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(ABSTRACT)

Turbo codes are a new class of codes that can achieve exceptional error performance and

energy efficiency at low signal-to-noise ratios.  Decoding turbo codes is a complicated

procedure that often requires custom hardware if it is to be performed at acceptable

speeds.  Configurable computing machines are able to provide the performance advan-

tages of custom hardware while maintaining the flexibility of general-purpose

microprocessors and DSPs.

This thesis presents an implementation of a turbo decoder on an FPGA-based

configurable computing platform.  Portability and flexibility are emphasized in the

implementation so that the decoder can be used as part of a configurable software radio.

The system presented performs turbo decoding for a variable block size with a variable

number of decoding iterations while using only a single FPGA.  When six iterations are

performed, the decoder operates at an information bit rate greater than 32 kbps.
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Chapter 1.  Introduction

The availability of wireless technology has revolutionized the way communications is

done in our world today.  Cellular and satellite technology make it possible for people to

be connected to the rest of the world from anywhere. With this increased availability

comes increased dependence on the underlying systems to transmit information both

quickly and accurately.  Because the communications channels in wireless systems can

be much more hostile than in “wired” systems, voice and data must use forward error

correction coding to reduce the probability of channel effects corrupting the information

being transmitted.  A new type of coding, called turbo coding, can achieve a level of

performance that comes closer to theoretical bounds than more conventional coding

systems.

1.1 Motivation

Turbo codes, which use parallel concatenated convolutional codes with iterative feedback

decoding, can achieve phenomenally low error rates in environments with low signal-to-

noise ratios.  However, the complexity of the decoding algorithms for turbo codes has

detracted from their commercial feasibility.

This thesis presents the implementation of a turbo decoder on a configurable

computing machine (CCM).  Use of a CCM allows complex computational structures to

be implemented with much higher performance than with a general-purpose

microprocessor and at much less cost than with a custom designed chip.

This decoder implementation is targeted for use in a configurable software radio

system, which is slated to be integrated onto a single platform at a future date.  Although

this has no impact on the details of the decoding algorithm itself, the existence of other

modules that the decoder must eventually interface with sets performance goals for the

decoder so that it will not be a bottleneck in the overall system.  Also, since the decoder

will be retargeted at some point, portability must be considered when making

implementation decisions.
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1.2 Thesis Organization

This thesis presents the details and results of the implementation of a turbo decoder in

configurable hardware, as well as background information needed to understand the

design choices that were made and the results that were obtained.  It is organized as

follows.

Chapter 2 discusses the theory of turbo codes.  The theory is prefaced by a review

of some of the basic coding theory concepts that are crucial to understanding turbo codes.

Encoder and decoder structures, as well as several different decoding algorithms are also

discussed.

Chapter 3 presents an introduction to configurable computing.  It begins by pre-

senting the general concepts of configurable computing, highlighting them with examples

of the specific hardware that is used for this implementation.  The traditional design cycle

for CCM applications is discussed, as are the types of applications that are well-suited for

implementation in configurable hardware.

Chapter 4 provides details of the actual implementation.  The goals and target

parameters for the design are described before delving into a discussion of the major

design decisions.  Finally, each of the major modules of the design is described in detail.

Chapter 5 presents experimental results obtained from the of the implementation.

The experimental setup is described, followed by utilization and timing statistics for the

implementation.  Finally, the results from the decoder are compared to expected results

from simulation for the purpose of functional verification.

Chapter 6 summarizes the work presented here and offers several ideas for

improving the current version of the system in performance, modularity, and ease of use.
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Chapter 2.  Turbo Coding

While turbo coding is a relatively new development in the field of coding theory, it is

built on a foundation that has been developed for several decades.  Indeed, turbo codes

are fundamentally composed of elements that have been long associated with more

traditional forms of coding, namely convolutional and block codes.  For this reason, it is

useful to review these fundamentals of coding theory before discussing turbo codes in

further detail.

2.1 Traditional Coding Schemes

In any real communication system, transmission over a channel will cause the

information received at the other end to differ from what was originally transmitted.  This

is because the channel injects noise into the original signal.  In digital communication

systems, if the power in the noise is large enough relative to the power in the original

signal, transmitted bits can be corrupted to the point that the receiver makes incorrect

decisions about the data that was transmitted.  If too many of these errors occur (in data

communications “too many” can often mean one), the communication system will not be

usable.  Therefore, techniques must be used to reduce the probability of an error

occurring for a given signal-to-noise ratio (SNR).

In 1948, Claude Shannon [1] proved that the probability of such an error

occurring could be theoretically reduced to zero, given that the transmission rate does not

exceed the capacity of the channel, C.  In the case of transmission of a signal of average

power S over a channel of bandwidth B that injects additive white Gaussian noise

(AWGN) with power N, the capacity is given by






 +=

N

S
BC 1log2  (2.1)

For a communication system to begin to approach this limit, it cannot transmit the data

“as is” with no additional processing; a single instance of high noise could cause a bit

error.
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In computer networks, this problem is typically solved by an automatic repeat

request (ARQ) scheme [2].  In such a scheme, a checksum or other redundancy is added

to a data frame to allow error detection at the receiver.  If no error is detected, the

receiver sends an acknowledgement (ACK) back to the sender.  If there is a frame error,

then the receiver either sends a negative acknowledgement (NACK) to the sender, or it

does nothing and lets the sender retransmit the data after it times out of the period in

which it waits for an ACK.

The ARQ technique is not typically used in wireless communications for a couple

of reasons.  One reason is that ARQ systems require duplex communication capabilities.

While this is relatively cheap and easy to do on a wired network, it requires an increase in

receiver complexity for wireless links that is often unacceptable.  Also, in computer

networks the probability of bit errors caused by noise is very low in many cases, so a

frame retransmission is rarely necessary1.  This is in great contrast to wireless networks,

where bit errors are usually much more frequent.  The number of frame retransmissions

required to implement an ARQ scheme on a system with low SNR would slow

throughput to a near-halt.

Since the ARQ scheme is impractical for many communication systems, forward

error correction (FEC) schemes are often used instead.  FEC codes are designed to

improve the decisions that the receiver makes by giving it enough information to correct

some of the errors that the channel has introduced into the signal.  This performance

improvement is largely brought about by two techniques, redundancy and noise

averaging [3].  By adding redundant bits to the digital message, the encoder accentuates

the uniqueness of the transmitted message.  This eases the decision burden of the receiver

because limiting allowable sequences to a fraction of those possible means that multiple

bits will have to be corrupted by noise for the message to be decoded incorrectly.  In

noise averaging, the code is designed so the bits of the message affect many bits of the

encoder output, allowing the receiver to average out effects of the noise over a large

number of received bits.

                                                       
1 This is especially true for ARQ schemes used at the data-link layer for point-to-point links.  While frame
loss is much more frequent at higher levels in the network architecture (TCP/IP), this is often due to the
entire frame being dropped at a switch or router.  In this case, the entire frame would need to be
retransmitted anyway, so it is not an example of the entire frame being retransmitted to fix an error in a
single bit [2].
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While FEC schemes can provide exceptional improvements in performance for

noisy channels, their benefits do not come without costs.  The use of coding requires

additional processing at the transmitter and especially at the receiver, as can be seen in

Figure 2.1.  While encoders do not typically require large amounts of processing, the

complexity of decoders can be significant.  For more complicated coding techniques, the

complexity of optimal decoders prohibits their implementation because they require large

amounts of hardware and large amounts of processing time.  In these cases, sub-optimal

approximations that require less processing and provide inferior performance can be

used.  Also, coding reduces the data rate by a constant factor for a fixed bandwidth due to

the transmission of redundant bits.  The general challenge in coding system design is to

provide enough randomness in the code to provide good performance in noise while

providing enough structure in the code to make its decoding feasible.

Digital
Input

Encoder Modulator

De-
Modulator

DecoderDigital
Output

+AWGN Channel

Figure 2.1: Diagram of a communications system with forward error correction (FEC).

Traditionally, coding schemes have been divided into two distinct categories:

block coding and convolutional coding.  Although the lines of this division have begun to

blur as advanced coding schemes, like turbo coding, use elements of both types of codes,

it is still useful to discuss each type of code separately to accentuate the differences

between the schemes.
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2.1.1 Block Codes

As the name implies, block coding is performed by partitioning the data stream into

fixed-size messages for encoding.  The messages of k bits are mapped to codewords of

length n bits.  The code rate, R, for an (n, k) block code is then given by

n

k
R = . (2.2)

For some block codes, the codeword consists of the k original message bits with n – k

parity bits appended to it.  The codeword x is thus represented in matrix notation as

[ ]pmx = (2.3)

where [ ]kmmm K,, 21=m  and [ ]knppp −= K,, 21p  are the message and parity bits,

respectively.  Because the message itself is part of the codeword, this code is referred to

as systematic.

The encoder calculates x by a matrix multiplication of m with a generator matrix,

G.

mGx = (2.4)

For the systematic code described above, G is a concatenation of a k × k identity matrix

I, which generates m, and a k × (n-k) parity matrix Z, which generates p.

[ ]ZIG = (2.5)

A code generated in this manner is called linear.

The Hamming distance between any two codewords x1 and x2 is the number of bit

positions in which their binary representations differ.  This will be expressed as

( )21 xx ,hd .  The Hamming weight, wh, of a codeword x is the number of 1’s in its binary

representation or, alternatively,

( ) ( )0xx ,hh dw = . (2.6)

If the Hamming distance is computed for all possible codeword pairs, then the minimum

Hamming distance, dmin, for the code is found by choosing the smallest calculated

distance.  For a linear code, dmin is equivalent to the minimum nonzero wh.  This is

significant because the number of bit errors that can be corrected by the code, t is given

by
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



 −

=
2

1mind
t . (2.7)

Thus, by designing the code for a large dmin, the error-correcting power of the code will

be greater.  However, increasing dmin requires2 an increase in n relative to k, which

decreases the efficiency of the code, as defined by the code rate, R.  By using large

codewords, R can be brought up to acceptable levels for a given dmin, but encoder and

decoder complexity scale up with n, so there is a limit to the amount that the code

performance can be improved by increasing codeword length.

Since block encoding is a memoryless one-to-one mapping, it can be viewed most

simply as a look-up operation.  The encoder uses the k-bit message as an index to a table

that contains the n-bit codeword that it outputs, as shown in Figure 2.2.  Such a look-up

table would have 2k entries of n bits.  For very large codewords, this can be prohibitively

complex to implement for both encoding and (especially) decoding.

0000000

1101000

0110100

1011100

1110010

0011010

1000110

0101110

1010001

0111001

1100101

0001101

0100011

1001011

0010111

1111111

Message = 0110 Codeword = 1000110

Figure 2.2: Lookup table representation of a (7,4) block encoder with dmin = 3.

A subset of block codes called cyclic codes can provide a solution to the

implementation woes of long block codes.  A sample systematic cyclic encoder is shown

in Figure 2.3.  By using a linear feedback shift register (LFSR), the parity bits are

calculated as the message bits are being sent out of the encoder.  Then, the switches are

flipped, and the parity bits stream out.  This implementation is much less complex than

                                                       
2 In order to maximize dmin for a given codeword length, care must be taken when choosing Z.  Although
techniques exist for doing this, they are beyond the scope of this discussion.  For more information, see [4].
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the general case for block codes, because it only requires n - k memory elements in the

LFSR to implement the encoder.  Cyclic codes also have the beneficial property that their

encoder structure can be represented by a single generator polynomial

( ) knkn
kn DDgDgDggDg −−−

−− +++++= 1
1

2
210 K . (2.8)

+ + + +
after k bits

after k bits

D D D D

g0 g1 g2 gn-k-1

Message

Codeword
Parity

Figure 2.3: Block diagram of an encoder for a systematic cyclic code.

Decoding block codes is a much more complicated operation than encoding due

to the bit errors caused by the noisy channel.  If the look-up table scheme discussed for

the encoder is extended to decoding, there are two implementation options.  The n-bit

block could be used as an index to a massive 2n × k bit look-up table, or the n-bit block

could be compared with all of the entries of a 2k × n table.  Neither of these options, while

providing optimal results, is computationally feasible for all but the shortest block codes.

One tractable, but sub-optimal alternative is to use an algebraic decoding strategy like the

Berlekamp algorithm [4], which allows decoding of all combinations of errors up to the

error correction capability, t.  In the case of cyclic codes, their increased structure allows

for much simpler decoding algorithms like the Meggitt decoder [5] or the Berlekamp-

Massey algorithm [6].

2.1.2 Convolutional Codes
Like block codes, convolutional codes are characterized by encoders that output n bits of

encoded data for every k bits of message data they receive, for a code rate 
n

k
R = .

However, unlike block codes, there is no need for the data to be partitioned into fixed-

size messages in convolutional codes; the data streams can be encoded in a semi-infinite
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stream.  This is advantageous because the decoder does not have to wait for an entire

block to be received before decoding can commence.  For long block codes, this can

cause intolerable latencies for sensitive applications like two-way voice communications.

Convolutional encoders, unlike block encoders, have memory.  This means that

every k-bit input affects the value of K n-bit outputs of the encoder, where K is a code

parameter called the constraint length.  A diagram of a convolutional encoder is shown in

Figure 2.4.  The memory of the encoder is implemented by a k × L shift register, where L

is the number of stages in the shift register.  The memory of the encoder, M, can be found

by

kLM = . (2.9)

Modulo 2 Logic

k
bit

message

L stages

n bit codeword

M=Lk

Figure 2.4: Block diagram for a convolutional encoder.

On each clock cycle, the n output bits are computed by linear combination of the k

bits at the encoder input and the M bits in the encoder memory.  The linear combinations

used to calculate the output bits can be expressed as a set of n × k generator polynomials,

( ) ( )Dg ba, .

Turbo codes make use of a special case of the convolutional encoder with k = 1.

By using only one input stream, the decoder complexity can be kept at a tractable level.

This scheme has a code rate of 
n

R
1= , which can result in an inefficient (low information

throughput) code for all but the smallest values of n.  One solution to this problem is to

systematically delete some of the bits from the encoder output stream, a process known
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as puncturing.  For instance, a code with rate 1/3 can be increased to a rate of 2/5 if every

sixth output bit is not transmitted over the channel.  While puncturing reduces the

effectiveness of the code, it is useful for increasing the code rate without a corresponding

increase in decoder complexity.

The convolutional encoders used in turbo coding are also systematic and

recursive.  As with block codes, systematic implies that the encoder inputs are part of the

outputs.  Thus, one of the n output bits for a single iteration of the encoder is the

incoming message bit.

Traditional convolutional encoders do not employ feedback, and thus can be

thought of as finite impulse response (FIR) filters.  Recursive convolutional encoders

have a feedback component that makes the encoder behave like an infinite impulse

response (IIR) filter.  Figure 2.5 shows the differences between conventional

convolutional encoders and recursive, systematic convolutional (RSC) encoders with k =

1 and similar code generators G.

Another advantage of convolutional codes relative to block codes lies in the

decoding algorithms.  Typically, block decoders rely on the demodulator to make bit

decisions on the data received from the channel3.  This practice of using hard decisions in

decoding helps to simplify the operation of the decoder.  The drawback of this method is

that the decoder does not have any information about how close the received bit was to

the decision threshold.  Consider a system that uses polar NRZ line signaling with

amplitudes of ±1 V.  If hard decisions are used, received values of 0.8 V and 0.03 V will

both be sent to the decoder as binary 1’s even though one of the samples has a much

higher likelihood of being correct than the other.  The alternative is to pass the samples

from the demodulator to the decoder without making a decision on them.  Then, the

decoder can quantify the confidence associated with each sample, which reduces the

overall probability of error and provides coding gains of up to 2.5 dB [9] over systems

using hard decisions.  Widely available decoders for convolutional codes can use such

soft decisions to obtain superior code performance for low SNR environments.

                                                       
3 Block encoders have traditionally used hard decisions because using soft decisions made the decoding
operation too complex.  However, recent research has been done conducted to explore the use of soft
decisions for various block codes [7,8].
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+

D D D

+

+

+

dk

xk

yk

D D D

+

++

dk xk

yk

+

Traditional Convolutional Encoder

Recursive Systematic Convolutional Encoder

[ ]( )
21

, ggG =

[ ]( )
21

/,1 ggG =

Figure 2.5: Difference between conventional convolutional and RSC encoders.

Although there exist many algorithms for decoding convolutional codes, the one

that is by far the most widely used is the Viterbi algorithm (VA).  Proposed in 1967 [10]

for convolutional decoding, it is a maximum likelihood sequence detection algorithm that

also has application to such varied areas as overcoming intersymbol interference and text

recognition [11].  Although a complete exposition of the operation of the VA is outside

the scope of this discussion, a detailed description can be found in the original paper [10]

or in most coding theory texts [12,13].

2.2 Turbo Codes

The RSC codes introduced in the previous section are generally considered most suitable

for application in low SNR environments, where they outperform a non-systematic
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convolutional (NSC) code that has comparable memory.  At higher SNRs, the NSC code

will generally provide a lower bit error rate (BER) than the RSC code4.

In 1993, Berrou and his colleagues described a new class of error-correcting code

that used RSC encoders, but could achieve better performance than NSC codes at any

SNR [15].  In fact, one example code in this class could come within 0.7 dB of the

Shannon limit for a BER of 10-5.  This innovation was dubbed turbo coding.  A turbo

encoder (Figure 2.6) uses parallel concatenation of multiple RSC encoders with pseudo-

random interleavers (symbolized by αk in Fig. 2.6) preceding all but one of the

constituent encoders.

α1

RSCNe

α2

αNe

d x

y1

y2

yNe

RSC2

RSC1

Figure 2.6: Block diagram of a general turbo encoder.

Although [15] touts turbo codes as a new class of convolutional codes, they can

also be considered to be block codes.  The data to be transmitted is partitioned into blocks

so that the interleavers can perform their operation.5

Parallel concatenation (Figure 2.7a) means that multiple encoders are acting on

the same data stream, and the outputs of the encoders are concatenated to form the overall

encoder output.  The code is then decoded by several corresponding decoders in the

receiver.  This is in contrast to serial concatenation, which is a technique whereby data is

encoded in multiple encoders in a serial fashion in order to take advantages of properties

of each code.  This is shown in Figure 2.7 (b), where the data is first encoded by an outer

                                                       
4 Although this is true in the general case, it was proven in [14] that for high code rates (R ≥ 2/3), RSC
codes can be found that outperform comparable NSC codes at all SNRs.
5 While traditional turbo codes use a block structure, stream-based versions of turbo codes have also been
investigated [16].
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encoder whose output is then encoded by an inner encoder. After demodulation, the inner

decoding is performed first, followed by the outer decoding to produce the overall

estimate of the transmitted message.  One such arrangement [17], has a Reed-Solomon

(RS) block code as the outer code and a convolutional code as the inner code to take

advantage of the performance at low SNR of the convolutional code and the tolerance of

burst errors of the RS code.

Digital
Input

Outer
Encoder

Inner
Encoder

Inner
Decoder

Outer
Decoder

Digital
Output

Mod/Demod
& TX/RX

Digital
Input

Encoder
1

Digital
Output

Mod/Demod
& TX/RX

Encoder
2

Mux

Decoder
1

Decoder
2

DeMux

a) Parallel concatenation b) Serial concatenation

Figure 2.7: Parallel vs. serial concatenated codes.

In many cases, although it is not shown in Figure 2.7, the multiple decoders share

information in order to obtain the best estimates of the transmitted data.

Interleavers can be used to help the code combat burst errors by spreading out bit

information over a larger block of data.  With no interleaving, convolutional codes are

quite susceptible to burst errors since the K output bits that contain information from a

single data bit are adjacent in the encoder output stream.  By interleaving the data stream

before transmission and deinterleaving it after it is received, the burst errors appear to the

decoder to be random.  The most common type of interleaver is a block interleaver,

which is a rectangular array where data is read into the columns and out of the rows (or

vice versa).  This type of interleaving is referred to as channel interleaving.  The

interleavers used in turbo coding are not channel interleavers.  Referred to as code

interleavers, they arrange the data block in a row and then rearrange the rows according

to a pseudo-random pattern. This is illustrated in Figure 2.8.  While this technique also

has the effect of spreading out the data bits to protect against burst errors, the more
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important effect is the reduction of the probability of having all of the encoders produce

low Hamming weight codewords at the same time.

000
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100

110

011

101

000

111

010

001

Figure 2.8: Row interleaving used in turbo codes.

The conventional turbo encoder uses two identical constituent RSC encoders

(Figure 2.9).  The rate of this code is 1/3 (2.9 a), unless puncturing is used, which brings

the rate up to 1/2 (2.9 b).  In this case, puncturing is performed by always sending the

systematic information and alternating the encoder from which the parity bit comes.

Thus, the sequence

( )K,,,,,,,,, 221222111120100 yyxyyxyyx (2.10)

becomes

( )K,,,,,, 122211100 yxyxyx . (2.11)

2.3 Decoding Turbo Codes

In a turbo encoder with Ne constituent encoders, the encoder output contains a single

systematic output and Ne parity outputs from the RSC encoders (assuming no

puncturing), Ne – 1 of which operate on an interleaved version of original data block.

Thus, the output of the turbo encoder can be viewed as the output of Ne independent RSC

encoders, except the systematic information only need be transmitted for one of the

encoders.  The decoder can reconstruct the systematic bits for the other encoders because

it knows the interleaving patterns that were used.  Thus, the decoder can be decomposed

into Ne convolutional decoders with each one operating on the output of a single

constituent encoder.  In order to get the best possible estimate of the original message,
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these separate decoders must be able to share the results of their calculations.  To

accomplish this, turbo decoders use iterative feedback decoding.

RSC

RSCα2

dk

xk

y1k

y2k

Mux

RSC

RSCα2

dk

xk

y1k

y2k

Mux

a) No puncturing (R = 1/3)

b) Puncturing (R = 1/2)

To modulator

To modulator

Figure 2.9: Conventional turbo encoder for code rates R=1/3 (a) and R=1/2 (b).

Figure 2.10 shows a schematic of a turbo decoder for the classical turbo code

example, Ne=2.  The first decoder uses the systematic information xk, the output from the

first constituent encoder y1k, and a priori information from the second decoder, La2,k, to

calculate soft estimates of the original data in the block known as a log-likelihood ratios

(LLRs), Λ1.  The systematic and a priori information are subtracted from Λ1 in order to

prevent positive feedback.  What is left over is the new information calculated by the first

decoder, Le1,k, known as the extrinsic information.  This extrinsic information will be

used as a priori information by the second decoder.  The second decoder uses this a priori

information along with the systematic information, and the output of the second

constituent encoder, y2k.  However, y2k was calculated from an interleaved version of xk,
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so both the systematic information and extrinsic information from the first decoder must

be interleaved (forming kx~  and La1,k, respectively) before being used in the second

decoder.  The second decoder produces the extrinsic information Le2,k that is

deinterleaved and then fed back to the first encoder to be used as a priori information,

La2,k.

DEC1 +

×

DEC2
α

+

α

α-1

α-1

×

×

De-
Mux

Lc
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Lc
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y1,k

y2,k

Λ1(dk)

Le1,k

La1,k

Le2,kLa2,k

Λ2(dk)

( )kd2
~Λ

kd̂

kx~

Figure 2.10: Turbo decoder schematic.

It should be noted that all of the values received from the channel are multiplied by the

factor Lc, where

0

4

N

aE
L s

c = . (2.12)

This is an expression of the channel reliability, where Es is the signal energy, N0 is the

power spectral density of the noise, and a is the fading amplitude of the channel.  This

reliability factor basically acts to amplify the values received when the channel is known

to be reliable and decrease them when the channel is erratic.

After the first decoding cycle has completed, the decoder can be visualized as

shown in Figure 2.11.  In this form the decoder is not taking in new inputs.  Instead, it is

iterating toward a best estimate of the transmitted data using the received values that it

now has stored in memory.  After I iterations, the feedback loop is broken and the LLRs
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produced by the second decoder are deinterleaved one final time to put them in the same

order as the original data block and a hard limiter makes the final bit decisions to produce

the decoded block.
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Le2,kLa2,k
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( )kd2
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kd̂

kx~

Mem xk

Mem

Figure 2.11: Turbo decoder in iterative feedback mode.

Up to this point, the actual operation of the convolutional decoders has been

covered only in a “black box” sense; they must be able to produce LLRs from systematic

and non-systematic information received from the channel and a priori information from

another decoder.  When this decoding structure was first proposed [15] a modified6

version of the Bahl et al. algorithm (also known as the BCJR algorithm7) [18] was

proposed for use in turbo decoders.

2.4 Decoding Algorithms for Turbo Codes

The BCJR algorithm is optimal for producing the best estimate of the transmitted bits.  It

produces the maximum a posteriori (MAP) probabilities of the outputs of a convolutional

encoder (or any Markov process for that matter) on a symbol-by-symbol basis.  However,

                                                       
6 The BCJR algorithm had to be modified to support the recursive nature of RSC codes.
7 BCJR are the initials of the authors of the original paper detailing this algorithm—Bahl, Cocke, Jelinek,
and Raviv.
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it has several attributes that make it very difficult to implement.  Thus, sub-optimal

approximations to the MAP algorithm, as it is often called, have been developed.  These

approximations attempt to ease the implementation burden of the algorithm while not

losing too much of its performance.  The original MAP algorithm and several

approximations of it are described below.

2.4.1 MAP Algorithm
In 1974, Bahl et al. presented a method [18] of decoding convolutional codes that

minimizes the symbol error probability.  Based on methods used for the elimination of

intersymbol interference [19], it works by calculating the a posteriori probabilities (APP)

that the original information bit was a 0 or a 1.  It was developed as an alternative to

Viterbi decoding, which instead minimizes the codeword errors by optimizing its

estimate of the entire transmitted sequence.  Also, while the Viterbi algorithm produces

hard decisions as its output, the Bahl algorithm produces soft decisions, making it ideal

for use in turbo decoding.

In turbo coding literature, the Bahl algorithm is usually simply referred to as the

MAP algorithm because it calculates the maximum APPs for the encoded data.  For the

remainder of the discussion, this convention will be followed.

Consider an RSC code of constraint length K that encodes blocks of size N.  The

information bits that are encoded are { }110 ,,, −= Nddd Kd , and the decoder receives the

noisy estimate of the encoded bits ( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }p
N

s
N

psps yyyyyy 111100 ,,,,, −−= Ky  where

( )s
ky and ( )p

ky are the received estimates of the systematic and parity bits, respectively, at

time k.  The state of the encoder at time k is given by Sk  where the state is restricted such

that it begins and ends in the all-zeros state.

N0,kfor     , == 0kS (2.13)

The MAP algorithm is designed to produce the APP for each information bit

being a 1 or a 0 based on the data received from the channel.  The APP can be expressed

as

[ ] ( )∑==
kS

k
i
kk Sid λy|Pr (2.14)
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where ( )k
i
k Sλ is the joint probability

( ) [ ] [ ]
[ ]y

y
y

Pr

,,Pr
|,Pr kk

kkk
i
k

Sid
SidS

=
===λ . (2.15)

Once the APPs have been obtained, the LLR, ( )kdΛ  can be calculated from

( ) [ ]
[ ]y

y

|0Pr

|1Pr
log

=
=

=Λ
k

k
k d

d
d . (2.16)

This allows for hard decisions to be made by simply testing the sign of ( )kdΛ .  If

( )kdΛ >0, then dk = 1; otherwise, dk = 0.  Because the denominator of the expression in

(2.15) is a constant, the numerator of the expression, ( ) [ ]y,,Pr, 1 kkkkk SidSS ==−σ , is

often used instead of ( )k
i
k Sλ .  By using Bayes’ rule and exploiting some properties of the

encoding process, the probability ( )1, −kkk SSσ  can be rewritten in the form

( ) ( ) ( ) ( )( )( ) ( )kkkk
p

k
s

kikkkkk SSSyySSS βγασ ,1111 ,,, −−−− = , (2.17)

where
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and
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and ( ) ( )( )( )kk
p

k
s

ki SSyy ,1,, −γ  is the set of branch transition probabilities, which are

determined by properties of the channel and the encoder.  It is expressed as

( ) ( )( )( ) ( )[ ] ( )[ ]
[ ] [ ]11

1,1
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kkk
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s

ki

SSSSid

SSidyidySSyyγ
. (2.20)

Thus, for each set of 2L possible states, Sk, there will be a set of 2 × 2L = 2L+1 branch

transition probabilities, with a single γ indicating the probability of the encoder going
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from a specific state Sk-1 to a specific state Sk when a particular bit dk is encoded.  It is by

the calculation of the branch transition probabilities, γ, and the recursive solving for the

forward and reverse branch metrics, α and β, that the decoder calculates the APP for each

bit, which in turn is used to calculate the LLR.  The decoding procedure can be broken

down into several steps:

a) Initialize α according to

( )   
0for   0

0for   1

0

0
0





≠
=

=
S

S
Sα and ( ) 0  0 ≠∀= kSkα (2.21)

b) Initialize index variable k = 1

c) Calculate γi and αk for all states Sk according to (2.18)

d) Increment k

e) Repeat steps c) and d) until k = N

f) Initialize β according to

( )   
0for   0

0for   1





≠
=

=
N

N
N S

S
Sβ and ( ) NkSk ≠∀=   0β (2.22)

g) Initialize index variable k = N - 1

h) Calculate γi and βk for all states Sk according to (2.19)

i) Decrement k

j) Repeat steps h) and i) until k = 0

k) Calculate the LLR from

( )
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2.4.2 Max-Log-MAP and Log-MAP Algorithms
Although the MAP algorithm provides the best estimates of the APP of the information

bits, it is very difficult to implement in practice.  The large number of multiplications are

computationally expensive.  One solution to this problem is to perform the entire

decoding operation in the logarithmic domain.  This especially makes sense because the

LLR computation puts the results in the log domain anyway.
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The main appeal of the log domain from a computational sense is that

multiplication operations are transformed into addition operations.

( ) baba logloglog +=⋅ (2.24)

The drawback of the log domain is that it makes what was originally an addition

operation more complex, as can be seen for the Jacobian logarithm

( ) ( ) ( )1221 1logmaxlog 2,1
xxxx exxee −−++=+ . (2.25)

However, for cases where x1 and x2 are not close in value, the second term in (2.25) is

near zero, so a good approximation for this logarithm is

( ) ( )2,1maxlog 21 xxee xx ≈+ (2.26)

This approximation is the basis for the Max-Log-MAP algorithm, one of two MAP

algorithms that operate solely in the log domain [20].  Based on this approximation, new

state and branch metrics can be defined in the log domain.  The new forward and reverse

state metrics are
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The new branch transition probabilities are expressed
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Once these metrics have been calculated, the LLR can be calculated from
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Although the approximation in (2.26) greatly reduces the complexity of the

decoder, it also provides soft outputs that are inferior to those produced by the MAP

algorithm because the second term in (2.25) is ignored.  It is possible to restate (2.25) in

the form

( ) ( ) ( )122,1maxlog 21 xxfxxee c
xx −+=+ , (2.31)

where ( )12 xxfc −  can be viewed as a correction function that quantifies the error of the

approximation stated in (2.26).  Thus, if this correction function were factored into all of

the computations of ( )21log xx ee + , then the accuracy of the original MAP algorithm

would be preserved, with all of the decoding occurring in the log domain.  This algorithm

has been dubbed the Log-MAP algorithm.  Because the correction function only operates

in one dimension, it can be implemented by a lookup table that is indexed by 12 xx − .  In

[20], it was shown that excellent results could be obtained by using a table with as few as

8 entries.  Since this lookup table is small, the complexity of Log-MAP is smaller than

that of MAP while providing essentially the same performance.

2.4.3 Soft Output Viterbi Algorithm
The soft output Viterbi algorithm (SOVA) is another logarithmic domain procedure for

performing soft output decoding of convolutional codes.  Proposed in 1989 [21], it

provides an alternative to the Max-Log-MAP approximation.  While SOVA and Max-

Log-MAP provide identical performance for hard decisions, Max-Log-MAP performs

somewhat better than SOVA for soft decisions.  This is offset by the fact that the

implementation complexity of SOVA is less than that of Max-Log-MAP.

2.5 Designing Turbo Codes

There are many variables in the design and implementation of a turbo coding system that

can greatly affect the overall performance and usability of the system.  Generally, these

factors provide tradeoffs between coding gain, code rate, implementation complexity,

decoding throughput, and decoding latency.  While many of these factors will be covered

in greater detail in Chapter 4, a brief discussion of them is given here to supplement the
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theoretical discussion.  Some of the factors affecting the design of a turbo coding system

are the following:

Block Length (or Interleaver Size): This is one of the most important tradeoffs.  Longer

blocks provide the best coding gain (in fact, the original code that came within 0.7 dB of

the Shannon limit used blocks of length 65,536), but decoding complexity and latency

scale up linearly with block size.

Number of RSC Encoders: While more encoders will improve the coding gain of the

turbo code, the decoding complexity and latency increase immensely with additional

encoders as each new encoder requires a corresponding convolutional decoder and

interleaver/deinterleaver pair in the turbo decoder.  Also, the code rate declines as the

number of constituent encoders increases unless heavy puncturing is used.  Because of

this, turbo coding systems are generally implemented with two constituent encoders.

RSC Encoder Constraint Length: Another way to improve the coding gain, the decoding

complexity is exponentially related to constraint length, so small constraint length

encoders (K=3,4,5) are typically used.  Generally, increasing the constraint length is only

beneficial if the block length is also increased.

Puncturing: Puncturing allows the user to trade coding gain for increases in the code rate.

Decoding complexity and speed are not usually significantly affected by this.

Number of Decoding Iterations: The more iterations that the decoders can use to share

information, the better the bit estimates will be up to a saturation point.  However, this

increase in reliability follows a law of diminishing returns, and each iteration incurs

additional latency.

Windowing Techniques: Proposed in [22], this method reduces the memory requirements

of the MAP decoder at the cost of increased latency.
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2.6 Summary

This chapter introduced the relatively new class of block codes called turbo codes that

provide extraordinary performance that approaches the Shannon limit.  Coding theory

fundamentals, including block and convolutional codes and general terminology, were

introduced to provide a foundation for the discussion of turbo codes.  The parallel

concatenated structure of turbo encoders and the iterative feedback structure of turbo

decoders were also presented.  This was followed by a discussion of different methods of

performing soft output decoding of convolutional codes, an essential element of the turbo

decoder.  Finally, several of the parameters that must be considered when designing a

turbo coding system were discussed.
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Chapter 3.  Configurable Computing

While Chapter 2 described the theory behind the turbo decoding algorithm being

implemented, that knowledge alone does not allow one to proceed much further than the

realm of simulation.  In order to implement the algorithm, one must also understand the

details of the platform on which it will be constructed and the design procedure used to

realize the theoretical design in hardware.  This chapter gives an overview of the concept

of configurable computing followed by a description of hardware used in configurable

computing applications with a focus on the actual hardware used for this implementation.

The general design process for applications on this platform is discussed, followed by a

description of applications that are typically well-suited to these architectures.

Configurable computing uses special hardware that has the ability to change its

functionality very rapidly by downloading a new configuration.  This is a compromise

between the two extremes of using general-purpose microprocessors and custom-built

application-specific integrated circuits (ASICs) to perform a computational task.  General

purpose processors place a premium on flexibility.  They can perform a wide variety of

tasks by simply varying the instructions that they have stored in memory.  In contrast,

custom ASICs are designed to perform a particular task and nothing else.  Although they

are highly inflexible, they offer optimum performance in terms of speed, power

consumption, and chip area.  Configurable computers attempt to offer the performance

benefits of ASICs while still maintaining the flexibility of a general-purpose processor by

allowing the hardware to vary to suit a given task.  This kind of hardware flexibility

requires a special kind of device on which any digital logic can be implemented and then

changed completely with the simplicity of a memory read.  The main hardware devices

that are used to power configurable computing are field-programmable gate arrays

(FPGAs).

3.1 Field Programmable Gate Arrays (FPGAs)

An FPGA consists of a grid-like array of logic cells that are connected by a

programmable metal interconnect to each other and to an array of I/O cells that reside on
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the edges of the chip.  The cells and programmable interconnect switches are built on top

of a structure resembling a static RAM (SRAM), so that the current configuration of the

hardware on the chip is defined by the values stored in these RAM elements.  In order to

reconfigure the hardware, the memory elements must simply be loaded with new values,

meaning that the hardware can be changed entirely in a matter of milliseconds.

After being introduced in 1985 by Xilinx, FPGAs were mainly used to implement

“glue logic” for board-level designs.  As the densities of the devices increased, they

became popular for prototyping ASIC designs.  Because FPGAs can be reprogrammed

frequently they offer a fast, inexpensive way to try out different design alternatives and

perform functional verification before a design is committed to an ASIC implementation.

As the technology progressed further, researchers began using systems based on multiple

FPGAs to do high-performance computations for various applications.  More recently,

the introduction of FPGAs that can achieve much faster configuration times by means of

partial reconfiguration or a special context switching approach has led to research in run-

time reconfigurable systems [23,24].

In order to understand how FPGAs are programmed, a more detailed discussion

of their inner structure is in order.  Although there are several vendors that manufacture

competing products, Xilinx FPGAs were used for this design, so much of the discussion

centers on the details of Xilinx parts.

3.1.1 Xilinx 4000 series FPGAs
The device used for the turbo decoder implementation is a member of Xilinx’s 4000

series of FPGAs.  The atomic element for logic implementation in these FPGAs is the

configurable logic block (CLB).  A diagram of a 4000 series CLB is shown in Figure 3.1.

The CLB consists of two four-input lookup tables (LUTs), a three-input LUT, two flip-

flops (FFs), and several multiplexers that are used for internal routing of signals in the

CLB.  The CLB is reconfigured by changing the data in the LUTs and the select bits for

the multiplexers.
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Figure 3.1: Diagram of a Xilinx 4000 series configurable logic block (CLB) [25].

Because of the structure of the CLB, with the outputs of the two four-input LUTs

(F and G) being used as possible inputs to the three-input LUT (H), a single CLB can be

used to implement two functions of four unrelated variables and a third function of three

unrelated variables, a single function of five variables, any function of four variables plus

some functions of six variables, or some functions of nine variables [25].

Another useful feature of the CLB is that it can be configured as an on-chip RAM.

This RAM is significantly faster than any off-chip memory.  A single CLB may be

configured to be a single-ported 16 × 1, 16 × 2, or 32 × 1 RAM with either edge-triggered

or level-sensitive timing, or a dual-ported 16 × 1 RAM with edge-triggered timing.  The

dual-ported RAM allows simultaneous reads and writes to be performed.  Of course,

larger RAM structures can be constructed by combining several of these basic RAMs

with some decoding logic.

The specific device used for the turbo decoder implementation is the Xilinx

4062XL-3 FPGA.  This device contains the equivalent of approximately 62,000 logic

gates implemented in 2,304 CLBs.  While this is near the highest capacity of the 4000XL

family as shown in Table 3.1, recent advancements in process technology have provided

4000 series devices with gate counts as high as 250,000 [26].
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Device Max. Logic

Gates

Max. RAM

Bits

Total CLBs Max. User

I/O

4005XL 5,000 6,272 196 112

4010XL 10,000 12,800 400 160

4013XL 13,000 18,432 576 192

4028XL 28,000 32,768 1,024 256

4036XL 36,000 41,472 1,296 288

4052XL 52,000 61,952 1,936 352

4062XL 62,000 73,728 2,304 384

4085XL 85,000 100,352 3,136 448

Table 3.1: Statistics for some members of the 4000XL series of FPGAs [25].

The Max. Logic Gates and Max. RAM Bits numbers from Table 3.1 reflect the cases

where every CLB is used for the specified purpose.  A more realistic design would likely

contain CLBs used for logic and RAM, so neither maximum would be achieved.  It is

also interesting to note that all of the CLB counts are perfect squares.  This is due to the

fact that the CLB arrays are always square.  For instance, the 2,304 CLBs on the 4062XL

are laid out in a 48 × 48 array.

3.1.2 Other FPGAs
While the 4000 series devices are capable for many computational tasks, there have been

many innovations in FPGA technology since their introduction.  The Xilinx 6200 series

of FPGAs were the first to support partial reconfiguration.  While the 4000 series devices

must be completely reconfigured no matter what changes are made, the 6200 supported

reconfiguration of only the columns of CLBs that needed to be changed.  With careful

application design, the reconfiguration time could be reduced immensely, allowing the

first experimentation with run-time reconfiguration.

Lockheed Sanders has made inroads toward truly run-time reconfigurable

computing with the introduction of a context-switching FPGA [27].  This device uses

logic cells that can store up to four configurations that can be switched between one

another in a single clock cycle.
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The COLT processor [23] is an experimental device that is reconfigured by a self-

directing data stream.  The data stream contains programming headers that configure the

necessary resources just before the data is processed in a technique called wormhole run-

time reconfiguration.

Xilinx reached a milestone in FPGA technology with the release of the Virtex

series of devices which, in addition to supporting partial reconfiguration and dedicated

on-chip memory, included the first FPGA to hold the equivalent of one million logic

gates [26].  While this brief summary only begins to cover the different advances in

FPGA designs, it gives an indication of the various approaches that have been taken to

improve the performance of the technology.

3.2 WILDFORCE Platform

Although the main hardware for the design resides in the FPGA, it is useless without a

structure that provides access to external memory, a way to program the chip, and user

control of the chip’s operation.  These capabilities and more are provided by the

WILDFORCE board from Annapolis Micro Systems.  Pictured in Figure 3.2,

WILDFORCE is a configurable computing machine (CCM) that uses five Xilinx FPGAs

as processing elements (PEs).  One of the FPGAs is designated as the control PE (CPE0),

and the other four are referred to as PEs 1 – 4.  The latter are connected in a systolic array

Figure 3.2: Picture of the WILDFORCE CCM [28].
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by a 36-bit bus that is used for inter-PE communication.  CPE0 has connections of

varying bit widths to each of the other PEs on the board.  Additionally, another channel

of inter-PE communications is provided by a configurable crossbar switch that can be

programmed in nibbles of four bits.

Each PE is also connected to a daughter card connection that can be used to house

an external SRAM module.  The memory modules are addressable at the word (32 bit)

level, and available in capacities up to one megaword (4 MBytes). The WILDFORCE

used for this implementation uses five 4062XL FPGAs, each with a one megaword

SRAM.

The memory interface, and a timing diagram for a consecutive read and write are

shown in Figure 3.3.  The “_n” notation used for the memory strobe and write select

signals denotes that the signals are active low.  In other words, when PE_MemStrobe_n =

‘0’ then the memory is listening to the signals on the buses, and when

PE_MemWriteSel_n = ‘0’ the memory is in write mode (assuming that the strobe is also

active).  In the illustrated case, a read of address A1 is performed, followed by a write of

data D2 to address A2.  On the WILDFORCE, data from a memory read is not available

until two cycles after the request is made, which is why the data, D1,  that is stored in A1

is not received by the PE until after the write has already been performed.  This detail can

often make designing efficient state machines difficult for applications that require that

the address or data used in a memory operation be dependent on the data from a previous

memory read.

Because the WILDFORCE is a PCI card, it must be installed in a PC to be used.

User-developed software running on the host PC’s processor actually controls the

WILDFORCE through the PCI bus by using an application programming interface (API)

that comes with the board.  By using the API, the user can program the PEs, control the

board clock and reset signals, and communicate with the board by a number of means.

Data can be exchanged between the host and CCM through the FIFOs that CPE0, PE1,

and PE4 are attached to.  Additionally, the processor can use DMA transfers to write to

and read from the PE memories on the board.  Finally, the WILDFORCE can signal the

host processor of an event by using its interrupt line.
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Figure 3.3: Memory interface and timing for a write directly after a read on the

WILDFORCE.
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3.3 Application Design for the WILDFORCE

Designing applications for CCMs can be a complicated process because the designer

must create an FPGA-based implementation of the hardware as well as software to

control it.  Getting the hardware and software to interoperate properly is often difficult

because neither of them can be truly fully tested until they run with the other.

The traditional approach to application design for the WILDFORCE, which was

the approach used for the turbo decoder implementation, is shown in Figure 3.4.  Because

most of the later stages in the process require little creative input from the designer, any

errors or undesirable performance require the designer to make the modifications in the

partitioning and description phases and redo the later phases of the process.  A more

detailed description of the stages follows Figure 3.4.

Design
Partitioning

Circuit
Description in

HDL

Simulation

Synthesis

Device
Mapping

Host Code
Development

Success!

Test and
Debug on
Hardware

: Desired Design Flow

: Errors and Debugging

Figure 3.4: Traditional design process for CCMs.
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Design Partitioning: The first stage of the process requires the designer to synthesize

knowledge of the application requirements, platform architecture, and host API into a

feasible high-level system design. If multiple PEs will be used, the application must be

divided in a way that provides the best performance within the constraints of the

architecture.  Even within a PE, the design can be partitioned into modules to ease design

and testability.  Also, the designer must plan anticipated interaction with the host, so that

a data flow for the system can be established, giving an indication of the communications

responsibilities of each of the PEs used in the design.

Circuit Description: In this stage, the entire functionality of the application is described

in a hardware description language (HDL).  The two most prevalent HDLs are Verilog

and VHDL.  For WILDFORCE designs, VHDL is preferred because all of the simulation

modules and chip interfaces are written in VHDL. The logic core of each PE is coded

according to the design from the previous stage and its signals are connected to a core

interface that allows the PE to be modeled for board-level simulation and chip-level

synthesis.

There are generally two schools of thought for circuit description, behavioral and

structural description.  Behavioral description simply expresses the operation of the

circuit in terms of the outputs that are expected from a set of inputs, while structural

description expresses the circuit as an instantiation and interconnection of simpler

components.  Consider the example of two numbers (A, B) being added to produce a sum

(C).  A behavioral description of this operation would simply be A + B = C, whereas a

structural description would describe A and B as inputs to an adder with C as the output,

and the adder itself would be defined by a similar interconnection of simpler logic

modules.  Behavioral circuit descriptions are generally easier to code than their structural

counterparts, but the designer does not have as much control over the implementation of

the circuit with behavioral description.

Simulation: Once the circuit descriptions have been coded, a simulator is used to replicate

the operation of the entire board using user-designed PE cores and models provided with

the WILDFORCE for the PE interfaces, board, memories, and other system components.
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The purpose of the simulation is to provide functional verification of the design.

Memory and FIFO contents can be specified by the user to provide test vectors for the

simulation.  For this design, Workview Office from Viewlogic was used as the simulator

[29].

Synthesis:  Each PE description, consisting of the logic core and the interface logic, is

synthesized to produce a netlist of smaller modules that are specific to the FPGA being

targeted.  FPGA Express from Synopsys was the synthesis tool used for this design [30].

Device Mapping: The netlist produced by the Synthesis process specifies logic elements

and their interconnections, but does not specify their exact placement on the FPGA.  The

M1 tools from Xilinx are used to place the elements specified in the netlist and allocate

the routing resources needed for the connections, while trying to conform to any timing

or placement constraints specified by the designer.  If this can be done successfully, the

output of this stage is a binary file that specifies the configuration of the FPGA to which

the design is mapped.  The M1 software also produces an estimate of the clock speed at

which the design can be reliably run.

Host Code Development: The code running on the host processor must program the

FPGAs on the board using the configurations produced in the mapping stage, read and

write from the memories on the board, handle interrupts from the board, control the board

clock, and perform any necessary pre- or post-processing of the data on which the board

operates.

Hardware Test/Debug: Although some parts of the host code (such as the data

processing) can be tested ahead of time, a large portion of the code is only testable when

it is run with actual hardware configurations to interact with the API calls.  Similarly, the

hardware design cannot be tested for timing correctness until it is implemented on the

board.  Thus, incorrect results often produce a debugging quandary because the error

could exist in the software or the hardware.
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Although the traditional method is still the prevalent way that CCMs are

programmed, there are research efforts that try to improve the process by making it

simpler or more portable.  JHDL is a set of FPGA CAD tools implemented in Java that

allows the user to design the structure and layout of a circuit by creating circuit modules

with standard object-oriented techniques [31].  This allows the user to perform simulation

and execution in a unified environment, which makes debugging the final hardware

implementation much easier.  Janus is a set of architecturally independent tools that

provide the ability to port applications between different architectures and allow

application-based intellectual property to be easily migrated between platforms [32].

JBits is an API to the Xilinx configuration bitstream [33]. This allows dynamic

modification of the bitstream configurations, allowing compilation of new configurations

to be done very quickly.

3.4 Applications of CCMs

Although they can theoretically support any application that a general-purpose processor

with equal memory resources can support, the special features of CCMs make them

especially well-suited for use with several classes of applications.  Because FPGAs can

be configured into highly parallel, pipelined structures, the greatest speedups over

general-purpose processors are often seen in dataflow applications with a large degree of

parallelism and a small number of data dependencies, a description which describes many

image and signal processing operations. Many of the early CCM applications were

centered around image processing [34].  Number factoring for cryptography [35] and

template matching for automatic target recognition [36] are other algorithms where the

customizable hardware of the FPGAs allows for great speedups over conventional

processing. Many of these systems are limited not by chip area, but by memory

bandwidth.

As RTR becomes more prevalent, the advantages of fast reconfiguration also

make CCMs optimal for some applications.  Great cost savings can be achieved over

custom ASIC systems by using a single FPGA with RTR to perform all of the

computations.  This approach works best for applications that can be broken into distinct
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stages where the memory (on- or off-chip) can be used to buffer the partially processed

data between configurations, as was done for image interpolation in [24].

CCMs are also very useful for the development of systems where high

performance is required and the requirements for the application are expected to change

periodically because of changing standards and protocols or the desire to support several

protocols with the same piece of hardware.  The reconfigurability of the system allows

for great cost-savings over the frequent replacement of ASICs with performance that is

superior to a general-purpose system.  This model applies to the ever-changing world of

the Internet.  A prototype for a run-time reconfigurable router that could be programmed

by inserting a programming header into the packet stream is presented in [37].  This

model also applies to the software radio system for which the turbo decoder is targeted.

3.5 Summary

This chapter presented the basic concepts of configurable computing and some specifics

about the platform that was used for the turbo decoder implementation.  FPGAs, the

configurable elements that make up CCMs, were defined, followed by a detailed

description of the Xilinx XC4000 series FPGAs that were used in this design.  The

WILDFORCE CCM was also described, with emphasis given to details that will be most

relevant to the design, namely the memory interface and host interaction.  The application

design procedure for CCMs in general, and the WILDFORCE in specific, was explained.

Finally, a discussion of the applications that are well-suited to configurable computing

was presented.



37

Chapter 4.  Implementation of a Turbo
Decoder in Configurable Hardware

With the background established for both the algorithm being implemented and the

platform for which it has been targeted, it is time to look more closely at the details of the

implementation that was performed.  This chapter presents an overview of the goals and

strategy of the implementation followed by descriptions of the major hardware modules

developed for the design.

4.1 Implementation Goals

Because the turbo decoder is designed to work as part of a larger communications

system, there are certain implementation requirements that must be met so that the

decoder will operate well with the other modules in the larger system.  The first of these

goals is decoding rate.  Other modules in the system are planned for operation at up to 32

kbps information rate, so the decoder should be able to support this speed so that it is not

a bottleneck in system performance.  This means that for a rate R = 1/3 code the decoder

should receive bits at an average rate of 96 kbps and produce decoded information bits at

32 kbps.

While doing this, the decoder is limited by the constraints of the WILDFORCE

board – namely FPGA area, interconnection bandwidth, memory bandwidth, and clock

rate.  While 5 FPGAs provide a considerable amount of chip area, the realities of limited

chip interconnect, low memory bandwidth, and non-shared memories often limit the

efficient use of all of this hardware, especially in memory-intensive applications that do

not have prodigious amounts of explicit parallelism, like turbo decoding.  It must also be

noted that the WILDFORCE platform is not necessarily the final target for this

application, which makes conservation of chip area more important to allow for

integration with other parts of the communications system on future platforms that may

have fewer FPGAs.
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4.2 System Design Parameters

At the end of Chapter 2, several tradeoffs that are of paramount importance to turbo

coding systems are described.  While an ideal system would be extremely flexible along

all of these degrees of freedom, this is not always a realistic or practical expectation.

More often than not, the limitations of the hardware on which the algorithm is being

implemented affect the parameters that are used in the design.  Simulation studies can be

used to evaluate the performance of the code under different decoder configurations, and

these results can be used in combination with knowledge of the hardware to produce a set

of tradeoffs that will produce a code that maximizes performance within the constraints

of the hardware.

Parameter Target Value

Block Length 1024 bits (flexible)

Number of RSC Encoders 2

Constraint Length of RSC Encoders 3

Generator Function of RSC Encoders {7,5} (octal notation)

Puncturing Flexible (R = 1/2  or 1/3)

SISO Decoding Algorithm Max-Log-MAP

Number of Decoding Iterations 6 (flexible)

Table 4.1: Parameters used in turbo decoder design.

The parameters that were used for the decoder design are summarized in Table

4.1.  Although high block lengths generally provide better code performance, they also

incur greater frame latency, since an entire frame must be received before decoding can

begin and the decoding time is proportional to frame length.  Since the decoder was

aimed at least for partial use in voice communications, the target block length was

restricted to a reasonably small 1024 bits to avoid packetization delays.  Although this

was the target for the design, the method of implementation is such that the decoder

hardware complexity does not increase with block length, so larger block lengths can be

supported.  This is favorable for data transmissions where high latency and packetization

can be tolerated if the result is reduced bit error rates.
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The RSC encoder parameters were fixed because flexibility would have been

difficult to implement and because a larger constraint length or more encoders would

have significantly increased the complexity of the decoding hardware.  The generator

function {7,5} is an octal representation of the taps that exist on the RSC encoder.  The

first term expresses the function for producing the feedback variable, ak, and the second

term produces the encoder output where ak is the input to the lower shift register.  If it is

expressed in binary as {111,101}, is it easy to see this relationship in Figure 4.1.

D D

+

++

dk xk

yk

ak

Figure 4.1: Diagram of a {7,5} RSC encoder.

Puncturing was easy to implement flexibly because it is just a matter of the

decoder clearing the values that have been punctured out.  Max-Log-MAP was chosen as

the decoding algorithm for the constituent decoders in order to simplify the imple-

mentation due to concerns that the lookup operation for the correction factor would

degrade the speed of the decoder, which already had a large computational delay.  The

number of iterations was chosen to be six to achieve acceptable performance while

keeping necessary bounds on latency.  Like the block length, the implementation allows

this parameter to be changed easily at run-time so this parameter could be modified

depending on the quality of service (QoS) required by the data.
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4.3 Implementation Strategy

To describe the strategies used for the implementation of the turbo decoder, it is useful to

review what operations it must perform.  Figure 4.2 shows the diagram of a turbo decoder

from Chapter 2.

It is obvious from inspection of Figure 4.2 that the decoding operation can easily

be split up into modules.  Modularity is useful because it allows the system to be

developed and tested in smaller, more manageable parts.  By defining an interface

between the modules, each of the modules can be designed to work with inputs from and

provide outputs to other modules.  The three major modules from Figure 4.2 are the

adder, interleaver, and constituent decoder modules.   The other modules (hard decision,

demultiplexing, and scaling) can be implemented by processing data on the host, so they

will not be implemented on the FPGAs for this application.

DEC1 +

×

DEC2
α

+

α

α-1

α-1

×

×

De-
Mux

Lc
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Figure 4.2: Turbo decoder schematic.

Another thing that stands out about a system such as this is that a large number of

operations require the entire block of data to be available before the operation can

produce any output.  This can be true for the interleavers and deinterleavers, depending

on the implementation, and it is certainly true for the constituent decoders, which must

perform both forward and backward recursion over the data to produce their soft
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estimates.  Only the adders, where no reordering is required and output bits are dependent

only on the current set of inputs, could possibly be implemented to stream outputs as its

inputs are received.  However, since none of the other modules can process the data in a

stream-oriented fashion, this is not very useful.

Even if streaming could be done in all of the modules, there would still be

problems with stream synchronization.  This problem is best illustrated by looking at one

of the adders.  Two of the three inputs to the adder module, the systematic and a priori

information bits, are also required to generate the third input, the LLR of the message

bits.  Thus, the systematic and a priori information would have to be delayed to account

for the delay of the decoder.  Since, this delay is proportional to the total block length, the

storage necessary to buffer this information on the FPGA would be immense.  This

problem only gets worse when one considers that the decoder must perform multiple

iterations while using the same systematic and parity bits, so the entire blocks of input

data must be buffered.

The massive memory storage requirements require the use the off-chip storage

provided by the SRAMs on the WILDFORCE board.  Because the modules will need to

use off-chip memory to retrieve their inputs and store their outputs, the memory can be

used to provide a uniform interface between all of the modules.

Shared Memory

Module
1

Module
2

Module
3 . . .

Rd. Wr. Rd. Wr. Rd. Wr.

Figure 4.3: Using the memory as an interface between modules.

Illustrated in Figure 4.3, the scheme of using memory as a module interface works by

handing each module a memory address for each one of its inputs and outputs.  The

address is a pointer to an array that contains a block length of data.  Thus, for the output
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of one module to be used as input by a second module, the second module need only be

given the pointer to the output array of the first module.

This scheme of using the memory as a module interface is very useful in testing

because it eliminates many possible timing issues that could occur if the modules were

directly interfaced on chip.  When a module is tested individually, if its outputs to

memory are correct, then the designer can be sure that it will work with other modules in

the system.  Although using the memory as an interface is much slower than using a

direct connection on the chip, memory use cannot be avoided for this design, so it an

added benefit that it eases the testing process.

As shown in Figure 4.3, this strategy of using the memory as a module interface

requires that all of the modules have access to the same shared memory.  On the

WILDFORCE board, this is nearly equivalent to stating that all of the modules must

reside on the same PE, since the PE memories are not shared.  While this may seem to be

an egregious under-utilization of system resources, the alternative is not very appealing

either.  Since PE memories are not shared, applications that work well when spanned

across multiple PEs are those that require little or no feedback.  Since the turbo decoder is

essentially based on iterative feedback, this would not work very well.  If the decoder

were to span multiple PEs, then a module would have to be created to transfer several

blocks data from the SRAM across the systolic bus where another module would write

this data to memory.  While this transfer is occurring, the SRAMs associated with each

PE would be occupied for several block lengths of transfers, preventing any other

processing during that time and detracting substantially from any performance gains that

could be gained.

A top-level diagram of the decoder implementation is shown in Figure 4.4.
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Figure 4.4: Top-level diagram of turbo decoder implementation.

The main function of the controller is to execute the decoding algorithm by successively

turning the modules “on” and “off.”  When a module is activated, the controller sends a

“start” signal and a set of memory addresses for inputs and outputs.  It also instructs the

memory arbitration unit to connect the “active” module to the PE’s port to the SRAM.

The controller performs memory access for the “active” module until it receives a “done”

signal from that module.  Successive modules are activated to complete the iteration of

the decoder, and the iteration counter is incremented.  If the iteration limit has not been

reached, then the cycle is repeated again.  The succession of steps that make up a

decoding cycle is shown in Table 4.2.

Since data dependencies and memory bus contention prevent any of these steps

from occurring in parallel, it is possible to use the modules for more than one purpose.

For example, the interleaver module can perform either interleaving or deinterleaving and

the decoder module can act as either the first or second constituent decoder, depending on

control signals supplied by the controller.  By making the modules slightly more flexible,

needless duplication of hardware that would consume large amounts of chip area is

avoided.
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Operation Memory Pointers Supplied

1. First decoder x, y1, La2, Λ1

2. First adder x, La2, Λ1, Le1

3. First interleaver Le1, La1

4. Second interleaver x, x~

5. Second decoder x~ , La1, y2, 2
~Λ

6. First deinterleave (only on last iteration)
2

~Λ , Λ2

7. Second adder x~ , La1, 2
~Λ , Le2

8. Second deinterleave (not on last iteration) Le2, La2

9. Increment iteration counter --

10. If iteration limit not exceeded, return to 1. --

Table 4.2: Steps in decoding operation from perspective of control unit.

All of the internal variables in the decoder (La, α, β, Λ) are represented as 16-bit

signed fixed-point numbers.  However, the data coming in from the channel (x, y1, y2) are

represented as 8-bit signed fixed-point numbers.  Since the memory words on the

WILDFORCE are 32-bits long, there is some opportunity to save memory space and

decrease the number of reads required to perform some of the calculations by

concatenating multiple variables and storing them in the same memory word.  This is

performed twice in this design, with x and y1 being concatenated and β1 and β2 being

concatenated.  The resulting memory map is shown in Table 4.3 (where N represents the

block length).
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Memory Range Variable(s)

0 → N - 1 Interleaver Pattern

N → 2*N – 1 x & y1

2*N → 3*N – 1 y2

3*N → 4*N – 1 La2

4*N → 5*N – 1 Λ1

5*N → 6*N – 1 Le1

6*N → 7*N – 1 La1

7*N → 8*N – 1 x~  & y~

8*N → 9*N – 1
2

~Λ

9*N → 10*N – 1 Le2

10*N → 11*N – 1 β1 & β2

11*N → 12*N – 1 β3 & β4

12*N → 13*N – 1 d̂

Table 4.3: Memory map for turbo decoder.

With the overall system implementation described, the individual modules will now be

described in greater detail.

4.4 Interleaver Module

The interleaver module, while conceptually simple, provides the greatest implementation

flexibility of any of the modules.  Multiple schemes exist for how the actual interleaving

and deinterleaving are performed as well as for how the interleaving patterns are stored

and retrieved.  Some of these design alternatives are discussed below, followed by a more

detailed description of the design that was selected.

4.4.1 Interleaving Strategies
If interleaving and deinterleaving are to be performed by the same hardware module, how

the data is manipulated during interleaving and deinterleaving determines the memory

and hardware requirements of the modules.  The four alternatives for doing this are

described below.
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Read (on interleave)/Read (on deinterleave):  In this method, interleaving is performed

by reading the data to be interleaved according to an interleaving pattern and then writing

it to memory in a linear fashion.  The pattern is an array with length equal to N, where N

is the block length, with entries that hold every number between 0 and N – 1 in some

order.  The pattern values represent the addresses from where the values to be interleaved

will be read from the module input array.  Thus, the ith entry in the output array is found

by reading from the address the ith location in the pattern array.  For deinterleaving in this

scheme, the data are read according to an interleaving pattern and then written linearly.

However, this pattern must be different from the one used in the interleaving stage.  Thus,

this method has the advantage that the hardware for interleaving is identical to that for

deinterleaving, but it requires storage for two pattern arrays.  This effect is illustrated in

Figure 4.5 for the simple case of a block with only eight entries.

Write/Write:  This method is very similar to the read/read method, except that the data is

read linearly and the written to output in an interleaved fashion.  As is the case for the

read/read scheme, the write/write scheme uses the same hardware for interleaving and

deinterleaving, but uses two different patterns.
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Figure 4.5: Illustration of why two patterns are required for a read/read interleaving

scheme

Read/Write:  When performing interleaving in the read/write scheme, the data is read

according to an interleaving pattern and written linearly.  However, when deinterleaving

in this scheme, the data is read linearly and written according to an interleaving pattern.

By doing this, the interleaver and deinterleaver can use the same interleaving pattern.

This is shown in Figure 4.6.  Thus, the hardware is more complex since it must operate

differently when performing the two operations, but only one pattern array must be

stored.

Write/Read:  This method is analogous to the read/write method except that the

interleaver reads linearly and writes according to the interleaving pattern and the

deinterleaver reads in an interleaved fashion and writes linearly.  This approach also

requires the hardware to perform the two operations differently but with the advantage of

using a single array for pattern storage.
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Figure 4.6: Illustration of the use of a single pattern for a read/write interleaving scheme

4.4.2 Pattern Storage Strategies
In addition to the different approaches to performing interleaving discussed in Section

4.4.1, there are also several different ways of implementing storage for the interleaver

patterns on the WILDFORCE platform.  These alternatives embody implementation

tradeoffs between chip area, memory space, decoder throughput, scalability, and system

portability.  The options for storing the interleaver pattern are:

Single SRAM: This scheme has the interleaving pattern (along with the input and output

arrays for the interleaver) stored on the SRAM associated with the PE the decoder is

implemented on.  Thus, for each member of the input array, two reads and a write from

the SRAM are required.  This means that performing one block (de)interleave requires

approximately 3*N clock cycles.  Additionally, the pattern data requires either N or 2*N

memory words, depending on whether a read/write class scheme or a read/read class

scheme is used.  Although slow, this implementation has the advantage of being very

scalable with regard to block size and very portable to other platforms since it uses very

little chip area and a single memory port.
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Two SRAMs: This method has the interleaving data stored in the SRAM associated with a

neighboring PE.  During interleaving, a part of the chip would retrieve patterns from the

neighboring PE through the systolic bus and supply them to the interleaver.  The input

and output array would, of course, still be stored on the SRAM associated with the

decoder PE.  Thus, only a single read and write from the decoder’s memory would be

required to interleave a single datum, and the entire operation would require

approximately 2*N clock cycles.  The main disadvantage of this method is that it wastes

an entire PE to perform a memory fetch.  Although this is not a large problem on the

WILDFORCE (unless multiple PEs are being used for the decoder), using multiple

memories could provide portability problems when moving to other platforms.

On-Chip RAM:  Since it is possible to configure CLBs on the FPGA as RAM elements,

the interleaving pattern can be stored on the FPGA.  By doing this, it is able to provide

the improved performance of the two SRAM scheme without using another PE.  The

major disadvantage of this method is that it can consume large portions of the chip area.

The 1024x10 RAM required for pattern storage uses almost 400 of the 2304 CLBs on an

XL4062 FPGA.  If two patterns are required, then more than 1/3 of the chip will be used

for pattern storage.  This also limits the flexibility of the decoder to use large block sizes

since the area required for pattern storage for large blocks would exceed that of the entire

FPGA.

Sequence generation:  Another possible implementation would use a linear feedback shift

register (LFSR) to produce the interleaving pattern. Although this would reduce the

number of memory accesses needed to perform the interleaving and would require

relatively little chip area, this implementation choice has problems with flexibility.

Because the taps on the LFSR must be carefully chosen to produce a sequence that is full-

cycle, changing the block length requires redesigning the LFSR structure.

4.4.3 Module Implementation
In order to preserve flexibility and portability, the method of storing the interleaving

patterns in the SRAM associated with the decoder PE is used for this design.  The
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read/write scheme is used for interleaving and deinterleaving.  Thus, the interleaver

module must be able to function by interleaving on a read or a write, depending on the

mode it is in.  When it is in interleave mode (apply pattern to reads), the pattern must be

fetched from memory before the data can be read, but it can be written to the next address

in the output array as soon as it arrives.  When it is deinterleaving (apply pattern to

writes), the data can be fetched without needing to wait for the pattern value, although

both the data and the pattern must be fetched before the write can occur.  The constraints

of the memory architecture of the WILDFORCE, namely that data values are not valid

until two clock cycles after they are requested for a read, create complications in the

design that can be handled by inserting idle states into the module’s controlling state

machine.  The state diagram for the interleaver module is shown in Figure 4.7.

When the module is functioning as an interleaver, it applies the interleaving

pattern to the reading of the data.  For this reason, the pattern read must be completed

before the data read can be started.  The first pattern is fetched before entering the main

loop in the process so that the data can be fetched from an address based on the pattern

value.  After a request for the first data word is issued, the counter is incremented and

another pattern read is issued.  Since the write cannot be performed until the results of the

data read have become available, this time is used to prevent delays later by pre-fetching

the next pattern value.  The counter must be incremented because it is used as the index

into the pattern array, and the first value has already been fetched.  Once the data arrives,

it is written the following cycle.  Because the counter has already been incremented for

the pattern read, the write address must be based on the value of the counter less one.

After the last data word is read, then the interleaver goes to a special state to write the last

word since the counter cannot exceed its maximum value.

When the module is deinterleaving, it applies the interleaving pattern to the

writing of the data words.  Since the address of the data being read is independent of the

pattern value, they can be fetched on consecutive cycles, and the write can proceed once

both have arrived.  In this case, the write address is based on the value of the pattern data,

so the counter can be incremented at the beginning of each loop iteration without having

to store a lagged version to perform write addressing.
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Figure 4.7: State diagram for the interleaver module

4.5 Adder Module

The adder module is the simplest of the modules.  Simply put, the adder must read three

data words, perform an arithmetical operation on them, and write the result back to
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memory for each element in the associated arrays.  Like the interleaver module, however,

some clock cycles can be saved if the module’s state machine is made more complex to

cope with the delay in reading the data.  In the module state diagram shown in Figure 4.8,

the first addend is fetched before the main processing loop.  This is done because the next

addend request is issued in the processing loop before the current result is written to

memory.  This is done to make efficient use of the delay between the request for the two

subtrahends and their arrival.  As is the case with the interleaver module when it is

interleaving on reads, the writing of the result for this module must be based on a

decremented version of the counter since it is incremented to fetch the next addend before

the write is performed.

Ready
ReadFirst
Addend

Idle_0

ReadSub1

ReadSub2

Idle1

ReadNext
Addend

WriteSum

Idle2

WriteLastSum

Count = N?

Count ++

Figure 4.8: State diagram for the adder module
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4.6 Decoder Module

Like the interleaver module, the decoder module is designed to be able to perform

multiple functions in the decoder schematic.  The module must be able to act as either the

first or second constituent decoder.  Although these two modules are computationally

very similar, their implementations differ in a couple of ways.

4.6.1 Differences Between the First and Second Decoders
The first difference between the functionality of the two decoders is actually an artifact of

the memory organization.  As discussed in section 4.3, there are several instances where

variables are concatenated and stored in the same memory location.  One of these

concatenations is performed with the systematic data, x, and the parity information from

the first encoder, y1.  This is done to decrease the number of memory reads required for

decoding, since both pieces of information will be needed at the same time for decoding.

This technique only enhances the performance of the first decoder because it is the only

one that uses x and y1 for decoding.  The second decoder uses the interleaved version of

the systematic information, x~ , and the parity information from the second decoder, y2.

Since only x (and not x~ ) is transmitted in the encoded bit stream, x~  is not known until x

is interleaved.  However, y2 is encoded from the interleaved systematic bits, x~ .  Thus, y2

cannot be stored with its corresponding systematic information since it is not included in

the encoder output.  The end result of this is that the second decoder module must

perform separate read operations to fetch x~  and y2 while the first decoder can get both

the systematic and parity information with a single read.  Thus, the module state machine

must perform differently depending the decoding operation that is being performed.

The second difference is related to trellis termination.  Since the sequence of

message bits that are encoded is not deterministic, it is not possible to predict what the

final state of the encoder will be at the end of the block.  This degrades the performance

of the decoder since the calculation of the backward state metrics, β, is based on the

assumption that the encoder ends in the all-zeros state.  Trellis termination attempts to

rectify this situation by using the final M bits in a block to return the encoder to the all-

zeros state, where M is the memory of the encoder.  Instead of using all N message bits

for meaningful information, if only N – M are used, then the values for the remaining M
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bits can be calculated based on the state and generator matrix of the encoder in order to

force the state to the all-zeros at the end of the block. Although this pattern will terminate

the first encoder correctly, unless the interleaver is designed very carefully it will not

terminate the second encoder, since the termination bits will be spread throughout the

block on which the second encoder operates.  Thus, the second encoder is usually not

terminated, which means that the second decoder has no prior knowledge of the ending

state for its backward metric calculations.  Therefore, in the second decoder all of the

initial values for β should have the same weight.

The implementation consequences of this are related to the fact that each decoder

uses the same memory space for storing the β array.  This can be done because β  is only

used internally within each decoding function. Each decoder is responsible for initializing

its β array.  Because we have just shown that the two decoders must initialize β

differently, this means that the decoder module state machine must perform the

initialization differently depending on which constituent decoding operation it is

performing.

4.6.2 Module Implementation
The state diagram for the decoder module is shown in Figure 4.9.  When the decoding

operation is started, the β array is initialized according to the decoder setting specified by

the top-level system controller.  Because the calculation of βk requires knowledge of βk+1,

the initialization must define the last set of metrics, βN.  For this implementation with

encoders with memory M = 2, four metrics must be initialized, which can be

accomplished in two clock cycles due to the concatenation of the β values.  After this, the

decoder calculates the β array starting from the final state and ending with the earliest

state and stores is to memory.  Depending on which decoder it is currently implementing,

a single processing loop for calculating a set of four β values requires either six or seven

clock cycles.  After the reverse state metrics are calculated, the decoder calculates the

forward state metrics, α, and combines them with the previously calculated β results to

form the final decoding results, the bit LLRs represented by Λ.  Because the LLRs are

calculated as soon as the α  values are available, only the current set of α  values need to

be stored, so they can be used to calculate the next set of α  metrics.  After the entire
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block has been traversed in the forward direction, all of the LLRs have been calculated,

and the decoder module can return to its ready state.
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Count --

Count --

Figure 4.9: State diagram for the decoder module



56

4.7 Host Code

The WILDFORCE board cannot perform without some interaction from the host PC.  Of

course, the host code is responsible for providing a means to program the FPGAs on the

board and for giving the user access to the board clock and reset functions.  However, in

this design, the host code is also used for several additional purposes that aid in

verification, benchmarking, and simulation of a larger communications system.

Because the PC is the main way to get data to the board, its access to the PE

memory can be used to replace some of the interface modules that would need to be in

place in a system that was part of a larger communications system.  For instance, in a real

system that streams received blocks to the decoder, a module would have to be in place to

multiplex the systematic and parity bits into separate arrays, with the details of the

implementation depending on whether or not puncturing is used.  In this system, the host

code can write the systematic and parity bits directly into the PE memory, thus simulating

the actions of such a module.

In this design, the host code generates a random message bit array, encodes it

using a turbo encoder based on {7,5} RSC encoders, adds simulated additive white

Gaussian noise (AWGN) to the encoder output according to the desired SNR, and writes

these simulated received bits to the SRAM on the WILDFORCE.  It also writes the

number of decoding iterations and the block size to reserved locations in the memory.

Then, the board is reset, and the decoding operation begins.  The host program waits for

an interrupt signal from the PE, which signals that the decoding has been completed.

Then, the results are read from the memory, and a new block of encoded data is loaded to

the board.  While the board is processing the new data, the results from the previous

calculation are put through a hard decision and compared against the encoded bits in

order to generate bit error rate (BER) and frame error rate (FER) statistics.

By doing this, the host program can be used to document the error performance of

the decoder.  It can also be used for validation and benchmarking of the decoder.  If the

SNR is set to infinity, then the decoder should produce a zero BER.  If this is not the

case, then the decoder is not performing correctly and should be debugged.  Also, the
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host program can be used to measure the time that the decoder takes to process a block,

which can be used to calculate an overall information throughput for the system.

4.8 Summary

This chapter discussed the details of the implementation of the turbo decoder on the

WILDFORCE platform.  The overall goals of the implementation were discussed, and the

choice of system parameters targeted to achieve those goals was justified.  An

implementation strategy that emphasizes modularity and the use of memory as a module

interface was presented, along with a discussion of the memory resources that are re-

quired for the implementation.  Then, each of the three major modules—the interleaver,

the adder, and the decoder—were discussed in detail along with the major design choices

that were made in their development.  Finally, the functionality of the program running

on the PC host that controls the WILDFORCE board was discussed.
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Chapter 5.  Results
The following chapter presents the results of the implementation of the turbo decoder on

the WILDFORCE CCM.  First, the experimental setup from which the results were

derived is described.  Then, details of the hardware implementation are discussed in the

context of the attainment of performance goals while obeying the constraints of the

system.  Functional correctness of the design is shown by comparing the code per-

formance of this implementation to software-based simulations of turbo codes.

Additional results are presented that show the performance of the hardware while varying

several design parameters.

5.1 Test Setup

The system that was used for the implementation was a WILDFORCE PCI board with

five Xilinx 4062XL FPGAs, each with a local SRAM with 1MB of capacity that is

addressable in 32 bit words.  Because the PC must control the board operation and

because the main datapath to the board is through the host PCI bus, the host has several

tasks in this design.  The control program running on the PC was used to generate

random message data, perform turbo encoding of the data, simulate the effects of the

AWGN channel and scale “incoming” signals with the reliability factor, Lc, before being

placed in the PE’s memory.  Because the host can maintain tight control over the board

through the WILDFORCE API, the host was also used to manage the decoding of

multiple blocks for the purpose of calculating the bit error rate and frame error rate (FER)

of a code running on the system.  These calculations were done by comparing the hard

decision outputs of the system with the original message bits.  Finally, by using timing

functions in the host code, the decoding process was timed for benchmarking purposes.

5.2 Implementation Statistics

Table 5.1 summarizes the FPGA resource utilization for the turbo decoder.  With about

three-fourths of the FPGAs logic resources used by this implementation, there is still

room for additional hardware that would be required if the design were on a stand-alone
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platform, or even for integration with other modules in the software radio for which  the

turbo decoder was designed.

Resource Utilization

CLBs 1734 of 2304 (75%)

CLB flip-flops 441 out of 4608 (9%)

IOBs 75 out of 193 (38%)

IOB flip-flops 52

Table 5.1: Resource utilization for turbo decoder implementation.

The utilization of the chip resources can also be seen in the chip layout for the decoder’s

FPGA configuration, shown in Figure 5.1.

Figure 5.1: Decoder layout on XC4062XL chip.

The timing requirements that dictate the speed at which the design can be operated are

summarized in Table 5.2.
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Timing metric Value

Average Connection Delay 8.122 ns

Maximum Pin Delay 44.539 ns

Minimum Clock Period 324.39 ns (3.083 MHz)

Table 5.2: Timing information for the turbo decoder.

A single decoding iteration requires the use of the first and second constituent decoders,

two adder modules, and three interleaver modules.8  If the state machines for each

module are analyzed, it is found that each contains one or more loops that traverse the

entire block of data.  By counting the number of states in each loop, the number of cycles

required to perform the module’s operation can be approximated as a function of the

block length.  Thus, the first decoder requires approximately 13N clock cycles, while the

second  decoder requires 15N.  The adder and interleaver modules require on the order of

5N and 4N, respectively.  For our target iteration count of 6, then the total number of

cycles required to decode a single N-bit block of information is

( ) ( )( ) ( )( )
block

cycles
   2955431513524315135 NNNNNNNNN =+++++++× . (5.1)

In order to meet the target information decoding rate of 32 kbps, the system clock must

then run at

MHz 44.9
bit

cycles
295

sec

kb
32 =× . (5.2)

Although this rate is higher than the maximum clock rate given by the place and route

tool, all is not lost.  The clock speed estimations given by the CAD tools are generally

very conservative.  In fact, this design was found to run in actual hardware at speeds up

to 11.5 MHz while producing correct results.  By using this speed instead, it is found that

information rates of up to (11.5 MHz) / (295 cycles/info.bit) = 38.9 kbps can be

supported, which meets the target throughput.  One final note is that the Xilinx software

was run without any timing constraints.  If constraints are used, the minimum clock

                                                       
8 The reason that only three interleaver modules are required is that the LLRs from the second decoder only
need to be deinterleaved during the last decoding iteration.  During this state, there is no need to
deinterleave the extrinsic information because it will never be used as a priori information for the next
stage.  In fact, it is also unnecessary to calculate the extrinsic information during the last iteration, so only
one adder is required for that iteration.
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statistic should be increased significantly.  Analysis also shows that the decoder module

has by far the greatest path delays.  By including additional registers in this module to

pipeline the computations, it is likely that the clock speed and the overall system

throughput can be increased further.

5.3 Functional Results

Although the performance has been found to meet the implementation goals, this is only

a success if the decoder performs in a functionally correct manner.  In order to verify that

this is the case, the results from the implementation are compared to those from a turbo

coding MATLAB simulation.

Figure 5.2 compares the performance of the hardware and the simulation for a

decoder that uses six iterations with N = 1024 and no puncturing for values of Eb/N0 from

0.5 dB to 2.0 dB.  The BERs are shown in Figure 5.2 (a), and the FERs are shown in

Figure 5.2 (b).  As the figure shows, the hardware results match the expected results very

closely, which indicates that the hardware is performing the decoding correctly.  The

differences that do exist between the simulation and hardware results are due to the

randomness in the generation of the encoded bits and the channel noise for the two

instances.

In Figure 5.3, the hardware and simulation results are compared for different

numbers of decoding iterations while N = 1024, Eb/N0 = 1.5 dB, and no puncturing is

used.  As in Figure 5.2, the hardware results match the simulation results for both

BER (a) and FER (b).  These results also demonstrate the law of diminishing returns that

applies to the number of decoding iterations.  For situations where few iterations are

used, each additional iteration provides a sizable performance increase.  However, as the

iteration count increases, the relative performance improvement derived from each

additional iteration decreases until the latency cost of performing the extra iterations does

not justify the corresponding decoding improvement.

The strong correlation between the simulation and hardware results shown in

Figures 5.2 and 5.3 verifies that the implementation is functioning correctly.  Figures 5.4

and 5.5 further demonstrate the behavior of the decoder when varying some of the other

design parameters.  In Figure 5.4, the block size is varied from 16 to 4096 for the case of
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Eb/N0 = 1.5 dB with four iterations and no puncturing performed.  The graphs show that

the error rates decrease as the block size increases.  This makes sense because larger

blocks can provide a lower probability of low weight codewords by spreading the data

bits across a larger space than the smaller blocks can.  It should be noted, however, that

care was taken to choose interleavers with very good spreading properties for this

experiment.  At high SNRs (Eb/N0 ≈ 2 dB), the use of a “good” interleaver can provide

BERs that are more than an order of magnitude lower than those from randomly

generated interleavers.

Figure 5.5 shows the effect of puncturing on the decoding results of a system that

performs six iterations with N = 1024.  The results show that the punctured system

requires an Eb/N0 between 0.5 and 0.65 dB greater than the unpunctured system to

achieve the same BER and FER.  This is offset by the fact that the punctured system

utilizes the available bandwidth 50% more efficiently than the unpunctured system.

5.4 Summary

This chapter presented the results of the implementation of the turbo decoder.  It was

found that the implementation was able to meet the stated performance goals while

staying well within the constraints of the FPGA resources.  Functionally, the implemen-

tation produced BERs and FERs that were very close to the expected results generated by

software simulations.
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Figure 5.2: Comparison of simulation and hardware results showing bit error rate (a) and

frame error rate (b) for N=1024, 6 iterations, no puncturing and varying Eb/N0.
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Figure 5.3: Comparison of simulation and hardware results showing bit error rate (a) and

frame error rate (b) for N=1024, Eb/N0=1.5 dB, no puncturing, and varying iterations.
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Chapter 6.  Conclusion

This final chapter provides an overview of what has been presented in the document,

followed by a discussion of possible extensions and improvements to the work.

6.1 Summary

This thesis presented an implementation of a turbo decoder on a configurable computing

platform.  Chapter 1 introduced the concept of turbo decoding in the context of the

motivation for this thesis.  The software radio system that the decoder is designed for is

briefly described.

In Chapter 2, the theory of turbo coding is presented in much greater detail.  In

order to provide background and context, other concepts of coding theory were

introduced, including convolutional and block codes.  The structure of turbo encoders

was described.  The iterative feedback structure used for decoding turbo codes was also

presented.  Several soft-input, soft-output decoding algorithms that can be used for the

constituent decoders were discussed, including Log-MAP, Max-Log-MAP, and SOVA.

Finally, the design of turbo codes was discussed.

Chapter 3 dealt with the other major realm of this design––configurable

computing.  After configurable computing was defined, the devices at the heart of many

configurable computing machines, FPGAs, were described, with special attention being

given to the Xilinx FPGAs that were used for this implementation.  An overview of the

features of the WILDFORCE CCM was also presented with an emphasis on those

features that are most crucial to the turbo decoder design.  The design process for CCM

applications was presented with an emphasis on designing for the WILDFORCE.  This

process requires the co-design of hardware configurations for the FPGAs and software to

control the board from the host, which can create difficult debugging problems.  Several

alternate approaches to CCM design that were not taken in this project were also

described.  CCMs are best suited for designs where parallel hardware and

reconfigurability can best be exploited, like image and signal processing.
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Chapter 4 provided a detailed look at the design and implementation of the turbo

decoder for the WILDFORCE platform.  Goals and target parameters for the system were

presented in the first two sections.  The strategy for implementing the turbo decoder was

also described.  Several key elements of this strategy included the use of modularity to

ease implementation and testing, the use of the external memory as an interface between

modules to simplify coding and remove timing issues, and the use of a single PE to

provide portability to other CCMs and room for integration with other modules.  The

three major modules used in the design were also described. The interleaver and adder

modules used pre-fetching of data to reduce idle cycles that are caused by the two cycle

delay on memory reads.  The interleaver and decoder modules were designed to be

flexible so that they can implement two slightly different processes without requiring

hardware to be wasted on two distinct modules for these processes.

In Chapter 5, the results of the implementation were presented.  The role of the

host program in channel simulation and design verification for this project was described.

Resource utilization and timing statistics for the implementation were given, and it was

shown that the design can operate at the targeted rate of 32 kbps information throughput.

Functional verification of the design was also presented by comparing the performance of

the implemented decoder with the expected results from MATLAB simulations.

The contributions of this research include:

− An implementation of a turbo decoder that emphasizes flexibility and portability,

making it ideal for use in a software radio.

− A technique for using off-chip memory to simplify the interface between modules

that reside on a single FPGA.

− A technique for saving FPGA area by building flexible hardware modules that can be

time-shared to perform the overall decoding operation.

− A technique for optimizing the state machines to overcome inefficiencies created by

delays in performing memory reads.

6.2 Future Work

This section presents several enhancements to the design that could be made.  While

some of them are only necessary if the throughput requirements of the decoder increase,
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others will be required when the decoder is ported to a stand-alone platform and

integrated with other parts of the software radio.

6.2.1 Performance Enhancements
There are many ways that the performance of the decoder can be enhanced.  Some of

these are described in this section.

One of the more glaring details in the current implementation is the fact that it

only uses a single PE on the WILDFORCE, while the rest of the FPGAs are unused.

Although portability concerns were a driving factor in the decision to do this, if the

implementation were going to be used on the WILDFORCE extensively, it would be

good to take advantage of the additional configurable resources.  Using these resources

effectively can be a difficult challenge however.  If the block size were fixed to a fairly

small size, then it is possible that some of the modules could be made more efficient by

buffering the data on the FPGA, however this reduces the design flexibility.  The most

effective way to use multiple PEs for the design is to pipeline the decoding process by

iterations.  The first PE could perform the first two iterations and then pass its data onto a

neighboring PE for more iterations, while the first PE begins decoding a new block of

data.  The major difficulty with this approach is that because the PEs do not have access

to a shared memory, the passing of data between them would have to be implemented by

a module that reads the relevant data blocks from the first PE’s memory and passes them

to a corresponding module on the second PE that writes the data to memory.  The time

required to do these transfers reduces the performance gains of parallelizing the system in

this manner, but the performance would still be increased.

Further tuning of the state machines, specifically for the decoder module, should

be able to trim a few cycles out of the major decoding loop, which would offer some

improvement.  A more dramatic improvement could be achieved by integrating the adder

and decoder modules to reduce the memory accesses.  Although they are conceptually

distinct, both modules use the same set of variables, and integration would not be

difficult.  This relatively simple change could offer a performance increase of about 15%.

As mentioned in Chapter 5, the available clock speed could also be increased by

using more constraints with the Xilinx tools.  Additionally, the insertion of registers to
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employ pipelining in the slower decoder module would allow the overall clock rate to be

increased, resulting in an increase in throughput.

Perhaps the easiest way to increase the performance of the design is to move to a

platform that provides multiple memory ports. The memory-intensive nature of this

implementation means that the ability to perform two memory operations per cycle

instead of one would almost double the throughput of the design.  Because some of the

possible future target platforms for the decoder offer this feature, the implementation

should be able to keep up with any increases in the performance of the other software

radio modules to avoid becoming the system bottleneck.

Finally, a way to improve the decoding performance (in terms of accuracy, not

throughput) would be to use Log-MAP decoding instead of the Max-Log-MAP that is

implemented here.  The additional lookup tables and extra addition operations this would

require have the potential to slow the decoding process significantly, although this could

be offset by some of the other performance improvements mentioned here.  Careful use

of registers for pipelining could also be used to control the reduction in throughput.

6.2.1 Other Enhancements
Beyond just increasing the throughput of the decoder, there are other

enhancements that can (and in some cases, must) be made to the design if it is to be used

as part of a larger software radio.

In order to make the decoder less dependent on a host processor to do data

manipulation, a multiplexer unit would need to be implemented to receive incoming data

and separate the information and parity bits according to whether or not puncturing is

used.  Additionally, some sort of handshaking protocol would need to be implemented in

order to provide synchronization between the decoder and modules that are before and

after it in the larger system.  Also, the decoder module would have to perform the

reliability scaling, preferably as the incoming data is being multiplexed, so it would need

to have some access to a SNR estimate for the channel.
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