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Abstract

The goal of Phase I monitoring of multivariate data is to identify multivariate outliers
and step changes so that the estimated control limits are sufficiently accurate for Phase
II monitoring. High breakdown estimation methods based on the minimum volume
ellipsoid (MVE) or the minimum covariance determinant (MCD) are well suited to
detecting multivariate outliers in data. However, they are difficult to implement in
practice due to the extensive computation required to obtain the estimates. Based on
previous studies, it is not clear which of these two estimation methods is best for control
chart applications. The comprehensive simulation study here gives guidance for when
to use which estimator, and control limits are provided. High breakdown estimation
methods such as MCD and MVE, can be applied to a wide variety of multivariate
quality control data.

KEY WORDS: Asymptotic Properties; Breakdown Point; Minimum Covariance De-
terminant; Minimum Volume Ellipsoid; Multivariate Outliers; Multivariate Statistical
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Introduction

The frequency of multivariate statistical process control (SPC) applications has

increased in recent years as data collection systems have become more sophisticated.

Phase I of the monitoring scheme consists of determining whether or not historical

data indicates a stable (or in-control) process. Phase II consists of monitoring future

observations and using control limits calculated from Phase I to determine if the process

continues to be in-control. In Phase I historical data, trends, step changes, outliers and

other unusual data points can have an adverse effect on the resulting Phase II control

limits. So it becomes very important to discover these unusual data points prior to

calculating the control limits. Control limits based on data coming from unstable (or

out-of-control) processes will be inaccurate and reduce the effectiveness of the Phase

II scheme.

Classical estimation methods will not yield appropriate control limits if there are

unusual data points in the Phase I data. Robust estimation methods have a distinct

advantage over classical methods in that they are not unduly influenced by unusual

data points. Consequently, they are much more effective in detecting any unusual

points and ensuring that the control limits are reasonable. The term robustness refers

to methods that are insensitive to departures from well behaved, independent, normally

distributed data. Here the focus is on robustness to outliers which are more likely than

not to be present in data.

Some robust estimation methods are well suited for detecting multivariate outliers

or clusters of multivariate outliers because of their high breakdown points. The general

idea of the breakdown point is “the smallest proportion of the observations which can

render an estimator meaningless” (Hampel et al. (1986), Rousseeuw and Leroy (1987)).

In other words, the breakdown point refers to the amount of “bad” data that can be
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present before the estimator no longer is accurate for the “good” data. The “good”

data simply refers to the data that is in the majority and the “bad” data refers to the

data in the minority. It is desirable to accurately determine which data is bad (if any).

Robust estimation methods for univariate quality control data (such as those based

on a median or trimmed mean) are more straightforward and have received more at-

tention in past research (See for example, Rocke (1989), Rocke (1992), Tatum (1997),

Davis and Adams (2005)). Robust methods for multivariate data are not as straight-

forward nor as easily implemented. Robust estimation methods have been widely used

in a regression context but they have only recently been introduced to multivariate

quality control applications. Because of the differences that can result from competing

methods, the choice of which robust estimator to use has not been made clear from

previous studies (Wisnowski, Simpson, and Montgomery (2002), Vargas (2003)).

To evaluate the performance of competing methods for Phase I applications the

probability of a signal is the preferred measure. When the data comes from an in-

control process then the probability of a signal should be close to a specified nominal

value. When data comes from an out-of-control process then the probability of a

signal should be large to ensure that the out-of-control points are not included in the

calculation of the control limits for Phase II.

In this paper we give a brief overview of various high breakdown estimation methods

based on the MVE and the MCD for multivariate Phase I applications. A comprehen-

sive study allows us to determine the conditions under which each is preferred. We

also give control limit values for practical use.

Multivariate Outliers

When working with p-dimensional multivariate normal data both the location and

dispersion are of interest. The location is described by a mean vector which represents a

2



point in the multidimensional space and the dispersion (or scatter or shape) is described

by a variance-covariance matrix. Outliers in multivariate data are more difficult to

detect than outliers in univariate data. One reason for this is because simple graphical

methods that can be used to detect univariate outliers are often not possible in higher

dimensions. Another reason is because there are many more ways that the multivariate

data can come from an out-of-control process. For example, there could be outliers due

to changes of location in random directions for each outlier, there could be a cluster of

outliers due to a location shift in a particular direction, there could be multiple clusters

of outliers in different directions, there could be points with the same location as the

good data but with more variability, or the outliers can be due to a shift in some of

the elements of the location vector but not all of them. The term “masking effect” has

been coined to describe the situation where multiple outliers are present and inflate the

estimates in such a way that they mask each other and escape detection. See Rocke

and Woodruff (1993) for a discussion of various types of outliers.

Rocke and Woodruff (1996) stated that the the most difficult type of multivariate

outliers to detect are those that have the same variance-covariance matrix as the good

data. These difficult to detect outliers are referred to as “shift outliers” because the

center of the outlying points has been shifted by some amount from the center of the

good data. The categorization of shift outliers includes individual points as well as

clusters of points. If shift outliers can be detected by the robust estimation method,

then the method will likely work well for other kinds of outliers, hence the focus on

shift outliers here.

Properties of Estimators

There are four major measures or properties that can be used to determine the use-

fulness of a multivariate estimator. The first, the breakdown point, has many different
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definitions, but the definition used here is the finite sample replacement breakdown

point as defined by Donoho and Huber (1983). This value, π, is the smallest fraction

of arbitrarily large bad data points that can be present before the estimator is impacted.

As the sample size increases, π will often converge to an asymptotic breakdown point.

The asymptotic breakdown point is often used to compare different estimators.

Classical estimation methods have low breakdown points while the high breakdown

estimators considered here have breakdown points that approach 50%, the maximum

possible value. The higher the breakdown point, the more resistant the estimator is to

bad data. In other words, the less susceptible it is to the “masking effect”.

The second property to consider is that of affine equivariance. Changing the

measurement scale should not impact the properties of the estimator. Lopuhaä and

Rousseeuw(1991) showed that the maximum possible asymptotic breakdown point for

an affine equivariant estimator is 50%. The estimators of location and dispersion that

are considered in our paper are all affine equivariant (Rousseeuw and Leroy (1987)).

For an example of non-affine equivariant estimators, see Maronna and Zamar (2002)

who found that alternative estimators can be found by relaxing the restriction of affine

equivariance.

The third property is the statistical efficiency of the estimator. This concerns how

well it makes use of all the good data available. For the univariate case it is well known

that while the median is very robust, it is also very inefficient when compared to the

mean. There often has to be some tradeoff between increasing the breakdown point

and the decreasing efficiency.

Finally, it should be possible to calculate the estimators with a reasonable amount

of computing power in a reasonable amount of time. It should not always be expected

that a reasonable time to compute the estimators be only a few seconds. It is good to
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spend the necessary time to get good estimators that give accurate information in the

spirit of the following statement: “Statistical analysis is generally just a small part of

the effort and cost of any data gathering and analysis . . . we consider it clearly far

better to use an analysis that takes 10 hours but finds all the outliers than one that

takes 10 seconds yet misses most outliers” (Hawkins and Olive (2002, p. 146)).

High Breakdown Estimation for Multivariate SPC Data

Robust estimation methods can be used in two different approaches. The first

approach is to use the robust estimators in place of classical estimators. This has

been the primary focus of a large amount of research dedicated to robust estimation

procedures and is most useful in a regression context where the data does not necessarily

have a given time order. Here the goal is to identify, for descriptive and predictive

purposes, a good model that has not been unduly influenced by outliers. This approach

has a higher priority on efficiency.

The second approach is to use the robust estimators to identify and remove outliers

and then use classical estimators on the remaining “good” data points. Phase I quality

control applications (both univariate and multivariate) have predominantly utilized this

second approach. This second approach seems to be a reasonable trade off between

the good efficiency of the classical estimates and the high breakdown point of resistant

methods. Under this framework robust methods that are efficient are not as useful if

they have lower breakdown points.

When using the second approach, the computability and breakdown point of the

estimator become more important. As a consequence, statistical efficiency is not as

crucial because the resistant estimators will eventually be replaced by classical esti-

mators. Therefore estimators based on the minimum volume ellipsoid (MVE) and the
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minimum covariance determinant (MCD) are considered here. Algorithms for comput-

ing them are more plentiful, they are affine equivariant, and most importantly, they

have high breakdown points. They have lower statistical efficiency because they only

use slightly more than half of the available points, but this is of minor concern in Phase

I analysis, especially when the Phase I data set is sufficiently large. The main concern

in our Phase I setting is to provide protection against outliers.

There is a wide variety of robust estimation methods that are not considered here

for multivariate data. For example, methods based on M-estimation have been widely

used in a regression context. M-estimation seeks to appropriately down weight outliers

in order to minimize their impact. As such, they are more efficient than the high

breakdown methods considered here, but they have lower breakdown points that get

even worse as the number of dimensions increases. Other methods include S-estimation,

the projection methods of Stahel-Donoho (Rousseeuw and Leroy (1987, 7.1.c)), and

the sequential point addition type methods of Hadi (1992, 1994) and Atkinson (1993).

These other methods are usually applied to regression problems.

It is assumed that the Phase I historical data set consists of m time ordered vectors

that are independent of each other. Each vector is of dimension p, so xi is a vector

containing the p measurements for the ith time period. When the process is in-control

then each xi is assumed to come from a multivariate normal distribution, that is, xi

∼ MV N(µ,Σ) where µ is the population mean vector that determines the location

and Σ is a p by p positive definite variance-covariance matrix that determines the

dispersion.

Outliers can be identified by the T 2 statistic which is widely used for multivariate

data analysis. The general form of the statistic is

T 2
i = (xi − µ)′Σ−1 (xi − µ) for i = 1, 2, . . . , m. (1)
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Because µ and Σ are not known, they are replaced with appropriate estimators.

The classical estimators are the sample mean vector and sample variance-covariance

matrix given by,

x =

∑m
i=1 xi

m
(2)

and

S1 =

∑m
i=1 (xi − x) (xi − x)′

m− 1
. (3)

A T 2
i statistic based on these classical estimators is denoted by T 2

1,i. This statistic is

equivalent to the squared Mahalanobis distance and has been shown to be effective

in detecting a single moderately-sized multivariate outlier (See Figure 1 of Vargas

(2003)). However, as shown by Sullivan and Woodall (1996) this statistic is not effective

in detecting sustained step changes in the mean vector, nor is it effective in detecting

multiple outliers (Vargas (2003)). This is because its breakdown point is an undesirable

1/m which goes to 0 as the sample size increases. That is, a single arbitrarily large

outlier can render the T 2
1,i statistic ineffective.

An alternative is to base the T 2
i statistic on the sample mean and the variance-

covariance matrix based on the successive differences between vectors, denoted by T 2
2,i.

If vi = xi+1−xi is the vector of the ith successive difference, then an unbiased estimator

of the variance-covariance matrix is

S2 =
1

2(m− 1)

m−1∑
i=1

viv
′
i. (4)

This statistic is analogous to the use of the moving range to construct a Shewhart

Individuals chart. Sullivan and Woodall (1996) showed that T 2
2,i is effective in detecting

sustained step changes in the process that occur in Phase I data. However, like T 2
1,i, T 2

2,i

will not be effective in detecting multiple multivariate outliers because its breakdown

point is also 1/m, thus it will not be considered here (Vargas (2003)).
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Robust alternatives of the T 2 statistics considered here are based on either the

minimum volume ellipsoid (MVE) estimator or the minimum covariance determinant

(MCD) estimator These will be denoted by T 2
mve,i or T 2

mcd,i respectively, and defined

as:

T 2
mve,i = (xi − xmve)

′ S−1
mve (xi − xmve) for i = 1, 2, . . . , m, (5)

T 2
mcd,i = (xi − xmcd)

′ S−1
mcd (xi − xmcd) for i = 1, 2, . . . , m. (6)

where xmve and xmcd are the corresponding location estimators and Smve and Smcd

are the corresponding estimators of the variance-covariance matrix. In the following

sections we discuss these estimators in more detail and explain how they are calculated.

Minimum Volume Ellipsoid Estimator

The minimum volume ellipsoid (MVE) estimator, first proposed by Rousseeuw

(1984), has been studied extensively for non-control chart settings and frequently used

in the detection of multivariate ouliers. It seeks to find the ellipsoid of minimum

volume that covers a subset of at least h data points. Subsets of size h are called

halfsets because h is often chosen to be just more than half of the m data points.

The location estimator is the geometrical center of the ellipsoid and the estimator of

the variance-covariance matrix is the matrix defining the ellipsoid itself, multiplied by

an appropriate constant to ensure consistency (Rousseeuw and van Zomeren (1990),

Rousseeuw and Van Zomeren (1991), and Rocke and Woodruff (1996)). Thus the MVE

estimator of location and dispersion do not correspond to the sample mean vector and

sample variance-covariance matrix of a particular halfset.

To achieve the highest breakdown point possible, Davies (1987) and Lopuhaä and

Rousseeuw (1991) showed that the integer value of h = (m+p+1)/2 should be used for

the MVE. This will achieve a breakdown value of [(m−p+1)/2]
m

percent which converges
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to 50% as m →∞. The value of h can be increased, to say, .75m, if it is believed that

the percentage of bad data is low. This will increase the efficiency of the the MVE

estimator. However caution must be exercised because the consequences of having a

value of h higher than the number of good data points is more severe (contaminated

estimates) than the consequences of having a value of h lower than the number of

good data points (loss of statistical efficiency but still giving good estimates). For this

reason, h is often set to achieve the highest breakdown point possible, as is the case

for this paper.

Finding the MVE estimators is essentially a two-part process. One part is to find

the best halfset consisting of h points. Then the second part requires finding the

ellipsoid of minimum volume that covers the halfset. For a given halfset there are

many ellipsoids that cover it. Titterington (1975) found that the solution to this

second step is equivalent to finding a D-optimal design for a design region where the

points in a halfset are the design points. As a consequence, iterative algorithms to find

D-optimal designs could be used to find the best covering ellipsoid for the best halfset.

The first step is referred to as the “subset” problem and the second step is referred to

as the “covering problem” (Agullo (1996)).

While the idea of the MVE is very intuitive, actually finding the MVE estimator can

be very difficult in practice. As the sample size (m) and data dimension (p) increase,

the required computational effort increases exponentially. For example, if m = 30 and

p = 3, so that h = 30+3+1
2

= 17, then there are a total of 30!
13! 17!

= 119, 759, 850 halfsets

that could potentially be the basis for the MVE estimator. Even when this halfset

is found, it still takes additional calculations to find the best covering ellipsoid. As a

consequence of the computational difficulty, Rousseeuw and Leroy (1987) proposed an

approximate method to find the MVE estimators by a subsampling algorithm.
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The subsampling algorithm is very commonly used, is widely accessible, and is

the basis of the MVE functions of software packages such as S-Plus and SAS. This

subsampling algorithm takes a fixed number of random subsets, known as elemental

subsets, each containing p+1 points. For each elemental subset, the sample mean vector

and sample variance-covariance matrix are calculated, which determines the shape of

an ellipsoid. This ellipsoid is then increased in size by multiplying by a constant until

it covers at least h data points. The ellipsoid with the smallest volume is then used to

obtain the MVE estimates.

Rousseeuw and Leroy (1987, p. 199) recommended doing a minimum of 500 sub-

samples for small datasets with low dimensions. More subsamples should be used as

m and p increase. Rousseeuw and Leroy (1987, p. 260) also showed that if ε is the

true proportion of outliers in the dataset then a probabilistic argument can be used to

determine the number of random subsamples (j) needed to ensure with a high prob-

ability that at least one contains only good points. The approximate probability that

at least one sample contains only good points is

α = 1− (1− (1− ε)p+1)j (7)

and (7) can be rewritten to solve for j as

j =
ln(1− α)

ln(1− (1− ε)p+1)
. (8)

Use of (8) shows that when p ≤ 5 and ε ≤ .50 then 500 subsamples will ensure that α

will be greater than .999. For p ≤ 10 and ε ≤ .50 then 10, 000 subsamples will ensure

that α will be greater than .99.

A similar argument along these lines to determine the probability that a particular

halfset will contain only good points shows that the number of halfsets that need to

be considered is very large indeed. To see this, replace the value of p + 1 (the size of
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Table 1: Number of halfsets that need to be considered to ensure that one only contains

good points with probability .95 where p=3

ε

m 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

20 4 10 20 43 94 215 526 1375 3909 12270

30 6 17 46 132 398 1287 4538 17697 77684 392656

40 8 29 106 405 1678 7661 39120 227601 1543560 12565011

50 11 51 240 1238 7076 45588 337164 2926976 30669759 402080378

60 14 86 542 3780 29821 271246 2905865 37641158 609392261 12866572141

70 19 147 1224 11538 125670 1613895 25044294 484068397 12108307535 4.1173E+11

80 25 249 2759 35214 529577 9602521 215845013 6225159088 2.40586E+11 1.31754E+13

90 32 423 6219 107466 2231636 57134063 1860266840 80056126192 4.78001E+12 4.21612E+14

100 42 717 14018 327961 9404100 339942070 16032763795 1.02954E+12 9.50111E+13 1.34916E+16

the elemental subset) in (8) with the integer value of h = (m + p + 1)/2 (the size of

the halfset). Table 1 below shows the number of halfsets that need to be considered

when p = 3 to have a 95% chance of getting one containing only good points. This

illustrates the difficulty in finding a good MVE estimator, particularly as the sample

size and the proportion of bad data increases.

In addition, it is important to recognize that while this subsampling approach is

computationally easier, it is only an approximation. Even when elemental subsets with

good points are used, this does not ensure that the resulting halfsets will only have good

points. This is because the resulting ellipsoid that covers the halfset is proportional

to the ellipsoid for the corresponding elemental subset, which is not necessarily the

minimum volume ellipsoid for the halfset. An exhaustive calculation using all possible

elemental subsets will still yield an approximate estimator (Cook and Hawkins (1990)).

This is because the ellipsoid for the MVE estimator is not necessarily proportional to

the ellipsoid for any of its elemental subsets. In fact, it is probably more likely that

the MVE is not proportional to the ellipsoid for one of its elemental subsets.

While the number of possible elemental subsets is smaller than the number of
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possible halfsets, there is still the same exponential increase in number of possible

elemental subsets as m and p increase. For the example shown earlier with m = 30

and p = 3 there are a total of 30!
4! 26!

= 27, 405 elemental subsets that need to be

considered if an exhaustive calculation were done. The exponential increase in the

number of elemental subsets needed to ensure a good approximate estimate limits the

types of problems that can be analyzed using the MVE.

Finally, there are repeatability issues with this subsampling approach. If an ex-

haustive calculation using all possible elemental subsets is not done, then two different

analyses on the same data set will likely yield different results. The difference in the

results gets more severe as m and p get larger because for a fixed number of random

elemental subsets, the proportion of subsets that can be feasibly calculated relative to

the total number of available subsets gets smaller.

For an example of the repeatability issues of the subsampling method, Vargas (2003)

calculated the T 2
mve,i statistics based on the MVE estimators using the subsampling

algorithm for the data of Quesenberry (2001). Table 2 shows the results obtained by

Vargas (Using S-PLUS), our results using the “call mve” functions of SAS for 500

subsamples, and our results using all possible subsamples, of which there are 30!
3! 27!

=

4, 060. Notice here that different values are obtained depending on the number of

subsamples used. It is not clear what number of subsamples or what covering methods

that Vargas (2003) used, but the differences in values is cause for concern.

To avoid some of the difficulties with the subsampling approach, an exact method to

calculate the MVE estimators was proposed by Cook, Hawkins, and Weisberg (1993).

It considers all the possible halfsets and would require an enormous amount of compu-

tation even for modest sample sizes in lower dimensions. Once the best halfset is found

the “covering” solution is found using the approach of Titterinton (1975). To speed up
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observations MVE(500 subsamples in SAS) MVE(all subsamples in SAS ) MVE(Vargas (2003))

1 0.860 0.921 0.835

2 30.803 24.960 25.770

3 0.484 0.353 0.432

4 2.700 2.614 2.398

5 1.420 1.506 1.434

6 0.274 0.313 0.227

7 1.282 1.292 1.143

8 1.126 0.928 1.039

9 0.066 0.094 0.064

10 1.064 1.034 0.867

11 0.970 0.768 0.878

12 1.332 1.033 1.175

13 0.560 0.585 0.467

14 6.815 6.101 5.712

15 0.220 0.121 0.183

16 5.212 4.949 5.117

17 2.194 2.303 2.268

18 3.014 3.151 3.060

19 1.865 1.868 1.702

20 6.770 6.569 6.736

21 1.818 1.899 1.885

22 7.896 5.952 6.385

23 0.367 0.390 0.380

24 1.119 1.146 1.012

25 1.580 1.631 1.637

26 0.477 0.440 0.476

27 0.604 0.509 0.576

28 5.648 4.265 4.622

29 3.977 3.044 3.329

30 0.182 0.218 0.181

Table 2: Comparison of T 2
mve,i obtained via MVE subsampling algorithm for Quesen-

berry (2001) data
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the algorithm they proposed a modification based on the fact that the ellipsoid cannot

decrease in volume with each successive iteration. The volume is measured by the

determinant so in the algorithm if a subset of points yields a value for the determinant

larger than the current best value, then the halfset is not evaluated any further. This

modification allows the calculation of the exact MVE without the explicit calculation

of the minimum covering for every halfset. This speeds up the algorithm considerably,

as a great majority of halfsets do not require explicit calculation. Cook, Hawkins, and

Weisberg (1993) found that for typical datasets fewer than 1% of the possible halfsets

require explicit evaluation. However, even with this speedup of the algorithm, this

exact method is still only feasible for small datasets where m ≤ 30 and p ≤ 5 (Cook,

Hawkins, and Weisberg (19993)).

Agullo (1996) proposed an exact method to calculate the MVE estimators based on

a more computationally efficient branch and bound method. Similar to the modification

proposed by Cook, Hawkins, and Weisberg (1993) to speed up their algorithm, the

branch and bound method utilizes the fact that the volume of a subset of points cannot

decrease as additional points are added. In other words, the volume is monotonically

non-decreasing as points are added to the subset. For example, consider the situation

with p = 2, m = 30, and h = 16. During the search if a subset of 8 points is

found to have a higher volume (as measured by a determinant) than the best halfset

found to that point, then no further halfsets containing those 8 points need to be

considered. This reduces substantially the number of halfsets for which a determinant

is calculated. Once the best halfset is found, Agullo (1996) recommended using an

algorithm by Atwood (1973) that is faster than the approach of Titterington (1975)

to solve the “covering problem”. The branch and bound algorithm can be sped up by

ordering the data prior to beginning the search. As a result, the branch and bound
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method is computationally feasible for datasets where m ≤ 100 and p ≤ 5.

Other computationally feasible methods to find an approximate MVE have been

proposed. For example, Hawkins (1993) proposed a feasible solution algorithm (FSA).

This algorithm considers a randomly selected halfset (called a random start) and then

makes use of swapping techniques to find a better halfset for which its covering ellipsoid

is found. Then the procedure is repeated for many randomly selected halfsets, each

of which converges to a local feasible solution. The MVE estimators are based on the

minimum of the local solutions. If enough randomly selected halfsets are used, this

algorithm will eventually yield an exact solution, but this will not be guaranteed for

a finite number of halfsets. If we denote by θ the proportion of initial halfsets that

will yield the best halfset, then the probability of finding the exact result, Pr(exact),

is 1− (1− θ)N where N is the number of random starts. This expression can be use to

determine the number of random starts that is needed to achieve a certain probability

of getting the exact results. Hawkins (1993) showed that for many common datasets

previously studied in the literature (with m ≤ 50 and p ≤ 5) that the N required to

achieve a high probability of success is often less than 100 (See also Hawkins (1994))

so the computation time is substantially smaller than those of Cook, Hawkins, and

Weisberg (1993) and Agullo (1996).

Croux and Haesbroeck (1997, 2002) showed how the efficiency of the subsampling

approach can be improved for the MVE. Instead of just picking the optimal elemen-

tal subset that gives the minimum volume, they first computed the ordered minimum

volumes and then averaged some of the smallest ones. These estimators still retain

consistency, affine equivariance, and have the highest possible breakdown point. How-

ever, it is still an approximate method and if an exhaustive calculation is not done, this

averaged approach still has the repeatability problem. This approach will not be con-
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sidered here because of the additional computation complexity with only a relatively

small gain in efficiency which is of minor importance.

Methods to find the MVE based on a heuristic search algorithms were proposed by

Woodruff and Rocke (1993). These search algorithms reduce the amount of computing

time needed to solve the “subset” problem and include genetic algorithms, simulated

annealing, and their corresponding enhanced versions. While they were shown to

be much more computationally efficient than the subsampling method and give good

results, they are not considered here because the algorithms are not easily accessible.

Minimum Covariance Determinant Estimator

An alternative high breakdown estimation procedure to the MVE is an estimator

based on the minimum covariance determinant (MCD), which was first proposed by

Rousseeuw (1984). It is obtained by finding the halfset that gives the minimum value of

the determinant of the variance-covariance matrix. The resulting estimator of location

is the sample mean vector of the points that are in the halfset and the estimator of

the dispersion is the sample variance-covariance matrix of the points multiplied by an

appropriate constant to ensure consistency just as was done for the MVE. Thus in

contrast to the MVE, the MCD estimators correspond to x and S1 of a specific halfset.

Because the MCD estimators are simple to calculate once the best halfset is found, it

can be easier to compute than for the MVE as it does not require a solution to the

“covering problem”.

The MCD estimators are intuitively appealing because a small value of the deter-

minant corresponds to near linear dependencies of the data in the p-dimensional space.

That is because a small determinant corresponds to a small eigenvalue which suggests

a near linear dependency that suggests that there is a group of points that are similar

to each other.
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Like the MVE, the MCD estimators have the same maximum breakdown point

which is achieved when h is the integer value of (m + p + 1)/2. In addition, the MCD

estimators can be very computationally difficult to obtain because of the exponential

increase in the number of potential halfsets that need to be considered. As a result,

the approximate methods and algorithms to obtain MVE estimates can also be used

to obtain the MCD estimates. For example, MCD estimates can be computed via

the method of Cook, Hawkins, and Weiser (1993). The branch and bound method of

Agullo (1996) can also be used, as shown in Agullo (2001). The subsampling approach

of Rousseeuw and Leroy (1987) can be used to get an approximate MCD estimates

which would have the same repeatability issues as the approximate MVE obtained via

subsampling. The FSA of Hawkins (1993) can be implemented for the MCD, as shown

by Hawkins (1994). An improved version of the FSA for the MCD was proposed by

Hawkins and Olive (1999).

Hybrid Algorithms

Other high breakdown estimation methods for detecting multivariate outliers are

hybrid algorithms that combine various components of earlier methods with modifica-

tions. Two notable ones are the hybrid algorithm of Rocke and Woodruff (1996) and

the FAST-MCD algorithm of Rousseeuw and Van Driessen (1999).

The hybrid algorithm of Rocke and Woodruff (1996) is a combination of the data

partitioning methods of Woodruff and Rocke (1994), the FSA algorithm involving the

MCD from Hawkins (1994), a sequential point addition algorithm, and M-estimation.

This hybrid algorithm is very effective in detecting a larger percentage of outliers.

A more complete explanation of the algorithm and the justification for its various

components can be found in Rocke and Woodruff (1997).
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Rousseeuw and Van Driessen (1999) proposed a hybrid algorithm which they called

the FAST-MCD that is based on an iterative scheme and the MCD estimators. The

algorithm can be described as follows:

1. Start with a fixed number, (A), of random elemental subsets and use them to

construct corresponding halfsets.

2. Carry out two concentration steps (C-step) on the A halfsets and select a small

number of “best” ones.

3. For the “best” halfsets, carry out C-steps until convergence and the FAST-MCD

estimators are based on the halfset with the lowest determinant of the covariance

matrix.

The C-steps are based on the fact that for any given halfset and its estimates

of location and dispersion, a better (or at least equivalent) solution can be found by

reordering the observations of the full dataset according to their Mahalanobis distances.

A new and improved halfset of the reordered points is found by selecting from the full

dataset those with the smallest Mahalanobis distances. The new halfset will have a

smaller determinant of the variance-covariance matrix than the determinant of the

original halfset. So each C-step yields a halfset that is more concentrated than the

previous halfset. If enough C-steps are done on enough halfsets, convergence to the

exact MCD estimator results. Because not all halfsets are considered, the FAST-MCD

will be an approximate method unless a large enough number of initial halfsets are

considered.

The FAST-MCD method is able to handle large data sets within a reasonable

amount of time. In fact, Rousseeuw and Van Driessen (1999) successfully analyzed a

data set with m = 132, 402 and p = 27, which is certainly beyond the capabilities of all
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the algorithms discussed earlier. For smaller datasets that they analyzed (all with m ≤
75 and p ≤ 5), the FAST-MCD algorithm resulted in estimates that were equivalent

to the exact MCD estimates. This means that the number of halfsets considered was

large enough to achieve convergence to the exact MCD estimates. It remains to be

seen how large m and p can be and still obtain the exact result with a high probability.

The control charts that are considered here generally use smaller values of m and p

suggesting that the FAST-MCD for practical purposes is likely to give the exact result.

Because it is not drawing random samples of points, the FAST-MCD algorithm

does not have the repeatability issues that are present in the subsampling algorithm.

Thus the FAST-MCD serves as a better algorithm to obtain the MCD estimator than

the subsampling algorithm for the MVE estimator.

Asymptotic Properties

The MCD and MVE estimators have been used historically as a starting point for

other robust estimation procedures, such as M-estimation. As such, it has not been as

important that the MCD and MVE estimators be exact. However, in Phase I quality

control applications, the MCD and MVE are used directly to determine multivariate

outliers and thus it becomes more important that they be sufficiently accurate. It is

also important to have some understanding of the distributions of the MCD and MVE

estimators in order to be able to obtain appropriate control limits for the T 2
mve,i and

T 2
mcd,i statistics. The distributions of the exact MCD and MVE estimators of location

and dispersion are not known in closed form. So when quantiles are needed from the

distributions to calculate control limits, they have been found via simulation (See for

example, Vargas (2003) or Williams, Woodall, and Birch 2005)).

However, the asymptotic distributions of the MVE and MCD estimators can be

derived. Davies (1987, 1992) showed that the exact MVE estimators of location and
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dispersion are consistent for µ and Σ given that the xi are independently and identically

distributed with a common distribution. Butler, Davies, and Jhun (1993) showed the

corresponding result for the exact MCD estimators of location and dispersion. However,

the MCD estimators converge to its population counterparts at a rate of n−1/2 while

the MVE estimators converge at a slower rate of n−1/3, thus the MCD estimators are

more efficient. In addition, the distribution of the MCD estimator of location converges

to a normal distribution, which is not necessarily the case for the MVE estimator of

location. Thus, the asymptotic properties of the MCD estimators are superior to those

of the MVE estimators. An intuitive reason for the superior convergence properties of

the MCD can be found by noting that as ε → 0 the location MVE estimator converges

to the center of the ellipsoid covering all the data while the location MCD estimator

converges to the mean vector of all the points.

The asymptotic distributions of the T 2
mve,i and T 2

mcd,i statistics follow directly from

the consistency of the MVE and MCD estimators, as seen in the following theorems.

Theorem 1. As m → ∞, the distribution of T 2
mve,i converges in distribution to a χ2

p

distribution for i = 1, . . . , m.

Proof. The assumption of multivariate normality satisfies the conditions of Theorem

3 of Davies (1987), therefore the MVE estimators are consistent, i.e., they converge in

probability to their parameter values, so we write xmve
p→ µ and S−1

mve

p→ Σ as m →∞.

Thus we then have

T 2
mve,i = (xi − xmve)

′ S−1
mve (xi − xmve)

p→ (xi − µ)′Σ−1 (xi − µ) ∼ χ2
p

Theorem 2. As m → ∞, the distribution of T 2
mcd,i converges in distribution to a χ2

p

distribution for i = 1, . . . , m.
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Proof. Same as the proof of Theorem 1 but replacing Theorem 3 of Davies (1987) with

Theorem 3 of Butler, Davies, and Jhun (1993) to show the consistency of the MCD

estimators.

It should be noted that because the subsampling algorithm to obtain the MVE

estimators and the FAST-MCD algorithm are approximations, their asymptotic distri-

butions are not necessarily χ2
p. If it were computationally feasible to compute exactly

the MVE and MCD estimators, then the control limits could be easily approximated

using the quantiles of the χ2
p distribution when the Phase I sample size is large. It

should also be noted that as the proportion of bad points, ε, goes to 0, the T 2
mcd,i

statistic converges to the T 2
1,i statistic which has a χ2

p distribution.

Control Limits

Because the distribution of the T 2 statistic based on the MVE and MCD estimators

are only known asymptotically, implementation of the Phase I control chart requires

control limits to be generated via simulation. Appendix A contains the control limits

for T 2 statistic based on the MVE estimators obtained via the subsampling method and

for the MCD estimators obtained via the FAST-MCD method. To obtain the simulated

control limits, 200,000 data sets were generated for each combination of m and p with

a zero mean vector and the identity covariance matrix. Due to the invariance of the

T 2
mve,i and T 2

mcd,i statistics, these limits will be applicable for any values of µ and Σ.

T 2 statistics for each observation in the data set were calculated and the maximum

value attained for each data set was recorded. The 95th percentile of this generated

empirical distribution is the simulated control limit. As will be seen shortly, T 2
mve,i and

T 2
mcd,i will be preferred for different situations, thus the control limits are only provided

for the situations where the particular estimator is preferred.
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The control limits are dependent on the integer value of h used and are not mono-

tonic functions of m. For example, consider Figure 1, which shows the scatterplot of

the control limit of T 2
mcd,i vs. m for p = 3. The jigsaw pattern here is also present when

using T 2
mve,i and is due to the fact that the integer value of h is the same for successive

values of m.
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Figure 1: Scatterplot of simulated control limits for the MCD estimator versus the size

of the data set, m.

It should be noted that the control limits in Appendix A are only appropriate

for the particular algorithm used. That is, the limits for T 2
mcd,i are appropriate when

the FAST-MCD algorithm is used and the limits for T 2
mve,i are appropriate when the
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MVE estimator with subsampling is used. Here the number of subsamples for the

MVE estimator is the default number based on the SAS MVE algorithm. A difference

in the algorithm changes the variability of the results from that algorithm and thus

the generated control limits would vary. Because the resulting estimates can vary

depending on which robust estimation algorithm is used, it is helpful to think of the

“algorithm as the estimator” as discussed by Woodruff and Rocke (1994, p. 889). The

variability in the estimator can be due in part to the variability in the algorithm used

to obtain it. Also these control limits all use the integer value of h = (m + p + 1)/2,

which gives the maximum possible breakdown point. Using a different value of h will

change the appropriate control limit.

Simulation Study

With the generated control limits, we made some comparisons of the high break-

down estimators. Vargas (2003) did a simulation study to compare T 2
1,i, T 2

2,i, T 2
mve,i

obtained via subsampling, and T 2
mcd,i obtained via the FAST-MCD. He concluded that

the MVE gave the best performance in terms of probability of a signal when outliers

are present. However, his comparisons between the MVE obtained by subsampling and

the FAST-MCD only covered the case for p = 2 and m = 30. Wisnowski, Simpson and

Montgomery (2002) did a performance study via simulation to compare various types

of robust estimation procedures. They compared a sequential point addition algorithm

of Hadi (1992, 1994), M-estimation, the approximate MVE calculated by the sub-

sampling method, the FAST-MCD and the hybrid algorithm of Rocke and Woodruff

(1996). However, their comparisons of the MVE obtained via subsampling and the

FAST-MCD for large shift outliers only used m = 40, 60, p = 2, 6, and ε = 10%, 20%.

Wisnowski, Simpson, and Montgomery (2002) concluded that the hybrid algorithm
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performed best and that the FAST-MCD was slightly better than the MVE based on

simulation runs involved 1000 datasets. They also considered various other outlier sit-

uations not considered here such as: Outliers scattered in random directions, clusters

of outliers in all p variables, clusters of outliers in one of p variables, clusters of outliers

in some of the p variables, and multiple clusters in close proximity.

We performed a similar study to those of Wisnowski, Simpson, and Montgomery

(2002) and Vargas (2003) to compare the MVE subsampling and FAST-MCD algo-

rithms. Our study compares more combinations of p, m, and k. For a particular

combination of p, m, and k, a number of datasets were generated. Of the m observa-

tions, k of them are random data points generated from the out-of-control distribution,

and the other n− k observations were generated from the in-control distribution.

The in-control distribution is a multivariate normal where it can be assumed that

µ = 0 and Σ = I without loss of generality. The out-of-control distribution is a

multivariate normal with the same variance-covariance matrix but where the mean

vector has been shifted by some amount. This amount depends on a value of the

non-centrality parameter, given by

(µ1 − µ)′Σ−1(µ1 − µ) (9)

where µ1 is the amount that the mean vector has shifted. The larger the value of

the non-centrality parameter, the more extreme the outliers are. The proportion of

datasets that had a least one T 2 statistic greater than the control limit was calculated

and this proportion becomes the estimated probability of a signal. T 2
1,i was included in

our study as a reference statistics because of its common usage.

Appendix B shows the probability of a signal for different values of the non-

centrality parameter and for some of the values of m and k considered in our study.

For p = 2, 3, and 5 a total of 100, 000 datasets of size m were generated for each com-
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bination of m, k, and the non-centrality parameter. For p = 7 and 10, 50, 000 datasets

were generated for each combination. The results are shown in figures B.1-B.5 for

p = 2, 3, 5, 7, and 10 respectively. As expected, when the value of the non-centrality

parameter is small, the probability of a signal is close to .05 which is what would be

expected for an in-control process. As the value of the non-centrality parameter in-

creases the probability of a signal will increase. If not, then this indicates that the

estimator has broken down and is not capability of detecting the outliers. In general,

for small values of m, T 2
mve,i performs best, unless the number of outliers is large. As

m increases, T 2
mcd,i is more likely to be superior. The actual breakdown point of T 2

mve,i

is smaller than that of T 2
mcd,i although in theory they should have similar breakdown

points. It is clear that T 2
1,i possesses little ability to detect multiple outliers. As p

increases for a fixed value of m, the breakdown points of T 2
mve,i and T 2

mcd,i get smaller.

This suggests that the larger p is, the larger m will need to be in order to minimize

the impact of outliers. In general, there was always one estimator that was found to

be superior across all the values of the non-centrality parameter as long as the propor-

tion of outliers was not so big as to cause the estimators to break down. This greatly

simplifies the conclusions that can be made about when the MVE or MCD estimator

is preferred.

Figures 2-6 summarizes the results from Appendix B by showing which of the three

estimators (Standard, MVE, MCD) is preferred for the various combinations of m,

p, and ε. Based on Figures 2-6 some broad recommendations can made made. The

standard estimator should be used if at most one outlier is expected. When m ≤ 50

the MVE will be the best estimator unless the percentage of outliers is greater than 25

or 30%. When m > 50, the MCD is preferred as long as the percentage of outliers is

less than 40%. As p increases, then the percentage of outliers that can be detected by
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the MVE estimator will decrease until it is only 10% for p = 10. It is true for both the

MVE and MCD that the higher p is, then the number of outliers that can be detected

decreases. Thus for Phase I applications where the number of outliers is unknown

T 2
mve,i should only be used for smaller sample sizes for which it is also computationally

feasible. T 2
mcd,i should be used for larger sample sizes or when it is believed that there

is a large number of outliers. The more variables that are monitored (p) the larger the

sample size that will be needed to ensure that the estimator does not breakdown and

lose its ability to detect any outliers.

Open questions and future research

There are still some unanswered questions related to high breakdown estimation

methods for multivariate control charts. For example, because the asymptotic distri-

bution of the T 2
mcd,i and T 2

mve,i is χ2
p, it may be useful to study the use of approximate

control limits which are much simpler to obtain than those obtained via simulation.

This type of study was performed for T 2
2,i in Williams et al. (2005) to compare the

probability of signal using the simulated control limits versus the asymptotic χ2
p limit.

We believe that it is likely that large sample sizes are needed for the χ2
p approximation

to be sufficiently accurate.

We have only considered here high breakdown estimation methods that are robust

in the sense that they are resistant to outliers. It is not clear if these high breakdown

estimation methods are robust to other departures from the specified assumptions. For

example, it is not clear if the superiority of high breakdown methods is maintain when

the data no longer follows a multivariate normal distribution.

Traditional methods of quality control for Phase I use the second approach, that of

estimate, delete, re-estimate. It would possible to utilize the first approach and simply
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Figure 2: Summary of which estimator is preferred for where p = 2. The unlabelled

area is where the MVE and MCD perform equally well.
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Figure 3: Summary of which estimator is preferred for where p = 3. The unlabelled

area is where the MVE and MCD perform equally well.
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Figure 4: Summary of which estimator is preferred for where p = 5. The unlabelled

area is where the MVE and MCD perform equally well.
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area is where the MVE and MCD perform equally well.
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area is where the MVE and MCD perform equally well.
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estimate robustly (via S estimation or some other approach) and not be concerned with

the deletion of outliers. So rather than focusing on the estimator that gives the best

Phase I performance as was done here, the focus would be to find the estimator that

gives the best Phase II performance.

Conclusion

It is important for Phase I multivariate control charts to be based on a high break-

down estimator in order to ensure that outliers are detected and that, as a result,

the Phase II control limits will be meaningful. Both the MVE and MCD estimators

are effective in detecting multiple outliers, but each is more advantageous for certain

combinations of sample size and the number of outliers present. The MVE estimator is

preferred for smaller sample sizes and a smaller percentage of outliers while the MCD is

preferred for larger sample sizes and/or large percentages of outliers. The simulations

and generated control limits presented here give useful guidelines about the situations

for which high breakdown approach is most appropriate.
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Appendix A - Tables of Control limits

Table A . 1: Control limits for T 2
mve,i statistic obtained via subsampling to maintain

an overall probability of signal = 0.05 when the process is in control

p

m 2 3 4 5 6 7 8 9 10

20 30.15 38.48 63.28 62.83 97.05 89.44 149.47 140.90 284.29

21 25.46 43.74 48.11 72.39 68.58 101.70 100.27 154.19 156.86

22 28.70 35.21 54.51 54.34 75.19 75.16 107.58 107.21 167.24

23 24.22 39.88 43.49 60.38 59.66 80.36 82.58 116.23 118.72

24 26.50 33.40 47.82 49.27 64.11 65.27 87.01 89.92 126.12

25 23.61 36.44 39.98 53.04 53.40 69.42 71.86 95.80 100.59

26 25.72 31.76 43.08 45.71 57.23 58.87 74.65 79.58 105.12

27 23.18 34.34 37.64 47.94 49.41 62.19 65.45 83.00 88.05

28 24.88 30.48 40.20 42.68 52.25 54.66 67.87 72.59 91.04

29 22.91 32.66 36.01 44.97 46.83 56.67 60.81 74.57 79.35

30 24.31 29.52 37.97 40.21 48.48 51.65 62.15 67.41 81.74

31 22.50 31.45 34.42 42.00 44.42 53.23 57.06 68.67 73.84

32 23.70 28.74 36.37 38.84 46.18 49.00 58.47 63.16 75.60

33 22.26 30.32 33.39 40.13 42.75 50.21 53.97 64.14 69.49

34 23.48 28.02 34.70 37.41 44.13 46.78 55.51 60.12 70.52

35 22.03 29.35 32.46 38.60 41.24 48.07 52.14 60.81 65.62

36 23.05 27.58 33.54 36.27 42.18 45.46 52.86 57.84 67.13

37 21.79 28.71 31.67 37.43 40.11 46.58 50.49 58.23 63.12

38 22.71 26.98 32.69 35.43 41.01 44.50 51.26 55.38 63.86

39 21.58 28.04 30.95 36.24 39.22 45.29 48.84 56.33 60.83

40 22.48 26.50 32.09 34.84 40.04 43.02 49.61 53.67 61.23

41 21.52 27.51 30.68 35.43 38.44 43.81 47.65 54.35 58.71

42 22.48 26.19 31.28 34.00 39.26 42.23 48.24 52.15 59.35

43 21.27 26.98 30.10 34.88 37.65 42.88 46.58 52.76 57.20

44 22.02 25.90 30.80 33.76 38.33 41.59 47.10 50.84 57.59

45 21.25 26.61 29.68 34.16 36.94 42.10 45.85 51.60 55.84

46 21.92 25.57 30.34 32.99 37.72 40.85 46.27 50.00 56.18

47 21.20 26.32 29.29 33.67 36.54 41.39 44.85 50.70 54.70

48 21.78 25.38 29.87 32.64 37.02 40.22 45.35 49.32 54.89

49 21.08 25.90 28.91 33.21 36.05 40.58 44.23 49.47 53.49

50 21.68 25.24 29.46 32.25 36.49 39.58 44.56 48.20 53.75
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Table A . 2: Control limits for T 2
mve,i statistic obtained via subsampling to maintain

an overall probability of signal = 0.05 when the process is in control

p p

m 2 3 4 5 m 2 3 4 5

51 20.97 25.86 28.64 32.73 76 20.70 23.76 27.09 29.80

52 21.53 24.96 29.12 31.99 77 20.31 24.00 26.70 30.01

53 20.90 25.40 28.39 32.33 78 20.66 23.68 26.91 29.70

54 21.33 24.86 28.90 31.64 79 20.32 23.99 26.66 30.00

55 20.77 25.26 28.22 32.05 80 20.69 23.62 26.89 29.68

56 21.27 24.58 28.54 31.44 81 20.37 23.85 26.65 29.95

57 20.72 25.06 27.95 31.73 82 20.69 23.62 26.82 29.51

58 21.24 24.52 28.35 31.14 83 20.34 23.76 26.52 29.79

59 20.62 25.00 27.79 31.59 84 20.57 23.49 26.73 29.52

60 21.16 24.34 28.16 30.97 85 20.29 23.75 26.54 29.67

61 20.64 24.80 27.67 31.26 86 20.56 23.46 26.70 29.45

62 21.08 24.29 28.01 30.78 87 20.25 23.72 26.41 29.62

63 20.60 24.66 27.40 31.06 88 20.58 23.45 26.67 29.40

64 21.09 24.21 27.84 30.60 89 20.30 23.65 26.38 29.51

65 20.59 24.61 27.29 30.88 90 20.57 23.41 26.63 29.21

66 20.94 24.06 27.60 30.42 91 20.33 23.63 26.35 29.50

67 20.45 24.46 27.24 30.69 92 20.50 23.48 26.49 29.26

68 20.91 23.96 27.46 30.29 93 20.24 23.64 26.31 29.40

69 20.47 24.38 27.10 30.55 94 20.48 23.28 26.51 29.18

70 20.84 23.95 27.43 30.12 95 20.23 23.51 26.23 29.31

71 20.44 24.30 27.03 30.45 96 20.46 23.27 26.41 29.12

72 20.79 23.85 27.28 30.11 97 20.23 23.56 26.22 29.25

73 20.42 24.16 26.90 30.28 98 20.48 23.32 26.38 29.12

74 20.71 23.76 27.14 29.98 99 20.23 23.51 26.21 29.23

75 20.40 24.01 26.82 30.15 100 20.40 23.25 26.35 29.08
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Table A . 3: Control limits for T 2
mcd,i statistic obtained via the FAST-MCD algorithm

to maintain an overall probability of signal = 0.05 when the process is in control

p

m 2 3 4 5 6 7 8 9 10

20 116.35 221.31 512.57 573.00 1263.75 1261.29 3216.16 2732.59 8607.95

21 101.69 267.12 356.97 732.92 780.43 1749.17 1635.04 4263.75 3475.45

22 96.48 190.82 426.29 494.98 1001.39 1021.63 2306.46 2099.58 5394.73

23 88.45 225.37 312.60 614.28 658.21 1338.25 1316.79 2925.82 2617.15

24 82.50 165.93 363.30 433.36 824.27 854.21 1717.70 1654.24 3699.36

25 76.88 191.09 276.33 524.46 573.24 1080.57 1081.13 2153.21 2006.16

26 71.17 142.78 310.01 386.96 689.36 729.03 1358.16 1343.84 2640.49

27 67.76 161.40 244.43 451.12 507.49 887.25 919.94 1676.68 1606.62

28 63.58 124.24 266.56 341.02 592.22 638.91 1103.96 1118.05 2010.77

29 60.79 140.21 218.91 397.85 453.10 752.13 784.03 1328.16 1330.95

30 57.87 109.75 229.62 306.61 521.58 565.05 920.97 938.37 1584.42

31 56.06 121.26 192.12 348.47 403.29 649.23 682.26 1100.83 1109.26

32 52.81 96.93 198.93 273.13 461.13 502.58 791.71 811.53 1278.29

33 51.65 106.74 169.80 306.25 368.58 567.87 603.86 927.22 943.58

34 48.73 87.04 174.05 243.99 402.76 446.01 678.92 709.17 1064.44

35 47.82 94.92 151.74 272.18 331.76 502.06 535.50 787.65 798.08

36 45.88 78.60 151.54 219.12 359.95 403.76 592.05 618.53 893.32

37 45.39 85.04 135.32 240.93 299.32 446.20 478.61 685.69 703.16

38 43.28 71.83 134.45 195.70 320.15 368.05 523.59 550.52 768.13

39 42.95 77.90 121.48 214.69 273.21 398.36 435.75 598.72 621.28

40 40.83 66.67 118.92 176.28 283.51 331.61 466.44 493.09 670.10

41 40.89 71.31 110.40 190.07 245.31 358.95 391.38 532.95 552.36

42 39.16 62.05 108.37 158.55 255.07 300.85 417.22 444.66 591.07

43 39.04 66.12 100.11 171.10 223.88 325.15 355.00 476.19 497.57

44 37.40 58.53 98.07 142.79 229.56 273.68 377.42 401.43 527.47

45 37.57 61.83 91.20 153.44 203.37 294.03 325.84 432.77 446.93

46 35.95 55.21 90.13 129.36 205.50 251.08 340.95 367.12 474.81

47 35.91 58.29 85.00 137.97 184.30 266.10 297.59 388.44 408.06

48 34.83 52.52 82.86 118.33 185.14 228.42 311.98 337.64 427.32

49 34.96 55.05 78.76 125.40 170.19 240.78 272.27 351.29 373.57

50 33.63 50.05 76.83 109.48 166.78 208.99 281.82 307.01 388.70

51 34.00 52.21 74.30 114.33 153.54 221.02 251.74 322.26 340.80

52 32.80 47.63 72.24 100.22 152.20 190.70 260.23 284.55 353.93

53 33.00 49.94 69.68 104.77 141.09 199.71 234.03 297.29 316.36

54 32.08 45.89 68.06 93.16 138.70 175.65 236.04 261.73 326.26

55 32.51 47.86 65.91 97.77 129.80 185.02 215.83 273.59 291.71

56 31.44 44.24 64.20 86.75 128.02 160.04 216.92 242.96 299.15

57 31.42 46.12 62.25 90.67 119.58 169.09 197.30 250.11 270.43

58 30.60 43.00 60.88 81.39 117.37 149.04 198.86 224.10 277.98

59 30.85 44.21 59.22 84.91 111.41 154.91 182.85 233.49 254.14

60 29.93 41.51 58.09 76.89 108.83 137.20 182.80 208.72 257.63
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Table A . 4: Control limits for the T 2
mcd,i statistic obtained via the FAST-MCD al-

gorithm to maintain an overall probability of signal = 0.05 when the process is in

control

p

m 2 3 4 5 6 7 8 9 10

61 30.37 42.94 56.89 79.90 103.46 142.42 170.75 217.32 236.53

62 29.60 40.05 55.66 72.70 100.76 128.10 169.24 193.12 240.25

63 29.81 41.60 54.41 75.19 96.07 132.49 158.53 200.15 219.66

64 28.97 39.30 53.53 69.09 94.22 118.68 157.60 180.96 222.52

65 29.31 40.50 52.23 71.24 90.69 123.39 147.74 186.37 206.70

66 28.52 38.19 51.52 65.55 88.53 110.76 146.46 169.88 209.14

67 28.78 39.42 50.62 67.75 85.59 114.25 137.55 174.27 193.82

68 28.20 37.55 49.63 62.58 83.68 103.68 136.62 158.56 193.39

69 28.43 38.56 49.04 64.45 81.00 108.00 128.53 162.14 181.61

70 27.83 36.53 48.24 60.42 79.45 97.71 126.77 148.48 181.76

71 28.03 37.58 47.41 61.90 77.35 100.50 120.42 151.79 170.44

72 27.50 35.87 46.58 58.14 75.28 92.39 118.68 139.10 170.02

73 27.69 36.77 46.03 59.70 73.34 94.81 113.96 142.75 161.94

74 27.05 35.22 45.36 56.10 72.34 87.58 112.12 131.52 160.34

75 27.38 35.89 45.00 57.47 70.37 89.91 107.88 133.60 152.33

76 26.85 34.45 44.20 53.92 68.94 83.38 105.06 123.58 151.70

77 27.10 35.30 43.74 55.49 67.63 84.98 101.60 125.70 144.50

78 26.57 34.19 43.17 52.45 66.11 79.10 99.23 116.99 142.80

79 26.76 34.80 42.70 53.80 64.74 80.83 95.81 118.40 136.02

80 26.24 33.46 42.03 50.93 63.46 75.95 94.29 110.74 134.38

81 26.67 34.10 41.72 52.00 62.33 77.57 92.27 112.47 128.79

82 26.02 32.99 41.20 49.55 61.36 72.67 90.02 105.60 127.13

83 26.25 33.71 41.16 50.67 60.19 74.76 87.58 107.04 123.17

84 25.84 32.56 40.45 48.36 59.59 70.01 85.75 99.78 120.54

85 26.05 33.11 40.34 49.19 58.18 71.34 83.71 102.45 116.80

86 25.61 32.07 39.66 47.17 57.70 67.48 82.18 94.92 114.90

87 25.90 32.71 39.58 47.94 56.54 68.76 80.03 97.42 111.43

88 25.50 31.90 38.79 46.19 55.73 65.49 78.83 91.25 109.30

89 25.70 32.36 38.75 46.82 54.98 66.34 77.46 92.95 106.56

90 25.24 31.45 38.26 45.19 54.11 63.28 75.59 87.85 104.28

91 25.53 31.93 38.17 46.07 53.68 64.00 74.57 89.18 101.58

92 25.12 31.07 37.77 44.15 52.94 61.22 73.18 84.42 99.39

93 25.37 31.59 37.50 45.08 52.28 62.35 71.91 85.44 97.31

94 24.93 30.73 37.17 43.48 51.37 59.57 70.76 81.17 95.86

95 25.12 31.17 37.14 44.17 51.16 60.49 69.53 81.71 93.73

96 24.76 30.47 36.56 42.67 50.50 58.00 68.21 78.23 92.06

97 25.03 30.83 36.51 43.29 50.09 58.80 67.09 79.56 89.75

98 24.60 30.15 36.18 42.05 49.29 56.77 66.18 75.89 88.54

99 24.81 30.62 35.99 42.52 48.79 57.35 65.43 76.20 86.71

100 24.47 29.90 35.68 41.30 48.28 55.25 64.40 73.49 85.16
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Appendix B - Probability of Signal

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m= 30  and k= 2

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m= 30  and k= 4

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

m= 30  and k= 6

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

m= 30  and k= 8

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.2

0.4

0.6

0.8

m= 50  and k= 4

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.2

0.4

0.6

0.8

m= 50  and k= 8

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

m= 50  and k= 12

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m= 50  and k= 16

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

m= 75  and k= 5

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

m= 75  and k= 10

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

m= 75  and k= 15

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

m= 75  and k= 20

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

m= 100  and k= 5

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

m= 100  and k= 10

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

m= 100  and k= 20

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

m= 100  and k= 30

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

Figure B . 1: Probability of signal for various combinations of m and k for p = 2. The

circles and solid line correspond to the MVE, the triangles and dashed line correspond

to the MCD, and the squares and dotted line correspond to the standard estimator.
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Figure B . 2: Probability of signal for various combinations of m and k for p = 3. The

circles and solid line correspond to the MVE, the triangles and dashed line correspond

to the MCD, and the squares and dotted line correspond to the standard estimator.
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Figure B . 3: Probability of signal for various combinations of m and k for p = 5. The

circles and solid line correspond to the MVE, the triangles and dashed line correspond

to the MCD, and the squares and dotted line correspond to the standard estimator.

39



5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

m= 30  and k= 2

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.06

0.08

0.10

0.12

0.14

m= 30  and k= 4

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.050

0.055

0.060

0.065

0.070

m= 30  and k= 6

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.043

0.044

0.045

0.046

0.047

0.048

0.049

m= 30  and k= 8

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m= 50  and k= 4

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.06

0.08

0.10

0.12

0.14

0.16

m= 50  and k= 8

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.06

0.07

0.08

0.09

0.10

m= 50  and k= 12

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.040

0.045

0.050

0.055

0.060

m= 50  and k= 16

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

m= 75  and k= 5

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m= 75  and k= 10

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m= 75  and k= 15

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

m= 75  and k= 20

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

m= 100  and k= 5

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m= 100  and k= 10

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m= 100  and k= 20

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

m= 100  and k= 30

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

Figure B . 4: Probability of signal for various combinations of m and k for p = 7. The

circles and solid line correspond to the MVE, the triangles and dashed line correspond

to the MCD, and the squares and dotted line correspond to the standard estimator.

40



5 10 15 20 25

0.06

0.08

0.10

0.12

0.14

m= 30  and k= 2

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.045

0.050

0.055

0.060

0.065

0.070

0.075

m= 30  and k= 4

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.045

0.046

0.047

0.048

0.049

0.050

0.051

m= 30  and k= 6

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.044

0.045

0.046

0.047

0.048

m= 30  and k= 8

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

m= 50  and k= 4

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.050

0.055

0.060

0.065

0.070

0.075

m= 50  and k= 8

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.046

0.048

0.050

0.052

0.054

m= 50  and k= 12

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.042

0.044

0.046

0.048

m= 50  and k= 16

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

0.30

m= 75  and k= 5

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.06

0.08

0.10

0.12

0.14

0.16

0.18

m= 75  and k= 10

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.06

0.08

0.10

0.12

0.14

m= 75  and k= 15

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.04

0.05

0.06

0.07

0.08

0.09

m= 75  and k= 20

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

m= 100  and k= 5

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.1

0.2

0.3

0.4

m= 100  and k= 10

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m= 100  and k= 20

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

5 10 15 20 25

0.04

0.06

0.08

0.10

0.12

m= 100  and k= 30

Non−centrality parameter

P
ro

ba
bi

lit
y 

of
 a

 s
ig

na
l

Figure B . 5: Probability of signal for various combinations of m and k for p = 10. The

circles and solid line correspond to the MVE, the triangles and dashed line correspond

to the MCD, and the squares and dotted line correspond to the standard estimator.
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