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Abstract: A confined plunging liquid jet reactor (CPLJR) is an unconventional efficient and feasible
aerator, mixer and brine dispenser that operates under many operating conditions. Such operating
conditions could be challenging, and hence, utilizing prediction models built on machine learn-
ing (ML) approaches could be very helpful in giving reliable tools to manage highly non-linear
problems related to experimental hydrodynamics such as CPLJRs. CPLJRs are vital in protecting
the environment through preserving and sustaining the quality of water resources. In the cur-
rent study, the effects of the main parameters on the air entrainment rate, Qa, were investigated
experimentally in a confined plunging liquid jet reactor (CPLJR). Various downcomer diameters
(Dc), jet lengths (Lj), liquid volumetric flow rates (Qj), nozzle diameters (dn), and jet velocities (Vj)
were used to measure the air entrainment rate, Qa. The non-linear relationship between the air
entrainment ratio and confined plunging jet reactor parameters suggests that applying unconven-
tional regression algorithms to predict the air entrainment ratio is appropriate. In addition to the
experimental work, machine learning (ML) algorithms were applied to the confined plunging jet
reactor parameters to determine the parameter that predicts Qa the best. The results obtained from
ML showed that K-Nearest Neighbour (KNN) gave the best prediction abilities, the proportion of
variance in the Qa that can be explained by the CPLJR parameter was 90%, the root mean square error
(RMSE) = 0.069, and the mean absolute error (MAE) = 0.052. Sensitivity analysis was applied to
determine the most effective predictor in predicting Qa. The Qj and Vj were the most influential
among all the input variables. The sensitivity analysis shows that the lasso algorithm can create
an effective air entrainment rate model with just two of the most crucial variables, Qj and Vj. The
coefficient of determination (R2) was 82%. The present findings support using machine learning
algorithms to accurately forecast the CPLJR system’s experimental results.

Keywords: air entrainment; confined plunging jet; liquid jet reactor; reactor parameters; machine
learning algorithms

1. Introduction

The aeration procedure is crucial in mitigating the environmental impact of the dis-
charge of pollutants in different water bodies (e.g., rivers, lakes, ambient seawater and
wastewater). Aerators are utilized in a variety of processes, such as aerobic wastewater
treatment, air pollution abatement, froth flotation and fermentation. Examples of con-
ventional aerators are diffusers for submerged aeration machines and mechanical surface
aerators for the dispersion of atmospheric oxygen into the sewerage water surface. Sewage
treatment utilizing natural techniques is a perceived strategy where an aeration system
distributes oxygen into wastewater to deliver the oxygen needs of microbes for natural
matter oxidation. In general, the presence of a huge air–water interfacial area causes the air
to absorb atmospheric oxygen, generating huge instability in the liquid with the emergence
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of a submerged two-phase zone, and the oxygen is subsequently distributed into the liquid
body via diffusion and convection.

One of the efficient and viable unconventional aerators that has been in use for several
decades is the plunging liquid jet reactor (PLJR). A plunging liquid jet can offer robust
gas–liquid interaction and the distribution of fine bubbles in liquid while increasing the
mass transfer rate by increasing the gas–liquid interfacial area. As a result, this technique
can be used to bring air into a body of water, control the oxygen concentration, and mix the
water efficiently at low capital and operating cost [1]. Plunging jets can be operated either
as unconfined or confined systems.

Because of their low installation, operating, and maintenance expenses, jet aerators
are an effective alternative for processing biological liquid waste [2,3]. A jet is intended
to plunge through the headspace and impinge on a pool of receiving water that collects a
substantial amount of ambient air. A PLJR creates vast and rigorous agitation (determined
by the operating conditions) of the water and the entrained bubbles at and below the
water surface, which leads to higher oxygen transfer and a well-mixed zone at lower
energy consumption.

There have been numerous research studies on the impact of jet variables in plunging
jets on water oxygenation effectiveness. Harby et al. (2014), Qu et al. (2011), Al-Anzi (2006),
and Van de Sande and Smith (1975) looked at the oxygen transfer from bubbles below
the water’s surface caused by the effect of a plunging water jet [3–6]. Tojo and Miyanami
(1982) explained the mass transfer properties of a gas–liquid jet mixer with cylindrical and
rectangular tanks by employing a downflow jet or an up-flow jet [7]. Bagatur et al. (2002)
tested numerous nozzle shapes and a 45◦ penetration slope, finding that the expansion
of a water jet with a lesser depth of penetration and rounded nozzle end resulted in the
significantly greater absorption of air and oxygen transfer ability than rectangular, elliptical,
and circular nozzles due to water jet expansion [8]. In the research by Baylar and Emiroglu
(2003), Emiroglu and Baylar (2003) and Ohkawa et al. (1986), the water jet expansion,
air entrainment rate, depth of penetration, and oxygen transfer performance of various
shaped nozzles with air holes at varied places were examined [9–11]. S Ranjan (2008) and
Subodh Ranjan (2007) conducted research on expansion and hollow jet aerators [12,13].
Deswal (2011a) explored the capability of supporting vector machines (SVMs) and Gaussian
process regression methods to demonstrate the overall volumetric transfer coefficient of
numerous plunging jet frameworks, and He recommended that the SVM method functions
admirably by both exact connections, and a Gaussian process could be utilized efficiently
in oxygen transfer modelling [2]. Some studies utilized artificial neural network (ANN)
and Gaussian process network (GPN) methods to show Qa by plunging jets, contrasting
these demonstrative strategies, exploratory information, and consequences of multiple
linear regression (MLR)/multiple non-linear regression (MNLR) and different conditions
existing in previous studies. After sensitivity evaluation, the dn was shown to be the most
important parameter on the volumetric Qa with water jet variables [14,15]. The studies
show that the reactor parameters affect the aeration performance in the PLJR. Experimental
research shows that even if new devices are incorporated into the PLJR, the new device
parameters still affect the net air entrainment rate Qanet. Al-Anzi and Fernandes (2023)
incorporated a newly invented Al-Anzi disentrainment ring (ADR) device with a CPLJR to
investigate the Qanet enhancement [16]. The results showed that the ADR new variables
(length between ADR and receiving pool ds and ADR length lADR) positively impacted the
Qanet; for the same ADR device, shorter ds and lADR produced higher Qanet.

For decades, the plunging jet reactor model has been applied to induce gas bubble
entrainment into a liquid to produce maximum mass transfer rates while maintaining low
capital and operational expenses [1]. The application of ML algorithms in CPLJRs remains
an interesting part of research due to the gap in the literature concerning the application of
ML in CPLJRs. Therefore, it is essential to define the most critical plunging jet parameter
that influences the final outcome results, enabling designers to select the best parameters
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to provide maximum air entrainment, and thus increase the oxygen mass transfer with a
satisfactory power input.

The treatment of wastewater is an important step in reducing aqueous pollution and
improving water quality. The configuration of the wastewater specification is extremely
diverse, with influent qualities, pollutant concentrations, and treated effluents differing
dramatically amongst wastewater treatment plants (WWTPs) [17]. WWTPs are compli-
cated, non-linear systems which have large swings in pollutant load, flow ratio, chemical
environment, and hydraulic characteristics. Modelling WWTP procedures is difficult due
to these complications and uncertainty [18,19]. Activated sludge models (ASMs) and
other biological models have been extensively utilized to evaluate WWTP operations and
estimate the behaviour of multiple factors [20–23].

Nevertheless, mechanistic models require a lot of assumptions and explanations to be
workable and consistent; hence, they have a lot of constraints; for example, ASMs are only
valid under specified temperature, pH, and alkalinity limits. Furthermore, due to variations
in methodologies used to calculate state variables, linking multiple mechanistic models
that replicate processes in different units is difficult; for example, Total Suspended Solids
(TSSs) is calculated and included uniquely in ASMs and second clarifier models [24]. Other
inherent flaws of mechanistic models include difficulty in thoroughly replicating multiple
processes, significant costs, and poor generalization performance [25]. Because they are
entirely dependent on finding correlations between output and input data that allow
projections and/or assist decisions, ML models overcome many of these restrictions [26].
The fact that ML models represent real reaction/process conditions rather than mechanisms
defined in advance relying on core concepts is a significant advantage. As a result, they
are reliable and thorough, which is significant because many of the processes entangled in
wastewater treatment are still unknown [27,28]. As a result, the ML modelling of WWTPs
is commonly employed as an alternative to mechanistic modelling [25,29,30]. The effect of
ambient factors on the adsorption of malachite green (MG) dye from aqueous solutions
was optimized using an ANN technique [31]. The outcomes demonstrated the ANN tool’s
suitability for accurately describing the MG adsorption data.

In WWTPs, several researchers have been working on long-term wastewater regu-
lation [32–34]. ML technology has the potential to recover clean water, electricity, and
different elements from wastewater. Wastewater treatment could enhance environmental
quality and offer potential economic advantages while also saving water [35]. The wastew-
ater treatment ability achieved by contact aeration for groundwater recharge was evaluated
using a known neural network model [36]. The rainfall index was used as a valuable input
in the model to improve the economic viability of wastewater treatment, and decisions were
made based on the climatic conditions. Akhoundi and Nazif (2018) selected wastewater
treatment applications and treatment technologies using evidence-based argumentation
approaches [37]. Agricultural irrigation, artificial groundwater recharge, and industrial
applications were the most common uses for wastewater treatment—the evidence-based
reasoning strategy allowed for a coordinated and complete assessment of wastewater
treatment feasibility.

Kumar et al. (2022) investigated the relationships between the variables of plunging
hollow jet aerators (discharge, jet thickness, Vj, Lj, depth of water pool, pipe outlet diameter,
and number of jets) and the volumetric oxygen transfer coefficient (KLa) [38]. They used
techniques from the ANN, SVM, M5 tree (M5), and random forest (RF) families. The
outcomes of these ML models are compared next. The results from the SVM were superior.
ANNs are a popular ML technique that is based on biological neurons [39]. ANNs can
tackle multivariate non-linear problems when given a suitable training technique and
enough data [40]. ANNs are also widely used in methodological approaches to eliminate
pollutants from water and wastewater. To build black-box representations of systems,
ANNs use extremely simplified models made from multiple processing elements—artificial
neurons—connected by links of variable weight. Each neuron takes input signals from other
neurons, analyses them, and gives out the result, which is then passed on to succeeding
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neurons as an input [41]. ANNs adapt from training data and record data point connections,
which can then be utilized for modelling, predicting, and optimization. ANNs are ML
systems that look like the human brain [42]. They range from simple single-direction
logic networks with only one or two layers to complicated multi-input networks with
many directional feedback loops and layers. Popular Kernel Function (RBF), Multilayer
Perceptron (MLP), Feedforward Neural Network (FNN), Wavelet Neural Network (WNN),
self-organizing Map (SOM), Edited Nearest Neighbour (ENN), Recurrent Neural Network
(RNN), and deep learning network are some of the ANNs that can be utilized to create
models and evaluate the wastewater treatment procedure.

Fuzzy Learning (FL), genetic algorithm (GA), and Evolution Strategies (ES) are exam-
ples of single artificial intelligence (AI) technologies in addition to ANNs. FL was created
to model complicated and uncertain systems, and it is made up of four parts; fuzzifica-
tion, defuzzification, and fuzzy rules are all terms used to describe the fuzzy information
system [43]. The Fuzzy Inference System (FIS), which comprises four parts—fuzzifier,
inference engine, knowledge base, and defuzzifier—is the most extensively employed [44].
The GA, or evolutionary algorithm, models the natural evolutionary procedure to attain the
lowest or greatest objective function using Darwin’s theory [45]. The Expert System (ES)
can replicate the decision-making procedure to resolve complicated problems by combining
the skills and knowledge of several experts in a certain sector [46].

Atypical approaches such as Model Tree (MT), clustering algorithm, Batch-Normalization
(BN), Particle Swarm Optimization (PSO), and SVM are included in ML technology. By
separating the input into subdomains and using a linear multivariate regression model for
those subdomains, the MT model can be utilized to address continuous class problems.
It can also generate a structural description of the dataset by approximating a non-linear
relationship with a piecewise linear model [47]. Problems are addressed in DM by breaking
them down into subproblems (subdomains) and then integrating the results of these
subproblems. Clustering is an unsupervised technique of organizing the data based
on a similarity metric [48]. As per the concept of aggregation, the clustering method,
a quantitative multivariate statistical analysis, arranges the unclassified feature vectors
into clusters. A Bayesian belief network (BN) is a directed acyclic graph model with
nodes and directed edges between connected nodes [49]. The conditional probability
distribution of node association represents each node as a random variable [50]. The PSO
is an evolving meta-heuristic algorithm that solves optimization issues by starting with a
random solution and iterating until the best answer is found [51]. An SVM is a generalized
linear classifier that uses the optimal separation concept of classes to solve the binary
classification issue [52]. SVMs and associated algorithms have significantly evolved for use
in pattern classification [53].

The ANFIS (a hybrid of the neural and fuzzy approaches) was utilized to improve the
efficiency of ANNs even further [54,55]. ANFIS adjusts the premise and concluding param-
eters using a hybrid of backpropagation and least-squares algorithms, and it can produce
“If/Then” rules automatically. ANN-GAS employs a genetic algorithm to iteratively refine
the parameters of the neural network and improve its problem-solving ability.

It is impossible to define straightforward functional relationships between the airflow
and the hydrodynamic and geometric variables that it depends on because air entrainment
in drop shafts is so complex [56]. However, by employing prediction models built on ML
techniques, which may deliver trustworthy tools to handle highly non-linear problems
pertaining to experimental hydrodynamics, this issue can be properly addressed. The
objective of the present investigation was to make use of higher-level ML technology as
a way of forecasting the gaseous entrapment ratio. The aim of the current study was
to evaluate the use of the selected modelling algorithms in predicting the measured air
entrainment rates in a CPLJR system. The method is devoid of the costs that would
otherwise be associated with laboratory tests. Furthermore, this study explored the use
of sensitivity analysis as a method for determining the key variable whose effect has the
greatest impact on the results. The results are expected to aid designers in selecting the
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most appropriate parameters that ultimately lead to enhanced entrapment and improve
the oxygen transfer ratio with relatively low-power considerations.

2. Material and Methods
2.1. Experimental Work and Data Collection

The confined plunging liquid jet (CPLJ) apparatus utilized to generate the current air
entrainment rate (Qa) is shown in Figure 1, which is similar to the apparatuses used by [1,6].
The main operating conditions used to measure Qa are jet lengths of Lj = 0.3 m and 0.4 m;
nozzle diameters dn = 0.06 m, 0.08 m, 0.012 m, 0.012 m, and 0.015 m; downcomer diameters
of Dc = 0.023 m, 0.038 m, 0.0505 m, 0.071 m, and 0.089 m; and downcomer submergence
lengths of H = 0.3 m and 0.4 m. The nozzle internal design was similar to that used by [9].
The liquid was recycled from the base of 1.5 × 0.5 × 0.5 m3 reservoir utilizing a centrifugal
pump and back into the tank through a conical nozzle with known geometry located at
the top of the reservoir [1]. The nozzle was fixed concentrically inside a confining tube
(downcomer) to ensure that the liquid jet was in the centre of the confining tube. Part of
the downcomer was immersed in the liquid that was measured by H. The liquid/water
left the nozzle in the form of liquid jet. As the water jet plunged through the headspace,
it entrained air (Qa) from the surroundings in the downward direction, causing the jet
diameter to increase along the Lj at high Vj. When the jet impinged on the receiving pool,
the entrained air was broken into fine/primary downward bubbles in the centre of the
conical bubble swarm and upward secondary bigger bubbles resulted from the coalescence
of primary bubbles. Water flow rate was measured using two rotameters with a maximum
flowrate of 25 L/min. Gas/air was fed to the system through a tapping located at the
top of the downcomer. The air/gas entrainment rate was measured using a bubble meter
connected to the gas feed tapping. A solution of 10% household detergent and 5% glycerine
in water was used to generate the soap bubbles inside the bubble meter. As the gas entered
the bubble meter, it carried soap bubbles up the bubble meter to measure the gas velocity
Va and hence Qa. A bubble trap was fixed between the bubble meter and gas feed tapping
to prevent the soap from going into the system.

Figure 1. Schematic diagram of the confined plunging liquid jet experimental apparatus [6].

The system measured the net entrainment rate (Qa), which was the amount of the
bubbles leaving the base of the downcomer to aerate the surrounding liquid in the reservoir.
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2.2. Dataset

In order to run soft computing models, a total of 353 experimental observations of
air entrainment rates were measured by employing a confined plunging liquid jet reactor
with variations in jet length Lj (0.3 to 0.4) m, jet velocity Vj (0.9 to 16.3) m/s, jet entrainment
rate Qj (1.46 × 10−5−1.91 × 10−3) m3/s, downcomer diameter Dc (0.023–0.089) m, and
nozzle diameter dn (0.006–0.015) m. The complete experimental observations were divided
into two datasets for the training (67% of the data) and testing (33% of the data) of the
modelling procedures.

2.3. Modelling

The data were grouped based on a random sample of the total readings. The open-
source machine learning toolkit scikit-learn for the Python programming language was
used to create each and every regression model. The hyperparameter was tuned using a
grid search to define the optimal one. Then, the optimal hyperparameter was used to build
the model. Finally, we applied sensitivity analysis to figure out the most critical plunging
jet parameter that affected the air entrainment ratio. The permutation importance function
from the sklearn library was used to calculate the variable importance of the ML algorithms
for our experimental dataset. The permutation feature importance was defined as the drop
in model score caused by randomly rearranging a single feature value.

3. Results

Various ML models were established for unique sets of testing and training data, as
illustrated in Figure 2. The plots were generated by plotting the air entrainment ratings
versus the predicted ratings. The goodness-of-fit (R2) measure for decision tree (DT), elastic
net, extra tree, gradient boosting, K-Nearest Neighbour (KNN), lasso, RF, ridge, and SVM
were found to be 0.89, 0.87, 0.87, 0.90, 0.94, 0.83, 0.89, 0.88, and 0.92, respectively. As the R2

value approached 1, the ML algorithms’ predictions of Qa were efficiently performed when
applied to the (CPLJR) parameters.

The produced ML regression model was scored using the evaluation metrics of root
mean square error (RMSE) and mean absolute error (MAE). These data were used to
determine how accurate our predictions were and how they differed from the actual
values. The MAE shows how much of an error from the predicted air entrainment rate was
expected on average, and the RMSE shows the average distance between the predicted air
entrainment rates from the model and the actual rates in the experimental dataset. The
results are summarized in Table 1.

Table 1. Summary of results of the different ML models.

Regressor MAE RMSE R2

Decision Tree 0.0387 0.0539 0.8931
Elastic Net 0.0442 0.0618 0.8728
Extra Tree 0.0430 0.0598 0.8685

Gradient Boosting 0.1014 0.1255 0.9027
K-Neighbours 0.0271 0.0403 0.9423

Lasso 0.0656 0.0854 0.8279
Random Forest 0.0371 0.0552 0.8873

Ridge 0.0408 0.0581 0.8753
Support Vector Machine 0.0381 0.0484 0.9223
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Figure 2. Scatter plots of normalized observed air entrainment via normalized predicted ratings of the machine learning models applied. (a) Air entrainment rate
predicted using decision tree; (b) air entrainment rate predicted using elastic net; (c) air entrainment rate predicted using extra tree; (d) air entrainment rate predicted
using gradient boosting; (e) air entrainment rate predicted using K-neighbours; (f) air entrainment rate predicted using lasso; (g) air entrainment rate predicted
using random forest; (h) air entrainment rate predicted using ridge; (i) air entrainment rate predicted using support vector machine.
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Table 1 shows that KNN and RF are the most accurate models that explain the air
entrainment rate by the PLJR variables: R2 = 0.94, RMSE = 0.04, and MAE = 0.0271;
R2 = 0.9223, RMSE = 0.0484, and MAE = 0.0381. Granata and de Marinis (2017) developed a
method based on ML techniques for predicting the Qa [57]. Three different algorithms were
compared in the previous study: M5P, bagging, and RF. The latter definitively outperformed
both M5P and bagging; at the same time, the outputs were poor, as seen in the assessment
metrics (in the case of RF, the R2 value was 0.793, while the MAE and RMSE were 0.1406
and 0.2125, respectively). The ML algorithms used in this research are far more accurate
than the prior one since this study compares a number of different algorithms.

The aim of this model is to not only build a model with excellent performance but also
clarify the model input variables and how these variables affect model performance. A
powerful way to define the most critical parameters is by performing a sensitivity analysis
on our ML models, where we examine the impact of each parameter on the model’s
prediction. Figure 3 shows the increase in model RMSE when a single plunging jet reactor
parameter value is randomly shuffled. This can tell us which parameter has most impact
on the Qa.

Among all the ML models, the graph shows that the two most important parameters
for the models were liquid volumetric flow rate (Qj) and jet velocity (Vj). The importance
of these variables makes sense because when we inverse the Vj, the ore bubbles were
transferred to the system. Our findings are in line with previous research performed by
Al-Anzi (2020); through his experiment, he found that when the downcomer diameter to
nozzle diameter ratio was greater than 5, the highest gas entrainment rates were attained
as long as the liquid’s surface velocity was high enough to propel bubbles downwards [1].

Furthermore, the ML graphs in Figure 3 maintain the same two important variables.
However, the Vj effect decreased in some of the algorithms, such as elastic net, ridge, and
SVM. On the other hand, lasso could predict the Qa when the other variables were shuffled
without any root mean square error. The coefficient of determination of the lasso algorithm
was 82%. This shows that lasso can build a good model using only the most important
variables (Qj and Vj).

Finally, to obtain a clear overview, we compared the measured, predicted, and calcu-
lated Qa. Figure 4 shows that the fit of the best ML model (KNN) was better than the fit
of the Conventional regression model calculated by Al-Anzi (2006) [6]. ML successfully
predicted the Qa using the CPLJR parameters.
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Figure 3. Confined plunging jet reactor parameter level sensitivity analysis graphs of the machine learning models. (a) Decision tree sensitivity analysis; (b) elastic
net sensitivity analysis; (c) extra tree sensitivity analysis; (d) gradient boosting sensitivity analysis; (e) K-neighbours sensitivity analysis; (f) lasso sensitivity analysis;
(g) random forest sensitivity analysis; (h) ridge sensitivity analysis; (i) support vector machine sensitivity analysis.
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Figure 4. Comparative study between the measured, predicted, and calculated air entrainments rate
using Al-Anzi (2006) model * [6].

4. Conclusions

A plunging liquid jet reactor (PLJR), whether a confined or unconfined system, is
an unconventional, efficient, and viable aerator and mixer that could be used in many
applications to sustain the environment, as indicated in the literature. Such applications are
aerobic wastewater treatment processes, fermentation processes, biological aerated filters,
the bubble floatation of minerals, chemical stirring, and other applications that require
the mixing of gas and liquid phases [1]. The nature of PLJRs enables the rejected brine
to be safely discharged into ambient seawater in an optimal manner that simultaneously
promotes aeration and dilution at a lower cost. This will increase the dissolved oxygen
(DO) concentration levels in the seawater and mix the receiving pool water vigorously to
hinder stratification.

A precise prediction of the air entrainment rate in a confined plunging liquid jet reactor
is necessary to theoretically determine the operating conditions that play important roles
in predicting Qa accurately and optimally, and at the same time, avoid those that cause an
inadequate measurement of the ambient air. A number of machine learning algorithms
were compared in this research. All of the models under study demonstrated robustness,
dependability, and a strong capacity for generalization. Previous research compared the
performance of ML from the families of ANN, SVM, M5 tree (M5), and RF; the results of
different ML models were contrasted, and SVM produced better outcomes [38]. However,
with reference to the RMSE and R2 of the ML algorithms applied in this research, KNN and
RF presented better performances than the others in predicting an accurate air entrainment
rate. ML algorithms might be additionally helpful for giving an assessment of the qualities
to be considered for estimating treatment units, given the attributes of the area, when direct
methods are not accessible. The projected method could also be compelling with regard to
the continuous administration questions of wastewater treatment plants, and it could be
utilized to address concerns with environmental planning.
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