivariogram shows a 302 
monotonic increase, which manifests itself spatially with a general increase in concentration 303 
across the Valley from west to east. This pattern is different from chloride suggesting the trend in 304 
Na+ is not due to road-salt contamination in the east part of the basin, which is near an interstate 305 
roadway. Sodium may be geologically controlled; however, the trend is counter to currently 306 
known mineral chemistry differences in the Hubbard Brook Valley (37).  Nevertheless, the 307 
comparison between the Euclidean and the flow-connected semivariograms for Na+ suggests a 308 
strong landscape control on the spatial pattern at the basin-wide scale, and fine-scale patchiness 309 
along the stream. Similar spatial dependence at large Euclidean distance is apparent with K+, 310 
Ca2+, dissolved Si, Cl-, SO4

2- ANC, DIC, and specific conductance. 311 
 312 
The difference between nugget values of mineral weathering-controlled chemistry (i.e., Ca2+, 313 
dissolved Si, Mg2+, ANC, and Na+) for the two network relationships suggests differences in 314 
landscape character and their potential influence on spatial structure, but over shorter distances.  315 
A higher nugget value for the flow-unconnected metric highlights spatial variability over short 316 
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distances at tributary junctions and chemical dissimilarities between tributaries.  This pattern 317 
shows that sources contributing to streamflow that are not downstream from one another may be 318 
heterogeneous despite close proximity.  This same pattern was noted by Likens and Buso (18) in 319 
streams strongly influenced by groundwater seeps and springs. Seeps have been noted 320 
throughout the valley and typically show distinct chemistry (e.g., 17). 321 

Streamwater chemistry that exhibited the weakest structure, including NH4
+, NO3

-, and PO4
3-, 322 

may be explained in large part by their low concentrations (i.e., at or near analytical detection 323 
limits [30]).  However, there was some indication of spatial dependence over fine scales (<1000 324 
m) in NO3

- and PO4
3- (i.e., linear increases in variation over short flow-connected distances), 325 

suggesting that in-stream uptake may be occurring over very short distances due to biological 326 
demand for these nutrients in the generally nutrient-poor environment (38).  Uptake lengths for 327 
ammonium and phosphorus within the Hubbard Brook Valley were shown to vary between 5 to 328 
277 m and 2 to 54 m, respectively (39), suggesting strong in-stream processing influence on 329 
spatial variation over short flow-connected distances.    330 
 331 
Both landscape and hydrologic drivers influence some chemical constituents.  For example, 332 
DOC, H+ and Alm show autocorrelation at flow-connected relationships >1500 m, indicating an 333 
influence of flow accumulation on spatial structure.  However, these solutes also exhibited 334 
nested structure in flow-unconnected distance at fine (<750 m) and broad (>4500 m) spatial 335 
scales.  Thus, two scales of heterogeneity and three different spatial relationships appear to be 336 
important.  One is fine-scale, resulting in hotspots of DOC and H+ variation, which typically 337 
coincides with Alm variation (40).  At large distances that are not flow-connected, such as 338 
headwater regions in different parts of the network, there is also a high degree of variation in H+, 339 
DOC and Alm.  This pattern may occur because headwater and valley bottom regions throughout 340 
the Hubbard Brook Valley contain patches of coniferous forest and distinct soils.  Many of these 341 
areas (e.g., ridge tops, north-facing slopes, and along the stream) tend to have shallow, wet, 342 
acidic soils (41) with deep litter layers, and high DOC and Al soil-water concentrations that have 343 
been shown to affect spatial patterns of streamwater DOC and Al (17, 40).  It is striking that our 344 
semivariogram analysis provides a quantitative characterization of this large-scale patchiness, 345 
which small-scale, descriptive studies cannot capture. 346 
 347 
This study shows that network geostatistics combined with high-resolution water chemistry data 348 
can provide insight into dominant processes driving biogeochemical patterns in stream networks 349 
at local, longitudinal, and landscape scales. In the Hubbard Brook Valley, landscape processes 350 
were shown to occur over a wide range of spatial scales (500 to >6000 m), with broad-scale 351 
trends and fine-scale patchiness likely driven by geologic, soil, and vegetation features across the 352 
Valley.  Hydrologic transport and flow accumulation in streams were also found to exert 353 
influence on streamwater chemistry at downstream distances of 1400 to 2200 m, where variation 354 
in chemistry tended to stabilize.  By revealing the spatial structure of stream biogeochemistry 355 
and scales of underlying drivers, this spatially explicit, network-level analysis is crucial to 356 
refining long-held assumptions about stream structure and function (e.g., 42). 357 
 358 
 359 
Methods 360 
Basin-wide survey 361 
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Streamwater chemistry was measured by Likens and Buso (18) throughout the 3600 ha Hubbard 362 
Brook Valley in the White Mountains of central New Hampshire (USA) (43o56’N, 71o45’W. 363 
Detailed information on the ecological, hydrological, climatological, and geological setting is 364 
summarized by Likens (43).  The field survey of streamwater chemistry (Alm, acid-neutralizing 365 
capacity, Ca2+, Cl-, DIC, DOC, K+, Mg2+, Na+, NH4

+, NO3
-, pH, PO4

3-, dissolved Si, SO4
2-, and 366 

specific conductance) was conducted during October through December 2001 and is described in 367 
Likens and Buso (18). A subset of 664 from the total of 761 samples was selected for network 368 
analysis based on an assessment of hydrography and the ability to delineate catchment areas 369 
using a geographical information system (GIS) derived from 10-m digital elevation models. The 370 
sites left out were almost entirely small tributaries with only a few samples and they were 371 
scattered systematically throughout the Valley, but primarily in headwater areas. 372 
 373 
Analysis of spatial structure with empirical semivariograms  374 
We quantified spatial structure in streamwater chemistry by calculating empirical 375 
semivariograms using distance metrics based on spatial connectivity within the stream network 376 
and across the landscape of the Hubbard Brook Valley (20, 21).  Empirical semivariograms 377 
provide a means to describe spatial structure in geographically referenced data by quantifying the 378 
variance (or relatedness) in sample values (e.g., Ca2+ or specific conductance) as a function of 379 
the distance between sample points in Euclidean space (44) or throughout the stream network 380 
(24, 45). An empirical semivariogram that displays semivariance as a function of stream network 381 
distance separately for flow-connected and flow-unconnected relationships is called a Torgegram 382 
(46). We used Torgegrams and empirical semivariograms based on Euclidean distance as 383 
exploratory tools for visualizing patterns of spatial autocorrelation. 384 
 385 
Empirical semivariograms provide information on patterns of spatial dependence and have 386 
various theoretical forms (Figure 1).  We used the typology proposed by Ettema and Wardle (26) 387 
to compare shapes of semivariograms among chemical constituents and spatial relationships.  388 
Because all of the spatial relationships used the same data, standardization of semivariance was 389 
not necessary for comparisons among relationships for a given chemical constituent.  Only the 390 
shapes of the semivariograms were compared among chemical constituents, and this approach 391 
made it possible to preserve the original units in the semivariograms to aid interpretation.  In 392 
geostatistics, terms used to describe the semivariogram include the range, sill, and nugget, all of 393 
which can be estimated quantitatively and have specific meaning for the purposes of predictive 394 
modeling (47). We did not attempt fit models to the empirical semivariograms because of the 395 
complexity of the structures observed and uncertainty associated with identifying model forms a 396 
priori to estimate parameters.  We determined the approximate range visually by identifying the 397 
inflection point (or points) in variance as a function of separation distance.  The approximate 398 
variances at the y-intercept (i.e., the nugget) and the inflection point in variance (i.e., the sill) 399 
were also assessed visually.  The goal of analysis with semivariograms was to provide a means 400 
to visualize, with the aid of relatively simple geostatistical tools, the full range of spatial 401 
complexity in biogeochemical patterns across scales in a headwater stream network.  Specific 402 
elucidation of mechanisms and explanatory variables for individual chemical constituents is the 403 
topic of ongoing work, including the examination of chemical variability at scales finer than that 404 
available from Likens and Buso (18) (see 17). 405 
 406 
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Figure Legends 516 
 517 
Figure 1.  Hypothetical semivariograms and associated maps depicting representative spatial 518 
patterns of water chemistry in a stream network.  Nonstructured spatial pattern (a) is indicated in 519 
the semivariogram by no change in semivariance (γ) (y-axis) with increasing distance (d) 520 
between neighbors (x-axis), as is graphically depicted by the uniform line color in the associated 521 
network map.  In the example shown (a), γ = 0 for a uniform, nonstructured spatial pattern. Other 522 
potential semivariograms and associated network patterns include (b) spatial dependence at a 523 
broad-scale with a gradient symbolized in the network map by changes in line color from the 524 
upper left (blue) to the lower right (red) of the stream network, (c) fine-scale patchiness or spatial 525 
dependence indicated in the network map as ‘hotspots’, and (d) nested heterogeneity reflecting a 526 
combination of fine-scale patchiness imbedded within a broad-scale gradient (sensu Ettema and 527 
Wardle 2002). Characteristics of the semivariogram (c) are the asymptote or sill, which is 528 
roughly equivalent to the total population variance; the variance discontinuity at the y-intercept 529 
or nugget, which represents variance due to sampling error and/or spatial dependence at distance 530 
intervals not explicitly sampled; and the range, which defines the distance or scale over which 531 
spatial dependence is expressed. Beyond this range, in a non-nested structure, points are spatially 532 
independent of one another or uncorrelated.  Nested semivariograms are hierarchical structures, 533 
each characterized by its own range.   534 
 535 
Figure 2.  Spatial patterns of (a) sodium (Na+; mg/L), (b) dissolved silica (DSi; reported as SiO2 536 
mg/L), (c) dissolved organic carbon (DOC; mg/L), and (d) specific conductance (SC; µS/cm) 537 
derived from sampling streamwater chemistry at 664 locations throughout the Hubbard Brook 538 
Valley, NH during October–December 2001. 539 
 540 
Figure 3.  Empirical semivariograms for (a) sodium (Na+; mg/L), (b) dissolved silica (DSi; 541 
reported as SiO2 mg/L), (c) dissolved organic carbon (DOC; mg/L), and (d) specific conductance 542 
(SC; µS/cm) based on Euclidian, flow-connected, and flow-unconnected spatial relationships (d) 543 
in the Hubbard Brook Valley.  Visually estimated the ranges (see Table 1) for Euclidean (E) 544 
(yellow and black line), flow-connected (FC) (orange), and flow-unconnected (FU) (blue) 545 
relationships are indicated with vertical lines.  Symbols with lighter color shades indicate 546 
semivariance estimates based on < 100 pairs of points. 547 
 548 



Characteristics of empirical semivariograms for streamwater chemistry based on Euclidean, flow-connected, 
and flow-unconnected spatial relationships in the Hubbard Brook Valley.  Semivariogram type and range for 
each spatial relationship indicate nested- versus single-scale spatial structure and the distances over which 
spatial dependence is expressed, respectively.  
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Flow-connected  
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Flow-unconnected  

network relationship 
	Solute Type Scale (m) Type Scale (m) Type Scale (m) 
H+ single 2300 - single 1500 - nested 900 4500 
Ca2+ nested 1000 ? single 1800 - single 2500 - 
Mg2+ nested 1100 3700 single 1700 - nested 2600 ? 
Na+ single ? - nested 1600 ? nested 2600 ? 
K+ nested 1200 5400 single 1700 - single 1800 - 
NH4

+ - - - - - - - - - 
Alm nested 700 3400 single 1700 - nested 900 4500 
DSi nested 1100 3200 single 1800 - single ? - 
SO4

2- nested 2600 ? single 1700 - nested 1100 5900 
Cl- nested 500 3600 single 1500 - nested 1700 4600 
NO3

- single 3600 - - - - nested 1100 ? 
PO4

3- nested 1200 ? - - - single 2100 - 
DOC single 3200 - single 1500 - nested 800 5200 
DIC nested 1100 ? single 1400 - - - - 
ANC nested 1300 ? single 1900 - nested 500 2600 
SC nested 1200 3200 single 1600 - nested 1800 5300 
The dash symbol (-) indicates semivariograms (1) for which the type or range could not be determined due to low chemical 
concentrations or (2) that are not applicable for the given type. An unknown range is indicated with a question mark (?) for solutes 
with semivariograms that appear to be nested beyond the maximum separation distance used for the analysis or for ranges that 
cannot easily be determined visually. 
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Supplemental Methods 
Basin-wide survey 
The study area is located largely within the Hubbard Brook Experimental Forest (HBEF) where 
biogeochemistry and ecosystem processes have been investigated by the HBES for almost five 
decades (1).  The watershed is vegetated with hardwood and mixed hardwood–conifer forest 
interspersed with conifer patches.  Elevations in the watershed range from 200 m at the outlet to 
over 1000 m in the headwaters.  Detailed information on the ecological, hydrological, 
climatological, and geological setting is summarized by Likens and Buso (2), Likens (1) and the 
HBES (www.hubbardbrook.org). Water samples for this study were collected along the main 
stem of Hubbard Brook at locations directly upstream of tributary junctions (17 sites along the 
main stem), whereas samples in the tributaries were collected at 100-m intervals throughout 32 
tributaries across the entire fifth-order stream network (total length surveyed = 75 km) (see 
Likens and Buso [2006] for details on field and analytical methods).  Although the density of 
samples was much higher in the tributaries than in the main stem, longitudinal patterns in the 
main stem revealed relatively homogeneous solute concentrations and justified a coarser 
sampling density.  
 
Analysis of spatial structure with empirical semivariograms  
Matrices of distances between pairs of points used in the calculation of semivariograms were 
calculated in a GIS based on Euclidean distance and on stream network distance with software 
specifically designed for analyzing stream networks (3).  The GIS software for stream network 
analysis created a matrix of downstream-only distances that was manipulated to produce 
matrices of stream network distances based on flow-connected and flow-unconnected 
relationships (4).  Semivariograms were calculated with customized functions in the S-PLUS 
statistical package (5, 6). 
 
The classical estimator of the semivariogram is sensitive to outliers and non-normal distributions 
inherent in ecological data. Therefore, we used the robust estimator of semivariance 
recommended by Cressie (7).  Broad- and fine-scale spatial trends are typically removed from 
the data by detrending before semivariograms are calculated (8).  This approach is particularly 
important when the semivariograms are used for prediction at unsampled locations or when 
broad-scale trends are known and, thus, not the focus of analysis (9) (e.g., the effects spatial 
streamflow accumulation).  We investigated potential trends in streamwater chemistry with 
respect to catchment area as a surrogate for streamflow accumulation and downstream distance 
(cf. 10) and found only weak relationships with these variables (r < |0.13| and only 6 out of 16 
variables had p<0.05).  Moreover, removing these trends had little or no effect on the shape or 
characteristics of the empirical semivariograms.  Therefore, we used the untransformed data in 
our analyses.   
 
The number of pairs of points for a given distance class in the semivariogram varied as a 
function of distance and among the various spatial relationships, but was consistent among 
streamwater chemistry variables.  Because low numbers of pairs for a given distance class can 
complicate the interpretation of the semivariogram, we verified that the number of pairs for each 
semivariance calculation exceeded the Rossi et al. (11) recommendation of 50 pairs per distance 
class; the numbers of pairs for flow-connected, flow-unconnected, and Euclidean spatial 
relationships were 78-679, 62-3433, and 569-3527, respectively.  Semivariance was calculated at 



100-m intervals with a maximum separation distance between any two points in the stream 
network of 6950 m. At the maximum separation distance, at least 100 distance pairs were 
included for all relationships (106, 2396, and 642 for flow-connected, flow-unconnected, and 
Euclidean relationships, respectively).  
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Legends for Supplemental Figures 
 
Figure S1 (Supplement). Spatial patterns of (a) hydrogen ion (eq/L), (b) acid-neutralizing 
capacity (ANC; µeq/L), (c) calcium (Ca2+; mg/L), (d) magnesium (Mg2+; mg/L), (e) potassium 
(K+; mg/L), (f) sulfate (SO4

2-; mg/L), (g) ammonium (NH4
+; mg/L), (h) nitrate (NO3

-; mg/L), (i) 
ortho-phosphate (PO4

3-; mg/L), (j) chloride (Cl-; mg/L), (k) total monomeric aluminum (Alm; 
mg/L), and (l) dissolved inorganic carbon (DIC; µmol/L). 
 
Figure S2 (Supplement).  Empirical semivariograms for (a) hydrogen ion (eq/L), (b) calcium 
(Ca2+; mg/L), (c) magnesium (Mg2+; mg/L), (d) potassium (K+; mg/L), (e) ammonium (NH4

+; 
mg/L), (f) total monomeric aluminum (Alm; mg/L), (g) sulfate (SO4

2-; mg/L), (h) chloride (Cl-; 
mg/L), (i) nitrate (NO3

-; mg/L), (j) ortho-phosphate (PO4
3-; mg/L), (k) dissolved inorganic 

carbon (DIC; µmol/L), and (l) acid-neutralizing capacity (ANC; µeq/L) based on Euclidian, 
flow-connected, and flow-unconnected spatial relationships (d) in the Hubbard Brook Valley.  
Symbols with lighter color shades indicate semivariance estimates based on < 100 pairs of 
points. 
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