
DEVELOPMENT AND VALIDATION OF A METHODOLOGY FOR 

COMPREHENSIVE PERFORMANCE ASSESSMENT OF COMPLEX TASKS 

by 

Charnes A. Green 

Dissertation submitted to the Faculty of the 

Virginia Polytechnic Institute and State University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Industrial and Systems Engineering 

APPROVED: 

  

  

    

A. Prestrude H. L. Sny@ér 

April, 1995 
Blacksburg, Virginia 

Key words: Task Analysis, Modeling, MicroSAINT, Performance Assessment



DEVELOPMENT AND VALIDATION OF A METHODOLOGY FOR COMPREHENSIVE 

PERFORMANCE ASSESSMENT OF COMPLEX TASKS 

by 
Charles A. Green 

R. J. Beaton, Chairman 

Industrial and Systems Engineering 

(ABSTRACT) 

A new task analysis methodology was developed to provide objective information on 

complex tasks. A complex task was broken down into observable elements and 

unobservable elements that were inferred to have taken place in support of the 

observable actions. Subject matter experts (SMEs) were used to assist in this 

breakdown. Additionally, guidelines for specifying the level of detail in the task analysis 

breakdown were developed to help objectify the analysis. A simulation model 

framework then was built of the task elements. Personnel proficient in the task were 

observed during work, and objective data on their observable actions were collected. 

These data then were used to provide numeric input to a simulation model. The 

simulation was run, and the results of the model of performance compared to the 

observed performance data. The model was altered at that point to reflect lessons 

leamed during data collection. The process yielded a model that accurately reflects 

human performance on the task. Variations on the model based on a conceptual 

understanding of operators strategies also correlated well with observed performance, 

indicating the value of the methodology for building an understanding of the motivations 

critical to successful task performance.
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INTRODUCTION 

Objective analysis of complex tasks has been a key focus of the field of human factors 

engineering. Methods of task analysis have been used to determine human 

performance in a descriptive way; these results have led to redesign of task sequences, 

training systems, and equipment to better match the capabilities of human operators. 

With the advent of sophisticated computer systems, the ability to create detailed 

simulations of human performance is now possible. These simulations can be used to 

objectify the task analysis process, yielding information that can be used to describe, 

assess, and predict performance. Simulation has been used in other fields to 

understand complex random processes and now can be applied to human performance. 

Simulation is a natural outgrowth of a progression of increasingly objective complex task 

analysis techniques. Frank and Lillian Gilbreth began with creation of task analysis tools 

such as simultaneous motion charts in the early part of this century. Later, other tools 

were developed that increased the objectivity of task analysis techniques, such as the 

operational sequence diagram which is useful for describing person-machine 

interactions. Also, predetermined time systems were developed in an attempt to 

quantify the time for specific motions included in task taxonomies (Fleishman and 

Quaintance, 1984). Building simulation models of complex tasks goes a step farther by 

using time distributions instead of fixed values, and by quantifying decision points and 

associated probabilities along the way. This last area has the additional benefit of 

enabling “backwards” analysis, whereby more can be learned about the task activities 

through the process of modeling them. 

A new task analysis methodology was developed to provide objective information on 

complex tasks. A complex task was broken down into observable elements and 

unobservable elements that were inferred to have taken place in support of the 

observable actions. Subject matter experts (SMEs) were used to assist in this 

breakdown. Additionally, guidelines for specifying the level of detail in the task analysis 

breakdown were developed to help objectify the analysis. A simulation model 

framework then was built of the task elements. Personnel proficient in the task were 

observed during work, and objective data on their observable actions were collected. 

These data then were used to provide numeric input to a simulation model. The



simulation was run, and the results of the model of performance were compared to the 

observed performance data. The model was altered at that point to reflect lessons 

leamed during data collection. The process yielded a model that accurately reflects 

human performance on the task. 

This task analysis process has yielded information at each step that is useful in 

describing the task of interest. The initial model framework was used to describe 

various possible task sequences based on decisions the personnel made towards 

successful task completion. Data collected during observations of personnel performing 

the task were analyzed with inferential statistics to attempt to determine the causes 

behind the decisions that lead to these different task completion strategies. Descriptive 

statistics of the strategies used could lead to improved training methods that emphasize 

the benefits of different strategies in the different situations that are modeled. Finally, 

the complete, accurate model may be used to assess performance by a particular 

person in a particular situation as compared to the predicted norm, and could also be 

used to predict the effect of changes in the task sequence. 

Purpose 

The purpose of this work was to show that this variant on traditional task analysis 

methodology (hereafter referred to as the “Performance Assessment Methodology” or 

PAM), which is based on observable events and actions and inferred decisions, can be 

used to describe, assess, and predict performance of personnel on a complex task. The 

task Sequences were described through observation of personnel and interviews with 

SMEs. A simulation model framework was constructed based on these task sequences 

and, in conjunction with a set of guidelines, developed to aid in the specification of the 

level of detail for the task analysis. A laboratory study was conducted to confirm the 

task sequences and collect objective data that was included in a simulation model. 

Strategies personnel use in completing the task are described. The completed 

simulation model's summary human performance results are compared with summary 

observed results to validate the methodology. The validated simulation model is then 

used to develop performance norms under different task environments. The validated 

model is also used to provide norms and other information on strategies personnel use,



to demonstrate the utility of the methodology in providing more detailed information on 

human performance than is currently feasible with other task analysis techniques. 

Background 

The task selected for use in developing and validating the task analysis and simulation 

methodology is part of the job of the operators of the U.S. Navy's AN/SLQ-32(V) 

Electronic Warfare console (for background on this piece of equipment, see Appendix 

A). This task was chosen because the Virginia Tech Displays & Controls Laboratory is 

engaged in ongoing work with this system as part of the Navy’s Shipboard Assessment 

of Required Proficiency (SHARP) program. The AN/SLQ-32(V) is a model system for 

analysis of complex tasks. The AN/SLQ-32(V) is a passive radar receiver; that is, it 

detects radar signals in the environment surrounding a ship and attempts to interpret the 

source of those signals. The Display and Control Console (DCC) presents this 

information to the operator by placing a symbol indicative of a particular type of radar 

emitter on a polar display. The console provides numeric information on the electronic 

parameters of each signal detected and provides an audio signal based on the radar 

signal received that operators can use to aid in their recognition of the emitter. 

Operators must recognize and monitor emitters detected by the console to do their job of 

protecting the ship. 

Related Literature 

This section provides a selected history of complex task analysis. Beginning with the 

origins of task analysis at the start of this century, complex task analysis has gone 

through a progression of techniques including “scientific management”, time and motion 

studies, process charts, hierarchical task analysis, and finally progressing to cognitive 

user models and stochastic modeling techniques. At the end of the section, logical 

guidelines for the PAM that have come out of this background are stated. 

Origins of task analysis. Frank and Lillian Gilbreth and Frederick Taylor (see Gies, 

1991) are credited with beginning the study of task analysis. The Gilbreths contributed 

the idea of charting the motions of a worker to help determine ways to increase



productivity (Gilbreth and Gilbreth, 1921 as referenced in Kirwan and Ainsworth, 1991). 

Simultaneous motion charts were a particularly useful method developed by the couple 

as a way of acknowledging the interaction between the two hands during manual tasks. 

Further, each item in one of these charts was termed a “therblig”, and postulated to have 

a reliable duration and repeatability for a variety of tasks. This was a precursor to task 

taxonomy systems. Taylors main contributions to task analysis were firstly his coining 

of the term, and secondly his establishment of methods for time and motion study. 

These methods were later expanded upon by others. 

Task analysis does not have a very firm definition. One useful definition is “Task 

analysis... is the process of critically examining task factors -- the operator's resources, 

constraints and preferences -- in order to establish how these influence human 

operations in the attainment of system goals.” (Kirwan and Ainsworth, 1991). 

Sampling techniques. A precursor to the use of detailed computer data collection 

techniques was activity sampling, or work sampling (Heiland and Richardson, 1957). In 

this type of technique, a worker's activities are cataloged and then sampled at regular 

intervals. After a set time period, analysis of the data collected can begin to describe 

relative frequencies of work behaviors. Problems with this technique include lack of 

rationality in choosing a sampling frequency and a cataloging level of detail. 

Additionally, there is not necessarily a relation between frequency of an activity and its 

criticality. 

A sampling technique quite different than regular work sampling is the critical incident 

technique (Meister, 1985; Singleton, 1974). This technique was pioneered during 

WWII, as investigations were conducted on airplane crashes (Fitts and Jones, 1947 as 

referenced by Kirwan and Ainsworth, 1991). The critical incident technique involves 

surveying workers about incidents or accidents with a system to identify points of 

concern. This technique can quickly determine problem areas, but cannot always 

pinpoint their causes. 

Task taxonomies. Attempts have been made to develop task taxonomies that can be 

applied to any complex task. Recent work includes that of Hogan, Raza, Metz, and 

Driskell (1986), who detailed a taxonomy that can classify team tasks. Shingledecker,



Crabtree, and Eggemeier (1985) reported development of the CTS taxonomy, which 

they said is a step toward development of “...efficient, standardized human factors 

measurement technologies which are based on the state-of-the-art in human 

performance theory and experimental methodology.” The also noted that because 

understanding of human performance is far from complete, that “...batteries such as the 

CTS should never be considered as final or static technologies.” 

Charting. Charting techniques were pioneered by the Gilbreths, but have been greatly 

expanded and modified since that time (Kirwan and Ainsworth, 1991). In addition to the 

early process and simultaneous motion charts, functional flow charts and informational 

flow charts have added a great deal to this method. These type of charts include 

decision points, typically with boolean operators to describe choices a worker has in 

completing the task. Symbols for these charts include rectangles and ovals for actions 

and diamonds and circles for decisions (Kadota, 1982). 

A particular method of charting that includes the state of the system as well as operator 

actions is the operational sequence diagram (OSD). This type of charting method, also 

known as “Job process charts” (Tainsh, 1985) is useful in systems where the machinery 

has a variety of responses to operator actions depending on its state. This is the case 

with many modem complex electronic systems. 

Hierarchical task analysis (HTA). This technique, an extension to qualitative charting 

techniques, allows varying levels of detail in task decomposition to be used depending 

on need (Kirwan and Ainsworth, 1991). HTA is also an inferential method, in that it 

provides a view of tasks as pertaining to goals of the system. It can include other task 

analysis methods, particularly types of charts. The technique involves three major 

terms, “goals”, “tasks”, and “operations”. These are defined as desired states of the 

system, methods for attaining those states, and units of behavior that can be defined in 

“terms of its objective”, respectively (Kirwan and Ainsworth, 1991). | 

Kirwan and Ainsworth (1991) begin to attack the problem of the necessary level of detail 

or “stopping rule” for hierarchical task analysis with the “PxC” rule. P refers to the 

probability of inadequate task performance, and C to the cost or consequences of 

inadequate performance. If the product of these variables is unacceptable, than the task



needs to be described at that level of detail. Unfortunately, all of the quantities in this 

relation are qualitative, and thus do not provide objective rules for specifying a level of 

detail for analysis. 

Task analysis guidelines and simulation. Although task analysis techniques are a 

fundamental part of applied human factors work, little research has been conducted on 

objective guidelines for their implementation, particularly for use in simulation. There is 

a need for standardization in the task analysis techniques used in simulation models. In 

particular, there is considerable variability in the level of detail included in the description 

of models and in the links which are established between the models and the individual 

tasks described by them (Shingledecker et al., 1985). Most authors take the view that 

task analysis involves a certain level of judgment in deciding what level of detail should 

be examined. 

Meister (1971) highlighted the problem involved in task analysis. This problem is the 

particular level of detail that the task should describe. He said that the particular level of 

task description is arbitrary and judgmental, and that precise rules for this breakdown 

cannot be specified. He noted that the methodology is largely a trial-and-error process. 

Griffith and Stewart (1991) used task analysis techniques to provide input to a 

MicroSAINT simulation model. “The level of system decomposition... depends on the 

particular problem. The system can be defined in as detailed or gross a level as desired 

and common sense on the part of the modeler is usually sufficient for determining this 

level.” (Griffith and Stewart 1991; emphasis added). 

Siegel and Wolf (1969) discussed the building of simulation models from task analysis. 

They recommended that subtasks in a model correspond to “natural” behavioral units. 

These behaviors are “usually” single operator actions that take “several seconds to a 

few minutes.” These requirements are remarkably general. 

Another approach has been to develop criteria that tasks must meet for measurement. 

Vreuls, Obermayer, Wooldridge, and Kelly (1985) have developed a criterion for what 

they term a “measurement segment” which "generally correspond[s]’ to a task element. 

They mention performance must be “lawtul,” and the segment must have an



unambiguously defined beginning and end. The use of “lawful” in this work is not 

defined explicitly. 

The Perception-Decision-Action model (AGARD, 1989) (see Figure 1) is useful for 

analyzing complex tasks. In this model, the human gets input from the environment 

through perception of events, makes a decision on how to respond to the environment, 

and proceeds to take some action. This model will be referred to hereafter as the Event- 

Decision-Action model, because our focus is on observable events rather than 

perception of those events. 

     
  Decision     

Figure 1. Perception-decision-action model. 

In summary, task analysis techniques are descriptive and not designed for 

implementation in an objective way in simulation models that can describe, predict, and 

assess performance. A new methcd has been developed to guide practitioners in the 

creation of task networks that are the basis of the simulation model. 

Guidelines. To objectify the technique of task analysis, the method of guidelines for task 

description holds promise for modeling work. Guidelines can be developed for 

specifying the appropriate level for simulation models, based on the Event-Decision- 

Action model: 

e Subtasks must begin with measurable events and end with measurable actions, 

¢ The number of decision options may be large, but must be finite, 

¢ The number of subtasks to be modeled for a particular task must be practical in 

scope,



¢ The level of detail should be one more than what events and actions are 

measurable; that is, for each measurable event, action, or decision a set of 

sub-events, actions or decision parameters should be included in the analysis. 

This set of guidelines provides for an objectively verifiable model. The subtasks can be 

measured from defined beginning and end points. A finite number of decision options 

allows for finite probabilities for choosing among options. A level of detail one deeper 

than that which is measurable allows for inferences about the cognitive processes 

leading to the actions that are measured.



PRELIMINARY ANALYSIS OF THE TASK OF INTEREST 

This section reviews task analysis work done on the functional recognition task of the 

AN/SLQ-32(V) operator. This analysis was conducted utilizing the guidelines developed 

and delineated at the close of the previous section. 

The most important part of the recognition process in AN/SLQ-32(V) operation is that of 

functional recognition, where the operator determines the purpose of the emitting radar. 

This task of functional recognition of emitting radars is that which was analyzed with the 

new methodology. This task was chosen because it is complex, in that it has many 

possible strategies for completion, and that it has many task elements that can be 

objectively measured through data collection from the console's user interface computer 

subsystem. 

The duties of an AN/SLQ-32(V) operator encompass many activities, such as operating 

the display console, performing system maintenance, and conducting non-EW shipboard 

assignments. The functional recognition task under investigation in this work is one 

aspect of the operation of the AN/SLQ-32(V) display console. This task is an essential 

element of the operator's primary objective to maintain a high level of situational 

awareness about the emitter environment surrounding the vessel. 

The functional recognition task begins when the AN/SLQ-32(V) signals a new or 

updated emitter event. The onset of an event signal is associated with an auditory alert, 

which may occur while the operator is idle or taking console actions with other emitters. 

For the purposes of this work, the functional recognition task does not include the events 

involved in attending to other emitters. Rather, the beginning of the task is defined as 

the onset of an emitter event, which may involve a new emitter detected by the AN/SLQ- 

32(V) system or a change of parameters (i.e., scan type) for a previously detected 

emitter. . 

EW operators place an emitter into close control following an emitter event (i.e., 

detection of a new emitter or a parameter change for an existing emitter). With the 

emitter in close control, the AN/SLQ-32(V) provides a tabular listing of the emitter's 

parameters on the display screen, as well as a graphical icon of the emitter based on the



system's interpretation of the emitter threat level and bearing position. Operators use 

several alternate manual actions (or so-called task action sequences) to place emitters 

into close control: enter the emitter track or EFX number, HOOK the emitter with a stiff- 

stick input device, press the SEQUENCE Fast Action Button (FAB) multiple times to 

sequence to the emitter, or press the SEQUENCE FAB once if the emitter event is the 

highest priority alert. Additionally, if the emitter parameters change while it is in close 

control, the operator must press the SEQUENCE FAB to update the close control 

parameter listing. 

To functionally recognize an emitter, operators may choose to view the close control 

parameters, to listen to the signal on the AN/SLQ-32(V) speaker by depressing the 

SIGNAL SELECT FAB, to view an ULQ-16 spectrum analyzer to examine the emitter 

signal properties closely, or use some combination of these information sources. The 

operator also relies on intelligence information, his own experience, and verbal 

information from the EW supervisor to anticipate the potential emitters in the ship's 

environment. Regardless of the task sequence taken, the functional recognition 

decision process can be monitored through the observable actions made by the 

operator. 

Operators initiate a verbal report of the emitter following its functional recognition, 

especially if the emitter threatens the ship or battle group. Although the EW community 

does not rely on a standard verbal report format for most emitter types (except for a 

hostile missile), it is possible to define several essential elements of information that 

need to be announced in the EW report. As listed in Table 1, the essential components 

of the verbal report are radar function (i.e., guidance, search, homing), platform (i.e., air, 

surface), and owner (i.e., friendly, neutral, hostile). The EW operator's verbal reports 

can include some or all of the essential elements of information and they may use 

various synonyms (and ship-specific language) to reference emitter characteristics, 

either explicitly or implicitly. For example, a report with the statement “missile” is 

understood to reference the Hostile and Air specifiers; a report of “Comair” is understood 

to reference the Neutral, Air, and Search specifiers. 
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TABLE 1 

Essential Elements of Information for Functional Recognition Reports 

  

Essential Element of Generic 

  

  

Information Specifies Example uses and description 

Function Guidance fire control, weapon control, acquisition, 

illumination, tracking 

Search navigation, surveillance, early warning, 

reconnaissance 

Homing missile 

Platform Air Commercial Air 

Surface SPG-62, Surface Guidance 

Subsurface —_ Hostile Sub 

    Owner Friendly Friendly Air Search 

Neutral Commercial Air 

Hostile Hostile Surface Search 
  

Three main emitters of interest to the AN/SLQ-32(V) operator are the FSG, NAS, and 

HAH emitters. The NAS emitter is usually associated with commercial air traffic. The 

FSG is typically associated with friendly targeting radars for weapons systems, such as 

the PHALANX. The HAH refers to an anti-ship missile. EW operators are highly 

sensitive to the HAH emitter, and are trained to report them quickly. EW operators have 

a much decreased sense of urgency about the NAS and FSG emitters, and are trained 

to only report these emitters in the context of providing requested environmental 

information. 

EW operators rely on different information sources to determine the essential elements 

of information for a functional recognition decision. Moreover, they often ascertain the 

individual elements of information in a sequential manner (see Figure 2). For example, 

EW operators may infer the Function component of a recognition decision from the 

emitter parameters displayed on the AN/SLQ-32(V) screen or auditory speaker. This 

information, in turn, may be used to define the Platform component or, perhaps, a 
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specific signal identification (emitter identification is considered a more detailed decision 

than functional recognition). From the Function and Platform components (or the 

specific emitter identification), the EW operators may infer the Owner component of the 

decision since certain radars are used by specific countries. Operators may also view 

an emitters bearing drift on the polar display (e.g., missiles drift faster than surface 

ships), rely on their knowledge of the emitter environment, or call upon the EW 

supervisor to provide supporting information to ascertain parts of the functional decision. 

  

[_ —— EW Supervisor 

' Time ———',; |» 
No Knowledge New Emitter Function Recognition Platform Owner Recognition Complete 

of emitter Event (search, homing, Recognition _ (friendly, hostile, Functional 
guidance) (air, surface) neutral) Recognition 

Figure 2. Sequential steps in functional recognition decisions. 

Task Network 

The EW task of functional recognition of emitters follows a prescribed set of events, 

decisions, and actions; albeit, the task sequences are complex and executed rapidly 

among other actions supporting the AN/SLQ-32(V) operator's main objective of 

maintaining situational awareness. Therefore, a task network model was developed to 

describe and evaluate the operator's performance in the functional recognition task. A 

task network model is an extensible tool of human factors engineering, used to organize 

the task activities in complex operator-machine systems. The task network model was 

used as the framework for the simulation model that was developed. This task network 

model was developed based on the task analysis guidelines proposed at the close of the 

previous chapter. 

Task network models codify a task into sequences of observable elements (i.e., events, 

decisions, actions). The task elements are represented as nodes, while the temporal 

sequences used to perform the elements are represented as links. For example, the 
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task element of repeatedly pressing a FAB is represented graphically as a node (i.e., 

labeled Press SEQ FAB) and a loopback link (i.e., repeat node X times). 

Although operator decisions are not observable directly, these intrinsic task elements 

can be represented in the network model. For example, consider the non-observable 

task element of analyzing the auditory signal produced by an emitter. To execute this 

intrinsic task element, the operator must bring an emitter into close control using either 

the SEQUENCE FAB or by entering an EFX number and then must depress the 

SIGNAL SELECT FAB. Thus, at least one observable event precedes the operator's 

intrinsic efforts to evaluate the auditory signal and, therefore, the observable event can 

be used to mark the beginning of the non-observable task element. Likewise, the 

operator must press the SEQUENCE FAB or HOOK FAB or make a verbal report once 

the auditory analysis has been completed. Once again, another observable event can 

be used to mark the end of the non-observable event. The grouping of non-observable 

events between directly measurable ones affords an approach to represent and monitor 

intrinsic task steps. 

The task network model for functional recognition decisions consists of many uses of 

three sub-network models (Figures 3, 4, and 5). These sub-network models were 

developed to attempt to describe the sub-tasks involved in the functional recognition 

task, and are based on information from SMEs and observations of console operators, 

as well as previous work done with the AN/SLQ-32(V) (Moscovic, 1992). The temporal 

sequence of events in the sub-network models is indicated by arrows. The task sub- 

network models include nodes thought to be required for the depiction of work flow. 

These nodes represent model-related decisions made by the EW operator, such as 

“Listen to signal” (Figure 5). These models were developed to show one more level of 

detail than can be objectively measured, fulfilling a guideline for level of detail stated at 

the end of Chapter 1. 

The sub-network in Figure 3 shows the inferred cognitive steps and the physical step 

necessary to use the SEQUENCE (SEQ) FAB to bring an emitter into close control. The 

operator inspects the display to find the new emitter, visually selects it, decides to use 

the SEQ FAB, and then presses the FAB. 
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P Use [Press 
rocess Inspect Polar Select New SEQ FAB SEQ 

New Emitter Display Emitter FAB 

Place Unknown Emitter in Close Control with SEQ FAB 

Figure 3. SEQ FAB sub-network model. 

The sub-network in Figure 4 shows the inferred cognitive steps and the physical steps 

necessary to use the HOOK FAB to bring an emitter into close control. The operator 

inspects the display to find the new emitter, visually selects it, decides to use the stiff 

stick, the hand is moved to the stick, the stick is used to position the cursor on the 

correct bearing line for the emitter, and the HOOK FAB is pressed. Note that the use of 

the Stiff Stick is shown as an un-measured event; this was because that motion was not 

output from the system, not because that was a cognitive event. The use of the Stiff 

Stick was inferred because data on it could not be collected with the used data collection 

techniques. 

ress 
Process Inspect Polar Select New Move \ shook Le 

New Emitter Display Emitter Cursor | FAB 

Place Unknown Emitter in Close Control with Hook FAB . 

  

      

Figure 4. HOOK FAB sub-network model. 

The sub-network in Figure 5 illustrates the task elements of using the SIGNAL SELECT 

(SIG SEL) FAB to aid in the process of functionally recognizing an emitter in close 

control. This task segment begins when the operator decides to listen to the signal. The 

operator then presses the SIG SEL FAB, and begins the functional recognition decision 

process by listening to the emitter signal. He may simultaneously inspect an 

oscilloscope or frequency analyzer (ULQ-16) and view the emitter parameters to aid in 

the decision process. Note that it is not necessary, just typical (and recommended by 

SMEs), to listen to the signal to functionally recognize the emitter. 
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Inspect O-Scope 
or ULQ-16 

    

  

  

       
> 

Press nspec 

Enter punk ° SIG SEL Parameters and Le 

ane on FAB Symbolo      

    Listen to 
Signal 

Figure 5. S/G SEL sub-network model. — 

Listen to Emitter Audio 

The full task of functional recognition requires some of these subtasks for completion, 

depending on the particular emitter of interest, the environment, and possibly other 

factors such as operator preference. Because the subtasks change the state of the 

console, the state of the system must be part of the task network model (this is a 

similarity between the task network model and another task analysis tool, the 

Operational Sequence Diagram). The full task network model shows different system 

states in each node, and completion of the task proceeds from each node to one of 

several other nodes by the use of the actions described in the sub-network models. The 

full task network model is shown in Figure 6. Table 2 shows an analysis of which 

actions connect which nodes in the network model. 
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Figure 6. Task network model of the functional recognition task. 
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TABLE 2 

Connections through the Task Network Model 

Goes to 

pdate Alert 

Report 

SIG SEL 

Update Alert 

SIG SEL 

pdate Alert 

Report 

SEQ 

Hook 

S 

Hook 

SIG SEL   
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Only one action sub-network can be used at a time to proceed to another node in the 

network model. For example, from the "In_CC No_Audio No_Alert" node, the operator 

could use the HOOK FAB sub-network, or use the SEQ FAB sub-network; however, the 

operator could not enter two or more sub-networks simultaneously. 

Certain nodes in the full task network model are particular to the flow of the functional 

recognition task. The “Update Alert” action is one taken by the system, not the operator; 

it occurs if the parameters of the emitter of interest change while the emitter is under 

scrutiny. The “Report” action is the giving of the verbal report by the operator. 

The task network model of the full functional recognition task begins with the onset of a 

new emitter alert (node 100). The following nodes are identified by the state of the 

system: In_CC and Out_CC mean that the emitter of interest is in close control or out of 

close control, respectively. Note that the sub-networks of either using the SEQ FAB or 

HOOK FAB (Figures 3 and 4) are required to bring an emitter into close control, but they 

differ in that the auditory alert signaling the onset of a new emitter is not canceled by use 

of the HOOK FAB. Thus, another identifier of the system state is Alert or No_Alert. 

When the emitter alert occurs, the operator can perform other tasks or may attend 

immediately to the emitter event. If the operator chooses to attend to the emitter alert, 

he can bring the emitter into close control using one of two main strategies 

(corresponding to the sub-networks in Figures 3 and 4). The operator can press the 

SEQ FAB or use the stiff-stick and press the HOOK FAB. According to system 

documentation, the operator could also manually enter the emitters EFX number or 

Track number, but SMEs report that these actions are very rare, and these actions were 

not observed during data collection conducted for model verification. A different kind of 

alert is generated if the emitter changes parameters after initially appearing; this is the 

Update Alert (Updt_Alert). It is interesting that, according to the system documentation, 

a SEQ FAB usage will clear the alert of the emitter sequenced to, but a HOOK FAB 

usage to bring that same emitter into close control will not clear that alert. In the task 

network model, nodes were added to reflect the system state where the emitter could be 

in close control but still have an alert pending. 

Not all emitters undergo parameter changes. A scan or parameter change occurs for 

example when a radar implements a different scan or power pattern (paradigm). Scan 
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paradigms are employed for different purposes, such as a circular pattern for search or 

navigation and a steady pattern for targeting. Missile and fire control radars can appear 

initially to the AN/SLQ-32(V) system with a sectional or circular scan and then change to 

a steady scan after acquiring a target. If a parameter change does occur, this is 

reflected in the system state as described previously concerning Update Emitter. 

If the operator decides to listen to an emitter, he can use the SIG SEL FAB on an emitter 

that is in close control. The first usage of the FAB will bring the emitter into “Free Run” 

mode, where all signals on that bearing are sent to the headset, and the operator must 

distinguish the signal of interest. A second press of the FAB activates system 

electronics that attempt to isolate the signal of interest and present only that to the 

operator. The task network model has separate nodes for both these types of system 

State. 

Task Completion Strategies (Pathways). EW operators can use different task 

completion strategies to functionally recognize an emitter. All of these strategies require 

the operator to place the emitter into close control, albeit through different task 

sequences. Four primary task sequences (strategies) have been identified and they are 

designated as: SEQ, HOOK, SEQ-SIG, and HOOK-SIG. These strategies are 

illustrated in Figures 7a-d. The four strategies can be used by EW operators for 

functionally recognizing an emitter that has just appeared in the AN/SLQ-32(V) or for an 

emitter that has recently changed its parameters or scan. Thus, eight different strategy 

pathways through the task network model can be defined. 

The SEQ strategy path is the most common strategy for functionally recognizing 

emitters. Upon system receipt of an emitter signal, the operator visually identifies the 

new emitter on the polar display and brings it into close control by pressing the 

SEQUENCE FAB. The operator then functionally recognizes the emitter by comparing 

its displayed close control parameters to his/her knowledge of common radars. The 

operator then verbally reports the emitter. Variations on this strategy include pressing 

the SEQUENCE FAB multiple times to bring an emitter that was not the most recently 

received one into close control and pressing the SEQUENCE FAB in a latter portion of 

the task to update the parameters after a scan change. 
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The HOOK strategy path is often used when many new emitters appear simultaneously. 

The operator visually inspects the polar display and moves the cursor with the stiff-stick 

to the most salient emitter. The operator presses the HOOK FAB to bring the emitter 

into close control and inspects the emitters parameters. The operator then functionally 

recognizes the emitter and makes a verbal report similar to the strategy in the SEQ path. 

Variations on this task include pressing the HOOK FAB multiple times to bring into close 

control one of many emitters on a bearing line and, using the SEQUENCE FAB ina 

latter portion of the task, to update the emitters parameters after a scan change. 

The SEQSIG strategy path is similar to the SEQ strategy, except that the SIGNAL 

SELECT FAB is pressed once after the emitter is in close control. The operator then 

listens to the signal while making the functional recognition decision. The HOOKSIG 

strategy path is similar to the HOOK strategy, with additional use of the SIGNAL 

SELECT FAB as described the SEQSIG strategy. Variations in these two strategies 

involve the additional uses of the HOOK, SEQUENCE, and SIGNAL SELECT FABs. 
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Figure 7a. SEQ pathway for completion of functional recognition decisions. 
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Figure 7b. SEQ-S/IG pathway for completion of functional recognition decisions. 
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Figure 7d. HOOK-S/G pathway for completion of functional recognition decisions. 
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A descriptive analysis of pathways used by the EW operators was performed on the 

data collected during the validation study. The pathway descriptions used in the 

analysis are listed in Table 3. 

TABLE 3 

Description of Paths 

  

Path # Description 

Sequence to Emitter 

Hook Emitter 

Sequence and Signal Select Emitter 

Hook and Signal Select Emitter 

Sequence to Emitter after a parameter change 

Hook Emitter after a parameter change 

Sequence and Signal Select Emitter after a parameter change 

Hook and Signal Select Emitter after a parameter change o
n
 
D
n
t
 

WD 
ND 

      
MicroSAINT Model 

MicroSAINT is a computer programming environment used to construct network 

simulations (Micro Analysis and Design, 1990). MicroSAINT models consist of network 

nodes and links that can be described with transition probabilities (i.e., statistical 

averages, Standard deviations, and distributional properties) and flow control information 

particular to given conditions (i.e. parameters or factors). Because MicroSAINT models 

can be executed on a computer to simulate the flow of network events, they allow 

examination and prediction of network performance under various circumstances. 

MicroSAINT was chosen as a development environment for the model of the functional 

recognition task because of its flexibility, as well as Virginia Tech’s experience with it. 

MicroSAINT allows specification of decision probabilities between nodes, as well as time 

distributions. Further, in anticipation of future work, MicroSAINT has the capability of 

using equations to specify any of these items, rather than fixed values. Lastly, the 

program offers several distributional choices. 
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Based on the task network model shown in Figure 6 and the sub-networks in Figures 3, 

4, and 5 above, a MicroSAINT model for the EW operator task of functionally 

recognizing emitters was constructed. The MicroSAINT program can implement all 

aspects of the task network models described earlier, including various strategies to 

place emitters into close control. 

The task model was developed by identifying the task events that can be monitored 

objectively through Data Extraction (DX) capabilities of the AN/SLQ-32(V) system or 

external devices (e.g., microphones, video cameras). The major events include system 

detection of a new emitter; system detection of a scan or parameter change; 

SEQUENCE, HOOK, and SIGNAL SELECT FAB presses by the operator; and issuing a 

verbal report. The detection of a new emitter or an emitter parameter change serve as 

measurable reference points for the beginning of the task model. 

Gamma distributions were used in each measurable operator action node in the model, 

because they are best suited for task element movement times on the AN/SLQ-32(V) 

(MicroSAINT, 1990; Moscovic, 1991). Gamma distributions describe random variables 

that have a relatively fixed variability below the mean, but have larger variability above 

the mean. The distribution is skewed such that the positive tail is extended much farther 

than the negative tail. For our task elements, this distribution reflects true time variation: 

operators have a limited capability to perform better than the mean because physical 

actions take a finite, positive amount of time; however, an operator can always perform 

worse than the mean. For example, if the mean time to press a key on a typewriter is 3 

seconds, it may be impossible to press that key faster than 1 second. It is certainly 

possible that it could take 20 seconds to press the same key because of distractions or 

other factors. For the SLQ-32 operator, distractions were often seen to cause this type 

of delay during experimental data collection. 

Data. Time data collected from DX and video analysis of experimental data were sorted 

by condition (emitter Type, Density of the operational environment) and by task element. 

Each task element corresponded to a measurable operator action node in the 

MicroSAINT model that was constructed. Not all nodes in the model were represented; 

a time value for a particular node indicated the time from the last observable action node 
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along a flow path to that node. Note that task element data were averaged over (and 

standard deviation calculated for) only those cases where the element could be 

measured; for example, if the operator did not use the signal select FAB during 

processing of an emitter, that task element time for a Signal Select node was not 

included in the calculations. 

Population. Data were collected for the various nodes in the model from a laboratory 

study with OTEs (actual fleet versions of the console, with the exception of external 

antennae). The two main sources for data were the videotapes of each session with the 

OTEs and the data extraction file associated with each session of the OTEs. The data 

extraction (DX) files provided the information for populating all nodes in the MicroSAINT 

model except that of verbal report; this node was populated with information from video 

tape analysis. 

DX data was collected through use of a PC-compatible computer connected to the 

AN/SLQ-32(V). This data collection method enabled embedded monitoring of operator 

performance. All relevant keystrokes made by the operator during a session were 

recorded into the DX file, along with the time of their occurrence and the state of the 

system. 

Means and standard deviations were calculated for all task element times during 

successful functional recognitions of emitters. Probabilities for choosing particular paths 

from a specific decision node (including misses) were determined from proportions of 

task elements performed along that particular path as opposed to other paths stemming 

from that decision node. Probabilities were calculated for “missed” emitters by 

determination of each possible miss path and proportion of misses observed in 

experimental data collection that followed each path. These probabilities for particular 

paths through the model were not associated with distributions; MicroSAINT does not 

possess that capability. 

Means and standard deviations for task element times and decision point probabilities 

also were calculated and tabulated for particular conditions (Density, emitter Type). For 

low-probability task elements (e.g., Enter EFX) and flow paths, too few data points 

caused the resulting analysis to report zero standard deviations and zero probabilities 
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for certain task element times and flow paths. The task network model does not contain 

some of these paths (such as Enter EFX, as described previously), nor does the 

MicroSAINT model. 

Simulation. After appropriate probabilities for decision points, and mean times and 

standard deviations for task element times, were determined and placed in the model, 

the model was run for sufficient emitters for each condition combination to match the 

amount of data collected in the validation study. The specific numbers on this analysis 

are presented in the RESULTS section of this document. 
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VALIDATION STUDY 

The PAM required several steps for validation. A general validation was conducted with 

the intent to show overall correlation between summary results of the model and 

aggregate results of the functional recognition task. A more detailed validation was 

conducted by comparing results of the model for specific strategies (pathways through 

the model) operators took to aggregate values for the strategies observed in the 

laboratory. Lastly, the model was refined to show the variance of predicted results and 

to show how the methodology was used to develop information not normally available 

through task analysis. The laboratory data were used to categorize the performance of 

operators into Proficiency Level categories and then results of the model within 

categories were compared to observed data from operators in the laboratory according 

to those categories. The model was accepted because the criterion for the PAM of 75% 

of variance in the observed data predicted by the simulation was met, as shown through 

correlation between predicted data and laboratory data. Specific numbers for these 

analyses are presented in the RESULTS section of this document. 

This section of the work describes the laboratory validation study undertaken to validate 

the PAM. In this study, U.S. Navy personnel experienced in the operation of the 

AN/SLQ-32(V) participated in data collection sessions lasting two weeks. During the 

sessions, sailors operated two AN/SLQ-32(V) OTEs and their functional recognition 

performance was monitored and recorded using computer DX techniques. The data 

were evaluated statistically using Virginia Tech’s Proficiency Assessment Device 

(SHARP PAD) software, which was developed to aid in determining overall performance 

trends and to refine the simulation model for EW operators performing the functional 

recognition task. 

Procedure 
‘ 

The validation study was conducted in Virginia Tech’s Electronic Warfare Area Test 

Center (EWATC) over a period of two weeks. One week of data collection prior to 

collection for use in the proposed methodology was used as a pilot study to allow final 
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modifications to the test equipment, procedures, and the task network model. The 

actual data collection took place during two weeks following this pilot week. 

Eight individuals participated in the study during each of the three weeks (24 total 

participants), although data were only collected on the participants from the second and 

third weeks. These individuals were U.S. Navy sailors who were stationed on active 

duty billets in the Atlantic and Pacific Fleets. All participants were qualified AN/SLQ- 

32(V) operators; however, their AN/SLQ-32(V) operational experience ranged from a 

few months to several years. All participants were selected for this study by senior EW 

personnel assisting the project. 

The EW operators of the system were of varying experience levels. Some operators 

were within a year of graduating from apprenticeship school. Other operators had 

served in the Persian Gulf conflict. No operators were chiefs, but some were 1st class 

enlisted personnel. No operators had not attained 3rd class rating. 

The EW operators were highly stimulated for the shore-based testing. Visiting a 

university campus provided a level of excitement not found in peacetime steaming 

aboard ship or at a naval base. Their motivation levels were more varied, and depended 

on their desire to add to the performance data store, their sense of duty, their age, and 

other factors. 

During each week of testing, eight sailors were grouped into four two-person teams 

consisting of an EW operator and a supervisor. Each team received nine emitter 

scenarios, lasting four hours each (36 total hours per team). The emitter scenarios were 

presented in separate test sessions throughout the week. Table 4 shows the weekly 

test schedule used for the EW teams. 
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TABLE 4 

Weekly Schedule of Test Sessions for Four Teams 

  

  

  

Day 

Time Monday Tuesday Wednesday Thursday __Friday __| 

0600-1000 Team 1 Team 1 Team 1 Team 1 Team 1 

Team 2 Team 2 Team 2 Team 2 Team 2 

1015-1415 Team3 Team 3 Team 3 Team 3 Team 3 

Team 4 Team 4 Team 4 Team 4 Team 4 

1430-1830 Team 1 Team 1 Team 1 Team 1 

Team 2 Team 2 Team 2 Team 2 

1845-2245 Team3 Team 3 Team 3 Team 3 

Team 4 Team 4 Team 4 Team 4 
  

  
At the beginning of each week, the EW teams received an intelligence briefing about all 

scenarios to be completed. Electronic Order of Battle (EOB), Watch Tum-Over, and 

Signal Intercept Log documents were provided to the EW teams prior to each test. The 

EW teams were allowed to ask questions to clarify the test procedures and scenario 

details prior to initiating their work. AN/SLQ-32A(V) on-line libraries were not provided 

for the scenarios although the EW teams were allowed to construct on-line libraries 

during the test sessions (only a few on-line libraries were actually constructed by any 

EW teams during the testing; they did not feel it was useful in the testing time allotted). 

During the test session, tactical queries from a Tactical Action Officer (TAO) were 

simulated by Virginia Tech staff through the use of scripted dialogues written by EW 

SMEs. The so-called "tipper’ scripts were rehearsed by Virginia Tech staff prior to the 

study to establish a high level of realism. 

EWATC Facility 

Virginia Tech's EWATC facility is a secure area housing two self-contained and isolated 

work areas. Each work area contains an AN/SLQ-32(V) OTE, interfaced to an EW On 

Board Trainer (EWOBT) and an IBM/PC-type desktop computer. The EWOBT executes 
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emitter scenarios to stimulate the AN/SLQ-32(V) OTE, while the IBM/PC desktop 

computer controls the PC/DX hardware and software. Additionally, the EWATC work 

areas contain a world chart and dual clocks for Greenwich Mean Time (GMT) and local 

time calculations. The relevant environmental controls in the EWATC are presented 

below. 

Noise. The ambient noise in the EWATC stems primarily from the test equipment (e.g., 

AN/SLQ-32A(V) OTE, EWOBT, various desktop computer systems used for data 

collection). The audible sound levels from this equipment were maintained in the range 

of 68-78 dBA. 

Illumination. The ambient illumination in the EWATC is provided by overhead 

fluorescent lights. The light fixtures consist of blue-colored filters to simulate shipboard 

EW module settings. The ambient illumination level was maintained in the range of 200- 

500 lux. 

Shock and Vibration. The EWATC is a stand-alone structure placed on concrete 

flooring. There was no noticeable vibration to the EWATC flooring from the test 

equipment or the surrounding environment during the study. 

Air Temperature and Humidity. The EWATC facility has two air conditioner units, one 

located in each test room. Room temperature was maintained in the range of 70-80 

degrees F during the study. 

Ventilation. The EWATC air conditioner units provided adequate ventilation during the 

test sessions. 

Toxic or Hazardous Substances. The participants were not be exposed to any toxic or 

hazardous substances during the test. 
‘ 
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Design 

The validation study was designed to provide time and accuracy data on the EW 

operator's functional recognition decisions under operationally relevant conditions. The 

conditions were defined by combinations of three variables: emitter density, emitter type, 

and time-on-watch, as shown in Figure 8. Each EW team received a total of nine unique 

conditions (3 emitter density levels X 3 emitter types), one condition per emitter 

scenario. The time-on-watch variable was assessed during data analysis, as explained 

later in this document. 

  

  

    

  

      
  

      

          

    

Emitter 

Type 

HAH 

FSG 4 Time-On-Watch 

| 3 (1 Hr Blocks) 

NAS 2             
Low Med High 

Emitter Density 

Figure 8. Experiment design matrix for the validation study. 

Emitter density levels were defined by a panel of EW SMEs from LANTFLT and 

PACFLT to replicate actual levels found during afloat operations. Emitter density was a 

within-subjects variable with three levels: low, medium, and high (see Table 5). The 

density levels were defined by two parameters: total number of emitters detected by the 

AN/SLQ-32A(V) and the pacing of emitter events (i.e., a new emitter or emitter 

parameter change alert). 
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TABLE 5 

Emitter Density Levels Used in Validation Study 

  

    

Density Numberof Emitters Pace Number of emitters of 

interest per hour 

Low 1-25 1-4 perfour minutes 3 

Medium 26-50 1-4 pertwo minutes 6 

High 51-75 1-4 per minute 9 
  

Emitter type was a within-subjects variable with three levels: Hostile-Air-Homing (HAH), 

Friendly-Surface-Guidance (FSG), and Neutral-Air-Search (NAS). HAH emitters 

represented high threat emitters, such as missiles; FSG emitters represented non- 

hostile shipboard weapon systems; and NAS emitters represented non-combatant 

airborne emitters, such as navigational systems. 

Time-on-watch was a within-subjects variable with four levels. Specifically, the length of 

each emitter scenario (i.e., one scenario for each combination of emitter density and 

emitter type) was four hours, and the functional recognition data were analyzed across 

the four hour-long blocks.



RESULTS 

Data Analysis 

The validation approach for the PAM began with general study and proceeded to 

detailed analyses. General analyses began with ANOVAs to describe the laboratory 

data. Next, additional variables were derived from the laboratory data for use in later 

detailed analyses. A general correlation was made between the summary results of the 

model and aggregate results of the functional recognition task in the laboratory. 

Detailed analyses followed, including correlations between predicted and observed 

functional recognition times based on first, original variables from the validation study 

design, and second, based on re-castings of the model and re-apportioning of the 

laboratory data from the derived variables just mentioned. 

The data analyses consisted of three steps: 

(1) The effects of the model parameter variables (Emitter Type and Emitter 

Density) on performance were analyzed. The complete functional recognition 

performance for each type of emitter of interest in each density condition and in 

each hour time block was analyzed inferentially with ANOVAs on each 

dependent measure (including the Greenhouse-Geisser correction to deal with 

heterogeneity of covariance). Graphs with error bars showing standard error of 

the mean and Newman-Keuls tests were performed on the significant effects. 

(2) Two new variables, EW team “Proficiency Level” and task strategy (“Path”) 

were derived from the laboratory data to enable comparisons with similar 

derivations from the simulation model. 

The laboratory performance data were used to descriptively compare EW team 

performance. Accuracy and number of reports made by operators were 

compared. A histogram of the overall functional recognition time data was used 

to develop ranges of Proficiency Levels for the EW teams. The EW teams were 

categorized into these ranges, and descriptive statistics were calculated. 
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The data on each step of the functional recognition process measured with the 

SHARP PAD DX software were manipulated as described in the latter part of the 

section of this document concerning model population, and was used to develop 

the variable “Path” for each emitter of interest; descriptive statistics on 

percentages for each condition of paths/strategies used were calculated. 

(3) The DX data were used to fill out the framework of the simulation model (to 

“populate” the model). The simulation model was run and its results for complete 

functional recognition times were paired with the actual observed values during 

the validation study to determine the predictiveness of the model. The results of 

the model as run with parameters of Emitter Type and Emitter Density were 

compared with the results from the laboratory data for those conditions. Lastly, 

results from variations on the model created using the new variables of EW team 

Proficiency Level and Path were compared to the performance results on these 

variables from the laboratory data to test the extensibility of the model. 

ANOVAs for Functional Recognition Time and Accuracy 

Table 6 shows the ANOVA summary table for functional recognition time. The main 

effect of Emitter Type was significant (a =0.10). The interaction of Emitter Type and 

Hour on Watch also was significant (a = 0.10). No other ANOVA effects were 

Statistically significant. 
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TABLE 6 

ANOVA Summary Table for Functional Recognition Time 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Source df MS E G-G* G-G" corrected 
epsilon p-values 

Subjects 7 

Emitter Type 2 53729.34 7.82 0.5699 0.0212 

Emitter Type * Subject 14 6872.30 

Emitter Density 2 8599.87 0.90 0.6185 0.3931 

Emitter Density * Subject 14 9602.59 

Time Block 3 7560.74 2.08 0.6619 0.1624 

Time Block * Subject 21 3636.51 

Type * Density 4 5212.66 1.11 0.4465 0.3520 

Type * Density * Subject 28 4680.27 

Type * Time Block 6 7130.17 | 3.27 0.3569 | 0.0638 

Type * Time Block * Subject 42 2183.76 

Density * Time Block 6 3682.03 1.20 0.4393 0.3331 

Density * Time Block * Subject 42 3064.64 

Type * Density * Time Block 12 6585.95 2.25 0.2717 0.1061 

Type * Density * Time Block * Subject 84 2932.26 

Total 287                 
*G-G: Greenhouse-Geiser 

Figure 9 shows the main effect of Emitter Type on functional recognition time. A post 

hoc Newman-Keuls test indicates that functional recognition times are longer for the 

FSG and NAS emitters as compared with HAH emitters (p< 0.10). On average, the 

HAH emitters were functionally recognized about 2.82 times faster than FSG and NAS 

emitters (i.e., 22 versus 61 seconds). 
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Figure 9. Main effect of emitter type on functional recognition time. 
(Error bars indicate +/- 1 standard error of the mean units) 

Figure 10 shows the two-factor interaction effect of Emitter Type and Time-on-Watch on 

functional recognition time. A post hoc simple effects test, followed by Newman-Keuls 

(N-K) tests, indicate that functional recognition times are longer for NAS emitters than 

HAH emitters in the fourth hour, FSG emitters than NAS emitters in the second hour, 

FSG emitters in the second hour than FSG emitters in other hours, and NAS emitters 

than HAH emitters in the first hour (p < 0.10). The simple effects test is shown in Table 

7 and the subsequent N-K tests are shown in Table 8. 

38



he 

Nh
 Oo 

  

  100 

©
 

oS
 

  

P
o
h
 

  

aN
 Oo 

  

Nh oO
 

  

Oo 

  Fu
nc
ti
on
al
 
R
e
c
o
g
n
i
t
i
o
n
 
Ti
me
 
(s

ec
on

ds
) 

oO
 

oO
 

      
Hour 

  

  

  

  

  

-™— Mean FSG 

—@— Mean HAH 

—i-— Mean NAS 
  

Figure 10. /nteraction of Emitter Type and Hour on Watch on functional recognition 
time. (Error bars indicate +/- 1 standard error of the mean) 

TABLE 7 

Simple Effects test on the Interaction of Emitter Type * Hour on Watch on Functional 

Recognition Time. 

  

  

  

  

  

  

  

    

Main Effect |at Level of | MSeffect MSerror E p 

Type 1st Hour 24798 .362 {2183.765 11.356 @.001 

Type 2nd Hour 28792.455 |2183.765 13.185 @.001 

Type 3rd Hour 8394.618 {2183.765 3.844 @.@29 

Type 4th Hour 13134.398 |2183.765 6.015 Q@.0@5 

Hour FSG 14456.@15 |2183.765 6.620 @.001 

Hour NAS 6365.310 {2183.765 2.915 @.045 

Hour HAH 999.743 2183. 765 Q@.458 Q.713               
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TABLE 8 

Newman-Keuls tests on the Interaction of Emitter Type * Hour on Watch on Functional 

Recognition Time. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

        

    

  

  

            

Main Effect ~ Level of |Level of Effect [Means 
Type 1st Hour 57.624 |91.281 

HAH 27.016 [30.608* |64.265* 

FSG 57.624 33.657* 

NAS 91.281 

2nd Hour 55.075 |90.058 

HAH 20.786 |34.289* |69.272* 

NAS 55.075 34.983* 

FSG 90.058 

3rd Hour 38.120 |63.153 

HAH 26.567 [11.553 |36.586* 

FSG 38.120 25.033* 

NAS 63.153 

4th Hour 37.980 159.594 

HAH 13.195 [24.785* |46.399* 

FSG 37.980 21.614 

NAS 59.954 

Hour {FSG 38.120 [57.624 |90.058 

4th Hour 37.980 [0.140 19.644 |52.078* 

3rd Hour 38.120 19.504 j51.938* 

Ist Hour 57.624 32.434* 

2nd Hour 90.058 

NAS 59.954 [63.153 |91.281 

2nd Hour 55.075 4.879 8.078 36. 206* 

4th Hour 59.954 3.199 31.327* 

3rd Hour 63.153 28.128* 

1st Hour 91.281             
* indicates p<0.10 

Functional Recognition Accuracy 

‘ 

The analysis of functional recognition accuracy depends on two factors. First, as 

defined in this work, functional recognition accuracy refers to the correctness of a verbal 

report given by the EW operator. Thus, functional recognition accuracy analysis 

considered only those emitters that the EW operator verbally announced. Second, 
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because the verbal report consisted of three components (i.e., emitter function, platform, 

and owner), the functional recognition accuracy analysis considered the correctness of 

each part of the verbal reports. 

Percent of total reports. Table 9 shows the ANOVA findings for the percent of verbal 

reports given during the validation study. The percent of reports is defined as the total 

number of reports on emitters-of-interest given during a trial (i.e., watch period) divided 

by the total number of emitters-of-interest presented during the trial. For example, under 

a test of HAH emitters in a high density condition, an operator who verbally reported 

one-half of the HAH emitters received a 50 percent score. 

The main effects of Emitter Type and Emitter Density on the percent of verbal reports 

were significant (a = 0.10). No other ANOVA effects were statistically significant. 
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TABLE 9 

ANOVA Summary Table for Percent of Functional Recognition Reports Given 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Source df MS F G-G* G-G* corrected 
epsilon p-values 

Subjects 7 

Emitter Type 2 2.72 13.70 0.9368 0.0007 

Emitter Type * Subject 14 0.20 

Emitter Density 2 0.56 4.94 0.9927 0.0242 

Emitter Density * Subject 14 0.11 

Time Block 3 0.07 1.77 0.7718 0.1989 

Time Block * Subject 21 0.04 

Type * Density 4 0.14 1.50 0.6480 0.2504 

Type * Density * Subject 28 0.09 

Type * Time Block 6 0.12 2.28 0.3639 0.1328 

Type * Time Block * Subject 42 0.05 

Density * Time Block | 6 0.06 1.09 0.5923 0.3799 

Density * Time Block * Subject 42 0.05 

Type * Density * Time Block 12 0.04 1.23 0.3197 0.3200 

Type * Density * Time Block * Subject 84 0.03 

Total 287                 
Figure 11 shows the main effect of Emitter Type on the percent of functional recognition 

reports given by the EW operators. A post hoc Newman-Keuls test indicates the 

percentage of FSG and NAS verbal reports is smaller than that for HAH emitters (p < 

0.10). The percent of emitter reports for HAH emitters was about 1.63 times higher than 

FSG and NAS emitters (i.e., 75 versus 46 percent). 
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Figure 11. Main effect of emitter type on percent of verbal reports made by EW 
operators. (Error bars indicate +/- 1 standard error of the mean units) 

Figure 12 shows the main effect of Emitter Density on the percent of functional 

recognition reports given by the EW operators. A post hoc Newman-Keuls test indicates 

the percent of verbal reports under the High and Medium density conditions is smaller 

than that for Low density condition (p< 0.10). The percent of emitter reports given 

under the Low density condition was about 1.07 times higher than Medium and High 

density conditions (i.e., 61 versus 57 percent). 
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Figure 12. Main effect of emitter density on percent of verbal reports made by EW 
operators. (Error bars indicate +/- 1 standard error of the mean units) 

Accuracy of emitter function reports. Table 10 shows the ANOVA summary table for the 

percent of correct emitter function reports. The main effects of Emitter Type and Time- 

on-Watch were significant (a = 0.10). No other ANOVA effects were statistically 

significant. 
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TABLE 10 

ANOVA Summary Table for Functional Recognition Accuracy of Emitter Function 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

Source of MS EF G-G* G-G* corrected 
epsilon p-values 

Subjects 7 

Emitter Type 2 5.58 18.25 0.9243 0.0002 

Emitter Type * Subject 14 0.31 

Emitter Density 2 0.05 0.65 0.8232 0.5114 

Emitter Density * Subject 14 0.08 

Time Block 3 0.28 3.87 0.5856 0.0539 

Time Block * Subject 21 0.07 

Type * Density 4 0.11 0.72 0.4676 0.4945 

Type * Density * Subject 28 0.15 

Type * Time Block 6 0.22 2.31 0.5083 0.1049 

Type * Time Block * Subject 42 0.09 

Density * Time Block 6 0.02 0.23 0.5964 0.9047 

| Density * Time Block * Subject 42 0.11 

Type * Density * Time Block 12 0.15 1.80 0.3261 0.1596 

Type * Density * Time Block * Subject 84 0.08 

Total 287 
  

Figure 13 shows the main effect of Emitter Type on the percent of correct emitter 

function reports given by the EW operators. A post hoc Newman-Keuls test indicates 

the percent of verbal reports with a correct function component is greater for HAH 

emitters than that for FSG and NAS emitters (p < 0.10). Specifically, the percent of HAH 

emitter reports with correct function components was about 1.92 times higher than that 

for FSG and NAS emitter reports (i.e., 86 versus 44 percent). 
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Figure 13. Main effect of emitter type on percent of correct emitter function reports 
made by EW operators. (Error bars indicate +/- 1 standard error of the mean units) 

Figure 14 shows the main effect of Time-on-Watch on the percent of correct emitter 

function reports given by the EW operators. A post hoc Newman-Keuls test indicates 

the percent of verbal reports with a correct function component was greater in the first 

hour as compared to the third hour (p< 0.10). Specifically, the percent of emitter reports 

with a correct function component was about 1.29 times higher in the first hour than in 

the third hour (i.e., 67 versus 52 percent). 
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Figure 14. Main effect of Hour on Watch on percent of correct emitter function reports 
made by EW operators. (Error bars indicate +/- 1 standard error of the mean units) 

Accuracy of emitter platform reports. Table 11 shows the ANOVA summary table for the 

percent of correct emitter platform reports. The main effect of Emitter Type was 

significant (a = 0.10). The two-factor interaction effect of Emitter Type * Hour on Watch 

also was significant (a = 0.10). 
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TABLE 11 

ANOVA Summary Table for Functional Recognition Accuracy of Emitter Platform 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

            

Source af MS E G-G* G-G* corrected 
epsilon p-values 

Subjects 7 

Emitter Type 2 7.64 21.84 0.7240 0.0004 

Emitter Type * Subject 14 0.35 

Emitter Density 2 0.34 2.55 0.9393 0.1180 

Emitter Density * Subject 14 0.13 

Time Block 3 0.18 1.44 0.6952 0.2683 

Time Block * Subject 21 0.12 

Type * Density 4 0.06 0.53 0.6666 0.6447 

Type * Density * Subject 28 0.11 

Type * Time Block 6 0.47 6.12 0.3947 0.0079 

Type * Time Block * Subject 42 0.08 

Density * Time Block 6 0.14 1.92 0.4825 0.1597 

Density * Time Block * Subject 42 0.07 

Type * Density * Time Block 12 0.12 1.87 0.3815 0.1316 

Type * Density * Time Block * Subject 84 0.06 

Total 287 
  
  
Figure 15 shows the main effect of Emitter Type on the percent of correct emitter 

platform reports given by the EW operators. A post hoc Newman-Keuls test indicates 

the percent of verbal reports with a correct platform component is larger for HAH 

emitters than that for NAS emitters, which in tum is larger than that for FSG emitters (p< 

0.10). Specifically, the percent of HAH emitter reports with a correct platform 

component was about 1.91 times higher than that for NAS emitter reports (i.e., 87 

versus 45 percent), and the percent of NAS emitter reports with a correct platform 

component was about 1.39 times higher than that for FSG emitter reports (i.e. 45 versus 

33 percent). 

48 

 



100% 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

0% 

  

  

    

    

    

    

  

pi
ct

he
 

so
rt
er
 

er
e 

re
e 

t
e
e
 

e
e
 

te
 

% 
Pl

at
fo

rm
 
Co
rr
ec
t 

(o
f 

re
po

rt
s 

ma
de

) 

  

          

  

FSG HAH NAS 

Emitter Type 

Figure 15. Main effect of Emitter Type on percent of correct emitter platform reports 
made by EW operators. (Error bars indicate +/- 1 standard error of the mean units) 

Figure 16 shows the two-way interaction effect of Emitter Type * Hour-on-Watch on the 

percent of correct emitter platform reports given by the EW operators. A post hoc simple 

effects test, in conjunction with several Newman-Keuls tests on significant components 

of the interaction, indicate the percent of verbal reports with a correct platform 

component was greater for FSG emitters on the first hour of the watch, and also in the 

first hour FSG emitters were reported with correct platform components more than NAS 

emitters. The decline in the accuracy of FSG emitter platform reporting in the later hours 

of the watch may be attributed to the lack of criticality of these emitters (they are 

friendlies and not a threat). In the second and fourth hours, NAS emitters’ platforms 

were reported correctly more often than FSG emitters’. NAS emitters’ platforms were 

reported correctly more often in the fourth hour than the third. HAH emitters’ platforms 

were reported correctly more often than NAS or FSG emitters in all four hours, and were 

reported correctly more often in the second hour than the third. All of these effects are 

Statistically significant (p< 0.10), and the post hoc analyses are shown in Tables 12 and 

13. 
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Figure 16. Two-way interaction effect of Emitter Type * Hour on Watch on percent of 
correct emitter platform reports made by EW operators. 

(Error bars indicate +/- 1 standard error of the mean units) 

TABLE 12 

Simple Effects test for interaction of Emitter Type * Hour on Watch on Percent of Correct 

Emitter Platform Reports. 

  

  

  

  

  

  

  

    

Main Effect |at Level of | MSeffect MSerror E 2 

Type 1st Hour 13324 Q.077 17.221 @.001 

Type 2nd Hour 3.449 Q.077 44.962 Q.001 

Type 3rd Hour 1.366 Q.077 17.807 @.001 

Type 4th Hour 22987 Q.077 38.021 @.001 

Hour FSG @.699 Q.077 9.110 @.001 

Hour NAS @.249 Q@.077 3.241 @.031 

Hour HAH Q.167 Q.077 2.181 @.105               
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TABLE 13 

Newman-Keuls tests on the Interaction of Emitter Type * Hour on Percent of Correct 

Emitter Platform Reports. 

Level of Effect |Means           at Level of 

1st Hour 

   Main Effect 
7 

  

    

       
    

  

        
    
   

  

   
    
    
   

     

   

  

392 

. 563 

.856 

NAS 

FSG 

HAH 

    
    
   

FSG 

NAS 

HAH 

. 208 

497 

. 960 

   
   
   

  

      

  

    
     
   

  

3rd Hour      
    

   

  

    
   

  

  

FSG 

NAS 

HAH 

. 341 

351 

799 

4th Hour    
    
     

  

    
    

    

FSG 

NAS 

HAH 

.195 

.976 

892    

   
   
    

  

    
    
    

   
   
    

4th 

2nd 

3rd 

.195 

. 208 

341 

. 963 

    

   
   

      

    
~351 
392 

-497 

576 
   

   
* indicates p<0.10 

Accuracy of emitter owner reports. Table 14 shows the ANOVA summary table for the 

percent of correct emitter owner reports. The main effect of Emitter Type was significant 

(a =0.10). The two-factor interaction of Emitter Type * Hour on Watch was statistically 

significant (a = 0.10). 

51



TABLE 14 

ANOVA Summary Table for Functional Recognition Accuracy of Emitter Owner 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

              

Source df MS EF G-G* G-G" corrected 
epsilon p-values 

Subjects 7 

Emitter Type 2 14.10 49.58 0.9111 0.0001 

Emitter Type * Subject 14 0.28 

Emitter Density 2 0.03 0.27 0.7543 0.7074 

Emitter Density * Subject 14 0.11 

Time Block 3 0.05 0.76 0.6751 0.4853 

Time Block * Subject 21 0.07 

Type * Density 4 0.08 1.10 0.7327 0.3721 

Type * Density * Subject 28 0.07 

Type * Time Block 6 0.23 3.80 0.4844 0.0269 

Type * Time Block * Subject 42 0.06 

Density * Time Block 6 0.09 1.82 0.4124 0.1875 

Density * Time Block * Subject 42 0.05 

Type * Density * Time Block 12 0.06 1.07 0.3305 0.3894 

Type * Density * Time Block * Subject 84 0.05 

Total 287 
  

Figure 17 shows the main effect of Emitter Type on the percent of correct emitter owner 

reports given by the EW operators. A post hoc Newman-Keuls test indicates the percent 

of correct owner components of the verbal reports for HAH emitters are larger than that 

for FSG and NAS emitters (p< 0.10). Specifically, the percent of correct HAH emitter 

owner components of the reports was about 4.16 times higher than for the FSG and 

NAS emitter reports (i.e., 87 versus 21 percent, respectively). 
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Figure 17. Main effect of Emitter Type on percent of correct emitter owner reports made 
by EW operators. (Error bars indicate +/- 1 standard error of the mean units) 

Figure 18 shows the two-way interaction of Emitter Type * Hour on Watch on the percent 

of correct emitter owner reports given by the EW operators. A post hoc simple effects 

test followed by Newman-Keuls tests on significant components of the interaction 

indicates the percent of correct owner components of the verbal reports for HAH 

emitters was greater than that for other emitters, that NAS emitters owner components 

were correctly reported more often than FSG emitters in the fourth hour, and than NAS 

emitters in the first and third hours, and that HAH emitters’ owner components were 

reported correctly more often in the second hour than the third (p < 0.10). The post hoc 

analyses are shown in Tables 15 and 16. 
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Figure 18. Two-way interaction effect of Emitter Type * Hour on Watch on percent of 
correct emitter owner reports made by EW operators. 

(Error bars indicate +/- 1 standard error of the mean units) 

TABLE 15 

Simple Effects test on the interaction of Emitter Type * Hour on Watch on percent of 

correct emitter owner reports made by EW operators. 

  

  

  

  

  

  

  

    

Main Effect |at Level of | MSeffect MSerror E p 

Type 1st Hour 2.853 Q@.062 46.247 Q@.001 

Type 2nd Hour 5.228 @.Q62 84.763 @.001 

Type 3rd Hour 2.776 Q@.062 45.012 0.001 

Type 4th Hour 3.938 @.062 63.844 @.001 

Hour FSG @.165 @.062 2.681 @.059 

Hour NAS Q.193 Q.062 3-132 @.036 

Hour HAH Q.164 Q@.062 2.653 Q@.061               
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TABLE 16 

Newman-Keuls tests on the Interaction of Emitter Type * Hour on percent of correct 

emitter owner reports made by EW operators. 

  

Main Effect at Level of Level of Effect {Means 
  

  

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    
  

  

  

  

  

  

  

  

    

Type 1st Hour ®@.263 Q@.820 

NAS @.189 0.074 Q.631* 

FSG @.263 @.557* 

HAH @.820 

2nd Hour Q@.253 Q.971 

FSG @.095 .158* |0.876* 

NAS @.253 Q.718* 

HAH Q.971 

3rd Hour Q.196 Q. 784 

FSG Q@.194 0.002 @.590* 

NAS Q.196 0.588* 

HAH Q. 784 

4th Hour @.383 @.892 

FSG @.091 @.292* |0.800* 

NAS @.383 @.509* 

HAH @.892 

TB |FSG @.095 @.194 @.263 

4th Hour @.091 . 004 2.103 Q.172* 

2nd Hour @.@95 @.999 @.168* 

3rd Hour @.194 @.069 

1st Hour @.263 

NAS 0.196 0.253 [0.383 | 
1st Hour @.189 0.007 @. 064 @.194* 
3rd Hour @.196 @.057 @.187* 

2nd Hour @.253 @.130* 

4th Hour Q.383 

HAH @.820 @.892 @.971 

3rd Hour Q.784 .9@35 0.107 Q.187* 

1st Hour Q@.820 0.072 0.151 

4th Hour @.892 @.879 

2nd Hour Q.971 

  

  

                
  

* indicates p<0.10 
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EW Team Performance 

This section expands upon the overall analyses of functional recognition time and 

accuracy scores. Specifically, the statistical analyses presented in this section examine 

the characteristics of operator performance in terms of individual team performance 

levels. 

Figure 19 shows the average performance scores obtained for the eight teams 

participating in the laboratory study. The average functional recognition time across the 

eight teams was 40.82 seconds (S.E.M. = 6.77 seconds), while the average percent of 

verbal reports given was 54.11 percent (S.E.M. = 9.01 percent). 
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Figure 19. Overall functional recognition time and percent of verbal reports given for the 
EW teams. 

Figure 20 shows the accuracy of the verbal report components given by the EW teams. 

The average accuracy of the emitter function component was 76.01 percent (S.E.M. = 
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4.71 percent), the emitter platform component was 72.63 percent (S.E.M. = 3.51 

percent), and the emitter owner was 58.60 percent (S.E.M. = 6.11 percent). 
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Figure 20. Percent correct of verbal report components given by the EW teams. 

57



A histogram is used to create a new variable from the laboratory data, Proficiency Level. 

To detail the procedure proposed here, suppose it is desirable to establish three 

Proficiency Level rating categories: Low, Medium, and High. With the assumption that 

each Proficiency Level category is equally important, the Low, Medium, and High ratings 

can be defined as cumulative percentage points on a performance histogram. That is, 

two-thirds of all personnel will perform below the High Proficiency Level rating and one- 

third of personnel will perform below the Low Proficiency Level rating. In other words, 

the Proficiency Level categories can be computed as: 

1 

a Low =a for Y = 3 

Y= { x H(x) .dx where ; (Eq. 1) 
0 High = a for Y = © 

in which H(x) denotes a normalized performance histogram having a unit area. 

Figure 21 illustrates the results of calculating Eq. 1 for the functional recognition times 

obtained in the laboratory work. The performance histogram peaks near 6 seconds, and 

it trails off near 60 seconds. Using these data and Eq. 1, the High Proficiency Level cut- 

off point occurs at 9 seconds and the Low Proficiency Level cut-off occurs at 26 

seconds. 
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All (772) Observations 
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Figure 21. Histogram of functional recognition time. 
(Shaded lines indicate 33% and 66% points.) 

The two Proficiency Level cut-off points mentioned above can be used to rate the EW 

teams in terms of overall low, medium, and high Proficiency Level ratings. Table 17 lists 

the median functional recognition times for each EW team. Additionally, Table 17 lists 

the Proficiency Level category rating for each team, based on a straightforward 

comparison of the median times with the two Proficiency Level cut-off points (i.e., a team 

is rated in the highest Proficiency Level category that has an upper cut-off point greater 

than the team's median score). 
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TABLE 17 

Performance Ratings for EW Teams 

  

    

  

Mean Yo % % 

Team Median Time Category vo Function aatorm owner 

1 11 Medium 36.22 72 71 52 

2 14 Medium 36.22 72 71 52 

3 15 Medium 36.22 72 71 52 

4 12 Medium 36.22 72 71 52 

5 14 Medium 36.22 72 71 52 

6 9 High 26.18 86 84 78 

7 9 High 26.18 86 84 78 

8 44.5 Low 88.46 71 64 49       
Pathway Analyses 

A descriptive analysis of pathways used by the EW operators was performed on the 

data collected during the validation study. The pathway descriptions are listed in Table 

4. Tables 18-20 present the percent usage values for each path under various 

combinations of Emitter Type, Emitter Density, and EW team Proficiency Level. 

Table 18 shows differences in strategies used for different emitter types. FSG emitters 

were sequenced to after a parameter change more frequently than before a parameter 

change. This observation stems from the FSG emitter’s increased saliency after it locks 

on to a target with its guidance function. NAS emitters, however, undergo parameter 

changes less often than FSG emitters and, therefore, were sequenced to initially rather 

than after a change. HAH emitters were brought into close control in fairly equal 

portions of before and after parameter changes. Of these emitters, some were easier to 

functionally recognize before they had parameter changes than others. 
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TABLE 18 

Path percentages by Emitter Type 

  

  

  

    

Emitter Type 

Path FSG NAS HAH Totals/3 

SEQ 16.9 59.8 38.3 38.3 

HOOK 6.2 12.7 20.6 13.2 

SEQ-SIG 1.0 0.3 

HOOK-SIG 0.9 0.3 

UPDT-SEQ 57.2 21.0 30.2 36.1 

UPDT-HOOK 18.6 8.3 9.7 12.2 

UPDT-SEQ-SIG 1.1 0.4 

UPDT-HOOK-SIG 1.3 0.8 1.0 1.0   
  

Table 19 shows the strategies used by operators across the Emitter Density conditions. 

In general, EW operators evaluated emitters most often by using the SEQUENCE FAB 

as opposed to the HOOK FAB. Also, the EW operators used the SIGNAL SELECT FAB 

infrequently. These observations hold across emitter evaluations before either before or 

after a parameter change event. 

TABLE 19 

Path percentages by Emitter Density 

  

  

      

Emitter Density 

Path LOW MED HIGH Totals/3 

SEQ 36.1 35.4 43.5 38.3 

HOOK 12.9 13.2 13.3 13.2 

SEQ-SIG 1.3 0.7 0.3 

HOOK-SIG 0.8 1.0 0.3 

UPDT-SEQ 37.8 39.7 30.8 36.1 

UPDT-HOOK 12.2 15.7 11.1 12.2 

UPDT-SEQ-SIG 1.1 0.4 

UPDT-HOOK-SIG 1.4 1.1 0.9 1.0 
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Table 20 shows the strategies used by EW operators of various Proficiency Level 

category ratings. Low Proficiency Level operators use the stiff stick and HOOK FAB 

frequently, whereas medium and high Proficiency Level operators use the SEQUENCE 

FAB more often. Medium Proficiency Level operators also used the SEQUENCE FAB 

often following an emitter parameter change, perhaps to take advantage of easier 

emitter identification after a parameter change. 

TABLE 20 

Path percentages by Operator Proficiency Level 

  

  

  

Level 

Path ___LOW _MEO_HIGH__|_totals/_| 
SEQ 32.8 36 46.2 38.3 

HOOK 34.0 12.7 11.7 13.2 

SEQ-SIG 3.4 0.3 

HOOK-SIG 7.7 1.6 0.3 

UPDT-SEQ 28.2 40.0 33.4 36.1 

UPDT-HOOK 19.9 12.2 13.6 12.2 

UPDT-SEQ-SIG 4.2 0.4 

UPDT-HOOK-SIG 7.7 1.0 3.5 1.0       

A full table of all of the partial probabilities for each strategy given each combination of 

Emitter Type, Emitter Density, and operator Proficiency Level is given in Appendix C. 

Comparison of Observed and Actual Data 

For each scenario run in the Laboratory Validation Experiment, DX Data were collected 

and stored in a separate file. After the experiment was concluded, the SHARP PAD 

Software, using the DX files as input, was used to calculate the time spent and the 

standard deviation of that time for each node in the MicroSAINT model for each emitter 

of interest (e.g., missiles in the Hostile Air Homing scenario). Each node in the 

MicroSAINT model represents a step in the functional recognition task. Additionally, as 

detailed in the section on Model Population, probabilities for following each path from 
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node to node in the model were calculated from the DX data (using SAS). Using these 

times and probabilities, the MicroSAINT model was populated, that is, the times were 

used to calculate a probability distribution for each node in the model, representing 

predicted time spent by the operator performing that step, for each density/emitter type 

combination, and the node-to-node probabilities were input. 

To demonstrate the accuracy of the MicroSAINT model, the model was executed once 

for each emitter of interest that occurred in the laboratory validation study, then the 

resulting functional recognition times were sorted by ascending value and paired with 

the sorted actual times observed in the experiment. Figure 22 shows the plot of 

predicted versus observed functional recognition times. It is evident from Figure 22 that 

there was a high degree of correlation between the actual and predicted times to 

functionally recognize an emitter, especially for observed times up to 170 seconds. 

Although these initial results of the model showed high levels of overall correlation, they 

also highlighted areas of concern at extreme ranges of the model, both high and low. 
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Figure 22. Plot of actual versus originally predicted functional recognition times. 

At the extreme low end of the range, the model predicts performance times between 

zero and one second. From the task analysis and laboratory study, recognition times 

were not that quick. This result likely stemmed from the gamma distributions used to 

predict node times. The gamma distribution used (characteristics provided by the 

MicroSAINT software) begins at a large probability level while the time value is zero, and 

falls off gradually. This creates a large number of zero to very short task times, while the 

distribution of actual task times (see Figure 21) begins at zero on both axes (even as it 

ramps up quickly to a large probability density at low functional recognition time values). 

Because of this, a fixed minimum value of 0.75 seconds was added to the final node of 

the model to shift the distribution positively and prevent these spurious predictions. 

At the extreme high end of the range (greater than two minutes), the revised model 

predictions become less linearly related to the actual values from the laboratory study. 

This is likely due to additions to the actual task network that were not considered in PAM 

64



(as directed by the task analysis guidelines developed). Specifically, the revised task 

network model does not handle task sequences that allow emitters of interest to be let 

out of close control. This occurs when the operator is attending to other emitters or 

other tasks (such as drinking coffee). Although the task network (and the revised model) 

does include these nodes, their population was entirely empirical; that is, the values 

used for populating the nodes in the revised model came from experimental data and 

therefore include any other activities that the operator performs. For example, if it 

actually takes an operator five seconds to notice a friendly guidance radar in moderately 

dense environments, and one time out of three he takes an extra second to glance at his 

watch, the aggregate value modeled will be five and one-third seconds. This additional 

third of a second is included even though the activity of glancing at the watch is not. 

Similar to this problem is looping back and forth through these nodes (e.g., taking the 

same emitter into and out of close control many times before reporting on it). Because 

the revised model assumes independent events, the probabilities for looping between 

such nodes are empirical and there is no “intelligence” in the revised model to endorse 

or limit such looping based on actual events or concerns of the EW operator. This 

problem also is a reason for proportional over-prediction by the revised model. These 

problems are all handled simply by acknowledging that there is an upper limit (on task 

completion time in this case) to the applicability of the simulation. A correlation plot of 

the revised model within its useful range is shown in Figure 23. 
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Figure 23. Plot of actual versus revised predicted functional recognition times. 

Additional correlations were performed between the results of the revised model and the 

results from the laboratory study. These were calculated for each combination of 

Emitter Type and Emitter Density. A table of these correlations is shown as Table 21. 

Graphs of the correlations are shown in Appendix C. 
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TABLE 21 

Correlation Parameters by Emitter Type and Emitter Density 

  

  

    

Emitter Type Emitter Density r’(%) Slope Intercept 

HAH HIGH 98.06 0.39 1.49 

MED 95.27 0.72 -5.08 

LOW 78.67 0.12 12.07 

NAS HIGH 94.07 0.51 1.87 

MED 96.35 0.56 -10.58 

LOW 93.88 0.08 6.57 

FSG HIGH 94.87 0.39 24.98 

MED 87.40 0.24 -1.55 

LOW 87.11 1.85 -31.55 
  

The revised model was re-cast in terms of the strategies taken by EW operators. Each 

of the eight task completion strategy paths (i.e., the eight levels of the Path variable) 

were pulled (“unraveled”) from the revised simulation model. The nodes involved in a 

strategy path were set end-to-end, with the probability of proceeding from one to the 

next set to unity. The strategy paths were placed in parallel. Mean times, standard 

deviations, and distributional information contained within nodes was kept. 

The purpose of this manipulation was to show that the decomposition of the task and the 

empirical values of each node are robust. Even though not all task completion 

strategies are included in the revised model, and not all actions can be accounted for, 

pieces of the revised model can be mixed and matched according to the theory of the 

task - its goals. Good correlations between actual and predicted values for these 

revised model incarnations based on task completion strategy paths shows by inference 

the correctness of the task analysis breakdown. Further, as this process is iterated, 

revising and manipulating the simulation model and correlating predictions with 

corresponding portions of the data collected during experimentation, the task itself and 

the operator's performance of it is better understood. 

For paths 5-8, those strategy paths occurring after a parameter change, additional 

nodes were added to the front of the path to reflect the parameter change. First, the 
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operator was assumed to have sequenced to the emitter before the parameter change. 

This was necessary because an “Update Alert” does not occur unless the original alert 

has been cleared by use of the Sequence FAB. Second, the operator was assumed to 

have let the emitter of interest out of close control. This was assumed since typically 

there is a one minute delay between an emitter’s initial onset and its parameter change, 

and the operator would likely be attending to other emitters. A node from the revised 

model “Out CC No Alert” represents this action, thus providing prediction values (this 

was a “populated” node) from the laboratory study data. Following the bringing of the 

emitter into close control and then going on to another emitter, there is a node from the 

model for an “Update Alert.” These three nodes form the basis for all of the task 

completion strategy paths that include an emitter parameter change. Further nodes 

from the new task completion strategy path models for each of the four parameter 

change paths depend upon the strategy path taken, and are the same as the full paths 

for emitter functional recognitions that do not include parameter changes. As examples: 

for path 2 (HOOK) the nodes “New Emitter,” “In CC Alert,” and “Verbal Report” constitute 

the full path; whereas, for path 6 (HOOK after parameter change) the nodes “in CC No 

Alert,” “Out CC No Alert,” “Out CC Updt Alert,” and “In CC Updt Alert,” “Verbal Report” 

constitute the full path. 

The task completion strategy path models were developed using the parameter of 

Proficiency Level, in addition to parameters of Emitter Type and Emitter Density. 

Proficiency Level was defined in the previous section which analyzed differences 

between operators. The mean times, standard deviations, and distributional information 

contained within nodes in the task completion strategy path models were calculated 

using Emitter Type and Emitter Density as parameters, and were taken from the 

corresponding revised full task simulation model data. The probabilities used for the 

likelihood of traveling each strategy path were taken from the laboratory study data. 

They were the probabilities observed that operators of each Proficiency Level chose a 

given path, within the Emitter Type and Density condition. These probabilities are 

shown in Appendix C. With these three variables as parameters, 27 possible 

correlations were enabled: one for each combination of the Emitter Type, Emitter 

Density, and Proficiency Level variables. The correlations were between the predicted 

values of that task completion strategy path model and the portion of actual laboratory 

results observed with those operators, for those emitters, under those conditions. A 
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generalized task completion strategy path model diagram is shown in Figure 24. A table 

of correlation parameters, one for each combination of the three variables, is given in 

Table 22. Graphs of each correlation are given in Appendix C. 
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Figure 24. Task completion strategy path model generalization. 
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TABLE 22 

Correlation parameters by Emitter Type, Emitter Density, and Proficiency Level 

  

HAH 

NAS 

FSG 

  

Emitter Type Emitter Densi 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

HIGH 

MED 

LOW 

Proficjency Level r(% 

86.06 

78.75 

76.74 

73.23 

74.74 

92.26 

98.13 

73.17 

81.97 

94.82 

85.28 

97.00 

55.30 

85.39 

95.71 

98.28 

89.79 

82.66 

65.59 

91.02 

69.74 

97.30 

98.71 

87.68 

90.08 

66.04 

90.67 

Slo 

0.37 

0.42 

0.65 

1.71 

0.71 

1.75 

0.68 

0.86 

0.46 

1.90 

0.42 

0.98 

9.00 

0.86 

2.26 

0.74 

0.70 

1.09 

0.08 

0.27 

0.59 

0.27 

0.14 

1.45 

0.17 

0.94 

1.15 

Intercept 

0.64 

2.49 

28.14 

-10.43 

-7.61 

-14.42 

-1.59 

-7.82 

11.10 

“1.14 

3.51 

111.54" 

-152.49* 

-12.52 

27.51 

3.89 

-14.35 

1.59 

-3.83" 

3.92 

-9.10 

2.65 

0.073 

-39.07 

6.89 

-34.73 

-6.04 
  

* Few data points 
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DISCUSSION 

This section of the dissertation provides a general discussion of the findings of this work. 

It addresses the functional recognition time and accuracy values observed in the 

validation study, the functional recognition strategies employed by EW operators, and 

the approaches available for employing the PAM for other task analysis environments. 

Data Collection Paradigm 

The PAM methodology developed in this work relies on the continuous monitoring of EW 

operator performance. During operator work periods, performance data are collected on 

the EW operators’ handling of observable events. Specifically, AN/SLQ-32(V) DX data 

were collected through the EWOBT PC/DX capability. The EPNs were recorded from 

the onset of a new emitter event until the verbal report made by the EW operator 

concerning a functional recognition decision. Although the data collection paradigm 

provides on-line and objective data regarding operator performance, in this particular 

instance it relied substantially on the verbal reports produced by EW operators. The 

findings of this work indicate that EW operators verbally reported on approximately one- 

half of the emitters of interest despite their instructions to report on all emitters. 

Nevertheless, the data collected in this work provide clear and statistically reliable 

findings on EW operators’ functional recognition performance. 

The findings of this work show that functional recognition times vary across emitter 

types; HAH emitters were recognized faster than the non-threat (i.e., FSG and NAS) 

emitters. This finding is consistent with two observations of EW operator training. First, 

EW operators are trained to identify threatening emitters, such as missiles. Therefore, 

these emitters are considered as higher priority items than the non-threat emitters. 

Second, EW operators are trained to make verbal announcements regarding the 

detection of threatening emitters, whereas non-threatening emitters usually are not 

announced to the EW supervisor. These two observations underlie the functional 

recognition data trends observed in this work. 

Given the caveats above, the findings of this work indicate that missile emitters are 
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functionally recognized approximately three times quicker than non-threatening emitters. 

This observation is noteworthy since non-threatening emitters may require immediate 

processing by the EW operator under some operational conditions. Also, the average 

functional recognition times for HAH emitters were about 22 seconds (across all emitter 

density levels). Given the limitations of the laboratory simulation, this observation 

provides an objective insight to the minimum time requirements for functional recognition 

decisions to be expected aboard ships by EW operators. 

The findings on functional recognition time also indicate that performance does not vary 

a great deal across time-on-watch, at least for the conditions examined in this work. 

Specifically, functional recognition times for HAH emitters remained relatively constant 

across the four-hour watchstand. For the two non-threat emitter classes examined, 

functional recognition tires decreased slightly during the second half of the watch for 

FSG emitters and remained constant throughout the watch for NAS emitters. These 

data trends suggest that the effects of operator fatigue and boredom were not 

influencing operator performance during the data collection sessions. It is, however, 

acknowledged that the effects of operator fatigue during an actual watchstand, as well 

as over the course of a deployment, are significant. The lack of fatigue effects in the 

laboratory validation study may stem from the high motivation levels of the EW 

participants during the shore-based test sessions. 

Accuracy 

The accuracy of functional recognition decisions was defined in terms of three essential 

components of the EW operator's verbal report: Function, Platform, and Owner. 

Accuracy analyses were performed separately for each of these components. It is likely 

that the most important component may be the emitter Function, while the next most 

important component may by the emitter Platform. The remaining decision component 

may involve elements of an emitter identification response and, therefore, it is 

considered as a less critical component of the functional recognition decision. 

Additionally, the accuracy analyses made no attempt to integrate the component 

decisions scores into a single performance rating. It may be desirable to integrate these 

components according to a weighted summation scheme (i.e., 50% function decision 
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plus 30% platform decision plus 20% owner decision equals 100% functional recognition 

accuracy). 

The findings of this work indicate that EW operators functionally recognized HAH 

emitters about 86 percent of the time, whereas they recognized non-threat emitters 

about 44 percent of the time. Given that these percentage values were determined from 

the number of reports given, and that the operators reported about one half of the 

emitters of interest, these accuracy ratings are surprisingly low. Although EW operator 

performance may be improved through informational aids (e.g., naval and air orders of 

battle, emitter publications, familiarity with the engagement situation), the laboratory 

environment and the emitter scenarios probably underlie the low accuracy levels. 

Regarding the accuracy of the emitter Function component, EW operators recognized 

HAH emitters more often than FSG and NAS emitters. The difference in Function 

accuracy is about 2:1. This observation is consistent with expectations based on EW 

training. That is, EW training emphasizes the recognition of hostile emitters. Moreover, 

the HAH emitter presents clearly identifiable signals on the ANSLQ-32(V) (i.e., constant 

alert tone, rapid bearing drift), whereas the non-threat emitters present more varied 

signal signatures. 

The accuracy findings for the emitter Function component also suggest that 

performance decreases slighily with time-on-watch. The performance decrement was 

about 15-20% during the second half of the four-hour watchstand. While this decrement 

is Statistically significant, its magnitude may have little practical effect (although, it is 

suspected that the performance decrement is greater in shipboard environments). 

The findings for the emitter Platform and Owner components follow similar trends to 

those observed for the emitter Function component. That is, HAH emitter platforms 

were recognized more accurately than FSG and NAS emitter platforms. It is believed 

that this data trend stems from the fact that homing emitters can only exist on airbome 

platforms and, therefore, once the Function component is recognized for the HAH 

emitter, its Platform and perhaps its Owner components are known. 
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PAM Applications 

The observations collected during the laboratory validation study were used to populate 

the PAM MicroSAINT model. These model values were extracted from video tape 

analyses as well as from the ANSLQ-32(V) DX data. The MicroSAINT model then was 

used to predict the overall functional recognition time values observed in the laboratory 

test. The correlation between the observed and predicted functional recognition values 

was quite high (i.e., R2 = 0.958; see Figure 23). This statistical result indicates that the 

structure of the MicroSAINT model reliably and validly tracks EW operator performance 

during functional recognition tasks. This statement is limited by a few factors: (1) the 

actual data were obtained in a laboratory environment, (2) the actual data were obtained 

under stimulated low, medium, and high emitter density levels, and (3) the actual data 

do not reflect the influences of shipboard stress factors. Nevertheless, the results 

obtained thus far clearly support the continued development and application of the 

model and the methodology. 

The lack of a one-to-one fit between the model results and the experimental data can be 

attributed to both the distributional characteristics of the model and the assumption of 

independent events by the model. The distributional choice was limited to one of four 

options, and even though the Gamma distribution chosen matched certain 

characteristics of performance, it may tail off too slowly. A lack of independence in 

events could enable excess looping between nodes in the model based on 

experimentally determined decision probabilities that were actually based on reasoned 

choices made by the operators. Even with these caveats, the use of a linear calibration 

technique enables the reliable prediction of the models to enable them to serve as a 

useful tool in task analysis. 

Further correlations of the PAM model to the laboratory data using the Emitter Type and 

Emitter Density parameter variables show that the model is sensitive to the use of 

parametric variables built into the simulation. These correlations were also sufficiently 

high to warrant the generalization of the statement. 

Lastly, the revised model was rebuilt into an alternate form highlighting the strategy 

choices of EW operators (the task completion strategy path models), and a derivative 
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variable Proficiency Level was used to provide a third factor for use as a parameter. 

Good correlations with these analyses show that the simulation methodology is robust 

enough that, post hoc, new analyses can be performed on predicted data using re- 

structured models with validity. Further research in this direction could possibly put 

limits on this type of technique. 

Conclusions 

The PAM is intended to occupy a middle ground between impractically cumbersome 

task analysis techniques such as formal languages used in the field of computer science 

for interface and task description and the “softer” task analysis techniques used often in 

human factors engineering such as the operational sequence diagram. These latter 

techniques often fail to provide the extent of useful descriptive information that the PAM 

may be able to provide. 

The development and validation of the simulation model shows that a complex task can 

be analyzed objectively to provide information for the description, assessment, and 

prediction of the task, if the proposed guidelines for task analysis and description are 

used. This methodology based on observable events and actions, an extension of 

traditional task analysis techniques, should provide human factors engineers with a new 

tool to improve performance assessment, training design, and to provide new 

information and analysis methods to aid in system design. 
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APPENDIX A. AN/SLQ-32A(V) BACKGROUND 

The AN/SLQ-32A(V) is an integral part of the CIC aboard ships. The AN/SLQ-32A(V) is 

a Antiship Missile Defense System (ASMD) System. The AN/SLQ-32A(V) detects 

emitters in the electromagnetic environment surrounding the installed platform. The 

AN/SLQ-32A(V) detects emitters depending on their distance from the ship, the power of 

their radar signal, and the environmental conditions. 

Figure A-1 illustrates the AN/SLQ-32A(V) DCC. The AN/SLQ-32A(V) system can be 

used with other equipment, such as an oscilloscope, to classify emitters by their range 

from the ship (rather than threat level). Beaton (1991) provides a human factors review 

of the AN/SLQ-32A(V) DCC. 

     
   

AN/SLQ-3 
Polar Display 

™S 

  

1 
AN/SLQ-32(V) 

Fast Action Buttons     
Figure A-1. /ilustration of AN/SLQ-32A(V) display control console. 
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Two important areas on the AN/SLQ-32A(V) DCC are the FABs and the Polar Display 

screen. The FABs and the Polar Display represent the primary input and output 

components of the AN/SLQ-32A(V) operator. The FABs are pre-programming input 

buttons associated with the processing of emitters (the keyboard is the remaining input 

device). Figure A-2 shows the layout and function of FABs on the AN/SLQ-32A(V) DCC. 
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4 SLQ-32 POLAR 17 ID RSRCH 

5 DISTR ENGAGED 18 SEQ 

6 PLTFRM CORREL 19 INHIBIT REVIEW 

7 SIGNAL SELECT 20 IR PORT 

8 ENTRY 21 DECOY STATUS 

9 HOOK 22 IRSTBD 

10 READ LIBRARY 23 COUNTER TARGET 

11. ESM INHIBIT 24 CDS SEND 

12 ECM INHIBIT 25 ISOMETRIC JOYSTICK 

13 TRU BRG/ REL BRG 

Figure A-2. Fast action buttons on AN/SLQ-32A(V) DCC. 

The AN/SLQ-32A(V) Polar Display is the operators main source of visual information 

about detected emitters. Figure A-3 illustrates the information areas on the 

AN/SLQ-32A(V) Polar Display. All emitters detected by the AN/SLQ-32A(V) are 
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presented symbolically on this screen, along with a textual listing of emitter parameters. 

The Polar Display shows the bearing of the emitters but not their range, and it classifies 

the emitters based on their threat level to the ship (e.g., friendly emitters appear in the 

innermost ring, missiles appears in the middle ring, and unknown emitters appear in the 

outermost ring). 

  

STATUS 
AREA 

  

ALERT AREA 

    

  

THREAT 
SUMMARY 

SIGNAL 
SELECT 

AREAS POLAR 
AREA 

  
  

  
OWNGSHIP, 
HELO, AND 

EMITTER 
CLOSE CONTROL 

DATA AREAS           
— AREA 
  

Figure A-3. Information areas of AN/SLQ-32A(V) polar display screen. 

Another important feature of the AN/SLQ-32A(V) DCC is its audio output subsystem. 

Pressing the SIGNAL SELECT FAB (No. 7 in Figure A-2) enables the operator to listen 

to the emitter signal on a speaker or set of headphones. Listening to the signal allows 

the operator to determine the emitter's scan type (e.g., homing, search, guidance), scan 
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frequency, and scan period (i.e., time period for radar to sweep a search area). 

Because emitter signals are unique, experienced EW operators often can functionally 

recognize them from the audio signal. 
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APPENDIX B. INSTRUCTIONS TO PARTICIPANTS 

1. Conduct the watch as you would aboard ship, reporting as you normally would to each other 

and the TAO. Additionally, report particular emitters of interest as follows: 

If the experimenter asks for HAH emitters, report normally 

If the experimenter asks for NAS emitters, report your functional recognition of all of 

these emitters. 

lf the experimenter asks for FSG emitters, report your functional recognition of all of 

these emitters. 

2. Do not use any inhibits. 

3. Band 1 is unavailable; do not open Band 1. 

4. You are allowed no breaks once the scenario has begun unless absolutely necessary (e.g., 

to go to the restroom). Please go to the restroom, smoke cigarettes, etc. before entering the 

EWATC for the start of each scenario. If the operator must leave the EWATC for any reason, 

the AN/SLQ-32(V) is to go unmanned during that period -- the supervisor is not allowed to take 

over for the operator. 

5. Do not press the Read Library FAB. 

6. The experimenter will read simulated incoming messages throughout each scenario and 

acknowledge verbal reports. This is the extent of the experimenter’s participation; the 

experimenter cannot answer questions once the scenario has begun. 

7. You may construct an on-line library if you wish. Blank tapes are located on top of each 

AN/SLQ-32(V). 

8. Do not write on the prepared SIGINT log provided by the experimenter. Start each 

scenario’s SIGINT log on a separate sheet. 

9. Please notify the experimenter as soon as you notice any of the following: 

a. Audio from most of the emitters in the scenario ceases. 

b. No alerts occur in a five-minute period. 

c. The AN/SLQ-32(V) clock halts. 

d. Any differences between the AN/SLQ-32(V) system response in the EWATC versus an 

AN/SLQ-32(V) aboard ship. 

10. The following are known differences between the AN/SLQ-32(V) in the EWATC and an 

AN/SLQ-32(V) aboard ship: 

a. Audio is slow to respond to operator actions; you may hear an emitter that is not signal 

selected until the system catches up and realizes that you’ve gone to a new emitter. 
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b. If you have an emitter signal selected you will not hear an alert, but you will still see the 

box appear on the wagon wheel and see the alert notice appear at the upper left of the 

screen. 

c. Audio sometimes gets stuck in Signal Select FREE RUN mode (you'll hear all emitters on 

the beam port no matter how many times you press the Signal Select FAB). 
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APPENDIX C. ANALYSIS DETAIL 

Table C-1 

Task Completion Strategy Path Probabilities (in %) 

   
   

  

  

  

  

Emitter Density Low MED HIGH 

Se evel LOW | MED | HIGH] Low| MED | HIGH] LOW] MED | HIGH 
Emitter 
Type 

1] 33.3) 21.9) 30.8) 16.7], 5.6 4.2] 15.8] 15.9] 25.0 

a 16.7 9.4 8.3 3.7 10.5 9.1 2.5 

3 
FSG al 

BL 33.3] 62.5) 53.8] 58.3] 64.8! 70.8] 31.6] 53.4) 47.5 

& 16.7 6.3] 15.4 8.3} 25.9] 20.8] 42.1) 20.5) 22.5 

7 4.2 
8) 8.3 1.1 2.5 

i] 66.7) 48.8) 54.2) 47.4[ 58.0) 89.5) 28.6] 66.1] 66.1 

a 22.2 7.0] 16.7] 36.8] 12.5 28.6] 15.3 8.9 

g 4.2 2.6 
NAS 4 

5 34.9 8.3] 15.8] 29.5 7.9 7.1] 16.9) 23.2 

of 11.1 9.3] 16.7 28.6 1.7 1.8 

7 

8 7.1 

1 27.7| 40.9] 15.4] 28.8] 54.3] 38.5) 51.2] 50.8 

a 75.0] 19.1 9.1] 46.2] 26.0] 11.4) 61.5) 12.6) 21.5 

3 

HAH 4 77 16 
5 36.2| 36.4) 23.1] 31.5] 34.3} 30.7| 18.5 

6] 25.0) 17.0 9.1 7.7| 13.7 | 3.1 9.2 

7 

8 4.5 0.8                   
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Revised Simulation Model Correlation Graphs: 
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Task Completion Strategy Model Correlation Graphs: 
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APPENDIX D. MODEL DATA 

Node population data listing for the revised task network model, by condition: 

Std Dev TYPE DENS 

FSG HIGH 

LOW 

MED 

103 

79 

121 

169 
23 

151 

2 

5 

1 

17. 
16. 

68. 

12. 

2. 

24. 
17. 

4 
140. 

14. 
2. 

31. 
26. 
17. 

25. 
163. 

11. 

5. 

9. 
19. 

3 

3. 

1. 

103 
7. 

ll. 

13. 

15. 
18. 

4 
7 

8 

0 
3 

5 
7. 

2 

5 
8 
3 

8 

- 9564865 

1240000 
. 8660000 

- 4659474 

- 9145347 
~3994545 

0390000 

- 4189348 
. 0331613 

. 8330769 
4035000 

- 6310649 

.0129715 
- 5228537 
- 6435417 

- 4280580 

7166796 
8207273 

3208710 

7160133 
1780625 

2227500 

1096000 
7365625 

3493387 

8921017 
4975000 

7330000 
3302812 
8295217 

6616931 
0866410 

0523910 

4166897 

8164000 
3898750 

.0941818 

8145000 

4050000 

3872560 

3729728 
9871786 
4138125 

5033784 
3861489 24 

-0748039 

~1774545 
- 2156339 

- 4557333 

.0994389 
- 4331392 

- 4225279 

-0401216 
- 9199759 

- 3042576 
- 6840530 

- 8953892 

~ 3511229 
. 7163394 

-4948195 

-2055499 

-8732617 

.8165524 

132. 

- 3937821 
.0524142 

- 4416116 

- 9263797 

- 6968353 

208. 

7392261 
- 7686251 

5359590 

2704828 

. 3770353 
-2185800 

-5477828 
189. 

6255824 

. 2370780 

.0006147 
~9154522 

- 9509880 

- 4034622 

.0097485 

148. 

3530378 
26. 

19. 

19. 
- 7986809 

3391373 

0548287 

5124975 

3290613 

5878937



HIGH 

LOW 

O
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A
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D
O
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H
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H
 
O
 222 

12 

13 

174 

253 
40 

20 
29 

27 

68 

48 

42 

25 
78 
51 

87 
17 

17 
11 

39 

32 

12 

14 
142 

123 

157 

36 

14 
35 

21 

61 

56 

36 
16 

122 

R
P
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W
R
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O
W
 
W
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B
 
O
O
 

- 4254865 
. 1555000 

~3774615 

. 7200000 
- 3550000 
- 4335887 

- 4160316 
-5628750 

4831500 
. 8096897 

7767407 

- 8702000 

.8165000 

. 7369362 

.8906042 

. 3523333 

. 6563333 

-2165952 
- 9807200 
- 9522821 
- 3788684 

- 8477586 
- 9684706 

~ 3641429 

~ 7432941 
-5525455 

.0626667 
- 6645000 

- 6372903 

~5771250 
- 5375000 

. 8956667 

- 2300000 

-0061429 
-5158803 

- 6960000 

. 1218182 

.0464331 

9183056 

-0595714 
3381714 
- 4136667 

- 1437500 
- 9750000 
- 3964737 

- 7597857 
- 1574286 

- 2002000 

3236389 
.0700625 
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oy
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Bb 
OO
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. 1609892 
~5014775 

- 6858004 

- 6538512 
- 5366194 

- 8955192 

9281975 
- 8071896 

- 6304966 

- 3680713 

. 0988810 

- 6389438 

- 2236039 
2299300 

2826170 

. 6450819 
- 6760176 

- 8944889 
- 6596798 
- 4512008 
- 7839442 

- 6944701 
- 8756741 

7402324 

-7009251 
- 8814436 

- 2269648 
- 8728790 

3481113 
- 5708336 

- 7398203 

-4122181 

-0256144 

- 8770168 
-0118034 

- 7190758 

- 7716676 

- 4497000 

- 2499022 
- 7698654 
-2165191 

- 0532797 
- 1463232 
- 8613005 

- 4020289 
- 7866718 

-4715911 

- 2829533 
- 0535946



NAS HIGH 

LOW 

186 
377 

328 

26 

39 
22 

103 
76 

102 
31 

80 

150 
174 

15 

13 

14 

59 

44 

3 
17 

17 
148 

163 

194 
29 

12 

25 

14 

41 
40 
51 

4 

123 

37. 
120. 

- 8589421 

10. 
20. 

31. 
- 3682727 
. 1077500 

-8400000 
63. 

. 9879079 

31. 
18. 
10. 

- 5090000 

12. 

10. 

101. 
12. 

20. 

33. 
~2759231 

- 4070714 

- 3230000 
57. 

- 8930909 
23. 
35. 
20. 

29. 
31. 

24 

7681667 
2809385 

6021136 
1256154 
3319487 

6707042 

1950000 
4520000 
8167157 

6429750 

0 
6500000 

9149256 
3530920 

7441333 

2768000 

1150000 

3598750 
5353333 
8016471 

0135882 
0374054 

0 

. 3260000 
155. 

11. 

27. 

- 0541667 

36. 

-9278571 
- 2905000 

18. 

125. 
li. 
15. 

- 2432500 

6510092 

1854227 
3046897 

1494400 

1955000 

1571579 
6378750 
3246863 

95 
172. 
17. 

15. 

107. 

113. 

19. 

13. 

10. 
29. 

115. 
33. 

24. 

67. 

107. 

14. 
28. 
26. 
25. 
33. 
49. 

193. 

52. 

114 

10. 

135 
22 
17 

12 

~4514252 

3657848 
7868153 

9102239 
- 2702807 

2638185 
- 3148200 
- 6839361 

. 3590158 

6873106 
0818446 

7627204 

0234570 

4931762 

7637282 

2157752 
7019866 

9669720 

1240614 
- 9948548 

- 7221176 

6227246 

4880136 
4504467 
8432588 
6727168 
5433729 
9010672 

5722306 
- 3566828 
5257407 

- 8279342 
- 7883434 
- 9967665 
1725803 

- 9524728 

-5971524 
- 2493107 

- 3469271 

- 7044091



Node link probabilities for the revised task network model, by condition: 

Tr rrr TYPE=FSG DENS=HIGH FROM=0 ----~-~--~--3-<- errr rrr 

TO Frequency Percent 

2 1 0.5 

6 182 98.4 
20 2 1.1 

Sm ren saa TYPE=FSG DENS=HIGH FROM=1 ---------39-- rrr rer 

TO Frequency Percent 

2 1 50.0 
6 1 50.0 

Sot tr rrr TYPE=FSG DENS=HIGH FROM=2 ---~--~-~-------~--3------- 

TO Frequency Percent 

1 2 100.0 

Tm tre en nena TYPE=FSG DENS=HIGH FROM=5 ----------3-----------~- 

TO Frequency Percent 

6 63 25.8 

9 62 25.4 

17 69 28.3 
20 15 6.1 

21 35 14.3 

TOT rr rns TYPE=FSG DENS=HIGH FROM=6 ----~-------~-----~----~- 

TO Frequency Percent 

5 175 71.1 

7 39 15.9 
10 20 8.1 

20 11 4.5 
21 1 0.4 

Mmmm mm a ene sean TYPE=FSG DENS=HIGH FROM=7 ----------------~-----~- 

TO Frequency Percent 

5 16 29.1 

8 23 41.8 

11 3 5.5 

20 13 23.6 

TTT rr ne ene TYPE=FSG DENS=HIGH FROM=8 -~------~---------~----~- 

TO Frequency Percent 

5 12 92.2 
7 7 30.4 

20 4 17.4 
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TO Frequency Percent 

10 4 4.3 
14 88 95.7 

~-- 22-2 --------------- TYPE=FSG DENS=HIGH FROM=10 ----------~----------~ 

9 25 80.6 
11 4 12.9 
20 2 6.5 

---------------~------ TYPE=FSG DENS=HIGH FROM=11 ---------------------- 

TO Frequency Percent 

9 5 38.5 
12 8 61.5 

~---~----------------- TYPE=FSG DENS=HIGH FROM=12 ---------~------------ 

TO Frequency Percent 

9 1 12.5 

11 6 75.0 

20 1 12.5 

----+-~--------------- TYPE=FSG DENS=HIGH FROM=13 ---------~-----------~- 

TO Frequency Percent 

14 159 45.8 
18 103 29.7 
21 85 24.5 

---~~----------~------ TYPE=FSG DENS=HIGH FROM=14 ---------~------------ 

TO Frequency Percent 

13 222 89.9 
15 24 9.7 
21 1 0.4 

----~----------~------ TYPE=FSG DENS=HIGH FROM=15 ---------~------------- 

TO Frequency Percent 

13 17 41.5 
16 24 58.5 

---------------------- TYPE=FSG DENS=HIGH FROM=16 ----~-----~~----------- 

TO Frequency Percent 

13 20 83.3 

15 3 12.5 

20 1 4.2 
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TO Frequency Percent 

5 42 60.9 

7 9 13.0 

10 7 10.1 

20 11 15.9 

TO Frequency Percent 

13 88 85.4 

15 14 13.6 

20 1 1.0 

TYPE=FSG DENS=LOW FROM=0 

Frequency Percent 

TYPE=FSG DENS=LOW FROM=5 

TO Frequency Percent 

6 20 29.9 
9 5 7.5 

17 32 47.8 

20 5 7.5 
21 5 7.5 

TYPE=FSG DENS=LOW FROM=6 

TO Frequency Percent 

5 42 56.0 

7 9 12.0 

10 10 13.3 
20 14 18.7 

TYPE=FSG DENS=LOW FROM=7 

TO Frequency Percent 

5 7 43.8 

8 8 50.0 

20 1 6.3 

TYPE=FSG DENS=LOW FROM=8 

TO Frequency Percent 

5 5 62.5 
7 2 25.0 

20 1 12.5 
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Frequency Percent 

FROM=10 

Percent 

FROM=13 

Percent 

39 

23 

17 

FROM=14 

Percent 

FROM=16 

Percent 

FROM=17 

Percent 

10 

FROM=18 

Percent 
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TYPE=FSG DENS=MED FROM=. 

Frequency Percent 

Frequency Missing = 2 

TYPE=FSG DENS=MED FROM=0 

TO Frequency Percent 

6 97 96.0 

20 4 4.0 

TYPE=FSG DENS=MED FROM=5 

TO Frequency Percent 

6 - 36 29.0 

9 39 31.5 
17 37 29.8 
20 5 4.0 

21 7 5.6 

TYPE=FSG DENS=MED FROM=6 

TO Frequency Percent 

5 89 66.9 
7 23 17.3 

10 14 10.5 

20 7 5.3 

TYPE=FSG DENS=MED FROM=7 

TO Frequency Percent 

5 7 24.1 
8 15 51.7 

11 2 6.9 

20 5 17.2 

TYPE=FSG DENS=MED FROM=8 

TO Frequency Percent 

5 9 60.0 
7 2 13.3 

12 1 6.7 

20 3 20.0 

TYPE=FSG DENS=MED FROM=9 

TO Frequency Percent 

10 1 1.6 
14 63 98.4 
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Frequency Percent 

Frequency 

Frequency 

121 
47 
59 

TYPE=FSG DENS=MED 

Frequency 

166 
17 

1 

Percent 

Percent 

FROM=14 

Percent 

FROM=15 

Percent 

11 
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TO Frequency Percent 

13 43 91.5 
15 3 6.4 
20 1 2.1 

---------~------------ TYPE=HAH DENS=HIGH FROM=. ---~------------------- 

TO Frequency Percent 

Frequency Missing = 1 

~~-------~-~---------- TYPE=HAH DENS=HIGH FROM=0 --~~------~------------ 

TO Frequency Percent 

2 11 5.0 
6 185 83.3 

20 26 11.7 

~- 2-35 +--+ ------------ TYPE=HAH DENS=HIGH FROM=1 ---~------------------- 

2 2 16.7 
6 10 83.3 

~--------~------------ TYPE=HAH DENS=HIGH FROM=2 ---~------------------- 

TO Frequency Percent 

1 8 61.5 
3 4 30.8 

20 1 7.7 

~~-------~------------ TYPE=HAH DENS=HIGH FROM=3 ---~------------------- 

1 1 25.0 
4 3 75.0 

~--------------------- TYPE=HAH DENS=HIGH FROM=4 ---~------------------- 

TO Frequency Percent 

TO Frequency Percent 

6 58 33.3 

9 15 8.6 

17 42 24.1 

20 9 5.2 

21 50 28.7 
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TO Frequency Percent 

5 140 55.3 

7 30 11.9 

10 22 8.7 
20 61 24.1 

~~ -------------------- TYPE=HAH DENS=HIGH FROM=7 ----------~------------ 

5 6 15.0 
8 20 50.0 

11 1 2.5 
20 13 32.5 

---------------------- TYPE=HAH DENS=HIGH FROM=8 -------~--------------- 

TO Frequency Percent 

5 10 50.0 
7 2 10.0 

20 8 40.0 

~----~---------------- TYPE=HAH DENS=HIGH FROM=9 ----------------------- 

TO Frequency Percent 

10 3 10.3 

14 26 89.7 

~--------------------- TYPE=HAH DENS=HIGH FROM=10 ---------------------- 

TO Frequency Percent 

9 13 48.1 

11 5 18.5 

20 9 33.3 

~--------------------- TYPE=HAH DENS=HIGH FROM=11 --------~-------------- 

TO Frequency Percent 

9 1 16.7 
12 2 33.3 
20 2 33.3 
21 1 16.7 

~------------~-------- TYPE=HAH DENS=HIGH FROM=12 -----------~----------- 
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TO Frequency Percent 
ae ee ee ee ee ee ee ee ee ee ee ee 

14 22 32.4 
18 25 36.8 
21 21 30.9 

~--------------------- TYPE=HAH DENS=HIGH FROM=14 --~------~-------~------ 

TO Frequency Percent 

13 38 79.2 
15 7 14.6 

20 3 6.3 

~--------------------- TYPE=HAH DENS=HIGH FROM=15 --~------~------------ 

TO Frequency Percent 

13 2 22.2 
16 6 66.7 
20 1 11.1 

---------------------- TYPE=HAH DENS=HIGH FROM=16 --~---~---~------------ 

TO Frequency Percent 

13 5 83.3 
15 1 16.7 

---------------------- TYPE=HAH DENS=HIGH FROM=17 --~-----~-~------------ 

TO Frequency Percent 

5 22 52.4 
7 8 19.0 

10 2 4.8 

20 10 23.8 

morn none = TYPE=HAH DENS=HIGH FROM=18 -~~-----~~------~----- 

TO Frequency Percent 

13 24 96.0 
15 1 4.0 

wanna noon nee n= === TYPE=HAH DENS=LOW FROM=0 ---~------~------------ 

TO Frequency Percent 

6 68 87.2 
20 10 12.8 
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TYPE=HAH DENS=LOW FROM=5 

TO Frequency Percent 

6 19 37.3 

9 6 11.8 
17 12 23.5 
20 1 2.0 
21 13 25.5 

TYPE=HAH DENS=LOW FROM=6 

TO Frequency Percent 

5 43 49.4 

7 14 16.1 

10 9 10.3 

20 - 21 24.1 

TYPE=HAH DENS=LOW FROM=7 

TO Frequency Percent 

5 4 23.5 
8 7 41.2 

11 1 5.9 

20 5 29.4 

TYPE=HAH DENS=LOW FROM=8 

TO Frequency Percent 

5 1 14.3 

12 1 14.3 
20 5 71.4 

TYPE=HAH DENS=LOW FROM=9 

TO Frequency Percent 

14 16 94.1 

20 1 5.9 

TO Frequency Percent 

9 8 72.7 

11 2 18.2 
20 1 9.1 

TYPE=HAH DENS=LOW FROM=11 

TO Frequency Percent 

9 1 33.3 

12 1 33.3 

20 1 33.3 
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TO Frequency 

9 2 

TYPE=HAH DENS=LOW 

TO Frequency 

14 16 

18 14 

20 1 

21 8 

TYPE=HAH DENS=LOW 

TO Frequency 

13 27 

15 4 

20 1 

TYPE=HAH DENS=LOW 

TO Frequency 

13 2 
16 3 

20 1 

TYPE=HAH DENS=LOW 

TO Frequency 

13 1 

15 1 
20 1 

TYPE=HAH DENS=LOW 

TO Frequency 

5 3 

7 3 

10 2 
20 4 

TYPE=HAH DENS=LOW 

TO Frequency 

13 9 

15 1 

20 4 

FROM=12 

Percent 

FROM=13 

Percent 

FROM=14 

Percent 

FROM=15 

Percent 

FROM=17 

Percent 

16.7 
33.3 

FROM=18 

Percent 

TYPE=HAH DENS=MED FROM=. 

TO Frequency Percent 

Frequency Missing = 1 
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TO Frequency Percent 

2 1 0.7 

6 131 92.3 

20 10 7.0 

TYPE=HAH DENS=MED FROM=2 

Frequency Percent 

TYPE=HAH DENS=MED FROM=5 

TO Frequency Percent 

6 26 21.1 
9 20 16.3 

17 36 29.3 

20 6 4.9 
21 35 28.5 

TYPE=HAH DENS=MED FROM=6 

TO Frequency Percent 

5 85 54.1 

7 31 19.7 

10 18 11.5 

20 23 14.6 

TYPE=HAH DENS=MED FROM=7 

TO Frequency Percent 

5 10 27.8 

8 14 38.9 

11 2 5.6 
20 10 27.8 

TYPE=HAH DENS=MED FROM=8 

TO Frequency Percent 

5 9 64.3 
7 3 21.4 

20 2 14.3 

TO Frequency Percent 

14 34 97.1 
20 1 2.9 
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Percent 
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---------------------- TYPE=HAH DENS=MED FROM=18 ----------------------- 

TO Frequency Percent 

13 8 50.0 
15 4 25.0 
20 4 25.0 

~--------------------- TYPE=NAS DENS=HIGH FROM=. -------~------------~---- 

TO Frequency Percent 

Frequency Missing = 3 

~--------------------- TYPE=NAS DENS=HIGH FROM=0 -------~--------------- 

TO Frequency Percent 

6 185 99.5 
20 1 0.5 

---------------------- TYPE=NAS DENS=HIGH FROM=5 -~------------~-------- 

TO Frequency Percent 

6 143 37.9 
9 13 3.4 

17 102 27.1 

20 2 0.5 
21 117 31.0 

~--------~------------ TYPE=NAS DENS=HIGH FROM=6 ------~---------------- 

TO Frequency Percent 

5 277 84.5 

7 21 6.4 

10 13 4.0 
20 17 5.2 

~~-------~--~---------- TYPE=NAS DENS=HIGH FROM=7 ----------------------- 

TO Frequency Percent 

5 12 27.3 
8 26 59.1 

11 3 6.8 
20 3 6.8 

~---~------------------ TYPE=NAS DENS=HIGH FROM=8 ----------------------- 

TO Frequency Percent 

5 12 46.2 

7 10 38.5 

12 2 7.7 

20 2 7.7 
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TO Frequency Percent 

10 2 5.1 
14 36 92.3 
20 1 2.6 

~----------~---------- TYPE=NAS DENS=HIGH FROM=10 --~-------------------- 

TO Frequency Percent 

9 20 90.9 
11 1 4.5 
20 1 4.5 

-----------~----------- TYPE=NAS DENS=HIGH FROM=11 -------------------~--- 

TO Frequency Percent 

9 3 75.0 
12 1 25.0 

-----+-----~---------- TYPE=NAS DENS=HIGH FROM=12 ---------------------- 

TO Frequency Percent 

TO Frequency Percent 

14 40 38.8 
18 31 30.1 
21 32 31.1 

-----~-----~---------- TYPE=NAS DENS=HIGH FROM=14 ---------------------- 

13 74 97.4 
15 2 2.6 

-----~-----~---------- TYPE=NAS DENS=HIGH FROM=15 ---------------------- 

TO Frequency Percent 

13 2 66.7 
16 1 33.3 

~----------~---------- TYPE=NAS DENS=HIGH FROM=16 -----------------~---- 

ee ee ee ee ee ee ee 

138



TO Frequency Percent 

5 78 76.5 
7 13 12.7 

10 7 6.9 
20 4 3.9 

TYPE=NAS DENS=HIGH FROM=18 

TO Frequency Percent 

13 26 83.9 

15 1 3.2 
20 4 12.9 

TYPE=NAS DENS=LOW FROM=. 

Frequency Percent 

Frequency Missing = 1 

TYPE=NAS DENS=LOW FROM=0 

TO Frequency Percent 

2 1 1.3 

6 71 88.8 

20 8 10.0 

TYPE=NAS DENS=LOW FROM=1 

Frequency Percent 

TYPE=NAS DENS=LOW FROM=2 

Frequency Percent 

TYPE=NAS DENS=LOW FROM=5 

TO Frequency Percent 

6 102 68.0 

9 1 0.7 
17 17 11.3 

20 1 0.7 

21 29 19.3 

TO Frequency Percent 

5 130 74.7 
7 10 5.7 

10 14 8.0 

20 20 11.5 
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TO Frequency Percent 

5 5 33.3 
8 5 33.3 

11 1 6.7 
20 4 26.7 

TYPE=NAS DENS=LOW FROM=8 

TO Frequency Percent 

5 1 20.0 
7 3 60.0 

20 1 20.0 

TO Frequency Percent 

14 13 100.0 

TYPE=NAS DENS=LOW FROM=10 

TO Frequency Percent 

9 11 78.6 
20 3 21.4 

TYPE=NAS DENS=LOW FROM=11 

TO Frequency Percent 

9 1 100.0 

TYPE=NAS DENS=LOW FROM=13 

TO Frequency Percent 

14 31 52.5 

18 17 28.8 

21 11 18.6 

TYPE=NAS DENS=LOW FROM=14 

TO Frequency Percent 

13 39 88.6 
15 5 11.4 

TYPE=NAS DENS=LOW FROM=15 

TO Frequency Percent 

13 4 50.0 

16 3 37.5 

20 1 12.5 
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TO Frequency Percent 

13 2 66.7 

20 1 33.3 

TO Frequency Percent 

5 14 82.4 

7. 2 11.8 

20 1 5.9 

TO - Frequency Percent 

13 14 82.4 
15 3 17.6 

TYPE=NAS DENS=MED FROM=. 

Frequency Percent 

Frequency Missing = 1 

TYPE=NAS DENS=MED FROM=0 

TO Frequency Percent 

2 1 0.7 
6 145 98.0 

20 2 1.4 

TYPE=NAS DENS=MED FROM=1 

Frequency Percent 

TYPE=NAS DENS=MED FROM=2 

Frequency Percent 

TYPE=NAS DENS=MED FROM=5 

TO Frequency Percent 

6 48 29.4 
9 7 4.3 

17 51 31.3 

20 3 1.8 

21 54 33.1 
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TO Frequency Percent 

5 122 62.9 
7 17 8.8 

10 10 5.2 
20 45 23.2 

TYPE=NAS DENS=MED FROM=7 

TO Frequency Percent 

5 7 24.1 

8 12 41.4 
11 4 13.8 
20 6 20.7 

TYPE=NAS DENS=MED FROM=8 

TO Frequency Percent 

5 2 16.7 

7 6 50.0 

12 1 8.3 

20 3 25.0 

TYPE=NAS DENS=MED FROM=9 

TO Frequency Percent 

14 25—Ss«*100.0 
TYPE=NAS DENS=MED FROM=10 

TO Frequency Percent 

914100. 
TYPE=NAS DENS=MED FROM=11 

TO Frequency Percent 

9 38S 
12 1 25.0 

TYPE=NAS DENS=MED FROM=12 

TO Frequency Percent 

9 1s«S0.0 
20 1 50.0 

TYPE=NAS DENS=MED FROM=13 

TO Frequency Percent 

4 tCidSS 8 
18 4 9.8 

21 22 53.7 
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TO Frequency Percent 

13 38 95.0 
20 2 5.0 

~-------------~------- TYPE=NAS DENS=MED FROM=17 ----------------------- 

5 34 66.7 
7 6 11.8 

10 4 7.8 
20 7 13.7 

~-~-----------~------- TYPE=NAS DENS=MED FROM=18 --------~-------------- 

TO Frequency Percent 
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